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Abstract—The bus topology, crucial in electronics for multi-
device communication, faces challenges with an increasing num-
ber of devices and application-specific physical constraints.
This work mathematically models bus topological features and
obstacle-aware routing constraints in the rectilinear and oc-
tilinear routing planes to synthesize the bus topology with
minimum total wire length. We implement our rectilinear and
octilinear synthesis methods by constructing mixed-integer-linear
programming (MILP) models and investigate their performance
using eleven commercial inter-integrated -circuit (I>C) buses
on a smartphone motherboard. Experimental results confirm
that our methods can efficiently synthesize bus topologies with
significantly shorter wire lengths, up to 24.3%, compared to two
baseline methods.

Index Terms—Bus topology, Rectilinear routing, Octilinear
routing, Mixed-integer-linear programming

I. INTRODUCTION

The bus topology is widely employed in the electronics
industry due to its reliable and cost-effective data transmission
capabilities. Fig. 1(a) illustrates a bus topology where multiple
devices are sequentially connected to a shared communica-
tion medium. The bus topology forms the basis of multi-
device communication within printed circuit boards (PCBs)
and integrated circuits (ICs), enabling data exchange among
various device categories, such as industrial sensors, displays,
memory modules, audio codecs, and numerous other devices.
A typical example of the bus topology is the inter-integrated
circuit (I*C) bus, as shown in Fig. 1(b), which requires two
wires, i.e., the serial data line (SDA) and the serial clock
line (SCL), as the shared communication medium to enable
data exchange between the microcontroller (master device) and
various peripherals (slave devices) [1].

During the synthesis of a bus based on the positions of
the devices to be connected and the obstacles, as illustrated
in Fig. 2(a), designers need to decide the order in which the
devices are connected to the shared communication medium
and route the wires to implement the shared and the branching
wires without hitting obstacles. Notably, in environments like
smartphone motherboards, where routing areas are extremely
constrained and wire density is high, minimizing wire length
is imperative for conserving space and optimizing area us-
age, thus enhancing subsequent wire placements’ efficiency.
In particular, significant obstacles, such as large electronic
components like antennas and cameras, often result in central
voids on the board, as shown in Fig. 2(a). In such cases,
wire detours within the paths of bus routing relying on simple
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Fig. 1. (a) The bus topology. (b) The I*C bus topology.

optimization criteria, such as connecting each device to its
nearest neighbor, can result in substantial increases in the
required wire length, leading to suboptimal design outcomes
and considerable inefficiencies in resource use.

Historically, buses have been designed manually and em-
ployed in relatively small-scale applications for basic data
exchange. However, with an increasing number of devices
to be connected and application-specific physical constraints,
the manual design of buses can be time-consuming, and
the quality of the outcome often relies on the designers’
experience. For example, the manual design on a smartphone
motherboard shown in Fig. 2(a) can lead to a suboptimal result
shown in Fig. 2(b). Specifically, the configuration of the wires
originating from the master involves two potential detours
to avoid obstacles: one route traverses above the obstacles
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Fig. 2. Illustration of an I>C bus, where green points denote slave devices
(s1—sg), yellow points denote master devices, white lines denote manually
designed logical connections between devices, black lines denote the shared
communication medium, and blue lines denote the branching wires connecting
devices. (a) Positions of devices and obstacles, with devices connected to their
nearest neighbor while ignoring obstacles. (b) Non-optimized I>C bus, where
wires meander unnecessarily within the outlined area. Optimized I>C buses
in the (c) rectilinear and (d) octilinear routing planes.



Fig. 3.
obstacles in Fig. 2 using (a) the OARSMT algorithm in [2] and (b) the
OAOSMT algorithm in [3], where the connections of devices within the
outlined areas violate the configuration of the bus topology.

Illustration of the routing results for the positions of devices and

to connect with sg, s7, or sg, while an alternative route
goes below to connect with ss, s3, S4, or s5. Compared to
the optimal rectilinear routing outcome shown in Fig. 2(c),
the master in the suboptimal I’C bus is connected to Sg,
chosen based on its minimal Manhattan distance to the master.
This decision results in the upper routing path, significantly
increasing wire lengths due to the large area occupied by
obstacles. Meanwhile, wastage in routing areas is evident, as
shown in Fig. 2(b) by the unnecessary meandering of wires
within the area outlined in red. Further, routing using octilinear
architecture, as depicted in Fig. 2(d), can reduce the wire
length required for the I?C bus instance even further.

