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A B S T R A C T   

Safe operation of large battery storage systems requires advanced fault diagnosis that is able to detect faults and 
provide an early warning in the event of a fault. Since Internal Short Circuits (ISC) are the most common abuse 
condition leading to thermal runaway, this study addresses the early detection of incipient soft ISCs at the stage 
when the fault is still uncritical and does not lead to significant heat generation. The differences in cell voltages 
as measured by conventional battery management systems prove to be indicative features for ISC diagnosis. 
However, due to poor balancing and parameter variations, the cell voltage differences exhibit nonlinear varia-
tions. This work addresses this challenge with a nonlinear data model based on Kernel Principal Component 
Analysis (KPCA). To enable an online application in a vehicle, the present work reduces the computational 
complexity of the method by an optimal choice of training data. An analysis of the contribution of each cell to the 
fault statistics enables identification of the faulty cell. Since early-stage ISCs can exhibit a wide range of short- 
circuit resistances, experimental validation is performed with resistances from 10Ω to 10kΩ, which are correctly 
detected and isolated by the optimized cross-cell monitoring in all cases.   

1. Introduction 

Climate neutrality is the focus for the development of new mobility 
concepts [1]. In this context, Battery Electric Vehicles (BEV) and Hybrid 
Electric Vehicles (HEV), which today mostly have lithium-ion batteries, 
play a crucial role. A critical factor for customer acceptance and the 
adoption of BEVs and HEVs is the safety of the batteries. However, as 
recent studies show, serious faults in battery packs continue to occur, 
resulting in vehicle fire [2,3]. As Feng et al. [4] conclude, the most 
common causes of battery fires are Internal Short Circuits (ISC). Maleki 
et al. [5] confirm that the main reason for vehicle recalls are ISCs. 
Although the use of safer cell chemistries and advances in cell design can 
reduce the risk of ISCs occurring, the risk of cell failure cannot be 
completely eliminated. For this reason, fault diagnosis is already a key 
component of battery management systems [6,7]. Development is 
moving beyond this to more advanced fault diagnosis techniques [8]. 

1.1. Literature review 

Early detection of ISCs has developed into a research discipline of its 

own. Lai et al. [11] differentiate ISC detection methods based on a 
vertical and a horizontal comparison. A vertical comparison means that 
the cell is compared only with its own historical state. For example, a 
model represents the historical information about the cell [9,10]. In 
contrast, the horizontal approach is based on a comparison of the cells 
with each other, where ISCs are detected based on parameter in-
consistencies. An ISC can be observed by characteristic parameter 
changes of the affected cell, based on which (or a combination of them) a 
diagnosis is made. The parameters include cell current, cell voltage, cell 
temperature, State Of Charge (SOC) or Open Circuit Voltage (OCV), ca-
pacity or Internal Resistance (IR) [12]. In battery packs with parallel 
connection, the electrically parallel cells feed the short-circuit cell as it 
shows self-discharging behavior. Based on this current, the methods of 
[13–15] detect an ISC. However, these approaches are only applicable to 
parallel cells and requires single cell current sensors, such as those 
available in intelligent battery systems [16,17]. In contrast, voltage- 
based methods offer the advantage of not requiring additional sensors, 
since a voltage sensor is present in any case to maintain battery pack 
consistency through cell balancing. Even though cell voltages are 
straightforward features for ISC detection, there is the challenge of 
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setting the right thresholds [11]. Poorly balanced cells, dynamic oper-
ation, cell-to-cell variation and sensor noise complicate ISC detection. 
While a larger voltage difference does not always imply an ISC, a small 
voltage difference may indicate an ISC [18]. To avoid false alarms, direct 
comparison of voltage values requires a large threshold, which leads to 
low sensitivity to early ISCs and results in a long detection time. To 
address this challenge, Xia et al. [19] employ the correlation coefficient 
and Shang et al. [20] adopt the modified sample entropy. Yang et al. 
[21] employ temperature as an indicator of an ISC in addition to voltage. 
However, a significant temperature increase can be observed only at a 
later stage of an ISC [4]. The heat generated in the jelly roll can be 
measured on the cell surface only after a delay. Moreover, many battery 
packs do not have cell-specific temperature sensors. One of the most 
widely used features for online ISC detection is the SOC or OCV [11]. 
Due to the self-discharging behavior of the defective cell, the ISC are 
detected based on an abnormally decreasing SOC. While an ISC can be 
detected directly from SOC inconsistency [11,22] or OCV inconsistency 
[23], Xia et al. [19] and Lai et al. [24] apply the correlation coefficient to 
SOC difference to increase robustness. Methods based on the Remaining 
Charge Capacity (RCC) compare the RCC of all cells with each other 
during a full charge [25]. Due to the self-discharge behavior of the ISC 
cell, the RCC continuously increases. However, the method is only 
applicable during charging. An ISC is also manifested by a decrease in 
the IR of the affected cell. However, similar to temperature, a significant 
change in IR is not observed until a later phase [12]. The temperature- 
and SOC-related change in IR makes early detection of soft ISCs based on 
an IR anomaly challenging [26]. However, there are approaches that 
diagnose ISCs using Electrochemical Impedance Spectroscopy (EIS) 
[27,28]. In this context, Nakajima et al. [27] identify the phase angle as 
a suitable feature for ISC detection. 

The aim of this study is an early detection of soft ISCs, in the phase 
where still no heat generation can be observed and the ISC is in the kΩ 
range [11,29,30]. The estimation of parameters such as the SOC, OCV, 
or cell capacity is always accompanied by uncertainties. The un-
certainties result from model structure, model parameterization, and 
sensor noise. Uncertainties in SOC estimation are also magnified by 
faults, since the short-circuit current of an ISC in series-connected bat-
tery packs is not measured by the current sensor. Due to these un-
certainties, larger thresholds are required, resulting in longer detection 
time. Cell voltage, on the other hand, is a direct and instantaneous 
insight into the jelly roll. As we have shown in our previous studies 
[18,31,32], voltage differences are indeed indicative features. To 
address the aforementioned challenges of voltage-based ISC detection in 
the presence of parameter variations and poor balancing [11], we have 
already presented a novel nonlinear method, based on the Kernel Prin-
cipal Component Analysis (KPCA) [18,32]. Originally introduced by 
Schölkopf et al. [33], Lee et al. [34] propose KPCA as a nonlinear 
extension of linear process monitoring. The comparison with existing 
methods from the literature has already shown the high sensitivity of the 
novel method [32]. 

1.2. Motivations and contributions 

Based on the KPCA method, the present study addresses the so far 
unsolved problems of nonlinear cross-cell monitoring. The main con-
tributions of this work are as follows: 

• In order to reduce the computational effort of the nonlinear moni-
toring, a method for the optimal choice of the training data is pre-
sented. Besides the theoretical derivation of the method, a detailed 
analysis and discussion of the approach based on experimental data 
is given.  

• In addition to fault detection, this work develops a method for fault 
isolation in the context of nonlinear monitoring with mixed kernel 
functions suitable for locating the faulty cell in the battery pack. 

• A Pareto-optimal choice of tuning parameters finds optimized pa-
rameters that provide a low False Alarm Rate (FAR) in addition to a 
low Missed Detection Rate (MDR).  

• To demonstrate robustness and sensitivity to soft ISCs, experimental 
studies are performed on a battery module with a wide range of 
short-circuit resistances on the order of 10Ω to 10kΩ. 

