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Abstract

This thesis focuses on the implementation of Catmull-Clark subdivision rules for isogeomet-

ric analysis applied to thin shells. The formulation of the NURBS-based Kirchhoff-Love shell

element for isogeometric analysis was utilized. Modeling complex geometries with arbitrary

topologies may face limitations when using NURBS surfaces due to their nature as tensor

products of two NURBS curves. Sometimes, CAD models are very complex and consist

of multiple NURBS patches that may not be well joined during the design phase. It is cru-

cial to analyze these models carefully to ensure that any unmatched patches are addressed

properly and that the geometries are watertight. Furthermore, adaptive mesh refinement

techniques cannot be applied to NURBS because local refinement is not feasible. Starting

from the control mesh of a surface, the subdivision process creates smooth surfaces through

a limiting procedure of repeated refinements. At the limit, the Catmull-Clark surfaces are rep-

resented by bi-cubic B-Spline curves. Due to their ability to effectively represent objects with

arbitrary topologies, the subdivision surfaces have gained importance in geometric modeling

and structural analysis. Extended subdivision methods also make it possible to model both

smooth objects and those with boundaries and sharp edge features. The extended Catmull-

Clark subdivision algorithm was implemented in Python and adapted for Kratos Multiphysics.

The discussion focused on the challenges associated with applying boundary support con-

ditions, and a proposed solution for these conditions was tested. Some benchmark geome-

tries utilizing regular elements were analyzed, and convergence analyses were conducted for

both subdivision-based and NURBS-based approaches to perform comparison. Finally, the

current achievements and challenges related to the evaluation of geometries with irregular

elements were examined.
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Kurzfassung

Diese Arbeit konzentriert sich auf die Implementierung der Catmull-Clark-Subdivision-Regeln

für die isogeometrische Analyse, angewandt auf dünne Schalen. Dabei wurde die For-

mulierung des NURBS-basierten Kirchhoff-Love-Schalenelements für die isogeometrische

Analyse genutzt. Das Modellieren komplexer Geometrien mit beliebigen Topologien kann

beim Einsatz von NURBS-Flächen aufgrund ihrer Eigenschaft als Tensorprodukte zweier

NURBS-Kurven auf Einschränkungen stoßen. CAD-Modelle sind oft sehr komplex und beste-

hen aus mehreren NURBS-Patches, die während der Entwurfsphase möglicherweise nicht

gut miteinander verbunden sind. Es ist entscheidend, diese Modelle sorgfältig zu analysieren,

um sicherzustellen, dass alle nicht übereinstimmenden Patches ordnungsgemäß behandelt

werden und die Geometrien wasserdicht sind. Darüber hinaus können adaptive Netzver-

feinerungstechniken nicht auf NURBS angewendet werden, da lokale Verfeinerungen nicht

möglich sind. Ausgehend vom Kontrollnetz einer Fläche erzeugt der Subdivisionsprozess

durch ein Grenzverfahren wiederholter Verfeinerungen glatte Flächen. Im Grenzfall wer-

den die Catmull-Clark-Flächen durch bi-kubische B-Spline-Kurven dargestellt. Aufgrund ihrer

Fähigkeit, Objekte mit beliebigen Topologien effektiv darzustellen, haben Subdivisionsflächen

in der geometrischen Modellierung und Strukturanalyse an Bedeutung gewonnen. Erweiterte

Subdivisionsmethoden ermöglichen es außerdem, sowohl glatte Objekte als auch solche mit

Rändern und scharfen Kanten zu modellieren. Der erweiterte Catmull-Clark-Subdivision-

Algorithmus wurde in Python implementiert und für Kratos Multiphysics angepasst. Die

Diskussion konzentrierte sich auf die Herausforderungen im Zusammenhang mit der Anwen-

dung von Randstützbedingungen, und eine vorgeschlagene Lösung für diese Bedingungen

wurde getestet. Einige Benchmark-Geometrien, die reguläre Elemente verwenden, wurden

analysiert, und Konvergenzanalysen wurden sowohl für Subdivisions-basierte als auch für

NURBS-basierte Ansätze durchgeführt, um Vergleiche anzustellen. Abschließend wurden

die aktuellen Errungenschaften und Herausforderungen im Zusammenhang mit der Bewer-

tung von Geometrien mit irregulären Elementen untersucht.
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vision
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1. Introduction

In nature, all objects around us are described as three-dimensional bodies. However, they

are not always defined as such in engineering applications but are described in reduced

dimensions. For instance, an object with a much larger dimension than the other two is usu-

ally modeled as a one-dimensional model. Similarly, if an object has two significantly larger

dimensions than the other dimension, it is modeled as a two-dimensional model. Some ex-

amples of one-dimensional models are trusses and beams, and two-dimensional models are

plates, membranes, and shells. A shell refers to a thin-walled structure that can have any

curvature within a three-dimensional space, and membranes and plates are special cases

of shells. The former is called a plane shell, which primarily carries in-plane forces. In con-

trast, the latter is called a plane shell, which carries out-of-plane bending loads, typically with

negligible thickness [1].

As the dimensional complexity of the models increases, the mathematical complexity of the

models also grows. For instance, plates are more complex than trusses and beams, and

shells are more complex than plates. Interestingly, describing a shell model is more chal-

lenging than a fully three-dimensional continuum model due to the fact that the general

continuum mechanics equations can be directly applied without concerning the shape of a

three-dimensional solid, whereas a shell requires a precise mathematical description for its

geometry as well as specific properties such as curvature [1]. That’s why shell theories are

still in development today, and their importance comes from the widespread presence of shell

structures in nature and technology. This is because such structures can carry loads through

their shapes, enabling highly efficient designs for material savings and weight reduction. The

curvature of such structures enables them to carry transverse loads via tension and com-

pression while minimizing bending moments, which results in efficient material use. Today,

shells are extensively used in industries such as aerospace, automotive, civil engineering,

and architecture [1].

The origins of the shell theory come from the first plate theory developed by Gustav R. Kirch-

hoff in 1850 [2], also called "the classical plate theory". This theory still remains the foundation

of various plate calculation tables used today in civil engineering. In 1888, August E.H. Love

built upon Kirchhoff’s assumption to develop a shell theory [3], today known as Kirchhoff-

Love theory. In the shell theory, another widely used theory is the Reissner-Mindlin theory,

which also accounts for transverse shear deformation, unlike the Kirchhoff-Love theory [4].

The transverse shear deformation is significant for thick shells, which satisfy the slenderness

condition of R/t < 20, but insignificant for thin shells. The Reissner-Mindlin theory remains

dominant in FEA (Finite Element Analysis) while the Kirchhoff-Love theory is widely used for

the practical use of thin shells [1].

In 2005, Hughes et al. [5, 6] introduced the term "IGA" to bridge the gap between the CAD
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(Computer Aided Design) and CAE (Computer Aided Engineering), enabling both disciplines

to use the same geometric description. In FEA, the structural domain is divided into a finite

number of small, basic geometries, with elements defined by a set of nodal points and shape

functions associated with them. To achieve greater geometric flexibility and higher continuity

between the elements, NURBS were introduced as basis functions for the analysis, leading

to what is known as IGA. In the CAD world, NURBS are widely used and meet the essential

criteria of basis functions to perform analysis without any geometry conversion [1]. Therefore,

NURBS-based IGA has been effectively applied to study solids, shells, fluids, fluid-structure

interaction, turbulence, and structural optimization [1]. A shell element formulation based on

Kirchhoff-Love shell theory was introduced by J. Kiendl [1, 7], utilizing NURBS as the basis

function. It has been demonstrated that using NURBS ensures the necessary C1 continuity

among the elements for Kirchhoff-Love shells. The use of NURBS makes it possible for

easy implementation of Kirchhoff-Love theory, unlike standard FEA that utilizes high-order

polynomials.

Subdivision surfaces and curves have become increasingly important in geometric modeling

applications because they can effectively represent objects with arbitrary topologies. This

flexibility makes it easier to design, render, and manipulate these objects [8]. Subdivision sur-

faces enable modeling smooth objects and those with boundaries and sharp features through

extended subdivision rules [8]. Representing objects with non-planar topologies or sharp

features is impossible without applying curve trimming for B-Splines or NURBS, which are

prominent representations in the CAD world [8]. Nevertheless, the piecewise polynomial (or

rational) structure of B-Splines and NURBS simplifies the analysis of their representation. On

the other hand, the subdivision surfaces are defined as the limit surface results from continu-

ously refining a 3D control mesh through multiple iterations. The obtained limit surfaces are

directly influenced by the applied subdivision scheme, and these schemes can be divided

into two categories in the mathematical geometric modeling literature: interpolating schemes

and approximating schemes. This thesis focuses on the use of the Catmull-Clark subdivision

scheme [9], which is an approximating subdivision method that produces a smooth limit sur-

face through iterative refinement. The scheme works by generating quadrilateral meshes at

each subdivision step.

In literature, the first application that uses subdivision surfaces to analyze Kirchhoff-Love

shells with FEA was introduced by Cirak et al.[10]. The research conducted by Cirak et al.

utilized the subdivision algorithm through Loop’s scheme, an approximating method that gen-

erates triangular meshes at each subdivision step. However, it was noted that this approach

could also be implemented using the Catmull-Clark subdivision scheme [10]. Recent studies

have also focused on applying the Catmull-Clark subdivision to IGA, highlighting the growing

significance of subdivision surfaces in architectural design and geometric modeling programs

supported by common CAD packages [11]. For instance, the investigation of Catmull-Clark

subdivision solids based volumetric IGA was studied by Hamann et al. [12]. The truncated

hierarchical Catmull-Clark subdivision method developed by Wei et al. [13] allows for local
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refinement of geometry and facilitates the generalization of arbitrary topology for truncated hi-

erarchical B-splines. Other studies focused on solving linear and non-linear PDEs on planes

based on extended subdivision rules were studied in [14, 15].

This thesis aims to adapt Catmull-Clark subdivision rules for isogeometric Kirchhoff-Love

shell analysis within the Kratos Multiphysics [16, 17, 18] framework by implementing the

subdivision algorithm and testing it on benchmark examples. During this work, the isoge-

ometric Kirchhoff-Love shell element formulation introduced by J. Kiendl [1, 7] is used, which

is already implemented in "IgaApplication" of Kratos Multiphysics. As noted in [1], the de-

veloped shell element formulation is not exclusive to NURBS, but is generally applicable to

displacement-based Kirchhoff-Love shell theory, allowing its use with subdivision-based IGA.

The thesis is organized as follow:

• Section 2 provides an overview of the basics of geometry, including the mathematical de-

scriptions of curves and surfaces, geometric and parametric continuity, and the differential

geometry of surfaces.

• Section 3 reviews the structural mechanics of shells, emphasizing the fundamentals of

continuum mechanics and the Kirchhoff-Love shell theory.

• Section 4 provides a summary of the isogeometric analysis and the NURBS-based Kirchhoff-

Love shell element formulation as presented by J. Kiendl [1].

• Section 5 provides information about subdivision surfaces by first introducing the concept

of subdivision surfaces in general, then detailing the Catmull-Clark subdivision algorithm,

and finally presenting the extended Catmull-Clark subdivision algorithm.

• Section 6 outlines the implementation details of the subdivision algorithm in Kratos Multi-

physics and explains how the analyses are conducted. It also discusses issues related to

the implementation of boundary conditions and the methods used to resolve these issues

and provides an update on the progress made with irregular elements.

• Section 7 presents the results from various benchmark examples.

• Section 8 provides the conclusion of the work and suggestions for the future implementa-

tion as an outlook.
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2. Fundamentals of Geometry

This section briefly describes the mathematical description of the curves and surfaces. The

formula for the mathematical description of free-form curves and surfaces is presented first.

Then, the fundamental formulations of differential geometry of the surfaces are presented,

which is the basis for shell kinematics.

2.1. Mathematical Representation of Curves and Surfaces

In mathematics, there are different ways of describing curves and surfaces. In this section,

the explicit, implicit, and parametric description with the focus on curves is presented. These

representations have some advantages and disadvantages over them, and they can describe

derivatives, continuities, and geometrical properties differently from each other for analysis

purposes [1].

2.1.1. Explicit, Implicit, and Parametric Representation of Curves and

Surfaces
The simplest way of describing a curve is the explicit representation, which is given in the for-

mula: y = f(x) for curves and z = f(x, y) for surfaces. As can be seen from these formulas,

the coordinates depend on each other functionally. Although explicit representation enables

easy calculation of derivatives and geometric properties like curvature, it is the most limited

representation type. The reason is the explicit representation allows a minimal amount of

curve description because each point in the x-coordinate only takes one y-value. Addition-

ally, this representation depends on the axis, meaning that a quadratic interpolant through

three points differs for each coordinate system. That’s why this representation is rarely used

in CAD nowadays [1].

The implicit representation of curves is given in the form of f(x, y) = 0, and for surfaces:

f(x, y, z) = 0. With this representation, it is possible for each x-value to have more than

one y-value, which enables drawing curves like circles. In this representation method, it is

still easy to determine whether a point lies in a curve. However, it may be more complicated

to find the intersection points of two curves. Although this representation allows more curve

description, it is still limited. Both explicit and implicit representations encounter difficulties in

providing an exact analytic description of curves and surfaces [1].

The parametric description of curves, which is the most convenient representation for free-

form geometries, is given in the form of an explicit representation of coordinates x,y, and z

to an independent parameter, usually denoted as t. For the surfaces, there are two inde-

pendent parameters. Compared to the other two representations, this gives the most flexible
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and variable geometric descriptions, which also allows the representation of space curves

as well. Since the independent parameter can be defined over an interval a ≤ t ≤ b, the

curve has the property of having a start and end point, which is not the case for the other

two representations. Nevertheless, this representation has a drawback, which is that finding

intersections of a point and the curve or of two curves is usually difficult. The examples of the

three representation types are given in Figure 2.1.

Figure 2.1 Curve representations: a) Explicit b) Implicit c) Parametric

2.2. Overview of Bézier, B-Spline, and NURBS Curves and

Surfaces

B-Splines originated from Bézier curves, and NURBS from B-Splines. That’s why Bézier

curves are introduced in this chapter first. Then, B-Spline is explained in more detail since it

contains most of the definitions from NURBS. Finally, NURBS is explained in more detail.

2.2.1. Bézier Curves
In the curve description, data points are fitted with either interpolating polynomials or approx-

imation curves. The initial can represent each data point on the curve; however, it may create

oscillations. A Bézier curve approximates the data points or control points, creating a non-

oscillating smooth curve inside the control polygon, which is obtained by the linear connection

of the control points. The mathematical expression of Bézier curves is given as:

C(ξ) =
n∑
i=1

Bi,p(ξ)Pi (2.1)

where the number of control points and the Bernstein polynomials of polynomial degree p

are denoted as n, Bi,p(ξ) respectively. The polynomial degree in the Bernstein polynomials

depends on the number of control points: p = n−1. The Bernstein polynomials are expressed

as [19]:

Bi,p(ξ) =
n!

i!(n− i)!
ξi(1− ξ)n−i (2.2)
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where ξ is defined as ξ ∈ [0, 1].

Since the polynomial degree depends on the number of control points, increasing the control

point would result in an increase of the polynomial degree, which leads to deviation of the

approximation curve from the control polygon. Another drawback of Bézier curve is that any

change on the control points influences the whole curve, which doesn’t allow local changes

on the curve.

2.2.2. B-Spline Curves and Surfaces
To overcome the limitations of Bézier curve, B-Spline curves can be used. As in the Bézier

curves, B-Spline curves are also defined by a linear combination of control points and ba-

sis functions within a parametric space. The basis functions are called Basis-Splines, or

in short B-Splines, and they are defined over intervals in the parametric space having spe-

cific conditions between the intervals. In B-Spline curves, the number of intervals is flexible,

which allows the selection of polynomial degrees independent of the number of control points.

Hence, approximation of a large data set can be done with lower polynomial degrees [1].

The parametric space for B-Splines is determined by a knot vector Ξ = [ξ1, ξ2, ξ3, ..., ξn+p+1],

which consists of parametric coordinates ξi arranged in non-descending order. A knot vector

partitions the parametric space into sections, and it is referred to as uniform when the knots

are evenly spaced. Within each knot span, a B-Spline basis function is C∞ continuous,

while at a single knot, it has Cp−1 continuity. Multiple knot is the case when a knot occurs

multiple times, and a knot with multiplicity k has continuity of Cp−k, meaning that increasing

the multiplicity of a knot reduces its continuity [1].

Open knot vector is the case when the first and last knot has a multiplicity of p + 1, which

means the first and last control points of a B-Spline are interpolated such that the curve

is tangential to the control points at these ends [20]. Noticing that starting and end points

have to be specified in CAD applications, which open knot vector allows this and becomes a

standard in such applications.

The B-Spline basis functions are given in the form of Cox− deBoor recursion formula as for

p = 0:

Ni,0(ξ) =

1, ξi 6 ξ < ξi+1

0, otherwise

(2.3)

For p > 1:

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2.4)

A B-Spline curve having a polynomial degree p, and its first derivative are mathematically
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expressed as:

C(ξ) =

n∑
i=1

Ni,p(ξ)Pi (2.5)

C′(ξ) =
n∑
i=1

N ′i,p(ξ)Pi (2.6)

To sum up, the important characteristics of B-Spline curves are [1]:

• Curve is located inside the convex hull of the control points.

• Control points are generally approximated.

• Each control point influences a maximum of p + 1 sections.

• A special case of a B-Spline curve having only one knot interval is Bézier curve.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2 Cubic B-Spline basis function with open knot vector Ξ = [0, 0, 0, 0, 0.5, 1, 1, 1, 1]

A B-Spline surface is calculated through the tensor product of B-Spline basis functions across

two parametric dimensions, ξ and η. The surface is defined by a grid of n×m control points,

two knot vectors Ξ and H , and two polynomial degrees p and q. The corresponding basis

functions areNi,p(ξ) andMj,q(η).The surface is represented by the following expression[1]:

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j (2.7)

7



Similarly, a B-Spline solid can be obtained in parametric dimensions, ξ, η and ζ as [1]:

B(ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Pi,j,k (2.8)

Figure 2.3 B-Spline Curve

Figure 2.4 B-Spline Surface
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2.2.3. NURBS Curves and Surfaces
The difference between B-Splines and NURBS comes from the fact that basis functions in

the initial are piecewise polynomials, although they are piecewise rational polynomials for the

latter. In NURBS, the control points are represented with an additional weight, wi, assigned

to each of them. The mathematical expression of a NURBS curve is given as:

C(ξ) =

∑n
i=1Ni,p(ξ)wiPi∑n
i=1Ni,p(ξ)wi

(2.9)

and basis function for NURBS can be defined as:

Ri,p(ξ) =
Ni,p(ξ)wi∑n
i=1Ni,p(ξ)wi

(2.10)

such that the NURBS curve formula can be rewritten as:

C(ξ) =

n∑
i=1

Ri,p(ξ)Pi (2.11)

A special case of the NURBS having the same weight for all control points is what we know

as the B-Splines. Thus, all the properties of the B-Spline are also valid for the NURBS.