When examining general obstacle-aware routing problems
considering wire length minimization, the most widely ac-
knowledged automatic rectilinear or octilinear routing method
is the obstacle-avoiding Steiner minimum tree (OASMT) [2]-
[10], which constructs a tree topology among a group of
devices in the presence of obstacles. However, OASMT algo-
rithms generate routing trees where devices are connected in a
branching manner that directly contradicts the strict sequential
connectivity required by bus topologies, where all devices
must connect along a shared communication medium. For our
exemplary I°C bus, we illustrate the routing results using the
obstacle-avoiding rectilinear Steiner minimal tree (OARSMT)
algorithm in [2] and the obstacle-avoiding octilinear Steiner
minimal tree (OAOSMT) algorithm in [3] in Figs. 3(a) and
3(b), respectively. Specifically, in Fig. 3(a), s4 is not connected
to the shared communication medium but rather links directly
to s3. Similarly, in Fig. 3(b), s4 and sg are connected to s3 and
s7, respectively. These deviations are not merely suboptimal
but fundamentally incompatible with bus functionality, as the
tree-based design disrupts the uniform signal propagation and
timing consistency required in buses. While OASMT algo-
rithms focus on minimizing wire lengths, they cannot produce
or easily adapt to the strict sequential connectivity required by
the bus topology. This fundamental conflict makes OASMT
algorithms entirely unsuitable for applications requiring the
bus topology.

This work proposes automatic rectilinear and octilinear
synthesis methods of the bus topology with minimum wire
length considering potential obstacles in rectilinear and oc-
tilinear routing planes, respectively. Both synthesis methods
are implemented as mixed-integer-linear programming (MILP)
models. The main contributions of our work are summarized
as follows:

o It is the first work that mathematically models the bus
topology.

e It proposes an obstacle-aware wire length calculation
model that identifies detour requirements and determines
the appropriate detour paths.

o It optimizes the connection order of devices and the
routing of the wires simultaneously.

The rest of this paper is organized as follows. Section II for-
mulates the problem. Sections III and IV detail the rectilinear
and octilinear synthesis methods, respectively. Experimental
results are shown in Section V, followed by our conclusion in
Section VI.

II. PROBLEM FORMULATION

This work aims to solve the following problem:

Input: The positions of (master/slave) devices and obstacles.
Output: Routed wires in a bus topology.

Constraints: Devices must connect to a shared communication
medium in a strictly sequential manner, as defined by the bus
topology. The wires must not overlap with the obstacles.
Objective: Minimize wire lengths with adjustable weight coef-
ficients for the wire lengths of the shared and branching wires.

III. RECTILINEAR SYNTHESIS METHOD

Our rectilinear method mathematically models bus topolog-
ical features and obstacle-aware routing constraints to synthe-
size buses in the rectilinear plane with minimum wire length.
The frequently used variables of our rectilinear method are
outlined in Table I.

A. Bus topology

Every device is modeled as a point. Fig. 4 illustrates our
model of the bus topology, where the shared communication

TABLE I
MODEL VARIABLES

\ Binary variables |

qij The ™ virtual point connects to the ;T device.
The ™ virtual point is located on the left, right, top, or
bottom relative to the k™ obstacle.
The 4™ virtual point is strictly located to the left, right,
top, or bottom relative to the k™ obstacle.
Points p,, and p, are horizontally or vertically opposite
regarding the k™ obstacle.
Manhattan paths of points p,, and p, intersect with the
k™ obstacle.
The path connecting points p,, and p, bypasses via the
b top-left, top-right, bottom-right, or bottom-left corner of
T bl
9m,n) g’ Ummn) the k™ obstacle.

Kok’ The k™ obstacle’s bypass corner connects to the k'™

dm,n obstacle’s.

The k™ obstacle’s selected bypass corner is connected by
points py, or p, within the path connecting points p,
and py,.
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\ Continuous variables |

The - and y-coordinates of the 4™ virtual point.

The z- and y-coordinates of the k™ obstacle’s bypass
corner within the path connecting points p,, and py,.
Manhattan distance between points pp, and py,.

Distance between point p,, and its connecting bypass
corner, between the k™ and k' obstacles, and between
point p, and its connecting bypass corner within the
routing path connecting points p,, and py,.

Total wire lengths of the trunk and branch segments.
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Fig. 4. The model of the bus topology features trunk segments in black
and branch segments in blue, with yellow circles as the master device, green
circles as slave devices, and red circles as virtual points.

medium is referred to as the trunk, and the branching wires
connecting devices to the trunk are referred to as the branch
segments. Meanwhile, to decide on the device connection
order, we introduce virtual points that serve as the interfaces
for the branching segments to access the trunk. Specifically,
without loss generality, we define the connection order of
virtual points as vy, va, ..., Up,, Where ng denotes the number
of devices. Thus, deciding the device connection order is
equivalent to determining the device connected to each virtual
point. Further, for buses using a master-slave architecture,
such as I2C buses, we connect v; to the master.

