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A B S T R A C T

The accurate quantification of the random spatial variation of material properties at different scales is crucial
for the systematic propagation of uncertainties through engineering models. In a previous work, the spatial
variability of the apparent material properties of two-phase composites has been quantified in a Bayesian
framework. This framework enables a consistent modeling of the statistical uncertainty in the parameters of
the respective mesoscale random fields and also allows selecting the most plausible correlation model among
different models belonging to the Matérn family. In this work, the most plausible random field model is
employed in the context of uncertainty propagation of composite structures. Sample functions of the mesoscale
random fields are generated using a covariance decomposition approach and the response variability of various
composite structures is computed through Monte Carlo simulation. Parametric investigations are conducted to
highlight the effect of the identified parameter uncertainty on structural response variability.
1. Introduction

Composite materials display a random spatial variation of mechan-
ical properties, attributed to the mismatch of the properties of their
constituent materials. Structural analysis using the traditional Finite
Element Method (FEM) in this case cannot account for all possible
output scenarios. The Stochastic Finite Element Method (SFEM) tackles
this issue by taking the input uncertainty into account, propagating it
through the system and assessing its stochastic response. The challenges
therein lie in modeling uncertain input when little experimental data
is available, as well as deciding on the method of obtaining uncertain
structure output. This paper focuses on the response variability of
composite structures as a continuation of the authors’ previous work,
since the parameters of the random input (material property fields)
have been derived in [1].

Regarding SFEM, it is considered as an extension of the deter-
ministic FEM for the solution of stochastic problems and typically
involves the use of finite elements with random properties [2]. Un-
certain system input is assigned to the elements by discretizing the
respective random processes/fields and obtaining a finite number of
random variables either pointwise or in an average sense. Three SFEM
variants are commonly used: the perturbation approach, utilizing a
Taylor series approximation, spectral SFEM, which involves Polynomial
Chaos Expansion (PCE) of the response and Monte Carlo simulation
(MCS). In the present paper, MCS is preferred, due to its robustness and
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simplicity. By generating a number of input samples and performing the
respective analyses, MCS allows for assessing the response variability
by examining the statistics of the system output.

In the case of composite materials, the macroscopic response of the
structure is directly linked to the microscopic configuration, which is
often plagued by uncertainty. Establishing this link is a challenging
task and often accomplished through homogenization methods [3–5],
whereas direct numerical simulations of the entire microstructure can
be performed when the required computational power is available [6].
Depending on the scale considered, the mechanical properties of a
composite can display various degrees of spatial randomness, as shown
in [7,8]. Mesoscale random fields can be used to model this spatial
variability [9], by applying homogenization in conjunction with the
moving window technique [10,11]. These fields will then serve as input
in applying the SFEM and therefore identifying them is of paramount
importance. A large amount of microstructure data is required to com-
pletely determine these fields, which is often unavailable. As a result,
assumptions are often made regarding the statistical characteristics of
the random mechanical properties and methods to accurately predict
their parameters are sought. When insufficient input data is available,
data driven approaches, such as transfer learning, or PCE surrogate
models can be used to predict the material properties of random
microstructures [12,13].
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In [1], the authors applied Bayesian analysis to identify the pa-
rameters defining random property fields, given available composite
microstructure data. More specifically, random fields are considered
for the elasticity tensor components, which according to previous find-
ings [8] can be modeled by a lognormal marginal distribution for a high
stiffness ratio and hence can be obtained from the transformation of an
underlying Gaussian field. In the Bayesian framework, field parameters
are modeled as random variables and their full posterior distribution
is obtained instead of a point estimate, while potential dependencies
between these parameters are also revealed. In this particular case,
the model parameters include the mean and standard deviation of the
underlying field, as well as the correlation lengths in the 𝑥- and 𝑦-
direction. Additionally, using the Bayesian approach, the most plausible
correlation model belonging to the Matérn class was determined to be
the exponential one, for the given microstructure data.