1.3. Organization of the paper 

The following work is organized as follows: Section 2 presents the 
theoretical basis for the nonlinear monitoring method. To this end, the 
section discusses data preprocessing, training and monitoring with the 
KPCA data model, efficient training data selection, and fault isolation. 
The experimental module test bench and ISC emulation method is pre-
sented in Section 3. Section 4 discusses the results on ISC diagnosis in 
terms of the optimal choice of training data and parameters, and the 
application to the wide range of short-circuit resistances. Section 5 
summarizes the results and findings of the study. 

2. Methods for the proposed ISC detection framework 

In the following, the preprocessing of the data is presented and the 
methodology for KPCA is summarized. Based on this, modifications of 
the KPCA method are presented. 

2.1. Preprocessing of the single cell voltages 

The training data for the nonlinear data model consists of N 
measured voltage samples from m series-connected battery cells. The 
single cell voltage measurements vτ ∈ ℝm

, τ ∈ [1,N ] are centered ac-
cording to 

xτ =
vτ − vmed

τ 1m

smed
τ

∈ ℝm (1)  

using the Outlier Robust Sample Studentization (ORSS) method [31]. 
The variable τ denotes data samples during the unsupervised training, t 
during the monitoring. 1m ∈ ℝm is the m-dimensional vector of all ones 
and vmed

τ corresponds to the median of the m signals. The denominator 

smed
τ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

mz − 1
∑mz

c=1

(
vτc − vmed

τ
)

√

(2)  

is calculated analogously to the standard deviation, but instead of the 
mean value of the data, the median is used. Furthermore, choosing a 
subset mz ≤ m of signals with the smallest z-score allows for robustness 
to outliers. The choice of mz is mz = 10 for the present study with m = 12 
cells. The features xτ can be interpreted as a point in an m-dimensional 
space for each instant τ. The aggregation of all instances results in the 
training data matrix X = [x1,…, xτ,…, xN]

T
∈ ℝN×m. 

For the application of PCA, the columns of X, denoted as ξc =

[x1c,…, xτc,…, xNc]
T
∈ ℝN, are centered along the c ∈ [1,m] dimensions 

[35]: 

ζc =
ξc − ξtrain

c 1N

strain
c

∈ ℝN
, (3)  

where ξtrain
c is the mean and strain

c is the standard deviation. Each 
dimension c corresponds a cell within the battery pack. This data pre-
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processing results in a data matrix 

Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

zT
1

⋮
zT

τ

⋮
zT

N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

z11 … z1c … z1m
⋮ ⋱ ⋮ ⋱ ⋮

zτ1 … zτc … zτm
⋮ ⋱ ⋮ ⋱ ⋮

zN1 … zNc … zNm

⎤

⎥
⎥
⎥
⎥
⎦
∈ ℝN×m (4)  

with columns ζc ∈ ℝN: 

Z = [ζ1 ζc ζm]. (5)  

2.2. Training of the nonlinear data model 

If the centered features zj exhibit a linear or approximately linear 
relationship with independent Gaussian distributed noise, the applica-
tion of linear PCA directly to the data matrix Z would suffice [31]. 
However, independent, Gaussian distributed noise or nonlinear re-
lationships, as in the case of the fault features zj for lithium-ion battery 
cells, require the application of a nonlinear extension of PCA, called 
Kernel Principal Component Analysis (KPCA) [18,36]. The rows zτ of the 
data matrix Z are mapped into a high-dimensional feature space F using 
the nonlinear function 

Φ̃ : ℝm→F, z ↤ z. (6) 

According to Cover's theorem, the nonlinear input data is rather 
linear in a high-dimensional feature space [34,37], so linear PCA can be 
performed in F. A prerequisite for the application of PCA in F is a 
centering of the mapped data Φ̃(zτ): 

Φ(zτ) = Φ̃(zτ) −
1
N
∑N

τ=1
Φ̃(zτ). (7) 

The KPCA is based on the solution of an eigenvalue problem on the 
sample covariance in F. The zero-mean mappings Φ(zτ) allow a concise 
notation of the covariance matrix 

ℭ =
1

N − 1
∑N

τ=1
Φ(zτ)Φ(zτ)

T
. (8) 

The eigenvalue problem to be solved is: 

ℭps = λsps. (9) 

However, since the feature space can be high dimensional and even 
not necessarily finite [34], a direct computation of the mappings is very 
costly or not feasible. Schölkopf et al. [36] have presented a trans-
formation of the eigenvalue problem using the kernel trick [38]. Here, 
the nonlinear mapping does not have to be computed explicitly. Instead, 
only scalar products of mapped points from the input space are needed. 
For this purpose, the eigenvectors ps are expressed as a function of the 
mappings Φ(zτ) by means of coefficients αsτ: 

ps =
∑N

τ=1
αsτΦ(zτ) (10) 

Multiplying both sides of (9) by Φ(zl)
T
, l = 1,…,N and using (8), 

(10), we get the following system of N equations: 

1
N − 1

∑N

τ=1
Φ(zl)

T Φ(zτ)

(
∑N

j=1
αsjΦ(zτ)

T Φ
(
zj
)
)

= λs

∑N

τ=1
αsτΦ(zl)

T Φ(zτ).

(11) 

The mappings to F appear only in the form of dot products 
Φ(zτ1)

TΦ(zτ2). The dot products are replaced by the kernel function 

κ(zτ1 , zτ2 ) = Φ(zτ1 )
T Φ(zτ2 ). (12) 

To allow a matrix notation for the system of Eq. (11), the kernel 
matrix 

K =

⎡

⎢
⎢
⎢
⎢
⎣

κ(z1, z1) … κ(z1, zτ2 ) … κ(z1, zN)

⋮ ⋱ ⋮ ⋱ ⋮
κ(zτ1 , z1) … κ(zτ1 , zτ2 ) … κ(zτ1 , zN)

⋮ ⋱ ⋮ ⋱ ⋮
κ(zN , z1) … κ(zN , zτ2 ) … κ(zN , zN)

⎤

⎥
⎥
⎥
⎥
⎦

(13)  

is introduced. Using K, (11) is written as 

1
N − 1

K2αs = λsKαs. (14) 

The eigenvalue problem (9) transforms to the eigenvalue problem 

1
N − 1

Kαs = λsαs (15)  

where the entries αsτ of the eigenvectors αs and corresponding eigen-
values λs have to be found. 

The choice of the kernel function κ : ℝm
×ℝm→ℝ is not arbitrary. 

Permissible kernel functions must satisfy Mercer's theorem, resulting in 
a positive semi-definite kernel matrix K [39,40]. Table 1 shows a se-
lection of commonly used kernel functions [41,42]. The linear and 
polynomial kernel functions κlin and κpoly are global kernels, since. 

lim
‖Δz‖→∞

κ(z+Δz, z) = ±∞ (16)  

holds for a vector z ∈ ℝm and a vector z+Δz shifted by Δz ∈ ℝm [40]. 
The remaining kernels are local kernel functions, since 

lim
‖Δz‖→∞

κ(z+Δz, z) = 0. (17) 

By far the most widely used local kernel is the Gaussian kernel κgauss. 
The local kernels differ primarily in how much outliers are weighted 
against data close to the data center. The Student's t kernel κtstud, for 
example, is well suited to approximate a distribution in the presence of 
outliers [43]. To ensure robust behavior for more progressed ISCs, a 
local and a global kernel are combined, as suggested by [40]. The 
combination is done according to 

κmix(zτ1 , zτ2 ) =
∑Nker

l=1
ωlκl(zτ1 , zτ2 ) (18)  

with 
∑Nker

l=1 ωl=
! 1. 

