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Abstract

This publication presents a robust and efficient approach for fully CAD-integrated analyses of solids, which aims to reduce
he current modeling effort for static and transient problems, including implicit and explicit dynamic simulations. Generating
igh-quality finite element meshes of solid structures is still a time- and labor-intensive process. Since embedded methods do
ot require sophisticated boundary-fitted meshes, they have gained popularity in recent years. However, most approaches tend to
e computationally expensive due to numerous integration points, especially within trimmed elements. Moreover, their practical
pplicability in explicit dynamics is often limited because the classically used C0 continuous discretization field combined with
rimming leads to infeasible time steps. In the following, we present methodologies addressing both of these shortcomings.

The basic idea is to embed a three-dimensional object into a uniform C p−1 continuous B-Spline cuboid, where the solid
boundary representation provided by CAD is used as trimming surfaces to distinguish between material and void domain. Our
primary focus is on constructing highly efficient quadrature rules for both trimmed and full knot spans, which accelerates
required matrix formations and, in particular, drastically reduces the simulation times of explicit transient analyses. To fully
exploit the potential of the B-Spline bases employed, first- and second-order reduced integration schemes are investigated in
addition to optimal quadrature constructions. Despite the appearance of arbitrarily shaped domains, trimmed knot spans are
evaluated at most with the same number of integration points as required for full Gaussian quadrature while maintaining optimal
convergence in the energy norm. For full knot spans, savings in the number of quadrature points beyond 90% with respect to
full Gaussian quadrature are achieved without observing any degradation in accuracy.

The proposed methodologies are critically assessed based on scientific benchmarks of increasing complexity and a detailed
industrial example, completing the design-through-analysis workflow by performing postprocessing operations directly on the
deformed solid CAD model.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The continuous innovations in Computer-Aided Engineering (CAE) have significantly increased the scope and
omplexity of models in modern development processes. Inevitably, this also increased the demand for facilitated
odeling to avoid labor-intensive interfaces between design and analysis. Accordingly, simulation integrated with
omputer-Aided Design (CAD) has become a vital field of research. Conventional procedures discretize the CAD
eometry with lower-order entities to create a model suitable for analysis. This process is called meshing and
s unavoidable in the probably most prominent approach in CAE — the Finite Element Method (FEM). However,

eshing can be a time-consuming and labor-intensive process that often requires manual intervention, is error-prone,
nd results in an approximate model.

To overcome this problem, Hughes et al. introduced the Isogeometric Analysis (IGA), which allows the Non-
niform Rational B-Spline (NURBS) shape functions provided by CAD to be used directly within an analysis

ramework [1,2]. The associated transformation from traditional FEM to IGA has the potential to increase the
olution quality by avoiding any remodeling and by preserving the exact geometry for simulation. IGA inherently
rovides the ability to analyze single, untrimmed NURBS curves, surfaces, and solids. However, most CAD
rograms rely on the geometric boundary representation (B-Rep) [3], which shapes objects solely by their geometric
elineations. This enables a fast model generation but adds further complexity to numerical simulations due to
rimming and the occurrence of multiple patches.

The automatic construction of untrimmed spline-based models suitable for analysis seems an effective solution
o circumvent the aforementioned difficulties. Isogeometric analysis on T-Splines promises to be an essential step
oward this goal [4]. T-Splines are a generalization of NURBS, allow mesh refinement/coarsening, and enable the
epresentation of holes without trimming [5]. In [6], an algorithm for constructing surface and volume T-Splines
rom unstructured quadrilateral and hexahedral meshes is proposed. This concept is further developed in [7] to
onstruct volumetric T-splines from standard boundary triangulations efficiently. However, the proposed algorithm
s limited to genus-zero topologies and does not guarantee positive Jacobians for all Bézier elements. Inspired by

the concept of Constructive Solid Geometry (CSG), the same task is solved in [8] based on Boolean operations.
Optimal convergence rates are achieved in [9] using the construction of blended B-Splines over unstructured
quadrilateral and hexahedral meshes. Similar to the previously mentioned strategies, these approaches do not apply
to arbitrarily complex geometries and are limited to C0 continuous splines at irregular subdomains containing
xtraordinary vertices. Other algorithms are devoted to the even more challenging process of designing tensor
roduct splines [10,11], which fits nicely into the isogeometric paradigm, but inevitably leads to multiple spline
atches for complex geometries. In [12,13], the concept of the scaled boundary finite element method is applied
o parameterize the volumetric physical domain of the solid CAD model by scaling the boundary based on a
redefined radial scaling center. This method has been shown to produce accurate results, but a suitable physical
omain decomposition algorithm has yet to be developed for its application to complex real-world problems. Despite
xisting promising approaches, the automatized generation of boundary-fitted analysis-suitable surface splines and,
n particular, volumetric splines from the NURBS-based boundary representation is still an open research question.

Another important role in this context is played by the family of immersed and embedded boundary methods,
hich are characterized by the fact that no sophisticated boundary-fitted meshes are required. The eXtended
inite Element Method (XFEM) [14,15] was initially developed to simulate discontinuities such as cracks by
nriching the corresponding shape functions at the points of interest. In the scope of the Cut Finite Element Method
CutFEM) [16], the same concept is applied to embedded boundaries or interfaces. Instead of modifying the basis
unctions of individual elements, the Finite Cell Method (FCM) [17–19] introduces an indicator function into the
ariational form to represent the material discontinuity at the geometric boundary. The classical FCM combines the
ctitious domain technique [20,21] with the high-order finite element approach. Its application to dynamic problems

n the time domain is presented in [22]. The authors in [23] formulate a conservative approach to accurately evaluate
oundary fluxes in embedded domain methods. In addition to the widely spread and studied p-version of the FCM,
ts concept has also been extended to B-Spline bases [24]. The FCM solves the problem of capturing complex
eometries not explicitly through a boundary-fitted mesh but by an accurate integration of discontinuous functions.
imilar challenges arise in the Isogeometric B-Rep Analysis (IBRA) [25,26], which can be seen as an extension to
GA, including trimmed patches, weak enforcement of constraints, and coupling of multi-patches based on NURBS.
ince IBRA strictly avoids any remodeling, it features complete data consistency between design and analysis.
he development of IBRA has enabled a wide range of models for structural analyses but has only been able
2
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to handle surface- and curve-based formulations. This limitation is mainly because most CAD programs rely on
B-Rep modeling and describe three-dimensional objects solely by their delimiting surfaces, i.e., they provide neither
a physical nor a geometrical description of the interior.

If the classical IBRA concept is directly extended to three dimensions by representing the physical domain
hrough a trimmed B-Spline discretization, the boundaries to embedded methods such as FCM become blurred.
herefore, the CAD-integrated analysis workflow presented in this work adopts features from both the IGA and
CM communities. For a continuous mathematical description of the entire physical domain, the B-Rep provided by
AD is defined as the trimming surfaces of a uniform trivariate B-Spline cuboid. Following the IBRA paradigm, the

rimming surfaces are incorporated into the parametric space of the solid, which guarantees a consistent boundary,
.g., for the imposition of boundary conditions, throughout the entire simulation. In addition, our approach is
istinguished from others by highly efficient quadrature rules for both trimmed and non-trimmed domains, based
n integration points with strictly positive weights and locations limited to the material domain. The associated
rastic reduction of quadrature points accelerates required matrix formations and paves the way for efficient explicit
ynamic simulations. Note that due to the computational architecture of explicit algorithms, their predominant cost
s determined by the number of quadrature points. Despite the presence of arbitrarily trimmed knot spans, practically
easible explicit time steps are guaranteed by using C p−1 continuous basis functions. Moreover, a predictor multi-
orrector scheme is adopted to improve the accuracy of the lumped mass matrix for higher-order bases. An overview
f this work shall be given in the following.

• Section 2 discusses preliminaries and describes the basic steps from a standard B-Rep model to a model
suitable for analysis, leading to a consistent extension of the IBRA concept to three dimensions.

• Section 3 presents the core of this publication. Based on the original idea proposed in [27], a Generalized
Gaussian Quadrature (GGQ) scheme is developed to construct nearly optimal and highly efficient reduced
integration rules for all full knot spans. A novel algorithm is presented to decompose arbitrary domains into
suitable tensor products to enable the application of GGQ to trimmed trivariate B-Spline patches. For an
efficient numerical integration of trimmed knot spans, the point elimination algorithm from [28] is combined
with the recent developments presented in [29] to inherently achieve positive integration weights and points
that are all within the material domain.

• Section 4 discusses solutions to prevent numerical stability issues arising from small trimmed knot spans.
• Section 5 gives an overview of the presented workflow and covers pre- and postprocessing within CAD.
• Section 6 demonstrates the method’s effectiveness based on static and transient benchmark problems.
• Section 7 presents the simulation results of a detailed solid CAD model with an industrial level of complexity.
• Section 8 concludes and discusses open research questions.

. Isogeometric analysis of trimmed solids: Preliminaries and concept

IGA aims at the interchangeable use of design and analysis models. In order to improve industrial workflows,
arious shell and membrane element formulations have been derived from the isogeometric concept and successfully
pplied to NURBS-based CAD models. The following section discusses the geometric representation of solid CAD
odels and the resulting challenges for IGA. Subsequently, the solution approach pursued in this work will be

resented.

.1. Solid CAD models

For the mathematical description of solid geometries, a distinction is made between implicit and explicit
epresentations. Implicit models express the geometry by the level set of a function f (x, y, z) such that f < 0

if point P(x, y, z) is inside the boundary, and f > 0 if P(x, y, z) is outside the boundary, whereas a zero level set
f = 0 indicates that P(x, y, z) lies on the boundary. The CSG enables the representation of complex objects by
ombining implicitly defined primitives through Boolean operations. For direct analysis based on CSG models, the
nterested reader is referred to [30].

On the other hand, explicit models are represented through their bounding surfaces, which form the B-Rep.
nlike implicit techniques, explicit B-Rep models allow direct and efficient visualization, which made them the

redominant geometry description in modern CAD systems. Generally, a B-Rep encloses a volume if and only

3
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Fig. 1. CAD-based B-Rep model of a cylinder with a hole.

if its surface is an orientable two-manifold without a boundary [31]. Fig. 1 illustrates the B-Rep concept using a
simple cylindrical object defined solely by the faces F1−4. The faces F1 and F4 are delimited by an inner Ct,inner

and outer trimming curve Ct,outer . Both surfaces and curves are mathematically described by B-Splines or NURBS,
enabling a direct analysis on one- and two-dimensional topologies [1,2,26]. However, due to the lack of a volumetric
function space, the isogeometric paradigm is not readily applicable to solid B-Rep models but requires additional
parameterization of the interior. Throughout this work, the computational domain Ω ⊂ R3 is defined by its closed
boundary Γ ⊂ R3 with

Γ =

⋃
a

Fa . (1)

Note that a B-Rep may also contain internal boundaries, which are not considered in Eq. (1) for brevity.

2.2. B-Spline shape functions for solids

To fill the inner cavity of the B-Rep model, as exemplified in Fig. 1, the geometry is embedded into a trivariate
B-Spline discretization. The basic principles of the underlying basis functions and the construction of B-Spline
solids are discussed below.

B-Spline basis functions Ni,p are defined by their polynomial degree p and a sorted set of coordinates in
parametric space, denoted as knot vector Ξ = {ξ1, ξ2, .., ξn+p+1}, with ξi ∈ R being the i th knot and n denoting
the number of basis functions. They can be constructed using the Cox-de Boor recursion formula [32,33]

if p = 0: Ni,0(ξ ) =

{
1, ξi ≤ ξ < ξi+1

0, otherwise
;

else : Ni,p(ξ ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ ). (2)

The computed functions are C p−k̄ continuous, where k̄ is the knot multiplicity. Throughout this work, we employ
¯ = 1 for all inner knots except otherwise specified and use k̄ = p + 1 at the ends of the knot interval, resulting in
n open knot vector. A trivariate parameterization for solids is obtained from a tensor product of the shape functions
n each spatial direction. The mapping from a point ξ = (ξ, η, ζ ) in parametric space defined by the knot vectors
4
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Fig. 2. Embedded solid domain Ωs spanned by quadratic B-Spline shape functions with 4 × 4 × 4 knot spans and uniform open knot
vectors. One individual knot span domain is indicated by Ω (•).

Ξ = {ξ1, ξ2, .., ξn+pξ +1}, ~ = {η1, η2, .., ηm+pη+1}, and ϑ = {ζ1, ζ2, .., ζl+pζ +1} to its corresponding physical point
is computed as

S(ξ ) =

n∑
i=1

m∑
j=1

l∑
k=1

Ni,pξ
(ξ )N j,pη (η)Nk,pζ

(ζ ) Pi, j,k, (3)

with the control points Pi, j,k ∈ R3 and n, m, and l being the respective number of basis functions. For the sake of
conciseness, we may write Eq. (3) as S = NPi, j,k . In the following, S is defined over the embedded solid domain
Ωs , where Ω (•) is the subdomain spanned by one knot interval [ξi , ξi+1] × [η j , η j+1] × [ζk, ζk+1], such that

Ωs =

⋃
a

Ω (•)
a . (4)

Note that the polynomial degree may be chosen differently for Ni,pξ
(ξ ), N j,pη (η), and Nk,pζ

(ζ ), but we fix
p = pξ = pη = pζ for clarity. Fig. 2 illustrates a B-Spline domain with 4 × 4 × 4 knot spans and quadratic basis
unctions. This publication focuses on B-Splines with a polynomial degree of p = 2 to p = 4. The linear case
p = 1) is not considered to ensure C1 continuity or higher over the entire domain.

.3. Trimmed solid

To avoid a computationally expensive meshing process, the initial non-trimmed domain of the B-Spline solid is
estricted to a cuboid shape defined by uniform knot vectors. With this simplification, any B-Spline discretization
an be efficiently constructed from algorithms for order elevation and knot refinement [34]. The required inputs are:

• Physical dimension and orientation of the B-Spline solid.
• Polynomial degree p.
• Knot span size.

emark. NURBS, as a generalization of B-Splines, would also be a suitable parameterization. However, as the
mbedded domain Ωs is created without considering the actual computational domain Ω , NURBS provide no distinct
enefit over B-Splines but introduce additional complexity.

ue to the above established restrictions on the B-Spline mesh, the boundary Γ of the computational domain Ω ⊂ Ωs
(•) (•)
ill not coincide with the boundaries Γ of the individual knot span subdomains Ω . Therefore, a distinction is

5



M. Meßmer, T. Teschemacher, L.F. Leidinger et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115584

t
c

2

V
Γ
o

w

a

made between the interior (untrimmed) knot span domain Ω i , the exterior (empty) knot span domain Ω e, and the
trimmed knot span domain divided into its inner Ω t and outer part Ω t,e, such that the physical domain of the solid
is defined as

Ω =

(⋃
a

Ω i
a

)
∪

(⋃
b

Ω t
b

)
. (5)

2.4. Variational formulation

For the following discussion, the boundary Γ of the computational domain Ω is partitioned into a Neumann
boundary ΓN and a Dirichlet boundary ΓD , where ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅. Moreover, x = (x, y, z)
denotes an arbitrary point in physical space at time t .

2.4.1. Strong form
Given the symmetric Cauchy stress tensor σ , the body force b, and the material density ρ, the initial boundary

value problem reads

divσ + b = ρ ü in Ω ,

u = ū on ΓD,

t = σ n = t̄ on ΓN ,

(6)

where n ∈ R3 is the outward pointing unit normal on Γ . The prescribed displacement ū ∈ R3 is enforced on the
Dirichlet boundary ΓD , while the traction t̄ ∈ R3 acts on the Neumann boundary ΓN . Due to the time dependence
of Eq. (6), the initial conditions u(x, t)|t=0 = u0(x) and u̇(x, t)|t=0 = u̇0(x) are additionally introduced [35]. In
he scope of this work, the initial values u0(x) and u̇0(x) are assumed to be zero and only homogeneous Dirichlet
onditions are considered.

.4.2. Weak form
We define the trial space U(Ω ) = {u(x, t) | u(x, t) ∈ H 1(Ω ), u|ΓD = ū} and the weighting space

(Ω ) = {v(x) | v(x) ∈ H 1(Ω ), v|ΓD = 0}, which satisfies the homogeneous Dirichlet boundary conditions on
D . Multiplying Eq. (6) by an arbitrary test function v ∈ V and integration by parts leads to the variational form
f the initial boundary value problem, which reads: find u ∈ U such that

(ρ ü, v) + a(u, v) = L(v), ∀v ∈ V, (7)

ith

(ρ ü, v) + a(u, v) =

∫
Ω

(ρ ü) · v dΩ +

∫
Ω

σ (u) : ϵ(v) dΩ , (8)

nd

L(v) =

∫
Ω

b · v dΩ +

∫
ΓN

t̄ · v dΓ . (9)

Thereby, H 1 denotes the first-order Sobolev space [36], and ϵ represents the symmetric gradient of the
displacement field.

2.4.3. Boundary conditions
Neumann boundary conditions on ΓN appear naturally in the variational form, see Eq. (9). To enforce Dirichlet

boundary conditions, a penalty term [37] is introduced to Eq. (7)

b(u, v) = β

∫
ΓD

(u − ū) · v dΓ , (10)

with the penalty factor β. It should be mentioned that Lagrange multiplier and Nitsche-type methods are also
possible candidates to prescribe essential boundary conditions. A comprehensive comparison of these formulations
in the context of isogeometric analysis can be found in [38].
6
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Fig. 3. Mapping between spaces. The illustration shows an excerpt of the solid B-Spline domain ΩS that is trimmed by the geometric
boundary Γ .

