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a b s t r a c t

The current push towards interoperability drives companies to collaborate through process chore-
ographies. At the same time, they face a jungle of continuously changing regulations, e.g., due to the
pandemic and developments such as the BREXIT, which strongly affect cross-organizational collab-
orations. Think of, for example, supply chains spanning several countries with different and maybe
even conflicting COVID19 traveling restrictions. Hence, providing automatic compliance verification in
process choreographies is crucial for any cross-organizational business process. A particular challenge
concerns the restricted visibility of the partner processes at the presence of global compliance rules
(GCR), i.e., rules that span across the process of several partners. This work deals with the question how
to verify global compliance if affected tasks are not fully visible. Our idea is to decompose GCRs into
so called assertions that can be checked by each affected partner whereby the decomposition is both
correct and lossless. The algorithm exploits transitivity properties of the underlying rule specification,
and its correctness and complexity are proven, considering advanced aspects such as loops. The
algorithm is implemented in a proof-of-concept prototype, including a model checker for verifying
compliance. The applicability of the approach is further demonstrated on a real-world manufacturing
use case.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
m

1. Introduction

Gartner regards interoperability as ‘‘strategic imperative’’1 for
ealthcare. Especially the global push by digitalization and the
urrent pandemic require the collaboration and integration of
business) partners and organizations. Process technology serves
s enabler for process-oriented collaborations between distributed
usiness partners, realized and implemented through so-called
rocess choreographies. Applications include healthcare [1],
lockchain-based processes [2,3], multi-modal logistics scenar-
os [4,5], and supply chains [6].

Digitalization and ongoing changes due to, for example, the
andemic situation or the BREXIT flood enterprises and organi-
ations with updated or even new regulations at a fast pace. For

∗ Corresponding author.
E-mail addresses: wfdhila@sba-research.org (W. Fdhila),

.knuplesch@alphaquest.de (D. Knuplesch), stefanie.rinderle-ma@tum.de
S. Rinderle-Ma), manfred.reichert@uni-ulm.de (M. Reichert).
1 https://gtnr.it/3vGFB7f.
ttps://doi.org/10.1016/j.is.2022.101983
306-4379/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
example, ‘‘bank regulations change every 12 minutes’’.2 Regula-
tory frameworks comprise application-independent frameworks
such as the GDPR on ‘‘data processing boundaries of the personal
data of European Union’s citizens’’ [7] and the ISO 27001 security
standard3 as well as application-specific ones, e.g., the WHO reg-
ulations defined in the context of COVID19.4 As a consequence, in
our globalized world, regulations and their changes affect process
collaborations [8] and lead to an increased need for compliance
verification in process choreographies.

1.1. Problem statement

What are the particular challenges with respect to compliance
verification in process choreographies? Let us illustrate them by
an example. Fig. 1 depicts a BPMN choreography model of a

2 https://thefinanser.com/2017/01/bank-regulations-change-every-12-
inutes.html/.
3 https://www.iso.org/isoiec-27001-information-security.html.
4 https://www.who.int/teams/regulation-prequalification/covid-19.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. BPMN choreography model for a supply chain—running example with five process partners.
Fig. 2. eCRG model of Global Compliance Rules imposed on supply chain choreography.
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upply chain scenario adapted from [6]. It involves five process
artners, i.e., Bulk Buyer, Manufacturer, Middleman, Supplier, and

Special Carrier that interact through message exchanges. First, the
Bulk Buyer orders a set of products from theManufacturer (e.g., an
aircraft). The manufacturing of the product requires several sub-
products (intermediates) to be provided by different suppliers. In
this scenario, we assume that only one intermediate is required
and provided by the Supplier. After processing the order, hence,
the Manufacturer sends an order for the intermediate (e.g., the
fuselage or engines) to the Middleman. The Middleman forwards
he order of the intermediate to the Supplier and sends an order
for a special transport to the Special Carrier. The Special Carrier
equests the details on the transport from the Supplier and the
upplier provides them to the Special Carrier, followed by sending
he waybill for the intermediate. The Special Carrier sends a notice
n the arrival of the intermediate to the Manufacturer, which then
elivers the product to the Bulk Buyer.
Imagine now that the partners and the choreography are sub-

ect to the Global Compliance Rules (GCR) depicted in Fig. 2, which
tem from legal regulations and standards such as GDPR or ISO
7001:

C1 After Production a Final test must be performed.
C2 Pack Intermediate is required before Transport Intermediate.
C3 Each Transport intermediate requires Permission of authority.

Further on, the transporter must pass a Safety Check.

bviously, none of the GCR can be directly verified on basis of the
horeography model in Fig. 1 as none of the public and message
xchanging tasks corresponds to any of the tasks referred to in
he GCR.

Let us have a look at the public processes of the partners
nvolved in the choreography as shown in Fig. 3. These public
rocess models contain all public tasks that are visible to the
ther partners, including the tasks that exchange messages, but
lso other visible tasks such as Production at the Manufacturer.
2

ased on the public process models, C1 and C2, as depicted in
ig. 2, can be verified: C1 refers to public tasks of the Manufac-
urer process, which obviously complies with C1, i.e., public task
roduction is followed by public task Final Test. C2 can be verified

over the Supplier and Special Carrier processes. The order between
tasks Pack Intermediate and Transport Intermediate is determined
by the message exchange between sending and receiving Waybill
Intermediate. As opposed to C1 and C2, C3 cannot be verified
based on the public processes of the partners as there are no
public tasks for Safety check and Get permission of authority.

The presumption is that C3 also refers to private tasks of the
partners, i.e., tasks that are only present in the private process
models of the partners. In general, private process models of
the partners implement and possibly extend the behavior of
the corresponding public models. As opposed to public tasks,
private tasks are not visible to the partners. Fig. 4 shows the
private process models of partners Special Carrier and Middleman
where private tasks are highlighted in gray color. Although private
asks are usually hidden to other partners, restrictions over them
ight exist. In the supply chain, for example, C3 refers to private

asks Safety Check for partner Special Carrier and Get permission
f authority for partner Middleman. If private tasks are affected
y a GCR, no information about how and when these tasks are
xecuted, or how they are connected to other nodes of the cor-
esponding private process model, becomes visible to the other
artners. Usually, this happens when a collaborating partner p1
mposes the execution of a specific task that must exist in its
rivate process and comply with a given rule involving another
artner p2. Partner p1 should then assure the existence of such
ask and that it follows the imposed rule.

As can be seen from the example depicted in Figs. 1–4, GCRs
onstrain actions of multiple partners and/or the interactions be-
ween them. Ensuring the compliance of process choreographies
ith a GCR is crucial and challenging [9] as a partner ‘‘only has the

visibility of the portion of the process under its direct control’’ [10].
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Fig. 3. Public processes (collaboration model)—running example with five process partners cooperating in a supply chain.
Source: Adapted from [6].
Fig. 4. Private processes of partners Special Carrier and Middleman, omitting message exchanges.
Source: Adapted from [6].
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econsider GCR C3 as an example. It asks for a safety check
ccomplished by a private task of the Special Carrier. To cope with
his issue, assertions can be used. An assertion (A) corresponds to
commitment of a partner guaranteeing that its private/public
rocess complies with the imposed rule [6]. Fig. 5 depicts the
wo assertions A1 and A2: the Middleman agrees to get the
ermission of the authority before ordering the special transport
A1). Moreover, the Special Carrier commits to perform a safety
heck before transporting the intermediate (A2). In combination,
ssertions A1 and A2 enable checking GCR C3.

.2. Contribution

Overall, this leads to the overarching research question RQ
ackled in this work:

RQ: How to verify GCRs in a decentralized setting of a process
horeography where no central coordinator with complete knowl-
dge on the private and public tasks of all partners exists?
In literature, there is a ‘‘knowledge gap’’ when it comes to

ompliance verification in process choreographies [9]. [10] tack-
es the problem of checking a GCR on private tasks based on
oT-enabled artifacts. However, not all process choreography set-
ings with compliance requirements feature IoT-enabled artifacts.
 t

3

ence, this works aims at providing a formal approach that is
ndependent of any technology or application. The central idea is
o decompose the GCR into assertions in a lossless way, i.e., the
erification of all assertions guarantees the one of the GCR. Note
hat this solves the problem as assertions may be checked sep-
rately by each of the partners. Hence, infringing the privacy of
ny partner is avoided.
The decomposition algorithm presented in this article exploits

ransitivity properties of the underlying GCR specification and
as originally presented in [11]. The decomposition relies on
ransitivity properties of the underlying GCR specification. The
ransitivity properties are shown by the example of a translation
o first order predicate logic. Similarly, for example, [12] presents
eclarative patterns based on Linear Temporal Logic (LTL).
In our approach, GCRs are specified in a pattern-based and

isual way using the eCRG formalism [13]. This means that a
CR may be composed of so called antecedence patterns and
onsequence patterns. The patterns can be connected reflecting
re-/post-conditions of the respective GCR. C1 in Fig. 2, for exam-
le, connects antecedence pattern Production with consequence
attern Final test, demanding that after the production a final
est is required. Note that antecedence and consequence patterns
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Fig. 5. Assertions by partners Middleman and Special Carrier.
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ay require occurrence (i.e., something must happen) and absence
i.e., something must not happen). In [11], we relied on simple
ules that consist of single antecedent and multiple occurrence
atterns. Aside the decomposition algorithm itself, [11] provides
asic proofs, simple GCR decomposition scenarios, and the em-
edding of the approach in the overall digitalized change and
ompliance management framework C3Pro.5 This article extends
nd elaborates the results presented in [11] in several directions:

• We allow for additional and more complex compliance rules
with multiple antecedence patterns. This significantly in-
creases the complexity of the theoretical considerations as
well as the one of the provided GCR decomposition scenar-
ios. As a result, we obtain new theorems and algorithms.
• The decomposition proofs are extended to cover the addi-

tional complexity of the GCR; in particular they now con-
sider loops as well.
• The decomposition algorithm with extensions is prototyp-

ically implemented and integrated with the C3Pro frame-
work, which deals with both change and compliance in
process choreographies.
• A model checker for verifying decomposition correctness is

provided.
• A manufacturing use case illustrates the applicability of

the approach. Specifically, the use case demonstrates the
applicability of the approach beyond regulatory compliance,
i.e., it shows how decomposition can be used to lift implicit
connections to explicit assertions.
• The related work section is significantly extended.

The remainder of the paper is structured as follows: Section 2
rovides fundamentals required for understanding this work,
nd Section 3 introduces the foundations for GCR decomposition
including transitivity theorems). Section 4 then presents the
ecomposition algorithm for global compliance rules, whereas
ection 5 deals with the automated verification of the resulting
ecompositions based on model checking. Sections 6 and 7 cover
he evaluation of the approach, i.e., the implementation and
pplication of the algorithms. Section 8 discusses related work.
ection 9 concludes the paper with a summary and an outlook.

. Fundamentals

This section presents definitions and formal backgrounds for
lobal compliance rules (GCRs) to be obeyed by a process chore-
graphy y. A choreography includes three types of overlapping
odels: (i) a private model representing the executable process
nd including both private and public activities (see Fig. 4 for
xamples of private process models), (ii) a public model (also

5 http://www.wst.univie.ac.at/communities/c3pro.
 (

4

called the interface of the process) that solely includes the public
activities and the interactions of a given partner (see Fig. 3 for
the public process models of our running example), and (iii) a
choreography model providing a global view on the interactions
between all partners (see Fig. 1 for the choreography model of our
running example) [14]. Compared to [14,15], this paper assumes
that public activities are not necessarily interactions with other
partners, but may additionally represent tasks made visible by
the corresponding partners. Therefore, both interactions and non-
interaction public activities of a single partner are described in
a public model. The latter serves as public (restricted) view on
the private model of the partner, which ‘‘describes the internal
logic of a partner including its private and public activities’’ [16].
For a formal definition of process choreography, we refer to
Definition 1.

Definition 1 (Choreography [14]). We define a choreography y as
a tuple (P , G, Π , L, ψ , Γ , ξ ) where

1. P is the set of all participating partners.
2. G is the choreography model representing the interactions

I between partners in P (cf. Fig. 1).
3. Π = {πp}p∈P is the set of all private models (cf. Fig. 4).
4. L = {lp}p∈P is the set of all public models (cf. Fig. 3).
5. ψ = {ψp : lp ↔ πp}p∈P is a partial mapping function

between nodes of the public and private models.
6. Γ : l ↔ l′ is a partial mapping function between nodes of

different public models.
7. ξ : G ↔ lxl is a partial mapping function between nodes of

the choreography model and the public models.