For the derivation of the KPCA method, the mappings Φ(zτ) were 
centered in (7), which is why the centered kernel matrix K results 
directly. However, since the mapping Φ̃(zτ) is not calculated explicitly, 
the centering cannot be performed according to (7). Substituting (7) into 
(11) and using (12)–(13), the condition 

Table 1 
Kernel types, corresponding functions and parameters: slope a, constant b, 
polynomial degree d, width σ [41,42].  

Kernel type κ(zτ1, zτ2 )

Linear κlin = zT
τ1 zτ2 + b 

Polynomial κpoly =
(
azT

τ1 zτ2 + b
)d 

Gauss 
κgauss = exp

(
−

1
2σ2 ‖ zτ1 − zτ2 ‖

2
)

Rational Quadratic 
κrq = 1 −

‖ zτ1 − zτ2 ‖
2

‖ zτ1 − zτ2 ‖
2 + b 

Inverse Multiquadric κimult =
(
‖ zτ1 − zτ2‖

2 + b2
)− 0.5 

Cauchy 
κcauchy =

(
1 +

1
σ2 ‖ zτ1 − zτ2 ‖

2
)− 1 

Generalized T-Student κtstud =
(
1+ ‖ zτ1 − zτ2‖

d)− 1  
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K = K̃ −
1
N

1N×NK̃ −
1
N

K̃1N×N +
1

N21N×N K̃1N×N (19)  

is obtained. Here, K̃ denotes the non-centered kernel matrix and 1N×N ∈

ℝN×N is the matrix of all ones. The solution of the transformed eigen-
value problem (10) is done with the Singular Value Decomposition 
(SVD) 

1
N − 1

K = UΣV*
⃒
⃒
⃒
⃒

K=KT ≽0
= SΛST . (20) 

The diagonal matrix Λ contains the descending sorted eigenvalues of 
K/(N − 1) on the diagonal and S contains the corresponding eigenvalues 
in the columns. To perform the PCA in F, the matrix S =

[
SpcSres

]
is 

decomposed into the two orthogonal subspaces Spc ∈ ℝN×γ and 
Sres ∈ ℝN×(N− γ). The principal subspace span

{
Spc
}

is spanned by the first γ 
eigenvectors and the residual subspace span{Sres} by the remaining N − γ 
eigenvectors. A similar decomposition is done for the eigenvalue matrix 

Λ =

[
Λpc 0
0 Λres

]

(21)  

into Λpc ∈ ℝγ×γ and Λres ∈ ℝ(N− γ)×(N− γ). The matrix Λpc contains the γ 
largest eigenvalues and Λres the residual eigenvalues. Using the first γ 
eigenvectors Spc, the projection of the training data into the principal 
subspace is given by 

T = [t1…tτ…tN ] = ST
pcK ∈ ℝγ×N

. (22)  

2.3. Online cell monitoring 

For online monitoring at instant t, the vector of measured cell volt-
ages vt is preprocessed according to (1)–(3). Then, the kernel vector 

k̃t = [ κ̃(zt, z1)…κ̃(zt, zτ)…κ̃(zt, zN) ]
T
∈ ℝN

, (23)  

consisting of non-centered dot products κ̃(zt , zτ) in feature space, is 
calculated. The centering of the kernel vector 

kt = k̃t −
1
N

K̃1N −
1
N

1N×N k̃t +
1

N21N×NK̃1N (24)  

is analogous to (19). From the projection 

tt = ST
pckt ∈ ℝγ (25)  

of kt onto the kernel principal eigenvectors follow the test statistics 

T2(zt) = tT
t Λ− 1

pc tt (26)  

Q(zt) = kT
t kt − tT

t tt (27)  

for the data-driven online monitoring [34]. While systematic variations 
in the data are learned through the principal subspace (T2 statistic), the 
residual subspace (Q statistic) is associated with noise in the data [44]. 
Thus, the two subspaces can be interpreted as a data model and a noise 
model. Accordingly, the T2 statistic is suitable for observing deviations 
from the model and the Q statistic for diagnosing abnormal noise 
behavior. Abnormal changes in the underlying system should be 
observable in both statistics [45]. Therefore, a data vector is considered 
abnormal only if both statistics are above their limit. The upper control 
limit for normal variation in the data are determined using a kernel 
density estimate of the underlying distribution [18]. 

2.4. Efficient selection of training data 

Comparing the linear PCA monitoring [31] with the nonlinear 
monitoring using KPCA, the nonlinear variant shows a significantly 

higher computational complexity. In the linear case, the size of the 
covariance matrix which has to be diagonalized is m × m. Thus, the 
matrix size depends only on the number of measured voltage signals, but 
not on the number N of training samples. The eigenvalue problem is 
solved offline. In the online procedure only a basis transformation based 
on the obtained offline solution is performed. This makes linear PCA 
monitoring a powerful and efficient tool for online fault diagnosis. 
Although the kernel method does not explicitly calculate the mapped 
data in feature space (kernel trick), the Gram matrix K/(N − 1) to be 
diagonalized has the size N × N. If the distribution of the data is to be 
well approximated, thousands of samples are required as training data 
set. Even if the Gram matrix only needs to be diagonalized offline, the 
centering of the test data in feature space (24) requires computational 
operations with N×N matrices for online monitoring. But also, the off-
line diagonalization of an N×N matrix quickly reaches computational 
limits. 

Looking at the space spanned by {Φ(z1) ,…,Φ(zN) }, one finds in 
practice that span((Φ(z1) ,…,Φ(zN) ) is a subspace of F with a signifi-
cantly smaller dimension than N [46]. This means that the training 
samples are not linearly independent in F. The dimension of the sub-
space span(Φ(z1) ,…,Φ(zN) ) corresponds to the rank of the kernel ma-
trix n = rank (K)≪N [47]. According to Bach and Jordan [48], the rank 
of K decays exponentially for Gaussian kernels, so that an approximation 
of rank n = O(logN) can be found. For polynomially-decaying input 
distributions an approximation n = O

(
N1/d+ε) with polynomial degree d 

and an arbitrary ε > 0 can be found [48]. In the following, a subset of 
mappings {Φ(z1) ,…,Φ(zN) } with linearly independent training data in 
F is identified. The procedure, based on an incomplete Cholesky 
decomposition, is analogous to Wang et al. [47] and similar to the 
feature vector procedure proposed by Baudat and Anouar [46]. Alter-
native approaches would be the sparse greedy approximation by Smola 
and Schölkopf [49] or the Nyström approximation by Williams and 
Seeger [50]. 