.4.4. Discretization in space and time
According to the Bubnov–Galerkin approach [39], both the trial and the weighting function are discretized with

he same Ansatz functions, namely the trivariate B-Spline bases given in Eq. (3), which reads

u = NU, v = NV . (11)

The spatial discretizations provided in Eq. (11) are substituted into Eq. (7) to arrive at the semi-discrete
formulation

MÜ + K U = F, (12)

with M, K , and F denoting the mass matrix, stiffness matrix, and global load vector. The vector U represents
the displacements at the control points P i, j,k of the B-Spline solid S. In Section 6.4, Eq. (12) is solved using the
implicit Newmark and the explicit central difference method [39]. For the latter time integration scheme, the system
of equations is classically decoupled by a diagonal mass matrix M L . However, [40] shows that M L obtained, e.g., by
row summing, yields only second-order accurate natural frequencies, regardless of the polynomial degree of Ni,p.
To improve the accuracy for higher-order bases, we employ an explicit predictor multi-corrector algorithm [39,41].
It also exploits the diagonal matrix M L for the simplification of Eq. (12) but additionally uses the consistent mass

atrix M to compute the residual vector. In Section 6.4, the performance of the predictor multi-corrector algorithm
s compared to the explicit central difference scheme. For all static problems solved in Section 6, the dynamic term
n Eq. (12) is neglected.

.5. Mapping between spaces

Fig. 3 reveals that different parametric spaces can be identified as part of the presented workflow. Integration
y numerical means requires an appropriate mapping among them and the physical space, which will be discussed
n this section. For a detailed description of the employed numerical integration schemes, the reader is referred to
ection 3.

Following the notation introduced earlier, let ξ = (ξ, η, ζ ) denote a point in the parameter space spanned by
he knot vectors Ξ , ~, and ϑ . The direct mapping from ξ to its conjugate coordinate x = (x, y, z) located in the

physical domain Ωs is defined by the B-Spline solid S : ξ ↦→ x, as stated in Eq. (3). Its inverse, which generally
equires the solution of a nonlinear system of equations [34], is denoted as S−1

: x ↦→ ξ .
7
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Remark. If Ξ , ~ and ϑ are uniform knot vectors, and the solid is in the undeformed configuration (cuboid shape),
−1 decomposes into a linear function. Since all necessary conditions can be met naturally during preprocessing,

xploiting this property accelerates required mapping operations drastically.

he determinant of the Jacobian matrix det( J1) (see Fig. 3) accounts for the volumetric change of the computational
omain in physical space Ω and parametric space Ω̂ , with

J1 =

⎡⎢⎢⎣
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤⎥⎥⎦ . (13)

Each individual knot span domain Ω̂ (•) is additionally mapped to a Gaussian space Ω̂ (•)
G in order to perform

umerical integration. The determinant of the corresponding Jacobian matrix reads

det( J2) =
∂ξ

∂ξG

∂η

∂ηG

∂ζ

∂ζG
. (14)

Since the computational domain Ω contains untrimmed Ω i and trimmed domains Ω t , the relevant integral can
be decomposed to∫

Ω

dΩ =

∑
a

∫
Ω i

a

dΩ i
a +

∑
b

∫
Ω t

b

dΩ t
b, (15)

=

∑
a

∫
Ω̂ i

a

det( J1) dΩ̂ i
a +

∑
b

∫
Ω̂ t

b

det( J1) dΩ̂ t
b, (16)

=

∑
a

∫
Ω̂ i

a,G

det( J1)det( J2) dΩ̂ i
a,G +

∑
b

∫
Ω̂ t

b,G

det( J1)det( J2) dΩ̂ t
b,G . (17)

The integration over Γ may be directly performed using the corresponding surfaces F of the NURBS-based
-Rep model. However, the parameterization provided by CAD usually contains trimmed patches, as depicted in
ig. 1, which requires sophisticated integration schemes (see Section 3.2). To facilitate the embedding process, the
ssential integrals are performed over a triangulated boundary, as suggested in [18]. The respective integral reads∫

Γ

dΓ =

∑
a

∫
Γ

Fh
a

dΓFh
a

=

∑
a

∫
Γ̂

Fh
a

det( J Fh
a

) dΓ̂Fh
a
, (18)

here det( J Fh ) represents the mapping between physical (ΓFh ) and parametric space (Γ̂Fh ) of each boundary
riangle Fh . During preprocessing, each triangle is mapped and stored in the parametric space of the B-Spline solid
see Fig. 3), ensuring a consistent boundary parameterization throughout the entire simulation, even as the geometry
eforms. A more detailed discussion on the evaluation of boundary integrals and the treatment of non-matching
riangles at trimmed knot span boundaries is provided in Section 3.2.2.

. Numerical integration of trimmed solids

This section is devoted to the construction of efficient quadrature rules for both trimmed Ω t and full knot span
omains Ω i . Exterior knot span domains Ω e, on the other hand, are empty and do not have any contribution to the
eak form in Eq. (7). For brevity, we use the term knot span as a synonym for knot span domain in the following.
s indicated in the previous sections, this approach relies on an a priori classification of knot spans with respect to

he geometry boundary. Intersected Ω t , interior Ω i , and exterior Ω e knot spans may be categorized using multiple
nside/outside tests, e.g., at each knot. Additional intermediate points can be considered to improve robustness
nd accuracy. Ray tracing techniques allow such point membership classifications to be performed directly on the
URBS-based B-Rep model [42]. However, classical ray tracing on conventional CAD models is computationally

xpensive and might fail due to non-watertight geometries. The challenge of point membership classification on
awed CAD models is addressed in [43], along with a strategy for direct mechanical analysis of these models
sing the FCM.
8
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Fig. 4. Structure of Section 3 based on the distinction of different integration domains.

In the following, we use a robust and efficient alternative to ray tracing on NURBS-based B-Rep models and
lassify knot spans based on an intermediate tessellation. Note that the same discretization is reused to evaluate the
oundary integrals in Eq. (18). The necessary information is recovered from an STL (STereoLithography or Standard
essellation Language) model, which by definition contains only triangular elements. The STL is a common file
ormat to exchange geometric information between CAD and Computer-Aided Manufacturing (CAM) processes
uch as rapid prototyping and 3D printing. Due to the wide range of possible applications, the efficient generation
f STL representations from NURBS-based B-Rep models is a common task for CAD programs. Appendix A briefly
iscusses the influence of different parameter settings for the tessellation algorithm on the accuracy of STL meshes.
n the context of the classification problem, the STL can be utilized to speed up the process as it allows the use
f well-established geometric algorithms for polygonal meshes [44]. An efficient and robust two-step classification
cheme using the STL format is applied in this work. In the first step, intersected knot spans are identified according
o [45]. Implementations of the corresponding algorithms are available in the open-source project CGAL [46,47]. In

the second step, all untrimmed knot spans are categorized as interior or exterior according to the location of their
center relative to the geometric boundary, similar to the point membership classification presented in [48] for the
application of the FCM based on oriented point clouds.

The following discussion on the numerical integration of trimmed and non-trimmed domains is organized as
depicted in Fig. 4.

3.1. Numerical integration of full knot spans

Full knot spans are typically evaluated by the tensor product of Gaussian quadrature rules, achieving exact
integration. However, the number of integration points can be significantly decreased while maintaining full accuracy
by leveraging the continuity property of B-Splines. The conceptual idea for optimal and reduced integration rules
for tensor product splines with C p−1 continuity will be discussed in the following. Subsequently, this concept is
extended to arbitrary arrangements of full knot spans within a trimmed patch.

3.1.1. Construction of optimal and reduced quadrature rules
In [27], Hughes et al. initiated the discussion of optimal quadrature or Generalized Gaussian Quadrature (GGQ)

rules for NURBS and B-Splines to improve the efficiency of IGA in general. These rules are referred to as optimal
since no other exact construction with fewer integration points exists [27,49]. The key concept is to construct
integration schemes for a macro element rather than for individual knot spans. In this context, a macro element can
be defined as multiple consecutive knot spans or an entire patch. For the following discussion, we introduce the
function space

Lq
s with

q : polynomial degree,
s : continuity,

(19)

here q and s are associated with the specified macro element. Within a one-dimensional B-Spline domain, each
not span is influenced by n = q + 1 control points. In conjunction with the fact that Gaussian quadrature gives
cp
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Fig. 5. Distribution of integration points: B-Spline basis functions over four knot spans with a uniform open knot vector, q = 4 and s = 1.
(a) Knot span-wise Gaussian quadrature. (b) Generalized Gaussian quadrature. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

exact results for nq ≥ (q + 1)/2 quadrature points, we state

nq ≥
ncp

2
. (20)

This suggests that, on average, each quadrature point can be assigned to two control points and, more importantly,
s able to evaluate the associated basis functions. Using standard knot span-wise Gaussian integration, the condition
n Eq. (20) is satisfied independently for each knot span. However, due to the smoothness of B-Splines it is beneficial
o fulfill Eq. (20) over an enlarged domain. This is exemplified in Fig. 5 for B-Spline bases of order q = 4 and
egularity s = 1. The colors indicate a fictitious affiliation between basis functions and integration points. They
re neither meant to represent a strict connection nor an independent integration area but rather to illustrate the
onceptual idea.

In IGA, as in traditional FEM, the polynomial degree and the continuity of the occurring integrands are
etermined by the weak form. According to Eqs. (7) and (11), the integrals for the computation of the mass and
tiffness matrices take the following well-known structure∫

Ω

N i (ξ )N j (ξ )φ(ξ ) dΩ , (21)∫
Ω

∇N i (ξ )∇N j (ξ )φ(ξ ) dΩ . (22)

here N i (ξ ), and N j (ξ ) denote the tensor product B-Spline basis functions, and φ(ξ ) represents the geometrical
apping between physical space and parameter space. It is a common approach to chose appropriate quadrature

ules under the assumption that φ(ξ ) is constant [27,50]∫
Ω

N i (ξ )N j (ξ ) dΩ , (23)∫
∇N i (ξ )∇N j (ξ ) dΩ . (24)
Ω

10
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Consequently, the integrands in Eqs. (23) and (24) are contained in L
2p
r and L

2p
r−1, which aggregate to a total

pace of L2p
r−1, with p and r denoting the polynomial degree and regularity of the basis functions N i (ξ ), respectively.

imilar to standard Gaussian quadrature, optimal rules for the integration of functions in L
2p
r−1 can be obtained

rom the univariate case and applied to multiple dimensions using the tensor product [27]. However, these rules
re unique for one particular knot vector, i.e., if the position of a single knot is slightly shifted, the rule must be
dopted. Moreover, their construction requires the solution of a system of equations that depends linearly on the
ntegration weights but strongly nonlinearly on the positions of the integration points. Since this is a challenging
ask, especially for large meshes, different algorithms solve the nonlinear equations locally [50,51], leading to more
fficient but still suboptimal quadrature rules. For some combinations of polynomial degree and continuity, explicit
ecursion methods [52–54] are used to find optimal quadrature rules for B-Spline bases. Furthermore, [55,56] employ
auss–Greville rules to avoid solving the nonlinear equations and successfully apply the concept to isogeometric

hell analysis.
However, since the proposed trivariate B-Spline discretization relies on uniform knot vectors, it opens the door

or a more efficient methodology. In [49], Hiemstra et al. propose to assemble optimal integration points for uniform
not vectors from precomputed quadrature rules. Generally, these constructions still depend on the number of knot
pans, here denoted as nks. Nonetheless, observations show that integration points with sufficient distance from the
oundary follow a periodic pattern. Therefore, optimal quadrature rules can be constructed for any number of knot
pans from a few known solutions. Considering an exact integration of cubic basis functions associated with the
arget space L6

1, only the nearest 15 points are affected by each boundary. Due to symmetry constraints, an additional
enter rule must be considered, which varies depending on whether nq is even or odd. Optimal quadrature rules
re explicitly provided in [49] to evaluate quadratic (L4

0), cubic (L6
1), and quartic (L8

2) B-Spline bases with uniform
not vectors. To further decrease the number of integration points, reduced quadrature rules may be constructed by
ecreasing the polynomial degree of the target space: L2p−1

r−1 . In fact, [49] shows that optimal convergence rates can
e achieved with L3

0, L5
1, and L7

2 for p = 2, p = 3, and p = 4. To consequently continue the investigations in [49],
e additionally consider the second-order reduced spaces (L2p−2

r−1 ) in the examples conducted in Sections 6.3 and
.4. The positions and weights of the corresponding integration points are computed with a relative error of < 10−15

nd documented in Appendix B for the first 10 knot spans and p = 2, p = 3, and p = 4. Fig. 6 compares the
umber of required integration points for L

2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 to element-wise full (nq/nks = (p + 1)3) and

educed (nq/nks = (p)3) Gaussian quadrature. The gain in efficiency clearly depends on the mesh size, but even
or small and moderate numbers of knot spans, the reduction is shown to be significant. In the limit case, optimal
uadrature rules (L2p

r−1) for cubic splines can save up to 75,5% of the necessary points. When reduced integration
chemes are applied this number is increased to 87,5% for L2p−1

r−1 , and 94,7% for L2p−2
r−1 , respectively.

.1.2. Generalized Gaussian quadrature for non-tensor product spaces
Following the concept introduced in the previous section, optimal and reduced one-dimensional quadrature rules

an be found for any number of knot spans at minimal cost. In [49], these quadrature rules are derived from uniform
pen knot vectors. We want to emphasize that the respective quadrature constructions depend on the number of knot
pans, the continuity, and the polynomial degree of the given integrand. However, they are not restricted to open
not vectors. The same quadrature rules can also be applied to non-open knot vectors or any set of consecutive
ntermediate knot spans as long as the knot vectors are uniform. To illustrate this phenomenon, we construct the
GQ rule for the same B-Spline target space as in Fig. 5(b), but with trimmed ends, see Fig. 7. Since the number
f active knot spans is identical, we obtain the same quadrature rule as without trimmed ends. This is because the
asis functions of open and closed knot vectors differ only in the polynomial coefficients, but not in the polynomial
egree, the continuity in the interior of the domain, or the number of active basis functions. As the coefficients are
onstants, they do not affect the quadrature rule. Consequently, the precomputed integration points can be applied
o any subset of consecutive full knot spans within the trimmed B-Spline domain Ω .

However, the construction of global multi-dimensional rules using the tensor product is not straightforward in
he context of the present work. It is only applicable if all full knot spans form a perfect cuboid, representing only
ne particular corner case, as the neighbor relations of untrimmed knot spans can be arbitrary. In order to ensure
n efficient integration for any knot span arrangement in multiple dimensions, a novel decomposition algorithm is
resented. Thereby, adjacent knot spans are grouped into tensor product domains that have the shape of a cuboid
11
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Fig. 6. Number of integration points for generalized Gaussian quadrature rules in comparison to knot span-wise Gaussian quadrature for a
-Spline unit cube with C p−1 continuity and nks knot spans in each spatial direction.

Fig. 7. Distribution of integration points: generalized Gaussian quadrature on trimmed knot vector with nks = 4 active knot spans, q = 4
and s = 1.

Fig. 8. Weighting of knot spans. The x-axis represents a trimmed knot vector with nks = 5 consecutive full knot spans.

nd thus enable the use of GGQ rules. Generally, the larger each subdomain, the greater the savings in the number
f required integration points (see Fig. 6).

In a first step, consecutive interior knot spans are collected and weighted according to the size of their group, more
recisely, the number of knot spans nks that are included. Based on a parameter 0 < α < 1, a linear weighting
unction is introduced to give additional importance to center knot spans, as depicted in Fig. 8. This process is
erformed in each spatial direction. Subsequently, the directional weights wξ , wη, and wζ are multiplied to form
ne global weight w per knot span. The complete algorithm is schematically depicted in Fig. 9, where the color

ap visualizes the global weights based on α = 0.1. For illustration purposes, the respective representation is

12
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Fig. 9. Tensor-product decomposition algorithm. The color map visualizes the global knot span weights w = wξwη that are initialized
according to Fig. 8. The already found tensor product domain is indicated by fully filled knot spans. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

limited to two dimensions, but the application to three dimensions is straightforward. After the initialization phase,
the algorithm enters the decomposition loop, where the knot span with the largest weight (w = ∥wξwηwζ

∥∞) is
defined as the starting point for the first tensor product domain. The domain is successively expanded in the direction
of its neighbor with maximal weight while maintaining a rectangular/cuboid shape in two/three dimensions. If the
already found domain is adjacent to more than one knot span per direction, their weights are summed up. The
current decomposition loop ends if no direction allows to make a valid move, and a new domain is started until all
knot spans are decomposed. Once the decomposition is complete, each domain is defined as one macro element
Ω̂ i , allowing the construction of a domain-wise tensor product quadrature rule according to Eqs. (16) and (17).
13
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Remark. In principle, it is reasonable to define α with any value between 0 < α < 1. For values close to α = 0,
knot spans at the active boundaries are weighted significantly less compared to interior ones, while α = 1 results
in an equal weighting for all knot spans within one group (see Fig. 8). Generally, it is advantageous to put more
importance on interior domains. In addition, however, boundary knot spans should not be neglected entirely. Thus,
we propose to initialize all weights with α = 0.1. Note that the presented algorithm does not necessarily provide
the best possible decomposition regarding the final number of quadrature points in all scenarios. This would require
the solution of a complex optimization problem. Nevertheless, since the savings in integration points are already
close to the maximum for a relatively small number of knot spans (see Fig. 6), the additional effort would not bring
a significant improvement.

3.2. Integration of trimmed knot spans

Trimmed or cut elements pose a difficult challenge in most embedded boundary methods since their underlying
integration scheme must guarantee sufficient accuracy for arbitrarily shaped domains. An octree refinement, as used
in the original version of the FCM [17], can tackle such problems and is known to work robustly on various shapes.
However, already a moderate octree depth can lead to a vast number of integration points. A similar overhead must
be expected if the integration is performed on a lower-order tessellation based on tetrahedrons, as per [57]. In [58],
the so-called smart octree is developed, which incorporates a node-relocation algorithm. Due to the smart-octree’s
higher flexibility, better convergence rates are achieved, which entails a reduced number of integration points. The
authors in [59] compare the smart octree to the moment fitting approach and show that solving the moment fitting
equation can further decrease the number of integration points while attaining the same accuracy.

In the following, we propose a combined approach that solves the moment fitting equation during the execution of
an iterative point elimination algorithm. A novel solution strategy is presented, which establishes an upper bound for
the final number of integration points. As a result, the constructed quadrature rules require equal or fewer function
evaluations than full Gaussian quadrature for arbitrarily shaped domains.