To establish the one-to-one correspondence between virtual
points and devices, we define a binary variable g;; that
specifies whether the i virtual point connects to the " device
and introduce the following constraints.

Z qij = 1. (1)

E ¢ =1, Vigj<n,
1<j<nq 1<i<ng

Vi<i<ng :

In multi-wire buses, e.g., four-wire serial buses (Serial
Peripheral Interface) and two-wire I2C buses, we abstract
multiple wires into a single line to ensure uniform wire
lengths within the bus. Ensuring this uniformity simplifies the
overall routing architecture while also playing a crucial role
in preserving consistent signal propagation delays, which are
essential for maintaining precise timing and synchronization
across devices. In time-sensitive systems, uniform wire lengths
help mitigate timing discrepancies and reduce the risk of skew
between signals.

B. Non-overlapping with obstacles

We represent each obstacle by a bounding box with its edges
set at a distance of a minimum separation e from the obstacle,
as shown in Fig. 5(a), to ensure that the distances between
virtual points and obstacles exceed €. The position of any given
obstacle, such as the k™ obstacle oy, is represented with the
coordinates of its bounding box’s bottom-left and top-right
corners, denoted as (minzy, miny,) and (max zy, maxyy),
respectively. To guarantee that the i virtual point v; does not
overlap with o, v; should be located on the left, right, top,
or bottom relative to og, i.e.,

Grtadntde+d,>1, )

where binary variables ¢! ., q7,, ¢! ., and ¢?,, indicate whether
v; is located on the leﬁ, ri:ght, ’top, or bottom relative to
oy, referring to the scenarios in Fig. 5(b), respectively. For
example, v; is located to the left of o, specifically to the
left of the line y = min x, implying that the binary variable
qé’ , 18 1; otherwise, it equals 0. We characterize the relative
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Fig. 5. (a) Each obstacle is represented by a bounding box with its edges set at
a distance of a minimum separation e from the obstacle. (b) Relative locations:
v; can be located on the left, right, top, or bottom relative to o, where blue
areas indicate possible locations of v;. (c) Strictly relative locations: v; is
exclusively located on the left, right, top, or bottom side of oy.

location of v; to the left of o using the big M method [11]
as

(3a)
(3b)

r; > minzg — qékM,
r; < minzg + (1 — qf’k)M,

where M is an extremely large constant. Specifically, when v;
is located to the left of o, (3a) ensures that qﬁﬁ i €quals 1, while
(3b) sets it to O otherwise. For example, in the scenario where
vz is located exclusively to the left of oy, binary variables
qzk, i ko qlk, and qlk will take values of 1, 0, 0, and O,
respectlvely When v; is located on the top-left relative to oy,
indicating it is both on the left and top relative to oy, the values
of qfk q{k qfk and qzk will be 1, 0, 1, and 0, respectively.

C. Obstacle-aware wire length calculation

Based on the relative locations of virtual points to obstacles,
we identify whether the connection between a virtual point
and its assigned device or between two consecutive virtual
points requires a detour to avoid obstacles. Once a detour is
necessary, we apply a defour mechanism to navigate around
those obstacles. After that, the lengths of the trunk and branch
segments can be calculated considering obstacles, and we then
minimize the total wire length to obtain the optimal locations
of virtual points and device connection order.

Strictly relative locations: A virtual point is considered
strictly on the left, right, top, or bottom relative to an obstacle
if the rays originating from that virtual point in the respective
opposite directions (right, left, bottom, or top) overlap with
that obstacle. This implies that a virtual point is strictly relative
to an obstacle if it is exclusively located on one of these four
sides of that obstacle, as shown in Fig. 5(c). For example, v;
being not located to the right, top, or bottom of o implies that
v; 1s strictly placed to the left of oy, represented by a binary
variable ;.

qzk>1_sz_sz qg‘),k' 4)

The binary variables ¢; ', ¢; %, and ¢; 7, describing v; strictly to
the right, top, and bottom of o, respectively, can be identified
analogously.
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Fig. 6. Tllustration of points p,, and p, in (a)—(c) a horizontal opposite

relation and (d) their routing paths.

