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Current research approaches in downstream processing 
of pharmaceutically relevant proteins 
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Biopharmaceuticals and their production are on the rise. They are 
needed to treat and to prevent multiple diseases. Therefore, an 
urgent need for process intensification in downstream processing 
(DSP) has been identified to produce biopharmaceuticals more 
efficiently. The DSP currently accounts for the majority of 
production costs of pharmaceutically relevant proteins. This short 
review gathers essential research over the past 3 years that 
addresses novel solutions to overcome this bottleneck. The 
overview includes promising studies in the fields of 
chromatography, aqueous two-phase systems, precipitation, 
crystallization, magnetic separation, and filtration for the 
purification of pharmaceutically relevant proteins. 
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Introduction  
Owing to a rapidly increasing market demand for ther-
apeutic proteins, for example, monoclonal antibodies 
(mAbs), the industry is facing the challenge of efficiently 
manufacturing large-product amounts [1]. After recent 
process-intensification improvements in the upstream 
processing (USP), the current bottleneck of production 
processes shifts to in the purification of protein products 
in the subsequent downstream processing (DSP) [2]. In 

general, DSP of therapeutic proteins begins with clar-
ification by filtration and/or centrifugation, followed by 
capture, purification, and polishing steps mainly done by 
chromatography and filtration techniques as shown in  
Figure 1 [3]. The goal of DSP is to improve the purity 
and increase the concentration of target molecules. 

The DSP accounts for a significant part of the total pro-
duction cost of biopharmaceuticals, mainly driven by the 
expensive chromatography steps [2,4,5]. Packed-bed chro-
matography has been the industrial workhorse for decades 
as it achieves excellent yields and purities [2]. However, 
conventional chromatography might reach its limits in 
processing the increasing titers and volumes of USP. 
Therefore, new and alternative technologies that allow for 
process intensification are increasingly being investigated  
[5,6]. Current process-intensification strategies include the 
transition from batch to continuous integrated processes, 
the use of single-used equipment, the improvement of 
process control, and the use of scale-down models for more 
efficient process development [7,8]. A summary of in-
novative DSP strategies is highlighted in Figure 2. 

Most downstream processes will always need multiple 
steps and purification cascades, however, we want to 
highlight the current trends for different separation 
procedures as well as novel processing concepts. 

Precipitation 
The main advantages of precipitation include fast and 
robust processing of high titers and large volumes, scal-
ability, high yields, and low costs, making it a promising 
alternative technique [9]. Several studies recently de-
monstrated the applicability of precipitation for mAb 
capturing as a valuable alternative to the currently used 
and limited protein-A chromatography (see Figure 1)  
[10–12]. Continuous processes using tubular reactor de-
signs can be implemented to address the need for pro-
cess intensification. Furthermore, the integration of 
precipitation with subsequent washing (and re-
solubilization) steps into the current mAb-purification 
platform process is possible [13]. However, precipitation 
can influence other purification steps significantly [14•]. 
An efficient precipitation process of mAbs using ZnCl2 
and polyethylene glycol (PEG) has been demonstrated 
recently [10,11]. Dutra et al. developed a precipitation 
process based on ZnCl2 without PEG, which reduces the 
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viscosity of the processed fluid for improved harvesting 
and washing of precipitates [12]. 

Besides precipitation with PEG and salts, affinity pre-
cipitation using, for example, stimulus-responsive 
elastin-like polymers [15] or Ca2+-dependent calse-
questrin fused to affinity peptides, was recently suc-
cessfully employed for selective capture and purification 
of mAbs and other therapeutic proteins [16•]. Affinity 
precipitation is promising as optimized peptides allow 
the construction of a robust platform-compatible process, 
for example, similar to protein-A affinity chromatography 
used in current mAb-purification platform processes. 

Current research in the field of process analytical tech-
nology (PAT) to approximate the "Quality by Design" 
(QbD) concept introduced by the FDA could help speed 
up precipitation-process development and ensure pro-
duct quality in the future [17•]. 

Crystallization 
Protein crystals possess ordered protein configurations 
that generally have higher physicochemical stability and 
purity than amorphous precipitates. Therefore, crystal-
lization can be used in intermediate and polishing steps 
in DSP [8]. Another advantage is the possible timely 
controlled release of therapeutic proteins from the 
crystal lattice when used as drug formulation. 

Protein crystallization, such as antibody crystallization, is 
a thermal process that depends on the supersaturation of 
the protein. The crystallization of proteins is similar to 
the crystallization of small molecules, but needs mild- 
condition changes such as salts or polymers, as well as 
slow pH, ionic strength, and/or temperature changes 

(cooling crystallization). However, a major obstacle of 
the crystallization process is the difficulty of its im-
plementation. The large size and complex configuration 
of proteins, especially of mAbs with their flexible hinge 
region, hinder a simple crystallization process [18••]. 
Therefore, current studies focus on a better under-
standing of nucleation and crystal growth through 
mathematical approaches [19,20] and empirical high- 
throughput screening [21,22]. 