As depicted in Figs. 1, 3 and 4, choreography, public and
rivate models are defined as graphs, where nodes are either
ctivities (i.e., interaction, public or private activities) or gate-
ays (e.g., sequence, exclusive or parallel), and arrows are the
ependencies between them. As described above, each of these
hree models use specific type of activity nodes (e.g., interaction
ctivities for choreography models). Because the focus of this pa-
er is mainly on GCR decomposition, we abstract their respective
ormal definitions, but the reader may refer to [14] for more
etails.
While function ψ maps the activities of the public models to

hose of the private models, function Γ determines the depen-
encies between the interactions of different public models (e.g.,
(Request_details (Special_carrier)) = Request_details(Supplier)).
inally, function ξ represents the dependencies between the ac-
ivities in the choreography model and those of the public mod-
ls (e.g., ξ (order) = {order(Bulk_buyer), order(Manufacturer)}).
ote that in the examples above, connected interaction activities
i.e., the send and the corresponding receive) of different public

http://www.wst.univie.ac.at/communities/c3pro
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Fig. 6. Elements of the eCRG language.
odels have the same labels, while in practice, it is possible to
ave them different.
Based on functions ψ and Γ , certain soundness properties

f choreography y can be checked, including structural and be-
avioral compatibility between public models, and consistency be-
ween public and private models [17]. Structural consistency
equires that for each public activity of the public model of a
artner p, there should be a matching element in the corre-
ponding private model of p, but not vice versa [14]. Structural
ompatibility states that for each interaction activity of the public
odel of a partner p, there should be a matching interaction
ctivity in the public model of another partner. Note that this is
necessary, but not yet sufficient condition for ensuring com-
atibility and consistency—the models’ behaviors (control flow
ependencies) should also be compatible and consistent. In this
aper, we assume that the choreography y is sound.
In previous work [18], multiple formal languages employed for

usiness process compliance modeling and checking (e.g., linear
emporal logic LTL, event calculus EC, extended compliance rule
raph eCRG) were compared. It was shown that most of these
anguages can deal with most qualitative time patterns, and can
herefore be used to model the compliance constructs addressed
n this paper. Similar results were proven in [19].

In order to specify these constructs as well as transitivity
roperties required for the GCR decomposition, this work uti-
izes the visual eCRG (extended Compliance Rule Graph) language
20–22]. The eCRG language offers a visual rule notation for
xpressing compliance rules over process choreographies and is
ased on first order predicate logic (cf. Fig. 6). To distinguish
etween a precondition (i.e., antecedence) and corresponding
ostconditions (i.e., consequences), an eCRG can be partitioned
nto an antecedence pattern and a consequence pattern. The an-
ecedence pattern specifies when the compliance rule is triggered
i.e., activated), whereas the consequence pattern specifies what
he rule demands. As compliance rules may require the occur-
ence or absence of certain activities or interactions (i.e., message
xchanges), the antecedence and consequence patterns are fur-
her sub-divided into occurrence and absence nodes. Sequence
onditions between these events can be expressed using directed
onnectors between the respective nodes. We use the follow-
ng notation: A : Antecedence occurrence; A : Antecedence ab-
ence; A : Consequence occurrence; A : Consequence absence.
ig. 6 introduces the elements of the eCRG language. For a formal
efinition of eCRG, we refer to Definition 2.

efinition 2 (Global Compliance Rule (GCR) Structure). Given a
rocess choreography y = (P , G, Π , L, ψ , Γ , ξ ) (cf. Definition 1),

let A be the set of private and public non-interaction activities
and I be the set of interaction activities. Then: A GCR r is defined
as tuple r = (N, ρ, ϕ, type, pattern) with
5

• N being the set of nodes,
• ρ : N → P returning the partner responsible for a node.
• ϕ : N × N →{ 99K, →,∅} returning the sequence flow

connector between two nodes, i.e., consequence sequence
and antecedence sequence connectors respectively.
• type : N → A ∪ I mapping each node to an activity or an

interaction (i.e., message exchange).
• pattern : N →{ A , A , C , C }

Think of an eCRG as a graph of connected nodes, where each
node is assigned to a particular partner (e.g., in C1, ρ(production)
= manufacturer). A node may either be a private, non-interaction
public activity, or an interaction (see Fig. 6). Given two nodes
of an eCRG, function ϕ returns the sequence flow connector as
depicted in Fig. 6, where a dashed arrow (i.e., consequence con-
nector) connects an antecedence pattern to set of consequence
patterns (e.g., C1: After production a final test is required), and an
antecedence connector expresses a relation between antecedence
patterns solely (i.e, the pre-condition). For example, assume that
we change C3 as follows: Get_permission_of _authority→
safety_check 99K transport_intermediate Then: if the pre-condition
(i.e., execution of activity Get_permission_of _authority followed
by the one of activity safety_check) is met, the post condition
(i.e., activity transport_ intermediate) will be triggered. Finally,
function pattern evaluates whether a node is an antecedence or
consequence, and whether or not it should occur.

3. Global compliance rule decomposition theorems

This section introduces the theoretical foundations for the
decomposition of global compliance rules (including theorems
and proofs) illustrated by a number of examples, which we have
extracted from the application scenario introduced in Section 1.
Section 3.1 first describes the basic idea of our approach (i.e., why
do we need to decompose a GCR), followed by the presentation,
proofs and illustrations of the theorems in Section 3.2.

3.1. Basic idea

Our method for the decentralized checking of global compli-
ance rules relies on the decomposition of the original GCR into
a set of assertions that can be checked locally by each partner
and collectively reproduce the behavior of the GCR (cf. Fig. 7). A
communication between partners is only required in the setup
phase to deduct the assertions. During runtime, however, no
further compliance-related communication becomes necessary
for checking the GCR unless a local assertion becomes violated.
The decomposition of a GCR into a set of assertions is based on
well-grounded theorems, which ensure that if a conjunction of
hypotheses is true, the conclusion (GCR) is true as well.
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.2. Theorems

In this section, we provide a decomposition method for se-
ected global compliance patterns and show how they can be
pplied in a collaborative setting. In particular, we prove a set of
heorems required for ensuring the correctness of our decompo-
ition method. Each theorem represents a possible decomposition
f a given compliance pattern.
We illustrate the translation of a GCR into a First Order Logic

FOL) expression using basic equivalences as in Definition 3.

efinition 3 (Basic Equivalences). Based on [23], the following
quivalences hold by definition. Predicate x(t, ty) describes that at
he point in time t an activity (message) of type ty was executed
i.e., sent or received).

• A 99K B :⇔ ∀a :
(
x(a, A)→

(
∃b : (x(b, B) ∧ a < b)

) )
⇔ ∀a∃b :

(
x(a, A)→ (x(b, B) ∧ a < b)

)
• A 99K B :⇔ ∀b :

(
x(b, B)→

(
∃a : (x(a, A) ∧ a < b)

) )
⇔ ∀b∃a :

(
x(b, B)→ (x(a, A) ∧ a < b)

)
• A 99KB :⇔ ∀a :(

x(a, A)→
(
∄b : (x(b, B) ∧ a < b)

) )
⇔ ∀a, b :

(
x(a, A)→ ¬(x(b, B) ∧ a < b)

)
⇔ ∀a, b :

(
x(a, A)→ (¬x(b, B) ∨ b ≤ a)

)
• A 99K B :⇔ ∀b :(

x(b, B)→
(
∄a : (x(a, A) ∧ a < b)

) )
⇔ ∀b, a :

(
x(b, B)→ ¬(x(a, A) ∧ ¬a < b)

)
⇔ ∀a, b :

(
x(a, A)→ (¬x(b, B) ∨ b ≤ a)

)
For example, GCR Production 99K Final test is translated into:

a :
(
x(a, Production) → ∃b : x(b, Final test) ∧ a < b

)
. Thereby,

relation < expresses a temporal precedence between points in
time a and b. The decomposition algorithm presented in Section 4
exploits the transitivities for GRC as in Theorem 1. Specifically,
by combining transitive relations, where each relation can be
checked locally by a single partner, it becomes possible to re-
construct the original GCR behavior. Theorem 1 ensures that the
behavior of the derived assertions reproduces the behavior of the
GCR, but not vice versa.

Theorem 1 (Transitivities).
Let A, B, and C be three activity or message types. Then:

a. The rightwards transitivity holds:
A 99K B ∧ B 99K C ⇒ A 99K C

b. The leftwards transitivity holds:
A 99K B ∧ B 99K C ⇒ A 99K C

In the following, the correctness of Theorem 1 is proven ap-
plying Definition 3.
6

Proof 1 (Rightwards Transitivity).
Let A, B, and C be three activities or interactions. Then A 99K B ∧

B 99K C
:⇔ ∀a∃b :

(
x(a, A)→ (x(b, B) ∧ a < b)

)
∧∀b∃c :

(
x(b, B)→

x(c, C) ∧ b < c)
)

⇔ ∀a
(
∃b :

(
x(a, A) → (x(b, B) ∧ a < b)

)
∧∀b : ∃c :

x(b, B)→ (x(c, C) ∧ b < c)
) )

⇒ ∀a∃b, c :
( (

x(a, A) → (x(b, B) ∧ a < b)
)
∧

(
x(b, B) →

x(c, C) ∧ b < c)
) )

⇒ ∀a
(
∃b, c :

((
x(a, A) → x(b, B) → (x(c, C) ∧a < b <

)
)))
⇒ ∀a∃c :

(
x(a, A)→ (x(c, C) ∧ a < c)

)
⇒ A 99K C □

Leftwards transitivity can be proven similarly by replacing ’<’
with ’>’.

Corollary 1. Let A, B, C, and D be activities or interactions. Then
A 99K B ∧ B 99K C ∧ C 99K D ⇒ A 99K C ∧ C 99K D ⇒ A 99K D

In the following, we use Examples (1)–(3) (cf. Fig. 8), which
we extracted from our running example (cf. Figs. 3 and 4), in
order to illustrate how we use Proof 1 for decomposing a simple
compliance rule of type A 99K B that involves two private tasks
A and B of two different partners p1 and p2 respectively.

• Example (1): get_permission_of _authority 99K safety_check .
In this example, both activities are private, which would
normally require Middleman and Special_carrier to share
runtime information about the execution time of the re-
spective activities. In turn, this would require an agreement
on a time synchronization protocol that considers network
failures and message transmission delays. This can be solved
by identifying a transitive relation between the two private
activities that include an interaction activity. According to
Proof 1, the interaction activity order_special_transport be-
tween Middleman and Special_carrier fulfills the conditions
A1 and A2:
get_permission_of _authority 99K order_special_transport and
order_special_transport 99K safety_check . The behavioral and
structural compatibility (cf. Section 2) between the partner
processes ensures that message order_special_transport sent
by Middleman shall be correctly received by Special_carrier .
By locally checking A1 and A2 by Middleman and
Special_carrier respectively, we can ensure that the original
GCR is not violated as long as the assertions are not violated.
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If one assertion is violated, a communication between the
two partners will become necessary. Note that this violation
does not necessarily mean that the original GCR is violated.
For example, assume that for a given process instance,
assertion A1 evaluates to true, and Special_carrier executeś
activity safety_check before the message arrival. Although
this would result in A2 being evaluated to false, it does
not necessarily mean that safety_check is executed before
get_permission_of _authority.
• Example (2): process_order 99K produce_intermediate . In this

example, Manufacturer and Supplier do not engage in any
direct interaction. However, by looking at the public pro-
cesses of the collaboration model from Fig. 3, it becomes
possible to identify a double transitive relation through
Middleman, which interacts with both partners. Therefore,
using Corollary 1, the transitive relations (assertions):
process_order 99K order_intermediate ,
order_intermediate 99K fwd_order_intermediate , and
fwd_order_intermediate 99K produce_intermediate reproduce
the behavior of process_order 99K produce_intermediate .
Middleman, which has initially not been involved in the
GCR, becomes involved in the derived assertions. We call
Middleman an intermediary partner.
• Example (3): prepare_transport 99K safety_check . In this ex-

ample, it is not possible to identify any transitive relation
between Supplier and Special_carrier that involve private
activities prepare_transport and safety_check. The interaction
activity waybill_for_intermediate connects both partners im-
mediately after the activities in question, which discards
any possibility of a transitive relation. In this case, it is not
possible to satisfy Theorem 1 and, hence, additional message
exchanges become necessary to inform about the execution
state of the activities involved in the GCR. Message ex-
changes can be either synchronous or asynchronous. Asyn-
chronous message exchange only allows for reactive GCR
checking and, therefore, detecting violations after their oc-
currence. Synchronous message exchange, in turn, is proac-
tive as it enforces the GCR with new restrictions to the pro-
cess models, e.g., the execution of activity safety_check be-
comes enabled only after receiving a synchronization mes-
sage (i.e., about whether or not prepare_transport is ex-
ecuted). Supplier shall also inform Special_carrier in case
activity prepare_transport is not executed, as this does not
prevent activity safety_check from being executed according
to the GCR.