Rectilinear opposite relations: We call the routing paths
connecting two points with a length equal to their Manhattan
distance as their Manhattan paths. When two points are on op-
posite sides of an obstacle, either the horizontal or the vertical
segments of their Manhattan paths will inevitably overlap with
that obstacle. In such cases, these points are identified as being
horizontally or vertically opposite regarding that obstacle,
respectively. As an example shown in Fig. 6(a), points p,, and
Pn, representing virtual points or devices, are located strictly
on the left and right relative to obstacle og, respectively. As a
result, the horizontal segments of their Manhattan paths will
overlap with oy. The constraints characterizing this horizontal
opposite relation can be formulated as

Gy = Do + 0% = 1o Gy = Gl + Gt — 1 5)

Trivially, two points can be opposite regarding multiple
obstacles, as shown in Fig. 6(b), where p,, and p, are
horizontally opposite regarding both o0; and os. Further, two
points may not be opposite regarding any single obstacle, yet
they can still exhibit an opposite relation regarding a group
of obstacles, as their Manhattan paths overlap with those
obstacles, as shown in Fig. 6(c).

We denote the intersection of y-coordinate boundaries of oy,
and oy as a set of points azh’k,, referring to the blue areas in
Figs. 6(b)-6(d). If ai’jk, =0, the Manhattan paths between p,,
and p,, can pass through the gap between these obstacles. In
contrast, if aZi‘k/ # (), their Manhattan paths will cross oy, or
oy, as shown in Fig. 6(c). To detect all obstacles intersecting
their Manhattan paths in horizontal segments, we revise (5)
accordingly. For all oy € O with a;,, # 0

Uy Umnyy 2 Gk T Gty = L @ + Goper — 15 (6)
where O contains all obstacles. Further, o, is called relevant
to the routing path between p,, and p,,, denoted by binary
variable q(p, »), , if the Manhattan paths of p,, and p,, intersect
with oy, in their horizontal or vertical segments.

\v/okEO: qET’IL’ln)k + qz‘:n,n)k < 2- d(m,n)y- (7)

For example, in Fig. 6(c), o and oy are both identified as
relevant, necessitating a detour of the routing path between p,,
and p,. Conversely, oy~ is identified as irrelevant, indicating

that its presence does not obstruct the routing path connecting
Pm and py,.

Detour mechanism: Our work navigates detours via a sin-
gle corner of relevant obstacles, referred to as bypass corner,
and selects the bypass corner that minimizes the total wire
length. Specifically, we construct the path connecting p,,, and
Py as a path that originates at p,,, and proceeds progressively
via each selected bypass corner to arrive at p,,, as shown in
Fig. 6(d). To decide the bypass corner of a relevant og, we
define binary variables qffn’n)k, Uy qz’;’ﬁ’n)k, and qé’fn’n)k,
specifying the bypass via its top-left, top-right, bottom-right,
or bottom-left corner, respectively. Then, if oy is relevant, at
least one of its corners will be selected.

l b bl
qu,n)k + qéfn,n)k + q(;a,n)k + q(m,n)k 2 d(m,n)k- ®)

For example, within the black path in Fig. 6(d), the top-
right corners of o, and oy are selected as bypass corners.
Also, og has no bypass corner as it is irrelevant to p,, and
Pn- Meanwhile, oy’s selected bypass corner c(y, ), has the
coordinates of

: bl : tl
L(m,n), = ML Gom p), T DTk - Gl ),

+ max z - q?:n,n)k + max xy - Q€:n,n)k7 9)

: bl : b
Y(mn), = MDY - q(m,n)k + minyy - q('z;z,n)k
+MAX Yy, i ), + MAXY ) G ),

A bypass corner of a relevant obstacle between p,, and p,
can be connected to p,,, Py, or the bypass corner of another
relevant obstacle between p,, and p,. Let binary variable
qfnk,; indicate the connection of oy’s bypass corner to op’s.
Then, the following constraints detail these specific connecting
principles.

k' k
Q(m)k,n + Z qm;n : Q(m,n)k/ = Q(m,n)k
k#£k'

Qm,i(n) + Z qicn,fcn “d(mn) = Aimmn)e>
k!

(10)

where binary variables q(,,), » and ¢, , () indicate whether
ox’s bypass corner is connected by p,, or p,, respectively.
The product terms ensure the bypass corner of a relevant
obstacle cannot be connected to the bypass corner of an
irrelevant obstacle. Here, the product of two binary variables,
eg, C = A- B, is linearized as C < A, C < B, and
C>A+B-1.