Having defined the random property fields, the next step would be
to study their effect on the response of the structure. Several recent
papers have dealt with the structural response variability when material
uncertainty is present. In [14] for example, the generalized variability
response function (GVRF) methodology is employed to compute the
displacement response and the effective compliance of linear plane
stress systems. Geißendörfer et al. [15] proposed a stochastic multi-
scale method for the computation of the natural frequencies of metal
foams, analyzing random field data derived from CT images. In [16,
17], random fields of the mesoscale elasticity tensor of polycrystalline
materials are generated using Stochastic Volume Elements (SVEs) and
SFE is carried out, obtaining the resonance frequency of MEMS micro-
beams using MCS while establishing a link between the random field
correlation and the SFE mesh size. In [18] random eigenvalue analysis
is performed using MCS with an optimally selected start vector, while
studying the effect of the material property field correlation length on
the Coefficient Of Variation (COV) of the eigenvalue output. Naskar
et al. [19] computed the stochastic natural frequencies of laminated
composite beams with the Radial Basis Function (RBF) approach, con-
sidering randomness in the material properties and matrix cracking
damage. A Spectral Stochastic Isogeometric Analysis method is pro-
posed in [20] for free vibration analysis, obtaining the statistics of
the eigenvalues and eigenvectors and showing its efficiency compared
to MCS. In [21], a multilevel Monte Carlo approach was applied to
assess the influence of microstructural variability on the homogenized
properties of periodic metal lattice structures. Lastly, in [22], the
inelastic static and dynamic response of frames with spatially varying
properties is investigated by applying MCS and utilizing force-based
elements.

As an extension of previous publications by the authors [8,23],
the present work aims to compute the response variability of compos-
ite structures, whose mechanical properties are modeled by random
fields and the uncertainty in their parameters has been quantified
through Bayesian analysis for a given microstructure. In order to assess
the effect of the uncertain mechanical properties on the response of
the composite structure, Stochastic Finite Element Analysis is carried
out herein, studying the variability of the system output in static
as well as dynamic problems. The output variability is determined
through MCS and the convergence of the response statistics (mean,
standard deviation) is investigated. Since the model parameters derived
from Bayesian analysis are random variables, several combinations
are tested, including fixing the parameters at their posterior mean
values as well as accounting for their full uncertainty in assessing
the posterior predictive random field. The effect of these random
field parameter combinations on the response variability of composite
structures is investigated through several numerical examples. Random
fields conditional on the model parameters are generated with spectral
covariance decomposition, which is a discrete form of the Karhunen–
Loève (KL) expansion. In the static case, the statistics of the nodal
displacement of a plate under uniaxial tension and a cantilever beam
2

under a concentrated load are studied, while in the dynamic case, the i
random eigenvalues (eigenfrequencies) of a cantilever and a simply
supported beam are computed. Results are also given at different scales,
depending on the size of the moving window, which reflects the amount
of microstructure data taken into account.

The contents of this paper are as follows: In Section 2, the Bayesian
approach for identification of random field parameters is explained
and previous findings are reported. Section 3 contains a thorough
description of the method adopted for the calculation of the structural
response variability. Numerical results are presented and analyzed in
Section 4, while useful conclusions are drawn in Section 5.

2. Bayesian identification of random material property fields

Before conducting a response analysis, it is vital to obtain accurate
estimates of the random material property fields serving as model input.
In the case of limited data, a Bayesian approach is well suited for
the identification of the parameters of these random fields. In [8],
starting with a computer simulated image of a two-phase composite,
which can be seen in Fig. 1, realizations of random fields of the
elasticity tensor components are obtained, through homogenization and
application of the moving window technique. Through this procedure,
the composite is divided into Stochastic Volume Elements (SVEs) which
are smaller than the Representative Volume Element (RVE) and possess
random homogenized mechanical properties. The random field is then
constructed from considering these properties at the center of the SVEs.

Different mesoscale random fields are obtained from the same
composite image, depending on the moving window size. The non-
dimensional scale factor 𝛿 = 𝐿∕𝑑 is used to characterize each mesoscale
model, where 𝐿 is the moving window size, 𝑑 is the inclusion diameter
and 𝛿 ∈ [1,∞]. By adjusting the moving window size, random fields
at two different scale factors are obtained, 𝛿1 = 11.21 and 𝛿2 = 22.42,
leading to 3249 and 625 SVEs, respectively [9].

