
Available online at www.sciencedirect.com

A role for glia in cellular and systemic metabolism:
insights from the fly
Jean-François De Backer1,2 and Ilona C Grunwald Kadow1,2

Excitability and synaptic transmission make neurons high-
energy consumers. However, neurons do not store
carbohydrates or lipids. Instead, they need support cells to fuel
their metabolic demands. This role is assumed by glia, both in
vertebrates and invertebrates. Many questions remain
regarding the coupling between neuronal activity and energy
demand on the one hand, and nutrient supply by glia on the
other hand. Here, we review recent advances showing that fly
glia, similar to their role in vertebrates, fuel neurons in times of
high energetic demand, such as during memory formation and
long-term storage. Vertebrate glia also play a role in the
modulation of neurons, their communication, and behavior,
including food search and feeding. We discuss recent literature
pointing to similar roles of fly glia in behavior and metabolism.
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Introduction
The neuronal computation performed by the brain makes
it an energy-expensive organ. In mammals, it consumes
about 20% of the oxygen budget [1–3]. In insects, the main
energy consumers are the flight muscles [4]. However, the
insect nervous system ranks the second highest as, for in-
stance, in flies, the retinal photoreceptors alone account for
10% of the adenosine triphosphate (ATP) consumed [5].
Among the main reasons for this high-energy demand, in
mammals and insects, is the maintenance of

transmembrane ion gradients and the process of synaptic
transmission, as well as the maintenance of a pool of re-
leasable synaptic vesicles [2,6].

Research using the genetic model insect, Drosophila
melanogaster, has a long history in the study of metabo-
lism [4] as well as in neurosciences [7]. The relatively
small size and numerical simplicity of the anatomically
well-mapped fly brain, combined with an extensive ge-
netic toolkit and advances in light-microscopy technol-
ogies, have helped to discover fundamental principles of
the interaction between an organism’s nervous system
and its metabolism [8–15]. Moreover, the emergence of
in vivo neuronal population and whole-brain imaging in
behaving flies further accelerates the study of the role of
physiological state on nervous-system processes [16]. In
a remarkable study, Mann et al. [17••] monitored in vivo
how neuronal activity provokes changes in cell meta-
bolism. Interestingly, neuronal activity drives an in-
crease in cellular ATP concentration that significantly
outlasts the recorded neuronal calcium signal, suggesting
that the active brain might anticipate future energy
consumption. Moreover, not only neuronal activity but
also the metabolic flux represented by pyruvate and
ATP concentrations, albeit not as precisely, predicted
leg movements [17••]. These data suggest that, in the
higher-activity state during behavior, neurons not only
consume but also drive the production of ATP. This, in
turn, triggers an increase in energy metabolism and
subsequently in the consumption of nutrients.

Despite this high-energy demand, neurons produce
ATP mainly through cellular respiration but do not store
nutrients such as carbohydrates or lipids [3]. Therefore,
in the insect and mammalian nervous systems, glial cells
play the role of nutrient suppliers that support the high
energetic demand of neurons. Albeit still largely un-
derrepresented in neuroscience research, the study of
glia in Drosophila has been growing in the last 10 years,
largely thanks to an increased number of genetic tools
and, specifically, to the availability of specific Gal4 driver
lines that enable precise targeting of the different glia
subpopulations in the fly central nervous system (CNS)
[18,19]. The structure and function of fly glia, and par-
ticularly their relationship to neurons, have been ex-
tensively reviewed elsewhere [20–25] (Figure 1). In this
review, we will first give an update of the current un-
derstanding of the role of glia as metabolic support in the
fly brain. In addition to this classical role, it is now
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accepted that glia participate in the modulation of neu-
rotransmission and therefore of behavior in a large
variety of model organisms, including Drosophila [25]. As
nutrient sensors, glial cells are in a good position to in-
struct neuronal circuits regulating systemic metabolism,
as it has been shown in rodent models [26,27]. While
such a role for fly glia remains to be demonstrated, re-
cent advances in the study of the fly glia strongly point
to a similar function in metabolism and behavior. We
will discuss this possibility in the second part of this
review.

Nutrient supply of brain metabolism
A barrier preventing the uncontrolled exchange of the
body’s circulating fluids such as blood or hemolymph
and the interstitial medium of the brain appeared early
in the evolution of animals [53]. In flies, this separation
is ensured by the surface glia — perineurial and sub-
perineurial glia — that surround the entire peripheral
and central nervous system and form the hemolymph-
brain barrier (HBB) [54,55] (Figure 1). Septate junctions
between the surface glia cells form the diffusion barrier.
The integrity of the HBB is necessary to maintain proper
neuronal function. A leak in the HBB would provoke an
increase in potassium concentration in the interstitial
fluid of the brain, and therefore, trigger neuronal hy-
perexcitability [56]. However, due to this diffusion bar-
rier, the nutrients present in the hemolymph must pass

through the HBB to reach the brain and satisfy its de-
mand in energy. Interestingly, it has been recently
shown that sugar transport at the HBB is upregulated in
starved flies [57].