The importance of the weights comes from the fact that a curve can be located close to a

control point by increasing the corresponding weight. In addition, conical sections, such as

circles and ellipses, can be exactly represented with the NURBS basis functions, which allows

the representation of smooth free-form geometries, sharp edges, kinks, spheres, cylinders,

etc.[1]. This is why NURBS is the most common geometrical representation method in CAD

modeling today.

Figure 2.5 Representation of a: a) B-Spline curve. b) NURBS curve with increased weight at P2. (Taken from Wüchner et al.
[21])

As in the definition of B-Spline surfaces and solids, NURBS surfaces and solids can be repre-

sented similarly in the equations 2.12 and 2.14 with the basis functions defined in the equa-
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Figure 2.6 Representation of a circle with NURBS (Taken from Wüchner et al. [21])

tions 2.13 and 2.15 respectively as:

S(ξ, η) =

n∑
i=1

m∑
j=1

Rp,qi,j (ξ, η)Pi,j (2.12)

Rp,qi,j (ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,j

(2.13)

B(ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Rp,q,ri,j,k (ξ, η, ζ)Pi,j,k (2.14)

Rp,q,ri,j,k (ξ, η, ζ) =
Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k∑n

i=1

∑m
j=1

∑l
k=1Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k

(2.15)

Figure 2.7 Representation of a NURBS surface with different weights at P3,3 (Taken from Wüchner et al. [21])
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The two primary mesh refinement methods for a NURBS curve or surface are knot insertion

and order elevation. These techniques result in an improvement in the design space of the

geometry with the addition of control points. The knot insertion is a method in which new knots

are inserted to divide the knot span into smaller sections, which reduces the continuity by one

at the location where the new knot is inserted. Also, an additional control point is introduced

for each newly added knot. The order elevation is a method in which the polynomial degree

of the basis functions is increased without changing the number of knot intervals, resulting in

the repetition of the existing knots to maintain the same continuity at those points. As a result

of these methods, the geometry or the parametrization is not altered [1].

Figure 2.8 Refinement of a NURBS solid: a) Sphere. b) Initial NURBS representation. c) Order elevation. d) Knot insertion.
(Taken from Wüchner et al. [21])

2.3. Geometric and Parametric Continuity

There are two types of continuity for curves and surfaces defined by parametric representa-

tion, namely geometric and parametric continuity. The parametric and geometric continuity

represents the same thing for the zeroth order continuity, i.e. G0 = C0, but this is not the case

for the order equal or larger than 1. In this case, the parametric continuity Ck also represents

the geometric continuity Gk, but this is not the case for vice versa[1].
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For two curves, C1(ξ) and C2(ξ) and 0 ≤ ξ ≤ 1, joining from the end points such that

C1(1) = C2(0), the parametric continuity at the first order, C1, is defined as:

∂C1(1)

∂ξ
=
∂C2(0)

∂ξ
(2.16)

such that both curves have the same first derivative at the joint point. In this case, the tangent

vectors at the joint are parallel and possess the same magnitude. For the geometric continuity

at the first level, G1, the tangent vectors do not need to have the same magnitude, but at least

they have to be parallel such that [22]:

∂C1(1)

∂ξ
= c · ∂C2(0)

∂ξ
(2.17)

where c is any scalar multiplier.

For the surfaces, the conditions on the equations 2.16 and 2.17 must be satisfied for both

parametric directions ξ and η to have parametric and geometric continuity along a common

edge respectively [7].

2.4. Fundamentals of Differential Geometry of Surfaces

This section aims to review the fundamental aspects of differential geometry of surfaces,

which further form the foundation for the structural shell model explained in Chapter 3.

In three-dimensional space, each point of a curve or surface can be mathematically ex-

pressed with their position vector x as:

x = x1e1 + x2e2 + x3e3 = xiei (2.18)

where the global Cartesian base vectors and their coordinates are denoted as ei and xi

respectively. In this equation, the Einstein summation convention is used. Noticing that the

indices take the Latin numbers for the case {1,2,3} and the Greek letters for {1,2} [1].

It is beneficial to use curvilinear coordinate systems and local bases to describe free-form

geometries, particularly for surfaces. Two fundamental bases in differential geometry are the

covariant basis gi and the contravariant basis gi. A position vector x can be rewritten by us-

ing curvilinear coordinates with the corresponding contravariant coordinates θi and covariant

coordinates θi as:

x = θigi = θig
i (2.19)

where the covariant base vectors are defined as the partial derivatives of the position vector
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x with respect to the corresponding contravariant coordinates θi:

gi =
∂x

∂θi
= x,i (2.20)

In addition, the covariant and contravariant base vectors are dependent on each other with

the following condition:

gi · gj = δji =

0 if i 6= j

1 if i = j

(2.21)

A surface is a two-dimensional geometry that can be parametrically defined, with each point

being defined by two curvilinear coordinates (θ1, θ2). For the surfaces, the first two base

vectors in covariant coordinates gα can be computed as in the equation 2.20 while the third

covariant base vector can be computed from:

g3 =
g1 × g2

|g1 × g2|
(2.22)

such that it is a normalized vector orthogonal to g1 and g2. In addition, the contravariant and

covariant of the third base vectors are equal:

g3 = g3 (2.23)

due to the fact that the contravariant base vectors gα reside in the tangential plane formed by

the covariant base vectors gα.

A local Cartesian basis, which is an orthogonal and normalized basis having an arbitrary

orientation, can be established by using the base vectors g1 and g2. The definition of such a

basis is given as follows:

e1 =
g1

‖g1‖
(2.24)

e2 =
g2 − (g2 · e1)e1

‖g2 − (g2 · e1)e1‖
(2.25)

e3 = g3 (2.26)

The metric tensor g plays a vital role in defining the geometry of surfaces; it is sometimes

referred to as the identity tensor. It can be characterized in both covariant and contravariant

bases as follows:

g = gαβgα ⊗ gβ = gαβg
α ⊗ gβ (2.27)

where the covariant metric coefficients gαβ can be computed by scalar product of covariant

base vectors as [23]:

gαβ = gα · gβ (2.28)

The equation mentioned above is referred to as the first form of surfaces, which holds essen-
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tial details concerning the geometry of the surface, including the lengths of the base vectors

and the angle between them. In order to get the contravariant metric coefficients gαβ , one

can take the inverse of the covariant coefficient matrix:

[
gαβ
]

= [gαβ]−1 (2.29)

In addition, one can obtain covariant base vectors from the covariant metric coefficients and

contravariant base vectors as follow:

gα = gαβgα (2.30)

Similarly:

gα = gαβg
α (2.31)

The curvature information of the surface geometries is defined by the second fundamental

form of surfaces, and the curvature tensor coefficient can be expressed as [23]:

bαβ = −gα · g3,β = −gβ · g3,α = gα,β · g3 (2.32)
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3. Fundamentals of Shell Structural Mechanics

3.1. Continuum Mechanics: An Overview

This section aims to summarize the fundamentals of continuum mechanics and derive some

important kinematics equations for shell structures using the differential geometry quantities

defined in Section 2.4. In the following parts, small strains with large displacements are

assumed with the Lagrangian description.

3.1.1. Kinematics
In continuum mechanics, the deformation of a body is defined by kinematics, and it is crucial

to differentiate between the reference (undeformed) and actual (deformed) states of the body

on a material point [1]. The quantities in the reference state are denoted in upper case, and

lower case is used for the actual state.

In material point, the deformation u is denoted with the position vectors in the actual and

reference configuration states as:

u = x−X (3.1)

A deformation gradient F is used to map a differential line element from the reference state

dX to a line element in the actual state dx as in the following equation [24]:

dx = F · dX (3.2)

This deformation gradient can be expressed using the base vectors in both reference and

actual state as follows [25]:

F = gi ⊗Gi

F−1 = Gi ⊗ gi

FT = Gi ⊗ gi

F−T = gi ⊗Gi

(3.3)

and the mapping between deformed and undeformed base vectors can be done with the

deformation gradient [1]:

gi = F ·Gi

gi = F−T ·Gi

Gi = F−1 · gi

Gi = FT · gi
(3.4)

The overall deformation of a body with the rigid body motion is expressed with the deformation

gradient, which is not directly suitable for strain measurements. Hence, one needs to use

different strain measurements, i.e. using the Green-Lagrange strain tensor E. This tensor is
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appropriate for strains caused by large deformations due to its ability to describe the nonlinear

relations between deformation and strains. The Green-Lagrange strain tensor is expressed

in terms of the deformation gradient and the identity tensor I as:

E =
1

2
(FT · F− I) = EijG

i ⊗Gj

=
1

2
(gij −Gij)Gi ⊗Gj

(3.5)

where the Green-Lagrange strain coefficients Eij are defined by the reference and actual

states as:

Eij =
1

2
(gij −Gij) (3.6)

corresponding to the undeformed configuration of the contravariant basis Gi ⊗Gj [1].

3.1.2. Constitutive Equations
The relationship between stress and strain, as described by material laws, is expressed

through constitutive equations. In the same way, as for the strain tensor, there are various

definitions of the stress tensor. For instance, the second Piola-Kirchhoff (PK2) stress tensor

S is the conjugate of the Green-Lagrange strain tensor E in terms of energy [25], which is

derived from the strain energy W int as:

S =
∂W int

∂E
(3.7)

A material tensor C, or an elasticity tensor, is a fourth-order tensor, which relates the stress

and strain tensors as:

C =
∂S

∂E
=
∂2W int

∂E2
(3.8)

The stress and strain can be linearly related by using a St.Venant-Kirchhoff material model,

which holds the following assumptions:

S = C : E (3.9)

Sij = CijklEkl (3.10)

S = SijGi ⊗Gj (3.11)

An isotropic elastic material can be characterized by just two independent parameters. How-

ever, various conventions are used depending on the application. In engineering, Young’s

modulus E and Poisson’s ratio ν are most often used, while in mathematical contexts, the

Lamé parameters λ and µ are more common. The Lamé constants are related to the Young’s

modulus E and the Poisson’s ratio ν as follows:

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)
(3.12)
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Although the energetically conjugate of the Green-Lagrange strain tensor is the second Piola-

Kirchhoff stress tensor S, it does not indicate the physical stress state, which is actually

defined by the Cauchy stress tensor σ. The relationship between the Cauchy and the PK2

stress tensor is given as follows:

σ = (detF)−1 · F · S · FT (3.13)

S = detF · F−1 · σ · F−T (3.14)

The first Piola-Kirchhoff (PK1) stress tensor P is another stress tensor used commonly, and

it is expressed as:

P = detF · σ · F−T = F · S (3.15)

3.1.3. Equilibrium Equations
The balance between internal and external forces is represented by the equilibrium equations.

The mathematical expression of the equilibrium condition in the reference state is given as:

divP + ρ0B = div(F · S) + ρ0B = 0 (3.16)

where the ρ0 and B represent the density and the body force vector in the reference state,

respectively [1].

The strong form of the boundary value problem, in this case, is defined with equations 3.5

3.9 and 3.16 having appropriate boundary conditions. Numerical methods, such as FEM

(Finite Element Method), are utilized to address the strong form of equations in the context

of most three-dimensional problems because feasible solutions may not exist. In FEM, the

governing equations and boundary conditions are satisfied in an integral sense rather than

at every point, which makes the resulting equilibrium equation the weak form of the problem.

During the development of a NURBS-based Kirchhoff-Love shell element, the Principle of

Virtual Work, specifically the Principle of Virtual Displacements, was taken as a basis in [1].

According to this principle, the total virtual work done by the internal and external forces when

an infinitesimal virtual displacement is applied to the system, which is the sum of internal and

external virtual works, equals zero if the system is under equilibrium [26]:

δW = δWint + δWext = 0 (3.17)

where the internal and external virtual works are expressed as:

δWint = −
∫

Ω
δE : S dΩ (3.18)

δWext =

∫
Γ

T · δu dΓ +

∫
Ω
ρB · δu dΩ (3.19)
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In these equations, the domain, the domain boundary, and the body vector forces are repre-

sented with Ω, Γ, and T respectively [1].

3.2. The Fundamentals of Kirchhoff-Love Shell Theory

The Kirchhoff-Love shell theory uses what is known as a "direct approach," which means that

it considers the shell as a two-dimensional surface right from the beginning rather than being

developed from three-dimensional continuum mechanics. The model integrates kinematic as-

sumptions to represent three-dimensional behavior, characterizing the thickness of the shell

by a vector field, known as the director, on the middle surface [1].

Normal stresses and strains through the direction of thickness are not considered in the

shell theories that developed from the direct approach. In the Kirchoff-Love shell theory, the

strain is distributed linearly through the thickness of the shell according to the assumption

that cross sections remain straight during deformations. In addition, the the theory assumes

that the cross section perpendicular to the middle surface remains perpendicular even in

the deformed state, which means the director always remains perpendicular to the middle

surface. Hence, the shell can be expressed completely by its middle surface. The assumption

of the perpendicularity of the cross section and the middle surface means that the transverse

shear strains are neglected, which is an important assumption for thin structures. The validity

of this assumption is determined by the shell slenderness, such that if the shell slenderness

is R/t > 20, the assumption is valid, where R is the radius of curvature and t is the shell

thickness.[1].

Due to the assumption of neglecting the transversal normal and transversal shear strains, the

equation 3.5 can be written only with the in-plane strain coefficients as:

E = EαβG
α ⊗Gβ (3.20)

where the strain coefficients become:

Eαβ =
1

2
(gαβ −Gαβ) (3.21)

The middle surface of the shell is denoted by x(θ3 = 0) where the t is the shell thickness

within the thickness coordination ranging from (−0.5t ≤ θ3 ≤ 0.5t). Thus, the base vectors

of the middle surface ai are obtained via the following relations:

aα = x,α(θ3 = 0) (3.22)

a3 =
a1 × a2

|a1 × a2|
(3.23)

The metric and curvature coefficients of the shell middle surface are given based on the
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equations 2.28 and 2.32 as:

aαβ = aα · aβ (3.24)

bαβ = −aα · a3,β = −aβ · a3,α = aα,β · a3 (3.25)

Thus, the position vector x within the shell continuum becomes:

x = θαaα + θ3a3 (3.26)

and the base vectors ga and the metric coefficients gαβ are expressed as:

gα = aα + θ3a3,α (3.27)

gαβ = (aα + θ3a3,α) · (aβ + θ3a3,β)

= aαβ − 2θ3bαβ + (θ3)2a3,α · a3,β

(3.28)

The quadratic terms with θ3 in the equation 3.28 can be neglected for thin and moderately

thick shells according to [24]:

gαβ = aαβ − 2θ3bαβ (3.29)

Hence, the equation 3.21 can be rewritten as:

Eαβ =
1

2
(aαβ −Aαβ) + θ3(Bαβ − bαβ) (3.30)

The strains in the shell continuum are expressed in terms of the metric and curvature coef-

ficients of the middle surface according to the equation 3.30. The strains can be expressed

with a constant term and a linear term, in which the constant terms represent the strains

within the middle surface according to the membrane action. As a result, the membrane

strains εαβ are defined as [1]:

εαβ =
1

2
(aαβ −Aαβ) (3.31)

The effect of the bending represents the change in curvature, and it is denoted by the linear

part of the equation, which is symmetric with respect to the middle surface. This change of

curvature can be expressed as:

καβ = Bαβ − bαβ (3.32)

As a result, the equation 3.30 can be rewritten as:

Eαβ = εαβ + θ3καβ (3.33)

The stress applied to the shell can be separated into membrane and bending actions as in the

case of strains, which gives the resultant stresses of normal forces n and bending moments

m. These stress resultants can be formulated as follows due to a linear stress distribution
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through thickness [1]:

Sαβ = CαβγδEγδ (3.34)

nαβ =

∫ t/2

−t/2
Sαβ dθ3 = Cαβγδεγδ · t (3.35)

mαβ =

∫ t/2

−t/2
Sαβ · θ3 dθ3 = Cαβγδκγδ ·

t3

12
(3.36)

There exists three independent stress and strain coefficients, S11, S22, S12, E11, E22, and

E12, respectively due to the symmetry of both the stress and strain tensors. Thus, the con-

stitutive relation can be rewritten in Voigt notation as [1]:
S11

S22

S12

 = D̃ ·


E11

E22

2E12

 (3.37)

where D̃ denotes the material matrix. In general, physical parameters like Young’s modulusE

are used to obtain the material matrix. In addition, the stress and strain values in the equation

3.39 must be converted into a local Coordinate system because the quantities in this equation

are represented in normalized units. Thus, the strain coefficients can be transformed into a

local Coordinate basis, where the upper bar indicates this basis as:

Ēγδ = Eαβ (Eγ ·Gα)
(
Gβ ·Eδ

)
(3.38)

where Eγ and Eδ are the local Cartesian vectors obtained from equations 2.24 and 2.25.

These vectors are from the reference configuration [1].

In the following equations, an upper bar notation (¯) represents the components on a local

Cartesian basis. In the following equation, the PK2 stress coefficients S̄αβ are calculated with

a material matrix D using physical components:
S̄11

S̄22

S̄12

 = D̃ ·


Ē11

Ē22

2Ē12

 (3.39)

For an isotropic material and an orthotropic material, the material matrices are defined as

follows:

Diso =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (3.40)
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Dort =


E1

1−ν12ν21
ν21E1

1−ν12ν21 0

ν12E2
1−ν12ν21

E2
1−ν12ν21 0

0 0 G12

 (3.41)

where E denotes Young’s modulus and ν denotes Poisson’s ratio. Noticing that there are

different Young moduli and Poisson’s ratios ν12 and ν21 exist such that the ν21E1 = ν12E2 is

satisfied to ensure the material matrix symmetry for the orthotropic material [1].

