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A B S T R A C T   

Freshwater microbes play a crucial role in the global carbon cycle. Anthropogenic stressors that lead to changes 
in these microbial communities are likely to have profound consequences for freshwater ecosystems. Using field 
data from the coordinated sampling of 617 lakes, ponds, rivers, and streams by citizen scientists, we observed 
linkages between microbial community composition, light and chemical pollution, and greenhouse gas con-
centration. All sampled water bodies were net emitters of CO2, with higher concentrations in running waters, and 
increasing concentrations at higher latitudes. Light pollution occurred at 75% of sites, was higher in urban areas 
and along rivers, and had a measurable effect on the microbial alpha diversity. Genetic elements suggestive of 
chemical stress and antimicrobial resistances (IntI1, blaOX58) were found in 85% of sites, and were also more 
prevalent in urban streams and rivers. Light pollution and CO2 were significantly related to microbial community 
composition, with CO2 inversely related to microbial phototrophy. Results of synchronous nationwide sampling 
indicate that pollution-driven alterations to the freshwater microbiome lead to changes in CO2 production in 
natural waters and highlight the vulnerability of running waters to anthropogenic stressors.   

1. Introduction 

The important functional role of freshwater microorganisms in the 
global carbon cycle is well established (Whitman et al., 1998; Raymond 
et al., 2013; Crevecoeur et al., 2019; del Giorgio and Duarte, 2002). 
They are responsible for most of the uptake and emission of greenhouse 
gases (GHGs) in freshwaters including carbon dioxide (CO2) and 
methane (CH4) (Aufdenkampe et al., 2011), and their impact on net 

carbon balance has direct effects on climate and global change (Gudasz 
et al., 2010). Ecosystem changes, many of which result from human 
activities, are increasingly perturbing global carbon cycles (Regnier 
et al., 2013), in turn hampering our understanding of related processes 
and limiting the predictability of Earth System Models (Verburg et al., 
2016). A recent “warning to humanity” highlighted the urgency of 
improving our understanding of how microorganisms regulate GHG 
dynamics, and how this function will be modulated by human activities 
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(Cavicchioli et al., 2019). 
The freshwater microbiome has been extensively studied, with a 

focus on linking bacterial community structure to local physicochemical 
properties of water. The majority of studies have been conducted in 
temperate lakes or streams, and broader geographical studies across 
different waterbody types are sparse (Veach et al., 2021). Existing 
studies also focus on bacteria and rarely extend to the complete fresh-
water microbiome which includes archaeal and eukaryotic microbes 
(Wurzbacher et al., 2017). While freshwater microbial communities can 
be similar in different habitats, there can be notable differences among 
types of water body, as commonly observed for phytoplankton and 
microbial eukaryotes (da Silva et al., 2019; Reynolds et al., 1994). It is 
likely that these differences also extend to prokaryotes and thus influ-
ence microbial production and mineralization. Freshwater ecosystems 
are a significant source of microbially mediated CO2 and CH4 (Raymond 
et al., 2013; Tranvik et al., 2009) and transform a large amount (up to 
5.1 Pg C y− 1) (Bretz et al., 2021) of the terrestrial carbon sink. In 
addition to water-column processes of the plankton, microorganisms 
living in sunlit (i.e., euphotic) sediments are important for the assimi-
lation of CO2 through photosynthesis and the release of CO2 and CH4 
through mineralization (i.e., primary production and respiration). CO2 
concentration in freshwaters can also be influenced by the import of 
carbon from the adjacent landscape (Bretz et al., 2021). CH4 is mainly 
produced by methanogenic archaea in sediments as an end product of 
anaerobic decomposition of organic matter. It is also produced as a 
result of cellular stress under oxic conditions (Ernst et al., 2022). CH4 
can be removed from the system by e.g., methane oxidizing bacteria 
(MOBs) once an electron acceptor is available. Together, CO2 and CH4, 
account for approximately 75% (Drake et al., 2018) of all carbon 
metabolism in inland waters. These freshwaters are increasingly subject 
to modification and degradation by anthropogenic stressors, with the 
highest global species extinction rates of any biome and with eutro-
phication from nutrient pollution a decades-old problem (Reid et al., 
2019). This is despite the high value of freshwaters for recreation and 
conservation and their contribution to human health and well-being 
(Venohr et al., 2018). 