In the last decades, much research effort has been de-
voted to lysozyme as a model protein in mainly batch 
operations from solutions with already high purity. 
However, for the intended use in biopharmaceutical 
DSP, research focuses on continuous [23–25] and se-
lective crystallization [22,26,27] of proteins such as 
mAbs. Selective crystallization from impurities is a pos-
sible alternative for early applications in DSP [22•]. 

Grob et al. recently demonstrated the enhancement of 
crystallizability of an alcohol dehydrogenase by rational 
crystal-contact engineering [28], which could open up a 
broader use of crystallization as a purification technique. 
Moreover, nanoparticle-induced precipitation and crys-
tallization are an upcoming trend for pharmaceutical 
protein purification. Especially, iron oxide nanoparticles 
play a great role in the precipitation and crystallization of 
proteins such as lysozyme or trypsine [29] and nano-
bodies [30]. 

Extraction (aqueous two-phase system) 
Aqueous two-phase systems (ATPS) are due to their 
beneficial aqueous nature by far the most researched 
extraction technique for proteins. A spontaneous for-
mation of an ATPS can be observed, when two 

Figure 1  
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Schematic sequence of unit operations constituting the platform approach employed in the DSP of pharmaceutically relevant proteins (e.g. mAbs). 
AEX: anion-exchange chromatography; CEX: cation-exchange chromatography; HIC: hydrophobic-interaction chromatography.   
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hydrophilic phase-forming components remixed above a 
critical concentration [31]. The advantages concerning 
biopharmaceutical DSP applications include high bio-
compatibility, high recovery yields and selectivity, low 
cost, fast equilibrium adjustment, and scalability. 

Researchers recently demonstrated the integration of 
mAb clarification and capture steps [32] and proposed 
the direct integration of ATPS operations into current 
industrial mAb platform processes [32–34]. 

The main reasons why ATPS is not yet established in 
DSP are discussed in the literature. The underlying 
mechanisms of ATPS on biomolecule partition are not 
yet wholly understood and there are no large-scale stu-
dies and promising continuous application process de-
signs for ATPS [31]. However, researchers aim to fill 
these knowledge gaps. The prediction of partition 
coefficients is currently investigated [35]. Different 

reactor systems, such as the use of coiled flow inverters 
for extraction processes, are tested [36]. Understanding 
and mathematical modeling are supported by the de-
velopment of (continuous) microfluidic screening [37]. 
New phase-forming components, such as ionic liquids  
[38••] and the improvement of the process strategy (e.g. 
via multistage extraction or phase/component recycling), 
are currently being studied [39•]. Moreover, with re-
active ATPS [40] and magnetic-assisted ATPS [41], 
there are further approaches to process intensification. In 
addition to ATPS, also three-phase partitioning pro-
cesses show advantages for protein purification processes  
[42]. A systematic understanding of ATPS based on 
small-scale screening is considered key for future pro-
cess development and scale-up. 

Adsorption (magnetic separation) 
The binding of a pharmaceutically relevant protein such as 
a mAb to a solid phase is a classical separation mechanism 

Figure 2  
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Schematic overview of current research topics and studies in biopharmaceutical DSP. Process intensification is the overarching goal of all current 
innovations in DSP.   
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that is very often used in chromatographic processes as well. 
Moreover, there are multiple batch-adsorbent materials and 
adsorption processes that can be used for DSP and antibody 
purification. However, in this section, the focus is mainly on 
batch-adsorption systems based on magnetic separation in 
contradiction to packed-bed systems. A current trend for 
these adsorption processes is the use of ferromagnetic, 
ferrimagnetic, or superparamagnetic carriers, which carry a 
specific binding site, for example, protein-A or protein-G 
domains. The advantage of magnetic-based processes is the 
simple separation of the bound and the nonbound phase. 
Therefore, this mechanism is well-suited for protein-cap-
ture steps. The recent trends on larger scales for protein 
purification have been reviewed by Schwaminger et al. [43]. 
New adsorbents and binding strategies to magnetic parti-
cles were developed in recent years [30,44,45]. Zanker et al. 
showed that a direct capture of nanobodies containing an 
affinity tag is possible with magnetic nanoparticles [30•]. 
Especially protein-A-based magnetic beads can be used for 
purification processes and capture of mAbs in analogy to 
protein-A chromatography [46–48]. Moreover, magnetic 
separation processes and especially high-gradient magnetic 
separation processes are continuously improved to-
ward separator and process design [49,50], as well as to-
ward process integration [43,47,51]. Brechmann et al. 
showed that magnetic beads can be used efficiently at very 
high cell densities for antibody capture [51•]. Magnetic 
separation processes might provide a sustainable alternative 
to protein-A chromatography for future DSP due to the 
energy-efficient separation that can be used in early stages 
of the DSP without previous harvest filtration and cen-
trifugation steps that are necessary for packed-bed systems. 