Rightwards transitivity (cf. Theorem 1.a) directly ensures the
correctness of the assertions derived in the above examples.
It should be clear that the correctness of the derived asser-
tions in Example (2) can be directly concluded based on Corol-
lary 1. The same examples can be also used to illustrate leftwards
transitivity.
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Theorem 2 (Zig Zag Transitivities).
Let A, B, and C be three activity or message types. Then:

a. The rightwards zig zag transitivity holds for the consequence
absence:
B 99K A ∧ B 99KC ⇒ A 99KC

b. The leftwards zig zag transitivity holds for the consequence
absence:
A 99K B ∧ C 99K B ⇒ C 99K A

Proof 2 (Rightwards Zig Zag Transitivity of Absence).
Let A, B, and C be activities or interactions. Then:
B 99K A ∧ B 99KC
:⇔ ∀a∃b :

(
x(a, A)→ (x(b, B) ∧ b < a)

)
∧ ∀b, c :

(
x(b, B)→

¬x(c, C) ∨ c ≤ b)
)

⇔ ∀a
(
∃b :

(
x(a, A)→ (x(b, B) ∧ b < a)

)
∧ ∀b, c :

(
x(b, B)→

¬x(c, C) ∨ c ≤ b)
))

⇒ ∀a∃b∀c :
((

x(a, A) → (x(b, B) ∧ b < a)
)
∧

(
x(b, B) →

x(c, C)→ c ≤ b)
))

⇒ ∀a∃b∀c :
((

x(a, A)→ x(b, B)→ (x(c, C)→ c ≤ b < a)
))

⇒ ∀a∀c :
(
x(a, A)→ (x(c, C)→ c ≤ a)

)
⇒ ∀a, c :

(
x(a, A)→ (¬x(c, C) ∨ c ≤ a)

)
⇒ A 99KC □

Leftwards zig zag transitivity of absence can be proven simi-
arly by replacing ‘<’ with ‘>’ and ‘≤’ with ‘≥’.

In the following, we use Examples (4) and (5) from Fig. 9 to
llustrate and discuss how Theorem 2 can be used to decompose
GCR of type rightwards zigzag A 99KB . Note that these two
xamples are adopted from the running example we introduced
n Section 1 in order to fulfill the decomposition requirements.

• Example (4):
quick_test_intermediate 99K transport_intermediate . In this
example, transport_intermediate and order_special_transport
in Special_carrier belong to different XOR branches, which
means that the execution of activity transport_intermediate
implies the non-execution of activity order_special_transport
and vice versa (fulfilling assertion A1
order_special_transport 99K transport_intermediate ).
Additionally, in Manufacturer , the interaction activity
order_special_transport and the private activity quick_test_
intermediate belong to the same XOR branch, and fulfill as-
sertion A2 order_specialtransport 99K quick_test_intermediate
According to Theorem 2.a, the conjunction of A1 and A2 re-
produces the behavior of the original GCR. Note that process
compatibility ensures that whenever sending order_special_
transport occurs in Special_carrier , receiving order_special_
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Fig. 9. Examples 4–5.
-

transport should occur in Manufacturer as well. At the pres-
ence of loops that encapsulate the depicted process part of
Special_carrier , the XOR fragment can be executed multiple
times possibly leading to an alternate execution of the
corresponding branches. For example, if in the first loop
iteration, transport_intermediate is executed and quick_test_
intermediate is not executed, then, to this point both de-
rived assertions are satisfied. Let us assume that a future
iteration over the XOR fragment in the context of the same
process instance triggers quick_test_intermediate execution,
thus, violating the original GCR.
iteration 1: special_carrier: {transport_intermediate}
iteration 1: manufacturer {}
iteration 2: special_carrier {transport_intermediate,
order_special_transport}
iteration 2: manufacturer {order_special_transport,
quick_test_intermediate}
Combined trace:
{transport_intermediate,
order_special_transport, order_special_transport,

order_special_transport, quick_test_intermediate}
By looking at the combined trace, it becomes clear that
the GCR is violated. Unfortunately, this would require both
partners to exchange the traces and use a common time
stamping system to obtain the same chronological order of
activities. Using the theorems, however, the Manufacturer
can locally run its derived assertion against its own exe-
cution trace of the same process instance, and identify the
violation. Note that the decomposition does not enforce the
processes with new restrictions (except when no transitivity
could be derived), but uses the existing control flow and
interactions between partners to derive assertions that can
be used for a decentralized checking of the original GCR.
• Example (5):

quick_test_intermediate 99K transport_intermediate . In Fig. 9,
quick_test_intermediate always happens after
arrival_of _intermediate ensuring
quick_test_intermediate 99K arrival_of _intermediate . The sec
ond part of the decomposition can be directly derived from
the process control flow of Special_carrier:
transport_intermediate 99K arrival_of _intermediate . The same
reasoning applies to this example at the presence of loops.
The correctness of Example (5) concludes from the leftwards
zig zag transitivity (cf. Theorem 2.b), whereas Example (4)
relies on the rightwards zig zag transitivity of the absence
(cf. Theorem 2.a). The decomposition process is not limited
to these scenarios and, as aforementioned, the decomposi-
tion cannot always be automated, but might require manual
interaction and processing. Altogether, the decomposition
8

eases global compliance rule checking, where each partner
checks its corresponding derived assertions locally. A GCR is
rechecked only if at least one of the derived assertions is not
evaluated to true. Note that this does not necessarily imply
that the GCR is violated.

Theorem 3 (Rightwards Chaining Transitivity).
Let A, B, C, and D be activities or interactions such as

A→ B 99K C 99K D : if A and B occur, C and D shall occur afterwards.
Let m1,m2, and m3 be three interactions such as:

(1) M1 99K A
(2) M1→ B 99KM2

(3) M2 99K C 99KM3

(4) M3 99K D

Then: Whenever (1) ∧ (2) ∧ (3) ∧ (4) evaluates to true,
A→ B 99K C 99K D is true as well.

Proof 3 (Rightwards Chaining Transitivity).
(1) ∧ (2) :
:⇔ ∀a∃m1 :

(
x(a, A) → x(m1,M1) ∧ (m1 < a)

)
∧

∀m1,∀b, ∃m2 :

(
(x(m1,M1)∧x(b, B)∧m1 < b)→ (x(m2,M2)∧b <

m2)
)
|H ∀a∃m1∀b∃m2 :

(
x(a, A) → x(m1,M1) ∧ (m1 < a)

)
∧(

(x(m1,M1) ∧ x(b, B) ∧m1 < b)→ (x(m2,M2) ∧ b < m2)
)

|H ∀a∃m1∀b∃m2 :

(
x(a, A) ∧ x(b, B) ∧ a < b → x(m1,M1) ∧

(m1 < b)
)
→ (x(m2,M2) ∧ b < m2)

|H ∀a∀b∃m2 : x(a, A) ∧ x(b, B) ∧ a < b→ x(m2,M2) ∧ b < m2
(1) ∧ (2) ∧ (3)
|H ∀a∀b∃m2 :

(
x(a, A) ∧ x(b, B) ∧ a < b → x(m2,M2) ∧ b <

m2

)
∧ ∀m2∃c∃m3 :

(
x(m2,M2) → x(c, C) ∧ x(m3,M3) ∧ m2 <

c ∧ c < m3

)
|H ∀a∀b∃c∃m3 : x(a, A)∧x(b, B)∧a < b→ x(c, C)∧x(m3,M3)∧

b < c ∧ c < m3
(1) ∧ (2) ∧ (3) ∧ (4)
|H ∀a∀b∃c∃m3 :

(
x(a, A) ∧ x(b, B) ∧ a < b → x(c, C) ∧

x(m3,M3) ∧ b < c ∧ c < m3

)
∧ ∀m3∃d :

(
x(m3,M3) →

x(d,D) ∧m3 < d
)

|H ∀a∀b∃c∃d :
(
x(a, A)∧ x(b, B)∧ a < b→ x(c, C)∧ x(d,D)∧

b < c ∧ c < d
)
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• Example (6):
get_permission_authority→ prepare_transport 99K
transport_intermediate 99K production . In this example, all
activities involved in the GCR are private and belong to
separate partners. According to the process models shown
in Figs. 3 and 4, each partner can separately derive the
corresponding assertion based on Theorem 3 and involving
the corresponding activity in the GCR.

(1) Middleman
fwd_order_intermediate 99K get_permission_authority

(2) Supplier
fwd_order_intermediate→
prepare_transport 99Kwaybill_for_intermediate

(3) Special_carrier
waybill_for_intermediate→
transport_intermediate 99K arrival_of _intermediate

(4) Manufacturer arrival_of _intermediate 99K production

In this example, partners will first engage in a setup phase,
in which they agree on the interaction activities that satisfy
all derived assertions following the assertions’ templates of
Theorem 3. For example, Middleman will start by identifying
relations in its process of type
interaction_activity 99K get_permission_authority ,
where interaction_activity must be a message exchange with
Supplier that is the partner being responsible for the fol-
lowing antecedence occurrence prepare_transport . In this
example, Middleman and Supplier have only one interaction
that satisfies the derived assertion (1); however, it is also
possible to identify several alternatives. The combination of
the four derived assertions reproduce the behavior of the
original GCR when all assertions are true.

The following theorem represents a generalization of
Theorem 3 with n antecedences’ occurrences andm consequences’
occurrences. Note that the previous example also illustrates
Theorem 4 with n = 2 and m = 2.

Theorem 4 (Generic Rightwards Chaining Transitivity).
Let A1≤i≤n and C1≤j≤m be n+m activities.

A1→ ...→ An 99K C1 99K ...99K Cm : if all Ai occur such that ∀i <
, Ai < Ai+1 holds, then all Cj should occur afterwards such that
j < m, Cj < Cj+1 holds.
Let mk, where 1 < k < n+m− 1 be interactions such that:

(1) M1 99K A1

(2) Mi−1→ Ai L99Mi where 1 < i < n
(3) Mn−1→ An 99KMn

(4) Mn+j−1 99K Cj 99KMn+j where 1 ≤ j < m
(5) Mn+m−1 99K Cm

hen: Whenever (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) evaluates to true,
A1→ ...→ An 99K C1 99K ...99K Cm is true as well.

roof 4 (Generic Rightwards Chaining Transitivity).
(1)
:⇔ ∀a∃m1 :

(
x(a, A)→ x(m1,M1) ∧ (m1 < a)

)
(2)
:⇔

⋀
1<i<n

(
∀mi−1∀ai∃mi : (x(mi−1,Mi−1)∧ x(ai, Ai)∧mi−1 <

i)→ (x(mi,Mi) ∧mi < ai)
)

(3)
:⇔

(
∀mn−1∀an∃mn : (x(mn−1,Mn−1) ∧ x(an, An) ∧ mn−1 <

)→ (x(m ,M ) ∧ a < m )
)

n n n n n
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(1) ∧ (2) ∧ (3): when evaluated to true, this ensures that all
Ai were executed, and all these executions combined lead to Mn
as a consequence. This includes the case where all Ai execute
in ascending order. So, if we consider this particular order, the
formula leading to Mn becomes true.