Let n = rank (K)≪N be the number of linearly independent feature 
vectors in F. Then, without loss of generality, s = 1, …, n mappings Φ(zs)

are chosen which form a basis for the n-dimensional subspace such that 

span(Φ(z1) ,…,Φ(zN) ) ≡ span(Φ(z1) ,…,Φ(zn) ). (28) 

Introducing the vectors φs = [φs1…φsn]T ∈ ℝn, the eigenvectors are 
written as 

ps =
∑n

τ=1
φsτΦ(zτ). (29) 

For the remaining τ = n+1,…N mappings Φ(zτ) exist coefficients pτj, 
so that Φ(zτ) can be expressed by 

Φ(zτ) =
∑n

j=1
pτjΦ

(
zj
)
. (30) 

For the covariance matrix follows 

ℭ =
1

N − 1
∑n

j=1

∑n

k=1
qjkΦ

(
zj
)
Φ(zk)

T (31)  

where 

qjk =

⎧
⎪⎪⎨

⎪⎪⎩

∑N

τ=n+1
pτjpτk + 1, j = k

∑N

τ=n+1
pτjpτk, j ∕= k

. (32) 

Substituting the covariance matrix and the eigenvectors in (9), we 
get 
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1
N − 1

∑n

j=1

∑n

k=1
qjkΦ

(
zj
)
Φ(zk)

T

(
∑n

τ=1
φsτΦ(zτ)

)

= λs

∑n

τ=1
φsτΦ(zτ).

(33) 

Multiplying both sides of (33) by Φ(zl)
T
, l = 1,…, n results in n 

equations, which allow a representation in dot product notation: 

1
N − 1

∑n

j=1

∑n

k=1
qjkΦ(zl)

T Φ
(
zj
)∑n

τ=1
φsτΦ(zk)

T Φ(zτ)

= λs

∑n

τ=1
φsτΦ(zl)

T Φ(zτ).

(34) 

The kernel function κ(zτ1, zτ2), introduced in (12), allows the notation 

1
N − 1

∑n

j=1

∑n

k=1
qjkκ
(
zl, zj

)
(
∑n

τ=1
φsτκ(zk, zτ)

)

= λs

∑n

τ=1
φsτκ(zl, zτ).

(35) 

With the reduced kernel matrix 

K0 =
(
Kτj
)

τ=1,…,n;j=1,…,n. (36)  

and 

Q =
(
qjk
)

j=1,…,n;k=1,…,n ∈ ℝn×n (37)  

φs = (φsτ)τ=1,…,n ∈ ℝn (38)  

follows for (35) 

1
N − 1

K0QK0φs = λsK0φs. (39) 

The solution of (39) leads to the eigenvalue problem 

1
N − 1

QK0φs = λsφs (40)  

with the reduced kernel matrix K̂ = QK0 ∈ ℝn×n. 
For application in fault diagnosis, the question arises how the 

approximation K̂ ≈ K is found and the optimal choice of the n samples is 
made. Since K is a positive semidefinite matrix, it can always be fac-
torized according to K = GGT with the triangular matrix G ∈ ℝN×N using 
the Cholesky decomposition [48]. The goal is to find an approximation 
Ĝ ∈ ℝN×n for G that has only n columns and the associated optimal 
permutation matrix P. The incomplete Cholesky decomposition allows 
finding such matrices P and Ĝ. Unlike the ordinary Cholesky decom-
position, all pivots smaller than a threshold are skipped. Given the 
positive semidefinite Gram matrix K ∈ ℝN×N and the precision param-
eter η, Algorithm 1 finds a lower triangular matrix Ĝ and a permutation 

matrix P such that ‖ PKPT − ĜĜ
T
‖≤ η holds. The notation Ga:b,c:d de-

notes a submatrix of G consisting of the rows from index a to b and the 
columns from index c to d. The permutation matrix P is initialized with 
the unit matrix and the diagonal of G with the diagonal of K. As long as 
the sum of all N − τ pivots (diagonal elements of G) is greater than the 
threshold η, the τ ∈ [1, n] first columns of G are calculated successively. 
For this, the index j* of the largest diagonal element is found (line 6). The 
permutation matrix P is actualized according to a permutation of the 
τ-th and j* − th columns (line 7). In the modified Gram matrix K′ , the τ-th 
and the j* − th columns (line 8) and rows (line 9) are permuted. Due to 
the permutations, the τ-th row and the j* − th row in G with already 
calculated elements are also exchanged. The remaining elements of the 
τ-th column in G are computed in line 12. The j ∈ [τ+1,N] diagonal 

elements are computed in line 14. Instead of the precision parameter η a 
condition on the maximum number of columns nmax of Ĝ could be set. 

Although the Algorithm 1 looks as if the complete N×N Gram matrix 
K has to be computed (line 2), in an efficient implementation only 
particular columns (line 12) or the diagonal (e.g., row 4) of the Gram 
matrix are needed. Thus, the total complexity of the incomplete Cho-
lesky decomposition is O

(
n2N

)
and thus linear in N [48]. Instead of the 

N×N Gram matrix, only the diagonal of K has to be stored, resulting in a 
linear storage requirement of O(nN) [48]. 

Algorithm 1. Incomplete Cholesky Decomposition [48]. 

Based on the incomplete Cholesky decomposition, an optimal subset 

of training samples is found. The Gram matrix K is approximated by K̂ =

ĜĜ
T 

and centered using (19). 

2.5. Fault isolation based on variables' contributions 

The detection of a fault can be considered as the first step of a fault 
diagnosis procedure. The next step is to isolate the fault in the battery 
system. Fault isolation refers to the localization of the fault so that the 
detected fault can be associated with a specific cell c. While for linear 
PCA, approaches to calculate the fault contributions exist [31], the 
calculation for nonlinear PCA is challenging. It is difficult or even 
impossible to find an inverse mapping function Φ− 1(z) that transforms 
from the high-dimensional feature space F to the input space ℝm. Using 
Lagrange's mean value theorem, Deng and Tian [51] presented an 
approach for Gaussian kernels to estimate the single variables' contri-
butions. This procedure is extended below to handle the kernel functions 
from Table 1 as well as mixed kernels. 

Let F(zt) ∈
{

T2(zt) ,Q(zt)
}

be one of the two test statistics T2 or Q, 
given in (26) and (27), respectively. For the t-th test sample zt =

[zt1…ztc…ztm]
T
∈ ℝm follows according to Lagrange's mean value 

theorem: 
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F(zt) − F
(
z0

t

)
=
∑m

c=1

(
ztc − z0

tc

) ∂
∂ztc

F
(
z0

t + θ
(
zt − z0

t

) )
(41)  

with the parameter 0 < θ < 1. Choosing zt
0 = 0, without loss of gener-

ality, (41) is simplified: 

F(zt) = F(0)+
∑m

c=1
ztc

∂
∂ztc

F(θzt). (42) 

Considering (42), F(zt) is composed of a constant F(0) and a contri-
bution that can be assigned to one of the m variables. Therefore, the 
contribution CF(ztc) of the c-th variable to the test statistic F(zt) at time t 
is written as: 

CF(ztc) = ztc
∂

∂ztc
F(θzt). (43) 

For linear PCA, F(0) = 0 holds and therefore 

F(zt) =
∑m

c=1
ztc

∂
∂ztc

F(θzt) = θ2
∑m

c=1
ztc

∂
∂ztc

F(zt) = 2θ2F(zt), (44)  

resulting in the parameter θ = 1̅ ̅
2

√ [51]. In the nonlinear case, however, θ 
has to be calculated for each test sample zt or a suitable common θ has to 
be found using the training data. For our application, already the choice 
of a constant θ = 1̅ ̅

2
√ as in the linear case gives very good results. For a 

clearer notation, the calculation of the contributions is performed with 
the full kernel matrix K. However, the calculation using the approxi-
mation K̂ ≈ K follows analogously, by replacement of K with K̂ . With 

T2(zt) = tT
t Λ− 1

pc tt = kT
t SpcΛ− 1

pc ST
pckt, (45)  

the contribution of the c-th signal to the T2 test statistic for test data zt 
can be calculated using (43): 

CT2 (ztc) = ztc
∂

∂ztc

(
kT

t SpcΛ− 1
pc ST

pckt

) ⃒⃒
⃒
⃒

θzt

= 2ztc
∂kT

t

∂ztc
SpcΛ− 1

pc ST
pckt

⃒
⃒
⃒
⃒

θzt

(47) 

Similarly, with 

Qt(zt) = kT
t kt − tT

t tt = kT
t

(
I − SpcST

pc

)
kt, (48)  

according to (43), follows for the contribution of the c-th variable to the 
Q-statistic the relation: 

CQ(ztc) = ztc
∂

∂ztc

(
kT

t

(
I − SpcST

pc

)
kt

) ⃒⃒
⃒
⃒

θzt

= 2ztc
∂kT

t

∂ztc

(
I − SpcST

pc

)
kt

⃒
⃒
⃒
⃒

θzt

.