The examined composite contains a volume fraction 𝑣𝑓 = 40% of
randomly dispersed circular inclusions with a diameter 𝑑 = 7.14 μm,
while it has a stiffness ratio 𝐸𝑖𝑛𝑐𝑙∕𝐸𝑚 = 1000. According to [8], a
lognormal marginal distribution is well suited for a property field with
such a high stiffness ratio. The elasticity components investigated are
the axial stiffness 𝐶11 and the shear stiffness 𝐶33 of the 2-D elasticity
tensor under the isotropy assumption.

Figs. 2, 3 show the computed realization of the random field, as
well as its empirical marginal distributions and 2-D autocorrelation
functions for the 𝐶11 and 𝐶33 components of the apparent elasticity
tensor. As the scale factor increases, i.e., less microstructure data is
taken into account, the correlation length is increased, leading to
reduced spatial variability. In the limit case of 𝛿 → ∞, the random fields
become fully correlated, as the moving window reaches the RVE size.
Having obtained one realization of the random property fields and with
no additional microstructure information available, Bayesian inference
can be applied to learn the parameters of an adopted model of the
mesoscale random fields.

2.1. Bayesian identification of model parameters and model selection

In the Bayesian approach, model parameters are regarded as ran-
dom variables and using Bayes’ rule, their full posterior distribution
is determined given available microstructure data, instead of a single
point estimate. Consider a homogeneous random field 𝐴(𝜔, 𝐱), with
𝐱 ∈ 𝐵, defined in terms of a model 𝑀 with parameter vector 𝜽 ∈ R𝑚.

is the spatial domain of the composite, 𝐵𝛿 is a SVE (see Fig. 1) and
denotes the randomness of a quantity. 𝐴(𝜔, 𝐱) models a component

f the apparent elasticity tensor, for some mesoscale size 𝛿. The vector
can be learned using direct measurements of the random field 𝐝 =

𝑎1; ...; 𝑎𝑛𝑑 ] at locations 𝐱1,… , 𝐱𝑛𝑑 . The measurement locations refer to
the midpoint positions of the moving window and the data 𝐝 refer
o the corresponding homogenized property values. Bayesian analysis

s employed to learn the vector 𝜽. That is, a prior density 𝑓 (𝜽|𝑀)



Composites Part C: Open Access 9 (2022) 100324G. Stefanou et al.
Fig. 1. Illustration of the composite material and the moving window technique.

Fig. 2. Mesoscale random fields of elasticity component 𝐶11.

Fig. 3. Mesoscale random fields of elasticity component 𝐶33.

given model 𝑀 is imposed, describing prior knowledge on the model
parameters, i.e. before measurements become available, and Bayes’ rule
is applied to update the prior density given the data. Bayes’ rule states:

𝑓 (𝜽|𝒅,𝑀) = 𝑐−1E|𝑀𝐿(𝜽|𝒅,𝑀)𝑓 (𝜽|𝑀) (1)

where 𝑓 (𝜽|𝑑,𝑀) is the posterior density of the parameters given the
data 𝐝 and model 𝑀 , 𝐿(𝜽|𝐝,𝑀) is the likelihood function, describing
the measurement information and 𝑐𝐸|𝑀 is the model evidence.

Consider first the case where the random field 𝐴(𝜔, 𝐱) is Gaussian.
Then, 𝜽 includes the mean 𝜇, standard deviation 𝜎 and parameters of
the correlation kernel of the field 𝜌(𝝃|𝜽 ), with 𝝃 = (𝜉 , 𝜉 ) being the
3

𝜌 𝑥 𝑦
space lag; i.e., 𝜽 = [𝜇; 𝜎;𝜽𝜌]. If 𝐴(𝜔, 𝐱) is a non-Gaussian homogeneous
translation field, then it is given by:

𝐴(𝜔, 𝐱) = 𝐹−1 ⋅𝛷[𝑈 (𝜔, 𝐱)] (2)

where 𝐹−1 is the inverse of the marginal cumulative distribution func-
tion (CDF) of 𝐴(𝜔, 𝐱), 𝑈 (𝜔, 𝐱) is a standard Gaussian field and 𝛷 is the
standard normal CDF. In such case, 𝜽 includes the parameters 𝜽𝐹 of the
marginal distribution of 𝐴(𝜔, 𝐱) and the parameters 𝜽𝜌 of the correlation
kernel of 𝑈 (𝜔, 𝐱), i.e., 𝜽 = [𝜽𝐹 ;𝜽𝜌]. For the case where the marginal
distribution of a translation field is of the lognormal type, Eq. (2) reads:

𝐴(𝜔, 𝐱) = exp[𝜇𝐺 + 𝜎𝐺𝑈 (𝜔, 𝐱)] (3)

where 𝑈 (𝜔, 𝐱) is the underlying Gaussian field and 𝜇𝐺 , 𝜎𝐺 are auxiliary
parameters of the transform.

The posterior distribution is often obtained numerically, due to the
difficulty in evaluating the model evidence 𝑐E|𝑀 . An adaptive version
of the BUS approach (Bayesian Updating with Structural reliability
methods) combined with Subset Simulation (SuS) is adopted in [1],
yielding a sample approximation of the posterior distribution along
with an estimate of the model evidence [24]. It must be noted that
the Bayesian approach is not limited to parameter identification but
can also be used for the selection of the most appropriate (plausible)
model by computing the posterior probabilities Pr(𝑀𝑖|𝐝,𝐌) of different
candidate random field models 𝑀𝑖 (with various correlation kernels or
marginal distributions) given the data.

2.2. Bayesian analysis results

Bayesian analysis was first performed to obtain the most plau-
sible correlation model, belonging to the Matérn class, by varying
the smoothness parameter 𝜈. The anisotropic version of the Matérn
auto-correlation function adopted herein is given by the following
equation [25]:

𝜌𝜈 (𝑟) =
21−𝜈
𝛤 (𝜈)

(
√

2𝜈𝑟
)𝜈

𝐾𝜈

(
√

2𝜈𝑟
)

(4)

where 𝛤 is the gamma function, 𝐾𝜈 is the modified Bessel function of
the second kind, 𝜈 is a non-negative smoothness parameter and 𝑟 is
defined as:

𝑟 =

√

√

√

√

(

𝜉𝑥
𝑏𝑥

)2
+
( 𝜉𝑦
𝑏𝑦

)2

(5)

with 𝑏𝑥, 𝑏𝑦 being the respective non-negative correlation length param-
eters. The exponential (𝜈 = 1∕2), modified exponential (𝜈 = 3∕2) and
squared exponential (𝜈 → ∞) models belong to the Matérn family
of autocorrelation functions [26]. Results showed the most plausible
model to be the exponential one (𝜈 = 1∕2) for the 𝐶11 component of the
elasticity tensor. In that case, the autocorrelation function is reduced to
the following equation:

𝜌1∕2(𝑟) = exp(−𝑟) (6)

For the shear stiffness 𝐶33, all correlation models were nearly equally
matching, with a slight preference for the exponential one. As a result,
this model is adopted for both tensor components in the present paper.

Following the correlation model selection, the posterior distribu-
tions of all model parameters are obtained, which are depicted in
Fig. 4 for stiffness components 𝐶11, 𝐶33 and scale factors 𝛿1 and 𝛿2.
Note that Bayesian analysis revealed a positive correlation between the
correlation lengths 𝑏𝑥, 𝑏𝑦 and the standard deviation of the underlying
Gaussian field 𝜎𝐺 (see [1]). It is also worth noting that Bayesian analysis
results are affected by the moving window size and a smaller window
(smaller scale factor) will lead to less variable model parameters, since
more microstructure data is considered.
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Fig. 4. Random field parameter posterior distributions for elasticity components 𝐶11 and 𝐶33 at mesoscale sizes 𝛿1 = 11.21 and 𝛿2 = 22.42.
3. Computation of structural response variability

Following the random field parameter identification, response vari-
ability analysis of the composite structure is the next step in the
SFEM approach. As the use of finite elements with random properties
is involved, a technique for assigning discrete values of the random
property fields is needed. In this paper the discrete form of the KL-
expansion is applied to discretize the random fields, which is also called
the covariance decomposition method. SFEM is conducted via MCS,
meaning a large number of samples are generated and analyzed. The
response variability is studied and the effect of the input random field
parameters derived through Bayesian analysis is investigated across
different scales.