(4)
:⇔

⋀
1≤j<m

(
∀mn+j−1∀cj∃mn+j : (x(mn+j−1,Mn+j−1)∧x(cj, Cj)∧

mn+j−1 < cn)→ (x(mn+j,Mn+j) ∧mn+j < cj)
)

(5)
:⇔

(
∀mn+m−1∃cm : (x(mn+m−1,Mn+m−1)) → (x(cm, Cm) ∧

mn+m−1 < cm)
)

(4) ∧ (5): This formula transitively ensures that whenever
Mn+j−1 is executed, there is a least one execution in ascending
order of all Cj. Mn+j−1 becomes the link between all antecedence
patterns and consequence patterns. Therefore, the conjunction
of formulas (1) to (5) ensures that whenever an instance con-
taining an ordered execution of Ai should lead to an ordered
execution of Ci. Note that this conjunction represents a stronger
constraint than the original GCR. However, as these formulas are
deducted directly from the actual processes, they do not add new
constraints.

Theorem 5 (Between Pattern 1).
Let A, B and C be three activities. A 99K C 99K B : if A and B occur

and B occurs after A, then C must occur in between.

(1) A 99KM1 ⊕ M2 99KM1

(2) M2 99KM3 99K B
(3) M1 99K C 99KM3

Then: Whenever (1) ∧ (2) ∧ (3) evaluates to true, A 99K C 99K B is
true as well.

Proof 5 (Between Pattern 1).
(1) :⇔ ∀a, x(a, A) → ∃m1∄m2, x(m1,M1) ∧ x(m2,M2) ∧ (a <

m1) ∧ (m2 < m1)
(2) :⇔ ∀b, x(b, B)→ ∃m2∃m3, x(m2,M2)∧ x(m3,M3)∧ (m2 <

m3 < b)
(3) :⇔ ∀m1∀m3, x(m1,M1)∧ x(m3,M3)→ ∃c, x(c, C)∧ (m1 <

c < m3)
(1) ∧ (2) ⇔ ∀a∀b, x(a, A), x(b, B) → (∃m1∄m2, x(m1,M1) ∧

x(m2,M2) ∧ (a < m1) ∧ (m2 < m1)) ∧ (∃m2∃m3, x(m2,M2) ∧
x(m3,M3) ∧ (m2 < m3 < b))
|H ∀a∀b, x(a, A)∧x(b, B)→ ∃m1∃m2∃m3, x(m1,M1)∧x(m2,M2)∧

x(m3,M3) ∧ (a < m1 < m2) ∧ (m2 < m3 < b)
|H ∀a∀b, x(a, A)∧ x(b, B)∧ a < b→ ∃m1∃m2∃m3, x(m1,M1)∧

x(m2,M2) ∧ x(m3,M3) ∧ (a < m1 < m2 < m3 < b)
(1) ∧ (2) ∧ (3) :|H ∀a∀b, x(a, A) ∧ x(b, B) ∧ a < b →

∃m1∃m2∃m3, x(m1,M1)∧x(m2,M2)∧x(m3,M3)∧(a < m1 < m2 <

m3 < b)→ ∃c, x(c, C) ∧ (m1 < c < m3)
|H ∀a∀b∃m1∃m2∃m3∃c, x(a, A)∧x(b, B)∧a < b→ x(m1,M1)∧

x(m2,M2)∧x(m3,M3)∧x(c, C)∧(a < m1 < m2 < m3 < b)∧(m1 <

c < m3)
|H ∀a∀b, x(a, A) ∧ x(b, B) ∧ a < b→ ∃c, x(c, C) ∧ (a < c < b)

• Example (7): order_intermediate 99K prepare_transport 99K
transport_intermediate . Again, in this example, we consider
the worst case scenario where each activity referred to
by the GCR belongs to a different process partner. In this
example, Middleman has one single alternative as it only has
two interaction activities with Special_carrier and Supplier
respectively, which follow the assertion template (1) of
Theorem 5; i.e., each execution of order_intermediate must
be followed (not necessarily immediately) by fwd_order_
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intermediate, which, in turn, should not be preceded by any
order_special_transport execution. Similarly, Special_carrier
and Supplier should identify assertions that follow rule tem-
plates (2) and (3) respectively.
Note that the Between Pattern A 99K C 99K B can be also
checked using chaining transitivity A 99K C 99K B . However,
this adds a stronger assumption on C and B that should
follow A whenever it occurs. For example, this holds in the
running example (cf. Fig. 3), as order_intermediate transi-
tively implies prepare_transport , which, in turn, transitively
implies transport_intermediate.

(1) Middleman
order_intermediate 99K fwd_order_intermediate
⊕ order_special_transport 99K fwd_order_intermediate

(2) Special_carrier order_special_transport 99K
waybill_for_intermediate 99K transport_intermediate

(3) Supplier fwd_order_intermediate 99K
prepare_transport 99Kwaybill_for_intermediate

heorem 6 (Between Pattern 2).
Let A, B and C be three activities. A 99K C 99K B : if A and B occur

nd B occurs after A, then C shall occur in between.

(1) : M1 99K A 99KM2 99KM3 99KM4

(2) : M1→ B 99K M3 99KM4

(3) : M3 99KM5 99K B
(4) : M2 99K C 99KM5

Then: Whenever (1)∧ (2)∧ (3)∧ (4) evaluates to true, A 99K C 99K B
is true as well.

Proof 6 (Between Pattern 2).
(1) :⇔ ∀a, x(a, A)→ ∃m1∃m2∃m3∃m4, x(m1,M1)∧x(m2,M2)∧

x(m3,M3) ∧ x(m4,M4) ∧ (m1 < a < m2 < m3 < m4)
(2) :⇔ ∀m1∀b∀m4, x(m1,M1) ∧ x(b, B) ∧ x(m4,M4) →

∄m2, x(m2,M2) ∧ (b < m2 < m4)
(3) :⇔ ∀m3∀b, x(m3,M3)∧ x(b, B)→ ∃m5, x(m5,M5)∧ (m3 <

5 < b)
(4) :⇔ ∀m2∀m5, x(m2,M2)∧ x(m5,M5)→ ∃c, x(c, c)∧ (m2 <

c < m5)
Using (1):
|H ∀a∀b, x(a, A)∧x(b, B)∧a < b→ ∃m1∃m2∃m3∃m4, x(m1,M1)

∧ x(m2,M2) ∧ x(m3,M3) ∧ x(m4,M4) ∧ (m1 < a < m2 < m3 <

m4) ∧ (a < b < m4 ∨m4 < b)
|H ∀a∀b∃m1∃m2∃m3∃m4, x(a, A) ∧ x(b, B) ∧ a < b →

x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ x(m4,M4)
)
∧

(
((m1 < a <

2 < m3 < m4) ∧ (m1 < b < m4)) ∨ ((m1 < a < m2 < m3 <

4) ∧ (m4 < b))
)

Using (2), if b happens before m4 then m3 should not happen
n between:
|H ∀a∀b∃m1∃m2∃m3∃m4, x(a, A) ∧ x(b, B) ∧ a < b →

x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ x(m4,M4)
)
∧

(
(m1 < a <

2 < m3 < b < m4) ∨ (m1 < a < m2 < m3 < m4 < b)
)

|H ∀a∀b∃m2∃m3, x(a, A) ∧ x(b, B) ∧ a < b →
(
x(m2,M2) ∧

(m3,M3) ∧ (a < m2 < m3 < b)
)

Using (3), if m3 < b, then there should be m4 in between:
|H ∀a∀b∃m2∃m3, x(a, A) ∧ x(b, B) ∧ a < b →

(
x(m2,M2) ∧

(m3,M3)∧ (a < m2 < m3 < b)→ ∃m5, x(m5,M5)∧ (m3 < m5 <

)
)
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|H ∀a∀b∃m2∃m3∃m5, x(a, A)∧ x(b, B)∧ a < b→
(
x(m2,M2)∧

x(m3,M3) ∧ x(m5,M5) ∧ (a < m2 < m3 < m5 < b)
)

|H ∀a∀b∃m2∃m3∃m5, x(a, A)∧ x(b, B)∧ a < b→
(
x(m2,M2)∧

x(m5,M5) ∧ (a < m2 < m5 < b)
)

Using (4), if there exist m2 and m5 such that m2 < m5, then
there should be c in between:
|H ∀a∀b∃m2∃m5, x(a, A) ∧ x(b, B) ∧ a < b →

(
x(m2,M2) ∧

x(m5,M5) ∧ (a < m2 < m5 < b)→ ∃c, x(c, C) ∧m2 < c < m5

)
|H ∀a∀b∃m2∃m5∃c, x(a, A) ∧ x(b, B) ∧ a < b→

(
x(m2,M2) ∧

x(m5,M5) ∧ x(c, C) ∧ (a < m2 < c < m5 < b)
)

|H ∀a∀b∃c, x(a, A) ∧ x(b, B) ∧ a < b→ x(c, C) ∧ (a < c < b)

In order to illustrate Theorem 6, we apply the following adap-
tations to the running example (cf. Figs. 1–4):

(i) After receiving request_details, Supplier prepares the de-
tails privately (prepare_details), then informs Middleman about
the start of intermediate production (production_status) before
sending back transport_details.

(ii) After receiving transport details, Special_carrier confirms
to Middleman the availability of transportation for intermediate
(transport_confirmation).

(iii) After receiving order_special_transport ,Middleman receives
production_status, does internal_checks, and waits for
transport_confirmation.

• Example (8):
prepare_details 99K internal_checks 99K safety_check . Similar
to the previous examples, the partners start by locally iden-
tifying relations that satisfy the derived assertions templates
of Theorem 6, then apply a matching mechanism to check
whether the additional interactions used for the derived
assertions intersect and jointly fulfill the templates. It is
noteworthy that the number of additional interaction activ-
ities required for the derived assertions is superior to the
number required in Theorem 5. Despite that, Theorem 6
provides more relaxed assumptions compared to Theorem 5
as it does not restrict activity B from occurring before activ-
ity A. Theorem 6 still prevents B from happening between
m1 and m3. The following assertions are the decomposition
results of Example (8):

(1) Supplier : request_details 99K prepare_details 99K
production_status 99K transport_details 99K
waybill_intermediate

(2) Special_carrier : request_details→ safety_check 99K

transport_details 99Kwaybill_intermediate
(3) Special_carrier : transport_details 99K

transport_confirmation 99K safety_check
(4) Middleman : production_status 99K internal_checks 99K

transport_confirmation

Note that all previous theorems consider loops and multi-
ple occurrences of each of the activities composing the global
compliance rule GCR. Indeed, in a process model that includes
loops or multiple instance patterns, an activity may be executed
multiple times at different points in time in the context of one
single process instance. As such, each derived assertion including
such repetitive activity should be satisfied for all its occurrences.
Although this issue has been addressed in all previous theorems
(see proofs), it resulted in additional decomposition complexity
not required for loop-free processes. Therefore, we propose a
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impler decomposition method for the ‘‘between’’ pattern, which
ay be applied solely to loop-free processes.

heorem 7 (Between Pattern (Without Loops)).
Let A, B and C be three activities. A 99K C 99K B : if A and B occur

nd B occurs after A, then C shall occur in between.

• (1) : A 99KM1 99KM2

• (2) : M2 99KM3 99K B
• (3) : M1 99K C 99KM3

Then: If the conjunction of formulas (1)∧ (2)∧ (3) evaluates to true,
A 99K C 99K B is true as well.