3.2.1. Moment fitting equation
Given a polynomial function h(ξ ) of degree q over a continuous parametric domain, its integral can be

approximated by nq quadrature points∫
h(ξ ) dξ ≈

nq∑
i=1

h(ξ i )wi , (25)

where ξ i and wi are the distinct point positions and integration weights. We may rewrite the polynomial h(ξ ) as a
sum of m = q + 1 independent basis functions f j (ξ ) and constant coefficients β j

h(ξ ) =

m∑
j=1

β j f j (ξ ). (26)

The moment fitting approach suggests to seek for nq integration points to approximately evaluate each basis
among the given set∫

h(ξ ) dξ =

m∑
j=1

β j

∫
f j (ξ ) dξ,

≈

m∑
j=1

β j

nq∑
i=1

f j (ξ i )wi .

(27)

Finally, the terms on the right-hand side in Eq. (27) are rearranged, and the formulation is adapted for the
integration of the three-dimensional trimmed domain Ω̂ t⎡⎢⎣ f1(ξ 1) · · · f1(ξ nq )

...
. . .

...
1 nq

⎤⎥⎦
⎡⎢⎣w1

...
nq

⎤⎥⎦ =

⎡⎢⎣
∫
Ω̂ t f1(ξ ) dΩ̂ t

...∫
ˆ t

⎤⎥⎦ , (28)
fm(ξ ) · · · fm(ξ ) w
Ω̂ t fm(ξ ) dΩ

14
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with ξ i
= (ξ i , ηi , ζ i ). The moment fitting approach can be interpreted as a procedure to optimize an a priori defined

et of integration points toward a known reference solution f c = [
∫
Ω̂ t f1(ξ ) dΩ̂ t , . . .]T . These are commonly referred

o as moments or the constant terms of the moment fitting equation.
The fact that Gaussian quadrature yields exact results for q ≤ 2nq − 1 implies that the choice of an appropriate

uadrature rule depends solely on the maximum polynomial degree q of the given integrand. Eq. (28) illustrates
his proposition, as all coefficients βi introduced in Eq. (26) have disappeared. Thus, in the univariate case, we

ay choose any set of linearly independent functions F1D capable of representing the integrand h(ξ ) of order q as
oment fitting bases f j

F1D = { f j (ξ ) = L̃r (ξ ); r = 0, 1, 2, . . . , q}. (29)

However, to provide orthogonal bases on each knot span [ξi , ξi+1], L̃r is defined as

L̃r = Lr

(
2ξ − ξi − ξi+1

ξi+1 − ξi

)
, (30)

ith Lr being the r th Legendre polynomial. For a tensor product space, the moment fitting equation could be solved
ndependently in each spatial direction since, e.g., η and ζ appear as constant terms in the integral along ξ . However,
f the domain is trimmed, the same integral can be bounded by an arbitrary function that depends on η and ζ and

vice versa. Following the notation introduced earlier, the moment fitting bases in three dimensions may hence be
defined by a tensor product, as per

F3D = { f j (ξ ) = L̃r (ξ )L̃s(η)L̃ t (ζ ); r, s, t = 0, 1, 2, . . . , q}, (31)

esulting in m = (q + 1)3 functions. As the weak form in Eqs. (23) and (24) dictates an integrand of order q = 2p,
m = 343 moment fitting bases would emerge if cubic shape functions are applied. For a more detailed discussion
on the necessary maximum polynomial degree in F3D, let us divide the univariate function h(ξ ) of order no greater
than 2nq − 1 by a function L(ξ ) of order nq

h(ξ )
q:= 2nq−1

= q(ξ )
nq−1

L(ξ )
nq

+ r (ξ )
nq−1

. (32)

Accordingly, the resulting quotient q(ξ ) and the remainder r (ξ ) are of order nq−1 or less. In Gaussian quadrature,
L is defined as the nqth Legendre polynomial Lnq . Since Lnq is orthogonal to all polynomials of order q < nq on
−1, 1], the integral of h(ξ ) over this particular domain simplifies to the integration of the remainder r (ξ )∫ 1

−1
h(ξ ) dξ =

��������
∫ 1

−1
q(ξ )Lnq (ξ ) dξ +

∫ 1

−1
r (ξ ) dξ. (33)

For the respective inner product to be zero, the Gaussian quadrature points are defined as the nq distinct roots of
Lnq . The corresponding weights can be found by solving a system of equations, which takes the form of a linearized

oment fitting equation with F1D = { f j = Lr (ξ ); r = 0, 1, 2, . . . , nq − 1}. Indeed, if orthogonal polynomials exist
or the given integration domain, the positions of the integration points are inherently given. Moreover, it seems
ufficient to restrict the moment fitting bases to m = nq = (q/2 + 1)d functions, where d is the spatial dimension.
onsidering the trivariate example with cubic bases introduced above, the number of required functions drastically

educes from m = 343 to m = 64.
Unfortunately, orthogonal polynomials are difficult to construct or might not even exist for arbitrarily shaped

omains in multiple dimensions. Due to this problem, the nonlinear moment fitting equation may be utilized to
atisfy

∫
q(ξ )Lnq (ξ )dξ ≈ 0 implicitly, without any knowledge about the form of Lnq . For the univariate case, this

pproach is shown to be successful in Section 3.1 since the computation of the generalized Gaussian quadrature
ule for multiple knot spans is deduced from a similar nonlinear system of equations. However, the computationally
xpensive task of solving the nonlinear problem was circumvented by using precomputed integration points. This
s not applicable in the present context due to arbitrary integral boundaries. Moreover, the moment fitting equation
Eq. (28)) is defined in three dimensions, making its solution even more complicated and factually infeasible during
he execution of the simulation. Thus, in Section 3.2.3, the moment fitting equation is linearized by defining
he positions of the integration points a priori in order to reduce the computational effort. Additionally, a point

limination algorithm based on the original ideas from [28,60] is utilized to select the most suitable positions from
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a discretized set. The proposed approach allows to restrict the moment fitting bases to m = (q/2 + 1)3 functions in
three dimensions while no significant degradation in accuracy is observed, see Section 6.2. Before the mentioned
solution strategies are presented, we will focus on calculating the constant terms f c in the next section.

Remark. Since the moment fitting equation in Eq. (28) is defined in the parametric space, the resulting quadrature
rules are tailored to integrate Eq. (16). The additional mapping to a Gaussian space as stated in Eq. (17) is omitted.

3.2.2. Computation of constant terms
In general, every integration scheme listed in the introduction of this section, such as octree, smart-octree, and

lower-order tessellation, are suitable candidates to compute the constant terms in Eq. (28). However, a different
methodology enables a more seamless integration into the presented workflow due to the inherently available
boundary representation. To this end, the moments in Eq. (28) are evaluated by integrating over the boundary
surfaces utilizing the divergence theorem in a similar fashion as described by [61]∫

Ω t
F j (x) dΩ t

=

∫
Ω t

∇ · g j (x) dΩ t
=

∫
Γ t

g j (x) · n(x) dΓ t , (34)

where F j (x) represents the moment fitting bases defined on the physical domain. Eq. (34) realizes a transformation
from volume to contour integrals with n(x) denoting the normal vector pointing in outwards direction of the
geometry. For the anti-derivatives g j , the notation is adopted from [62]

g j (x) =
1
3

⎡⎢⎣
∫
F j (x) dx∫
F j (x) dy∫
F j (x) dz

⎤⎥⎦ =
1
3

⎡⎢⎢⎣
∫

f j (ξ ) ∂x
∂ξ

dξ∫
f j (ξ ) ∂y

∂η
dη∫

f j (ξ ) ∂z
∂ζ

dζ

⎤⎥⎥⎦ . (35)

Gaussian quadrature seems to be predestined for an efficient evaluation of Eq. (34). However, numerical
ntegration requires a closed surface parameterization of the trimmed domain, which may be obtained from solid-
o-solid intersection algorithms. Most CAD programs, e.g., Rhinoceros 3D, include functionalities to conduct such
oolean operations directly on the NURBS-based B-Rep model. Nevertheless, similar to the knot span classification
roblem mentioned earlier, it can be advantageous to perform these operations on an intermediate discretized surface
escription, e.g., STL mesh. Among other software packages, CGAL provides an efficient and robust implementation
or algorithms required in this context. Moreover, the resulting B-Rep of the intersecting domain is inherently
iscretized and can directly be used for Gaussian quadrature. Given a boundary parameterization with nF triangular

elements, the integral is performed as follows∫
Ω t

F j (x) dΩ t
=

nF∑
a=1

∫
Γ̂ h

a

g j (x) · n(x) det( J Fh
a

) dΓ̂ h
a , (36)

with det( J Fh ) denoting the determinant of the Jacobian matrix, which accounts for the mapping between physical
(Γ h) a parametric space (Γ̂ h) of each boundary triangle Fh . Finally, the integral is retracted to the parametric space

f the B-Spline solid∫
Ω̂ t

f j (ξ ) dΩ̂ t
=

∫
Ω t

F j (x)
1

det( J1)
dΩ t . (37)

emark. In [63], Sudhakar et al. point out that∫
Ω

dΩ =

∫
Γ

xn1dΓ =

∫
Γ

yn2dΓ =

∫
Γ

zn3dΓ , (38)

nd hence suggest to restrict the evaluation in Eq. (35) to a single direction, e.g., g j (x) = [
∫
F j (x) dx, 0, 0].

evertheless, as Eq. (35) may seem more intuitive, we adopted the notation from [62]. In any case, the known
asis functions f j allow the calculation of the integrals in Eq. (35) by analytical means. In [64], a quadrature-free
pproach for evaluating polynomials over spline-based B-Reps is proposed. The divergence theorem is applied twice
o transform the volume integrals first to surface integrals and then to line integrals. In the present work, we omit
he second transformation because Eq. (36) agrees with the terms required to impose boundary conditions (see
16
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Fig. 10. Initial point distribution within a trimmed domain. Dark blue: Selected points by elimination algorithm. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

q. (18)), allowing a fast integration into traditional finite element frameworks. Note that the computed closed
urface parameterizations obtained from the intersection of the knot span domains and the computational domain
espect the knot span boundaries by definition. Therefore, the corresponding discretizations are also suitable for the
valuation of Eq. (18).

.2.3. Point elimination algorithm
As highlighted in Section 3.2.1, Eq. (28) is linearly dependent on the weights wi but strongly nonlinearly

ependent on the positions ξ i of the integration points. To reduce the computational effort, it is a common approach
o linearize the moment fitting equation by defining the positions of the integration points a priori [65]. The authors
n [62] propose to place the quadrature points at the locations of the standard Gauss points, which, however, does
ot guarantee that all quadrature points are inside the physical domain. Especially for nonlinear simulations where
aterial variables, e.g., plasticity values, have to be stored, points outside the domain are unfavorable. Therefore, in

he present work, interior points are selected from the resulting locations of the adaptive point distribution scheme
eveloped by [61,66]. The distribution scheme defines the positions based on a regular grid, which classically covers
he space spanned by one finite element/cell. In our proposed implementation, the point distribution is restricted to
bounding box within the parametric space of one knot span that delineates the geometry boundaries, as depicted

n Fig. 10. Especially if only small portions of an element intersect, this approach reduces the number of requisite
nside/outside tests significantly. A point distribution factor γ ∈ N is introduced to define the discretization length h

h =
L

γ (p + 1)
, (39)

etermining the emerging number of points. Note that h, L , and p might differ in each spatial direction, which is
eglected for brevity. In general, γ is initialized large enough (γ ≥ 2) such that the initial number of points nq

xceeds the number of moment fitting bases m = (p+1)3. For the solution of such an under-determined system, the
oment fitting equation (Eq. (28)) is reformulated to a least squares problem reducing the L2-norm of the residual

ector r for the given set of points (ξ , w)

q(ξ ) := f c − f (ξ )w = r. (40)

To improve the solution, Eq. (40) is embedded into the iterative process of an elimination algorithm that detects
oints with more suitable locations and dismisses suboptimal ones. Our implementation builds on the first proposals
f [60] and further developments by [28]. In agreement with [28], we expect the algorithm to find an approximate
olution to the nonlinear problem. In addition, if the solution is sufficiently accurate, we assume that the zero
ondition in Eq. (33) is also approximately fulfilled. Therefore, we claim that using only m = (p + 1)3 moment

tting bases is reasonable.
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Remark. Note that in a worst-case scenario where the zero condition in Eq. (33) is not satisfied, the obtained
integration points would represent a reduced quadrature rule, which can still evaluate integrands of order p but not

ecessarily 2p accurately. Section 6.2 compares the proposed reduced set (m = (p + 1)3) to the full set of moment
tting bases (m = (2p + 1)3) and illustrates the impact on the solution quality.

oreover, the extension recently presented in [29] is incorporated to guarantee positive weights without additional
easibility constraints and to decrease the number of required elimination loops. The respective concept is discussed
n the following.

During the first iteration (k = 1) of the elimination algorithm, the moment fitting equation is solved for the
eights w of the initial trial points obtained from the modified adaptive point distribution scheme. The key idea is

o consecutively remove quadrature points with the least significance for evaluating the constant terms f c [28,60].
n the present work, the significance of the quadrature point is measured by its computed weight wi . As proposed
n [29], a Non-Negative Least Squares (NNLS) [67] solver is employed to ensure positiveness for all elements in

without any additional feasibility constraint. Note that a standard least squares solver does not generally satisfy
his condition. Since we enter the elimination algorithm with an under-determined system of equations (nq ≫ m),
he NNLS solver converges to a solution vector w that contains multiple entries equal to zero. As integration points
ith wi = 0 have no significance for the final quadrature rule, they are all discarded after the first iteration, resulting

n a considerable reduction of required elimination loops. Additionally, the one integration point with the lowest
ositive significance is also removed since, without its elimination, the results would remain unchanged in the
econd iteration. In all subsequent iterations, only the integration point that exhibits the smallest significance is
emoved from the list of potential solutions. Fig. 11 visualizes the main routines of the elimination algorithm in
flowchart. The algorithm terminates if the L2-norm of the current residual vector exceeds a user-defined value δ

nd returns the integration points from the penultimate iteration. If no subset of the initially distributed trial points
an be found to satisfy Eq. (40), such that ∥r∥L2 < δ, γ is automatically increased to enrich the discrete solution
pace. An upper bound on γ may be introduced for performance purposes in practical applications. The presented
oint elimination algorithm provides a robust strategy for the construction of efficient integration rules for arbitrarily
rimmed domains. In three dimensions, the resulting number of quadrature points is limited to nq ≤ (p + 1)3. A
etailed discussion on the performance of the algorithm is given in Section 6.

. Numerical stability

Trimming and the evaluation of trimmed domains are key features of the presented method. Due to little support
f basis functions within small trimmed knot spans, linear dependencies may be introduced to the system matrices
n Eq. (12) [68]. As a result, the respective condition number can assume values that prevent the use of iterative
olvers or substantially reduce the accuracy of direct solvers.

To counteract ill-conditioned system matrices, one class of methods introduces quadrature points with scaled in-
egration weights into the fictitious domain to weakly penalize the exterior part of each trimmed element [18,20,69].
ollowing this approach, the fictitious domain is interpreted as a soft material rather than an empty void. The authors

n [70] propose to remove basis functions with supports below a certain threshold entirely. In CutFEM [16,71], a
host penalty term is applied to add an artificial stiffness to nodes that may precipitate numerical instability. Usually,
hese nodes are weakly coupled to one or multiple of their stable neighbors. Depending on the magnitude of the
enalization factor, the artificially introduced weight, or the ratio of neglected basis functions, a modeling error
ust be expected for the methods mentioned. Preconditioners are mathematically consistent and proposed to heal

ll-conditioning of immersed boundary methods. In fact, an Additive-Schwarz inspired preconditioner developed
n [68] has proven to be an effective and robust tool, even in the presence of higher-order basis functions. The basic
oncept is outlined in the following.

.1. Additive Schwarz preconditioner for ill-conditioned system matrices

The Additive-Schwarz preconditioner P is defined as a sparse block-wise approximation of the inverse of the
ystem matrix A, as per

P =

∑
B∈B

RT
B (RBART

B)−1  
−1

RB . (41)
AB
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Fig. 11. Flowchart of point elimination algorithm.

Thereby, RBART
B restricts matrix A to row and column indices contained in block B ∈ B, where B is the set

f all blocks. Each sub-matrix AB is inverted, and its entries are mapped onto P by the term RT
BA−1

B RB , such that
heir original row and column indices are preserved. This procedure is conducted for each block B. The blocks may
verlap, but each basis function must be contained in at least one block to avoid P being singular. In the context of
his work, the degrees of freedom associated with one knot span form an individual block B. For further details on
he theoretical background, the implementation of such preconditioners, and their application to embedded boundary

ethods, the reader is referred to [68,72]. Moreover, the authors in [73] extend the given preconditioner to multigrid
pproaches. In [74], Additive-Schwarz preconditioners are discussed in a general FEM setting. To demonstrate the
roposed method’s scalability potential, all static and implicit dynamic examples in Sections 6 and 7 are solved with
n Additive-Schwarz preconditioned iterative Biconjugate Gradient Stabilized Method (BiCSTAB). Nevertheless,
irect solvers are also appropriate for problems performed as part of this work.

.2. Light control points in explicit dynamics

Since explicit solvers do not solve the system of equations, they are not constrained by ill-conditioned matrices.
owever, the influence of small trimmed knot spans is still perceptible in the form of so-called light control points

haracterized by small mass and stiffness terms. They are not harmful per se, as their influence on the solution is
egligible by definition. Nevertheless, the displacements, velocities, and accelerations at light control points tend to
ake on extremely large values, which can cause the solver to terminate prematurely due to overflow errors [75]. In

he scope of this work, explicit simulations successfully terminated without additional stabilization. Generally, light
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Fig. 12. Required processes and interfaces for a design-through-analysis workflow for solid CAD models.
Source: Modified from [76].

control points are especially critical for highly dynamic nonlinear problems, such as impact and crash simulations,
where stabilization techniques may be considered. In [75], an effective method for stabilizing light control points
is presented, along with a comprehensive overview of other possible stabilization strategies.