The tensors of normal and bending stress resultants are also symmetric, and one can calcu-

late the coefficients of them with material matrix and Voigt notation as [1]:
n̄11

n̄22

n̄12

 = t ·D ·


ε̄11

ε̄22

2ε̄12

 (3.42)


m̄11

m̄22

m̄12

 =
t3

12
·D ·


κ̄11

κ̄22

2κ̄12

 (3.43)

Now, the internal virtual work can be expressed in terms of the normal forces and bending

moments as:

δWint = −
∫

Ω
(S : δE) dΩ = −

∫
A

(n : δε+ m : δκ) dA (3.44)

where dA denotes the middle surface differential area in the reference state. The partial

differential equations for the Kirchhoff-Love shell can be represented as in equation 3.44 in

the weak form [1].
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4. Isogeometric Analysis and The NURBS-Based

Kirchhoff-Love Shell Element Formulation

4.1. Motivation to Isogeometric Analysis

As mentioned in the Introduction, Hughes et al. [5, 6] introduced the term "isogeometric anal-

ysis", which is an improvement of "isoparametric analysis" such that the same mathematical

description is used with the analysis model and the geometric model. The isoparametric con-

cept means that the initial geometry and the unknown solution field, such as displacement,

are described by the same functions [27]. The accurate treatment of rigid body motion is

based on the isoparametric concept. In CAD, techniques like spline-functions or SubD (Sub-

division Surfaces) are commonly used during geometric modeling. However, low-order basis

functions such as linear Lagrange polynomials are used in FEA. Thus, a conversion between

these two representations is necessary if a geometry designed in a CAD environment is to

be analyzed with FEA. However, a model conversion process with meshing is needed for the

analysis of the geometry, which causes the loss of geometric information. In FEA, approxi-

mate geometries are used as a result of the meshing process, and the quality of the mesh

has an important effect on the analysis result. However, minor geometric flaws may have a

decisive effect on the overall structure, which requires the use of an exact geometry, that is,

as observed in the buckling of thin shells [1].

The IGA aims to avoid the meshing process, which has an important time effect on some

applications, and to adopt the use of the same geometric description in both the analysis of

geometry and the solution field. By this, only one model can be used for both design and

analysis [1].

4.2. Isogeometric Analysis with NURBS

In IGA, the basis functions can comprise any function applied in CAD, provided that they fulfill

the essential criteria of the basis function, such as the partition of unity and the maintenance

of linear independence. NURBS are widely used in the CAD world, and the essential criteria

of the basis functions mentioned above are also satisfied. The T-Splines [28, 29, 30, 31, 32],

and the subdivision surfaces [33, 10] are alternatives of NURBS in isogeometric analysis

as basis functions. Isogeometric analysis with subdivision surfaces will be investigated and

compared further with the NURBS based isogeometric analysis in this thesis.

Elements are used for computations in IGA, as in FEA, and there exist two ways of defining

a NURBS element. The first method is to treat the entire patch as a single NURBS element.
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The second method, which was also used in [1] to derive NURBS-based Kirchhoff-Love shell

element, is to define NURBS elements based on the knot spans of the knot vectors. This

means that the domain is divided into several NURBS patches, and each patch is also further

divided into elements by the knot vectors to act as a subdomain [1].

As stated in Chapter 2, a NURBS patch is constructed within a parametric domain, which

is segmented into intervals with knot vectors, and these segments are referred to as ele-

ments. Since B-Spline basis functions behave as polynomials within each knot interval, it is

possible to use Gauss quadrature for integration over the element level. However, the use

of Gauss quadrature provides only an approximation solution for the integration of NURBS

basis functions because the NURBS basis functions are not pure polynomials but are ratio-

nal polynomials. Nevertheless, the application of Gauss quadrature to NURBS elements has

been explored in the literature [5] and validated, as well as in the benchmark examples in

[1].

Similar to FEA, a set of nodes and their corresponding basis functions are required to define

a NURBS element, where the nodes are the control points of NURBS, and the degrees of

freedoms and boundary conditions are applied to them. The NURBS-based Kirchhoff-Love

shell element formulation [1] is based on displacements. Thus, the degrees of freedom of the

element formulation are the displacements of control points.

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Element 1 Element 2 Element 3 Element 4

Figure 4.1 Isogeometric elements and the extension of basis function over them (Adapted from J. Kiendl [1])

According to the definition of the elements provided above, the basis functions are extended

to a series of elements as in Figure 4.1, which is a crucial difference between FEM and IGA.

For IGA, this difference provides a higher continuity of shape functions within the boundaries

of elements. The formulation of the Kirchhoff-Love shell element is based on the high-order

continuities between the NURBS elements. However, these elements are not independent

from each other due to the interconnection between them. That is why the description of a

single NURBS element without a complete NURBS patch is not possible [1]. Nevertheless,

the approach for the elements in NURBS-based IGA is the same as the classical FEA for
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the implementation purposes, i.e., the stiffness matrix is calculated within an element and

assembled into a global stiffness matrix at the end [1].

In the following part, the mesh refinement methods for a NURBS element are explained.

For analysis purposes, the knot insertion (h-refinement) and order elevation (p-refinement)

methods are the methods for the mesh refinement, which were explained in Section 2.2.3. In

the refinement of NURBS, the geometry remains unchanged. This ensures that the geometry

is accurately represented, allowing the refinement process to continue without referring back

to the original model. This is a crucial distinction from classical FEA [1]. For the NURBS,

the knot insertion can be done by arbitrary insertion of the knots, however, which enables

local refinement for NURBS curves. However, this may result in an extension of a knot in

ξ-direction if the inserted knot is in η-direction and vice versa for the NURBS surfaces. This

phenomenon is shown in Figure 4.2. The unrefined parametric space and the corresponding

physical model are shown in (a) and (b), respectively. Similarly, the refined parametric space

and the corresponding physical model are shown in (c) and (d). The additional knots are

extended throughout the entire patch in the specified directions, as illustrated in Figure 4.2.

However, this indicates that pure local refinement for NURBS patches is not possible due to

the fact that the NURBS surfaces are obtained by a tensor product [1, 34].

For the NURBS, the combination of knot refinement and order elevation is also possible, but

it must be done in a proper sequence. If order elevation is applied before knot insertion, this

results in an increase on continuity at this location. However, if knot insertion is applied first,

then the continuity at this location remains the same since all continuities are preserved for

the order elevation. The k-refinement describes the process of applying the order elevation

first, and the knot insertion afterwards. This refinement is the desired case if lower continuities

are not wanted [1, 6, 34].
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Figure 4.2 Local refinement of a NURBS element. a) Unrefined parametric space. b) Unrefined physical model. c) Refined
parametric space. d) Refined physical model. (Taken from Wüchner et al. [21])

4.3. The NURBS-Based Kirchhoff-Love Shell Element

Formulation

This section summarized the formulation of NURBS-based Kirchhoff-Love shell element de-

veloped by J. Kiendl in [1, 7] to further use to perform isogeometric analysis with both NURBS

elements and SubD elements within Kratos Multiphysics environment [16, 17, 18]. The fun-

damentals of Kirchhoff-Love shell theory and the weak formulation of differential equations

were already given in Section 3.2. The detailed derivation of these equations for a discretized

system is available in [1], which nodal displacements are the variational variables. It is im-

portant to note that the formulation in this section is not exclusive to NURBS but is generally

applicable to a displacement-based Kirchhoff-Love shell theory [1]. That is why it can be

further used for IGA with SubD.

For any arbitrary variation of the displacement variables δur, the following virtual work equi-
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librium condition must be satisfied:

δW =
∂W

∂ur
δur = 0 (4.1)

∂W

∂ur
= 0 (4.2)

The Newton-Raphson method is used to solve the nonlinear equation system in equation 4.2

by linearizing it.
∂W

∂ur
+

∂2W

∂ur∂us
∆us = 0 (4.3)

The sum of internal and external virtual work gives the virtual work, as depicted in equation

3.17. The internal work was also given in 3.18, however, it is rewritten here for the following

derivations as:

δWint = −
∫
A

(n : δε+ m : δκ) dA (4.4)

The residual force vector R is defined as the first derivative of virtual work w.r.t. a displace-

ment variable:

Rr =

(
∂W int

∂ur
+
∂W ext

∂ur

)
= F intr + F extr (4.5)

where Fext
r and Fint

r are the vectors of external nodal loads and internal nodal forces, re-

spectively. The vector of internal nodal forces is given as:

F intr = −
∫
A

(
n :

∂ε

∂ur
+ m :

∂κ

∂ur

)
dA (4.6)

The stiffness matrix K is obtained by taking the second derivative of the virtual work, and it

can be split into internal and external virtual works as:

Krs = −
(
∂2W int

∂ur∂us
+
∂2W ext

∂ur∂us

)
= Kint

rs +Kext
rs (4.7)

The derivative of the external loads w.r.t. the displacement variables give the stiffness matrix

Kext, and it is taken into account for the displacement-dependent load’s case [1, 8]. The

derivation of the above term for internal virtual work w.r.t. to the displacement variables gives

the internal stiffness matrix Kint:

Kint
rs =

∫
A

(
∂n

∂us
:
∂ε

∂ur
+ n :

∂2ε

∂ur∂us
+
∂m

∂us
:
∂κ

∂ur
+ m :

∂2κ

∂ur∂us

)
dA (4.8)

In equation 4.8, the membrane stiffness is represented by the first two terms, while the bend-

ing stiffness is accounted for by the last two terms. Finally, the equation system depicted

below is obtained by inserting the equations 4.5 and 4.8 into equation 4.3 [1]:

K∆u = R (4.9)
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The first derivatives of the covariant base vectors w.r.t to the displacement variables ur for

a discretized system having n nodes with the discretized nodal displacement vectors ûi,

i = 1, 2, ..., n, and their corresponding shape functions N i is given as [7]:

∂gα
∂ur

=
∂(X,α + u,α)

∂ur
=
∂u,α
∂ur

=

n∑
i=1

N i
,α

∂ûi
∂ur

. (4.10)

The derivatives of ε, κ, n and m w.r.t. to the displacement variables ur can be derived from

the equation 4.10, and their detailed derivation are available in [1]. Using NURBS as ba-

sis functions allows for the calculation of curvatures at any point within the structure without

needing additional information. In contrast, rotation-free FEA employing linear shape func-

tions requires evaluating a patch of elements surrounding the element in question to compute

curvatures [35, 36]. Thus, the mentioned theory can be directly applied when NURBS are

used as shape functions [7].
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5. Fundamentals of Subdivision Surfaces

5.1. Motivation to Subdivision Surfaces

This chapter aims to introduce subdivision surfaces (SubD) and explore how subdivision

schemes can be utilized for isogeometric analysis (IGA) as an alternative to using NURBS

as basis functions. Modeling complex geometries with arbitrary topologies might have lim-

itations when using NURBS surfaces, as they are derived from the tensor products of two

NURBS curves. Sometimes, the CAD models are very complex and made up by joining mul-

tiple NURBS patches, which can often be poorly joined during the design phase. One needs

to take care while analyzing these models such that any unmatched patches must be han-

dled carefully to ensure that the geometries are watertight. In addition, the adaptive mesh

refinement techniques cannot be applied to NURBS because it is not possible to refine them

locally [37].

Starting from an initial mesh, which is also referred to as the control mesh of the surface,

the subdivision process creates smooth surfaces through a limiting procedure of repeated

refinements. In general, the subdivision process has two steps. The first step is refining the

mesh, followed by computing the new nodal coordinates. These new nodal coordinates are

linear functions of the coarser mesh’s nodal coordinates. These computations are local for the

relevant schemes, meaning they only involve the nodal coordinates of the coarser mesh within

a limited, finite topological area. As a result, highly efficient implementations are obtained

[33]. The production of smooth surfaces in the limit depends on a proper subdivision scheme

design using appropriate weights. Subdivision techniques that produce limit surfaces with a

square-integrable curvature tensor are valuable for both geometric modeling applications and

thin-shell analysis [33].

The subdivision schemes in the mathematical geometric modeling literature can be divided

into two groups:

• Interpolating schemes: In this scheme, the nodal positions of new vertices are computed

as we transition from a coarser to a finer mesh, while the nodal positions of the coarser

mesh remain fixed. Hence, the limit surface is represented by the nodal positions of the

initial mesh, along with any nodes generated during the subdivision process. In literature,

the interpolating schemes with quadrilateral surfaces were introduced by Kobbelt et al.

[38], and the triangular meshes were also studied by Dyn et al. [39] and Zorin et al. [40].

However, these schemes are not suitable for the thin-shell analysis because curvatures of

the limit surfaces do not exist, although they have C1 continuity [33].

• Approximating schemes: In these methods, the computation of nodal positions of the

new vertices that have been added and the vertices coming from the coarser mesh, which
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means they already have nodal positions, are performed. As a result, the nodal positions of

the original mesh do not represent samples of the final surface [33]. Loop [41] introduced

the approximating scheme using triangular meshes, and the schemes using quadrilateral

meshes were introduced by Catmull-Clark [9] and Doo-Sabin [42]. This thesis focuses on

the Catmull-Clark subdivision scheme, a technique that produces surfaces with C2 conti-

nuity throughout, except at points associated with extraordinary vertices. According to the

findings of Peters and Reif [43], these extraordinary vertices exhibit C1 continuity instead.

In addition, the surfaces have square-integrable principal curvatures, which enables the

use of this scheme for thin-shell analysis [33].

The first application uses the subdivision surfaces for solving the Kirchhoff-Love shell formu-

lation was implemented by Cirak et al. [33]. This study focused on the use of Loop’s subdivi-

sion scheme, but it was also mentioned that the Catmull-Clark subdivision scheme would be

a promising alternative due to the relatively better performance of quadrilateral elements for

very coarse meshes in the finite-element computations [33]. In this thesis, the Catmull-Clark

subdivision scheme will be adapted for isogeometric Kirchhoff-Love shell analysis within the

Kratos Multiphysics framework [16, 17, 18].

In the following sections, the details about the Catmull-Clark subdivision algorithm, as well as

Stam’s exact evaluation method for subdivision surfaces [44] will be presented.

5.2. Catmull-Clark Subdivision Surfaces

Catmull-Clark subdivision surfaces are the limit surfaces obtained through successive sub-

divisions of a control mesh, which are considered uniform bi-cubic B-splines at the limit. To

better understand the Catmull-Clark subdivision algorithm for surfaces, it is helpful to first

discuss the Lane-Riesenfeld subdivision algorithm for curves.

5.2.1. Lane-Riesenfeld Algorithm
Starting from an initial control polygon, the Lane-Riesenfeld algorithm successively refines

a curve after a number of subdivision steps, which results in a B-spline curve. A special

case of this subdivision algorithm is presented in Figure 5.1. The control point Pi
2j in the ith

refinement level can be obtained by the following expression:

Pi
2j =

1

2
Pi−1
j +

1

2
Pi−1
j+1 (5.1)

where the Pi
2j is the mid-point of the ’edge points’ Pi−1

j and Pi−1
j+1. The expression for the

computation of control point Pi
2j+1 is given as:

Pi
2j+1 =

1

8
Pi−1
j +

3

4
Pi−1
j+1 +

1

8
Pi−1
j+2 (5.2)
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which is also called a ’vertex point’. To compute this point, the connection between the points

Pi
2j − Pi−1

j+1 and Pi−1
j+1 − Pi

2j+2 is needed. Then, the vertex point Pi
2j+1 is the mid-point of

this connecting line, which is also associated with the upper level of refinement [37].

Figure 5.1 Computation of new control points with the Lane-Riesenfeld algorithm (Adapted from Liu et al. [37])

5.2.2. Catmull-Clark Subdivision Algorithm for Surfaces
The algorithm for subdividing surfaces resembles that of curves. Each face in the original

control mesh is divided into four new faces. For a closed surface, both the number of faces

and control vertices are doubled. The new control points can be classified as ’face points’,

’edge points’, and ’vertex points’, as in the one-dimensional curves. Based on the Figure 5.2,

the face points, edge points, and the vertex points in the ith level of refinement are computed

with the following expressions:

For face points:

P2j,2k =
1

4

[
Pi−1
j,k + Pi−1

j,k+1 + Pi−1
j+1,k + Pi−1

j+1,k+1

]
(5.3)

For edge points case 1:

P2j,2k+1 =
1

16

[
Pi−1
j,k + Pi−1

j,k+1 + 6Pi−1
j+1,k + 6Pi−1

j+1,k+1 + Pi−1
j+2,k + Pi−1

j+2,k+1

]
(5.4)

For edge points case 2:

P2j+1,2k =
1

16

[
Pi−1
j,k + 6Pi−1

j,k+1 + Pi−1
j,k+2 + Pi−1

j+1,k + 6Pi−1
j+1,k+1 + Pi−1

j+1,k+2

]
(5.5)

For vertex points:

Pi
2j+1,2k+1 =

1

64

[
Pi−1
j,k + 6Pi−1

j,k+1 + Pi−1
j,k+2 + 6Pi−1

j+1,k

+ 36Pi−1
j+1,k+1 + 6Pi−1

j+1,k+2 + Pi−1
j+2,k + 6Pi−1

j+2,k+1 + Pi−1
j+2,k+2

] (5.6)

In this context, j and k refer to the indices of the control points in the orthogonal direction.
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The formulas indicate that the weights associated with the control points for the surfaces are,

in fact, the tensor product of the weights specified in the Lane-Riesenfeld algorithms, as given

in equations 5.1 and 5.2.

Figure 5.2 Subdivision masks for different types of control points (Adapted from Liu et al. [37])

Having these formulas, the new control points can be evaluated for the ith level of refinement

with the following expression:

P i = SP i−1 (5.7)

where S is the subdivision operator. The subdivision operator S is a matrix consisting of

the weights associated with each control point in P i−1. Weight distributions for different

types of control points are illustrated in Figure 5.2, often referred to as subdivision masks

for regular vertices. A vertex with a valence of 4 is termed a "regular vertex," while a vertex

with a valence different from 4 is called an "extraordinary vertex." The term "regular valence"

specifically indicates a valence of 4, whereas "irregular valence" denotes any valence that is

not equal to 4. The weight distributions for an extraordinary vertex are given in Figure 5.3:
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Figure 5.3 Distribution of weights for an extraordinary point with valence κ (Adapted from Liu et al. [37])

where the blue point is the extraordinary vertex, κ is the number of valence of this extraordi-

nary vertex, ν = 3/(2κ), and τ = 1/4κ. After completing several subdivision steps, a smooth

B-spline surface is achieved [37].

5.2.3. Interpolation and Evaluation of Curves Using Subdivision Algorithms
This section presents the methods for interpolating and evaluating curves using the Catmull-

Clark subdivision algorithm. The curve illustrated in Figure 5.4 is generated using a subdivi-

sion algorithm, resembling a cubic B-Spline curve. This means that the interpolation of cubic

B-Splines and their corresponding control points results in the limiting curve. To interpolate

an element on the curve, four control points are necessary, including the neighboring control

points. To evaluate a curve point within element 2, four control points P 1, P 2, P 3, and P 4 are

necessary, as illustrated in Figure 5.4. This curve point can be evaluated with the following

expression:

x(ξ) =

4∑
j=1

Nj(ξ)P j (5.8)
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where the parametric coordinates within any element defined as ξ ∈ [0, 1]. The basis function

for this element is given as:

N1(ξ) =
1

6

[
1− 3ξ + 3ξ2 − ξ3

]
,

N2(ξ) =
1

6

[
4− 6ξ2 + 3ξ3

]
,

N3(ξ) =
1

6

[
1 + 3ξ + 3ξ2 − 3ξ3

]
,

N4(ξ) =
1

6
ξ3.