Wire length calculation: The Manhattan distance of two
points is calculated as the sum of the differences in their
coordinates. Linearizing the absolute value function, contin-
uous variable dps (pm,pn), denoting the Manhattan distance
between p,,, and p,,, is formulated as

dar (pm,pn) 2 Ty — Tn +Ym — Yn, Tm — Tn + Yn — Ym,
xn_xm"i'ym_yny xn_xm+yn_ym7
(11)
where T, Ym, Tn, and y, are continuous variables denoting
coordinates of p,, and p,,. As minimizing the total wire length
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Fig. 7. (a) Wire segment directions in the octilinear routing plane. (b) Relative
locations: v; is on the top-left, bottom-right, top-right, and bottom-left relative
to o, where the blue areas indicate possible locations of v;.

is our optimization objective, dps (P, Pr) is constrained to the
largest value among right-hand side terms.

For points in opposite relations, based on the connec-
tion principles introduced in (10), the length of the routing
path connecting p,, and p,, denoted by continuous variable
d(Pmm, pn), is formulated as

kK’
dpmspn) Z it D0 Al di . (12)
01,041 €O
where continuous variables dy; ,,, d,’f,;{“,;, and dy, ,,, representing

the distances between p,, and its connecting bypass corner,
between oy, and oy, and between p,, and its connecting bypass
corner, respectively, can be derived as

dm,n > dy (prm C(m,n)k) - (1 - Q(m)k,n)M»
Aty 2 dar (Comnyes Cmomyyr) = (L= diile) M,
dnm,n 2 dM (C(m,n)kapn) - (1 - qm,k(n))Mv

where ¢(,, ), denotes oy’s selected bypass corner.

Utilizing the length computation between two points, we
establish constraints to define the total wire length of a bus
topology. For a bus consisting of ng devices, the trunk, which
is considered a path that sequentially traverses each virtual
point, has a length of

2

1<i<ng—1

13)

ltrunk = d(’l)i, UiJrl)' (14)

In a master-slave structured bus, we include the distance be-
tween the master and the first virtual point in l;,,,;. Meanwhile,
the total wire length of branch segments is

lbranch = Z d(U% 52)7

1§1§nd

15)

where d(v;, §;), representing the distance between v; and its

connecting device §;, is formulated as

where s; denotes the jM device.
Finally, the objective function is formulated as

minimize: Ctrunk * ltmnk + Coranch lbrancha
Subject to: (1)~(4), (6)~(16),

where Cyynr and cpanen are adjustable weight coefficients.

IV. OCTILINEAR SYNTHESIS METHOD

Considering the capability of octilinear architecture in
reducing wire lengths, we expand our rectilinear synthesis
method to octilinear routing. For computational efficiency, we
retain the optimized device connection order achieved in the
rectilinear synthesis method. In other words, the optimization
starts with ¢;; preset to the value that minimizes the wire
length in rectilinear routing.

A. Octilinear opposite relations

When two points are in a rectilinear opposite relation, they
are also in an opposite relation on an octilinear plane, as shown
in Figs. 6(b) and 6(c). Further, we define two additional cat-
egories of opposite relations specific to the octilinear routing:
diagonal and semi-diagonal opposite relations.

Relative locations: In addition to the horizontal and ver-
tical directions, the octilinear routing plane also allows wire
segments to be angled at 45° and 135°, as shown in Fig. 7(a).
A virtual point v; is considered on the fop-left, bottom-right,
top-right, or bottom-left relative to oy, if the rays originating
from v; in the respective opposite directions (ds, d1, d4, or ds)
overlap with og, as shown in Fig. 7(b), where boundary lines
1t 1%, 18 and (%" have a gradient of either 1 or -1, intersecting
top-right, bottom-left, top-left, or bottom-right corners of oy.
The constraints characterizing these relative locations can be
formulated analogous to (3).

Octilinear opposite relations: We refer to the shortest
routing paths that connect two points in the octilinear routing
plane, i.e., without consideration of detour, as their octilinear
paths. When two points are on diagonally opposite sides
of an obstacle, e.g., being on the top-left and bottom-right,
respectively, as shown in Fig. 8(a), they are identified as
being 45° or 135° diagonal opposite regarding that obstacle
as either the 45° or 135° segments of their octilinear paths
will inevitably overlap with the obstacle.

Further, the semi-diagonal opposite relation is a hybrid of
rectilinear and diagonal opposite relations. For example, as
shown in Fig. 8(b), when one of two to-be-connected points
is located within the intersection of the strictly left and top-
left areas relative to oy, referring to the red area, and the
other point is located on the corresponding opposite side of o,
referring to the yellow area, their octilinear paths will overlap
with oy. The identification constraints for diagonal and semi-
diagonal opposite relations can be formulated similarly to (6).