Proof 7 (Between Pattern (Without Loops)).
(1) :⇔ ∀a : (x(a, A))→ ∃m1, ∃m2 : (x(m1,M1) ∧ x(m2,M2) ∧

(a < m1 < m2))
⇔ ∀a∃m1, ∃m2 : (x(a, A)) → (x(m1,M1) ∧ x(m2,M2) ∧ (a <

m1 < m2))
(2) :⇔ ∀b : (x(b, B))→ ∃m′2, ∃m3 : (x(m′2,M2) ∧ x(m3,M3) ∧

(m′2 < m3 < b))
(2) :⇔ ∀b∃m′2, ∃m3 : (x(b, B)) → (x(m′2,M2) ∧ x(m3,M3) ∧

(m′2 < m3 < b))
(1) ∧ (2) |H (∀a∀b)∃m1, ∃m2∃m′2∃m3 : (x(a, A)) ∧ (x(b, B)) →

(x(m1,M1) ∧ x(m2,M2) ∧ x(m′2,M2) ∧ x(m3,M3) ∧ (a < m1 <
m2) ∧ (m′2 < m3 < b))

As there are no loops over A, B and corresponding Mi mes-
sages, then M2 can occur only once within one process instance.
Consequently, m2 = m′2:

(1) ∧ (2) |H (∀a∀b)∃m1, ∃m2∃m3 : (x(a, A)) ∧ (x(b, B)) →
(x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ (a < m1 < m2 < m3 < b))
|H (∀a∀b)∃m1, ∃m3 : (x(a, A)) ∧ (x(b, B)) → (x(m1,M1) ∧

x(m3,M3) ∧ (a < m1 < m3 < b))
(3) :⇔ ∀m1∀m3 : (x(m1,m1))∧x(m3,M3)→ ∃c : (x(m1,M1)∧

x(c, C) ∧ (m1 < c < m3))
⇔ ∀m1∀m3∃c : (x(m1,m1)) ∧ x(m3,M3) → (x(m1,M1) ∧

x(c, C) ∧ (m1 < c < m3))
(1) ∧ (2) ∧ (3) |H (∀a∀b)∃m1, ∃m3 : (x(a, A)) ∧ (x(b, B)) →

(x(m1,M1)∧x(m3,M3)∧(a < m1 < m3 < b))→ ∃c, x(c, C)∧(a <
m1 < c < m3 < b)
|H (∀a∀b)(x(a, A)) ∧ (x(b, B))→ ∃c, x(c, C) ∧ (a < c < b)

• Example (9):
prepare_details 99K internal_checks 99K safety_check . We use
the same GCR as in previous theorem illustration (including
the adaptations to Figs. Figs. 1–4). As the tasks involved
in the GCR are not contained in any loop, Theorem 7 may
be applied. The following assertions are the decomposition
results:

(1) Supplier prepare_details 99K production_status 99K
transport_details

(2) Special_carrier transport_details 99K
transport_confirmation 99K safety_check

(4) Middleman production_status 99K internal_checks 99K
transport_confirmation

heorem 8 (Requires Transitivity).
Let A and B be two activities or interactions such as A B

: if A occurs then B should occur (before or after, ∀a, x(a, A) →
∃B, x(b, B)):.

Let A, B,M be three activities or interactions such that :

(1) : A 99KM
(2) : M B .

If (1) ∧ (2) evaluates to true, then A 99K B ∨ B 99K A evaluates to
true.
11
Proof 8 (Requires Transitivity).
(1) :⇔ ∀a, x(a, A)→ ∃m : x(m,M) ∧ (a < m)
(2) :⇔ ∀m,

(
x(m,M) → ∃b : x(b, B) ∧ m < b

)
∨

∀m,
(
x(m,M)→ ∃b : x(b, B) ∧ (b < m)

)
⇔ ∀m,

(
x(m,M)→ ∃b : x(b, B) ∧ (m < b) ∨ (b < m)

)
(1) ∧ (2) :⇔ ∀a,

(
x(a, A) → ∃m : x(m,M) ∧ (a < m)

)
∧

∀m,
(
x(m,M)→ ∃b : x(b, B) ∧ (m < b) ∨ (b < m)

)
|H ∀a∃m∃b, x(a, A) → x(m,M) ∧ (a < m) → x(b, B) ∧ (m <

) ∨ b < m
|H ∀a∃m∃b, x(a, A) → x(m,M) ∧ (a < m) → x(b, B) ∧ (a <
< b) ∨ (a < b < m) ∨ (b < a < m)
|H ∀a∃b, x(a, A)→ x(b, B) ∧ (a < b) ∨ (b < a)
|H ∀a, x(a, A)→ ∃b, x(b, B)

Note that this theorem also considers loops and multi-instance
atterns. The illustration of Theorem 8 is similar to the rightwards
nd leftwards transitivity examples.

. Algorithm for decomposing global compliance rules

At design time, checking a GCR that solely refers to interac-
ions and/or public activities can be achieved by applying con-
emporary compliance checking techniques (cf. [24]) either on
he choreography model or the public process models of the
nvolved partners. By contrast, if a GCR refers to private activ-
ties of different partners, it becomes impossible to check its
orrectness as partners must not view the private process model
arts of the other partners and, therefore, cannot identify the
ependencies between the private activities involved in the GCR.
o cope with this issue, we suggest decomposing the GCR into
set of assertions of which each can be checked locally by the
orresponding partner. The decomposed rules then reproduce the
ehavior of the original GCR.
Decomposition in compliance checking has been exploited

y [25], but only at the process model level in order to achieve
erformance gains for the compliance checks. The article at hand
roposes to decompose the GCR to distribute the compliance
hecks to the partners for maintaining the confidentiality of their
rivate tasks. This section focuses on the decomposition algo-
ithms and explains the steps to derive assertions by applying the
heorems introduced in Section 3.

Fig. 10 provides a high-level description of the steps required
y partners involved in a GCR to identify a valid decomposition.
lgorithm 1 provides a more detailed view on how this can be
chieved in practice with a particular focus on compliance rules
hat include one antecedence pattern.

Given a GCR, the decomposition process starts by selecting
leader among the partners involved in the GCR. The leader
ill be responsible for identifying the pattern corresponding to
he GCR (e.g., rightward chaining pattern or between pattern).
his is trivial and can be accomplished with a simple exact
raph matching algorithm (e.g., comparing node types and con-
ectors). Once the pattern is identified, several decomposition
heorems may be applicable. For example, in the case of the
etween pattern, Theorems 5, 6, and possibly 7 (if the pro-
esses are loop free) may be applied. The leader will then select
nd apply a theorem, derive the assertion templates accordingly,
nd send each of them to the corresponding partner—this step
an be easily automated. An assertion template, in turn, is a
erived assertion output from the theorem, where the actual
nteractions (i.e., message exchanges) have not yet been defined.
or example, for Middleman, get_permission_of _authority 99KM

(where M shall be an activity interacting with Special_carrier)
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Fig. 10. Decomposition process.
is a derived assertion template of the global compliance rule
get_permission_of _authority 99K safety_check , as M has not been
efined yet.
Next, each partner will try to identify an assertion template

nstance that conforms with the derived assertion template—
n instance of an assertion template corresponds to a tem-
late with actual activities. Order_special_transport is a valid

option in this example as it interacts with Special_carrier fulfilling
he template constraint (i.e., the template instance corresponds
o get_permission_of _authority 99K order_special_transport ). This
can be automated by having each partner responsible for an
assertion template iterating over the message exchanges in its
private process model. Depending on the assertion template
structure, one or several message exchanges may be selected
for constructing an assertion instance candidate. The latter must
conform with the assertion template. Moreover, it needs to be en-
sured that the process in question is compliable with it. Existing
design-time compliance checking techniques can be employed in
this regard [16,26–28].

Several assertion instance candidates can be identified for the
same partner, which may increase the probability of finding a
collective solution among all partners. Afterwards, partners ei-
ther collectively enter a negotiation phase and exchange their
assertion instance candidates, or rely on the leader to collect
all proposals and run a matching algorithm that selects asser-
tion candidates, which replicate the templates derived by the
decomposition. Indeed, two assertion templates may require that
they use the same message exchange. Therefore, the matching
algorithm will select the assertion instance candidates of different
partners that have the same message exchange in common (using
function ψ or φ to ensure that the mapping is correct). While
having the leader collecting the assertion proposals and doing
the matching can be more efficient and reduce the communica-
tion overhead between partners, conducting the negotiation in a
distributed manner reduces trust assumptions.

Note that it is possible to run the entire process in a dis-
tributed manner, without need for a leader. In this case, all
12
partners will have to run the matching algorithms for identi-
fying the GCR pattern. Moreover, they have to agree on the
decomposition theorem to be applied (e.g., using a majority vote)
and collectively execute the matching of assertion instances. If
a matching solution is found, each partner will use the selected
assertion instance for future run-time checking. Unless a solution
is found, the next applicable theorem will be explored in the
same way. If no solution could be found after trying all applica-
ble decomposition theorems, synchronization messages become
necessary for enabling distributed run-time checking of the GCRs.
At run-time, no additional communication with other partners is
needed for checking the GCR, unless a violation occurs. Similar to
assertion and local compliance rules monitoring, each partner is
responsible for complying with the derived assertions. This can
be enforced using post-auditing processes by the respective legal
entities, e.g., external audits conducted by data protection officers
on hospitals that participate in a collaborative study on COVID-19
vaccines’ efficiency. Indeed, in the healthcare sector, new meth-
ods exist, where it is possible to conduct a research study using
federated machine learning.6 In this setting, the ML application
is conducted locally within each healthcare data provider infras-
tructure (e,g., hospitals or bio banks), and the resulting output
models are aggregated instead. This prevents data of different
participants from being merged in a central repository, and thus
being subject to different and complex regulatory issues. These
locally executed processes, nevertheless, also need to comply
with data protection rules, where, for example, the data used for
the aggregated model must have patient consents beforehand.
Therefore, external audits become necessary, at each site, to check
whether each federated model used for the aggregation is indeed
compliant with the GDPR requirements for data consents. Note
that this also prevents collecting all participants’ consents in one
central repository for the purpose of compliance checks on the
aggregated model.

6 https://featurecloud.eu/.

https://featurecloud.eu/
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Algorithm 1 realizes GCR decomposition as set out in Defini-
tion 2. It assumes that each node of the GCR is assigned to one
partner being responsible for it. Further on, we assume the input
GCR to be consistent and satisfiable (for dealing with unsatisfiable
and inconsistent rules we refer interested readers to [29]). In the
following, we first explain Algorithm 1 step by step and then
illustrate the entire algorithm along Example 1 (see below).

Starting from the A node (cf. Definition 2), Algorithm 1 walks
outwards through all other nodes of the GCR. Thereby, the visited
parts are copied and become assertions. Wherever the algorithm
walks over a connector between two nodes n and s, which are
assigned to different partners ρ(n) and ρ(s), the GCR is split at this
position as this dependency cannot be evaluated by a single part-
ner. Next, the algorithm tries to replicate the connector where the
GCR was split through (transitive) message exchanges between
both affected partners by applying the transitive relationships
from Section 2. Therefore, sets n•, •s, and Θ are calculated.
Depending on the pattern of s (cf. Definition 2), n• and •s contain
the messages succeeding or preceding n and s, respectively. Note
that these calculations have to be accomplished in a decentralized
manner by ρ(n) and ρ(s) themselves as n and s may be private
tasks. Next, Θ combines those messages of n• and •s that can be
combined.

If s is a C node (i.e., s must follow n), Θ contains message
tuples (m1,m2) that ensure that n is always followed by m1, m1
by m2 (unless m1 = m2), and m2 by s. Any pair (m1,m2) ∈ Θ
can then be used to complement the created assertions , i.e., m1
becomes a placeholder for s within the assertion of ρ(n), whereas
m2 replaces n for ρ(s).

Regarding C nodes (i.e., s must not follow n), all pairs of
messages (m1,m2) ∈ Θ ensure that n is preceded by m1 in any
case, andm1 is preceded bym2 (unlessm1 = m2), whereas s never
follows m2. Finally, for A nodes an occurrence of s after n allows
gnoring the rule. Hence, A nodes result in pairs (m1,m2) such
hat m1 may only occur after n and m2 may only occur after m1
unless m1 = m2). However, there should be at least one case in
hich m2 is followed by s (i.e., s is not always preceded by m2).
Finally, all assertions of the same partner, which depend on

he same A message, are merged to reduce the number of asser-
ions. Remaining assertions without consequences are removed
s they result from the processing of A nodes, but have not been

merged in the previous step. Remember that ignoring A nodes
s allowed as this makes rules even more strict.

xample 1. Let us apply Algorithm 1 to GCR C3 (cf. Fig. 11)
rom the running example that we introduced in Section 1 (cf.
igs. 1–4). Let the responsibilities be ρ(Safety Check) = Special Car-
ier, ρ(Get permission of authority) = Middleman, and ρ(Transport
ntermediate) = Special Carrier. After assigning responsibilities,
lgorithm 1 starts with A node Transport intermediate and cre-
tes a new assertion for the Special Carrier who is responsi-
le for this activity. Then the Safety check is discovered and
dded to the assertion, since it belongs to the same partner.
 o

13
n turn, another partner (i.e., Middleman) is responsible for ac-
ivity Get permission of authority. Hence, the algorithm cuts the
espective connector and creates a new assertion for the re-
pective partner. Next, Special Carrier and Middleman determine
• and •s with n• = {Waybill, T .Details, Req.Details,OrderST }

and •s = {OrderST } to calculate those message pairs Θ =

{(Waybill,OrderST ), . . . , (OrderST ,OrderST )} that can be used to
transitively replicate the connector where the GCR was split.
Finally, the algorithm places the selected messages into both
assertions in such a way that the correctness of the original rule
is preserved through the (leftwards) transitivity of eCRGs. Note
that the Special Carrier could use message Waybill instead as
(Waybill,OrderST ) ∈ Θ holds.