(5.9)

Figure 5.4 Interpolation of a subdivision curve with B-Splines and corresponding control points (Taken from Liu et al. [37])

To evaluate element 1 in Figure 5.4, the point P 2 can be mirrored to P 0 as:

P 0 = 2P 1 − P 2 (5.10)

Using a basis function set as illustrated in Figure 5.5b, the curve point for the first element can

be evaluated. However, additional ghost points would lead to additional degrees of freedom

if the element is adopted for an analysis. Thus, Liu et al. [37] proposed a method to evaluate

the curve point on the end elements that the point P 0 is substituted into the interpolating

equation 5.11 as:

x(ξ) =

3∑
j=0

Nj+1(ξ)P j =

3∑
k=1

N
′
k(ξ)P k (5.11)

Having this equation, the curve points within the end elements can be evaluated only using

33



Figure 5.5 Point mirroring: a) B-Splines for evaluating element I as a Catmull-Clark curve. b) Construction of the mirroring
point to evaluate end elements (Taken from Liu et al. [37])

three control points, and their corresponding modified basis functions are defined as:

N ′1(ξ) =
1

6

[
6− 6ξ + ξ3

]
,

N ′2(ξ) =
1

6

[
6ξ − 2ξ3

]
,

N ′3(ξ) =
1

6
ξ3.

(5.12)

In the following section, the interpolation and evaluation of Catmull-Clark surfaces having a

regular patch are mentioned with these modified basis functions.

5.2.4. Interpolation and Evaluation of Catmull-Clark Surfaces with Regular

Patch
As mentioned in Section 5.2.2, a regular vertex of a Catmull-Clark surface mesh has a valence

of 4. Valence refers to the number of elements connected to a vertex. By incorporating

extraordinary vertices within the subdivision surface, it becomes possible to manage arbitrary

topologies. Catmull-Clark surfaces offer a straightforward solution for representing surfaces

with complex geometries using a single mesh, while NURBS typically require the linking of

multiple patches to achieve the same result [37].

Figure 5.6a demonstrates a subdivision surface element (dashed on the figure) with no ex-

traordinary vertices. Evaluation of this element is possible with the formation of an element

patch, which contains the element itself and the neighboring elements. In the case of a reg-

ular element patch, there are 9 elements with 16 control vertices. Thus, the evaluation of

the surface point can be performed with the 16 basis functions corresponding to each control

point:

x(ξ) =

15∑
j=0

Nj(ξ)P j (5.13)
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a)

b) c)

Figure 5.6 Element patches for evaluation of a Catmull-Clark subdivision element: a) Regular element b) Element having one
face at the boundary c) Element having two faces on the boundary (Taken from Liu et al. [37])

where the parametric coordinates of a Catmull-Clark subdivision element are represented as

ξ := (ξ, η). A Catmull-Clark surface is generated by taking the tensor product of two Catmull-

Clark curves, and the basis functions in equation 5.13 obtained by the tensor products of

N(ξ) and N(η), which defined in the equation 5.9, as:

Ni(ξ) = Ni%4(ξ)Nbi/4c(η), i = 0, 1, . . . , 15, (5.14)

where the operators b•c and % denote the modulus operator and the remainder operator that

gives the remainder of the integer division, respectively [37].

An element patch with a shaded subdivision surface element having an edge on the physical

boundary is illustrated in Figure 5.6b. This subdivision element has 5 neighboring adjacent

elements and 12 corresponding control vertices. Liu et al. [37] proposed a method for direct

calculation of the surface element using the shape functions defined in the equation 5.12

on the boundary. The same method can be applied for the case in Figure 5.6c, where the

subdivision element within the element patch has two boundary edges. In this case, the

number of adjacent neighboring elements is 3, resulting in 9 corresponding control vertices.

Additionally, all basis functions are derived from equation 5.12 [37].

5.2.5. Interpolation and Evaluation of Catmull-Clark Surfaces with Irregular

Patch
Although the existence of extraordinary vertices in Catmull-Clark subdivision surfaces allows

the modeling of complex geometries having arbitrary topologies, it also makes the evaluation

of surfaces more difficult. In Figure 5.7a, an irregular patch of a Catmull-Clark subdivision

element having an extraordinary vertex is illustrated. As can be seen from this figure, the

elements are re-numbered as suggested in [44]. The one-level subdivision of this element

generates four new sub-elements, along with their corresponding control points. As shown in

Figure 5.7, the sub-elements Ω1, Ω2, and Ω3 form a regular patch, while the fourth element
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Figure 5.7 a) An irregular patch from a Catmull-Clark subdivision element that includes an extraordinary vertex. b) One level
of subdivision of the element resulting in three regular sub-elements and one irregular sub-element. c) Successive subdivision
of the element continues until the evaluation point is located within a regular patch. d) Adaptive Gauss quadrature method the
element with an extraordinary vertex. (Adapted from Liu et al. [37])

(in gray) still contains an extraordinary vertex. The iterative subdivision of elements in an

irregular patch is necessary until the evaluation point falls within a sub-element that has a

regular patch if the point falls into an irregular patch. Hence, the evaluation of the point

is possible within the sub-element having a new set of control points P n,k where n is the

required number of subdivisions, and the k = 1, 2, 3 is the index of sub-element as illustrated

in Figure 5.7b. These new set of control points are obtained from:

P n,k = DkAĀn−1P 0 (5.15)
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where the Dk is the selection operator to pick control points for the sub-elements, A and Ā

are two types of the subdivision operators. This approach was first introduced by J. Stam

[44], and the details of the equation are given in the following. The initial set of control points

for the irregular patch in Figure 5.7a are given as:

P 0 =
{
P0

0,P
0
1, ...,P

0
2κ+6,P

0
2κ+7

}
(5.16)

After completing one subdivision step, the new 2κ + 17 control points are shown in Figure

5.7b, represented as blue dots:

P 1 =
{
P1

0,P
1
1, ...,P

1
2κ+15,P

1
2κ+16

}
(5.17)

where the κ is the number of valence. The first subdivision step is expressed with the subdi-

vision operator A as:

P 1 = AP 0 (5.18)

where the subdivision operator A is defined as:

A =


S 0

S11 S12

S21 S22

 (5.19)

The terms given in the equation 5.19 are defined by J. Stam in [44], where the term S is the

similar subdivision term in equation 5.7. The first term S is defined in [44] as:

S =



aN bN cN bN cN bN · · · bN cN bN cN

d d e e 0 0 · · · 0 0 e e

f f f f 0 0 · · · 0 0 0 0

d e e d e e · · · 0 0 0 0

f 0 0 f f f · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

d e 0 0 0 0 · · · e e d e

f f 0 0 0 0 · · · 0 0 f f



(5.20)

where

aN = 1− 7

4N
bN =

3

2N2
cN =

1

4N2
d =

3

8
e =

1

16
f =

1

4

37



The terms S11 and S12 are defined as [44]:

S11 =



c 0 0 b a b 0 0 0

e 0 0 e d d 0 0 0

b 0 0 c b a b c 0

e 0 0 0 0 d d e 0

e 0 0 d d e 0 0 0

b c b a b c 0 0 0

e e d d 0 0 0 0 0


S12 =



c b c 0 b c 0

0 e e 0 0 0 0

0 c b c 0 0 0

0 0 e e 0 0 0

0 0 0 0 e e 0

0 0 0 0 c b c

0 0 0 0 0 e e


(5.21)

where

a =
9

16
b =

3

32
c =

1

64
d =

3

8
e =

1

16
f =

1

4

The terms S21 and S22 are defined as [44]:

S21 =



0 0 0 0 f 0 0 0

0 0 0 0 d e 0 0

0 0 0 0 f f 0 0

0 0 0 0 e d e 0

0 0 0 0 0 f f 0

0 0 0 e d 0 0 0

0 0 0 f f 0 0 0

0 0 e d e 0 0 0

0 0 f f 0 0 0 0



, S22 =



f f 0 0 f 0 0

e d e 0 e 0 0

0 f f 0 0 0 0

0 e d e 0 0 0

0 0 f f 0 0 0

e e 0 0 d e 0

0 0 0 0 f f 0

0 0 0 0 e d e

0 0 0 0 0 f f



. (5.22)

where

d =
3

8
e =

1

16
f =

1

4

To evaluate the sub-elements Ω1, Ω2, and Ω3 in Figure 5.7b, it is necessary to determine

2κ + 8 control points from the new 2κ + 17 control point patch. The required control points

from P 1 is selected with the help of a selection operator Dk for the sub-element Ωk where

k = 1, 2, 3 as:

P 1,k = DkP 1 (5.23)

The details about the selection operator are available in [44]. Having these relation, the cubic

spline basis functions can be used to evaluate a surface point as:

x(ξ) =
15∑
j=0

Nj(ξ)P1,k
j (5.24)
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For an irregular element, the number of required subdivisions for an evaluation point in para-

metric coordinates ξ = (ξ, η) is calculated by:

n = bmin (− log2(ξ),− log2(η)) + 1c (5.25)

After calculating the required number of subdivisions, the sub-element index k is determined

from:

k =



1 if ξ ∈
[

1
2n ,

1
2n−1

]
×
[
0, 1

2n

]
,

2 if ξ ∈
[

1
2n ,

1
2n−1

]
×
[

1
2n ,

1
2n−1

]
,

3 if ξ ∈
[
0, 1

2n

]
×
[

1
2n ,

1
2n−1

]
.

(5.26)

After the nth refinement, the evaluation point x is positioned in the regular sub-element k. By

using the selection element Dk, one can obtain the patch for this element as:

P n,k = DkP n (5.27)

The extended set P n consists of 2κ+ 17 control points, and it is generated as a result of the

subdivision of P ∗n−1 as:

Pn = AP ∗n−1 (5.28)

In the set P ∗n−1, there are 2κ+ 8 control vertices, which are obtained through the refinement

of the initial set P 0 as:

P ∗n−1 = Ān−1P 0 (5.29)

where the Ā denotes a subdivision operator that subdivides the patch to compute the new

patch for the irregular element. The subdivision operator Ā is defined by the terms S, S11,

and S12 as:

Ā =

 S 0

S11 S12

 (5.30)

After having the set of control points P n,k defined in equation 5.15, which contains 16 control

points, one can compute a surface point for an element having an extraordinary vertex as:

x(ξ) =

15∑
j=0

Nj(ξ̄)Pn,k
j (5.31)
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where the parametric coordinates of the evaluated point within the sub-element are denoted

by ξ̄, and they can be mapped from ξ as:

ξ̄ =


(2nξ − 1, 2nη) if k = 1

(2nξ − 1, 2nη − 1) if k = 2

(2nξ, 2nη − 1) if k = 3

(5.32)

Equation 5.32 can be rewritten as:

x(ξ) =

2κ+7∑
j=0

N̂j(ξ)P0
j (5.33)

with the Catmull-Clark subdivision surfaces basis function N̂ . Let N̂ represent a set of 2κ+ 8

basis functions within an element that has an extraordinary vertex. Additionally, let N be

defined as a set of 16 regular basis functions, as specified in Equation (7). The set N̂ can be

calculated in vector form as follows:

N̂(ξ) = [DkAĀn−1]TN(ξ̄) (5.34)

The first derivative of the basis functions for Catmull-Clark subdivision surfaces, specifically

for elements with extraordinary vertices, is calculated as:

∂N̂(ξ)

∂ξ
=



∂N̂0
∂ξ

∂N̂0
∂η

∂N̂1
∂ξ

∂N̂1
∂η

...
...

∂N̂2k+7

∂ξ
∂N̂2k+7

∂η

 (5.35)

and it can be computed from the following relation:

∂N̂(ξ)

∂ξ
= [DkAĀn−1]T

∂N(ξ̄)

∂ξ̄

∂ξ̄

∂ξ
(5.36)

where ∂ξ̄
∂ξ represents a mapping matrix denoted as:

∂ξ̄

∂ξ
=

2n 0

0 2n

 (5.37)

To calculate the basis functions N̂ at a point x in physical space, two mappings are needed.

The first mapping translates physical space to the parametric space of an element with an

irregular patch, expressed as x → ξ. Due to the fact that the irregular patch lacks tensor-

product characteristics, n levels of subdivisions are required. Consequently, the point is then
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mapped to the parametric domain of a sub-element, represented as ξ → ξ̄. This mapping

is defined in equation 5.32. The number of required subdivisions n approaches infinity when

the parametric coordinate ξ becomes (0, 0). Thus, the diagonal terms in the mapping ma-

trix in equation 5.37 become positive infinity when the number of subdivisions also tends to

infinity, resulting in not differentiable basis functions N̂ at ξ = 0 [37]. This issue is termed

the "singular configuration"[45] or "singular parametrization"[46, 47] problem in the literature

[37].

5.3. Extended Catmull-Clark Subdivision Surfaces

To address the lack of smoothness at extraordinary boundary vertices and the presence of

folds near concave corners in the original Catmull-Clark subdivision scheme, Biermann et

al. [48] introduced extended Catmull-Clark subdivision schemes. The extended Catmull-

Clark subdivision algorithm allows for defining subdivision rules specifically for boundary and

crease cases. Before this extended algorithm, some ad hoc solutions were applied, which

often led to unexpected results [48]. Properly addressing boundaries and creases is essen-

tial in the context of isogeometric analysis using subdivision surfaces. For this reason, the

extended Catmull-Clark subdivision algorithm was implemented in this thesis. The following

definitions are adapted from Oberbichler et al. [11] because the implementation of the sub-

division algorithm was based on this study, which explains the formulation of the algorithm

more clearly.

To accurately define the geometry, it is essential to consider the vertices V, as well as the

topology formed by the faces F and edges E. Different tags are assigned to the vertices and

edges in the following formulations to represent sharp features. For instance, an edge can be

tagged as a crease to model sharp interior and boundary edges or a vertex can be tagged

as a crease, dart, or corner. If an edge or vertex is not tagged, it is referred to as untagged

or smooth [11]. The effects of various tags on the limit surfaces are shown in Figure 5.8, with

tagged edges represented by thick lines and corner vertices depicted using �. A vertex is

assigned a dart tag if connected to only one crease edge. A vertex connected to two or more

crease edges can be classified as either a crease vertex or a corner vertex. Conversely, if a

vertex is connected only to smooth edges, it is tagged as a smooth vertex [11].

The subdivision rule defined in the following is provided from [9, 48]. This subdivision process

involves calculating new points for each new face Fi, vertex Vi, and edge Ei points. The

subdivision point fi of the face Fi is determined from the average of n adjacent vertices Vj

as [11]:

fi =
1

n

n∑
j=1

vj (5.38)
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Figure 5.8 Control meshes having different tags, and their resulting limit surfaces (Taken from Oberbichler et al. [11]).

Figure 5.9 Crease the edges that stretch across the sectors surrounding a marked vertex Vt. At a dart vertex (on the left), only
one sector exists (red). A crease vertex (in the middle) generates two sectors (blue and red). A corner can be adjacent to any
number of sectors (for instance, blue, red, green) (Taken from Oberbichler et al. [11]).

The subdivision point for the new vertex position vi is determined according to the tag of

the vertex Vi. In the case of a crease tag, the two crease edges are connected to Vi with

vertices Va and Vb. If the tag of the vertex Vi is smooth or dart, one needs to calculate

the valence n, which is the number of adjacent faces, edges, or vertices in this case. The

computation of the new vertex position vi is given as follows [11]:

vi =



Vi if Vi is a corner,

3
4Vi + 1

8Va + 1
8Vb if Vi is a crease,

n−2
n Vi + 1

n2

∑n
j=1 Vj + 1

n2

∑n
j=1 fj if Vi is smooth.

(5.39)

To compute the new edge point ei, it is necessary to calculate the angle θi for each smooth

edge Ei that is connected to a tagged vertex (Vt. If the tag of Vt is dart, then n represents

the number of faces connected to that vertex. In other cases, the edge Ei is bounded by two

crease edges that connect to Vi at vertices Va and Vb [11]. Figure 5.9 illustrates the area

between these two edges, where the number of faces in this region is denoted as n, and the
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angle α denotes the smaller angle formed by the two radii within the area [11].

θi =


2π
n if Vt is a dart,

π
n if Vt is a crease,

α
n if Vt is a corner,

(5.40)

where α = ∠(Va,Vt,Vb) = arccos
(

Va−Vt
‖Va−Vt‖2 ·

Vb−Vt

‖Vb−Vt‖2

)
After obtaining the angle θi, the subdivision point for the edge ei is calculated based on three

distinct cases. In these cases, it is important to consider both the tags of the vertices and

the edges. If only one vertex of the edge is tagged, that vertex is referred to as Vt, while the

other, untagged vertex is denoted as Vs, corresponding to the smooth vertex. In the other

scenarios, the order of the vertices does not matter, and they are labeled as Va and Vb.

ei =



1
2Va + 1

2Vb if Ei is a crease,

1
4Va + 1

4Vb + 1
4 fa + 1

4 fb if Va and Vb are tagged or both are untagged,

1+cos θ
4 Vt + 1−cos θ

4 Vs + 1
4 fa + 1

4 fb otherwise.
(5.41)

The subdivision points serve as the vertices of the updated mesh. For each face fi, a new

smooth vertex is created, which has a valence corresponding to the number of vertices within

Fi. The tags for the new vertices vi and ei are derived from the initial vertices Vi and

edges Ei. For each edge Ei = {Va,Vb}, two new edges {va, ei} and {ei,vb} are formed,

preserving the original edge’s tag and orientation. Each face Fi connects the subdivision

point fi to neighboring edge points ej , creating new smooth edges fi and ej . These edges

divide each face into n smaller faces, and this entire process can be applied recursively. At

the refinement level k, a vertex V
(k)
i on the control mesh corresponds to a vertex V

(k+1)
i on

the refined mesh, ultimately converging to a limit point V
(∞)
i on the limit surface [11].
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6. Methodology

In this section, the implementation details of IGA with Catmull-Clark SubD surfaces within

the Kratos Multiphysics [16, 17, 18] will be discussed. During the implementation, it was

found that the modeling of the boundary conditions significantly influences the results, which

will also be addressed in the Results section (Section 7). Specifically, correct implementa-

tion of clamped supports is essential for ensuring accurate behavior and achieving better

convergence results. Green et al. [49] introduced the second-order accurate formulation of

boundary conditions for subdivision-based finite element simulations of thin shells. However,

the suggested methods couldn’t be applied to this thesis due to some limitations. Instead,

the clamped supports are approached differently, yielding better convergence rates and more

accurate results despite some limitations. Lastly, the current progress of the solution methods

for the geometries with irregular elements will be discussed.