Two emerging and diffuse anthropogenic stressors in freshwaters are 
closely linked to urbanization: light pollution in the form of artificial 
light at night (ALAN) (Hölker et al., 2010; Kyba et al., 2017) and the 
spread of chemical pollution such as antibiotics (Amos et al., 2014; 
Bengtsson-Palme and Larsson, 2015). Light pollution can affect organ-
ism and nutrient fluxes across ecosystem boundaries (Manfrin et al., 
2017) and can change microbial community composition (Grubisic 
et al., 2017), favouring taxa that benefit from nocturnal light and 
potentially leading to altered carbon budgets (Hölker et al., 2015). 
Chemical pollution can lead to the spread of resistance genes in the 
environment (Amos et al., 2014, Bengtsson-Palme and Larsson, 2015), 
perhaps through selection pressure exerted by the extensive use of 
antimicrobial agents. Prominent transfer routes to freshwaters may be 
via manure-fertilized agriculture (Lima et al., 2020), polluted road 
runoff (Liguori et al., 2021), or wastewater treatment infrastructure 
(Amos et al., 2014; Cacace et al., 2019). Transfer can lead to the spread 
of mobile genetic elements (e.g., integron integrase genes) that serve as 
biomarkers for presence of antibiotics, heavy metals, and disinfectants 
present in anthropogenic pollution (Gillings et al., 2015). While ALAN 
can be directly measured in the field or by remote sensing (Jechow & 
Hölker, 2019), chemical pollution can be indirectly assessed by the 
presence of the mobile class 1 integron-integrase gene. The ecological 
effects of these types of pollution on microbial communities have been 
studied with small-scale experiments, but our understanding of the ef-
fects at the landscape level or larger spatial scales is limited, despite the 
fact that these stressors are likely to have manifold effects on aquatic 
ecosystems (Hölker et al., 2021). 

We investigated the linkages between benthic microbial community 
composition and two emerging pollutants, light pollution and chemical 
pollution, by initiating a nationwide sampling event in Germany in 

November 2015. Light pollution was studied directly as artificial light at 
night, while chemical pollution was studied indirectly using integron- 
integrase genes as biomarkers. In total, 742 individuals and groups of 
citizen scientists sampled 617 sites that encompassed ponds, lakes, 
streams, and rivers in a two-week period. Our set-up allowed us to test 
four hypotheses: (i) light pollution is more evident in urban areas while 
biomarkers of chemical pollution are more pronounced in agricultural 
areas, (ii) light pollution has an impact on sediment microbial com-
munity composition, (iii) these effects on microbial communities by 
light pollution can lead to alterations in the carbon cycle, here measured 
as GHG concentrations, and (iv) differences in microbial community 
composition can be linked to the type of water body. 

2. Materials and methods 

A total of 280 lakes (>0.01 km2), 71 ponds (standing water <0.01 
km2), 105 rivers (stream order 7–10), and 161 streams (stream order 
1–6, Fig. S1) were surveyed by conducting a citizen science sampling 
campaign throughout Germany. 

2.1. Citizen science field sampling 

The citizen science field sampling campaign was conducted in the 
first two weeks in November 2015. Citizens were invited to register 
online using an interactive inland water map that indicated the regis-
tered locations and, later, the successful return of the sample and in-
formation about the respective freshwater system. A sampling kit was 
sent to registered participants. The kit contained three glass vials (21 ml) 
for taking water samples, a 5-ml syringe (Carl Roth GmbH, Karlsruhe, 
Germany) with tip cut off for taking sediment samples, a 15-ml centri-
fuge tube (Carl Roth) containing RNA stabilizing solution (RNAlater, 
Invitrogen Thermo Scientific, Waltham, USA) into which 1 ml of sedi-
ment from the 5-ml syringe was added immediately after each sample 
was taken, a thermometer, pH-measuring paper, gloves, a pencil, a 
logbook, and a detailed manual with a link to an online video tutorial for 
sampling of water and sediment (https://www.youtube.com/watch? 
v=2AumuRLgimo). The participants were asked to take samples at a 
freshwater body close to their home. A questionnaire about the local 
illumination was added to the kit, asking for (a) the distance from the 
sampling site to the nearest light source, (b) the number of the visible 
light sources from the sampling site, (c) the estimated light color of the 
most visible light sources, and (d) details about the design and condition 
of artificial light sources (Schroer et al., 2016). 

In total, 742 sampling kits were sent to registered citizens and or-
ganizations. Participants recorded the exact time and location of the 
sampling (using Google Maps GPS data) and other sampling metadata. 
All samples were taken between 7:00–10:00 (Central European Standard 
Time), while the light exposure was examined after 18:00 (Central Eu-
ropean Standard Time) to ensure darkness. Citizen scientists took three 
water samples and one sediment sample per sampling site. Temperature, 
light, and pH were measured in situ. Sediment samples were taken from 
the uppermost few cm of sediment (i.e., benthos) in an area where water 
depth was about 30 cm and transferred into the prepared RNAlater vials. 
Water and sediment samples were sent by post to the Leibniz Institute of 
Freshwater Ecology and Inland Fisheries (IGB) by participants, having 
been stored at most for two days in a home refrigerator (<7 ◦C). After 
arrival at IGB, the samples were immediately measured or were stored at 
4 ◦C until further processing (see following sections). 