Filtration 
Filtration is a separation step that allows for separating 
proteins according to their size. Moreover, filtration is 
used for concentration of proteins and buffer exchanges. 
Thus, depending on the protein size and the processing 
step, microfiltration, ultrafiltration (UF), nanofiltration, 
and reverse osmosis play a role in the purification of 
pharmaceutically relevant proteins. 

Recent trends in filtration are often related to process in-
tensification [52••] and to the processing strategy, de-
pending on the order of unit operations [53]. A current 
study showed how UF affects the purification process of 
the protein C-phycocyanin and highlights the importance of 
the filtration step and its position in the DSP [53]. High- 
performance countercurrent membrane purification has 
been introduced for protein purification using bovine serum 
albumin as a model protein [54•]. Also, the coupling of 
separation driven by electric charge and filtration is an on-
going trend for protein purification [55]. 

Moreover, filtration is of great importance for protein 
formulation, since it is very often used as a final step in a 

purification cascade (see Figure 1) [56]. Thus, the un-
derstanding and design of this last process step are of 
great importance. A recent study investigated the mod-
eling and optimization of single-pass tangential flow UF 
for mAb purification [57•]. 

New modeling approaches are developed and used for 
filtration processes recently. A new model for electro-
static effects has been developed by Briskot et al., which 
allows for better pH control for UF and diafiltration (DF) 
processes [58]. Ambrožič et al. used a new mathematical 
approach to model UF and DF with the aim to ap-
proximate QbD for filtration technologies [59]. Along 
with improved mechanistic model concepts, also digital 
twins and hybrid models are developed for filtration 
processes for protein purification [60•]. These ongoing 
trends in filtration will also lead to more efficient pur-
ification processes. 

Chromatography 
Chromatography is conventionally used in multiple op-
erational units for protein separations. Chromatography 
describes the process of dynamic separation of mixtures. 
The versatility of this technology is dependent on dif-
ferent separation mechanisms such as specific interactions 
with a solid phase or different diffusivities. 
Chromatography is not only a process step, but depicts a 
lively research field with novel studies, for example, on 
new materials [58,61–65], new stationary phases such as 
membranes and monoliths, continuous processing and 
PAT [66,67], process modeling [68•], and new approaches 
such as the development of novel affinity materials  
[69,70] or novel peptide tags for stationary phases [69–72]. 
In this short review, we focus on unconventional pro-
mising alternatives to packed-bed chromatography such 
as membrane and monolith chromatography. 

The main advantage of membrane chromatography is 
higher flow rates compared with conventional chroma-
tography, which benefits productivity [73]. Cost-effec-
tive manufacture of membrane adsorbents offers the 
possibility of single-use, reducing time-consuming and 
costly cleaning and validation procedures of packed-bed 
columns in biopharmaceutical applications [74•]. Much 
research focuses on increasing binding capacities, which 
has long been a major drawback of membranes. The use 
of nonwovens [74,75] and electrospun nanofibers [76] 
showed success in purifying therapeutic antibodies and 
other proteins. Roshankhah et al. developed a cation- 
exchange z2 laterally fed membrane chromatography 
(z2LFMC) process with three times higher productivity 
compared with conventional protein-A chromatography 
for antibody purification [77•]. 

Monolith chromatography is also characterized by high 
mass transfer efficiency. Simon et al. recently 
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demonstrated the cheap, robust, and customized fabri-
cation of monolith columns by 3D printing [78•]. Their 
anion-exchange monoliths exhibited static binding ca-
pacity comparable to that of commercial material, in-
dicating the great potential of monoliths and additive 
manufacturing for biopharmaceutical DSP. The great 
potential of monoliths was confirmed, for example, by 
Wilke et al. who demonstrated purification of IgG from 
human plasma with high productivity using sintered 
glass monoliths with immobilized protein A [79]. 

In addition to the development of novel chromatography 
processes, multiple recent studies also focus on the un-
derstanding of the binding and elution mechanisms of 
mAbs [80–84]. 

Even though there are multiple novel approaches in 
DSP, chromatography remains the working horse for the 
purification of pharmaceutically relevant proteins. 

Conclusion 
The reviewed studies suggest exciting developments in 
biopharmaceutical DSP in the coming years. We are 
confident that some of the mentioned approaches will 
find their application and lead to improved and more 
sustainable production of pharmaceutically relevant 
proteins. Nevertheless, convincing regulatory authorities 
of new purification methods as an alternative to estab-
lished chromatography methods will be a challenging 
future task. 
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