(49) 

Here 

∂kt

∂ztc

⃒
⃒
⃒
⃒

θzt

=

[
∂κ(θzt, z1)

∂ztc
…

∂κ(θzt, zτ)

∂ztc
…

∂κ(θzt, zN)

∂ztc

]T

, (50)  

for τ ∈ [1,N]. kt is the kernel vector with centered elements according to 
(24): 

κ(θzt, zτ) = κ̃(θzt, zτ) −
1
N

∑N

k=1
κ̃(θzt, zk)

−
1
N

∑N

k=1
κ̃(zk, zτ) +

1
N2

∑N

l=1

∑N

k=1
κ̃(zl, zk).

(51) 

For the partial derivative of κ(θzt , zτ) with respect to ztc follows 

∂κ(θzt, zτ)

∂ztc
=

∂κ̃(θzt, zτ)

∂ztc
−

1
N
∑N

k=1

∂κ̃(θzt, zk)

∂ztc

−
1
N
∑N

k=1

∂κ̃(zk, zτ)

∂ztc
+

1
N2

∑N

l=1

∑N

k=1

∂κ̃(zl, zk)

∂ztc
.

(52) 

Since the last two terms in (54) have no dependence on ztc, 

∂κ̃(zk, zτ)

∂ztc
=

∂κ̃(zl, zk)

∂ztc
= 0 ∀τ, k, l (53)  

applies. Using the mixed kernel (18) results in 

∂κ(θzt, zτ)

∂ztc
=
∑Nker

l=1
ωl

∂κ̃l(θzt, zτ)

∂ztc
−

1
N

∑N

k=1

∑Nker

l=1
ωl

∂κ̃l(θzt, zk)

∂ztc
. (54) 

The derivatives ∂̃κl(θzt ,zτ)
∂ztc 

and analogously the derivatives ∂̃κl(θzt ,zk)
∂ztc 

are 
given in Table 2 for the kernel functions from Table 1. For the mixed 
kernel used in this study, which consists of a combination of linear and 
Gaussian kernel, follows: 

∂κ(θzt, zτ)

∂ztc
=

ω1θ
(

zτc −
θztc − zτc

σ2 exp
(

−
1

2σ2 ‖ θzt − zτ‖
2
))

−
ω2θ
N
∑N

k=1

(

zkc −
θztc − zkc

σ2 exp
(

−
1

2σ2 ‖ θzt − zk‖
2
))

.

(55) 

Using the general Eq. (54), the Eqs. (47) and (49) can be used to 
compute the contribution to the T2 and Q statistics of the c-th battery cell 
at the t-th sampling instance. 

3. Experimental procedure for the validation of the method 

Fig. 1 shows the experimental setup for validation of the presented 
method. The test bench setup is shown schematically in Fig. 1a and the 
mechanical setup of the battery module, consisting of 12 cells, is shown 
in Fig. 1b. The cylindrical cells in 18650 format from the manufacturer 
Samsung have a nominal capacity of 2.5 Ah. The upper and lower cutoff 
voltages are 4.2 V and 2.5 V, respectively. The maximum continuous 
discharge and charge currents are − 20A and 4A, respectively. The cells 
are soldered to a Printed Circuit Board (PCB) as shown in Fig. 1b. The 
PCB serves as a mechanical holder and is equipped with a fuse and 
sensors. 12 PCBs are electrically connected in series to form a module, 
which is located in a BINDER temperature chamber at a constant tem-
perature of 25 ◦C. Electrical excitation is performed with a Chroma 
Module Charge/Discharge Tester. The module tester simultaneously 
measures the total voltage and the total current with a resolution of 2 
mV and 5 mV at a frequency of 10 Hz. Single cell voltages and 

Table 2 

Partial derivatives 
∂

∂ztc
κ̃(θzt , zτ) of the kernel functions from Table 1 for calcu-

lating the variable contributions.  

∂
∂ztc

κ̃lin(θzt , zτ) = θzτc 

∂
∂ztc

κ̃poly(θzt , zτ) = dθzτc
(
θzT

t zτ + c
)d− 1 

∂
∂ztc

κ̃gauss(θzt , zτ) = −
θ

σ2 (θztc − zτc)exp
(

−
1

2σ2
1
‖ θzt − zτ‖

2
)

∂
∂ztc

κ̃rq(θzt , zτ) = 2cθ(θztc − zτc)
(
‖ θzt − zτ‖

2 + c
)− 2 

∂
∂ztc

κ̃imult(θzt , zτ) = − θ(θztc − zτc)
(
‖ θzt − zτ‖

2 + c2)− 1.5 

∂
∂ztc

κ̃cauchy(θzt , zτ) = −
2θ
σ2 (θztc − zτc)

(

1 +
1
σ2 ‖ θzt − zτ‖

2
)− 2 

∂
∂ztc

κ̃tstud(θzt , zτ) = − dθ(θztc − zτc) ‖ θzt − zτ‖
d− 2 ( 1+ ‖ θzt − zτ‖

d)− 2  
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temperatures are measured using a Hioki 8423 data logger. The cell 
voltage resolution is 0.5 mV at a sample rate of 10 Hz. The temperature 
measurement is only used to keep the cells in their safe operating range. 
To ensure this, voltage and temperature data is exchanged between the 
data logger and the module tester, see Fig. 1a. 

To enable realistic BEV conditions for the operation of the module, 
excitation is performed with different driving and charging profiles. The 
module is alternately discharged using a WLTP1-based current profile 
(maximum currents: − 8.26A to 2.02A) and an AU2-based current profile 
(maximum currents: − 4.73A to 1.35A). Once the first cell has reached 
the lower cutoff voltage of 2.5 V, a charge at a rate of 1.5C is performed 
until the first cell has reached a voltage of 4 V. After another discharge 

with AU-based and WLTP-based current profiles a standard CCCV3 

charge at a rate of 0.5C follows. The whole procedure is repeated 
continuously. 

To obtain a reproducible ISC with known resistance, emulation is 
done using an external resistor, as it is a common practice in related 
studies [24,30,52–54]. Even though in this type of ISC emulation the 
heat generation occurs outside the jelly roll and the internal cell effects 
of the ISC are not considered, Zhang et al. [12] confirm that this type of 
emulation is particularly suitable in the early phase of ISCs. Since only 
single-cell voltages are required to validate the developed methods for 
short-circuit detection, this form of electrical emulation is permissible. 
To cover a wide range of voltage effects [55], the ISC emulation is done 
with resistors of different magnitudes. The tests are performed succes-
sively with resistance values of RISC ∈ {10Ω,100Ω,1kΩ,10kΩ} at cell c 
= 10. While the measurements are acquired at a sampling rate of 10 Hz, 
the methods operate at a rate of 0.1 Hz by averaging over 100 samples. 
The training of the data model is done in the period from 24 h to 8 h 
before the occurrence of the ISC. The 8 h before the ISC serve as a 
validation in the fault-free case. 