The project required an extensive involvement of citizens throughout 
Germany who may be subject to spatial bias, in particular through the 
addition of variability to the data and by a non-randomized sampling 
design (Kyba et al., 2013). The impact of the noise introduced by citizen 
science methodologies can be assessed by validating previously 
observed patterns on a large citizen science-based dataset. By comparing 
and confirming our results with an expected pattern, here a higher CO2 
concentration in small waters compared to large ones (Holgerson and 
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Raymond, 2016; Premke, 2016), we validated that the citizen science 
approach of our study is a powerful tool for intensive synchronous data 
collection along a wide geographic range and in different sampling sites. 

2.2. Biomolecular analysis of the microbial community 

Microbial communities from preserved sediment samples were 
analysed using DNA metabarcoding of the ribosomal SSU (Wurzbacher 
et al., 2017), and indicators for chemical pollution and antibiotic 
resistance were measured via quantitative PCR. DNA was extracted from 
samples (1 ml sediment per site) stored in RNALater using ZR-96 Soil 
Microbe DNA Kits (Zymo Research Europe GmbH, Freiburg, Germany). 
Samples were first washed with 1.5 ml PBS and centrifuged (5000xg for 
10 min, 4 ◦C) to remove the RNALater. Approximately 150 μl of washed 
sediment was then suspended in a lysis buffer and extracted according to 
the manufacturer’s protocol. In total, 567 benthic samples were suc-
cessfully extracted. A fragment of ribosomal SSU was PCR-amplified 
with two equimolar 926F primers that contained a two-base pair shift 
to mitigate phasing effects, and two equimolar 1392R primers (see 
supplementary material). Primers were adapter-ligated using the Nex-
tera library preparation protocol (Illumina, San Diego, USA, see sup-
plementary material). For this first adapter PCR we used the Herculase II 
Fusion DNA Polymerase (Agilent Technologies Germany GmbH, Wald-
bronn, Germany) in a hot start PCR in 20 μl reactions (with 18 μg of 
molecular grade BSA added per reaction). We used an initial denatur-
ation at 95 ◦C (3 min) followed by 25 cycles of 95 ◦C (30 s), 55 ◦C (45 s), 
70 ◦C (90 s), and a final elongation at 72 ◦C (5 min). PCR products were 
checked for successful amplification on an agarose gel (1%). The 
amplicons were purified with 1 volume of AMPure XP magnetic beads 
(Beckman Coulter GmbH, Krefeld, Germany) and subsequently ampli-
fied in a second index PCR using the Nextera index primers N701–N724 
and S501–S516 (Illumina, Nextera index primer) with the Q5 
High-Fidelity Polymerase (New England Biolabs, Ipswich, USA) in a 
hot-start PCR reaction of 20 μl. The PCR conditions consisted of dena-
turation at 98 ◦C (1 min), 10 PCR cycles of 98 ◦C (10 s), 66 ◦C (30 s), 72 
◦C (30 s), and a final elongation at 72 ◦C (2 min). PCR products were 
purified with magnetic beads as described above and DNA concentration 
was measured using the Quant-iT PicoGreen dsDNA Assay-Kit (Invi-
trogen Thermo Scientific). Randomly selected samples from the first and 
second PCR were qualitatively analysed on a Bioanalyzer (Agilent 
Technologies). Two of the 96 well plates containing the barcoded 
amplicons were equimolar pooled and purified with magnetic beads. 
The final pool was analysed on a Bioanalyzer (Agilent Technologies) 
prior to sequencing on a MiSeq sequencer (Illumina) with a v3 chemistry 
(2 × 300 nt). Data were retrieved after basecalling as sample-based fastq 
files. Reads were trimmed with Trimmomatic (Bolger et al., 2014) and 
merged with Pear (Zhang et al., 2014), translated into fasta files, and 
subjected to the closed-reference SILVA NGS pipeline (https://ngs.arb 
-silva.de/silvangs/) for processing, resulting in a community matrix 
resolved to the genus level (Quast et al., 2013). The community matrix 
was screened for artificial signals related to low DNA concentrations 
(Salter et al., 2014) by correlations (threshold of r = 0.3) and the 
following taxa were identified and removed from the dataset: Mam-
malia, Mycoplasma, Rhodococcus, Propionibacterium, Curvibacter, Ral-
stonia; reported frequent contaminants in metabarcoding studies (Salter 
et al., 2014). This resulted in a total of 4733 taxonomic paths (Quast 
et al., 2013). To test whether there were single-species-like effects of 
artificial light at night we processed the sequence data using the data 
processing pipeline presented in Nawaz et al. (2018) with small modi-
fications, setting the SILVA SSU database as reference (SILVA version 
138), resulting in a community matrix on the OTU level (corresponding 
to genus or species for most OTUs). 