3.1. Random field discretization using covariance decomposition

Uncertainty propagation and computation of the response requires
not only identifying the parameters of the input random fields, but
also their discretization and generation of respective sample functions.
Simulation of a lognormal random field conditional on the identified
parameters 𝜽 can be performed through generating random realizations
of the underlying Gaussian random field 𝑈 (𝜔, 𝐱) and applying the trans-
formation of Eq. (3). There are several well established methods for
simulating Gaussian random fields, e.g., see [27]. Among the existing
methods, a discrete form of the KL expansion is adopted in this work,
also known as spectral or modal decomposition method [28–30]. From
this point on, 𝜔, which denotes the randomness of a quantity will be
omitted for simplicity.

Consider an approximation of a Gaussian random field 𝑈 (𝐱), ex-
pressed in terms of the finite random vector 𝐔 = [𝑈1,… , 𝑈𝑛]𝑇 , whose
values are given, for instance, at the midpoints of a finite set of subdo-
mains, also called stochastic elements. This discretization is consistent
with the finite element formulation of structural mechanics problems,
whereby the spatial domain is discretized into a set of finite elements.
This random field discretization approach is known as the midpoint
method [31]. The size of the subdomains should be small enough
such that the value of the random field over the subdomain can be
considered to be constant.

The random vector 𝐔 has zero mean, while its covariance matrix,
𝜮𝑈𝑈 , can be obtained from the autocovariance of the random field
𝑈 (𝐱) evaluated at the coordinates of the element midpoints. Since
the covariance matrix is 𝑛 × 𝑛 bounded, symmetric and positive semi-
definite, it has 𝑛 real non-negative eigenvalues 𝜆𝑖 and corresponding
eigenvectors 𝐯𝑖, satisfying

̃

4

𝜮𝑈𝑈𝐯𝑖 = 𝜆𝑖𝐯𝑖 (7)
Thus, the covariance matrix 𝜮𝑈𝑈 can be decomposed as follows:

𝜮𝑈𝑈 =
𝑛
∑

𝑖=1
𝜆𝑖𝐯𝑖𝐯𝑇𝑖 (8)

The eigenvectors are orthogonal and it is further assumed that they
have been normalized. Therefore, they form a basis in R𝑛, meaning
every element of R𝑛 can be expressed as a linear combination of the
eigenvectors 𝐯𝑖. Hence, realizations of the random vector 𝐔 can be
represented as a linear combination of the eigenvectors 𝐯𝑖 multiplied
by random amplitudes. As a result, the random vector can be expressed
as follows:

𝐔 =
𝑛
∑

𝑖=1

√

𝜆𝑖𝐯𝑖𝜁𝑖 (9)

where 𝜁𝑖, 𝑖 = 1,… , 𝑛 are random variables, which due to the orthonor-
mality of the eigenvectors are given by:

𝜁𝑖 =
1

√

𝜆𝑖

𝐯𝑇𝑖 𝐔 (10)

From Eq. (10) it becomes apparent that the variables 𝜁𝑖 have zero
mean and are orthonormal, i.e., it holds:

𝐸[𝜁𝑖] = 0 , 𝐸[𝜁𝑖𝜁𝑗 ] = 𝛿𝑖𝑗 (11)

Since 𝐔 is Gaussian, the random variables 𝜁𝑖 are independent standard
normal random variables. Thus, simulation of the Gaussian random
field can be achieved by drawing realizations of 𝜁𝑖 and applying Eq. (9).

3.2. Structural response variability

Stochastic finite element analysis of 2-D composite structures is
carried out herein. The input uncertainty is limited to the elastic
tensor components, which are described by random fields. These fields
are homogeneous, have lognormal distributions and their correlation
structure is of the Matérn class. Through Bayesian analysis, the param-
eters defining these fields have been identified in [1] given computer
generated microstructure data.

The response variability of the composite structure is computed
using the following procedure. The first step requires selection of the
random property field parameters (𝜇𝐺, 𝜎𝐺 and correlation lengths 𝑏𝑥,
𝑏𝑦), which have been obtained as random variables through Bayesian
analysis (see Table 1 and Fig. 4 for their posterior distributions).
After selecting a characteristic parameter set, e.g. the means of all
parameters, the random property field is fully defined.