For the same GCR, it is possible to infer several decomposition
alternatives, depending on which interactions are used to find a
transitive control flow relationship between the nodes of the GCR.
It is also possible that no direct link can be identified between two
partners’ GCR nodes (i.e., there is no interaction between these
two partners). As such, interactions with intermediary partners
can be used to find an indirect link (i.e., transitive interactions). As
aforementioned, if no transitivity is identified between the GCR
nodes of two partners (even not through intermediary partners),
it becomes necessary to exchange additional execution data be-
tween the partners involved in the GCR, by, for example, adding
sync messages. Sync messages are a specific type of messages
communicated between partners to inform about the state of a
given task (e.g., terminated, started, not executed). Although sync
messages are not preferred as they expose private data about the
exact execution time of a private task, they become necessary
when the GCR cannot be decomposed into assertions, i.e., no
transitive relations can be identified.

In the following, we discuss the complexity of the GCR decom-
position in Algorithm 1. Results on checking regulatory compli-
ance in general have been provided in [30]. The first and second
loops iterate over the nodes of the compliance rule. If we consider
that two nodes can only have one flow connector, the number of
required operations will be n n−1

2 , otherwise n(n−1). In both cases
complexity corresponds to O(n2). The first if statement is O(1),
whereas the else statement calculates n•, •s and θ each with a
worst case complexity of O(n2). The second inner loop has the
same complexity as the first inner loop. The third nested inner
loop iterates over partners and compare assertions within the
same partner with a number of operations equal to n × mm−1

2 ,
hich gives a complexity of O(n3). Finally, the last inner loop has
complexity of O(n). Obviously, the overall worst case complexity
f the algorithm is polynomial O(n4); i.e., outer loop combined
ith the third nested inner loop.

. Verifying GCR decomposition

The GCR decomposition algorithms from Section 4 are based
n the theorems we have presented and proven in Section 3.
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Algorithm 1: GCR decomposition DECOMPOSE(gcr)

• Global compliance rule gcr = (N, ρ, ϕ, type, pattern)

• Choreography model y, and M as the set of all partners’ message nodes.

• We assume that ρ also returns the partner private model of a node n.

select the only a ∈ N with pattern(a) = A
initialize queue Q ← {a}

create (incomplete) Assertion Aa ← " a " for the partner associated with ρ(a)

oreach (n← removeHead(Q )) do
foreach (s ∈ N with ϕ(n, s) ̸= ∅) do

Q ← Q ∪ {s}
if (ρ(n) = ρ(s)) then

//n and s involve the same partner
initialize As ← @An as reference on An

if (pattern(s) = A ) then extend As with "99K s "

if (pattern(s) = C ) then extend As with "99K s "

if (pattern(s) = C ) then extend As with "99K s "

else
//n and s involve different partners pi , pj
if (pattern(s) = C ) then

n• ← {m ∈ ρ(n)|m ∈M, ρ(n) |H n 99K m }

•s← {m ∈ ρ(s)|m ∈M, ρ(s) |H m 99K s }

Θ ← {(mn,ms) ∈ (n• × •s) | γ |H mn 99K ms }

if (pattern(s) = C ) then
n• ← {m ∈ ρ(n)|m ∈M, ρ(n) |H m 99K n }

•s← {m ∈ ρ(n)|m ∈M, ρ(n) |H m 99K s }

Θ ← {(mn,ms) ∈ (n• × •s) | γ |H ms 99K mn }

if (pattern(s) = A )} then
n• ← {m ∈ ρ(n)|m ∈M, ρ(n) |H n 99K m }

•s← {m ∈ ρ(s)|m ∈M, ρ(s) ̸|H m 99K s }

Θ ← {(mn,ms) ∈ (n• × •s) | γ |H mn 99K ms }

if (Θ ∪ (n• ∩ •s) = {∅}) then
//No implicit dependency between n and s
add sync message between n and s
update models p1 , . . . , pn , and γ
recalculate n•, •s, and Θ

else
//implicit dependency m between n and s exists
select (mn,ms) ∈ Θ ∪ (n• ∩ •s)2

if (pattern(s) = C ) then
extend An with "99K mn "

create Assertion As ← " ms 99K s " for ρ(s)

if (pattern(s) = C ) then
extend As with " mn 99K "

create Assertion As ← " ms 99K s " for ρ(s)

if (pattern(s) = A ) then
create Assertion As ← " ms → s " for ρ(s)

foreach ((s ∈ N with ϕ(n, s) ̸= ∅)) do
//same as for each (n, s) ∈ C above
//but with flipped directions

foreach (partner i) do
foreach ((Aj, Ak) of partner i) do

if (Aj, Ak have the same A pattern) then
merge Aj and Ak based on the A pattern

foreach (Assertion A) do
if (A has empty C and C patterns) then remove A

Although these theorems support most control flow (i.e., be-
havior) compliance patterns known from literature [31,32], they
cannot cover every possible scenario. There may be two reasons
for this: (i) either the structure of a GCR is not covered by
14
Theorems 1–8 or (ii) none of the proposed decompositions is
applicable. In both cases, it might not only become necessary to
find a novel decomposition of a GCR, but also to verify the latter,
i.e., to prove the correctness of the decomposition. One approach
to accomplish this would be to apply the eCRG semantics and
to formally prove correctness (cf. Section 3). However, this is
far from being trivial. Therefore, we introduce Algorithm 2 that
enables the automated verification of GCR decompositions based
on eCRG model checking.
Algorithm 2: Verification of Decompositions (Assertions
A1, . . . , An, GCR gcr)

1 Let A be a function that translates an eCRG into a
corresponding finite-state automaton

2 M←
⋂

1≤i≤n A(Ai)
3 R←M ∩ ¬A(gcr)
4 if R = ∅ then
5 //Decomposition is correct
6 return true
7 else
8 //Decomposition is incorrect
9 return any arbitrary trace through R as counter

example.

The main idea of Algorithm 2 is to interpret a GCR decomposi-
tion as declarative process model and to verify whether it solely
allows for execution traces that comply with the original GCR.
Thus, techniques that are known from the verification of declar-
ative process models [33,34] can be applied: First, all assertions
A1, . . . , An of the decomposition are translated into finite state
automatons A(A1), . . . ,A(An). Their intersection

(⋂
1≤i≤n A(Ai)

)
corresponds to an automaton that only accepts traces that comply
with every assertion. In turn,¬A(gcr) denotes the automaton that
accepts solely traces violating the original GCR. If the intersection
of these two automatons is empty, the decomposition is correct
as it only allows for traces that do not violate the original GCR
and, thus, comply with it.

(⋂
1≤i≤n A(Ai)

)
∩ ¬A(gcr) = ∅ ⇒⋂

1≤i≤n A(Ai)
)
⊆ A(gcr)

For any choreography y, whose partners ensure A1, . . . , An, we
an now directly conclude: A(y) ⊆

(⋂
1≤i≤n A(Ai)

)
⇒ A(y) ⊆

(gcr), i.e., y complies with gcr

. Implementation

The presented approach is implemented as part of the C3Pro
ramework,7 which deals with change and compliance in pro-
ess choreographies [14]. The framework provides sophisticated
unctions for defining, propagating and negotiating changes in
he context of process choreographies. Furthermore, it comprises
modeling component as one of its core components for edit-

ng and changing public and private process models as well
s process choreography models. This component further en-
bles the visualization of change propagations. In the context
f the present work, the three-layer architecture of the frame-
ork [14] (i.e., process modeling, change, and execution) was
xtended with additional components for dealing with process
ompliance. In detail, these new components include (i) an eCRG
odeling tool, (ii) an automated generator of compliant chore-
graphies, (iii) a model checker, and (iv) a GCR decomposition
ool.

Fig. 12 depicts the main components of the C3Pro framework.
he compliance (CME) and process modeling (PME) environ-
ents allow defining and editing compliable process choreogra-
hy models [28,35] and decomposing global compliance rules.

7 http://www.wst.univie.ac.at/communities/c3pro/.

http://www.wst.univie.ac.at/communities/c3pro/
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ompliability was introduced as ‘‘a semantic correctness criterion
o be considered when designing interaction models. It ensures that
nteraction models do not conflict with the set of imposed global
ompliance rules’’ [35]. At design time, it is ensured that the
reated choreography models are compliant with the defined
ompliance rules. Using both PME and CME, it becomes possible
o parameterize and automatically generate compliable chore-
graphies, which then can be used for testing and simulation
urposes. A user, therefore, can specify the number and patterns
f the GCRs as well as the parameters of the process and choreog-
aphy models (e.g., number of private and public tasks, number of
artners and interactions, or number and types of the control flow
atterns that shall be covered by the processes) [16]. Although
he generated models represent synthetic processes without real-
orld semantics (i.e., these models do not reflect actual use
ases such as a manufacturing collaborative process), they may
erve as a support for simulation and research work evaluation,
.g., model executions can result in distributed logs of synthetic
ata, which are useful for evaluating the efficiency of specific
ining techniques. In the context of this work, this tool can be
sed to test the feasibility and applicability of the decomposi-
ion process on more complex choreographies and corresponding
CRs. Currently, the automated generator tool only supports four
asic compliance patterns. However, other GCR patterns can be
irectly inferred from the models and be used for testing. The tool
s integrated in the C3Pro framework and can be tested. A data set
of automatically generated models and the corresponding GCRs
are made available in the same repository.7 Finally, the change
editor allows defining and editing changes of process models and
compliance rules, respectively.

The Compliance Management Service represents the main
extension to C3Pro related to this work, and handles the defined
compliance rules and implements the theorems as well as the
GCR decomposition algorithm (cf. Section 4). As process execution
engine, the Cloud Process Execution Engine8 is utilized. Most
functions of the C3Pro framework are provided as a RESTful
service, which enables unified access from any client being able
to communicate via HTTP. Finally, the Compliance Management
Service serves as a pluggable middleware that may be used to
integrate other process execution engines.

For testing the framework, we edited BPMN 2.0 choreography
and collaboration models using Signavio9 and exported them to
the C3Pro framework as XML files. Examples are extended with
GCRs, which are then decomposed into derived assertions using
Algorithm 1. To this endeavor, mainly the CME, PME and the
compliance management service were used.

In addition, the C3Pro framework was extended with a novel
eCRG model checker that was published on github.10 Its com-
mand line interface enables the specification and verification of
both global and local compliance rules (GCR and LCR) as well as
process models and choreographies. In particular, the eCRGmodel
checker supports the verification of

• GCR decompositions, i.e., it allows verifying whether GCRs
can be concluded from a given decomposition,
• local compliance, i.e., it allows verifying whether a single

process model complies with a given compliance rule (CR),
and
• global compliance, i.e., it allows verifying whether a process

choreography complies with a given GCR.

8 http://cpee.org.
9 http://academic.signavio.com/.

10 https://github.com/davidknuplesch/SCV.
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Moreover, the eCRG checker enables the automated decompo-
sition of tree-structured GCRs with a single antecedence.