5. CAD-integrated analysis workflow

This research aims to develop methods for seamless simulations within the CAD design environment focusing on
solid models. In [76], a workflow and a set of interfaces are proposed to close the gap between CAD and classical
FEM solvers in the scope of the shell-based IBRA. Essential steps are adopted and extended by some functionalities
for the application to volumetric B-Reps, as depicted in Fig. 12. The entire process is fully automatized and,
unlike classical finite element analyses on hexahedral meshes, requires no manual intervention to ensure high-
quality discretizations of solid structures. An overview of the necessary routines and operations is provided in this
section.

5.1. Preprocessing

The proposed CAD-integrated analysis workflow begins within the CAD environment, where the B-Rep model
is prepared for analysis. This includes:

• Geometric modeling of the structure to be investigated.
• Definition of the solid B-Spline domain Ωs , which can be determined automatically or by a user input.
• Definition of the boundary domains ΓD and ΓN for the application of boundary conditions.
• Writing the input file for the FE solver according to [76].

he geometric modeling kernel from Rhinoceros 3D [77] is utilized for the design of all structures investigated in
Sections 6 and 7. All remaining preprocessing operations are performed in Cocodrilo [78,79] - an IGA preprocessor
for Rhinoceros 3D.

5.2. Preparation of the integration domains and construction of quadrature rules

The centerpiece of the present workflow is the conversion of the CAD model into an integration domain suitable
for FEM analysis, resulting in a trimmed parametric space of the B-Spline solid S, see Section 3. To facilitate
the integration into state-of-the-art FE solvers, a meshless approach that relies on the exchange of information via

ifferent sets of quadrature points is followed. Given Eqs. (8)–(10), these sets serve for the integration of:

• Mass and stiffness matrices in Ω .
• Neumann boundary conditions on ΓN .
• Dirichlet boundary conditions on Γ .
D
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Note that quadrature points associated with boundary conditions may carry additional information, e.g., prescribed
displacement ū and traction force t̄ . As a result, all necessary calculations can be performed in existing FE
solvers without code duplication and methodological verification, enabling rapid integration. In addition, the above
operations to prepare a model suitable for analysis can be completed at the beginning of the simulation and do not
need to be repeated. Especially for transient problems with many time steps, the computational effort associated with
the preparation of the integration domains becomes insignificant compared to the total simulation time. All processes
and algorithms related to the automatic construction of quadrature rules presented in Section 3 are implemented by
the corresponding author in Trivariate Isogeometric B-Rep Analysis (TIBRA) [80]. The underlying code is written in
C++ and uses the Polygon Mesh Processing package from CGAL [47] to perform necessary geometrical operations.
The data transfer between TIBRA to third-party software is realized either via file exchange or an extensive python
interface. This also allows the necessary information to be easily passed on to commercial solvers.

5.3. FE solver

Given the setup discussed in the previous sections, the FE solver must perform the following fundamental
operations:

• Read the sets of quadrature points.
• Pre-evaluate the B-Spline basis functions, the normal vectors, and the material properties at each quadrature

point.
• Assemble and solve the system of equations.
• Write the output for the postprocessor.

In the scope of this work, all examples are solved using the open-source FE framework Kratos Multiphysics [81–83].
Necessary implementations required for the analysis of trimmed B-Spline solids are made by the authors. In [84],
we show preliminary results of highly dynamic nonlinear simulations performed in LS-DYNA [85], including large
deformation and contact mechanisms.

5.4. Postprocessing

For the visualization of results, such as displacements and stresses, an auxiliary mesh is defined on the NURBS-
based B-Rep model. This is a standard procedure in CAD programs like Rhinoceros 3D to facilitate color mapping
on smooth surfaces. Here, the required mesh is constructed by tessellating the integration points of the boundary
surfaces F . In order to reduce the complexity to two dimensions, the tessellation is performed in the respective
parametric spaces. Additional points are introduced at each surface’s trimming or delimiting edges, ensuring that the
mesh accurately represents the geometry. Finally, in a consecutive step, simulation resultants are either interpolated
(e.g., displacements) or evaluated (e.g., stresses) at each mesh vertex to provide a smooth visualization on the
NURBS-based B-Rep model. Moreover, the Universal Deformation Technologies from Rhinoceros 3D are utilized
to deform the B-Rep model according to the displacements of the control points P i, j,k of the B-Spline solid S.
Therefore, S is defined as a so-called control cage that dictates the deformation of its captive objects, namely the
surfaces F contained in the B-Rep model. For more information, the reader is referred to [77]. The corresponding
interface is realized in Cocodrilo [78].

6. Scientific benchmarks

In the following, we demonstrate the efficacy of the proposed method for the analysis of static and transient
problems. All examples are conducted on a C p−1 B-Spline discretization constructed by standard k-refinement
[1,34]. The contour parameterization of each trimmed knot span required for evaluating Eq. (36) is retrieved from the
intersection of the knot span domain and an STL mesh. The corresponding tessellation is automatically performed
in Rhinoceros 3D with a chordal tolerance of 10−5 (see Appendix A). Subsequently, the obtained intersection mesh
is homogenized using an isotropic remeshing algorithm [47], targeting a prescribed minimum number of triangles.
This lower bound is introduced to ensure a high-quality contour parameterization of the trimmed domains. Note
that rather conservative thresholds are used in the following examples to avoid the results being affected by the

quality of the constant terms of the moment fitting equation. The interested reader is referred to [61], where the
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Fig. 13. Cantilever subjected to a surface load: Configuration of the beam and solid B-Spline discretization.

nfluence of the number of elements on the quality of the constant terms in Eq. (28) is studied. In the following,
e further increase the accuracy of the respective volume integrals by using three instead of one quadrature point
er boundary triangle. The allowed residual for the moment fitting equation is fixed to δ = 10−10 unless stated
therwise. Moreover, the point distribution factor is initialized with γ = 2. For the sake of comprehension, all
epicted knot span domains are visualized in physical space.

.1. Trimmed cantilever

In the first example, the influence of trimming on the solution quality of static problems is investigated. A trimmed
antilever with a circular cross-section is subjected to a tip load. The structure is fully embedded into the B-Spline
olid S, as depicted in Fig. 13, where a = 3 m, b = 3 m, R = 1 m, and L = 10 m. Homogeneous Dirichlet
oundary conditions are enforced using a penalty factor of β = 1010 N/m3 at x = 0 m. The tip load is modeled
s a surface load with p = 0.1 N/m2 and applied over the structure’s boundary at x = L . The discretization of the
ross-section is fixed to 2 × 2 knot spans, whereas the number of knot spans along x is parameterized with nx

ks.
Consequently, all knot spans in the B-Spline solid are trimmed. Given the predefined chordal tolerance of 10−5,
the tessellation algorithm generates a B-Rep model with 2808 elements. Furthermore, the computed solid-to-solid
intersections are parameterized with approximately 3000 boundary triangles used to evaluate Eq. (36).

According to [86], the analytical solution of such a Timoshenko beam is given as

we
=

px2(3L − x)
6E I

+
px

G Aκ
, (42)

ith E I and G denoting the bending stiffness and shear modulus, respectively. The shear coefficient κ =

6 + 12ν + 6ν2)/(7 + 12ν + 4ν2) accounts for the varying shear stress distribution across the circular cross-section
ith area A [87]. Fig. 14 shows the relative error in the vertical displacement with respect to the analytical solution
e over the entire length of the beam for five different meshes. The first four simulations are conducted using a

onstant polynomial degree of p = 2, but a varying number of knot spans in x-direction: nx
ks = 3, nx

ks = 4, nx
ks = 5

and nx
ks = 10. The corresponding maximum relative errors are: 1.3%, 0.47%, 0.19%, and 0.015%. In all cases, the

accuracy can be further increased by raising the polynomial degree. For example, when p is elevated to cubic order,

a single trimmed knot span in x-direction yields a relative error of 0.03%.
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Fig. 14. Cantilever subjected to a surface load: Relative error in displacement for different meshes, indicating convergence.

Table 1
Convergence of point elimination algorithm. The current residual ∥r∥L2 and the number of
quadrature points nq are given for one trimmed knot span. Point distribution factor γ = 2.
Prescribed tolerance δ = 10−10.

p = 2, nx
ks = 10 p = 3, nx

ks = 1

Iteration k ∥r∥L2 nq Iteration k ∥r∥L2 nq

1 <10−15 168 1 <10−15 416
2 <10−15 27 2 <10−15 64
3 1.21 × 10−5 26 3 1.74 × 10−8 63

As discussed in Section 3.2.1, the moment fitting equation is assembled with m = (p + 1)3 basis functions.
Therefore, the system of equations (Eq. (28)) is determined for nq = (p + 1)3, corresponding to the exact number
of integration points required for full Gaussian quadrature. Table 1 lists the number of integration points and the
obtained residual ∥r∥L2 during the execution of the point elimination algorithm for one knot span. Note that due
to the simple shape of the structure, all trimmed domains are similar and thus give equivalent results. Already the
predefined initial distribution factor of γ = 2 leads to a set of points that satisfies Eq. (40) with machine precision.
Furthermore, the NNLS solver in conjunction with the orthogonal Legendre polynomials as moment fitting bases
allows the algorithm to converge to nq = (p + 1)3 after the first iteration. This behavior is observed independent
of the employed polynomial degree. The values are shown for p = 2, nx

ks = 10 and p = 3, nx
ks = 1 in Table 1.

Due to a predefined maximum error norm of δ = 10−10, the algorithm terminates after the third iteration. The
size of the final set of quadrature points is highlighted in gray. Fig. 15(a) depicts the Von Mises stresses on the
NURBS-based B-Rep model, which exhibit a clear axisymmetric distribution. Next to it, the deformed CAD model
and the B-Spline solid discretization is visualized. The postprocessing of stresses and displacements on the CAD
B-Rep model is performed in Rhinoceros 3D as described in Section 5.4.

The obtained results show that the full potential of higher-order basis functions is exploited despite the presence
of trimmed knot spans. Moreover, Table 1 reveals the clear advantage of the presented modified point elimination
algorithm, which converges to nq = (p + 1)3 quadrature points after the first iteration, in contrast to classical
methods that eliminate only one point per iteration.

6.2. Thick-walled cylinder subjected to internal pressure

In this section, the performance of the presented method shall be assessed by studying a thick-walled cylinder

subjected to internal pressure. Fig. 16 depicts the simulation setup and the four different meshes investigated. Similar
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Fig. 15. Postprocessing of the cantilever beam (p = 2, nx
ks = 5) on the NURBS-based CAD model in Rhinoceros 3D: (a) Von Mises stress

and (b) Deformation and active control points.

to [1,12,13], which study the same example in the scope of IGA, plane strain conditions are applied by fixing
the longitudinal displacement at the bottom and top surface of the cylinder. The exact solutions for the radial
displacement and the stresses are taken from [88] and serve as reference
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r (r ) =

1

Ẽ
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where Ẽ = E/(1− ν2) and ν̃ = ν/(1− ν) account for the plane strain conditions. The bottom surface with an inner
radius of Ri = 1 m and an outer radius of Ro = 2 m is extruded to form a cylinder with a length of L = 5 m.
In all simulations, symmetry conditions are applied to reduce the problem’s complexity. The linear elastic material
properties are defined by the Young’s modulus E = 40 N/m2 and the Poisson’s ratio ν = 0.0. To model the internal

ressure, a constant surface load of p = 20 N/m2 is applied in normal direction of the boundary parameterization of
he inner surface. The constant terms of the moment fitting equation are computed from a boundary parameterization
ith approximately 1500 triangular elements. According to the discussion in Section 3.2.1, the moment fitting bases

re defined by a reduced set of m = (p + 1)3 functions. Consequently, Eq. (28) turns into a determined system
f equations for nq = (p + 1)3 quadrature points per trimmed knot span domain. Table 2 shows the convergence
ehavior of the point elimination algorithm for the two trimmed knot span domains Ω t

1 and Ω t
2 indicated in Fig. 16.

imilar to the results obtained in Section 6.1, the algorithm finds nq = (p + 1)3 quadrature points that satisfy
q. (40) with machine precision. The numbers of quadrature points in the finally selected sets are highlighted in
ray. Given the prescribed tolerance of 10−10, an additional iteration is performed in domain Ω t

2, resulting in a
uadrature rule with one integration point less. Note that Ω t

2 is the smaller of the two trimmed domains. Fig. 17(a)
epicts the deformed solid CAD model in Rhinoceros 3D. The displacement contour is smooth and symmetric.
ig. 17(b) plots the relative error in radial displacement using quadratic basis functions. The maximum errors for
esh 1, 2, 3, and 4 are 1.09%, 0.21%, 0.059%, and 0.02%. In all cases, the accuracy can be further increased by

rder elevation.
Up to this point, all full knot spans have been evaluated by classical knot span-wise Gaussian quadrature. Unlike

he optimal and reduced GGQ rules discussed in Section 3.1.1, standard Gaussian quadrature schemes do not exploit
he continuity across adjacent knot spans and are therefore less efficient. However, applying GGQ rules to two and
hree dimensions requires a tensor product structure of the respective knot spans, which is not inherently given
or trimmed patches. To enable the use of GGQ rules, the decomposition algorithm presented in Section 3.1.2
s employed. Fig. 18(a) illustrates the decomposed local tensor product domains for Mesh 4, where the numbers
ndicate the order followed by the algorithm. Note that the order, and thus the final decomposition, can depend on
he knot span numbering, see domains 3 and 7. Nevertheless, this does not affect the accuracy of the quadrature

ules. Although the visualization is limited to two dimensions, the GGQ rules are also applied in axial direction. For
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Fig. 16. Thick-walled cylinder: Model configuration and meshes.

Table 2
Convergence of point elimination algorithm. The current residual ∥r∥L2 and the number of
quadrature points nq are given for the domains Ω t

1 and Ω t
2 (see Fig. 16). Point distribution factor

γ = 2. Prescribed tolerance δ = 10−10.

Ω t
1 Ω t

2

Iteration k ∥r∥L2 nq Iteration k ∥r∥L2 nq

1 <10−15 156 1 <10−15 126
2 <10−15 27 2 <10−15 27
3 3.41 × 10−6 26 3 8.67 × 10−11 26
– 4 1.095 × 10−10 25

demonstration purposes, the decomposition is additionally performed for the full cylinder, as shown in Fig. 18(b).
In both cases, the linear weighting function is defined by α = 0.1. Based on Mesh 4, Fig. 19(b) compares the
performance of the three different quadrature rules associated with the B-Spline target spaces L

2p
r−1, L2p−1

r−1 , and
2p−2
r−1 introduced in Section 3.1.1. Note that the depicted graph is a detailed view of Fig. 17(b). The results highlight

he exactness of quadrature rules derived from L
2p
r−1. When using first- and second-order reduced quadrature rules,

inor deviations from full Gaussian quadrature are apparent. However, we observe that the discrepancy is of the
ame order of magnitude as the discretization error in both cases. Fig. 19(a) illustrates the point distributions of the
nvestigated quadrature rules. Despite the modest size of this particular example, the potential savings in required
oints are significant. While attaining exact integration, the average number of quadrature points inside one knot
pan domain is reduced from nq = 27 for full Gaussian quadrature to nq = 13.8 for L2p

r−1. The reduced integration
ules L

2p−1
r−1 and L

2p−2
r−1 decrease this number further to nq = 5.9 and nq = 1.9, respectively. We continue the

iscussions on the performance of L2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 in Sections 6.3.1 and 6.4.1.

In a second study, the suitability of the proposed reduced set of moment fitting bases using m = (p+1)3 functions
(see Section 3.2.1) shall be illustrated. For this purpose, the convergence in energy norm for quadratic, cubic, and
quartic B-Spline bases is examined. To obtain a computational domain with uniform edge length, the cylinder’s
length is reduced to L = 2 m. Initially, nks = 2 knot spans discretize the cylinder in each spatial direction. In an
iterative process, we subsequently refine the mesh and compute the relative error in energy norm, which is defined
25
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Fig. 17. Thick-walled cylinder: Deformation and convergence of displacement.

Fig. 18. Thick-walled cylinder: Tensor product decomposition of full knot spans. Colors indicate different domains. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

as follows

er =

√∫
Ω (σ h − σ e)C−1(σ h − σ e) dΩ∫

Ω σ eC−1σ e dΩ
, (46)

here σ h and σ e are the approximated and exact stress tensors, and C is the constitutive tensor of linear elasticity.
ig. 20 shows the convergence of er with respect to the knot span length h. To avoid the results being affected
y the quality of the constant terms of the moment fitting equation, we parameterize the trimmed domains with
n average of 2500 triangles instead of 1500 used previously. The simulations are performed for p = 2, p = 3,

and p = 4 using the proposed reduced set of m = (p + 1)3 moment fitting bases. As a reference, the results for
m = (2p + 1)3 are additionally plotted, which reveal optimal quadratic, cubic, and quartic convergence rates. We
observe that the reduction of the moment fitting function space is only slightly reflected in Fig. 20. In all cases,
nearly optimal convergence rates are achieved. Since n = m results in a determined system of equations, the
q
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Fig. 19. Thick-walled cylinder: Exact and reduced integration for Mesh 4 and quadratic basis functions.

Fig. 20. Thick-walled cylinder: Relative error in energy norm er over knot span edge length h.

umber of moment fitting bases provides a rough estimate of the required number of integration points, such that
q ≈ m, where m represents an upper bound, i.e., nq ≤ m. Thus, m = (2p + 1)3 inherently yields a more complex
uadrature rule, which in addition is more computationally intensive to construct. Moreover, the improvement in
ccuracy over the proposed approach seems irrelevant for practical applications. We conclude that the restriction to
= (p + 1)3 basis functions is justifiable and therefore applied in all other simulations in this work.

.3. Eigenfrequency analysis of an elastic cube

An elastic cube is investigated to demonstrate the potential of the presented method for efficient analyses of
ransient problems. First, we compare the performance of the exact and reduced quadrature rules presented in
27



M. Meßmer, T. Teschemacher, L.F. Leidinger et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115584

b

w
v
m

w
M

Fig. 21. Free Vibrating Cube: Relative error in eigenfrequency under global h-refinement with consistent mass matrix for quadratic, cubic,
and quartic basis functions.