The main circulating sugar in insects is trehalose, a non-
reducing disaccharide formed by two molecules of glucose
in the fat body. [56] Trehalose can be taken up by the glia
[28] (Figure 2). There, it is degraded and enters the gly-
colysis pathway to produce alanine and lactate. The latter
are released by glia and used to fuel neuronal activity.
Importantly, glycolysis in glia seems to be essential for
brain homeostasis as knockdown of glycolytic enzymes
specifically in glia impairs neuronal survival [28]. By con-
trast, neurons are insensitive to such a manipulation and
rather rely on oxidative metabolism [28]. This study fur-
ther suggested a metabolic compartmentalization of the fly
brain similar to the astrocyte–neuron lactate-shuttle model
(ANLS) proposed for mammals [58]. This is further sup-
ported by the presence of the lactate/pyruvate transporter
Chaski, which has been found enriched in fly glia, and
which is necessary for proper synaptic transmission and the
increase in lactate in highly active neurons [32,59•].

In mammals, the ANLS model proposes a system that
couples the energy supply by astrocytes to the energy
demand of active neurons [58]. Here, a high rate of
glutamatergic transmission triggers a

Figure 1
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Schematic representation of the different glia subtypes in the fly CNS and summary of their main functions. The perineurial (PNG, blue) and
subperineurial glia (SPN, purple) form the hemolymph-brain barrier around the entire nervous system. The cortex glia (CG, orange) encapsulate the
neuronal cell bodies. Astrocyte-like glia (ALG, turquoise green) interact with the synapse, while the ensheathing glia (ENG, green) form anatomical
borders within the neuropile [30,31,37–42,46,50,51].
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high rate of glutamate reuptake in astrocytes. As gluta-
mate is cotransported along with sodium ions, the Na+/
K+-ATPase is needed to restore the dissipated Na+

gradient. The demand in ATP further promotes glucose

uptake and upregulates glycolysis in astrocytes that in
turn produce pyruvate subsequently transformed into
lactate and eventually transferred to neurons. In neu-
rons, lactate is transformed back into pyruvate to fuel the

Figure 2
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Simplified model of glia-to-neuron nutrient transfers. Upper half: Trehalose enters the brain through the perineurial glia (PNG) via the trehalose
transporter Tret1–1. In PNG cells, trehalose is degraded into glucose that enters the glycolysis pathway to produce lactate, later excreted into the CNS
[28]. Lactate can be transferred to neurons through monocarboxylate transporters (MCT) such as Chaski (Chk), predominantly expressed in glial cells
such as astrocyte-like glia (ALG) [32,59•]. The enzyme responsible for the degradation of trehalose (trehalase) is also highly expressed in cortex glia
(CG) and ALG [60]. Lower half: Glucose can be taken up by CG in response to high energetic demand, such as the formation of long-term memory
[33••]. CG can sense neuronal activity through the activation of acetylcholine receptors (AChRα7) that trigger the release of the insulin-like peptide 4
(Ilp4) and the autocrine stimulation of the insulin receptor (InR). Activation of this pathway promotes glucose intake by the glucose transporter nebu
[35] and transfer to neurons through the Glut1. Here, glucose is used by neurons to fuel the pentosephosphate pathway (PPP) that produces NADPH.
NADPH provides reducing power that is potentially used by neurons to protect against the ROS resulting from mitochondrial respiration. In parallel,
glucose can also enter CG cells via another transporter, ‘glucose uptake by glia’ (glug) [35]. Glucose imported by glug enters the glycolysis to produce
L-alanine that is then transported to neurons to fuel oxidative metabolism in mitochondria. This mechanism does not seem to be specific to LTM as it
also supports the formation of middle-term memory [35]. Starved flies do not form LTM [61,62]. However, during starvation, CG can switch from
glucose to ketone bodies (KB) to support the consolidation of another form of memory [34••]. The KB production is triggered in CG by the intracellular
energy sensor AMP-activated protein kinase (AMPK). KB are transferred to neurons through the MCTs Chk and Silnoon (Sln).
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tricarboxylic acid cycle (TCA) cycle in mitochondria.
Although not yet fully demonstrated in flies, the meta-
bolic flow described by Volkenhof et al. [28] suggests the
existence of a similar mechanism in insects [22]. And
although glutamatergic neurons are present in relatively
small numbers as compared with cholinergic neurons in
insects, fly glial cells express an excitatory amino-acid
transporter named Genderblind that regulates glutama-
tergic transmission, and thereby, chemosensory proces-
sing and male courtship behavior [63]. Glutamatergic
recycling in glia also contributes to long-term memory
(LTM) formation and sleep regulation [36,64]. More-
over, the mitochondrial activity of ensheathing glia af-
fects glutamate homeostasis [49]. Glutamatergic neuron
activity is upregulated during active behavior such as
walking [65]. Given these data and the high degree of
glia interconnectivity, that is, through gap junctions [66],
it is tempting to hypothesize the existence of a fly
equivalent to the ANLS model with glutamatergic
neurons as sensors of overall brain activity. In a recent
preprint, Rabah et al. (2022) [35] propose an alternative
to lactate in energy-demanding cholinergic neurons
during LTM formation. In addition to lactate, L-alanine
is produced during glycolysis in glia [28,35]. L-alanine
can be then transferred to neurons where it is converted
back into pyruvate to fuel mitochondrial oxidative me-
tabolism [35] (Figure 2).