2.3. Genetic markers for chemical stress: Intl1 and blaOXA58 analyses 

The antibiotic resistance gene and the class 1 integron integrase gene 

(blaOXA58 Cacace et al., 2019, intl1 (Barraud et al., 2010)) were quan-
tified by quantitative PCR normalized to per-sample 16S gene copies 
using the primers 337f/518r (Bakke et al., 2011). Standard curves were 
generated by linearized plasmid (for 16S gene) or by double magnetic 
bead purified PCR products from wastewater (municipal wastewater 
treatment plant Garching, Germany) using MagSi-NGSPREP Plus 
(Steinbrenner, Magtivio, Nuth, Netherlands) according to the manu-
facturer’s protocol. Quantification was done in the QFX Fluorometer 
(DeNovix, Wilmington, USA) using the Qubit dsDNA BR Assay Kit 
(Thermo Fisher Scientific). All steps were quality-checked on agarose 
gels. Serial dilutions were generated by 10-fold dilutions and measured 
together with the samples in technical replicates. The PCR was per-
formed with SybrGreen GoTaq qPCR master mix (Promega, Madison, 
USA) in 21 μl reactions in a CFX96 thermocylcer (Bio-Rad Laboratories, 
Berkeley, USA). The qPCR was run with following conditions for intl1 
and blaOXA58: Initial denaturation at 95 ◦C for 4 min, and then 40 cycles 
(95 ◦C for 10 s followed by 64 ◦C (Intl1) or 60 ◦C (blaOXA58) for 45 s). For 
16S we used an initial denaturation at 95 ◦C for 2 min, and then 40 
cycles (95 ◦C for 5 s, 60 ◦C for 30 s). All qPCRs were followed by a 
melt-curve analysis and samples with secondary signals were removed 
from the analysis. To test the relevance of the geographical proximity to 
the nearest upstream wastewater treatment plant, we identified the 
nearest neighbour using the distance matrix tool in QGIS (version 
2.14.22) and calculated the distance. For this purpose, the studied points 
geospatial data were defined as the input point layer and the WWTP 
geospatial data as the target point layer. 

2.4. Artificial light at night (ALAN) 

Emissions of night-time light in the wavelength range 500–900 nm 
were assessed using cloud- and moon-free data from the Visible Infrared 
Imaging Radiometer Suite Day/Night Band (DNB) for the month of 
November 2015 (https://eogdata.mines.edu/download_dnb_composites 
.html). 

2.5. Measurement and calculation of dissolved CO2 and CH4 
concentrations 

To assess the concentrations of the GHGs CO2 and CH4 in the water, 
unpreserved surface water samples were analysed in the laboratory 
using the headspace extraction technique (Kling et al., 1991). Vials (21 
ml) were filled by citizen scientists under water, closed with butyl 
rubber stoppers and screw caps, and stored in a refrigerator until ship-
ment to the laboratory. The measurement for dissolved CH4 and CO2 
concentration was carried-out by creating a 5-ml gas headspace with 
atmospheric air and equilibrating the water and the headspace gas by 
rigorously shaking the vial for 1 min. The concentration of CH4 and CO2 
in the headspace gas was then measured by injecting a 1 ml subsample of 
the gas headspace with a glass gas-tight syringe (Hamilton 1710RN, 
Switzerland) in a closed-loop connected to an Ultraportable Greenhouse 
Gas Analyzer (UGGA, Los Gatos Research Inc, Mountain View, USA) 
(Kling et al., 1991; Attermeyer et al., 2016; Wilkinson et al., 2019). 
About 13% of the samples were analysed by a gas chromatograph 
equipped with an FID and methanizer (SRI 8610C, SRI-Instruments, 
Torrance, USA). Both instruments were adjusted and calibrated to 
each other. The equilibration temperature (i.e., water temperature) was 
measured in the first and last vial of each 3-sample batch. The dissolved 
CO2 and CH4 concentrations, corrected for the moles of CO2 and CH4 in 
the atmospheric air introduced to create the headspace, were deter-
mined according to Baird et al. (2010), using the equilibration 
temperature-adjusted solubility constants according to Sander (1999). 