6.1. Implementation of Isogeometric Analysis with Catmull-Clark

Subdivision Surfaces within Kratos Multiphysics

6.1.1. Implementation of the Catmull-Clark Subdivision Algorithm and the

Creation of Quadrature Points Geometry
The Catmull-Clark subdivision algorithms were developed using the Python programming lan-

guage to make the programming procedure easier and the code more understandable. How-

ever, this choice has limitations, especially regarding computational performance. Previously,

the subdivision algorithms defined in Section 5.2.2 were implemented. Then, Stam’s fast eval-

uation technique [44] was also tested. However, the first issue with these two methods, and

the most important one, is that they don’t deal with the boundaries of the geometry such that

they suffer from the lack of smoothness at the extraordinary boundary vertices. That’s why,

the extended Catmull-Clark subdivision algorithm [48] was implemented in Python based on

the formulation from Oberbichler et al. [11]. The Python script that contains the subdivision

algorithm is named extended_catmull_clark.py. In addition to the subdivision algorithm, this

Python script also contains several functionalities, which are:

1. Calculation of the shape functions according to the definition provided by Liu et al.

[37]. The shape function relations are given in the equations 5.9, 5.12, and 5.14. The

regular element patch cases are defined in Figure 5.6. By using this information, the

shape function values and their first and second derivatives can be calculated for the

cases defined in Figure 5.6.

2. After the subdivision steps, it is important to set the element patches defined in Figure

5.6 with correct control point indices. That’s why an algorithm that assigns the correct

control point indices for each regular element patch is also included in the Python script.

44



3. Calculation of the Gauss-Legendre integration points with corresponding weights in the

parametric space [0, 1]× [0, 1].

4. Local subdivision function that only subdivides the irregular elements and their first ring

adjacent elements.

5. Identifying the control point indices where the boundary conditions are applied.

Having the Python script extended_catmull_clark.py, a main script to perform the iso-

geometric analysis with subdivision surfaces was developed. This script is based on the

kratos_main_iga.py, which is available in the "IgaApplication" of Kratos Multiphysics. This

main script defines a class called "StructuralMechanicsAnalysis", which is the main script

of the "StructuralMechanicsApplication" within a class structure. The main script also ex-

tended with the integration of subdivision surfaces, and the implemented code works in the

following steps:

1. Initializing the analysis stage by defining the modelers, extracting the data from the

input files, assigning materials to model parts, creating the properties for the shell

elements, including the load properties and output properties, and creating the sub-

model parts for the implementation of the boundary conditions.

2. Integration of the Catmull-Clark subdivision algorithm. Firstly, the control points of the

geometry are obtained from the geometry input file. The control points are written man-

ually in the script instead of taken from the geometry input file for the rectangular plate

examples including the inner boundary layer for better clamping support effect. Then,

the element relations with control points are stored in a list of lists called faces, which

contains four control point indices with a given order. Then, the geometry is subdivided

by a given subdivision level, and the new control points and element definitions, or

faces, are obtained.

3. For the definition of the Scordelis-Lo roof geometry, an optimization algorithm was de-

veloped. The subdivision hierarchy cannot accurately model spherical and cylindrical

shapes due to the limitations of bicubic B-Spline basis functions [49]. That’s why the

geometry is approximated very closely to the original geometry with the optimization

algorithm. This optimization step is also suggested in the [49]. The subdivision step is

completed within the optimization algorithm by a given subdivision level, and the new

control points and faces are obtained.

4. For the subdivision function, called "perform_subdivision", the inputs are control

points, faces, corner control point indices, corner control point indices that are ac-

tually crease control point indices, and a number of subdivision levels. The corner

control point indices and corner control point indices that are actually crease control

point indices inputs are required for the correct subdivision behavior for the extended

Catmull-Clark subdivision algorithm.

5. After performing the subdivision, the nodes are recreated in the model part to ensure

the correct assignment of the degree of freedom.

6. The valences of each control point for the subdivided geometry are then calculated,
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which is required to obtain the control point sets for each element patch defined in

Figure 5.6. According to the case, the control points set contains 9, 12, or 16 control

points.

7. Loop over each face, or element, starts. Firstly, the control point set of the element

is accessed, and the corresponding control points are added to the sub-model parts.

Then, the Gauss-Legendre integration points are calculated in the parametric domain.

8. After obtaining the integration points, loop over each integration point within the element

starts. First, the shape functions and their first and second derivatives are obtained for

each integration point. Then, quadrature point geometry is created. The quadrature

points are required to perform the numerical integration.

9. To create a quadrature point geometry with the bicubic B-Spline shape functions, it is

necessary to add the CreateQuadraturePointsUtility in Kratos Multiphysics’ core

codes so that the isogeometric analysis with subdivision surfaces can be performed

within the "IgaApplication" without adding new shell element formulation. The aim is

to change only the shape functions that suit the subdivision surfaces and to create the

quadrature points for integration points within each element of the subdivided geometry.

10. The required inputs to create the quadrature point geometry are:
• Geometry,

• Working space dimension,

• Local space dimension,

• Integration point,

• Control point set indices for the element,

• Shape functions, N ,

• Shape functions first derivative w.r.t ξ, ∂N∂ξ ,

• Shape functions first derivative w.r.t η, ∂N∂η ,

• Shape functions second derivative w.r.t ξ, ∂
2N
∂ξ2

,

• Shape functions second derivative w.r.t ξ, and η, ∂2N
∂ξ∂η ,

• Shape functions second derivative w.r.t η, ∂
2N
∂η2

11. After creating the quadrature points, a new element to a sub-model part is added. This

sub-model part is within the IGA model part. To create a new element, the required

inputs are the element name, which is "Shell3pElement" in our case, an assigned ID of

the integration point, the quadrature point geometry, and the shell properties. Then, a

new condition is added to another sub-model part within the same IGA model part. To

create new conditions, the required inputs are the condition name, which is "LoadCon-

dition" in this specific case, quadrature point geometry, and the load properties.

12. At the end of the first loop, the integration point ID is incremented by one, preparing it

for the next iteration. Similarly, the element ID is incremented by one, indicating the cre-

ation of a new element in the next iteration. Finally, this process is completed for each

face or element in the geometry and each integration point within the corresponding

element.
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The workflow of the implementation described above is summarized in Algorithm 1 as follows:

Algorithm 1 Isogeometric Analysis with Subdivision Surfaces

Step 1: Initialize the analysis stage
Define modelers and extract data from input files.
Assign materials to model parts and create shell element properties.
Create sub-model parts for boundary conditions.

Step 2: Integrate the Catmull-Clark subdivision algorithm
Extract control points from input files or define manually.
Store element relations with control points in a list of faces.
Perform subdivision to generate new control points and faces.

Step 3: Optimize geometry for Scordelis-Lo roof (if applicable)
Approximate geometry using an optimization algorithm.
Perform subdivision within the optimization step.

Step 4: Define the perform_subdivision function
Inputs: control points, faces, corner indices, subdivision level.
Outputs: Subdivided geometry and updated control points.

Step 5: Recreate nodes and assign degrees of freedom
Recreate nodes in the model part to ensure correct DoF assignments.

Step 6: Calculate valences for control points
Compute valences and obtain control point sets (9, 12, or 16 points) for each element.

Step 7: Iterate over each face (element)
for each face in the geometry do

Access the control point set for the current element.
Add control points to sub-model parts.
Calculate Gauss-Legendre integration points in the parametric domain.

Step 8: Iterate over each integration point
for each integration point in the element do

Compute shape functions and their first/second derivatives.
Create quadrature point geometry for numerical integration.

end for
Step 9: Create quadrature point geometry

Use CreateQuadraturePointsUtility in Kratos core codes.
Inputs: Geometry, working space dimension, local space dimension, integration
point, control point set indices, and shape function derivatives (first and second
orders).

Step 10: Add new elements and conditions
Create and add new element:

Element name: "Shell3pElement".
Inputs: integration point ID, quadrature point geometry, shell properties.

Create and add new condition:
Condition name: "LoadCondition".
Inputs: quadrature point geometry, load properties.

Increment IDs for elements and integration points.
end for
Step 11: Finalize the process for all elements and integration points

Ensure all elements and integration points are processed.
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6.1.2. Imposing Boundary Conditions
After defining the quadrature point geometry for numerical integration, the next step is to

set the boundary conditions for this geometry. Before discussing how boundary conditions

are applied at the Kratos Multiphysics level, it is important to understand the theory behind

imposing these boundary conditions.

In plate and shell mechanics, boundary conditions typically restrict either displacement or

rotation (or both) along the edge of a thin body. When only the displacement is restricted, the

boundary condition is called simply supported. In contrast, when both the displacement and

rotation are fixed, the boundary condition is referred to as clamped supports [49]. These two

support types are used in our example test cases discussed in Chapter 7.

The subdivision basis functions in thin-shell analysis facilitate the representation of geometry

and the mechanics of thin shells, such as deformation and stresses within the structure during

the analysis [49].In contrast to conventional finite elements, subdivision basis functions have

an impact that reaches beyond their adjacent faces. For instance, a vertex influences not only

the local face it belongs to but also nearby connected faces and edges [49]. In conventional

finite element, the element boundary is aligned with the boundary of the domain. Due to

the overlapping nature of subdivision basis functions, methods based on subdivision require

careful handling of boundaries, especially regarding the extension of a basis function’s sup-

port to multiple neighboring elements. Therefore, a compatible boundary representation is

necessary [49].

The boundary conditions can be modeled using two methods: explicit boundary modeling and

implied boundary modeling [49]. In the explicit boundary modeling approach, the boundary is

represented using ghost faces that surround the control mesh without directly parameterizing

the geometry. These ghost faces provide flexibility in shaping the geometry and enhancing

the smoothness of the subdivision surface. The vertices of the ghost faces are known as

ghost vertices, whose positions indirectly affect the limit surface, even though they do not form

part of the geometric model [49]. Although the explicit method provides additional flexibility in

boundary modeling and compatibility for irregular meshes where the valence of vertex varies,

this method requires manual adjustment of the control mesh, including ghost faces, and it is

computationally more complex due to indirect boundary effects [49].

The implied boundary method, which is presented in Cirak et al.[33, 49] does not require the

explicitly created ghost points. Instead, every face of the control mesh, including the boundary

faces, is parametrized for the geometry [49]. Special subdivision rules define the geometric

limits for boundary faces that do not have one complete neighborhood. This means that the

boundaries of the limit surface are determined by the same curves that would be produced

if one-dimensional subdivision were applied to the boundary [49]. These conditions can be

implemented by forming a ring of ghost faces that originate from the positions of the control

vertices along the boundary of the mesh, which is shown by Schweitzer and Duchamp [8, 49].
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This method is easier to implement since it doesn’t require ghost faces, and it automatically

maintains smooth transitions at the boundaries. However, the design of the control mesh is

limited by the need for regular valence, making the method less flexible when dealing with

irregular topologies or complex boundary geometries [49].

Figure 6.1 Boundary condition geometry from the implementation of Cirak et al.[33] (Taken from Green et al.[49])

Table 6.1 Boundary conditions implemented in Cirak et al. [33] (Adapted from Green et al.[49])

Displacement Rotation Boundary Condition
Free Free u4 = u2 + u3 − u1

Fixed Free u4 = −u1, u2 = u3 = 0
Fixed Fixed u1 = u2 = u3 = u4 = 0

Figure 6.1 illustrates the boundary condition geometry used by Cirak et al. [33], while Table

6.1 summarizes the boundary conditions based on the types of supports. The ghost faces in

this implementation obey the rules defined in Schweitzer and Duchamp [8] such that all the

faces along the boundary have regular valence (or number of neighborhoods) [49]. The rela-

tionships presented in Table 6.1 ensure that the positions of ghost faces are maintained after

deformation while still adhering to the constraints established by Schweitzer and Duchamp

[8, 49].

In this thesis, the subdivision basis functions at the boundaries are defined using ghost points,

as discussed in Section 5.2.3. In Kratos Multiphysics, the support conditions are defined in

"physics.iga.json", and "ProjectParameters.json" files. To apply a simply support along

an edge, geometry_type is set to "GeometrySurfaceNodes", and "local_parameters" de-

fines the location of the applied support. The location of the applied supports is defined in

parametric space, with the entire geometry parameterized using coordinates of [0, 0]× [1, 1].

When the support is applied along an edge, the "local_parameter" is represented by an in-

dex of −1. For example, if support is applied along the edge at x = 0, the corresponding

entry for "local_parameter" would be [0,−1], where −1 indicates that the support is applied

through that edge, and 0 represents x = 0. Similarly, a support along y = 1 can be applied

by inserting "local_parameter" with [−1, 1]. Similarly, a clamped support is applied by in-

cluding "GeometrySurfaceNodes", and "GeometrySurfaceV ariationNodes", where the
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latter is used to fix the rotation. "The local_parameters" are applied in the same manner.

The clamping support is created by fixing displacements at the boundary edge vertices and

their adjacent vertices in the specified direction.

After specifying the boundary conditions in physics.iga.json and ProjectParameters.json,

the next step is to identify the control point indices for applying the supports based on the

information from these two files. In the main Python script, the boundary conditions are

strongly imposed and added through the following steps:

1. Obtaining the control point indices by calling boundary_condition_vertices function of

extended_catmull_clark.py Python script.

2. Next, the code iterates over the list of sub-model parts designated for boundary condi-

tions, "sub_model_part_bc". For each sub-model part, it creates a new sub-model part

within the "IgaModelPart" of the model.

3. The code then checks "sub_model_part_bc_type", which gives the type of boundary

condition. If the type is specified to "GeometrySurfaceNodes", it further checks the

parameters in "sub_model_part_bc_param to determine which vertices to add to the

sub-model part. Then, corresponding vertices are added to the sub-model part. These

vertices are located at the specified boundary edges of the geometry. Similarly, if the

type is specified to "GeometrySurfaceV ariationNodes", the first adjacent vertices of

the boundary vertices along specified edges are added to the sub-model part.

4. After the iteration step, the boundary support conditions are imposed to the geometry.

Applying boundary conditions in Kratos Multiphysics is similar to the method used in the

implementation by Cirak et al. [33], which also obeys the constraints defined by Schweitzer

and Duchamp [8]. However, this boundary implementation has some drawbacks in terms

of convergence of solution, especially for clamped support case, which will be discussed in

Section Section 6.2 and Chapter 7. A summary of the implementation details mentioned

above is provided in Algorithm 2.

6.1.3. Obtaining the Displacements at each Control Point
After implementing the Catmull-Clark subdivision algorithm, creating the geometry for quadra-

ture points, and imposing the boundary conditions, the main Python script is now ready for

the solver step. Once the solver is set up, the analysis is performed, and the nodal dis-

placements are obtained. The next step is to recalculate these deflections, taking into ac-

count the effects of subdivision basis functions, as they also influence the control points of

the first ring element. These calculations are carried out in a separate Python script called

calculate_deflections.py. These real deflection values are then used to both result compar-

ison and deflected shape visualizations in Chapter 7. To visualize the geometry, the result

data is exported in .vtk format by calling the ExportDataToV tk function, which exports the

geometry with the calculated true deflections at each control point.
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Algorithm 2 Imposing Boundary Conditions for Subdivision Surfaces

Step 1: Identify control point indices for supports
Retrieve boundary condition information from the project parameters and project physics

inputs.
Obtain the control point indices by calling the boundary_condition_vertices function

from extended_catmull_clark.py.
Step 2: Iterate over boundary condition sub-model parts

Loop through the list of sub-model parts designated for boundary conditions,
sub_model_part_bc.

For each sub-model part, create a new sub-model part within the IgaModelPart of the
model.
Step 3: Check boundary condition type and parameters

Check the type of boundary condition using sub_model_part_bc_type:
- If type isGeometrySurfaceNodes, check sub_model_part_bc_param to determine
vertices to add.
- Add the corresponding vertices located at the specified boundary edges of the
geometry to the sub-model part.
- If type is GeometrySurfaceV ariationNodes, add the first adjacent vertices of the
boundary vertices along the specified edges to the sub-model part.

Step 4: Impose boundary support conditions
Apply the boundary support conditions to the geometry after the iteration step.

6.2. Issues on the Implementation of the Boundary Conditions

The prescribed boundary condition imposing method from Cirak et al.[33] is straightforward

and easy to apply; however, it also brings some drawbacks regarding convergence and accu-

racy. In the field of solid mechanics, the application of the constraints listed in Table 6.1 is not

optimal [49]. Although the constraints applied by Cirak et al.[33] are sufficient, they are too

strong such that deformations in higher-order modes are inhibited, which reduces the flexi-

bility and lowers the rate of convergence of the numerical solution. Consequently, not only

displacement and slope are restricted, but also curvature and in-plane strains are unintention-

ally restricted [49]. For example, consider a boundary where several consecutive edges are

clamped supported. In this scenario, the displacement along the boundary edge is entirely

determined by the subdivision basis function and the constraints imposed. These constraints

enforce zero displacement, as well as zero first derivatives (slopes and rotations) and second

derivatives (curvature). However, traditional clamped boundary conditions only require zero

displacement and slope while allowing finite curvature. Hence, the simulation becomes less

flexible and less accurate, especially at boundaries, by eliminating higher-order deformation

modes [49]. Another issue of the constraints applied by Cirak et al. [33] is that the bend-

ing and membrane deformation modes are unnecessarily coupled. For instance, when both

displacement and rotation are constrained to zero, in-plane (membrane) strains are forced

to vanish at the boundary [49]. Additionally, this method imposes artificial constraints even

on free boundaries, where displacements and rotations are meant to be unconstrained. As

a result, the ghost faces are required to follow the subdivision rules proposed by Schweitzer

and Duchamp [8]. This enforcement eliminates the useful deformation modes that typically
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arise under free boundary conditions, all while maintaining smoothness [49].

In this study, a similar method for imposing boundary conditions is applied as described in

Section 6.1.2. According to the results, a slower convergence rate is observed in clamped

support cases, which the details are given in Section 7. In the study of Green et al. [49],

they proposed an appropriate boundary condition formulation to address these issues by

relaxing unnecessary constraints such that higher-order deformation modes (e.g. curvature

and membrane strains) vary naturally at the boundaries. The methods proposed by Green et

al. [49] are difficult to implement at the Kratos Multiphysics level and were not used in this

study. Instead, we developed an alternative approach to achieve a better clamping effect,

which will be discussed in detail in the following sections, including a summary of the solution

methods proposed by Green et al. [49].