Section 3.1 based on the angular eigenfrequencies of the cube. Inspired by the results presented in [75], the second
example is devoted to the influence of trimming on the critical time step ∆tcri t of explicit dynamic simulations.

6.3.1. Free vibration of an unit cube
The natural frequencies of a traction-free unit cube are computed for E = 100 N/m2, ν = 0.3, and ρ = 1 kg/m3

y solving the generalized eigenvalue problem

(K − ω2 M)Φ = 0, (47)

here ω2 is the vector of eigenvalues and Φ is the modal matrix. In fact, for most natural frequencies of a
ibrating isotropic cube, no analytical solution is available. However, an exact solution exists for the Mindlin–Lamé
odes [89], which are given as

ωe
i =

√
2π i
L

√
G
ρ

, (48)

here G is the shear modulus, L is the cube’s edge length, and i is a positive integer. In our example, the first
´
indlin–Lame mode corresponds to the fourth natural frequency of the free vibrating cube. A reference solution
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Fig. 22. Free Vibrating Cube: Relative error in eigenfrequency under global h-refinement with lumped mass matrix and quadratic basis
functions.

is computed for p = 4, and a uniform mesh with 20 knot spans in each spatial direction for all remaining modes.
The obtained angular eigenfrequencies are ω1 = 17.712 rad/s, ω2 = 23.852 rad/s, ω3 = 24.257 rad/s, ω4 = 27.554
rad/s, and ω5 = 28.359 rad/s, whereby ω4 approximates the first Mindlin–Lamé eigenfrequency with a relative error
of ≈10−13. Fig. 21 depicts the relative errors for p = 2, p = 3, and p = 4 over the knot spans edge length h.
n all cases, exact and reduced quadrature rules based on L

2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 are compared to full Gaussian

uadrature. The respective savings in the number of integration points are shown in Fig. 6. Note that the entire cube
ontains only full knot span domains. In agreement with the theoretical derivation in Section 3.1.1, L2p

r−1 provides
xact quadrature rules and hence optimal convergence. Moreover, the error due to reduced integration associated
ith L

2p−1
r−1 is clearly bounded by the discretization error. Considering the second-order reduced integration scheme

orresponding to the target space of L2p−2
r−1 , the integration error becomes more dominant. Overall, the relative error

till decreases when h-refinement is applied. However, optimal accuracy is not maintained in all cases. Additionally,
early singular or negative-defined mass matrices are observed for quadratic basis functions, which are reflected in
he peaks in Fig. 21(a)–(b).

For a second investigation, the consistent mass matrix M is diagonalized using the row-summing technique.
Fig. 22 proves that the use of a diagonal mass matrix M L limits the accuracy of the eigenfrequencies to second-

rder [40]. In Section 6.4.2, a predictor multi-corrector scheme is employed to circumvent this limitation. However,
n the present example, we focus on the performance of the exact and reduced GGQ rules. Since the limitation
mposed by the diagonal mass matrix is independent of the polynomial degree, the results are plotted exemplarily
or quadratic basis functions in Fig. 22. Again, the first-order reduced integration rules do not significantly influence
he overall accuracy. However, a further reduction of the target space to L

2p−2
r−1 leads to quadrature rules that render

the mass matrix singular, leading to unsolvable eigenvalue problems.
In summary, first-order reduced quadrature rules are shown to be robust for both the consistent M and lumped

mass matrix M L while maintaining full accuracy compared to exact integration. When using second-order reduced
integration, occasional instabilities for M and severe instability problems for M L are observed.

Remark. Besides row-summing, diagonal scaling and nodal quadrature methods are common techniques to obtain
diagonal mass matrices. Note that the second-order accuracy restriction described above applies to all these lumping
methods [90]. However, the diagonal mass matrices generally have a positive effect on the critical explicit time
step ∆tcri t , since they underestimate the high eigenfrequencies. The authors in [91] compare the discrete spectrum
obtained using row-summing and diagonal scaling to the consistent mass matrix and show that both lumping schemes
lead to a similar increase of ∆tcri t . To improve the spatial accuracy, higher-order lumping techniques are developed

in [92], which yield promising results for vibration analysis but produce non-diagonal mass matrices.
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Fig. 23. Trivariate B-Spline cube with embedded CAD geometry. The cube is trimmed symmetrically on all sides according to the trimming
istance ξ̂ .

6.3.2. Free vibration of a trimmed cube
Small trimmed elements do not only affect the numerical stability, as discussed in Section 4 but may also hinder

the use of explicit time integration schemes due to resulting infeasible critical time steps. The central difference
scheme, widely used in explicit dynamics, is stable if the time step is smaller than the time it takes for a shock
wave to pass through an element [93]. Several guidelines for estimating the critical time step are derived from this
simple idea, all based on determining a characteristic element length. In the standard FEM, the nodes are either
located on the boundary or inside the element. Therefore, it seems reasonable to establish a direct relation between
characteristic length and the physical extent of the element. Consequently, the smaller the element, the smaller
the critical time step. Generally, this is a meaningful analogy for simulation methods based on a C0 continuous
discretization field. As a result, trimmed elements, which can be arbitrarily small in practical applications, lead to
infeasible simulation times in most embedded boundary methods. Nonetheless, this section demonstrates that the
proposed method achieves practically feasible critical time steps despite arbitrarily small trimmed knot spans. Here,
the continuity of the B-Spline bases is the crucial property [75]. To illustrate this phenomenon and to demonstrate
the method’s potential within an explicit dynamic setting, Eq. (47) is solved for a trimmed cube. Fig. 23 shows
the corresponding B-Spline domain as well as the embedded CAD geometry. A uniform open knot vector spans
each spatial direction with 12 knot spans. Since explicit dynamic solvers classically do not invert the consistent
mass matrix M but decouple the system of equations by a diagonal mass matrix M L , the angular eigenfrequencies
are computed with respect to M L accordingly. Eq. (47) is solved for different trimming configurations, where the
B-Spline domain is fixed and solely the size of the embedded cube changes. The model is kept symmetric, such that
the trimming distance ξ̂ is equivalent on all sides of the cube, as depicted in Fig. 23. For all simulations, E = 100
N/mm2, ν = 0.25, and ρ = 30 kg/mm3 define the linear elastic material.

In a first study, all inner knots are repeated k̄ = p times to create a C0 continuous discretization field. Fig. 24
plots the maximum angular eigenfrequency ωmax over the trimming distance ξ̂ for different polynomial degrees of
the underlying B-Spline basis functions. The dashed line represents a reference solution retrieved from a standard
FE model using a structured hexahedral mesh and a constant element edge length of 10 mm. When linear basis
functions are employed, and no trimming operations are applied (ξ̂ = 0 mm), the obtained maximum angular
eigenfrequency is identical to the FE reference solution. In fact, the same values are repeatedly encountered for
ξ̂ = 10 mm, ξ̂ = 20 mm, ξ̂ = 30 mm, and ξ̂ = 40 mm, as the size of the interior part of the knot spans is constant
hroughout the entire domain. However, if knot spans are cut at intermediate positions, the angular eigenfrequency
ises and tends towards infinity when ξ̂ approaches the knot span boundaries. According to the well-known relation:
tcri t = 2/ωmax , the critical time step ∆tcri t drops to infeasible values in these scenarios. Note that an increased

olynomial degree reduces ∆tcri t even further, see Fig. 24. The same undesirable behavior is expected for any
rimmed C0 continuous discretization field.

In contrast to classical methods, the here employed basis functions allow to elevate the continuity across adjacent
not spans by limiting the inner knot multiplicity to k̄ = 1. Fig. 25 plots the corresponding graphs for the
30
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Fig. 24. Maximum angular eigenfrequency ωmax over the trimming distance ξ̂ for a trivariate B-Spline cube (see Fig. 23) with uniform
open knot vectors, C0 continuity (inner knot multiplicity: k̄ = p), and varying polynomial degrees. The vertical lines at 10 mm, 20 mm,
30 mm, and 40 mm represent the knot span boundaries. The dashed horizontal line indicates a reference value obtained from a standard FE
model with a structured hexahedral mesh and a constant element edge length of 10 mm.

Fig. 25. Maximum angular eigenfrequency ωmax over the trimming distance ξ̂ for a trivariate B-Spline cube (see Fig. 23) with uniform
open knot vectors, C p−1 continuity (inner knot multiplicity k̄ = 1), and varying polynomial degrees. The vertical lines at 10 mm, 20 mm,
30 mm, and 40 mm represent the knot span boundaries. The dashed horizontal line indicates a reference value obtained from a standard FE
model with a structured hexahedral mesh and a constant element edge length of 10 mm.

resulting C p−1 continuous discretization. Note that open knot vectors are applied in each spatial direction. Since the
linear basis functions are still C0 continuous, the same results as in Fig. 24 are obtained. However, the maximum
eigenfrequency for p > 1, starts now at a higher level for cut boundary knot spans but converges towards values
below the FE reference solution for cut intermediate knot spans. This trend becomes even more pronounced with

increasing order of p. Regardless of the polynomial degree, all computed eigenfrequencies are lower than the
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Fig. 26. Trivariate B-Spline cube with embedded CAD-geometry. Embedded cube is rotated by 30◦ around the x and y axes. L0 denotes
the initial edge length.

reference value for ξ̂ > 10 mm, representing the transition point from boundary to intermediate knot span. This
bservation is crucial since it shows that higher continuities can remove the adverse effect of trimming on the
ritical time step. However, trimming may only be applied to intermediate knot spans to take advantage of this.

These results suggest that the characteristic length does not correlate with the actual size of a knot span but
ith the zone spanned by the active control points. For intermediate knot spans, the zone grows with increasing
olynomial degree and hence reduces the maximum angular eigenfrequency. Moreover, this interpretation also
xplains the contrary behavior within the boundary knot spans, as those are characterized by a higher control point
ensity and steeper basis functions. Consequently, the corresponding stiffness entries are greater and mass values
re smaller, which are both contributions to higher eigenfrequencies. For a more detailed discussion on the effect
f boundary knot spans in this context, the interested reader is referred to [75,91].

In a second study, the embedded cube is rotated by 30◦ around the x and y axes to demonstrate that the above
results are reproducible in more complex trimming scenarios. The corresponding setup is depicted in Fig. 26, where
L0 = 140 mm defines the initial edge length of the cube. We again employ an open knot vector with inner knot
multiplicity of k̄ = 1. Note that the cube is embedded such that all boundary knot spans are trimmed off. For
the following investigation, the cube’s edge length is parameterized by L = L0 − L̂ . Fig. 27 shows the obtained
maximum angular eigenfrequency ωmax over the reduced length L̂ . The results highlight the beneficial effect of
the higher continuities on the critical time step ∆tcri t . While the results associated with the linear basis functions
(C0 continuous) are heavily affected by the different trimming scenarios, the curves for p > 1 are practically
independent of them.

In conclusion, feasible critical time steps in an explicit dynamic setting can be realized if two crucial conditions
are met:

1. The continuity across adjacent knot spans satisfies Cr>0.
2. If open knot vectors are used, the effect of the boundary knot spans must be eliminated.

he first condition is inherently fulfilled if C p−1 continuity in conjunction with quadratic or higher-order basis
unctions is employed. For the second requirement, the B-Spline domain is chosen large enough such that all
oundary knot spans are outside the physical domain and hence trimmed off during the embedding process.
lternatively, non-open knot vectors can be employed, eliminating the adverse boundary effect due to equal and
eriodic basis functions over the entire patch. If these guidelines are followed, Figs. 25 and 27 indicate that the
ritical time step for p = 3 and p = 4 is practically independent of ξ̂ , and for p = 2 only slightly affected by

the trimming operations. Moreover, in all cases, the B-Spline bases allow higher critical time steps than the FE
reference model with the same number of elements. These results match the observation in [75], where a similar
study in the scope of shell element-based IGA is performed. In [94], critical time step estimations for explicit IGA
are studied and discussed.

We conclude that trimming in an explicit dynamic setting is only feasible with higher-order basis functions

and higher continuity as naturally provided in IGA. This is a limitation for most embedded boundary methods,
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Fig. 27. Maximum angular eigenfrequency ωmax of a rotated cube over the reduced length L̂ with L = L0 − L̂ (see Fig. 26) for different
polynomial degrees. A trivariate B-Spline discretization with uniform open knot vectors and C p−1 continuity (inner knot multiplicity k̄ = 1)
is employed. The dashed horizontal line indicates a reference value obtained from a standard FE model with a structured hexahedral mesh
and a constant element edge length of 10 mm.

which may fulfill the former requirement, but usually do not provide the necessary continuity due to the use of C0

discretization fields.

6.4. Dynamic analysis of an elastic rod

In Section 6.3.1, generalized Gaussian quadrature rules are assessed based on the eigenfrequencies of a unit
cube. The simple shape of the cube allows the construction of optimal and reduced quadrature rules from one single
tensor product domain. In the following, the domain decomposition algorithm presented in Section 3.1.2 is applied
to construct efficient integration rules for non-tensor product domains. The performance of different quadrature
schemes associated with the target spaces L

2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 are compared using the eigenfrequencies of an

elastic rod with different cross-sections. Moreover, a transient analysis of the given structure is performed.

6.4.1. Eigenfrequencies of an elastic rod with varying cross-sections
Fig. 28 shows three different cross-sections that are each extruded to form a rod of length L = 10 m. The colors

indicate the tensor product domains found by the decomposition algorithm presented in Section 3.1.2. Note that the
cross-sections are chosen to avoid any trimmed knot spans. The elastic material is defined by E = 100 N/m2, ν =

0.0, and ρ = 1 kg/m3. In all performed simulations, one end of the rod is fixed, while the rest of the structure is
free to move in longitudinal direction. The exact natural frequencies of such fixed-free rod are given as

ωe
i =

(2i − 1)π
2L

√
E
ρ

, (49)

here i is a positive integer [95]. In the first study, the eigenvalue problem (Eq. (47)) is solved for the Square
ross-section (see Fig. 28) using the consistent mass matrix M. Figs. 29 (a)–(c) show the convergence of the
rst eigenfrequency over the knot span length hx in longitudinal direction for p = 2, p = 3, and p = 4. The

knot spans in cross-section remain unchanged. If exact integration schemes are applied, the rates of convergence
are O(h2p), which are optimal according to [40]. Moreover, we observe that the quadrature rules associated with
L

2p−1
r−1 and L

2p−2
r−1 do not lower the accuracy, suggesting that the error due to reduced integration is bounded by the

discretization error.
Eq. (49) shows that the natural frequencies of an elastic rod are neither affected by the shape nor the size of its
cross-section. Therefore, the eigenfrequencies obtained from structures with varying cross-sections can directly be
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Fig. 28. Cross-sections of an elastic rod. Colors indicate different tensor product domains. Dimensions are given in [m]. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 29. Free-fixed elastic rod with Square cross-section: (a)–(c) Relative error in eigenfrequency with consistent mass matrix and (d)
comparison to other cross-sections.

compared. Fig. 29(d) plots the relative discrepancy between the Cross and Square cross-sections, and the L-Shape
and Square cross-sections, respectively. Regardless of the polynomial degree, the applied integration scheme, or the
number of knot spans nx in x-direction, the decomposition of the Cross and L-Shape domains into tensor product
ks
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Fig. 30. Free-fixed elastic rod with Square cross-section. (a) Relative error in eigenfrequency with lumped mass matrix and (b) comparison
to other cross-sections.

domains does not affect the accuracy of the quadrature rules. Note that all values in Fig. 29(d) are less than 10−12,
illustrating that the graphs depicted in Figs. 29 (a)–(c) would be the same for all cross-sections examined.

Fig. 30 shows the results obtained when the consistent mass matrix is approximated by a lumped mass matrix M L
using the row summing method. As already observed in Section 6.3, applying a second order-reduced integration
scheme based on L

2p−2
r−1 does not preserve rank sufficiency and positive definiteness of the lumped mass matrix in all

cases. Therefore, the corresponding results are not shown. However, quadrature rules derived from L
2p
r−1 and L

2p−1
r−1

re robust and provide the same accuracy in the first eigenfrequency as full Gaussian quadrature. This is observed
or all cross-sections depicted in Fig. 28. Since the lumped mass matrix restricts the accuracy to second-order
ndependent of the polynomial degree, Fig. 30 provides the results only for p = 2. An effective remedy to improve
he accuracy of the lumped mass matrix for transient analyses is applied in the next section.

.4.2. Forced vibration of a trimmed elastic rod
In this section, a transient analysis of a trimmed rod with circular cross-section is performed. We model the

tructure similar to the configuration of the beam depicted in Fig. 13, where a = 4 m, b = 4 m, R = 1 m, and
L = 10 m. Due to the cylindrical shape, the computational domain contains full and trimmed knot spans. The
umber of knot spans discretizing the cross-section is fixed to 5 × 5, while the number of knot spans along x is

parameterized with nx
ks. Note that in contrast to Fig. 13, the loading is not applied in transverse but in longitudinal

direction. A surface load of px = p0 sin(Ω t) with Ω = 4 rad/s and p0 = 1 N/m2 acts at the right end at x = 10
. Homogeneous Dirichlet conditions are enforced at x = 0 m using a penalty factor of β = 5 × 104 N/m3.
ach trimmed knot span domain is parameterized by approximately 1000 boundary triangles to evaluate Eq. (36).
ig. 31 shows the axial tip displacement obtained with different time integration schemes over time t . The implicit
ewmark scheme with βN = 0.25 and γN = 0.5 and the explicit central difference scheme are compared to a

eference response retrieved by the superposition of the first 10 modes from the analytical solution [95]. Fig. 31
a) (nx

ks = 10) reveals that an implicit time integration in conjunction with the consistent mass matrix M achieves
ccurate results that match the reference solution. The maximum relative error over time is 1.2%. However, the
esponse obtained with an explicit scheme shows a clear discrepancy. This gap stems from the lower accuracy of the
mployed lumped mass matrix, which has been already observed and discussed in Section 6.4.1. Another simulation
ith implicit time integration and lumped mass matrix M L supports this claim, since it produces identical results

s the explicit scheme. If h-refinement is performed, all simulation results converge to the analytical solution (see
ig. 31(b)), where the number of knot spans in longitudinal direction is increased to nx

ks = 50. In both examples,
he implicit time step is fixed to ∆t = 0.02 s. For the explicit analysis, a maximum angular eigenfrequency of

max = 297.93 rad/s, and ωmax = 615.05 rad/s prescribes a critical time step of ∆tcri t = 6.71 × 10−3 s for
x
ks = 10, and ∆tcri t = 3.25 × 10−3 s for nx

ks = 50. To provide a small buffer the explicit time steps are defined as
t = 6.5 × 10−3 s and ∆t = 3 × 10−3 s, respectively.
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Fig. 31. Forced vibrating free-fixed elastic trimmed rod with circular cross-section: Implicit and explicit simulation with quadratic basis
unction.