B. Obstacle-aware wire length calculation

Detour mechanism: In the octilinear plane, our detour
mechanism builds on the principles used in the rectilinear
plane, where detours are navigated via bypass corners of
relevant obstacles. Considering the additional wire segment
directions in the octilinear plane, we introduce the following
bypass corner selection rules to prevent overlapping routing
paths with obstacles:

1) For each segment along the routing path from the start
to the endpoint, if the segment’s start point is strictly
on the left, right, top, or bottom relative to an obstacle,
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opposite relations and (c) their routing paths.

at least one corner on that side of the obstacle must be
chosen as a bypass corner.

2) For each segment along the routing path from the start
to the endpoint, if the segment’s start point is on the
top-left, bottom-right, top-right, or bottom-left relative
to an obstacle, at least one of the corners on the left or
top, right or bottom, right or top, or left or bottom edges
should be selected as bypass corners, respectively.

For example, in Fig. 8(c), with p,, being strictly left to oy, at
least one corner on the left edge of oj should be selected if
o 1s connected by p,,.

tl bl s

Here, the black and blue paths indicate the selection of oy’s
top-left and bottom-left corners, respectively. Further, since the
top-right corner of oy, is on the top-left relative to oy, at least
one corner on the left or top edges of o/ should be selected
if ogs’s bypass corner is connected by oy’s.
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The black path in Fig. 8(c) shows the selection of ox’s top-
right corner. Similar constraints can be constructed to restrict
bypass corner selections for other relative locations.

Wire length calculation: The length of the octilinear path
between p,,, and p,, is referred to as their octilinear distance,
denoted by continuous variable do(py,, p,) and given by

dO(pmupn) = \/i-min (A:mAy) + ‘Aw - Ayl )

where A, and A, denote the coordinate differences between
Pm and p,. We linearize the minimum A,;p, = min(A,, Ay)
using big M method [11] as

Amin > AT - qMa Amin > Ay - (1 - Q)Mv

19)

(20)

where ¢ is an auxiliary binary variable. As minimizing the total
wire length is our optimization objective, A,,;, is constrained
to the lesser of A, and A,,.

Applying the connecting principles introduced in Section
III-C to the octilinear routing plane with distances d;7, ,,, d,’jlk,;
dyy, n» @and d(pm,pr) are calculated by modified (13) using
the octilinear measurement in (19). Notably, the Manhattan

measurement is employed to calculate the distance between

two bypass corners of an obstacle to prevent wires from
overlapping with obstacles. Finally, the objective function is
formulated as in the rectilinear synthesis method, incorporating
the constraints introduced in Section IV.

V. EXPERIMENTAL RESULTS

We investigated the performance of our synthesis methods
using eleven commercial I>C buses in a smartphone mother-
board as test cases. The details of these test cases are listed in
Table II, where n4 and n, are the numbers of devices and ob-
stacles, respectively. For comparative analysis, we developed
Dijkstra and Dreyfus baseline methods to synthesize buses
using rectilinear and octilinear routings. We implemented the
methods with Java and ran the experiments on a computer
with an Apple M1 8-core CPU. The MILP models were solved
using Gurobi [12].

In our experiments, we set the minimum separation e
to 3 mils and the unit length to 1 mil. Thus, the vari-
ables in Sections III and IV, describing coordinates and
wire lengths, were considered integer variables. Accord-
ingly, the equality in (19) was replaced with “>" to obtain
[V2min (Ag, Ay) + |Ay — Ay[]. Meanwhile, all weight co-
efficients used in our synthesis methods were set to 1.

A. Baseline methods

We develop Dijkstra and Dreyfus baseline methods to syn-
thesize buses using rectilinear and octilinear routings. Unlike
OASMT algorithms, which are designed for hierarchical tree
structures, these baseline methods are tailored for bus topolo-
gies, ensuring correct device connections and reducing total
wire length.

Dijkstra baseline method: The Dijkstra baseline method,
a greedy approach, utilizes our synthesis methods with a
device connection order predetermined by Dijkstra’s algorithm
[13]. Specifically, Dijkstra’s algorithm is used to compute the
shortest paths between device pairs considering obstacles in
rectilinear and octilinear routings. After that, starting from the
master, we generate a connection order by sequentially linking
each device to its nearest neighbor, and our synthesis methods
use this order to produce the final routing outcomes.

Dreyfus baseline method: We develop the Dreyfus base-
line method based on the Dreyfus-Wagner algorithm [14],
which systematically examines all possible configurations of
device connections. This exhaustive exploration enables the
identification of solutions that strictly satisfy the bus topology,
thereby achieving optimality.