2.6. Calculations of Strahler stream orders 

Strahler stream order was determined for each lotic sampling site in 
three steps. First, analysed areas were restricted by delineating 
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watersheds of investigated streams using the location of the sampling 
sites, the low-resolution flow direction (HydroSHEDS) (Lehner et al., 
2008) and a flow accumulation raster. Second, stream networks were 
reconstructed on delineated areas with stream source points (extracted 
from the Authorative Topographic-Cartographic Information System 
(ATKIS®) data set (© GeoBasis-DE/German Federal Agency for 
Cartography and Geodesy - BKG) (2013)) and the HydroSHEDS4 

high-resolution flow direction raster, using a System for Automated 
Geoscientific Analysis (SAGA) (Conrad et al., 2015) tool and an opti-
mized procedure for digital elevation model analysis. Finally, Strahler 
stream orders were computed based on the reconstructed stream 
network. The optimized procedure is similar to those used in contem-
porary GIS software for digital elevation model analysis. Inputs of the 
procedure are flow direction raster and initiation grid. 

2.7. Additional analyses 

We performed two additional analyses to (1) estimate possible 
changes in GHG concentration during storage and transport of the GHG 
vials and to (2) examine the geographical distribution of the sampled 
water bodies. All details are given in the supplementary material. 
Briefly, during storage, microbial activity can affect the concentration of 
CO2 and CH4 in water samples. This effect increases with temperature 
and time of storage. To quantify any time and temperature effects we 
used an additional experiment in the laboratory. We stored lake water 
for three time-periods at two different temperatures (4 ◦C, 15 ◦C), which 
corresponds to the conditions of sample storage in our citizen science 
study. When stored at 4 ◦C, there was no significant change in the GHG 
concentrations over 5 days. Moreover, the storage effect remained small 
when samples were stored at 15◦ over 5 days (Table S1). We thus 
conclude that the length of time between sampling and analysis had no 
significant effect on the measured GHG concentrations, because vials 
were stored at 4 ◦C for most of the storage time. 

Furthermore, we gathered information about absolute numbers of 
water bodies from environmental authorities from the federal states of 
Germany to compare them to the coverage of the sampled water bodies 
in this study. The sampled water bodies covered about 0.25% of all 
lentic water bodies, with the coverage per federal state ranging from 
0.02 to 0.4% (Table S2). The highest coverage was in Nordrhein- 
Westfalen followed by states near Berlin (Brandenburg, Mecklenburg- 
Vorpommern). Comparing the size of the sampled standing water 
bodies, we recognized a skewed distribution towards larger water 
bodies. Hence, the selection of the water bodies by the citizen scientists 
was influenced by recruitment that was more successful close to the 
coordinating research institute in Berlin (IGB) and had a tendency to-
wards larger water bodies. However, we consider this negligible for the 
interpretation of our data. 

2.8. Statistical analyses 

All statistical analyses of microbial community and greenhouse gas 
data were performed in R (R Core Team, 2018) v 4.0.2. To assess the 
diversity of the benthic microbial community and the influence of the 
environmental stressors and other parameters, richness estimates of the 
microbial community were calculated as Hill numbers (Raymond et al., 
2008) using the iNEXT package (Hsieh et al., 2016), with a sample 
coverage of 0.9 using the microbial community matrix from the SILVA 
NGS pipeline. The following multivariate analyses including microbial 
community were performed using the vegan (Oksanen et al., 2007) 
package with Bray-Curtis distances. We first rarefied all samples at 5000 
reads which resulted in 487 sites after rarefaction. The adonis 
(sequential model) and adonis2 (marginal model and overall model 
(AKTIS, 2013) functions were applied for calculating the influence of the 
predictor variables in a strength based order using 9999 permutations 
on the microbial community matrix using Bray Curtis distances. With 
these analyses, we were able to investigate the impact of the two 

emerging pollutants on the surface microbial community composition 
according to the aims formulated here. The Mantel test was used to 
calculate spatial autocorrelations. To specifically test whether CO2 could 
be considered a response of the microbial community composition and, 
hence, if there is a feedback on the carbon cycle, we used a random 
forest model using the function randomForest (Liaw and Wiener, 2002). 
An NMDS was calculated using the metaNMDS function and the fitting 
of environmental factors and categorical parameters to the 
two-dimensional plot was done using the function envfit with a signif-
icance cutoff of P = 0.010. The correlation analysis was done using the 
script from the Rhea collection (Lagkouvardos et al., 2017) and a higher 
resolution community matrix rarefied to 9000 reads per sample result-
ing in 441 samples. Two random variables were included to confirm the 
correlation cutoffs (n = 50%, P adjusted <0.050, and R > 0.2). The plots 
were generated with the packages phyloseq (McMurdie & Holmes, 
2013), ggplot2 (Villanueva & Chen, 2019) (v. 3.2.2), and microbiome 
(http://microbiome.github.io/microbiome/). 