Fig. 32. Forced vibrating free-fixed elastic trimmed rod with circular cross-section: Predictor multi-corrector scheme with (a) quadratic and
(b) cubic basis functions.

In a second example, a modified integration scheme addresses the lower accuracy of the lumped mass matrix for
igher-order basis functions [40]. The authors in [39,41,96] propose an explicit predictor multi-corrector algorithm
hat still relies on a decoupling of the system of equations through a diagonal mass matrix but additionally introduces
he consistent mass matrix for the computation of the residual vector. According to [41], the explicit algorithm can
ehave like a classical Newmark method with the consistent mass matrix if a sufficiently large number of corrector
asses rc are conducted. However, already for moderate values of rc, significant improvements are observed. To
emonstrate this, the predictor multi-corrector scheme is applied to the vibrating elastic rod with nx

ks = 10 studied
bove. Our implementation of the explicit scheme follows the algorithmic structure in [41]. Fig. 32 shows the effect
f rc = 1, rc = 2, and rc = 3 corrector passes for quadratic and cubic basis functions. If rc = 1, the algorithm breaks

down to a forward difference scheme and consequently provides no distinct advantage over the central difference
scheme. However, for rc ≥ 2 a significant improvement is observed in Fig. 32. Note that the algorithm’s stability
is not adversely affected compared to, e.g., a forward difference scheme (rc = 1) since the lumped mass matrix is
still inverted and the consistent mass matrix is solely used to enrich the computation of the residual vector [39]. In
fact, the eigenvalue problem using the consistent mass matrix for p = 2 and p = 3 yields the following maximum
36
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Fig. 33. Model configuration of steering knuckle with Neumann (red) and Dirichlet (blue) boundary conditions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

eigenfrequencies: ωmax = 1384.07 rad/s and ωmax = 1520.83 rad/s, which would result in ∆tcri t = 1.445 × 10−3

s and ∆tcri t = 1.315 × 10−3 s. However, the actual critical time steps are governed by the eigenvalue problem
employing the lumped mass matrix. For p = 2 and p = 3, the corresponding values are ωmax = 297.93 rad/s and
ωmax = 280.11 rad/s, and ∆tcri t = 6.71 × 10−3 s and ∆tcri t = 7.14 × 10−3 s. Thus, the finally used time steps are
again ∆t = 6.5 × 10−3 s for p = 2, and ∆t = 7 × 10−3 s for p = 3.

In conclusion, the predictor multi-corrector scheme is shown to drastically improve the spatial accuracy for
igher-order bases while preserving the computational architecture of explicit algorithms. The associated additional
ost is directly proportional to the conducted corrector passes rc. In agreement with [41], the obtained results
ndicate that 2–3 corrector passes are sufficient for most practical applications. Generally, such a moderate number
f corrector passes pays off since the classical central difference scheme requires much finer meshes to attain the
ame accuracy.

. Industrial example

The effectiveness of the proposed methodology in analyzing real-world applications will be demonstrated in the
ollowing. To this end, we investigate a steering knuckle1 with complex geometry and detailed features. The model
onfiguration with Neumann and Dirichlet boundary conditions is depicted in Fig. 33. The surface loads of p1 = 2
/mm2, p2 = 1 N/mm2, and p3 = 0.3 N/mm2 act in inward-pointing normal direction on the Neumann boundaries
N ,1, ΓN ,2, and ΓN ,3. Homogeneous Dirichlet conditions are enforced on ΓD,1 with a penalty factor of β = 1010

N/mm3. Approximately 1000 boundary triangles parameterize each trimmed knot span domain in order to evaluate
the constant terms of the moment fitting equation (see Eq. (36)). The point distribution factor is initialized with
γ = 2. For all simulations performed, E = 2.1 × 105 N/mm2 and ν = 0.3 define the linear elastic material. To
assess the performance of the proposed method, the relative error in total strain energy is computed according to

ēr =

√
|U h − U re f |

U re f
, (50)

here U re f is the total strain energy of a FE reference model with 3 million linear tetrahedral elements and U h is the
otal strain energy associated with the trimmed B-Spline domain. Fig. 34(a) plots the relative error ēr for different
uadratic B-Spline discretizations produced by h-refinement. Furthermore, the exact and reduced quadrature rules
elated to the target spaces L

2p
r−1, L2p−1

r−1 , and L
2p−2
r−1 (see Section 3.1.1) are applied to all full knot spans, and their

1 CAD model of steering knuckle is taken from: https://grabcad.com/library/steering-knuckle-rh-1. Designer: Rushikesh Kulkarni.
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Fig. 34. Steering Knuckle: Relative error in internal energy ēr (a) over knot span edge length h and (b) number of integration points.
Comparison between exact and reduced quadrature rules for full knot spans. Quadratic basis functions are employed.

performances are compared. The decomposition algorithm presented in Section 3.1.2 is employed to construct the
necessary tensor product domains. Note that all computational models are created automatically and without manual
interventions, such as defeaturing the CAD geometry etc. Fig. 34(a) reveals that second-order accuracy is achieved
regardless of the quadrature rule used. For the coarsest mesh with h = 30 mm, the results are identical since all
active knot spans are trimmed. However, as the mesh is refined, the ratio between full and trimmed knot spans
increases steadily. The finest discretization (h = 3 mm) depicted in Fig. 35 contains 7847 full and 10 243 trimmed
knot spans. In this example, exact integration (L4

0) reduces the average number of integration points per full knot
span from nq = 27 to nq = 13.1. Using first- and second-order reduced quadrature rules associated with the target
spaces L3

0 and L2
0 further reduces these numbers to nq = 5.3 and nq = 2.5, respectively. Since the moment fitting

quation is assembled with only m = (p + 1)3 moment fitting bases (see Section 3.2.1), the point elimination
lgorithm presented in Section 3.2.3 converges to approximately nq = 27 integration points per trimmed knot span.
or some trimmed domains, the predefined moment fitting residual of δ = 10−10 is even achieved with nq < 27.
hus, the average number of quadrature points per trimmed knot span aggregates to nq = 26.9. In conjunction with
second-order reduced integration scheme for all full knot spans, the global number of quadrature points per knot

pan decreases from nq = 27 to nq = 16.3 while attaining the same degree of accuracy. Note that the saving in
uadrature points will be even more pronounced when the mesh is finer or, in general, for geometries where the
olume to surface ratio is larger.

In Fig. 34(b), the accuracy in internal energy with respect to the number of quadrature points is compared to
classical FE model. The associated tetrahedral meshes are also automatically generated without defeaturing the

etailed CAD geometry for a fair comparison. Due to the quadratic basis functions used for the trimmed B-Spline
olid, the internal energy corresponding to the FE model is expected to converge slower regarding the number of
lements. In fact, to achieve similar accuracy as the finest B-Spline mesh with 18 090 knot spans, the FE model
equires approximately 2 million elements. However, since higher-order elements, and especially trimmed higher-
rder elements, usually require more complex quadrature rules, predicting the accuracy with respect to the number
f integration points is less obvious. Note that the number of integration points in the FE model is equivalent to
he number of elements, since a single Gauss point exactly evaluates linear tetrahedral elements. Fig. 34(b) shows
hat the FE model requires significantly more quadrature points than the proposed approach to achieve the same
ccuracy in internal energy. Even if knot span-wise Gaussian quadrature is applied to all full knot spans within the
-Spline solid, the difference is remarkable. In comparison to the finest B-Spline discretization (h = 3 mm), the FE
odel requires around 4 times more integration points. This discrepancy can be further increased by using exact

nd reduced generalized Gaussian quadrature rules. When second-order reduced quadrature schemes are employed,
he FE model requires approximately 7 times more integration points. Fig. 36 shows the deformed CAD geometry
nd compares it to the FE reference model with 3 million elements. For the finest discretization studied, the relative
rror of the maximum displacement is <1% with 18 090 active knot spans.
38



M. Meßmer, T. Teschemacher, L.F. Leidinger et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115584

m
i

l
a
t
i
d
o
f
o
i
w
W
t

Fig. 35. Steering Knuckle: Active knot spans and integration points for finest discretization studied with h = 3 mm.

Fig. 36. Steering Knuckle: (a) comparison FE analysis to (b) proposed method. Deformed and undeformed CAD geometry with color
apping in Rhinoceros 3D. Displacements are given in [mm]. (For interpretation of the references to color in this figure legend, the reader

s referred to the web version of this article.)

The results suggest that the proposed approach requires fewer elements and quadrature points than traditional
ow-order finite element methods to achieve the same degree of accuracy. However, the higher polynomial degree
nd continuity of the B-Spline bases entail more computationally intensive operations when assembling and solving
he system of equations. Note that this is not a peculiarity of the present approach but a common side effect of
sogeometric methods. On the one hand, the cost to build the system matrices increases for higher polynomial
egrees. On the other hand, the efficiency of direct and iterative solvers may be affected by the higher continuities
f the basis functions [97,98]. Generally, the computational overhead of both assembly and solution per degree of
reedom increases drastically for higher polynomial degrees. However, since we use only low to moderate values
f p, the associated additional cost is still modest. Moreover, compared to the linear FE model, the same accuracy
s achieved with 12-times fewer degrees of freedom, which counteracts the extra effort mentioned. Based on the
ork presented in [99], a more detailed estimation of the actual cost of the simulation is presented in Appendix C.
e compare the most refined B-Spline discretization to the FE model that achieves similar accuracy. It is shown
hat despite the presence of ill-conditioned system matrices due to trimming, the overall cost for this particular
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example can be estimated to be comparable to the FE simulation. Moreover, an outlook on explicit solvers is
given in Appendix C.3, demonstrating that the proposed approach allows for a drastically larger critical time step.
Compared to linear FEM, ∆tcri t is shown to increase by a factor of 45.

8. Conclusion and outlook

This publication presents a complete workflow for direct analysis of solid B-Rep models from the initial design
in CAD to the visualization of simulation results in CAD. A key feature is that the geometric boundary is defined
as the trimming surface of a uniform trivariate B-Spline cuboid. The newly developed method features highly
efficient quadrature rules that drastically reduce the number of integration points compared to classical embedded
boundary methods. As a result, our approach is characterized by fast matrix formations for static and implicit
dynamic simulations. Moreover, the proposed method achieves practically feasible critical explicit time steps despite
arbitrarily small trimmed knot spans/elements, which traditional embedded techniques on C0 continuous domains
cannot guarantee. Finally, the developed quadrature rules can be applied in explicit dynamic simulations, where
function evaluations at each integration point are the predominant cost. The key building blocks tailored to achieve
these objectives are summarized below.

• Efficient and robust integration of

– trimmed knot spans:
For each trimmed knot span domain, we solved the linearized moment fitting equation for the weights of
the integration points and optimized their locations during the execution of a point elimination algorithm.
A new solution strategy was developed to set an upper bound on the final number of quadrature points.
The proposed implementation resorts to a non-negative least squares solver, which inherently ensures
positive defined weights and also drastically reduces the number of required elimination loops. Regardless
of the polynomial degree, the algorithm converged to nq = (p+1)3 quadrature points per trimmed domain
after the first iteration. Depending on the prescribed maximum residual of the least squares problem,
further iterations may be performed, leading to a final set of points with nq < (p + 1)3.

– full knot spans:
To leverage the higher continuity of the B-Spline bases, generalized Gaussian quadrature schemes were
employed, which are superior to knot span-wise Gaussian quadrature. Exact and reduced integration
schemes were constructed from precomputed quadrature rules associated with the B-Spline target spaces
L

2p
r−1, and L

2p−1
r−1 . We developed a novel decomposition algorithm to enable their application to non-tensor

product domains. In all simulations performed, the reduced integration associated with the target space
L

2p−1
r−1 maintained the accuracy of full Gaussian quadrature while achieving another significant efficiency

gain compared to the exact rules corresponding to L
2p
r−1.

Moreover, we continued the discussion started in [49] and studied second-order reduced quadrature
schemes derived from L

2p−2
r−1 . The corresponding error arising from reduced integration was bounded by

the discretization error for linear static examples, as predicted in [49]. Moreover, optimal convergence
rates were attained for the relative error in the first natural frequency of an elastic rod but were not
maintained for an elastic cube. In addition, rank insufficient mass matrices were observed in some cases.
When applying mass lumping in conjunction with second-order reduced quadrature schemes, negative
defined or singular matrices lead to infeasible results in most examples. In contrast, quadrature rules
associated with L

2p−1
r−1 were stable even when mass lumping was applied and provided the same accuracy

as exact integration.

To demonstrate the potential of the proposed method, quadratic B-Splines were applied to a detailed and
complex industrial example, where nq = 27 quadrature points per trimmed knot span and nq = 2.5 per full
knot span were sufficient to achieve optimal convergence in the energy norm.

• Practically feasible critical explicit time step:
We showed that the critical explicit time step becomes independent of the trimming operations when non-open
knot vectors in conjunction with C1 continuous (or higher) basis functions are employed. If open knot vectors
are used, trimming must be applied exclusively at intermediate knot spans in order to allow efficient explicit

dynamic simulations.
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• Increased spatial accuracy of the lumped mass matrix for higher-order bases:
Even if an exact integration scheme is applied, it is known that mass lumping (e.g., by row summation) limits
the accuracy of the calculated natural frequencies to second-order, regardless of the polynomial degree. A
predictor multi-corrector scheme was successfully adopted to trimmed B-Spline solids and has proven to be
an effective remedy to improve the accuracy of explicit transient analyses significantly.

Future work will focus on local mesh refinement and the representation of discontinuities within smooth patches.
he developed integration schemes combined with the presented practical approach to bound the critical time step

o feasible values open the door for efficient explicit dynamic simulations. However, stabilization schemes for
ight-control points may need to be considered for large-scale applications, which will require further investigation.
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ppendix A. Minimal boundary representation: STL

This section shall give a brief overview of the STL file format and its beneficial properties exploited in this work.
he STL is a prominent data format for exchanging geometric information between CAD and analysis. An STL
odel is a minimal boundary representation, as it is limited to the essential information. Since several innovative

rocesses such as rapid prototyping and 3D printing rely on STL models, their construction from classical NURBS-
ased B-Rep models is a standard feature of modern CAD programs. At the core of this process is a tessellation
lgorithm generating the boundary triangles. Besides the triangle’s vertices, the STL also stores a normal vector,
ointing in outward direction of the geometry.

The accuracy of the final geometry represented by the STL can be determined by a number of different
arameters, such as the maximum aspect ratio and the maximum/minimum edge length of the triangles. However,
nlike the classical FEM, the proposed method does not impose high requirements on the mesh quality. Since it is
ot used to discretize the field variables but solely serves as the delimitation of the integration domains, the aspect
atio does not affect the overall solution. Furthermore, a general upper bound for the edge length of the triangles does
ot necessarily need to be enforced either. In fact, the only goal regarding the quality of the boundary tessellation
s to represent the original B-Rep model accurately. This objective can be achieved with a single parameter: the
hordal tolerance or chordal deviation, which controls the maximum distance between the surface mesh and the
xact geometric boundary. If the chordal tolerance is the only constraint on the tessellation algorithm, relatively flat
r straight regions will be discretized with large triangles, and small elements will emerge at curved surfaces, sharp
orners and edges. Thus, very efficient boundary representations with high accuracy are achieved. For example,
simple cube can be exactly represented with only twelve elements. At the same time, the cylinder depicted in

ig. 1 requires a higher density of elements at the curved boundaries. In any case, the entire process can be fully
utomated. Fig. A.37 plots the relative error in the volume over the number of respective boundary triangles for the
ylinder just mentioned. The corresponding error is defined according to

ev =
|V ST L

− V e
|

V e
, (A.1)

where V ST L is the volume computed based on the STL representation and V e is the exact volume of the cylinder. In
this example, a quadratic convergence rate is achieved, considering the relative error e and the number of triangles
v
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Fig. A.37. Relative error in volume over the number of triangles in the STL model.

ithin the STL mesh. This is not meant as a representative study with general applicability but rather to give an
pproximate idea of the feasible accuracy. Since a boundary mesh is sufficient, fewer elements can achieve higher
ccuracy compared to standard FEM, which inevitably requires a volumetric mesh. Moreover, an extremely fine
oundary description may slow down required preprocessing operations but does not influence the actual simulation
ime due to the decoupling of the geometric description and the discretization of the field variables.

ppendix B. Second-order reduced quadrature rules for C p−1 continuous splines

Table B.3
Quadrature points corresponding to the target space L2

0.

nks Position Weight nks Position Weight

1 0.211324865405187 0.500000000000000 2 0.166666666666666 0.375000000000000
0.788675134594812 0.500000000000000 0.500000000000000 0.250000000000000
– – 0.833333333333333 0.375000000000000

3 0.111111111111111 0.250000000000000 4 0.083333333333333 0.187500000000000
0.375774001250011 0.250000000000000 0.305555555555555 0.241071428571428
0.624225998749988 0.250000000000000 0.500000000000000 0.142857142857142
0.888888888888888 0.250000000000000 0.694444444444444 0.241071428571428
– – 0.916666666666666 0.187500000000000

5 0.066666666666666 0.150000000000000 6 0.055555555555555 0.125000000000000
0.244444444444444 0.192857142857142 0.203703703703703 0.160714285714285
0.424121308936067 0.157142857142857 0.368686868686868 0.166208791208791
0.575878691063932 0.157142857142857 0.500000000000000 0.096153846153845
0.755555555555555 0.192857142857142 0.631313131313131 0.166208791208791
0.933333333333333 0.150000000000000 0.796296296296296 0.160714285714285
– – 0.944444444444444 0.125000000000000

(continued on next page)
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Table B.3 (continued).

nks Position Weight nks Position Weight

7 0.047619047619047 0.107142857142857 8 0.041666666666666 0.093750000000000
0.174603174603174 0.137755102040816 0.152777777777777 0.120535714285713
0.316017316017316 0.142464678178963 0.276515151515151 0.124656593406593
0.445731404374050 0.112637362637362 0.401422764227642 0.124975218080888
0.554268595625950 0.112637362637362 0.500000000000000 0.072164948453608
0.683982683982683 0.142464678178963 0.598577235772357 0.124975218080888
0.825396825396825 0.137755102040816 0.723484848484848 0.124656593406593
0.952380952380952 0.107142857142857 0.847222222222222 0.120535714285713
– – 0.958333333333333 0.093750000000000

9 0.037037037037037 0.083333333333333 10 0.033333333333333 0.075000000000000
0.135802469135802 0.107142857142857 0.122222222222222 0.096428571428571
0.245791245791245 0.110805860805860 0.221212121212121 0.099725274725274
0.356820234869015 0.111089082738567 0.321138211382113 0.099980174464710
0.457787206903364 0.087628865979381 0.421132897603485 0.099998576066526
0.542212793096636 0.087628865979381 0.500000000000000 0.057734806629834
0.643179765130984 0.111089082738567 0.578867102396514 0.099998576066526
0.754208754208754 0.110805860805860 0.678861788617886 0.099980174464710
0.864197530864197 0.107142857142857 0.778787878787878 0.099725274725274
0.962962962962963 0.083333333333333 0.877777777777777 0.096428571428571
– – 0.966666666666666 0.075000000000000

In the following, the second-order reduced quadrature rules for uniform C p−1 continuous splines are provided.
ables B.3, B.4, B.5 list the respective integration points for the numerical integration of quadratic, cubic, and
uartic basis functions. The positions and weights are computed with a relative error of <10−15.