In order to verify GCR decompositions and the various kinds
of compliance respectively, the eCRG model checker translates
global and local compliance rules as well as process models and
choreographies into automaton, which are then combined and
intersected. Depending on whether the resulting automaton is
empty or not, the verification has been successful or a counter
example trace has been produced. The eCRG model checker has
been written in Java 8 on top of the dk.brics.automaton
framework.11

7. Applicability

This section demonstrates and discusses how the presented
decomposition algorithm can be applied in real-world settings.
Here, a GCR may be imposed on process choreographies by ex-
ternal sources, e.g., considering regulatory documents such as
the GDPR or standards such as ISO norms [36]. A GCR may
also reflect internal compliance rules expressing, for example,
implicit dependencies between the partners that are crucial for
(re-)scheduling the process activities for one partner or across
multiple partners in the choreography. The visibility of activi-
ties and compliance rules in real-world settings depends on the
contractual situation and the roles of the partners in the chore-
ography. In supply chains in automotive domain, for example, an
Original Equipment Manufacturer (OEM) might demand insights
into certain specifics of the private processes of its suppliers and
the connected (internal) compliance rules.

7.1. Manufacturing use case

In the supply chain example presented in Section 1, GCR
C3 (cf. Fig. 2) reflects an externally imposed GCR on safety in
manufacturing and logistics processes. GCR C1, in turn, might
reflect an internal quality assurance rule that is solely verified by
the Manufacturer, but is also made visible to the other partners in
order to, e.g., create trust.

The real-world use case frommanufacturing depicted in Fig. 13
demonstrates how the decomposition algorithms can be em-
ployed to lift implicit (data) connections to explicitly modeled
assertions. The use case covers a process choreography between
Partner 1 (i.e., a car manufacturer), Partner 2 (doing injection
molding), and Partner 3 (i.e., the electro plater that coats parts
in a correct color scheme). The choreography is designed and
implemented using the CPEE (Cloud Process Execution Engine)12.
Fig. 13 shows the public activities of all partners, e.g., activity
place order for Partner 1 and private activities, e.g., activ-
ity wait for order completion for Partner 1. The public
activities send or receive messages, e.g., activity place order
sends a message received by activity receive order. Note that
the scenario abstracts from the details of the public and private
activities, which are modeled as sub-processes activities, except
for the electroplating task where the corresponding sub-
process is depicted. The sub-process describes the measuring of
the quality of the bath and the glossiness; both measures are
then forwarded to the partner. Depending on the measures bath
maintenance is conducted (alternative default branch). All sub-
processes are of different complexity, i.e., they might contain
decisions and loops as well. The complex activity wait for or-
der completion, in particular, comprises a set of sub-activities
and is signifying the scheduling between the activities of the
different partners.

11 https://www.brics.dk/automaton/.
12 https://cpee.org/.

http://cpee.org
http://academic.signavio.com/
https://github.com/davidknuplesch/SCV
https://www.brics.dk/automaton/
https://cpee.org/
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Fig. 12. C3Pro prototype architecture.
During the design of the choreography the partners specified
implicit connections, i.e., dependencies between (private) activ-
ities that are not covered by message exchanges and express
mostly data dependencies. For example, activity wait for or-
der completion (private, Partner 1) implicitly depends on
the data produced by activities prepare for manufacturing,
manufacturing of parts, and quality control (all private,
Partner 2).

These implicit connections refer to two main ‘‘functions’’ of
the manufacturing setting, i.e., (i) resource planning and (ii) quality
control.

(i) Proper resource planning is part of the contract between the
partners. There are implicit rules regarding how fast Partner 2
has to react to an order. This depends on assumptions how fast
the stock drops for Partner 1. This manifests as follows: If ac-
tivity place order (Partner 1) occurs, then activity resource
planning Partner 2 has been done before (i.e., resource plan-
ning data received) and activity resource planning (Partner
2) was based on activities put parts to stock and deliver
until stock is low (Partner 1). Understanding this as a com-
pliance task, we can say that when the above activity information
matches, the compliant ordering can be ensured.

The question is how such implicit connections can be checked
without revealing information on the private activities. Here,
the presented decomposition algorithm can help. The idea is
to express the implicit connections by GCR and verify them
based on assertions. Take, for example, the implicit connection
between private activities place order (Partner 1) and re-
source planning (Partner 2). We can formulate this implicit
connection as GCR

C1 : placeorder 99K resourceplanning
Using Algorithm 1, C1 can be decomposed into the following

ssertions:

• A1
C1
: placeorder 99K m1 m1

• A2 : m 99K resourceplanning m
C1 1 1
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Note that doing so, the implicit connection is lifted up to an
explicit one by sending message m1.

(ii) Consider now the more complex GCR covering the overall
quality control that involves all three partners. Partner 1
has to do the final inspection, Partner 2 has to ensure the
quality of the injection molded parts (no cracks, no holes), and
Partner 3 has to ensure the quality.

It is assumed that data for checking quality individually has
been delivered whenever an order is finished. In this case, activity
wait for order completion by Partner 1 yields all infor-
mation about the quality of the injection molded parts and the
electroplating process, whereas during activity check electro-
plated parts by Partner 1 all additional information about the
molding process is available. Overall, if activity check electro-
plated parts (Partner 1) occurs, then it has to be checked
whether or not activities electro-plate parts and quality
control by Partner 3 were executed. Before that, for activity
wait for order completion, activities prepare for manu-
facturing (e.g. machine calibration data, material information),
manufacturing of parts, and quality control by Partner
2were executed. If all of the above information has been received,
the manufacturing process was compliant, i.e., all required steps
seem to have taken place.

7.2. Healthcare use case: FeatureCloud13

In the healthcare sector, data is usually distributed over mul-
tiple hospitals or biobanks. As such, conducting a clinical trial
requires all data to be collected and accessed centrally, e.g., in
a central cloud. The advent of federated machine learning (ML)
has overcome this issue by providing means for third parties
(e.g., research institutions) to conduct ML studies while ensuring
that the data remains legally and technically within the data

13 https://featurecloud.eu/.

https://featurecloud.eu/
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Fig. 13. Manufacturing Use Case.
rovider infrastructures, and where locally learned models are
ggregated instead of the actual data [37]. While, in theory, this
ignificantly improves patient data privacy, in practice it provides
o guarantees that the local processes and the locally learned
odels comply with the overall global policies. To deal with this,

he local process of each party (e.g., hospital) can be equipped
ith assertions that help to facilitate audits and consent tracking.

n such a setting with multiple stakeholders, multiple global
ompliance rules are put in place. The following GCRs are real
xamples taken from the FeatureCloud project in the healthcare
omain [37]. The example includes multiple processes related
o participants in a study (e.g., hospitals), the study coordinator
e.g., pharmaceutical company or university), patients (e.g., pro-
ess for managing consents), and legal entities (e.g., for approving
tudies):

• Before a participant (hospital) executes a clinical trial (par-
ticipant process) upon invitation by the coordinator (e.g., re-
search entity), the trial has to be approved by a legal health
authority, e.g., ethics committee (approval process of the
authority).
• After a patient revokes a consent (i.e., patient process), the

hospital must delete the information that the latter had
given a consent to use his or her data (i.e., hospital process).
• After inviting a participant for a study (i.e., by the study

coordinator), a hospital has to collect patient consents spe-
cific to that type of study (e.g., breast cancer) unless board
consent had been given before.
• Before model aggregation by the study coordinator takes

places (e.g., research entity process), each participant (hos-
pital process) has to commit the inputs/ outputs of the
locally trained model to an immutable storage.

ote that most of the tasks involved in these GCRs are private,

nd federated ML prevents the data from being accessible or from

17
being moved to other parties, which makes it impossible for the
study coordinator, for example, to check whether or not the hos-
pital has already collected consents after being invited. Moreover,
it is not possible for a patient to check whether the hospital
had really deleted the data after being revoked. Additionally, it
is possible that the study coordinator requests approval from a
legal authority, but continues with executing the federated ML
process on patient data before receiving the approval. Therefore,
decomposing such GCRs into local assertions that have to be
checked and audited locally within each process is required as no
global or shared execution logs exist that enable the monitoring
of GCR violations. The motivation behind GCR decomposition
is therefore not solely restricted to improving performance by
minimizing message exchanges, but also to deal with the impos-
sibility of creating shared logs due to privacy concerns. Further
assume that it is possible to create a shared log that collects
information about the execution times of private tasks of different
partners composing a GCR (to centrally monitor GCRs). Then,
the more GCRs a partner is involved in, the more information
about its overall process can be learned by other parties. Finally,
in the case where privacy is not a concern, GCR decomposition
can drastically enhance performance by reducing the number of
additional messages that need to be exchanged between part-
ners when relying on existing message exchanges. This becomes
highly interesting when the number of process instances is very
high (e.g., car manufacturing, supply chain management) as the
GCR then needs to be checked for each instance. For example, in
the automotive domain (cf. Section 7.1), new reports14 estimate
the production of automotive brake pads to reach more than 1.3
billion OEM per year by 2026. If we consider that each OEM

14 https://www.gminsights.com/industry-analysis/automotive-brake-pads-
market.

https://www.gminsights.com/industry-analysis/automotive-brake-pads-market
https://www.gminsights.com/industry-analysis/automotive-brake-pads-market
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anufacturing corresponds to a process instance that has to
omply with at least one GCR, the number of required message
xchanges needed to check the GCR (without decomposition) will
t least match the same number.

.3. Discussion

In the introduction, the following research question was stated:
RQ: How to verify GCRs in a decentralized setting of a process

horeography where no central coordinator with complete knowl-
dge on the private and public tasks of all partners exists?
In the following, we discuss how far the article at hand has

ddressed RQ and which open questions still remain. For this pur-
ose, we sketch the end-to-end application of the decomposition
lgorithm along the following steps:

1. Check whether the GCR can be verified at choreography
level, i.e., solely referring to interactions.

2. Check whether the GCR can be verified at the public pro-
cess of one partner.

3. Check whether the GCR can be verified on the public pro-
cesses of at least two partners: partners have to check for
the absence/presence of GCR-related activities and activity
orders based on choreography and interactions if possible.
Otherwise, verification has to be postponed to the runtime
by additionally synchronizing activities OR compliance has
to be verified in an ex post way based on logs if available.

4. Otherwise: The GCR refers to the private processes of one
or several partners and a decomposition has to be applied.

As private activities and their dependencies are not visible
o all collaborators, parts of the decomposition algorithm are
xecuted locally by all partners involved in this GCR in order to
dentify possible transitive relations between their corresponding
rivate activities and possible public activities, or interactions
hat replicate the connector where the GCR was split. This re-
ults in multiple derived assertion alternatives, which are then
ggregated to alternatives from other partners in order to find
combination that recreates the original rule as described in

ection 4 (cf. Example 1). Once the GCR is decomposed and the
orresponding assertions are derived, each partner locally checks
ts derived assertions at runtime.

Overall, RQ has been addressed in breaking down the problem
f GCR verification on distributed processes into the steps out-
ined above. Moreover, a sophisticated decomposition algorithm
or GCR that refers to private activities of one or multiple partners
as been provided. This enables distributed compliance verifica-
ion for the supply chain and manufacturing use cases discussed
n Section 7.1.

Limitations and open questions: This paper focuses on struc-
ural compliance, i.e., a GCR solely refers to control flow patterns.
ompliance patterns that deal with, for example, data and re-
ources (cf. [38]) are future work and will add substantially to
he complexity of the approach. Moreover, we have applied our
pproach to two use cases from the manufacturing and healthcare
omains. However, additional studies in other domains, such as
upply chains and logistics, become necessary to evaluate the
eneralizability and broad applicability of the approach. In ad-
ition, the presence of XOR branches in the processes (where
ending of messages on these branches is optional) does not affect
he correctness of the decomposition as long as the processes
re compliable with the original GCR [35]. Indeed, we assume
he soundness of the different process models (i.e., consistency
nd compatibility) and their compliability to the original GCR.
his means that original GCRs are correctly specified, and the
ecomposition enables their checking in a distributed way. In
18
this case, transitivity ensures correct decomposition of GCR even
at the presence of XOR branches. If no transitive relations are
identified, sync messages are required. Further on, in the end-to-
end approach outlined above, Step 3 still offers the challenge on
how to check GCR on public processes of multiple partners.