6.3. Solution for the Boundary Condition Issues

Green et al. [49] introduced several boundary condition formulation to solve issues of bound-

ary condition constraints from Cirak et al. [33]. Here, the solution methods for vertex posi-

tion constraint, rotation and clamped constraints will be discussed, which are relevant to our

study.

6.3.1. Solution to Vertex Point Constraint
The goal of this solution is to ensure that a specific point on the boundary or within the

model achieves a target displacement, such as fixed, pinned, or simply supported boundary

conditions. In this type of constraint, the displacement of a vertex at the limit surface is

expressed as a weighted sum of the displacements of neighboring control mesh vertices

as:

ulimit =

k∑
i=1

βiui (6.1)

where ui represents displacements of neighboring control vertices, βi is the precomputed

weights from the limit mask, which depend on the subdivision scheme, and k is the number

of the vertex neighborhood. For the Catmull-Clark subdivision scheme, the limit mask is

described in Figure 6.2, and the coefficients α, βi, and γi are calculated as [49]:

α =
n2

n(n+ 5)
, βi =

4

n(n+ 5)
, γi =

1

n(n+ 5)
. (6.2)

For fixed boundary conditions (e.g. clamped or pinned), the desired displacement ulimit is

set to zero. Thus, the constraint in equation 6.2 can be rewritten as a linear constraint as

[49]:

Cu = g (6.3)
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Figure 6.2 Limit mask for Catmull-Clark Subdivision (Taken from Green et al.[49])

where C is a matrix containing the weights βi from the limit mask, u is the displacement

vector of all control vertices, and g is the desired displacement, which is often zero for fixed

constraints [49]. This constraint can be implemented by applying the constraint equation for

each vertex of interest and evaluating the displacement for interior points at arbitrary locations

using Stam’s evaluation technique [44, 49].

6.3.2. Solution to Rotation and Clamped Constraints
The aim of this solution is to model clamped boundaries, where both displacement and rota-

tion are restricted. During the formulation, second-order accuracy is ensured while avoiding

over-constraining the system.

Figure 6.3 Clamped boundaries. Left: Undeformed. Right: Deformed (Taken from Green et al. [49])

The rotational constraint maintains that the surface normal at any boundary point does not

rotate around directions that are perpendicular to the boundary edge. This allows for rota-

tions along the boundary edge while preventing out-of-plane deformations. In Figure 6.3, the

undeformed and deformed configuration of a clamped boundary is given. According to this

figure, s and t span the local tangent plane at any boundary point, n is the unit normal vector

and e is the tangent direction of the boundary edge within the tangent plane[49]. The vector
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r is defined as r = n × e to inhibit rotation perpendicular to the boundary edge, and it is

orthogonal to both e and n. The constraint on deformed normal should satisfy the condition

r · ñ = 0. The implementation details are available in Green et al. [49], and the final linearized

constraint formulation to inhibit rotation about a boundary edge is given as:

∑
i

ui · (wis(t× r) + wit(r× s)) = 0 (6.4)

where the wis and wit are the weights of two tangent masks regardless of their computation

method [49]. This equation provides a scalar constraint for each degree of freedom in the

model. A clamped support at the boundary is then obtained by combining the constraints

given in the equation 6.4 with the vertex point constraints [49]. A naive approach might

attempt to set both the direction and magnitude of the deformed normal vector. However,

this results in redundancy, as the displacement constraint already limits the direction of the

normal vector when paired with the rotation constraint. Instead, the formulation should only

fix the necessary degrees of freedom, ensuring compatibility with solvers and maintaining

stability [49].

6.3.3. Introducing Inner Boundary Layer for Clamped Support Boundary

Condition
Since the implementation of the boundary condition formulations introduced by Green et al.

[49] is not straightforward for Kratos Multiphysics environment, another practical approach is

developed to obtain better convergence results for the clamped supported boundary condition

cases of rectangular plate examples given in Chapter 7. This approach is illustrated in Figure

6.4. The initial rectangular plate example geometry consists of 9 control points and 4 faces.

The adjusted geometry contains 25 control points and 16 faces with the introduction of a very

thin inner boundary layer. The dimensions a and b are determined by the multiplication of

side lengths with a factor:

L

W

b

a

L

W

a) b)

Figure 6.4 Introduction of inner boundary line for clamped supported rectangular plate examples

a = W ∗ factor b = L ∗ factor (6.5)

Although this approach gives better convergence results compared to the initial geometry for

the clamped supported rectangular plate examples, it is not always practical to implement it.

First of all, the new control points and faces must be defined manually in Kratos Multiphysics,
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including the dimensions a and b. Selecting a factor that is too small causes a and b to

become numerically zero, resulting in the loss of clamping effect, and the supports behave

as simply supported. There is no defined factor that guarantees the best result; users must

determine an appropriate factor through trial and error.

6.4. Current Progress on the Geometries with Irregular

Elements

This section presents the current achievements related to the solution of geometries with

irregular vertices. Due to implementation challenges in Kratos Multiphysics and time con-

straints associated with this thesis work, the geometries with irregular vertices were not

tested.

The subdivision of the geometries having irregular vertices is performed in the same way as

the regular geometries, which uses the same Python script "extended_catmull_clark.py".

This Python script also includes a function for local subdivision around the irregular vertices,

called "local_subdivision". This local subdivision function works it the following logic:

• Before starting the local subdivision, the original geometry has to be at least two times

subdivided as suggested by J. Stam [44]. Also, only the internal faces having exactly one

irregular vertex are considered.

• For each irregular internal face after at least two times subdivisions of the initial geometry,

the irregular faces and their first ring neighborhood faces are determined.

• Then, subdivision is applied. After subdivision, only the irregular faces and their first and

second ring faces are stored to evaluate each new sub-element located within the irregular

faces from the previous subdivision level. This means that only the irregular faces and

their first-ring neighborhood faces are required for the evaluation with 16 control vertices

as shown in Figure 5.6a and Figure 5.7c.

• The local subdivision is carried out iteratively for a specified amount based on the logic

outlined in the previous clause.

After the local subdivision step, one can locate the Gauss-Legendre integration points only

to the first-ring faces of each local subdivision level to perform numerical integration for the

irregular faces of the initial geometry according to the integration scheme from Liu et al. [37],

which is illustrated in Figure 5.7c-d. Although this method looks straightforward to implement,

adding the new control points after the local subdivision step to the original geometry while

maintaining the positions of the initial control vertices is complicated within the Kratos Multi-

physics. The reason is one needs to ensure that the stiffness matrix is constructed correctly

such that the same control points cannot be added to the stiffness matrix more than once.

In addition, the positions of the initial control vertices may slightly change after each subdi-

vision step, which requires correct indexing after each subdivision step such that very small

changes in the control point location do not change the index of the control point from the pre-
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vious subdivision step. That’s why this step is designated for future work. The subdivision of

an example geometry having irregular vertex is given in Figure 6.5, and the local subdivision

for the two times subdivided geometry is given in Figure 6.6.

Figure 6.5 An example geometry having one irregular vertex. Left: Initial geometry. Middle: One level of subdivision. Right:
Two levels of subdivision (Adapted from Liu et al. [37])

Figure 6.6 Local subdivision results. Left: Two levels of subdivided geometry. Middle: One level of local subdivision around the
first ring elements of the irregular elements. Right: Two levels of local subdivision around the first ring elements of the irregular
elements from the previous subdivision level (Adapted from Liu et al. [37])
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7. Results

This chapter compares isogeometric analysis using Catmull-Clark subdivision surfaces with

NURBS-based isogeometric analysis, focusing on several benchmark examples. Specifically,

these examples include rectangular thin plates with various support types and the Scordelis-

Lo roof, which is one of the three geometrically linear problems from the Shell Obstacle

Course [50]. This chapter first discusses the differences between isogeometric analysis (IGA)

with Catmull-Clark subdivision surfaces and NURBS-based isogeometric analysis. Further,

the results of the benchmark examples are compared.

7.1. Differences between NURBS-Based IGA and IGA with

Catmull-Clark Subdivision Surfaces

The differences between IGA using Catmull-Clark subdivision surfaces and NURBS-based

IGA can be categorized under some headings, such as element definition, basis functions

and the existence of extraordinary vertices.

In NURBS-based IGA, the geometry elements are defined as subdomains in a paramet-

ric space. Each element is associated with a specific subset of control points influencing

its geometry and the basis functions used. The parametric domain is divided into intervals

known as knot spans, which are determined by knot vectors. Each of these knot spans corre-

sponds to an element in the physical space. Refinement of the elements is achieved through

h-refinement by knot insertion, p-refinement by order elevation, or k-refinement, which the

details are given in Section 4.2. In Kratos Multiphysics, this can be achieved by adjusting the

parameters within the "refinements.iga.json" file. Challenges of the element representation

in NURBS-based IGA include the necessity for structured topologies, such as grid-like layouts

in parametric space, and difficulties in representing irregular geometries without trimming or

additional manipulations.

In IGA with Catmull-Clark subdivision surfaces, the initial control mesh defines the geometry,

and elements correspond to the faces of the mesh. After the recursive subdivision of the

elements, fines meshes are obtained. As a result of each refinement step, new elements

are created from the existing control mesh. For the Catmull-Clark subdivision, the elements

are quadrilateral, and their shape and topology are flexible. By using subdivision surfaces,

irregular topologies can be handled by including extraordinary vertices. Furthermore, the re-

finement of the geometry is an iterative process in which elements are refined hierarchically,

resulting in a finer mesh with each subdivision step. Challenges of the element representa-

tion I IGA with Catmull-Clark subdivision surfaces include reduced smoothness on the basis

functions and resulting elements near extraordinary vertices and computational difficulties in
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integration over irregular elements near extraordinary vertices.

Locating the integration points is also different in these two methods. In NURBS-based IGA,

the integration points are placed through the parametric representation of the whole geome-

try. In IGA with Catmull-Clark subdivision surfaces, however, the integration points are placed

into the parametric domain of each element. For the IGA with Catmull-Clark subdivision

surfaces, 2x2 and 3x3 Gauss-Legendre integration points are used, and the results are com-

pared with each other. Barendrecht et al. [51] conclude that the 2x2 Gauss-Legendre scheme

guarantees exact integration for bicubic polynomials in the context of Catmull-Clark subdivi-

sion surfaces. Green et al. [49] suggested using the 3x3 Gauss-Legendre scheme to reduce

numerical errors that may arise from numerical integration.

7.2. Rectangular Plate

In this section, a rectangular thin plate is tested for different support conditions: Two side

edges clamped supported, four side edges clamped supported, two side edges simply sup-

ported, and four side edges simply supported. For the rectangular plate examples, reference

analytical solutions for the comparison and error analysis are obtained from the reference

[52]. All the examples are subjected to uniform loading in the z-direction. Additionally, each

geometry initially contains 9 control points for IGA with Catmull-Clark subdivision surfaces.

However, for cases with clamped support where an inner boundary layer is introduced, the ini-

tial geometry has 25 control points. For the NURBS-based IGA, both the polynomial degrees

p = 2 and p = 3 are tested. For the case of p = 2, the initial geometry includes 9 control

points. However, for the case of p = 3, the initial geometry includes 25 control points.

7.2.1. 2 Side Edges Clamped Supported

L

W

Geometry: L = 5.0
W = 1.0

   t = 0.01

Material properties: E = 2.0 x 108

ν = 0.3

Uniform loading: p = 10

Figure 7.1 Problem definition: Rectangular plate with 2 side edges are clamped supported

In this section, the results for the rectangular plate example having 2 side boundary edges

clamped supported are discussed. The problem definition is given in Figure 7.1. The applied

load is a uniform loading distribution in -z-direction. The initial control mesh has 4 faces,

and 9 control vertices for IGA with Catmull-Clark subdivision surfaces case. However, there

are no results for the initial control mesh case because of the insufficient amount of control

vertices. In this specific case, all of the control vertices are affected by the support conditions,

as discussed in Chapter 6. That’s why, at least one level of subdivision for the subdivision
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surfaces case is required. Similarly, one level of refinement is also applied to NURBS-based

IGA case. For the case of NURBS-based IGA, the results are obtained for the polynomial

degrees of both p = 2 and p = 3 as mentioned before. The reason is that p = 2 is not

sufficient for this example, and the following examples. The correct degree should be at least

p = 3. Also, the basis functions of Catmull-Clark subdivision surfaces have a degree of p = 3.

So, it makes more sense to compare these results. The following results were obtained up

to the 5th level of subdivision. Beyond this level, the calculations became excessively time-

consuming with no significant improvements in the results. The corresponding control points

amount is 4225 for the finest test cases. Furthermore, all these results are obtained for the

deflection at the center of the geometry in the -z-direction, where the maximum deflection is

expected to occur.

In Table 7.1, the deflection results for the NURBS-based IGA with polynomial degrees p = 2

and p = 3, and IGA with Catmull-Clark subdivision without the introduction of inner boundary

layer with 2x2 Gauss-Legendre integration points are given. In addition, the relative errors

are also given according to the analytical solution obtained from [52]. The analytical solution

is calculated as 9.310E − 01 accordingly. According to Table 7.1, one can observe that the

results for IGA with subdivision surfaces did not converge as in the NURBS-based IGA. The

reason comes from the imposing clamped supports at the boundaries, which the details are

given in Chapter 6. Due to the strong clamping effect, we still have 3.83% relative error at the

5th subdivision level for IGA with subdivision surfaces. In real life, 5 times subdivision may not

be optimal for large geometries, that’s why the boundary conditions should be reformulated

as suggested by Green et al. [49]. For the case of NURBS-based IGA, results converge to the

analytical solution better and faster than IGA with subdivision surfaces. Also, the convergence

rate increases with the increase of the polynomial degree, which is expected because the

polynomial degree should be at least p = 3 in this example. Additionally, Table 7.4 presents

the results for IGA with subdivision surfaces without introducing the inner boundary layer

utilizing 3x3 Gauss-Legendre integration scheme in this case. Here, it can be observed that

using 3x3 Gauss-Legendre scheme does change the results slightly, which can be ignored.

This observation proves that the 2x2 Gauss-Legendre scheme is sufficient to ensure exact

integration for bi-cubic polynomials in the context of Catmull-Clark subdivision surfaces [51].

The converge plots are given for the 2x2 and 3x3 Gauss-Legendre schemes in Figures 7.2

and 7.4. As can be seen from these figures, the NURBS-based IGA outperforms the IGA with

subdivision surfaces.

Next, the effect of the introduction of the inner boundary region is observed for the IGA with

subdivision surfaces case to diminish the strong clamping effect as mentioned in Sections

6.2 and 6.3.3 for both 2x2 and 3x3 Gauss-Legendre integration schemes. Tables 7.2 and

7.3 present the deflections and relative errors respectively for both cases with and without

the inner boundary layer, across various factors, utilizing the 2x2 Gauss-Legendre integration

scheme. For the 3x3 Gauss-Legendre integration scheme, the results are available in Tables

7.5 and 7.6. The relative error vs number of control points plots are given in Figures 7.3 and
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7.5 for both 2x2 and 3x3 Gauss-Legendre integration schemes. According to these plots,

first of all, the change in the integration scheme does not change the results significantly

as expected. However, the introduction of the inner boundary layer significantly increased

the convergence rate of the solutions for IGA with subdivision surfaces. From these plots,

one can observe that IGA+SubD with inner boundary layer significantly outperforms the case

without inner boundary layer. Also, the introduction of inner boundary layer gives better results

compared to NURBS-based IGA with polynomial degree p = 2 after the number of control

points around 289, which can be observed also in the tables. Nevertheless, there is no proper

way of selecting the factor for inner boundary layer, and the results differ for the choice of the

factor. The strong clamping effect can be observed in Figure 7.6 for the case IGA+SubD

without inner boundary layer. As shown in this figure, the clamping effect is too strong at the

lower subdivision levels; however, the convergence to the analytical solution is still insufficient

for the 5th subdivision level. The effect of introducing the inner boundary layer on the clamping

effect is illustrated in Figure 7.7 for the factor of 1/1000. In Figure 7.8, a closer look is

given. According to these two figures, it can be concluded that the strong clamping effect is

diminished with the introduction of the inner boundary layer. The plots showing the clamping

effects are obtained from Paraview, and one needs to keep in mind that these results do

not show the deflections at the limit surface because Paraview uses linear interpolation while

plotting the results. Here, the results are obtained at the control points, and linear interpolation

is used between the control points. Nevertheless, it gives significant results that demonstrate

the effect of strong clamping for visualization.

Lastly, the deflected geometries at the finest subdivision/refinement levels are given in Fig-

ures 7.9, 7.10, and 7.11. For a better visualization, a scaling factor of 0.5 has been applied

to the displacements. The deflected geometries for IGA+SubD are obtained from Paraview,

and the deflected geometry for NURBS-based IGA is obtained from Rhino 8. These deflected

geometries show the same deflection pattern, which shows the obtained results are compa-

rable and our implementation of IGA+SubD works fine. Again one needs to keep in mind

that Paraview linearly interpolates between deflections at each control point while plotting the

result.