Table B.4
Quadrature points corresponding to the target space L4

1.

nks Position Weight nks Position Weight

1 0.112701665379257 0.277777777777777 2 0.084001595740497 0.204166185672590
0.500000000000000 0.444444444444445 0.353667436436311 0.295833814327409
0.887298334620742 0.277777777777777 0.646332563563688 0.295833814327409
– – 0.915998404259502 0.204166185672590

3 0.055307959538964 0.134383670129083 4 0.042302270496914 0.102836135188702
0.232008127012760 0.190719210529352 0.178540270746367 0.151209936088574
0.410698113579587 0.174897119341563 0.335067537628327 0.165363166232140
0.589301886420412 0.174897119341563 0.500000000000000 0.161181524981165
0.767991872987239 0.190719210529352 0.664932462371672 0.165363166232140
0.944692040461035 0.134383670129083 0.821459729253632 0.151209936088574
– – 0.957697729503086 0.102836135188702

5 0.033825647049692 0.082228488484279 6 0.028201513664609 0.068557423459134
0.142739413107186 0.120781740225645 0.119026847164245 0.100806624059049
0.267383546533899 0.131305988133937 0.223378358418885 0.110242110821427
0.393434348254817 0.112350449822804 0.333469112711755 0.107894565719166
0.500000000000000 0.106666666666667 0.444444801812292 0.112499275941222
0.606565651745182 0.112350449822804 0.555555198187707 0.112499275941222
0.732616453466100 0.131305988133937 0.666530887288244 0.107894565719166
0.857260586892813 0.120781740225645 0.776621641581114 0.110242110821427
0.966174352950307 0.082228488484279 0.880973152835755 0.100806624059049
– – 0.971798486335390 0.068557423459134

7 0.024172701827349 0.058763445397266 8 0.021151135248457 0.051418067594351
0.102022872988446 0.086405398333432 0.089270135373183 0.075604968044287

(continued on next page)
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Table B.4 (continued).

nks Position Weight nks Position Weight

0.191466170226540 0.094491808034350 0.167533768814163 0.082681583116070
0.285521376837719 0.091484077091862 0.250101839718338 0.080920941088586
0.378383847551573 0.091689963236568 0.333333646037763 0.084374547320314
0.461048573830697 0.077165307906519 0.416666711318236 0.084374909580740
0.538951426169302 0.077165307906519 0.500000000000000 0.081249966511299
0.621616152448426 0.091689963236568 0.583333288681763 0.084374909580740
0.714478623162281 0.091484077091862 0.666666353962236 0.084374547320314
0.808533829773459 0.094491808034350 0.749898160281661 0.080920941088586
0.897977127011553 0.086405398333432 0.832466231185836 0.082681583116070
0.975827298172650 0.058763445397266 0.910729864626816 0.075604968044287
– – 0.978848864751543 0.051418067594351

9 0.018801009109739 0.045704948972756 10 0.016920908198765 0.041134454075480
0.079351231442830 0.067204416039366 0.071416108298547 0.060483974435429
0.148918905612590 0.073494740547618 0.134027015051331 0.066145266492856
0.222306384934177 0.071909111681224 0.200081471774670 0.064736752870869
0.296241798312773 0.074889092297216 0.266666916830210 0.067499637856251
0.369983340610217 0.074427408306718 0.333333369054589 0.067499927664592
0.440686894185870 0.062740652525469 0.400000004121687 0.064999986604520
0.500000000000000 0.059259259259259 0.466666666666667 0.067499999999999
0.559313105814129 0.062740652525469 0.533333333333332 0.067499999999999
0.630016659389782 0.074427408306718 0.599999995878313 0.064999986604520
0.703758201687226 0.074889092297216 0.666666630945410 0.067499927664592
0.777693615065822 0.071909111681224 0.733333083169789 0.067499637856251
0.851081094387409 0.073494740547618 0.799918528225329 0.064736752870869
0.920648768557169 0.067204416039366 0.865972984948668 0.066145266492856
0.981198990890260 0.045704948972756 0.928583891701453 0.060483974435429
– – 0.983079091801234 0.041134454075480

Table B.5
Quadrature points corresponding to the target space L6

2.

nk Position Weight nk Position Weight

1 0.069431844202971 0.173927422568723 2 0.046212737218260 0.115024181444676
0.330009478207568 0.326072577431276 0.213797850600020 0.203072613437833
0.669990521792431 0.326072577431276 0.413962200649005 0.181903205117489
0.930568155797028 0.173927422568723 0.586037799350994 0.181903205117489
– – 0.786202149399979 0.203072613437833
– – 0.953787262781739 0.115024181444676

3 0.032509212332345 0.080935503234345 4 0.024674350061534 0.061435702093655
0.150617986025161 0.143497669038852 0.114388066516855 0.109125580973741
0.294914900084714 0.137136269815659 0.225696248333799 0.109440065519939
0.429193875888645 0.138430557911142 0.338034400421371 0.117618543966108
0.570806124111354 0.138430557911142 0.451622850188173 0.102380107446554
0.705085099915285 0.137136269815659 0.548377149811826 0.102380107446554
0.849382013974838 0.143497669038852 0.661965599578628 0.117618543966108
0.967490787667655 0.080935503234345 0.774303751666200 0.109440065519939
– – 0.885611933483144 0.109125580973741
– – 0.975325649938465 0.061435702093655

5 0.019796220904766 0.049291039978813 6 0.016508606164153 0.041105385951518
0.091787579286592 0.087594474874909 0.076547082893084 0.073056382382853
0.181541216020813 0.089204170945074 0.151495324087457 0.074702389409214
0.274797052289731 0.098993104267740 0.229972811622965 0.083636771294890
0.371943037927439 0.090194507546743 0.313018298389042 0.079318952819677
0.456885245389880 0.084722702386718 0.391207050914918 0.079501094709966

(continued on next page)
44



M. Meßmer, T. Teschemacher, L.F. Leidinger et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115584

F
b
c

Table B.5 (continued).

nk Position Weight nk Position Weight

0.543114754610120 0.084722702386718 0.467553762645136 0.068679023431878
0.628056962072560 0.090194507546743 0.532446237354863 0.068679023431878
0.725202947710268 0.098993104267740 0.608792949085081 0.079501094709966
0.818458783979186 0.089204170945074 0.686981701610957 0.079318952819677
0.908212420713407 0.087594474874909 0.770027188377034 0.083636771294890
0.980203779095233 0.049291039978813 0.848504675912542 0.074702389409214
– – 0.923452917106915 0.073056382382853
– – 0.983491393835846 0.041105385951518

7 0.014152764059326 0.035239541651249 8 0.012384225491674 0.030835997499107
0.065624147934996 0.062632886080504 0.057423850693207 0.054806665556838
0.129898953088507 0.064110618987887 0.113671692274629 0.056114474224266
0.197332988106867 0.071940415673692 0.172713533232678 0.063003575169824
0.269035732180605 0.069122133946639 0.235572849776790 0.060747103491937
0.338420711069781 0.071627956854866 0.296849601057879 0.063533327687617
0.408333520242371 0.064746706239499 0.359592609050278 0.059762992256298
0.469180175658879 0.060579740565660 0.418373312590155 0.059670136789748
0.530819824341120 0.060579740565660 0.475657800642327 0.051525727324360
0.591666479757629 0.064746706239499 0.524342199357672 0.051525727324360
0.661579288930218 0.071627956854866 0.581626687409844 0.059670136789748
0.730964267819394 0.069122133946639 0.640407390949721 0.059762992256298
0.802667011893132 0.071940415673692 0.703150398942120 0.063533327687617
0.870101046911492 0.064110618987887 0.764427150223209 0.060747103491937
0.934375852065003 0.062632886080504 0.827286466767321 0.063003575169824
0.985847235940673 0.035239541651249 0.886328307725370 0.056114474224266
– – 0.942576149306792 0.054806665556838
– – 0.987615774508326 0.030835997499107

9 0.011008325205230 0.027410088865353 10 0.009907520963014 0.024669150989656
0.051044032467356 0.048717683543367 0.045939767391172 0.043846061941698
0.101043770058877 0.049883498131122 0.090939906667056 0.044896047319972
0.153533718064065 0.056015674884574 0.138182744190679 0.050416940709795
0.209435701838085 0.054057750384956 0.188500673590387 0.048665699900945
0.264032718441349 0.056670800869697 0.237667301043392 0.051048534167829
0.320210113857124 0.054003404171116 0.288322679569029 0.048814929863247
0.374297895841799 0.055749470152259 0.337453272587259 0.050861702245569
0.428695931786807 0.050371508064125 0.387667015672957 0.047821735608030
0.476028082276644 0.047120120933427 0.434697333269080 0.047737938026192
0.523971917723355 0.047120120933427 0.480525931013719 0.041221259227061
0.571304068213192 0.050371508064125 0.519474068986280 0.041221259227061
0.625702104158200 0.055749470152259 0.565302666730919 0.047737938026192
0.679789886142875 0.054003404171116 0.612332984327042 0.047821735608030
0.735967281558651 0.056670800869697 0.662546727412740 0.050861702245569
0.790564298161914 0.054057750384956 0.711677320430971 0.048814929863247
0.846466281935934 0.056015674884574 0.762332698956608 0.051048534167829
0.898956229941122 0.049883498131122 0.811499326409612 0.048665699900945
0.948955967532643 0.048717683543367 0.861817255809320 0.050416940709795
0.988991674794769 0.027410088865353 0.909060093332943 0.044896047319972
– – 0.954060232608827 0.043846061941698
– – 0.990092479036985 0.024669150989656

Appendix C. Comparison of estimated costs between trimmed trivariate IGA and traditional FEM

This section provides an estimation of the total computational cost associated with the trimmed B-Spline and
E models presented in Section 7. Note that the corresponding figures are not intended for a rigorous comparison
ut to give an insight into the simulation times, independent of the solver implementation. We are interested in the
omputational effort to obtain results of the same quality. To this end, the finest B-Spline discretization (h = 3 mm)

is compared with the corresponding linear FE model that achieves a similar relative error in total strain energy ē .
r
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Table C.6
Representative numbers of the trimmed B-Spline model and the linear FE model.

ēr p ndofs n̂dofs nq nnz

IGA
(
C p−1) 6.9 × 10−2 2 9.2 × 104 81 3.1 × 105 (L3

0) 2.6 × 107

FEM
(
C0) 7.7 × 10−2 1 1.1 × 106 12 1.9 × 106 4.5 × 107

Table C.6 lists the error in strain energy ēr , the polynomial degree p, the total number of degrees of freedom ndofs,
he degrees of freedom per element/ knot span n̂dofs, the number of quadrature points nq, and the number of non-zero
ntries of the sparse system matrices nnz for both models. In the following, we estimate the cost required to build
nd solve the system matrices for linear elasticity problems and give an outlook for explicit dynamic simulations.

.1. Matrix formation

The predominant cost of constructing the system matrices results from the matrix multiplications of BTCBdet
J)w, where B denotes the B-operator and C is the constitutive tensor of linear elasticity. In three dimensions, B
nd C are of size [6 × n̂dofs] and [6 × 6], respectively. If the above product is performed from right to left

11 n̂2
dofs + 72 n̂dofs (C.1)

floating point operations (flops) are required [99]. Since BTCBdet( J)w is evaluated at each quadrature point,
he total cost adds up to 2.4×1010 flops (IGA) and 4.7×109 flops (FEM). Note that the difference is less than one
rder of magnitude. Nevertheless, the additional cost to perform the required matrix formation must be considered,
specially for large values of p, since n̂dofs = 3(p + 1)3 yields a complexity of O(p6).

.2. Solution of linear systems of equations

It is known that continuous basis functions such as B-Splines and NURBS can affect the efficiency of linear
olvers [97,98]. The authors in [97] compare the cost of direct solvers for systems of equations associated with

0 and C p−1 B-Spline spaces. The corresponding complexity for the entire solution process is estimated to be
O(ndofs p6

+ n2
dofs) for C0 basis functions and O(n2

dofs p3) for C p−1 continuous bases. Consequently, for large ndofs,
he solution of C p−1 is p3 times more expensive compared to C0. Therefore, given the same number of degrees
f freedom, a C p−1 B-Spline space can slow down the solution process. However, Table C.6 shows that the FEM
odel requires 12-times more degrees of freedom to achieve the same level of accuracy, which relativizes the above

tatement for the discussed example.
A similar study on the performance of iterative solvers in the context of IGA is presented in [98]. The most

xpensive operation associated with iterative solvers is the necessary matrix–vector product in each iteration. Its
omputational cost is proportional to the number of non-zero entries nnz in the sparse system matrices [98]. Note
hat the FE model contains almost 2-times more non-zero entries than the trimmed IGA model. This indicates that
he proposed approach can achieve simulation times similar to those obtained with conventional FE tools, even
hen the additional cost of preconditioners (see Section 4) is taken into account.

.3. Explicit algorithms

Although the discussed example is linear static, a brief outlook for explicit dynamics shall be given. We assume
hat both models produce results of similar accuracy also in a dynamic simulation. If the first-order derivatives are
re-evaluated and stored at each quadrature point, the prevailing cost of the explicit solver can be attributed to the
alculation of BTCBûdet( J)w, where û is the local displacement vector [99]. The required number of flops per
ime iteration is given as

13n̂dofs + 19. (C.2)

Consequently, the evaluation of (C.2) at all quadrature points requires 3.3 × 108 flops (IGA) and 3.3 × 108 flops
FEM). Accordingly, the cost per time step of the FEM model and the B-Spline model is identical. However, due to
46
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the uniform mesh and the C p−1 continuous basis functions, the proposed method is distinguished by a significantly
arger critical time step ∆tcri t . Section 6.3.2 shows that ∆tcri t is practically independent of the trimming operations.

In fact, ∆tcri t is reduced below the values of a uniform hexahedral mesh with the same element length. Therefore,
we assume that the classical time step estimation for hexahedral elements provides a conservative lower bound for
the ∆tcri t of the B-Spline discretization. Thus, we predict the critical time step with ∆tcri t = clc, where lc is the
characteristic length of the smallest element in the mesh and c is a constant. The same equation can be applied
to the tetrahedral mesh. While the characteristic length of the B-Spline mesh is lc = 3 mm, the tetrahedral mesh
contains elements with lc < 0.065 mm, demanding a drastically smaller critical time step. Note that even the largest
tetrahedron has a characteristic length of lc < 2 mm.
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[54] M. Bartoň, R. Ait-Haddou, V.M. Calo, Gaussian quadrature rules for C1 quintic splines with uniform knot vectors, J. Comput. Appl.

Math. 322 (2017) 57–70, http://dx.doi.org/10.1016/j.cam.2017.02.022.