Given a graph G = (V, E) and a set Y C V, the Dreyfus-
Wagner algorithm exploits the optimal decomposition property
[14] to determine the optimal Steiner tree 7 (Y").

TABLE I
TEST CASES USED IN THE EXPERIMENTS, WHERE 14y AND 1, ARE THE
NUMBERS OF DEVICES AND OBSTACLES, RESPECTIVELY.

| T[2][3]4]5]6]7]8]09 |
[na [3T3[3[S5TS5]7[8787979 [12]
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TABLE III
SYNTHESIS COMPARISON, WHERE [, IN MILS IS THE REQUIRED WIRE LENGTH, T" IN SECONDS IS THE RUNTIME, AND “—"” MEANS THAT THE RESULT IS
UNAVAILABLE AFTER 24 HOURS OF RUNTIME.

Rectilinear routing plane Octilinear routing plane
RSM [ Dijkstra | Dreyfus [ Improvement (%) OSM [ Dijkstra | Dreyfus [ Improvement (%)
[ case L | T | lw | Lw ] T | Dijkstra | Dreyfus L | T | lw | Lo ] T | Dijkstra | Dreyfus [ RSM
1 1261 0.14 1261 1517 0.33 0.00 16.88 1236 | 0.21 1236 1473 0.33 0.00 16.09 1.98
2 1121 0.08 1121 1240 0.34 0.00 9.60 977 0.15 977 1004 0.38 0.00 2.69 12.85
3 2565 0.13 2826 2686 0.30 9.24 4.50 2365 | 0.21 2416 2612 0.36 2.11 9.46 7.80
4 4076 0.24 4445 4076 1.12 8.30 0.00 3818 | 0.24 4127 3877 3.58 7.49 1.52 6.33
5 2489 0.26 2589 2489 1.20 3.86 0.00 2411 | 0.29 2439 2456 3.40 1.15 1.83 3.13
6 2580 0.93 2989 2580 52.99 13.68 0.00 2346 | 0.26 2630 2458 304.71 10.80 4.56 9.07
7 4132 9.73 4281 4132 253.63 3.48 0.00 3753 | 1.43 3877 4040 2169.96 3.20 7.10 9.17
8 4638 13.63 5326 5199 430.48 12.92 10.79 4465 | 1.26 4803 4876 1237.48 7.04 8.43 3.73
9 8392 54.82 9171 8869 | 3224.85 8.49 5.38 7494 | 1.13 7979 8431 6559.32 6.08 11.11 10.70
10 5447 39.52 7198 5987 | 2659.16 24.33 9.02 5046 | 2.06 6223 5523 | 14925.86 18.91 8.64 7.36
11 4891 | 380.51 6442 — — 24.08 — 4640 | 1.25 5549 — — 16.38 — 5.13
Average 9.85 5.62 Average 6.65 7.14 7.02
Proposition (Optimal decomposition property). Let 7(X) be runtime, and “—" means that the result is unavailable after 24

any Steiner tree connecting a subset X C V of the points
in a graph G = (V, E), and let  be any point in X. If X
contains at least three members, then there exists a pointv € V'
and a subset D of X such that: 1) D is a nonempty proper
subset of X — 2. 2) T(X) can be decomposed into three
disjoint subtrees: T1, T5, and T3, where T} connects {z,v},
T; connects x U D, while T3 connects x U (X — D — v).

The original problem can then be recursively solved by
computing optimal subtrees 7 (X U v) for all X C Y and
v € V. To iterate over each subtree following the 1°C bus
topology, we solve Steiner problems connecting each subset
X C Y — m, where m denotes the master device and Y
denotes the set of devices to be connected. Specifically, for
all v; € V, Sl(X) = minvjev’ ecX d(Ui,’Uj) + SJ(X — 6) +
d (vj,e), where d(v;,v;) and d(v;,z) denote the weights of
edges {v;,v;} and {v;,x}, respectively. These weights are
accordingly calculated using the Manhattan and the octilinear
measurements in the rectilinear and octilinear routing planes.
Finally, we select one point v € V to connect the master
device m such that S, (Y) = min,, cv d (m, vg)+Si (Y —m)
is the required wire length.

We generate virtual point candidates, namely the nodes
belonging to V — Y, based on the escape graph [15]. In the
rectilinear routing plane, the optimal solution of an obstacle-
avoiding rectilinear Steiner tree exclusively involves escape
segments. Thus, we define the intersections of escape seg-
ments as virtual point candidates. Similarly, in the octilinear
routing plane, virtual point candidates include, in addition to
these intersections, the points where segments angled at 45°
and 135° meet. When the results contain overlapping wire
segments with obstacles, we choose corners that minimize the
detour paths as the bypass corners.