As a limitation of the evaluation, the proposed approach has
not yet been integrated with off-the-shelf information systems
(e.g., a manufacturing execution system, supply management sys-
tems) and, thus, has not been deployed to real-world environ-
ments and been evaluated over a longer period of time. Due to
this missing practical use in a real setting, however, it is difficult
to evaluate or estimate the amount of efforts (e.g. in terms of
time or money) that is spent on manually checking compliance
in process choreographies and to compare it with the effort
required with the proposed approach. We have insights into other
real-world use cases (e.g., change management in automotive
supply chains, cross-organizational patient treatment processes)
where these efforts are huge according to the parties involved.
However, to be able to quantitatively assess these manual efforts
and to compare them with the ones of an automated approach,
an empirical study is required that systematically assesses use
cases from various application domains. Note that this constitutes
a research endeavor on its own. Obviously, any approach au-
tomating compliance verification in a decentralized setting offers
benefits compared to the manual efforts and audits that would
be needed instead. From a qualitative perspective the benefits for
enterprises, which are enabled by the proposed approach, are as
follows:

• Privacy. The proposed approach prevents a partner from
gaining insights into the private tasks of other partners,
e.g., there is no need for exchanging messages to tell other
partners when own private tasks are executed.
• Decentralization. There is no need for a shared common log

where partners collect all messages/events related to the
execution of tasks involved in the GCR. Instead compliance
checking is accomplished in a decentralized fashion.
• Minimizing the message exchange overhead. No additional

message exchanges are required for checking a GCR.

8. Related work

The work presented in this article can be positioned at the
interface between process choreographies and business process
compliance. Section 8.1 summarizes basic works from these two
research fields, whereas Section 8.2 discusses approaches that
address issues at the interface between them.

8.1. Basic research fields

Section 8.1.1 gives backgrounds on process choreography re-
search, whereas Section 8.1.2 summarizes basic works dealing
with business process compliance.

8.1.1. Process choreography
Process choreography research has mainly dealt with the mod-

ling of process choreographies and the verification of correct-
ess properties. For this purpose, specific choreography model-
ng languages like Let us dance, Interaction Petri nets, and BPMN
horeography diagrams are proposed, which support the modeling
f collaborative process behavior. A particular focus of existing
orks has been put on correctness properties of choreography
odels (e.g., realizability), which have been intensively studied

n literature [39,40]—for an overview we refer interested readers
o [41].
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.1.2. Business process compliance
Business process compliance, in turn, has been investigated

or more than a decade and several surveys exist (e.g., [27,
2]). Contemporary approaches have focused on compliance rule
anguages, including visual notations [13,21,26], logic-based for-
alisms [43,44], and Event Calculus [45]. Moreover, several ap-
roaches enable compliance checking at both build- and run-
ime (e.g., [13,27,46]) or cover different process perspectives
f compliance rule checking such as behavior, data, time, and
esources [13,47]. Finally, characteristic patterns for business
rocess compliance are proposed by [32].
A formal approach that verifies local process behavior (i.e., WS-

PEL process models) against legal constraints, specified in terms
f the Compliance Request Language, is proposed by [32]. This
pproach and similar works focus on local compliance rules,
hich can be checked for a given (partner) process model. By
ontrast, we consider verifying global compliance rules (GCR)
n a process choreography based on their correct and lossless
ecomposition into assertions that can be checked locally by each
oncerned partner.
Another related field deals with checking compliance of a

local) process model against its refinement or implementation. An
approach that enables checking compliance of a (local) process
model against its refinement is presented in [48]. More specif-
ically, this approach deals with the automated verification of
lower-level against higher-level UML activity charts. Behavioral
containment is established to ensure that a lower-level chart con-
stitutes a valid refinement of the higher-level one. Similarly, [49]
presents an approach for enforcing compliance of hierarchical
business processes with visually specified security constraints. An
approach that enables checking compliance of a (local) process
model against its implementation is presented in [50], which de-
rives the specification of a web application from a (local) process
model followed by the verification of web execution logs against
derived LTL formulae. Although the problem addressed by these
approaches is different from the one considered in our paper, the
techniques could be of interest for global compliance checking in
choreographies as well.

8.2. Interface between process choreography and process compliance

There exist several approaches that address issues at the in-
terface between process choreography and process compliance.
Section 8.2.1 discusses centralized and distributed approaches for
checking compliance in multi-party processes (i.e., process chore-
ographies). In turn, approaches that map global contracts (i.e., sets
of global compliance rules) to compliable process choreographies
are presented in Section 8.2.2. The conformance between process
choreography and local partner processes are considered in Sec-
tion 8.2.3. Finally, issues related to business process compliance
in the context of dynamically evolving business partner networks
are discussed in Section 8.2.4.

8.2.1. Compliance checking in a process choreography—centralized
vs. Distributed approaches

Compliance checking mechanisms assuming a trusted party
are proposed by [51]. In [52] the same authors present a service-
oriented approach that relies on a central integration platform in
order to enable cross-organizational service interactions, while at
the same time meeting global compliance rules. As opposed to
our work, this approach relies on a central component (i.e., the
integration platform) to ensure that global compliance rules can
be checked.

[53] advocates compliance checking in a distributed process
(i.e., process choreography) as crucial, but it cannot be assessed
in how far the approach deals with the restricted visibility and
19
availability of process information as we do. In prior work, we
have introduced the criterion of compliability [35] that captures
the ability of a choreography to comply with a given set of
compliance rules at all and how to check it [28]. The approach
presented in [54] enables checking the effects of changes on
the compliance in process choreographies based on dependency
graphs between global and local compliance rules as well as
assertions. Finally, [6] provides an overview on the challenges,
related approaches, and possible solutions at the interplay of
compliance, change, and choreographies.

Distributed approaches that rely on IoT technology are pro-
posed by [10,55]. The approach suggested by [55] considers the
flow of physical objects between the parties of a multi-party pro-
cess. In particular, this approach exploits the sensing capabilities
of smart devices to improve process compliance checking. For this
purpose, commitments define mutual contractual relationships
between parties in a declarative way and drive the configuration
of smart devices, which check their satisfaction and, in case of
misalignment, inform the concerned parties timely.

This multi-party process compliance monitoring approach is
conceptually enhanced by [10] through IoT-enabled artifacts.
This approach proposes a decentralized solution switching from
control- to artifact-based monitoring, where physical objects can
monitor their own conditions as well as the process activities in
which they participate, i.e., compliance monitoring is distributed
among the physical artifacts interacting with the global process.
To instruct these smart objects, BPMN process models are trans-
lated into a set of artifact-centric process models, rendered in
Extended-Guard-Stage-Milestone (E-GSM) notation. In particular,
this work shows that artifact-based modeling approaches have
a high potential in respect to multi-party process management
involving physical objects, which has not been the focus of our
work.

Finally, [3] discusses legal, organizational, human-centered,
technical and economic challenges to be tackled in the field of
business process compliance when enacting the (cross-
organizational) business processes on the Ethereum blockchain.
For example, at the implementation level, the immutability of il-
legal content or the error-proneness and zero-defect tolerance of
smart contracts raise challenging issues in this context. Although
this work does not deal with a concrete compliance verification
approach, it indicates directions for future research on process
compliance when using blockchain infrastructures for enacting
multi-party business processes.

8.2.2. Mapping global contracts to process choreographies
Contract languages allow specifying obligations, permissions

and prohibitions in business contracts, which govern the interac-
tions between business partners. [56] provides means to model
corresponding contract constraints. An early approach that ex-
tends choreographies with such contract constraints is provided
by [57]. This approach transforms the contract constraints into
expressions of a choreography language, i.e., contract terms are
translated into choreography expressions that govern the global
process (i.e., choreography) to ensure compliance. In particular,
it is shown how cross-organizational business processes can be
monitored and enforced according to business contract speci-
fications through the transformation of the contract definition
to constraints on (global) process behavior. However, this ap-
proach is less powerful than ours as it tightly couples compliance
constraints with choreography models, which aggravates the evo-
lution of both choreography model and contract constraints. Be-
sides, this approach does not consider local compliance checking
(i.e., locally checking assertions derived from the decomposition
of global compliance rules), which limits its applicability at the
presence of more complex compliance requirements.
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[58] advocates Dynamic Condition Response (DCR) Graphs for
ecomposing global contracts into local processes. More pre-
isely, [58] shows how a timed DCR Graph can be used to describe
he global contract for a timed multi-party process (i.e., choreog-
aphy), which can then be distributed as a network of communi-
ating timed DCR Graphs (i.e., local processes) describing the local
ontract for each party. As opposed to our work, this approach
elies on a declarative process modeling approach with a focus
n discrete time deadlines.

.2.3. Conformance between process choreography and local partner
rocesses
Several proposals have been made to ensure conformance be-

ween choreography (i.e., the global process) and the local pro-
esses of the involved business partners. In [59], conformance
hecking of the event logs of local processes against a given
horeography model is addressed. As such an event log is not
vailable at design time, [44] relies on a graph transformation
ool–GROOVE (GRaphs for Object-Oriented VErification)–to auto-
atically verify that a local process of a partner involved in a
horeography complies with the globally specified behavior of
hat choreography. LTL semantics of the choreography model is
mployed and token semantics of the local process model, which
s expressed in terms of a BPMN collaboration diagram, is used to
erify conformance.
[60] relates the theory of contracts with the notion of chore-

graphy conformance, i.e., it is checked whether an aggregation
f services correctly behaves according to a high level specifica-
ion of their possible conversations. For this purpose, a method
ased on the composition of choreography projection and con-
ract refinement is presented that allows verifying that a service
ith a given contract can correctly play a specific role within
choreography. Finally, [61] presents an approach for ensur-

ng conformance between a set of BPMN collaboration diagrams
i.e., local process models) and a BPMN choreography diagram
i.e., choreography model).

As opposed to these approaches, our decomposition-based
ethod verifies the compliance of a choreography model with
lobal compliance rules and regulations that cover multiple pro-
ess perspectives. However, conformance between the choreog-
aphy and the participating partner processes can be considered
s a prerequisite of our approach.

.2.4. Ensuring compliance in dynamically evolving partner net-
orks
[62] assumes that the partners in a business networks try

o provide wrong information and, hence, introduce the notion
f accountability. Compliance requirements also need to be met
n dynamic business networks [63,64]. In such a network, the
artners may join and leave the collaboration dynamically and
asks over which compliance rules may be specified then have to
e distributed or delegated to new partners or be backsourced by
etwork participants in order to avoid compliance issues. In [63,
4], a conceptual model for aligning the compliance requirements
n a business network with the monitoring requirements they in-
uce on the network participants, particularly when the network
hanges or evolves, is presented. Various techniques (e.g., task
elegation and in-house backsourcing) for ensuring the consis-
ency between the monitoring and compliance requirements as
ell as metrics for evaluating the status of a collaboration in
espect to compliance monitorability are discussed. Obviously,
his approach lacks a process perspective, but is complementary
o our work with a focus on business network changes and their
ffects on compliance requirements.
20
9. Conclusions

The interplay between interoperability and business process
compliance poses a tremendous challenge on companies. In this
problem space, the work at hand addresses the question on
how to verify global compliance rules (GCR), i.e., rules that span
multiple partners in a multi-party process (i.e., process chore-
ography), in a decentralized manner where certain tasks of one
partner process might not be visible to the other partners due to
confidentiality reasons. The presented approach focuses on the
decomposition of a GCR such that the decomposed parts, i.e., as-
sertions, can be checked by the partners locally. Consequently,
compliance verification is shifted from a global to a decentralized
manner.

The presented decomposition approach addresses research
question RQ, which we introduced in Section 1. In particular,
the presented decomposition algorithm exploits transitivity prop-
erties of the GCR for finding the correct decompositions. The
correctness is formally proven. Moreover, the complexity of the
decomposition algorithm is formally analyzed and also illustrated
based on specific scenarios. The feasibility of the decomposition
algorithm is shown based on a prototypical implementation, in-
cluding a model checker for ensuring decomposition correctness.
The applicability of the approach is demonstrated through a use
case from the manufacturing domain.

Future work targets at two directions, (1) GCR language and
(2) applications. First, we want to extend the decomposition
based on the eCRG formalism, as used in this work, to arbitrary
GCR and adapt the decomposition to other compliance rule lan-
guages such as Declare [65], PENELOPE [66], or BPMN-Q [26].
Second, we plan to further investigate the presented use cases
in manufacturing and healthcare and to identify additional use
cases, e.g., in logistics.

Overall, the presented approach provides a fundamental brick
in enabling process collaborations between different partners by
infringing neither their privacy nor any regulations.
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