4. Results and discussion 

To establish a relationship between the emulated short circuit re-
sistances RISC and the Internal Resistances (IR) of the cells, the IRs are 
determined. Fig. 2 shows the 100ms, DC resistances which were deter-
mined using the least squares method. The variations of the IRs between 
cells are homogeneous over the whole SOC range. In agreement with 
[26], the cell IR increases in the lower SOC range. Inhomogeneities 
between cells are mainly observed as offsets between the resistance 
profiles. The DC IRs at 50% SoC and 25 ◦C are 24.62mΩ ± 0.31mΩ. Even 
in the case of the most progressed ISC RISC = 10Ω, the IR is reduced only 
to 24.56mΩ, which corresponds to a change of 0.06mΩ. This change is 
well below the intercell and SOC- and temperature-induced variations, 
see [26]. This complicates detection at this early stage using methods 
based on estimation of the IR [28]. 

As discussed by Zhang et al. [12], the heat generation at this early 
stage is also minimal, since the ISC currents are comparatively low. For a 
fully charged cell with a voltage of 4.2 V and the smallest short-circuit 
resistance of RISC = 10Ω used (largest heat generation), the additional 
heat generated by the ISC is PISC = 1.764W. For an IR of 24mΩ, the 
power is comparable to the heat generated when the cell is discharged 
with a current of 8.6 A, which corresponds to regular operation. 
Although the temperature rise is measurable in the case of the 10Ω 

Fig. 1. Experimental setup of the test bench.  

Fig. 2. 100ms, DC resistances of the cells used, over the entire SOC range at 
25 ◦C. 

1 Worldwide harmonized Light vehicles Test Procedure  
2 Artemis Urban 

3 Constant Voltage Constant Current 
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resistor, it is negligible for the larger short-circuit resistances. The heat 
generation decreases by an order of magnitude for each of the short- 
circuit resistors used, to PISC = 0.176W (RISC = 100Ω), PISC = 0.018W 
(RISC = 1kΩ) and PISC = 0.002W (RISC = 10kΩ). 

The deviations of the single cell voltages from the median of all 12 
cells are shown in Fig. 3. In Fig. 3a, the voltage differences 21 h before 

and 21 h after the occurrence of the ISC with RISC ∈

{10Ω,100Ω,1kΩ,10kΩ} are shown. The time t = 0h at which the ISC is 
emulated is marked by a black dashed line. The 11 fault-free cells are 
shown in black and the faulty cell is marked in red. For comparability of 
measurements, all plots in Fig. 3a have the same scales. Ideal identical 
and balanced cells would have a voltage difference of zero. However, 
although new cells are used, deviations of up to 50 mV are observed 
before the ISC occurs. These are characteristic deviations in the low SOC 
range due to the large gradient of the open circuit voltage curve in the 
low SOC range [26]. For poorly balanced cells or aged cells with ca-
pacity differences, these deviations can significantly exceed 50 mV. In 
the low SOC range, the amplitude can be several 100 mV [18]. After 
emulation of the ISC, the deviation from the median voltage increases 
for the affected faulty cell. While a rapid increase in the voltage differ-
ence is observed in the 10Ω case, it is hardly observed in the 10kΩ case. 
Therefore, in the case of the more progressed 10Ω ISC, the fault would 
also be observable via threshold-based methods. However, early detec-
tion of high-impedance shorts is more challenging. Fig. 3b shows an 
enlarged section from t = 0h to t = 11h after the occurrence of the 1kΩ 
ISC. Especially in the early phase, the voltage differences caused by the 
ISC disappear in the usual deviations due to balancing and capacity 
differences. This makes it difficult to reliably detect ISCs, especially in an 
early phase. 

4.1. Choice of training subset 

The theoretical derivation regarding the efficient choice of training 
data from Section 2.4 will be analyzed and discussed in the following 
based on the measured data. Exemplarily, cell c = 4 and the faulty cell c 
= 10 are chosen to be able to visualize the approach in two dimensions. 
The voltage measurements for the case RISC = 10kΩ are preprocessed as 
described in Section 2.2 and the dot products in feature space are 
calculated. The columns ζ4 and ζ10 of the training data matrix Z are 
shown in Fig. 4a. In addition, the first s ∈ [1,6] eigenvalues λs, based on 
all N training points, are given in the plots on the top left corner. In color, 
the projections of the corresponding kernel principal components ps into 
the input space are shown. Since the projections are sorted in descending 
order by the magnitude of the associated eigenvalues, they are unique 
except for the algebraic sign. As suggested by [40], a combination of a 
global and a local kernel is used. This mixed kernel allows a high 
sensitivity for incipient faults and simultaneously a robust behavior for 
more progressed ISCs [18]. For the example shown in Fig. 4a, a com-
bination of the linear and the Gaussian kernel is used. The global, linear 
kernel is responsible for contour lines in the form of straight lines. This 
has the advantage that there is still a gradient in the eigenvectors for 
points with a large distance to the training data center, as in the case of 
low impedance shorts (see the RISC = 10Ω case in Fig. 3a). Due to the 
influence of the local Gaussian kernel, the contour lines are bent based 
on the distribution of the training data. The Gaussian kernel allows for 
good interpolation behavior due to the high contour line density (large 
gradient) within the training data, which is necessary for high sensitivity 
to incipient faults. However, the kernel matrix K to be diagonalized in 
Eq. (15) has the size 5760 × 5760 and the online monitoring requires the 
centering of a 5760-dimensional vector every 10 s, see Eq. (24). 
Therefore, the goal is to span an approximation of the feature space by a 
lower number n of training data. In Fig. 4b, the first j* ∈ [1,6] points of 
the subset chosen by Algorithm 1 are highlighted. In addition, the pro-
jection of the non-centered kernel vectors. 

k̃t =
[

κ̃
(
z1, zj*

)
…κ̃
(
zt, zj*

)
…κ̃
(
zNgrid , zj*

) ]T
∈ ℝNgrid , (56)  

to the input space with grid points zt ∈ ℝ2 are given in color. The con-
tour lines correspond to constant dot product values. The subset consists 
of the points with the least linear dependence and therefore comprises 
the best-suited points to approximate the feature space. Choosing only 
the n = 6 points shown in Fig. 4b as representative of the set of all points 

Fig. 3. Voltage differences of all cells related to the median voltage, current 
profile and SOC. 
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results in the kernel principal components and eigenvalues shown in 
Fig. 4c. The color of the points from black to light gray corresponds to 
their sorting according to Algorithm 1. The first point is black. Even with 
the chosen, very small subset of n = 6 points, the eigenvalues are in the 
correct order of magnitude. The shape of the first three kernel principal 
components is already similar to the contour lines from Fig. 4a. The non- 
unique sign causes an inversion of the contour colors. In addition, a 
positive rotation of the kernel PCs is observed. Fig. 4d shows exemplary 
an approximation with a subset of n = 40 points. All six largest eigen-
values already completely match the eigenvalues from Fig. 4a in the first 
four decimal places. Also, the shape of the kernel principal components 
largely corresponds to the shape of the kernel principal components 
based on the full training data, except for the sign. However, the size of 
the kernel matrix to be stored and diagonalized has been reduced from 
5760 × 5760 to the size 40 × 40, which corresponds to a reduction by 
the factor 1442 = 20736. 