B. Proposed vs. baseline methods

Table III presents the synthesis comparison of the proposed
and baseline methods, where RSM and OSM represent the
proposed rectilinear and octilinear synthesis methods, respec-
tively, [, in mils is the total wire length, 7" in seconds is the

hours of runtime.

Compared to the Dijkstra baseline method, the proposed
synthesis methods require, on average, 9.85% and 6.65%
shorter wire lengths in the rectilinear and octilinear routing
planes, respectively. In small cases with few devices, like cases
1 and 2, the local optimal solution generated by the Dijkstra
baseline method matches the global optimal solution generated
by our rectilinear method. However, as the case size increases,
the advantage of our methods becomes more significant, with
the required wire lengths decreased by up to 24.33% in the
rectilinear plane and 18.91% in the octilinear plane. In general,
the comparison reveals that the device connection order greatly
affects the resulting wire lengths.

Compared to the Dreyfus baseline method in the rectilinear
routing plane, observations show no reduction in required wire
lengths using the proposed method for cases 4—7. This occurs
because we iterate over each subtree that forms an I>C bus
in the Dreyfus baseline method, and the final bus does not
contain the wires that cross obstacles. Namely, these baseline
results are optimal, indicating that the proposed rectilinear syn-
thesis method achieves optimality. On average, the proposed
rectilinear synthesis method can decrease the required wire
length by 5.62% compared to the Dreyfus baseline results.
Additionally, improvements in our octilinear routing results are
observed in every case over the Dreyfus baseline results, with
an average wire length reduction of 7.14%. This is because
obstacles that do not intersect with the shortest rectilinear
routing paths might still overlap with the shortest octilinear
routing paths, leading to greater spatial wastage if suboptimal
routing strategies are employed to avoid obstacles.

Fig. 9 displays the results for case 10 using the proposed
and baseline methods, where the trunk, represented by the
black line, originates at the master and sequentially traverses
virtual points, represented by red points. Meanwhile, the
branch segments, depicted as blue lines, connect virtual points
to their corresponding slave devices, represented by green
points. A comparison of the results in Figs. 9(b) with 9(a)
reveals that our synthesis methods significantly reduce the
occurrence of wires traveling back over neighboring areas by
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Fig. 9. Results of case 10 using different methods, where trunk segments are
shown in black, branch segments in blue, with the master device represented
by yellow circles, slave devices by green circles, and virtual points by red
circles.

optimizing the device connection order with a global view
on total wire length. Additionally, comparing Figs. 9(c) with
9(a) demonstrates that the detour mechanism in our synthesis
methods effectively prevents wires from unnecessarily routing
around obstacles. Consequently, the proposed rectilinear and
octilinear synthesis methods achieve wire length reductions of
24.33%, 18.91%, 9.02%, and 8.64% compared to the Dijkstra
and Dreyfus baseline methods in case 10, respectively.

C. Rectilinear vs. octilinear synthesis methods

We compare the wire lengths obtained by our two proposed
synthesis methods. The results demonstrate that our octilinear
synthesis method can significantly reduce the required wire
length by up to 12.85%, compared to the rectilinear synthesis
method. This improvement contributes to lower manufacturing
costs. Notably, all test cases, except for case 11, were solved
within a minute, reflecting the high efficiency of our methods.
Generally, an increase in the number of devices leads to
a substantial rise in the permutations of device connection
orders, consequently extending the time needed to find the
optimal solution. This also explains the unavailability of the
result for case 11 using the Dreyfus baseline method even after
24 hours of runtime. Still, the proposed octilinear synthesis
method consistently demonstrates a brief runtime across all
cases, benefiting from the optimized device connection order
established in the rectilinear synthesis method. Specifically, by
retaining the predefined assignment of slave devices to each

virtual point from the rectilinear synthesis, synthesizing the
bus topology in the octilinear routing plane is significantly
simplified. Thus, the octilinear synthesis method focuses on
routing to achieve the minimum total wire length while con-
sidering obstacles, thus improving computational efficiency.

VI. CONCLUSIONS

This work proposed methods to synthesize the bus topology
with minimum total wire length using rectilinear and octilinear
routings on planes containing obstacles. Our rectilinear synthe-
sis method decides the optimal device connection order and si-
multaneously routes the wires, minimizing the total wire length
in the rectilinear routing plane. Our octilinear synthesis method
builds on the rectilinear synthesis method to further shorten the
wire length using octilinear architecture. Experimental results
confirm that the proposed methods can efficiently synthesize
bus topologies with significantly decreased wire lengths.
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