In addition to the surface glia, the ensheathing glia were
recently shown to form another diffusion barrier around
the neuropil [49•]. These cells are polarized, with an
apical-like domain facing the neuropil and basolateral-
like domain facing the cortex. Interestingly, the baso-
lateral domain is enriched in the Na+/K+-ATPase Ner-
vana 2, as discussed above, Na+/K+-ATPase is a key
component of the ANLS model. However, there is still
no evidence for an involvement of ensheathing glia in
nutrient transfer for metabolic support in the fly brain.

Many fundamental questions still remain regarding the
role of glia as nutrient supplier of the brain, including
the important relationship between a high metabolic
flow and high neuronal demand, for example, during
metabolic state-dependent behavior. Exciting insights
on that topic have been recently brought by the la-
boratory of Pierre-Yves Plaçais and Thomas Preat
[33–35] (Figure 2). In addition to integrating sensory
inputs and generating executive motor commands, an
important property of the brain is the generation of
memory. Memory formation is costly as it requires en-
ergy for neuronal firing and synaptic transmission but
also an additional flow of nutrients to support gene ex-
pression and protein synthesis. Indeed, the formation of
LTM is disabled in starved flies that cannot afford these
additional costs [61,62]. In a follow-up paper, de Tre-
dern et al. [33••] pinpoint the central role played by
cortex glia in the transfer of glucose to neurons to sustain

the formation of LTM. The authors showed that cortex
glia respond to neuronal activity through the activation
of acetylcholine receptors. This triggers an autocrine
insulin-like signaling, which promotes glucose intake in
cortex glia. Glucose is then transferred from cortex glia
to neurons via the glucose transporter 1 (Glut1) trans-
porter. Interestingly, this glucose transfer is necessary for
the formation of LTM, but is not used to fuel glycolysis
that could directly provide ATP. In this case, glucose is
used in the pentosephosphate pathway that produces
ribulose-5-phosphate and the reduced form of nicotina-
mide adenine dinucleotide phosphate (NADP+),
NADPH. Ribulose-5-phosphate can be used in nucleo-
tide synthesis or oxidized into pyruvate. NADPH could
provide reducing power to protect cells from reactive
oxygen species (ROS) produced by the increased mi-
tochondrial oxidative metabolism that takes place during
LTM formation [62].

Despite not being able to form LTM, starved flies can
nonetheless still form a consolidated memory that does
not require protein synthesis [67]. In this situation, and
similar to what occurs in mammals when carbohydrates
are scarce, the fly’s metabolism switches to the use of
lipids as an alternative source of energy [34,68]. This
lipid source is present as ketone bodies and is again
provided to neurons by the cortex glia in the context of
starvation (Figure 2). Interestingly, this metabolic switch
is orchestrated by the AMP-activated protein kinase,
known to be a master energy sensor of the cell [69].