Furthermore, we used linear models to simultaneously test for effects 
of latitude, longitude, water body type (lake, pond, river, stream), and 
dominant land use within a 0.5-km radius of the sampling site (arable 
land, forest, grassland, open-pit mining, urban area, water area, 
wetland) on the response variable CO2 or CH4 concentration in surface 
water using the lme4 package (Bates et al., 2015)) (loge transformed; 
two separate models). Latitude, longitude, and water body type were 
included as fixed effects. We tested for the potential interaction between 
fixed effects, and the statistical significance of each, using a likelihood 
ratio test to compare models with and without the effect. 

We tested for changes in CO2 with Strahler stream order and for 
variations in ALAN and Intl1 among water body types relative to their 
catchment using linear models. Elevation data originated from a digital 
terrain model based on data from the Shuttle Radar Topography Mission 
and OpenStreetMap (OpenStreetMap, 2018). All linear model analyses 
were followed by a model validation, checking the residuals for normal 
distribution and homogeneity of variances. Post-hoc tests of water-body 
type and dominant land use were performed with the TukeyHSD func-
tion in the mosaic package (Pruim et al., 2017). Ordinary Kriging on CO2 
(<1000 μmol L− 1) was conducted using ArcGIS 10.8 (AKTIS, 2013) after 
detecting a weak spatial autocorrelation of CO2 (Moran’s I = 0.085, P <
0.001). 

3. Results and discussion 

3.1. Freshwater microbiome 

Microbial community richness (as Hill diversity, D: exponential of 
Shannon entropy) ranged from 17 to 312 per site (Fig. 1c) and the citizen 
science sampling yielded a taxonomic composition that is typical of 
inland freshwaters and sediments (Wan et al., 2017) and that separated 
into slightly different core microbiomes (Fig. 3, Fig. S2). We are aware of 
very few studies that have examined euphotic sediments (Han et al., 
2020) and ours is one of the first systematic treatments of euphotic 
sediments across a wide range of freshwater ecosystems. 
Surface-sediment community composition varied among water body 
types, with more phototrophic Cyanobacteria lineages in lakes and more 
Actino- and Acidobacteria in streams and rivers (Fig. 3). Composition 
exhibited only a weak spatial autocorrelation (Mantel test, R2 = 0.04, P 
= 0.013), pointing to greater role of environmental filtering in deter-
mining composition. Fitting all parameters to two-dimensional 
nonmetric multi-dimensional scaling (NMDS) in a simplified model 
revealed a collinearity of urban area, intI1, and light pollution (Fig. 3). A 
multivariate model indicated that microbial communities were mostly 
linked to CO2 and the type of water body, supporting our fourth hy-
pothesis. Longitude, latitude, land use, and CH4 played less important 
roles (Table S2). This was confirmed by a non-linear random forest 
analysis with microbial taxa as predictors that explained 30% of CO2 
variation, and which was consistent with a large number of 
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individual-taxon correlations (Fig. 4). In particular, Cyanobacteria taxa 
were negatively correlated with CO2, and non-phototrophic taxa were 
positively correlated with CO2, suggestive of the well described links 
between both microbial primary and secondary production with CO2 
(Fig. 4). It was surprising that a single point measurement of CO2 
showed such a clear signal in the microbial composition, and suggests 
that CO2 is an indicator of different traits in the carbon cycling mediated 
by the microbial community. 

3.2. Light pollution 

Using satellite images, we observed that 75% of the sampled water 
bodies were impacted by artificial light at night based on a threshold 
radiance of 0.5 nW cm− 2 sr− 1. ALAN was closely connected to urban 
areas, as expected (Fig. 2), and was significantly higher at river sampling 
sites than in streams, lakes, and ponds (LM: ALAN ~ waterType * 
catchment, R2 = 0.41, F3,624 = 9.14, P < 0.001; for River:Urban β = 6.03, 
P = 0.002), which supports our first hypothesis on light pollution. This 

Fig. 1. CO2 concentrations, microbial diversity, and intI1 abundance in German freshwaters. a, Prediction maps of CO2 concentration in the analysed water bodies 
across Germany using ordinary kriging. CO2 values larger than 1000 μmol L− 1 (n = 6) were excluded from the interpolation. b, Measured log10 CO2 concentrations 
determined at the different sampling sites according to water body type. Median CO2 concentration for each water type is displayed as a grey line with the upper and 
lower limits of the box being the third and first quartile (75th and 25th percentile), respectively. Significant differences in CO2 concentrations between water types 
are visualized via distinct letters. The color of each filled circle indicates the proportion of urban landscape in the catchment area of the water body. c, Distribution of 
microbial alpha-diversity. d, intI1-gene copy number expressed as the proportion (as %) of 16S rRNA gene copies in the sample. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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large-scale pattern corroborates a previous study within the city of 
Berlin, where analysis of aerial photographs revealed that rivers and 
canals were exposed to six times more ALAN than lakes due to their 
higher ratio of shoreline to water surface area (Kuechly et al., 2012). 