For online monitoring, the T2- and Q-statistics are calculated ac-
cording to (26) and (27). The corresponding contour maps for the input 
space are given in Fig. 5. In Fig. 5a the calculation of the test statistics is 
based on the full kernel matrix K ∈ ℝ5760×5760 and in Fig. 5b the 
approximation according to Algorithm 1 is used. With a selected toler-
ance η = 10− 6, n = 116 points result. The training data are shown in 
different shades of blue. In Fig. 5a the training data points are sorted in 
time, in Fig. 5b the sorting corresponds to the order in which the points 
are chosen by Algorithm 1, line 6. Dark blue corresponds to the first 
point or the largest diagonal element. The test points before the occur-
rence of the ISC are shown in gray. After the occurrence of the ISC of 
RISC = 10kΩ, the test points are marked in red. For the area shown in 

green, the respective statistic is below its threshold. The limit, deter-
mined by kernel density estimation, is based on a 99% confidence and is 
shown as a red solid line. Areas above the control limit are represented 
in red. The union of the green areas of the T2 and Q statistics is 
considered fault-free, i.e., a data point is only considered faulty if it is 
above the threshold for both statistics. The linear kernel is responsible 
for the global behavior in the form of ellipses [18], since a multivariate 
normal distribution results for linearly related variables [56]. The local 
behavior is dominated by the Gaussian kernel based on the distribution 
of the data. Due to the local kernel, this does not necessarily result in a 
connected subspace in which the data is evaluated as fault-free. This can 
be seen in the Q contour map of the training subset. In the example 
shown, the subspace is not connected even after union of the T2 and Q 
subspace. In the case of the full data matrix, 99.32% of the test data lie 
within the union set of both statistics before the ISC occurs (gray). This 
corresponds to a False Alarm Rate FAR = 0.68%. The Missed Detection 
Rate (MDR) within 48 h after the occurrence of the ISC fault is MDR =
26.24%. In the case of the approximation, FAR = 0.16% and MDR =
28.45% result. The fault detection is always a trade-off between low FAR 
and low MDR or Detection Time (DT). Since the method with the full 
training set has a lower MDR, but the method with the subset has a lower 
FAR, the detection performance is considered to be equivalent. Thus, 
despite the reduction in complexity, no degradation for fault diagnosis is 
observed. 

4.2. Influence of the mixed kernel parameters 

Based on the m = 12 voltage measurements, the influence of the 

Fig. 4. Projection of the first six kernel principal components with their associated eigenvalues λs (a,c,d) and columns ζ4 and ζ10 of the training data matrix Z (b) for 
the case RISC = 10kΩ using a mixed kernel with parameters ωlin = 0.05 and σ = 1.8. 
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weighting of the linear ωlin and Gaussian kernel ωgauss = 1 − ωlin as well 
as the influence of the kernel parameter σ is investigated in the 
following. For this purpose, the methods from Section 2 are applied on 
the RISC = 10kΩ data set with different choices of ωgauss and σ. In Fig. 6, 
the resulting FARs in training and in test as well as the MDR within the 
first 48 h after the occurrence of the RISC = 10kΩ fault are shown below 
each other. Since the training is unsupervised, the MDR is not defined 
during the training period. For ωgauss = 0, the method corresponds to the 
linear PCA monitoring [31]. The linear kernel shows a low FAR in 
training and in test, but also exhibits a high MDR and DT. For ωgauss = 1 
(pure Gaussian kernel), a low MDR results, but a significant increase in 
FAR in training and in test is observed. The FARtrain is due to its defi-
nition always less than 1%, the FARtest can exceed 1%, but then indicates 
an overfitting to the training data. This is especially observable with 
small σ and high ωgauss. In this case, the low MDR and fast detection time 
is obtained at the cost of a high FAR. For the range outside 0.8 < ωgauss <

1, 3 < σ < 10, the ratio 

FARtest

FARtrain
≈ 1 (57) 

holds. A small choice of σ < 3 leads to a large MDR and small FAR 
regardless of the weighting ωgauss, comparable to the purely linear 
behavior for ωgauss = 0. This can be explained by a strongly disconnected 
space (see Fig. 5b, Q contour map) where the global behavior of the 

linear kernel dominates. Except for the extreme values ωgauss → 1, ωgauss 

→ 0, σ → 0, the FAR and MDR exhibit a plateau with a low sensitivity to 
parameter changes in ωgauss and σ. This indicates a high robustness 
related to the parameter choice. 

To achieve a Pareto-efficient choice of ωgauss and σ, the results from 
Fig. 6b and C are plotted in Fig. 6d with MDRtest on the abscissa and 
FARtest on the ordinate. The size of the dots corresponds to the values of 
σ, and the color corresponds to the weighting ωgauss. The contour lines, 
shown in gray, correspond to constant products of MDRtest and FARtest. 
The goal is to obtain a low MDRtest with a simultaneous low FARtest. In 
Fig. 6d, it can be seen that a higher weighting of the Gaussian kernel 
tends to result in higher FARtest and lower MDRtest. A stronger weighting 
of the linear kernel has the opposite effect. The yellow dots with ωgauss =

1 are dominated by points on the Pareto front. This can be explained by 
the poor extrapolation behavior of the pure Gaussian kernel. As the 
short-circuit fault progresses and the resulting voltage difference be-
comes larger, the voltage values are erroneously evaluated as fault-free. 
A more detailed discussion can be found in [18]. This undesired 
behavior is reduced by a larger choice of σ. However, the described ef-
fect then occurs again with even larger voltage differences. Only a 
choice of ωgauss < 1 results in a robust behavior for arbitrarily large 
voltage differences [40]. Conversely, the purely linear kernel (ωgauss =

0) with an MDRtest = 87.74 and FARtest = 0.17 is also not Pareto optimal. 
Since the choice of σ has no effect on the detection performance in the 

Fig. 5. Contour maps of the T2 and Q control statistics in the ζ4ζ10-plane based on the full data matrix (a) and the approximation by the incomplete Cholesky 
decomposition (b). Parameters of the mixed kernel: ωlin = 0.05 and σ = 1.8. 
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case ωgauss = 0, the points for all σ lie on top of each other. In general, a 
larger kernel parameter σ contributes to a smaller FDR and higher MDR, 
and vice versa. The plateau from Fig. 6a-c is seen in Fig. 6d by a high 
density of points in the range 40 < MDRtest < 50 and 0.1 < FARtest < 0.4. 
This confirms the low sensitivity of the method to parameter changes in 
ωgauss and σ for non-extreme parameter values. The plateau generally 
exhibits low FAR and MDR. Based on the sensitivity analysis, the pa-
rameters σ = 20.3 and ωgauss = 0.55 are chosen. 