Oxygen supply of cerebral metabolism
Neurons mainly produce their ATP through oxidative
metabolism [3]. Therefore, neurons must be supplied
not only with nutrients but also with oxygen. In mam-
mals, oxygen is delivered to metabolically active organs
through the vascular system, along with nutrients. In the
brain, it is thus essential to couple the blood flow to
neuronal activity in order to ensure sufficient oxygen
perfusion and prevent ischemia and subsequent neu-
ronal cell injuries or death. Owing to their tight asso-
ciation with blood vessels, much of this key function is
ensured by astrocytes in the mammalian brain [70,71].
Contrary to the mammalian vascular system, insects use
their tracheal system to provide oxygenation of target
organs by diffusion. In mammals, oxygen supply is
mediated by the modulation of the diameter of blood
vessels by smooth muscle cells [70]. In flies, it seems to
occur through extension/retraction of the tracheal fili-
podia. Indeed, the terminal branches of the tracheae are
highly dynamic structures that are regulated by oxygen
availability [72,73]. Interestingly, Ma and Freeman
[48••] recently showed that astrocyte-like glia is closely
associated with tracheae and can modulate the dynamics
of the filipodia that form their terminations. The inter-
action between tracheal terminals and astrocyte-like glia
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is modulated by astrocytic spontaneous calcium activity
located in microdomains close to the tracheae. This is
one of the several forms of calcium activity that can take
place in glia [74]. In the ventral nerve cord of the fly
larva, as in the mouse brain, this microdomain activity is
independent of neuronal firing but can be modulated by
neurotransmitters [48••,75]. In both cases, microdomain
calcium transients are modulated by the production of
ROS from mitochondria.

The metabolic roles of glia and their
relationship to behavior
Despite having been ignored for a long time, a recent
accumulation of evidence from rodents highlights the
role of glia in the regulation of information flux in the
brain and thereby in the modulation of behavior (see,
e.g. [76–80], reviewed in [25]). This is also the case in
flies [23–25].

Similar to mammals [81,82], fly glia participate in the
homeostatic regulation of sleep [36,44,45,83–85]. In
particular, astrocyte-like glia have been recently pro-
posed to be a sensor of sleep need [47•]. Interestingly,
sleep has been associated with changes in metabolic
rates [86,87], and several populations of fly glia might
participate in the metabolic regulation of sleep. First, it
has been observed that the permeability of the HBB
changes according to the circadian rhythm of the fly [88].
In addition, endocytic trafficking in the HBB has been
found to modulate sleep [29]. Second, the taurine
transporter (excitatory amino acid transporter,EAAT2) is
expressed in ensheathing glia and modulates metabolic
rates during sleep [52].

The systemic metabolic state of the animal is another
important driver for behavior. Hunger enhances the fly’s
arousal and affects its locomotion, sensory perception, and
motivational state [89]. Hungry flies will start to forage for a
food source and, once one is found start to feed. These
behaviors and their sequence are tightly controlled by the
internal physiological state of the animal [10]. Inside the fly
brain, neurons can sense the circulating concentration of
sugar such as fructose or glucose and promote or suppress
feeding according to this metabolic state [8,11–13]. In ad-
dition, the energetic status is also monitored in the per-
iphery at the level of the fat body, the corpus cardiacum and
the gut. These organs modulate the flies’ feeding behavior
through endocrine signaling [10,14,15]. Flies, as mentioned
above, possess an equivalent of the mammalian insulin/
glucagon system [90]. Important data from rodent models
have shown that glia participate in the control of food
search and feeding behavior through the hypothalamic
circuit [26,27]. In flies, cortex glia release and respond to
insulin-like peptide 4 in an autocrine manner [33••]. In
addition, during development, the subperineurial glia
sense amino-acid availability and release insulin-like

peptides to trigger neuroblast proliferation [91,92]. How-
ever, despite the recent evidence that points to a role for
fly glia in metabolic support of neurons in high-energy
demand [33–35], and in the control of behavior [25], there
is still no report directly linking glial functions, and their
modulation of the physiological state of the animal, to food
seeking or consumption behaviors.

Concluding remarks
Despite noticeable structural differences between the
vertebrate and invertebrate nervous system, insect glia
seems to share most of the properties of their mamma-
lian counterparts [25]. In particular, they provide meta-
bolic support to the energy-demanding neurons that do
not have direct access to the main form of circulating
sugar, trehalose. This division of labor between glyco-
lytic cellular metabolism in glia and oxidative metabo-
lism in neurons may even be more important in flies
than in mammals [22,28]. Contrary to the mammalian
ANLS, there is still little evidence in flies that a meta-
bolic shuttle between glia and neurons depends on
neuronal activity. De Tredern et al. [33••] suggest that it
might be the case by showing that acetylcholine-re-
ceptor activation promotes glucose intake in cortex glia.
Drosophila astrocyte-like glia also respond to other neu-
rotransmitters and signal back to neurons. This has been
shown to modulate chemotaxis in larvae as well as sleep
in adult flies [43,47•]. It is therefore tempting to spec-
ulate that similar mechanisms could participate in the
regulation of systemic metabolism of insects.
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