In the second step, MCS is employed to obtain the stochastic re-
sponse and in each simulation, sample functions of the material prop-
erty fields are generated through covariance decomposition, yielding
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FE models with different spatial variation of mechanical properties
and thus different response. The convergence of the estimated re-
sponse statistics is observed through plotting the mean and COV of
the response quantity against the number of MCS samples. In order to
account for the full uncertainty in the random field model parameters,
a predictive approach is also examined, where the above procedure is
followed but instead of fixing the parameter set, different parameters
for the random field are drawn from their posterior joint distribution
at each MC simulation.

In the final step, the effect of the random field parameter variability
is investigated by observing the response statistics. The advantage of
following the Bayesian approach to describe the uncertain input in the
structural variability problem is that, not only is the random spatial
variation of the mechanical properties taken into account, but also the
uncertainty in selecting the parameters to model this spatial variation.
Additionally, since the random field parameters are also affected by the
scale factor used to analyze the microstructure data, results are reported
at two different scales, corresponding to scale factors 𝛿1 and 𝛿2. It is
worth noting that the selection of the appropriate length scale (or,
equivalently, the moving window size) depends on the specific problem
and should be based on experimental data of the material microstruc-
ture used e.g., to quantify the correlation length of the random material
property fields, which is related to the length scale [32,33].

According to [31],[2], care must be taken, in order to match the
stochastic element mesh size with the spatial variability of the random
fields and as a result, the element length should lie between 𝑏∕4 and
𝑏∕2, where 𝑏 is the correlation length. In the present work, since
the property fields are statistically anisotropic, the minimum of both
correlation lengths (𝑥- and 𝑦-direction) is used to calculate the element
length.

The response variability is studied for static and dynamic problems.
In all FE models analyzed, the plane stress assumption is made while
using a unit thickness. In the static case, the quantity of interest is
the displacement at a specific node of the structure. In the dynamic
problem, eigenvalue analysis is carried out and the resulting first 15
eigenvalues are obtained, sorted in increasing order. In that case the
statistics of these eigenvalues are examined. Eigenvalues are vital in
the calculation of the dynamic response of structures in the framework
of modal analysis and it is crucial to investigate how they are affected
by input uncertainty. It should be noted that this paper only focuses
on uncertain mechanical properties and thus the composite density
affecting the mass matrix is not considered spatially varying. However,
such an extension is possible through the authors’ proposed multiscale
framework and can be implemented in future works.

4. Results and discussion

This section contains the results of the SFE analysis. The examples
have been selected such that the effect of input random field parameter
uncertainty on the response variability can be thoroughly studied in
both static and dynamic cases. Moreover, in the first example, the
membrane behavior is dominant whereas in the other examples the in-
fluence of the shear stiffness is substantial. For each structural problem,
1000 Monte Carlo simulations are performed for different samples of
the mesoscale random property fields. As shown in Figs. 6, 7, 9 and 10,
statistical convergence is achieved within this number of simulations.
The parameters defining these fields, given by the random vector 𝜽 =
[𝜇𝐺 , 𝜎𝐺 , 𝑏𝑥, 𝑏𝑦], are the mean and standard deviation of the marginal
distribution of the underlying Gaussian field, as well as the correlation
lengths in the 𝑥- and 𝑦-directions. Four different types of random field
parameter combinations are examined: the 𝑚𝑒𝑎𝑛, 𝑚𝑒𝑎𝑛 − 𝐶𝑂𝑉 ⋅ 𝑚𝑒𝑎𝑛,
𝑚𝑒𝑎𝑛+𝐶𝑂𝑉 ⋅𝑚𝑒𝑎𝑛 (see Table 1) as well as a predictive case, for which
a random field realization is generated for posterior samples from the
parameter vector 𝜽. The latter analysis requires significant overhead
computational cost for the random field simulation, as the spectral
decomposition in Eq. (8) needs to be performed for each sample of
5

Fig. 5. Thin plate in tension.

the correlation length parameters. An alternative technique for efficient
sampling of random fields with uncertain correlation kernels is dis-
cussed in [34]. The difference in analyzing the microstructure in more
detail (smaller scale factor 𝛿1) versus less detail (larger scale factor
𝛿2) is also visualized. It should be noted that random field parameters
in the predictive case for 𝛿2 have been selected such that correlation
lengths lower than 2 μm are excluded from MCS in order to achieve a
reasonable finite element size and computational cost.