Permutational analysis of variance also confirmed our second hy-
pothesis, that ALAN can influence the structure of the microbial com-
munity (Table S3). The overall small effect was strongest in streams and 
rivers (MCC ~ ALAN: R2 = 0.01, P adjusted = 0.001 (Bonferroni)). 
Interestingly, the interaction of ALAN and CO2 had no influence on the 
microbial community (Table S3), which we interpret to mean that the 
effect of ALAN on microbial communities has not yet resulted in changes 
to the CO2, despite experimental evidence for an increase in community 
respiration due to ALAN (Hölker et al., 2015). This would not directly 

support our third hypothesis. This lack of a relationship between ALAN 
and CO2 was also consistent with there being no effect (LM: CO2~ 
ALAN, R2 = 0.002, F1,620 = 1.20, P = 0.270). In contrast to CO2, we 
observed no single-taxon correlations of phototrophic bacteria (e.g., 
Cyanobacteria) with ALAN (Fig. 4, Fig. S3). Our results are partly in 
agreement with the earlier laboratory study (Hölker et al., 2015) in 
which the exposure to ALAN led to altered sediment microbial com-
munities. Those communities pre-exposed to ALAN for one year, how-
ever, contained more phototrophs being more pronounced during the 
darker period of the year when temperatures were lower, and the 
photoperiod was shorter. Together, these results suggest ALAN has im-
plications for ecosystem functions but may not change the carbon 
balance. 

Fig. 2. Pollutant levels by land-use and water-body type. a, Relative frequency of the IntI1 gene as a proportion (%) of rRNA gene copies. b, Amount of artificial light 
at night (ALAN) in sampled waters. Box plots separate water types according to the dominant landscape in the catchment area of the sampled water body. 

Fig. 3. Freshwater microbiome composition and community relationships to environmental parameters. a, Relative abundance of microbial classes (upper panel, all 
taxa) and phyla (lower panel, microbial eukaryotes) for taxa comprising >1% of total abundance among water-body types. b, NMDS summarizing all microbial 
samples and the corresponding centroids for each water-body type. Environmental parameters were fitted to the plot with individual arrows. 
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3.3. Mobile genetic elements and antibiotic resistances 

We used quantitative PCR to measure the presence of the class-1 
integron-integrase gene intI1 and the carbapenem-resistant gene 
blaOXA58 as proxies for anthropogenic chemical pollution and anthro-
pogenically induced antimicrobial resistances, respectively (Gillings 
et al., 2015; Cacace et al., 2019). IntI1 was detected in 457 of the 541 
sites examined (85%) with a median relative abundance of 1.2 * 10− 5 

copies per 16S rRNA gene copy. blaOXA58 was examined in a subset of 
sites with high intI1 abundance, as we considered these as anthropo-
genically impacted sites. In these impacted sites blaOXA58 was detected 
in 104 of 236 screened sites (44%). Positive correlations of intI1 and 
blaOXA58 occurrence with single taxa of Alphaproteobacteria and 
Betaproteobacteria (determined through whole-community analysis; 
see below) suggest that there may be multiple carriers of these genes 
(Fig. 4, Fig. S4). Our results were similar to findings from other studies of 
freshwater sediments (Gillings et al., 2015), and clearly indicate that 
low levels of human-derived microbial resistances are widespread in 
German freshwaters. IntI1 prevalence can be linked to agricultural 
runoff, but we observed it most often in urban areas and in streams and 
rivers rather than in ponds and lakes (Fig. 2), which does not support our 
first hypothesis of antimicrobial resistance being pronounced in agri-
cultural areas and suggests instead that urban runoffs and effluents may 
also be an important source (Gillings, 2015, 2018). In addition to anti-
biotics, intI1 has been linked to genes involved in resistance to metals 
and disinfectants and thus provides a good overall measure of resistance 
and anthropogenic pollution (Gillings, 2015, 2018). Sampling by citizen 
scientists may be biased toward waters that are easily accessible and 
frequently used for recreation, thus the measured gene abundances may 
be higher than the national average of all water bodies. There was a 
weak negative relationship with distance to the nearest wastewater 
treatment plant (known point sources of antibiotic resistance genes) 

(Cacace et al., 2019) for intI1 (Spearman’s rho = - 0.17, P < 0.001) but 
not for blaOXA58 (P > 0.050), which may be partly explained by samples 
from directly impacted downstream sites. However, both intI1 and 
blaOXA58 showed highest correlation values with typical lineages that 
are present in wastewater (vadin BC27), and widespread opportunistic 
pathogens (Acinetobacter) (Gillings, 2018) (Fig. S4). 