Fig. 7 shows the decrease of the sum of the diagonal elements 
∑

j=τ
N Gjj 

during the execution of Algorithm 1, depending on the size of the 
training subset n and the number of dimensions m. With a constant 
number of training points, it is observed that the distribution of the data 
can be approximated worse for an increasing number of dimensions. 
This effect is called curse of dimensionality [57,58]. For the first points, 
however, a rapid decrease in 

∑
j=τ
N Gjj is achieved. This is due to the linear 

kernel. In the case of the linear kernel the feature space is already 
completely spanned by n = m linear independent vectors. Thus, for a 
choice of n ≥ m at least the detection performance of the linear method 
can be guaranteed. This makes the method robust against a high number 
of voltage signals, as they are present in large battery packs. The addi-
tion of further points (n > m) improves the detection performance due to 
the influence of the Gaussian kernel. 

4.3. Application of the framework for ISC diagnosis 

Fig. 8 shows the results after applying the procedure from Section 2 
to diagnose soft ISCs. Fig. 8a shows the values of the T2 and Q statistics 
and the Upper Control Limit (UCL) based on a kernel density estimation 

with a confidence of 99%. First, the method is validated on fault-free 
measurement data. The training is done in the first 16 h, the test starts 
for t > 16h. The selected training subset has a cardinality of n = 257 
given a tolerance of η = 10− 3. The training points are marked in blue. In 
addition, the values of the two test statistics are calculated for the 
remaining training points and test points (red). The FARs are FARtrain =

Fig. 6. Influence of a variation of the weight ωgauss and the kernel parameter σ on the resulting FAR in training and in test as well as the MDR.  

Fig. 7. Decrease of the sum of diagonal elements of G (tolerance η), depending 
on the training subset n and the number of dimensions m (total number of cells). 
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Fig. 8. Resulting T2 and Q control statistics after application of the KPCA-based monitoring scheme with optimal training data selection (precision η = 10− 3) for the 
cases RISC ∈ {10Ω,100Ω,1kΩ,10kΩ}, as well as the corresponding contribution plots for different time periods. 
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0.12% and FARtest = 0.23%. No drift is observed in the statistics. Fig. 8b 
shows the contributions calculated according to Section 2.5 for different 
time periods. Each bar corresponds to one of the m = 12 cells. The 
contribution plots show the contribution of each variable to the T2 and Q 
statistics, respectively. The average of the contributions is normalized to 
1 in training. No significant change is observed in the test data for the 
further periods after training, which corresponds to the desired behavior 
in the fault-free case. 

Fig. 8c,f,h,j show the results for the fault cases RISC ∈

{10Ω,100Ω,1kΩ,10kΩ}. Before the ISC occurs at time t = 0h, indicated 
by a dashed line, 16 h of training and 8 h of validation are performed. 
The number of points chosen to approximate the feature space at a 
tolerance of η = 10− 3 ranges from n = 252 to n = 357. This corresponds 
to 019% to 038% of the size of the full kernel matrix, which means a 
significant reduction in computational and storage complexity. The 
FARs in training and testing range from 0.14% to 0.19%. The DT de-
pends on the magnitude of the ISC. Smaller resistances produce a high 
voltage difference more quickly, see Fig. 3. The definition of DT is 
analogous to [18]. The detection measure takes the value 1 if both 
statistics are above their UCL and is 0 otherwise. The detection measure 
is filtered in time by a moving average filter with a time window of 200 
samples, which corresponds to 0.56 h. If the detection measure exceeds a 
threshold value of 0.5, the fault is considered detected. The moving 

average filter delays the DT but prevents undesired false alarms. Low 
short-circuit resistances are also observable by the pure voltage differ-
ence (see Fig. 3a, RISC = 10Ω) or, in the case of even more progressed ISC 
faults, by a temperature rise. 

The corresponding contribution plots are shown in Fig. 8d,f,h,j. A 
period during training (t ∈ [− 20h, − 16h]) and a period during the 
validation phase (t ∈ [− 8h, − 4h]) is shown to the left of the dashed line. 
The two periods to the right of the dashed line are chosen after ISC 
triggering. The cell c = 10 for which an ISC is emulated at t = 0h is 
highlighted in red. As in Fig. 8b, no significant contribution of a single 
cell to the respective statistics is observed before the occurrence of the 
fault. However, after the occurrence of the ISC, the contribution to the 
respective statistics is dominated by the faulty cell. In the case of more 
progressed ISCs with significant heat generation, the additional tem-
perature anomaly would also be expected to cause a slightly increased 
contribution from the neighboring cells of a battery pack. However, this 
is not observed in the contribution plots shown, since the ISC is emulated 
purely electrically and therefore does not affect serial cells. Although in 
the case of the RISC = 10kΩ the fault is detected only after 12.23 h, the 
contribution of the faulty cell is already significant in the period t ∈
[− 8h, − 4h]. Cell 10 already shows 5.65 times the contribution to the T2 

statistic and 2.95 times the contribution to the Q statistic compared to 
the next largest contribution of cell 7 and cell 5, respectively. The 

Fig. 8. (continued). 
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method from Section 2.5 can thus be successfully applied to mixed 
kernels and the resulting contribution plots are suitable for isolating the 
faulty cell. 

Moreover, it is observed that after the fault occurs, the contribution 
of the fault-free cells shifts from the T2 statistic to the Q statistic. Ac-
cording to [44], the T2 statistic is associated with systematic variations 
in the training data. The Q statistic, in contrast, monitors the non- 
systematic part in the training data. It is therefore associated with the 
noise or unexpected events in the test data. After the occurrence of the 
fault, the behavior of the voltage signals no longer corresponds to the 
learned data model, which is why the mean contributions to the T2 

statistics decrease and the mean contributions to the Q statistics 
increase. 

5. Conclusion 

The present study compares the differences of single cell voltages to 
diagnose ISCs. Since the cell voltage differences interact nonlinearly, a 
nonlinear data model is learned using KPCA and applied for a cross-cell 
monitoring. The use of mixed kernel functions enables both high 
sensitivity for soft ISCs and high robustness of the method in the case of 
more progressed, low-impedance ISCs. The approach is validated on an 
experimental battery module with a wide range of short-circuit re-
sistances in the range from 10Ω to 10kΩ. Compared to the linear 
methods, nonlinear monitoring requires more computational effort. 
While the quadratic covariance matrix calculated for linear monitoring 
has the dimension m of the input variables, the quadratic Gram matrix in 
the nonlinear case has the dimension N of the number of samples. 
However, an analysis of the distribution in the high-dimensional feature 
space shows that the projected vectors have linear dependencies. 
Therefore, the resulting subspace can also be spanned with a subset n ≪ 
N of training data. Further reduction yields an approximation of the 
Gram matrix to a desired accuracy. As discussed in this study, a choice of 
n = m samples guarantees at least the performance of the linear method. 
For the application shown, the optimal training data selection reduces 
the size of the kernel matrix to 0.19% to 0.38% of the size of the full 
kernel matrix, which significantly reduces the computational cost. The 
optimal choice of parameters results in a Pareto optimization between 
the FAR and the MDR. It is shown that only combinations of the linear 
and the Gaussian kernel are optimal. The detection performance, i.e., 
the compromise of FAR and MDR, is thereby robust away from 
extremely chosen parameters (purely linear, purely Gaussian, or very 
small Gaussian kernel). The contribution analysis for mixed kernels, 
developed for fault isolation, allows localization of the faulty cell. The 
optimized nonlinear method allows detection of an emulated 10kΩ ISC 
in a 12s1p module consisting of 2.5 Ah cells after 12.23 h. However, in 
the contributions to the control statistics, significant contributions of the 
defective cell are already detectable in the period t ∈ [4h,8h] after 
emulation of the ISC. 
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