4.1. Static case – Plate in tension

A thin square plate is examined and subjected to a tensile side
load. The response quantity of interest in this case is the horizontal
displacement of the top right corner node, as can be seen in Fig. 5.

As shown in Figs. 6 and 7, regardless of the field parameters chosen,
the mean response is nearly identical and is increased by approximately
33% in the mesoscale size 𝛿2. In the higher mesoscale size however,
the response COV is decreased. This can be explained by observing
Fig. 4, where it is shown that the standard deviation of the marginal
distribution (𝜎𝐺) for 𝛿2 takes lower values compared to 𝛿1. The posterior
mean correlation lengths for 𝛿1 are lower than for 𝛿2, and, hence,
we expect a higher spatial averaging for 𝛿1. However, this does not
compensate for the difference in the point-wise standard deviation,
which has a stronger effect on the response COV.

For the case of 𝛿1, there is little difference in the response corre-
sponding to different field parameters and as a result, the response
histograms seem to coincide. This is not true for 𝛿2, however, where
the differences in the response COV and histograms become more
pronounced for the examined random field parameter combinations. In
particular, in both mesoscale sizes, results obtained for parameter case
(𝑚𝑒𝑎𝑛+𝐶𝑂𝑉 ⋅𝑚𝑒𝑎𝑛) show the largest COV compared to the rest of the
parameter combinations tested. The above observations demonstrate
the benefit of the Bayesian approach, which is able to account for this
additional uncertainty in response predictions.

It becomes evident that the variability of the response is signifi-
cantly affected by the input field parameters chosen, while such effect is
diminished as the scale decreases and microstructure data is examined
in more detail. This is reflected by the Bayesian analysis yielding
random field parameters with less variability, as the moving window
size decreases. Nonetheless, as explained above, the output COV for 𝛿2
remains lower than that of 𝛿 for the examined parameter cases.
1
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Table 1
Random field parameter combinations for tensor components 𝐶11 and 𝐶33 at different mesoscale sizes 𝛿1 , 𝛿2.

𝐶11 𝐶33

𝛿1 𝜇𝐺 𝜎𝐺 𝑏𝑥 𝑏𝑦 𝜇𝐺 𝜎𝐺 𝑏𝑥 𝑏𝑦
Mean−COV⋅mean 2.261 0.149 42.532 5.922 0.281 0.258 3.515 3.487
Mean 2.271 0.154 45.671 6.601 0.287 0.261 3.901 3.863
Mean+COV⋅mean 2.281 0.158 48.810 7.280 0.292 0.264 4.287 4.242

𝛿2 𝜇𝐺 𝜎𝐺 𝑏𝑥 𝑏𝑦 𝜇𝐺 𝜎𝐺 𝑏𝑥 𝑏𝑦
Mean−COV⋅mean 1.795 0.080 97.622 4.752 0.021 0.090 3.652 6.151
mean 1.808 0.088 122.829 11.270 0.030 0.095 10.679 13.605
Mean+COV⋅mean 1.822 0.096 148.035 17.788 0.038 0.100 17.706 21.059
Fig. 6. Response statistics for thin plate in tension (scale factor 𝛿1).
Fig. 7. Response statistics for thin plate in tension (scale factor 𝛿2).
4.2. Static case – Cantilever bending

The second static model is that of a cantilever beam in bending,
which is also modeled with plane stress elements. The beam is under a
concentrated load at its free end and the vertical displacement of the
bottom right corner node is studied, as can be seen in Fig. 8.