3.4. Greenhouse gases 

Nearly all (>99%) of the sampled water bodies were oversaturated 
with CO2, i.e., exceeded that of atmospheric equilibrium indicating that 
they were net-emitters of CO2 to the atmosphere at the time of sampling 
(mornings in early November, Fig. 1). The highest CO2 concentration 
was found in ponds (median 218 μmol L− 1, interquartile range 140, 
361), followed by streams (149 μmol L− 1, 91, 231), rivers (98 μmol L− 1, 
68, 150), and lakes (83 μmol L− 1, 55, 138) (Fig. 1b). CH4 concentrations 
were also highest in small water bodies and within the expected range 
based on previous studies. However, in large water bodies, CH4 con-
centrations were higher than expected from literature (Holgerson & 
Raymond, 2016) (Fig. S5). Large-scale patterns in CO2 showed a weak 
spatial autocorrelation (Moran’s I = 0.09, P < 0.001) and a slight in-
crease from low to high latitudes. Such a pattern was not observed for 
CH4 concentrations (Table S4; Fig. 1). The pattern in CO2 may have 
resulted from a day-length difference of about 45 min from South to 
North at the sampled sites in November, which fosters respiration and, 
thus, CO2 production, during the darker hours. The absence of any 
large-scale CH4 pattern can be explained by rapid CH4 exchange be-
tween water and atmosphere, which results in a strong local control on 
aquatic CH4. 

At smaller scales, CO2 and CH4 varied among water body type and 
land use (Table S4), being highest in ponds and generally higher in 
urban areas (Fig. 1, Fig. S5). This confirms findings from smaller-scale 

Fig. 4. Correlations between microbial taxa and measured parameters. Cumulative single-species correlations of major microbial taxa with site characteristics and 
sampled parameters. 
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studies (Holgerson & Raymond, 2016; Premke et al., 2016) and validates 
our citizen science approach as a useful tool for synchronous data 
collection from multiple sites over a wide geographic area. For streams 
and rivers, we observed a significant increase in CO2 from low to high 
latitudes (linear model (LM): CO2 ~ Stream: R2 = 0.21, F1,203 = 54.89, P 
< 0.001, CO2 ~ River: R2 = 0.15, F1,55 = 9.44, P = 0.003) and lower CO2 
in larger streams (LM: log10(CO2) ~ Strahler stream order: F9,252 =

4.33, R2 = 0.10, P < 0.001, Fig. S1). Carbonate weathering in the 
watershed (Marce et al., 2015) can increase carbon export by rivers 
(Raymond et al., 2008), although this is unlikely to explain the pattern 
observed because the lithology of northern Germany is carbonate-poor. 
We propose that higher CO2 import from the riparian zone, together 
with lower gas exchange coefficients in lowland streams (Rasilo et al., 
2017), were the reason for the latitudinal pattern. These results high-
light the complex interaction of natural and anthropogenic factors such 
as eutrophication and pollution (Beaulieu et al., 2019) in driving GHG 
concentrations in surface waters. 

4. Conclusions 

This large-scale citizen-science study allowed for a coordinated 
sampling campaign of the freshwater surface-sediment microbiome and 
GHG concentrations in 617 water bodies throughout Germany (357 000 
km2) within a two-week period, something that would not be feasible for 
a small team of researchers. We conclude that the mobilization of citizen 
scientists to sample hundreds of sites using standardized methods and 
within short periods of time is a promising approach for monitoring 
freshwaters over large areas. Among the more striking findings were 
that rivers were the aquatic ecosystems most affected by light pollution 
and where microorganisms were most clearly exhibiting resistance 
genes that indicate chemical stress and antimicrobial resistance. We 
observed for the first time in the field that light pollution influences the 
microbial diversity in freshwater ecosystems, and, although not visible 
in this snapshot sampling, may potentially affect CO2 concentrations in 
the long-term. Interestingly, both anthropogenic stressors had a greater 
impact on running than on standing water bodies, highlighting the 
vulnerability of lotic waters. The lower observed impact on pond and 
lake systems may be related to greater surface areas (and volume) and 
lower shoreline-to area-ratios. Thus, impacts from outside (e.g., light at 
the shoreline) and from wastewater or urban areas are therefore lower. 
Our results provide a basis for better understanding of the influence of 
anthropogenic stressors on microbial diversity and GHG balance in 
aquatic ecosystems. Understanding these relationships improves our 
ability to predict system responses to global climate change, which re-
mains absolutely necessary, given forecast developments in population 
growth, urbanization, and the unpredictability of the climate. 
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