Table 7.1 Rectangular Plate with 2 side edges supported by clamped supports and 2x2 Gauss-Legendre quadrature points for
IGA + SubD: No introduced inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

without
Inner Boundary

Layer

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

without
Inner Boundary

Layer
0 9
1 25 5.363E-01 9.083E-01 3.384E-01 42.40% 2.44% 63.66%
2 81 8.424E-01 9.215E-01 6.335E-01 9.52% 1.02% 31.95%
3 289 9.088E-01 9.285E-01 7.842E-01 2.39% 0.27% 15.77%
4 1089 9.252E-01 9.304E-01 8.587E-01 0.63% 0.06% 7.76%
5 4225 9.295E-01 9.309E-01 8.954E-01 0.17% 0.01% 3.83%
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Table 7.2 Rectangular Plate with 2 side edges supported by clamped supports and 2x2 Gauss-Legendre quadrature points for
IGA + SubD: Deflections for introducing inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Number of
Control Points

with Inner
Boundary Layer

Deflection
IGA+Subdivision

without
Inner Boundary

Layer

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/100

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/250

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/500

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/1000

Deflection
IGA+Subdivision

with Inner Boundary
Layer

a = b = 0.01

0 9 25 7.833E-02 9.757E-02 1.939E-01 4.965E-01 1.939E-01
1 25 81 3.384E-01 7.930E-01 7.789E-01 7.781E-01 7.810E-01 7.783E-01
2 81 289 6.335E-01 9.250E-01 9.138E-01 9.108E-01 9.103E-01 9.110E-01
3 289 1089 7.842E-01 9.294E-01 9.304E-01 9.295E-01 9.287E-01 9.295E-01
4 1089 4225 8.587E-01 9.298E-01 9.306E-01 9.307E-01 9.317E-01 9.308E-01
5 4225 8.954E-01

Table 7.3 Rectangular Plate with 2 side edges supported by clamped supports and 2x2 Gauss-Legendre quadrature points for
IGA + SubD: Errors for introducing inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Number of
Control Points

with Inner
Boundary Layer

Error
IGA+Subdivision

without
Inner Boundary

Layer

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/100

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/250

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/500

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/1000

Error
IGA+Subdivision

with Inner Boundary
Layer

a = b = 0.01

0 9 25 91.59% 89.52% 79.17% 46.67% 79.17%
1 25 81 63.66% 14.82% 16.34% 16.43% 16.11% 16.40%
2 81 289 31.95% 0.65% 1.85% 2.17% 2.22% 2.15%
3 289 1089 15.77% 0.17% 0.07% 0.16% 0.25% 0.16%
4 1089 4225 7.76% 0.13% 0.04% 0.03% 0.07% 0.02%
5 4225 3.83%

Table 7.4 Rectangular Plate with 2 side edges supported by clamped supports and 3x3 Gauss-Legendre quadrature points for
IGA + SubD: No introduced inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

without
Inner Boundary

Layer

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

without
Inner Boundary

Layer
0 9
1 25 5.363E-01 9.083E-01 3.380E-01 42.40% 2.44% 63.69%
2 81 8.424E-01 9.215E-01 6.336E-01 9.52% 1.02% 31.95%
3 289 9.088E-01 9.285E-01 7.842E-01 2.39% 0.27% 15.76%
4 1089 9.252E-01 9.304E-01 8.587E-01 0.63% 0.06% 7.76%
5 4225 9.295E-01 9.309E-01 8.953E-01 0.17% 0.01% 3.83%

Table 7.5 Rectangular Plate with 2 side edges supported by clamped supports and 3x3 Gauss-Legendre quadrature points for
IGA + SubD: Deflections for introducing inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Number of
Control Points

with Inner
Boundary Layer

Deflection
IGA+Subdivision

without
Inner Boundary

Layer

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/100

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/250

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/500

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/1000

Deflection
IGA+Subdivision

with Inner Boundary
Layer

a = b = 0.01

0 9 25 4.916E-02 1.528E-02 1.212E-02 1.673E-02 1.212E-02
1 25 81 3.380E-01 8.315E-01 7.986E-01 7.947E-01 7.945E-01 7.951E-01
2 81 289 6.336E-01 9.234E-01 9.201E-01 9.158E-01 9.138E-01 9.160E-01
3 289 1089 7.842E-01 9.290E-01 9.298E-01 9.297E-01 9.293E-01 9.297E-01
4 1089 4225 8.587E-01 9.298E-01 9.306E-01 9.307E-01 9.314E-01 9.308E-01
5 4225 8.953E-01

Table 7.6 Rectangular Plate with 2 side edges supported by clamped supports and 3x3 Gauss-Legendre quadrature points for
IGA + SubD: Errors for introducing inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Number of
Control Points

with Inner
Boundary Layer

Error
IGA+Subdivision

without
Inner Boundary

Layer

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/100

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/250

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/500

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/1000

Error
IGA+Subdivision

with Inner Boundary
Layer

a = b = 0.01

0 9 25 94.72% 98.36% 98.70% 98.20% 98.70%
1 25 81 63.69% 10.69% 14.22% 14.64% 14.66% 14.60%
2 81 289 31.95% 0.82% 1.17% 1.63% 1.85% 1.61%
3 289 1089 15.76% 0.21% 0.13% 0.14% 0.18% 0.14%
4 1089 4225 7.76% 0.13% 0.05% 0.03% 0.04% 0.03%
5 4225 3.83%
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Figure 7.2 Convergence plot: Rectangular plate with 2 side edges supported by clamped supports and 2x2 Gauss-Legendre
quadrature points for IGA + SubD (w/o introduction of internal boundary layer)
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Figure 7.3 Convergence plot: Rectangular plate with 2 side edges supported by clamped supports and 2x2 Gauss-Legendre
quadrature points for IGA + SubD - Errors for different factors and initial geometry in IGA + SubD

63



100 101 102 103 104
10−4

10−3

10−2

10−1

100

Number of Control Points

E
rr

or

Classical IGA p = 2

Classical IGA p = 3

IGA + SubD: Initial Geometry

Figure 7.4 Convergence plot: Rectangular plate with 2 side edges supported by clamped supports and 3x3 Gauss-Legendre
quadrature points for IGA + SubD (w/o introduction of internal boundary layer)
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Figure 7.5 Convergence plot: Rectangular plate with 2 side edges supported by clamped supports and 3x3 Gauss-Legendre
quadrature points for IGA + SubD - Errors for different factors and initial geometry in IGA + SubD

Figure 7.6 Clamping effect at the boundaries: Rectangular plate with 2 side edges are supported by clamped supports.
Results for IGA+SubD without introducing inner boundary layer and 2 Gauss-Legendre points per side. Section from y = 0.5
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Figure 7.7 Clamping effect at the boundaries: Rectangular plate with 2 side edges are supported by clamped supports.
Results for IGA+SubD without introducing inner boundary layer and IGA+SubD with inner boundary layer with Factor = 1/1000

and 2 Gauss-Legendre points per side. Section from y = 0.5

Figure 7.8 Closer look to clamping effect at the boundary: Rectangular plate with 2 side edges are supported by clamped
supports. Results for IGA+SubD without introducing inner boundary layer and IGA+SubD with inner boundary layer with Factor
= 1/1000 and 2 Gauss-Legendre points per side. Section from y = 0.5

Figure 7.9 Deflected rectangular plate with 2 side edges are supported by clamped supports. Result for IGA + SubD without
introducing inner boundary layer and with 2 Gauss-Legendre points per side.
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Figure 7.10 Deflected rectangular plate with 2 side edges are supported by clamped supports. Result for IGA + SubD with
introducing inner boundary layer by a factor 1/1000 and with 2 Gauss-Legendre points per side.

Figure 7.11 Deflected rectangular plate with 2 side edges are supported by clamped supports. Result for Classical IGA for
p = 3

7.2.2. 4 Side Edges Clamped Supported

L

W

Geometry: L = 5.0
W = 1.0

   t = 0.01

Material properties: E = 2.0 x 108

ν = 0.3

Uniform loading: p = 10

Figure 7.12 Problem definition: Rectangular plate with 4 side edges are clamped supported

In this section, the results for the rectangular plate example having 4 side boundary edges

clamped supported are discussed. The same analysis from Section 7.2.1 was also performed

for the case where all four boundary edges are clamped supported. The analytical solution of

the deflection in -z-direction is calculated as 1.422E − 03 from [52]. All the deflection values

that are presented in the tables are obtained for the deflection at the center of the geometry

in the -z-direction.

In Table 7.7, the deflection results for the NURBS-based IGA with polynomial degrees p = 2

and p = 3, and IGA with Catmull-Clark subdivision without the introduction of inner boundary
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layer with 2x2 Gauss-Legendre integration points are given. The results for the 3x3 Gauss-

Legendre integration scheme are given in Table 7.10 for the case without introducing inner

boundary layer. According to these two tables, one can observe that the use of 3x3 Gauss-

Legendre integration scheme does not have a significant effect in terms of the obtained results

for the IGA+SubD case. Additionally, the results did not converge effectively compared to

the NURBS-based IGA when the inner boundary layer was not introduced. This can also

be observed in the plots shown in Figures 7.13 and 7.15. As can be observed from these

plots, the NURBS-based IGA outperforms the IGA+SubD if the inner boundary layer is not

introduced.

The results of the comparison between IGA+SubD with and without introduction of inner

boundary layer are given in the Tables 7.8, 7.11, 7.9, and 7.12 for both 2x2 and 3x3 Gauss-

Legendre integration schemes. Using 3x3 Gauss-Legendre integration scheme yields slightly

varying results for lower levels of subdivision; however, the differences become insignificant

at higher subdivision levels compared with the 2x2 Gauss-Legendre integration scheme. The

relative error vs number of control points plots are given in Figures 7.14 and 7.16 for the

2x2 and 3x3 Gauss-Legendre integration schemes, respectively. From these plots, the same

conclusion can be obtained with the rectangular plate example with 2 side edges clamped

supported, as discussed in Section 7.2.1 for the influence of the inner boundary layer. Simi-

larly, the clamping effect plots are given in Figures 7.17, 7.18, and 7.19. Figure 7.17 shows

the deflection behavior from the section y = 0.5 along the x-axis, and one can conclude that

the strong clamping effect diminishes as subdividing the geometry more. The introduction of

inner boundary layer on the effect of strong clamping effect is illustrated in Figure 7.18 and

Figure 7.19 in a closer look. From Figure 7.19, one can conclude that the strong clamping

effect still exists at the 5th level of subdivision, which causes the slow convergence rate of the

solution. Noticing that care is essential when interpreting these plots due to Paraview’s linear

interpolation behavior. The deflected geometries at the highest subdivision/refinement levels

for the IGA+SubD and NURBS-based IGA are given in Figures 7.20, 7.21, and 7.22. For a

better visualization, a scaling factor of 200 has been applied to the displacements.

Table 7.7 Rectangular Plate with 4 side edges supported by clamped supports and 2x2 Gauss-Legendre quadrature points for
IGA + SubD: No introduced inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

without
Inner Boundary

Layer

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

without
Inner Boundary

Layer
0 9
1 25 1.120E-03 1.863E-03 7.151E-04 21.23% 31.02% 49.71%
2 81 1.315E-03 1.474E-03 1.014E-03 7.53% 3.69% 28.69%
3 289 1.397E-03 1.422E-03 1.210E-03 1.78% 0.00% 14.91%
4 1089 1.416E-03 1.422E-03 1.318E-03 0.42% 0.00% 7.34%
5 4225 1.420E-03 1.422E-03 1.370E-03 0.10% 0.00% 3.64%
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Table 7.8 Rectangular Plate with 4 side edges supported by clamped supports and 2x2 Gauss-Legendre quadrature points for
IGA + SubD: Deflections for introducing inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Number of
Control Points

with Inner
Boundary Layer

Deflection
IGA+Subdivision

without
Inner Boundary

Layer

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/250

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/500

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/1000

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/5000

0 9 25 1.967E-04 3.895E-04 9.877E-04 5.925E-03
1 25 81 7.151E-04 1.105E-03 1.102E-03 1.107E-03 1.228E-03
2 81 289 1.014E-03 1.396E-03 1.391E-03 1.391E-03 1.392E-03
3 289 1089 1.210E-03 1.421E-03 1.420E-03 1.418E-03 1.418E-03
4 1089 4225 1.318E-03 1.421E-03 1.422E-03 1.422E-03 1.421E-03
5 4225 1.370E-03

Table 7.9 Rectangular Plate with 4 side edges supported by clamped supports and 2x2 Gauss-Legendre quadrature points for
IGA + SubD: Errors for introducing inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Number of
Control Points

with Inner
Boundary Layer

Error
IGA+Subdivision

without
Inner Boundary

Layer

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/250

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/500

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/1000

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/5000

0 9 25 86.17% 72.61% 30.54% 316.72%
1 25 81 49.71% 22.27% 22.52% 22.12% 13.65%
2 81 289 28.69% 1.84% 2.15% 2.19% 2.11%
3 289 1089 14.91% 0.07% 0.16% 0.26% 0.30%
4 1089 4225 7.34% 0.04% 0.02% 0.01% 0.04%
5 4225 3.64%

Table 7.10 Rectangular Plate with 4 side edges supported by clamped supports and 3x3 Gauss-Legendre quadrature points
for IGA + SubD: No introduced inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

without
Inner Boundary

Layer

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

without
Inner Boundary

Layer
0 9
1 25 1.120E-03 1.863E-03 7.206E-04 21.23% 31.02% 49.32%
2 81 1.315E-03 1.474E-03 1.017E-03 7.53% 3.69% 28.45%
3 289 1.397E-03 1.422E-03 1.210E-03 1.78% 0.00% 14.91%
4 1089 1.416E-03 1.422E-03 1.318E-03 0.42% 0.00% 7.34%
5 4225 1.420E-03 1.422E-03 1.370E-03 0.10% 0.00% 3.64%

Table 7.11 Rectangular Plate with 4 side edges supported by clamped supports and 3x3 Gauss-Legendre quadrature points
for IGA + SubD: Deflections for introducing inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Number of
Control Points

with Inner
Boundary Layer

Deflection
IGA+Subdivision

without
Inner Boundary

Layer

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/250

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/500

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/1000

Deflection
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/5000

0 9 25 1.967E-04 2.496E-05 3.446E-05 2.919E-04
1 25 81 7.206E-04 1.105E-03 1.101E-03 1.099E-03 1.102E-03
2 81 289 1.017E-03 1.396E-03 1.399E-03 1.396E-03 1.396E-03
3 289 1089 1.210E-03 1.421E-03 1.420E-03 1.419E-03 1.418E-03
4 1089 4225 1.318E-03 1.421E-03 1.422E-03 1.422E-03 1.422E-03
5 4225 1.370E-03

Table 7.12 Rectangular Plate with 4 side edges supported by clamped supports and 3x3 Gauss-Legendre quadrature points
for IGA + SubD: Errors for introducing inner boundary layer

Subdivision
Amount

Number of
Control Points

without
Inner Boundary

Layer

Number of
Control Points

with Inner
Boundary Layer

Error
IGA+Subdivision

without
Inner Boundary

Layer

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/250

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/500

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/1000

Error
IGA+Subdivision

with Inner Boundary
Layer

Factor: 1/5000

0 9 25 86.17% 98.24% 97.58% 79.47%
1 25 81 49.32% 22.27% 22.60% 22.70% 22.47%
2 81 289 28.45% 1.84% 1.60% 1.80% 1.80%
3 289 1089 14.91% 0.07% 0.14% 0.17% 0.25%
4 1089 4225 7.34% 0.04% 0.02% 0.02% 0.03%
5 4225 3.64%
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Figure 7.13 Convergence plot: Rectangular plate with 4 side edges supported by clamped supports and 2x2 Gauss-Legendre
quadrature points for IGA + SubD (w/o introduction of internal boundary layer)
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Figure 7.14 Convergence plot: Rectangular plate with 4 side edges supported by clamped supports and 2x2 Gauss-Legendre
quadrature points for IGA + SubD - Errors for different factors and initial geometry in IGA + SubD
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Figure 7.15 Convergence plot: Rectangular plate with 4 side edges supported by clamped supports and 3x3 Gauss-Legendre
quadrature points for IGA + SubD (w/o introduction of internal boundary layer)
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Figure 7.16 Convergence plot: Rectangular plate with 4 side edges supported by clamped supports and 3x3 Gauss-Legendre
quadrature points for IGA + SubD - Errors for different factors and initial geometry in IGA + SubD

Figure 7.17 Clamping effect at the boundaries: Rectangular plate with 4 side edges are supported by clamped supports.
Results for IGA+SubD without introducing inner boundary layer and 2 Gauss-Legendre points per side. Section from y = 0.5
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Figure 7.18 Clamping effect at the boundaries: Rectangular plate with 4 side edges are supported by clamped supports.
Results for IGA+SubD without introducing inner boundary layer and IGA+SubD with inner boundary layer with Factor = 1/1000

and 2 Gauss-Legendre points per side. Section from y = 0.5

Figure 7.19 Closer look to clamping effect at the boundary: Rectangular plate with 4 side edges are supported by clamped
supports. Results for IGA+SubD without introducing inner boundary layer and IGA+SubD with inner boundary layer with Factor
= 1/1000 and 2 Gauss-Legendre points per side. Section from y = 0.5

Figure 7.20 Deflected rectangular plate with 4 side edges are supported by clamped supports. Result for IGA + SubD without
introducing inner boundary layer and with 2 Gauss-Legendre points per side.
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Figure 7.21 Deflected rectangular plate with 4 side edges are supported by clamped supports. Result for IGA + SubD with
introducing inner boundary layer by a factor 1/1000 and with 2 Gauss-Legendre points per side.

Figure 7.22 Deflected rectangular plate with 4 side edges are supported by clamped supports. Result for Classical IGA for
p = 3

7.2.3. 2 Side Edges Simply Supported

Geometry: L = 5.0
W = 1.0
t = 0.01

Material properties: E = 2.0 x 108

ν = 0.3

Uniform loading: p = 10
L

W

Figure 7.23 Problem definition: Rectangular plate with 2 side edges are simply supported

In this section, the results for the rectangular plate example having 2 side boundary edges

simply supported are discussed. The problem definition is given in Figure 7.23. The deflection

and relative error results for the NURBS-based IGA with polynomial orders p = 2 and p = 3,

and IGA+SubD with 2x2 and 3x3 Gauss-Legendre integration schemes are given in Tables

7.13 and 7.14 respectively. The analytical solution for the comparison is again obtained from

[52], which is 4.840E+00 in -z-direction. Noticing that, since there exists no clamped support,

then the support conditions are applied only to the boundary control points, as discussed in

Sections 6.1.2 and 6.2. That’s why the results for the initial geometry, which contains 9

control points, can be obtained for the IGA+SubD and NURBS-based IGA for polynomial
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order p = 2. For the case of polynomial order of p = 3, the geometry must be refined at

least once to satisfy the condition m = n + p + 1 where m is the number of knots, p is the

polynomial degree, and n is the number of control points. It is also known that the open knot

vectors, which have the first and last knot has a multiplicity of p + 1, are used to interpolate

the first and last control points of the NURBS. In this case, the minimum required control

point amount per axis is 4 for p = 3. However, the initial geometry has 3 control points

per axis. That’s why, at least one refinement is required for the p = 3 case. According to

the tables, one can observe that using the 3x3 Gauss-Legendre integration scheme has no

significant influence on the convergence of the displacement result. Also, the results for all

the cases converge to the analytical solution much faster than the clamped supported cases.