Similarly to the previous model, the mean of the response is in-
creased while the COV is decreased at the higher scale (𝛿2). For this
problem, we observe a larger decrease of the COV for the higher scale
as compared to the plate in tension. This is likely due to the influence
of the shear stiffness 𝐶33, which is higher for the bending problem
compared to the plate in tension. As can be observed in Fig. 4 and
Table 1, the difference in the mean of 𝜎𝐺 is higher for 𝐶33 than for
𝐶11. The difference in the response variability for 𝛿2 and the various
considered parameter choices becomes slightly more pronounced in the
bending problem, as can be observed when comparing Figs. 7 and 10.
Again, the (𝑚𝑒𝑎𝑛 + 𝐶𝑂𝑉 ⋅ 𝑚𝑒𝑎𝑛) parameter case results in the largest
response variability for both scale factors, with the variability of the
higher scale factor (𝛿2) remaining lower than the variability of the
smaller scale factor (𝛿1).

4.3. Dynamic case – Simply supported beam

In this dynamic problem, the first 15 eigenvalues (eigenfrequencies)
of a simply supported beam are calculated. Results are shown in
Figs. 11 and 12.

In all cases, the means of the eigenvalues do not appear to depend
on the different considered choices of the input field parameters.
As also shown in the static problem, increasing the values of these
parameters will also lead to an increased eigenvalue COV and thus
6

a more variable response, for the same scale factor. As previously
shown, this effect is more prominent in mesoscale size 𝛿2 due to larger
parameter uncertainty caused by limited data in this case, which,
however, exhibits again less variability than the smaller size 𝛿1. It is
also worth noting that the difference between the response COV values
for the two scale factors is again considerable due to the combined
influence of the stiffness factors 𝐶11 and 𝐶33 on the eigenvalues of the
structure.

4.4. Dynamic case – Cantilever beam

In the last example, the eigenvalues of a cantilever beam are ex-
amined. Results are shown in Figs. 13 and 14. Again, the mean does
not depend on the input field parameters chosen and the eigenvalues
for 𝛿1 display a nearly identical COV of around 5–6%. For 𝛿2 different
field parameters will lead to substantial differences in the eigenvalue
COV, with the (𝑚𝑒𝑎𝑛+𝐶𝑂𝑉 ⋅𝑚𝑒𝑎𝑛) parameter case leading to the largest
response variability, reflecting the statistical uncertainty due to limited
data.

5. Conclusions

In this paper, a complete link is established between composite
microstructure and macroscopic response. The uncertain parameters of
the mesoscale random fields describing the spatially variable material
properties serve as input in the SFE analysis of composite structures and
their effect on the statistical characteristics of the response is examined.

The novel contribution of this paper lies on the investigation of
the influence of random field parameter uncertainty (estimated with
Bayesian analysis) on the response variability, which is computed for



Composites Part C: Open Access 9 (2022) 100324G. Stefanou et al.
Fig. 8. Cantilever beam with concentrated load.
Fig. 9. Response statistics for cantilever beam in bending (scale factor 𝛿1).
Fig. 10. Response statistics for cantilever beam in bending (scale factor 𝛿2).
Fig. 11. Mean, COV of eigenvalues for 𝛿1, simply supported beam.
different parameter choices. These correspond to the posterior mean,
the values obtained by adding and subtracting the posterior standard
deviation from the mean and the full predictive random field, which
accounts for the entire range of the parameter posterior distribution.

In all cases studied, the mean response appears unaffected by the
chosen random field parameters. For the lower mesoscale size, the
output COV does not particularly depend on the random field parame-
ters. In the higher mesoscale size, however, different parameter choices
have significant effect on the response COV. The substantial effect of
7

uncertain random field parameters on the response variability observed
in higher mesoscales can be explained by the fact that Bayesian analysis
results are more variable in this case due to the smaller amount of
microstructure data. Finally, for all examples considered, the lower
mesoscale size resulted in higher response variability compared to the
higher mesoscale size, while this difference is more pronounced in
problems where the shear modulus has stronger effect on the structural
response. The selection of the appropriate length scale is problem
dependent and should be based on experimental data of the material
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Fig. 12. Mean, COV of eigenvalues for 𝛿2, simply supported beam.

Fig. 13. Mean, COV of eigenvalues for 𝛿1, cantilever beam.

Fig. 14. Mean, COV of eigenvalues for 𝛿2, cantilever beam.
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microstructure used e.g., to quantify the correlation length of the
random material property fields, which is related to the length scale.
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