48

http://dx.doi.org/10.1007/S00466-012-0684-Z
http://dx.doi.org/10.1016/j.cma.2012.05.021
http://dx.doi.org/10.1016/j.cma.2014.09.033
http://dx.doi.org/10.1016/j.cma.2014.09.033
http://dx.doi.org/10.1016/j.cma.2014.09.033
http://dx.doi.org/10.1016/j.cma.2008.12.004
http://dx.doi.org/10.1016/j.cma.2014.08.002
http://dx.doi.org/10.1016/j.camwa.2021.07.019
http://dx.doi.org/10.1016/j.camwa.2017.01.027
http://dx.doi.org/10.1016/j.camwa.2017.01.027
http://dx.doi.org/10.1016/j.camwa.2017.01.027
http://dx.doi.org/10.1007/978-1-4471-0495-7_23
http://dx.doi.org/10.1201/9781439864203
http://dx.doi.org/10.2307/2006241
http://dx.doi.org/10.2307/2006241
http://dx.doi.org/10.2307/2006241
http://dx.doi.org/10.1007/978-3-642-97385-7
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb35
http://dx.doi.org/10.1007/978-1-4612-0575-3
http://dx.doi.org/10.2307/2005611
http://dx.doi.org/10.1002/nme.4568
http://dx.doi.org/10.1002/nme.4568
http://dx.doi.org/10.1002/nme.4568
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb39
http://dx.doi.org/10.1016/j.cma.2005.09.027
http://dx.doi.org/10.1016/j.cma.2012.03.026
http://dx.doi.org/10.1007/978-1-4612-1098-6
http://dx.doi.org/10.1007/978-1-4612-1098-6
http://dx.doi.org/10.1007/978-1-4612-1098-6
http://dx.doi.org/10.1016/j.cma.2019.04.017
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb44
http://dx.doi.org/10.1111/j.1467-8659.2009.01609.x
https://doc.cgal.org/5.4/Manual/packages.html
https://doc.cgal.org/5.4/Manual/packages.html
https://doc.cgal.org/5.4/Manual/packages.html
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb47
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb47
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb47
http://dx.doi.org/10.1007/978-3-030-01762-0_6
http://dx.doi.org/10.1016/j.cma.2016.10.049
http://dx.doi.org/10.1016/j.cma.2016.10.049
http://dx.doi.org/10.1016/j.cma.2016.10.049
http://dx.doi.org/10.1016/j.cma.2012.04.014
http://dx.doi.org/10.1016/j.cma.2012.04.014
http://dx.doi.org/10.1016/j.cma.2012.04.014
http://dx.doi.org/10.1016/j.cma.2014.11.001
http://dx.doi.org/10.1016/j.cam.2015.06.008
http://dx.doi.org/10.1016/j.cam.2015.09.036
http://dx.doi.org/10.1016/j.cam.2017.02.022


M. Meßmer, T. Teschemacher, L.F. Leidinger et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115584
[55] Z. Zou, T.J.R. Hughes, M.A. Scott, R.A. Sauer, E.J. Savitha, Galerkin formulations of isogeometric shell analysis: Alleviating
locking with Greville quadratures and higher-order elements, Comput. Methods Appl. Mech. Engrg. 380 (2021) 113757, http:
//dx.doi.org/10.1016/j.cma.2021.113757.

[56] Z. Zou, T.J.R. Hughes, M.A. Scott, D. Miao, R.A. Sauer, Efficient and robust quadratures for isogeometric analysis: Reduced Gauss
and Gauss–Greville rules, Comput. Methods Appl. Mech. Engrg. 392 (2022) 114722, http://dx.doi.org/10.1016/j.cma.2022.114722.

[57] S. Loehnert, D.S. Mueller-Hoeppe, P. Wriggers, 3D corrected XFEM approach and extension to finite deformation theory, Internat. J.
Numer. Methods Engrg. 86 (4–5) (2011) 431–452, http://dx.doi.org/10.1002/nme.3045.

[58] L. Kudela, N. Zander, S. Kollmannsberger, E. Rank, Smart octrees: Accurately integrating discontinuous functions in 3D, Comput.
Methods Appl. Mech. Engrg. 306 (2016) 406–426, http://dx.doi.org/10.1016/j.cma.2016.04.006.

[59] S. Hubrich, P. Di Stolfo, L. Kudela, S. Kollmannsberger, E. Rank, A. Schröder, A. Düster, Numerical integration of discontinuous
functions: moment fitting and smart octree, Comput. Mech. 60 (5) (2017) 863–881, http://dx.doi.org/10.1007/s00466-017-1441-0.

[60] H. Xiao, Z. Gimbutas, A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions, Comput.
Math. Appl. 59 (2) (2010) 663–676, http://dx.doi.org/10.1016/j.camwa.2009.10.027.

[61] M. Joulaian, S. Hubrich, A. Düster, Numerical integration of discontinuities on arbitrary domains based on moment fitting, Comput.
Mech. 57 (2016) 979–999, http://dx.doi.org/10.1007/s00466-016-1273-3.

[62] B. Müller, F. Kummer, M. Oberlack, Highly accurate surface and volume integration on implicit domains by means of moment-fitting,
Internat. J. Numer. Methods Engrg. 96 (8) (2013) 512–528, http://dx.doi.org/10.1002/nme.4569.

[63] Y. Sudhakar, W.A. Wall, Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition
of unity methods, Comput. Methods Appl. Mech. Engrg. 258 (2013) 39–54, http://dx.doi.org/10.1016/j.cma.2013.01.007.

[64] P. Antolin, T. Hirschler, Quadrature-free immersed isogeometric analysis, Eng. Comput. (2022) http://dx.doi.org/10.1007/s00366-022-
01644-3.

[65] S.E. Mousavi, N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and
polyhedrons, Comput. Mech. 47 (5) (2011) 535–554, http://dx.doi.org/10.1007/s00466-010-0562-5.

[66] S. Hubrich, M. Joulaian, A. Düster, Numerical integration in the finite cell method based on moment-fitting, in: Proceedings of 3rd
ECCOMAS Young Investigators Conference; 6th GACM Colloquium on Computational Mechanics, Aachen, Germany, 2015.

[67] C.L. Lawson, R.J. Hanson, Solving Least Squares Problems, Vol. 15, SIAM, 1995, pp. I–XII, 1–337.
[68] F. de Prenter, C.V. Verhoosel, E.H. van Brummelen, Preconditioning immersed isogeometric finite element methods with application

to flow problems, Comput. Methods Appl. Mech. Engrg. 348 (2019) 604–631, http://dx.doi.org/10.1016/j.cma.2019.01.030.
[69] R. Glowinski, T.-W. Pan, J. Periaux, A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech.

Engrg. 111 (3) (1994) 283–303, http://dx.doi.org/10.1016/0045-7825(94)90135-X.
[70] D. Elfverson, M.G. Larson, K. Larsson, CutIGA with basis function removal, Adv. Model. Simul. Eng. Sci. 5 (6) (2018) http:

//dx.doi.org/10.1186/s40323-018-0099-2.
[71] E. Burman, P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer.

Math. 62 (4) (2012) 328–341, http://dx.doi.org/10.1016/j.apnum.2011.01.008.
[72] J.N. Jomo, F. de Prenter, M. Elhaddad, D. D’Angella, C.V. Verhoosel, S. Kollmannsberger, J.S. Kirschke, V. Nübel, E.H. van Brummelen,

E. Rank, Robust and parallel scalable iterative solutions for large-scale finite cell analyses, Finite Elem. Anal. Des. 163 (2019) 14–30,
http://dx.doi.org/10.1016/j.finel.2019.01.009.

[73] J.N. Jomo, O. Oztoprak, F. de Prenter, N. Zander, S. Kollmannsberger, E. Rank, Hierarchical multigrid approaches for the finite cell
method on uniform and multi-level hp-refined grids, Comput. Methods Appl. Mech. Engrg. 386 (2021) 114075, http://dx.doi.org/10.
1016/j.cma.2021.114075.

[74] S.C. Brenner, L.R. Scott, the Mathematical Theory of Finite Element Methods, third ed., Springer, 2008, http://dx.doi.org/10.1007/978-
0-387-75934-0.

[75] L.F. Leidinger, Explicit Isogeometric B-Rep Analysis for Nonlinear Dynamic Crash Simulations (Dissertation), Technische Universität
München, 2020.

[76] T. Teschemacher, A.M. Bauer, T. Oberbichler, M. Breitenberger, R. Rossi, R. Wüchner, K.-U. Bletzinger, Realization of CAD-integrated
shell simulation based on isogeometric B-Rep analysis, Adv. Model. Simul. Eng. Sci. 5 (19) (2018) http://dx.doi.org/10.1186/s40323-
018-0109-4.

[77] R. McNeel, et al., Rhinoceros 3D, Version 7.11, Robert McNeel & Associates, Seattle, WA, 2021.
[78] T. Teschemacher, A.M. Bauer, R. Aristio, M. Meßmer, R. Wüchner, K.-U. Bletzinger, Cocodrilo. https://github.com/CocodriloCAD/

Cocodrilo.
[79] T. Teschemacher, A.M. Bauer, R. Aristio, M. Meßmer, R. Wüchner, K.-U. Bletzinger, Concepts of data collection for the CAD-integrated

isogeometric analysis, Eng. Comput. (2022) accepted for publication.
[80] M. Meßmer, TIBRA. https://github.com/manuelmessmer/TIBRA.
[81] P. Dadvand, R. Rossi, E. Oñate, An object-oriented environment for developing finite element codes for multi-disciplinary applications,

Arch. Comput. Methods Eng. 17 (2010) 253–297, http://dx.doi.org/10.1007/s11831-010-9045-2.
[82] P. Dadvand, R. Rossi, M. Gil, X. Martorell, J. Cotela, E. Juanpere, S. Idelsohn, E. Oñate, Migration of a generic multi-physics

framework to HPC environments, Comput. & Fluids 80 (2013) 301–309, http://dx.doi.org/10.1016/j.compfluid.2012.02.004.
[83] V.M. Ferrándiz, P. Bucher, R. Rossi, J. Cotela, J. Carbonell, R. Zorrilla, R. Tosi, et al., KratosMultiphysics (Version 8.0), Zenodo,

2020, http://dx.doi.org/10.5281/zenodo.3234644.
[84] M. Meßmer, L.F. Leidinger, S. Hartmann, F. Bauer, F. Duddeck, R. Wüchner, K.-U. Bletzinger, Isogeometric analysis on trimmed

solids: A B-spline-based approach focusing on explicit dynamics, in: Proceedings of 13th European LS-DYNA Conference, Ulm,

Germany, 2021.

49

http://dx.doi.org/10.1016/j.cma.2021.113757
http://dx.doi.org/10.1016/j.cma.2021.113757
http://dx.doi.org/10.1016/j.cma.2021.113757
http://dx.doi.org/10.1016/j.cma.2022.114722
http://dx.doi.org/10.1002/nme.3045
http://dx.doi.org/10.1016/j.cma.2016.04.006
http://dx.doi.org/10.1007/s00466-017-1441-0
http://dx.doi.org/10.1016/j.camwa.2009.10.027
http://dx.doi.org/10.1007/s00466-016-1273-3
http://dx.doi.org/10.1002/nme.4569
http://dx.doi.org/10.1016/j.cma.2013.01.007
http://dx.doi.org/10.1007/s00366-022-01644-3
http://dx.doi.org/10.1007/s00366-022-01644-3
http://dx.doi.org/10.1007/s00366-022-01644-3
http://dx.doi.org/10.1007/s00466-010-0562-5
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb67
http://dx.doi.org/10.1016/j.cma.2019.01.030
http://dx.doi.org/10.1016/0045-7825(94)90135-X
http://dx.doi.org/10.1186/s40323-018-0099-2
http://dx.doi.org/10.1186/s40323-018-0099-2
http://dx.doi.org/10.1186/s40323-018-0099-2
http://dx.doi.org/10.1016/j.apnum.2011.01.008
http://dx.doi.org/10.1016/j.finel.2019.01.009
http://dx.doi.org/10.1016/j.cma.2021.114075
http://dx.doi.org/10.1016/j.cma.2021.114075
http://dx.doi.org/10.1016/j.cma.2021.114075
http://dx.doi.org/10.1007/978-0-387-75934-0
http://dx.doi.org/10.1007/978-0-387-75934-0
http://dx.doi.org/10.1007/978-0-387-75934-0
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb75
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb75
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb75
http://dx.doi.org/10.1186/s40323-018-0109-4
http://dx.doi.org/10.1186/s40323-018-0109-4
http://dx.doi.org/10.1186/s40323-018-0109-4
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb77
https://github.com/CocodriloCAD/Cocodrilo
https://github.com/CocodriloCAD/Cocodrilo
https://github.com/CocodriloCAD/Cocodrilo
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb79
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb79
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb79
https://github.com/manuelmessmer/TIBRA
http://dx.doi.org/10.1007/s11831-010-9045-2
http://dx.doi.org/10.1016/j.compfluid.2012.02.004
http://dx.doi.org/10.5281/zenodo.3234644


M. Meßmer, T. Teschemacher, L.F. Leidinger et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115584
[85] J.O. Hallquist, LS-DYNA Theory Manual, Livermore Software Technology Corporation (LSTC), 2017.
[86] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill, 1951.
[87] T. Kaneko, On Timoshenko’s correction for shear in vibrating beams, J. Phys. D: Appl. Phys. 8 (16) (1975) 1927–1936, http:

//dx.doi.org/10.1088/0022-3727/8/16/003.
[88] L.P. Gould, Y. Feng, Introduction to Linear Elasticity, fourth ed., Springer, 2018, http://dx.doi.org/10.1007/978-3-319-73885-7.
[89] R.D. Mindlin, Simple modes of vibration of crystals, J. Appl. Phys. 27 (12) (1956) 1462–1466, http://dx.doi.org/10.1063/1.1722290.
[90] C. Anitescu, C. Nguyen, T. Rabczuk, X. Zhuang, Isogeometric analysis for explicit elastodynamics using a dual-basis diagonal mass

formulation, Comput. Methods Appl. Mech. Engrg. 346 (2019) 574–591, http://dx.doi.org/10.1016/j.cma.2018.12.002.
[91] C. Adam, S. Bouabdallah, M. Zarroug, H. Maitournam, Stable time step estimates for NURBS-based explicit dynamics, Comput.

Methods Appl. Mech. Engrg. 295 (2015) 581–605, http://dx.doi.org/10.1016/j.cma.2015.03.017.
[92] D. Wang, W. Liu, H. Zhang, Novel higher order mass matrices for isogeometric structural vibration analysis, Comput. Methods Appl.

Mech. Engrg. 260 (2013) 92–108, http://dx.doi.org/10.1016/j.cma.2013.03.011.
[93] T. Belytschko, W.K. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and Structures, second ed., John Wiley &

Sons, 2014.
[94] L.F. Leidinger, M. Breitenberger, A.M. Bauer, S. Hartmann, R. Wüchner, K.-U. Bletzinger, F. Duddeck, L. Song, Explicit dynamic

isogeometric B-Rep analysis of penalty-coupled trimmed NURBS shells, Comput. Methods Appl. Mech. Engrg. 351 (2019) 891–927,
http://dx.doi.org/10.1016/j.cma.2019.04.016.

[95] K.D. Hjelmstad, Fundamentals of Structural Dynamics, first ed., Springer, 2022, http://dx.doi.org/10.1007/978-3-030-89944-8.
[96] T.J.R. Hughes, K.S. Pister, R.L. Taylor, Implicit-explicit finite elements in nonlinear transient analysis, Comput. Methods Appl. Mech.

Engrg. 17–18 (1979) 159–182, http://dx.doi.org/10.1016/0045-7825(79)90086-0.
[97] N. Collier, D. Pardo, L. Dalcin, M. Paszynski, V.M. Calo, The cost of continuity: A study of the performance of isogeometric finite

elements using direct solvers, Comput. Methods Appl. Mech. Engrg. 213–216 (2012) 353–361, http://dx.doi.org/10.1016/j.cma.2011.
11.002.

[98] N. Collier, L. Dalcin, D. Pardo, V.M. Calo, The cost of continuity: Performance of iterative solvers on isogeometric finite elements,
SIAM J. Sci. Comput. 35 (2) (2013) A767–A784, http://dx.doi.org/10.1137/120881038.

[99] D. Schillinger, J.A. Evans, A. Reali, M.A. Scott, T.J.R. Hughes, Isogeometric collocation: Cost comparison with Galerkin methods
and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg. 267 (2013) 170–232, http:
//dx.doi.org/10.1016/j.cma.2013.07.017.
50

http://refhub.elsevier.com/S0045-7825(22)00556-4/sb85
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb86
http://dx.doi.org/10.1088/0022-3727/8/16/003
http://dx.doi.org/10.1088/0022-3727/8/16/003
http://dx.doi.org/10.1088/0022-3727/8/16/003
http://dx.doi.org/10.1007/978-3-319-73885-7
http://dx.doi.org/10.1063/1.1722290
http://dx.doi.org/10.1016/j.cma.2018.12.002
http://dx.doi.org/10.1016/j.cma.2015.03.017
http://dx.doi.org/10.1016/j.cma.2013.03.011
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb93
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb93
http://refhub.elsevier.com/S0045-7825(22)00556-4/sb93
http://dx.doi.org/10.1016/j.cma.2019.04.016
http://dx.doi.org/10.1007/978-3-030-89944-8
http://dx.doi.org/10.1016/0045-7825(79)90086-0
http://dx.doi.org/10.1016/j.cma.2011.11.002
http://dx.doi.org/10.1016/j.cma.2011.11.002
http://dx.doi.org/10.1016/j.cma.2011.11.002
http://dx.doi.org/10.1137/120881038
http://dx.doi.org/10.1016/j.cma.2013.07.017
http://dx.doi.org/10.1016/j.cma.2013.07.017
http://dx.doi.org/10.1016/j.cma.2013.07.017

	Efficient CAD-integrated isogeometric analysis of trimmed solids
	Introduction
	Isogeometric analysis of trimmed solids: Preliminaries and concept
	Solid CAD models
	B-Spline shape functions for solids
	Trimmed solid
	Variational formulation
	Strong form
	Weak form
	Boundary conditions
	Discretization in space and time

	Mapping between spaces

	Numerical integration of trimmed solids
	Numerical integration of full knot spans
	Construction of optimal and reduced quadrature rules
	Generalized Gaussian quadrature for non-tensor product spaces

	Integration of trimmed knot spans
	Moment fitting equation
	Computation of constant terms
	Point elimination algorithm


	Numerical stability
	Additive Schwarz preconditioner for ill-conditioned system matrices
	Light control points in explicit dynamics

	CAD-integrated analysis workflow
	Preprocessing
	Preparation of the integration domains and construction of quadrature rules
	FE solver
	Postprocessing

	Scientific benchmarks
	Trimmed cantilever
	Thick-walled cylinder subjected to internal pressure
	Eigenfrequency analysis of an elastic cube
	Free vibration of an unit cube
	Free vibration of a trimmed cube

	Dynamic analysis of an elastic rod
	Eigenfrequencies of an elastic rod with varying cross-sections
	Forced vibration of a trimmed elastic rod


	Industrial example
	Conclusion and outlook
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Minimal boundary representation: STL
	Appendix B. Second-order reduced quadrature rules for Cp-1 continuous splines
	Appendix C. Comparison of estimated costs between trimmed trivariate IGA and traditional FEM
	Matrix formation
	Solution of linear systems of equations
	Explicit algorithms

	References