For instance, the relative error is already around 2.5% for the IGA+SubD without subdivision

of the geometry. In addition, the IGA+SubD outperforms NURBS-based IGA with p = 2

until the 4th subdivision level; however, the case of p = 3 already converges to the analytical

solution without any further refinement. This shows that the correct polynomial degree should

be p = 3 for the NURBS-based IGA. Relative error vs number of control points plots are

given in Figures 7.24 and 7.25 for the 2x2 and 3x3 Gauss-Legendre integration schemes for

IGA+SubD respectively. Lastly, the deflected geometries are given in Figures 7.26 and 7.27

for the highest level of subdivision/refinement levels for better visualization. Here, a scaling

factor of 0.1 has been applied to the displacements. Again, the deflections show the same

pattern, which concludes that our implementation works as expected.

Table 7.13 Rectangular Plate with 2 side edges are simply supported and 2x2 Gauss-Legendre quadrature points for IGA +
SubD

Subdivision
Amount

Number of
Control Points

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

0 9 3.811E+00 4.720E+00 21.27% 2.49%
1 25 4.410E+00 4.837E+00 4.772E+00 8.88% 0.06% 1.41%
2 81 4.755E+00 4.840E+00 4.805E+00 1.76% 0.00% 0.72%
3 289 4.821E+00 4.840E+00 4.823E+00 0.39% 0.00% 0.36%
4 1089 4.836E+00 4.840E+00 4.831E+00 0.09% 0.00% 0.18%
5 4225 4.839E+00 4.840E+00 4.836E+00 0.02% 0.00% 0.09%

Table 7.14 Rectangular Plate with 2 side edges are simply supported and 3x3 Gauss-Legendre quadrature points for IGA +
SubD

Subdivision
Amount

Number of
Control Points

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

0 9 3.811E+00 4.717E+00 21.27% 2.55%
1 25 4.410E+00 4.837E+00 4.772E+00 8.88% 0.06% 1.42%
2 81 4.755E+00 4.840E+00 4.805E+00 1.76% 0.00% 0.72%
3 289 4.821E+00 4.840E+00 4.823E+00 0.39% 0.00% 0.36%
4 1089 4.836E+00 4.840E+00 4.831E+00 0.09% 0.00% 0.18%
5 4225 4.839E+00 4.840E+00 4.836E+00 0.02% 0.00% 0.09%
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Figure 7.24 Convergence plot: Rectangular plate with 2 side edges simply supported and 2x2 Gauss-Legendre quadrature
points for IGA + SubD
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Figure 7.25 Convergence plot: Rectangular plate with 2 side edges simply supported and 3x3 Gauss-Legendre quadrature
points for IGA + SubD

Figure 7.26 Deflected rectangular plate with 2 side edges are supported by simply supports. Result for IGA + SubD with 2
Gauss-Legendre points per side.
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Figure 7.27 Deflected rectangular plate with 2 side edges are supported by simply supports. Result for Classical IGA for p = 3

7.2.4. 4 Side Edges Simply Supported

Geometry: L = 5.0
W = 1.0
t = 0.01

Material properties: E = 2.0 x 108

ν = 0.3

Uniform loading: p = 10
L

W

Figure 7.28 Problem definition: Rectangular plate with 4 side edges are simply supported

In this section, the results for the rectangular plate example having 4 side boundary edges

simply supported are discussed. The problem definition is given in Figure 7.28. The deflection

and relative error results for the NURBS-based IGA with polynomial orders p = 2 and p = 3,

and IGA+SubD with 2x2 and 3x3 Gauss-Legendre integration schemes are given in Tables

7.15 and 7.16 respectively. The analytical solution for the comparison is again obtained from

[52], which is 7.082E−03 in -z-direction. Noticing that, since there exists no clamped support,

then the support conditions are applied only to the boundary control points, as discussed in

Sections 6.1.2 and 6.2. The same explanation for the minimum required number of control

points for NURBS-based IGA is valid in this example as well. The first observation from the

tables is that the use of 3x3 Gauss-Legendre integration scheme has no significant effect on

the results compared to 2x2 integration scheme. In addition, the results for the IGA+SubD

outperform the NURBS-based IGA from the 3rd level of subdivision. This can be observed in

the relative error vs number of control point plots given in Figures 7.29 and 7.30. Among the

rectangular plate examples, this specific boundary condition case gives the best performance

by outperforming the NURBS-based IGA with p = 3. The reason why the rectangular plate

example with 2 simply supported cases does not outperform the NURBS-based IGA would

be the existence of free ends at the boundaries, where there are no supports located. As

mentioned in Green et al. [49], the simply supports and free ends also need to be formulated

in a proper way. This might be a reason for the convergence result obtained for the case

where the rectangular plate is supported from 2 side edges with simply supports. Finally, the
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deflected geometries are given in Figures 7.31 and 7.32 for the highest subdivision/refinement

levels respectively for IGA+SubD and NURBS-based IGA. For a better visualization, a scaling

factor of 50 has been applied to the displacements.

Table 7.15 Rectangular Plate with 4 side edges are simply supported and 2x2 Gauss-Legendre quadrature points for IGA +
SubD

Subdivision
Amount

Number of
Control Points

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

0 9 6.655E-03 8.428E-03 6.03% 19.01%
1 25 6.289E-03 6.843E-03 6.747E-03 11.19% 3.38% 4.73%
2 81 6.965E-03 7.098E-03 7.077E-03 1.65% 0.23% 0.07%
3 289 7.057E-03 7.082E-03 7.082E-03 0.36% 0.00% 0.00%
4 1089 7.076E-03 7.082E-03 7.082E-03 0.08% 0.00% 0.00%
5 4225 7.081E-03 7.082E-03 7.082E-03 0.02% 0.00% 0.00%

Table 7.16 Rectangular Plate with 4 side edges are simply supported and 3x3 Gauss-Legendre quadrature points for IGA +
SubD

Subdivision
Amount

Number of
Control Points

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

0 9 6.655E-03 8.467E-03 6.03% 19.55%
1 25 6.289E-03 6.843E-03 6.719E-03 11.19% 3.38% 5.12%
2 81 6.965E-03 7.098E-03 7.078E-03 1.65% 0.23% 0.06%
3 289 7.057E-03 7.082E-03 7.082E-03 0.36% 0.00% 0.00%
4 1089 7.076E-03 7.082E-03 7.082E-03 0.08% 0.00% 0.00%
5 4225 7.081E-03 7.082E-03 7.082E-03 0.02% 0.00% 0.00%
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Figure 7.29 Convergence plot: Rectangular plate with 4 side edges simply supported and 2x2 Gauss-Legendre quadrature
points for IGA + SubD
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Figure 7.30 Convergence plot: Rectangular plate with 4 side edges simply supported and 3x3 Gauss-Legendre quadrature
points for IGA + SubD
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Figure 7.31 Deflected rectangular plate with 4 side edges are supported by simply supports. Result for IGA + SubD with 2
Gauss-Legendre points per side.

Figure 7.32 Deflected rectangular plate with 4 side edges are supported by simply supports. Result for Classical IGA for p = 3

7.3. Scordelis-Lo Roof

L

R R2θ

Geometry: L = 50.0
R = 25.0
t = 0.25
θ = 40°

Material properties: E = 4.32 x 108

ν = 0

Surface loading: p = 90.0

Figure 7.33 Problem definition: Scordelis-Lo roof

In this section, the results for the Scordelis-Lo roof from Shell Obstacle Course [50] are dis-

cussed. The problem parameters and the geometric dimensions are given in Figure 7.33.

The roof is supported by rigid diagrams at its ends, and the side edges remain free. A uni-

form gravity load of 90 is applied in -z-direction, and the displacements at the midpoint of

side edges in -z-direction are considered as a reference solution. Since the roof geometry
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is a section of a cylindrical shell, it is not possible to model exactly spherical and cylindrical

shapes with subdivision hierarchy due to the limitations coming from bi-cubic basis functions.

That’s why, an optimization algorithm is developed to best represent a cylindrical section at

the given level of discretization, as suggested in Green et al. [49]. The reference solution

is given in [50] as 3.024E − 01. The deflection and relative error results for NURBS-based

IGA and IGA+SubD are given in Tables 7.17 and 7.18 for 2x2 and 3x3 Gauss-Legendre inte-

gration scheme for IGA+SubD respectively. According to these results, one can observe that

using a 3x3 integration scheme slightly changes the results for the coarser grid in IGA+SubD.

However, these results did not converge to the reference solution. For the higher level of sub-

division, the difference between the 2x2 and 3x3 integration schemes becomes insignificant.

Additionally, one can observe that the final converged deflection amount at the 5th subdivi-

sion/refinement level is 3.006E − 01 for NURBS-based IGA, and 3.005E − 01 for IGA+SubD.

The relative error vs number of control point plots are given in Figures 7.34 and 7.35 for

2x2 and 3x3 Gauss-Legendre integration schemes respectively. These plots indicate that the

IGA+SubD outperforms the NURBS-based IGA with p = 2, but not with p = 3. Also, they

converge almost similar deflection values at the latest subdivision/refinement level. These

results also indicate that the optimization algorithm for the IGA+SubD geometry works well.

Finally, the deflected geometries are given in Figures 7.36 and 7.37 with a scaling factor of 20

for a better visualization. Again, one needs to keep in mind that all the deflected shapes for

IGA+SubD are obtained from Paraview, which linearly interpolates the control points of the

geometry to create a surface.

Table 7.17 Scordelis-Lo Roof with 2x2 Gauss-Legendre quadrature points for IGA + SubD

Subdivision
Amount

Number of
Control Points

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

0 9 2.054E-02 93.21%
1 25 3.998E-02 2.308E-01 2.175E-01 86.78% 23.67% 28.09%
2 81 2.077E-01 2.979E-01 2.946E-01 31.32% 1.49% 2.60%
3 289 2.943E-01 3.006E-01 2.987E-01 2.67% 0.60% 1.23%
4 1089 3.002E-01 3.006E-01 3.002E-01 0.73% 0.60% 0.73%
5 4225 3.006E-01 3.006E-01 3.005E-01 0.61% 0.60% 0.62%

Table 7.18 Scordelis-Lo Roof with 3x3 Gauss-Legendre quadrature points for IGA + SubD

Subdivision
Amount

Number of
Control Points

Deflection
Classical IGA

p = 2

Deflection
Classical IGA

p = 3

Deflection
IGA+Subdivision

Error
Classical IGA

p = 2

Error
Classical IGA

p = 3

Error
IGA + Subdivision

0 9 2.054E-02 93.21%
1 25 3.998E-02 2.308E-01 2.481E-01 86.78% 23.67% 17.95%
2 81 2.077E-01 2.979E-01 2.963E-01 31.32% 1.49% 2.02%
3 289 2.943E-01 3.006E-01 2.987E-01 2.67% 0.60% 1.21%
4 1089 3.002E-01 3.006E-01 3.002E-01 0.73% 0.60% 0.73%
5 4225 3.006E-01 3.006E-01 3.005E-01 0.61% 0.60% 0.62%
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Figure 7.34 Convergence plot: Scordelis-Lo roof with 2x2 Gauss-Legendre quadrature points for IGA + SubD
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Figure 7.35 Convergence plot: Scordelis-Lo roof with 3x3 Gauss-Legendre quadrature points for IGA + SubD

Figure 7.36 Deflected Scordelis-Lo roof. Result for IGA + SubD with 2 Gauss-Legendre points per side.
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Figure 7.37 Deflected Scordelis-Lo roof. Result for Classical IGA for p = 3
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8. Conclusions and Outlook

In this thesis, isogeometric analysis using Catmull-Clark subdivision surfaces for the Kirchhoff-

Love shells is conducted within the framework of Kratos Multiphysics. The results showed

that the developed subdivision algorithm can be adapted to the "IgaApplication" of the

Kratos Multiphysics. During this work, the significance of an appropriate subdivision scheme

was emphasized, particularly regarding the definition of subdivision rules for boundaries and

creases. The reason is that properly addressing boundaries and creases is essential in iso-

geometric analysis with subdivision surfaces. That’s why the extended Catmull-Clark subdivi-

sion algorithm was implemented and used during the thesis work. In addition, the importance

of the correct formulation of support conditions at the boundaries was also investigated. In

this thesis, a similar approach defined by Cirak et al. [33] was implemented for the impos-

ing of boundary conditions. The results indicate that this implementation experiences slow

convergence rates, particularly in cases of clamped support. A correct way of formulating

the support conditions at the boundaries was introduced by Green et al. [49]; however, the

suggested implementations were not implemented within the scope of this thesis due to im-

plementation difficulties in Kratos Multiphysics and time limitations of the work. Instead, an

inner boundary layer with a factor is introduced inside the geometry for the rectangular plate

examples with clamped supports. With the introduction of this inner boundary layer, the strong

clamping effect that comes from implementing the support conditions at the boundaries was

reduced, resulting in better and faster-converging results. For the simply supported rectangu-

lar plate examples, the results obtained are satisfactory. However, faster convergence might

be achieved if the formulations suggested by Green et al. [49] are implemented. The re-

sults obtained for the Scordelis-Lo roof are also satisfactory because both the NURBS-based

isogeometric analysis and subdivision-based isogeometric analysis converged to almost the

same deflection value. Additionally, the effect of polynomial order in NURBS-based isoge-

ometric analysis and the number of Gauss-Legendre integration points in the subdivision-

based isogeometric analysis were observed. According to the results, the polynomial order

significantly changed the results of NURBS-based isogeometric analysis, because the prede-

fined value of polynomial degree p = 2 was not sufficient to represent the geometries, and it

did not make sense to compare the results with p = 2 to subdivision-based isogeometric anal-

ysis due to bi-cubic basis function characteristics of the Catmull-Clark subdivision scheme.

Instead, polynomial degree p = 3 was tested, and the results showed that the NURBS-based

isogeometric analysis with the correct polynomial degree converges much faster and gives

better results. Moreover, it was shown that using the 2x2 or 3x3 Gauss-Legendre scheme

did not change the results significantly because the 2x2 Gauss-Legendre scheme already

guarantees the exactness of the integration within the bicubic polynomial space in the case

of Catmull-Clark subdivision. Finally, some progress has been made for the irregular geome-

tries; however, the results were not obtained for this case due to implementation difficulties in

Kratos Multiphysics and the time limitation of the thesis work. To date, the achievement re-

garding irregular geometries involves performing local subdivisions around the first ring faces
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of extraordinary vertices. This step is necessary for integration near those vertices.

As an outlook, further developments in the implementation of Catmull-Clark subdivision-

based isogeometric analysis within the Kratos Multiphysics framework can be collected under

several topics. First of all, all the subdivision-related codes were implemented in Python be-

cause of the language’s easy interpretability and the thesis work’s time limitations. However,

this resulted in slow computation times, especially for the high level of subdivision cases. In-

stead, all the algorithms would be developed in C++, and Python can be used again to run

the simulations, as in the case of "IgaApplicaiton" in Kratos Multiphysics. Secondly, a new

application would be created to deal with subdivision-based isogeometric analysis instead of

integrating the subdivision rules to "IgaApplication" in Kratos Multiphysics. Although both

NURBS-based isogeometric analysis and subdivision-based isogeometric analysis rely on

the same element formulation, implementing the subdivision algorithms in "IgaApplication"

brought some difficulties during the implementation. For instance, defining the control mesh

of geometry for the subdivision-based analysis required a manual definition of the faces. Due

to this issue, the test cases, even for regular geometries, are very limited in this work. Im-

plementing an algorithm that automatically determines the faces with control point relations

or importing the geometry in "vtk" format and extracting the control points and faces from the

CAD model would be a solution to this issue. Moreover, it is crucial to implement the correct

support formulations at the boundaries to obtain better results and to avoid strong clamp-

ing effects that arise from the implementation with the ghost vertices and elements given

by Cirak et al.[33]. After addressing all these issues for further development, the applica-

tion will be extended to analyze geometries with irregular elements by correctly adapting the

locally subdivided sub-geometries into the analysis stage, specifically regarding the correct

assignment in the stiffness matrix.
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[51] P. J. Barendrecht, Bartoň M., and J. Kosinka. Efficient quadrature rules for subdivision

surfaces in isogeometric analysis. Computer Methods in Applied Mechanics and Engi-

neering, 340:1–23, 2018.

[52] M. Batista. Uniformly loaded rectangular thin plates with symmetrical boundary condi-

tions, 2010.

101



Declaration

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect sources used

are acknowledged as references. In addition, I declare that I make the present work available to the

Chair of Structural Analysis and Dynamics for academic purposes and in this connection also approve of

dissemination for academic purposes.

Munich, 30/12/2024, Signature


	Introduction
	Fundamentals of Geometry
	Mathematical Representation of Curves and Surfaces
	Explicit, Implicit, and Parametric Representation of Curves and Surfaces

	Overview of Bézier, B-Spline, and NURBS Curves and Surfaces
	Bézier Curves
	B-Spline Curves and Surfaces
	NURBS Curves and Surfaces

	Geometric and Parametric Continuity
	Fundamentals of Differential Geometry of Surfaces

	Fundamentals of Shell Structural Mechanics
	Continuum Mechanics: An Overview
	Kinematics
	Constitutive Equations
	Equilibrium Equations

	The Fundamentals of Kirchhoff-Love Shell Theory

	Isogeometric Analysis and The NURBS-Based Kirchhoff-Love Shell Element Formulation
	Motivation to Isogeometric Analysis
	Isogeometric Analysis with NURBS
	The NURBS-Based Kirchhoff-Love Shell Element Formulation

	Fundamentals of Subdivision Surfaces
	Motivation to Subdivision Surfaces
	Catmull-Clark Subdivision Surfaces
	Lane-Riesenfeld Algorithm
	Catmull-Clark Subdivision Algorithm for Surfaces
	Interpolation and Evaluation of Curves Using Subdivision Algorithms
	Interpolation and Evaluation of Catmull-Clark Surfaces with Regular Patch
	Interpolation and Evaluation of Catmull-Clark Surfaces with Irregular Patch

	Extended Catmull-Clark Subdivision Surfaces

	Methodology
	Implementation of Isogeometric Analysis with Catmull-Clark Subdivision Surfaces within Kratos Multiphysics
	Implementation of the Catmull-Clark Subdivision Algorithm and the Creation of Quadrature Points Geometry
	Imposing Boundary Conditions
	Obtaining the Displacements at each Control Point

	Issues on the Implementation of the Boundary Conditions
	Solution for the Boundary Condition Issues
	Solution to Vertex Point Constraint
	Solution to Rotation and Clamped Constraints
	Introducing Inner Boundary Layer for Clamped Support Boundary Condition

	Current Progress on the Geometries with Irregular Elements

	Results
	Differences between nurbs-Based iga and iga with Catmull-Clark Subdivision Surfaces
	Rectangular Plate
	2 Side Edges Clamped Supported
	4 Side Edges Clamped Supported
	2 Side Edges Simply Supported
	4 Side Edges Simply Supported

	Scordelis-Lo Roof

	Conclusions and Outlook

