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a b s t r a c t 

The development of perinatal brain connectivity underpins motor, cognitive and behavioural abilities in later life. Diffusion MRI allows the characterisation of subtle 

inter-individual differences in structural brain connectivity. Individual brain connectivity maps (connectomes) are by nature high in dimensionality and complex to 

interpret. Machine learning methods are a powerful tool to uncover properties of the connectome which are not readily visible and can give us clues as to how and 

why individual developmental trajectories differ. 

In this manuscript we used Deep Neural Networks and Random Forests to predict demographic and neurodevelopmental characteristics from neonatal structural 

connectomes in a large sample of babies ( n = 524) from the developing Human Connectome Project. We achieved an accurate prediction of post menstrual age (PMA) 

at scan in term-born infants (mean absolute error (MAE) = 0.72 weeks, r = 0.83 and p < 0.001). We also achieved good accuracy when predicting gestational age at 

birth in a cohort of term and preterm babies scanned at term equivalent age (MAE = 2.21 weeks, r = 0.82, p < 0.001). We subsequently used sensitivity analysis to 

obtain feature relevance from our prediction models, with the most important connections for prediction of PMA and GA found to predominantly involve frontal 

and temporal regions, thalami, and basal ganglia. From our models of PMA at scan for infants born at term, we computed a brain maturation index ( predicted age 

minus actual age ) of individual preterm neonates and found a significant correlation between this index and motor outcome at 18 months corrected age. Our results 

demonstrate the applicability of machine learning techniques in analyses of the neonatal connectome and suggest that a neural substrate of brain maturation with 

implications for future neurodevelopment is detectable at term equivalent age from the neonatal connectome. 
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. Introduction 

Magnetic Resonance Imaging (MRI) allows a broad range of in vivo

nsights about the structure and function of the human brain. Diffu-

ion MRI in particular enables the characterization of microstructural

hanges in the orientation and organisation of major white matter tracts,

he systematic description of whole-brain structural networks: the hu-

an connectome ( Honey et al., 2010 ; Sporns et al., 2005 ). 

During the perinatal period, the brain undergoes significant

hanges and consolidation of structural connectivity, which are

hought to underpin the expansion of motor, cognitive and be-

avioural abilities ( Johnson, 2001 ). Since the inception of connectomics

 Hagmann, 2005 ; Sporns et al., 2005 ) several studies have tried to char-
∗ Corresponding author at: Department of Forensic and Neurodevelopmental Scienc

6, De Crespigny Park, London SE5 8AF, United Kingdom. 

E-mail address: dafnis.batalle@kcl.ac.uk (D. Batalle) . 

o  

ttps://doi.org/10.1016/j.neuroimage.2022.119319 . 

vailable online 16 May 2022. 

053-8119/© 2022 The Authors. Published by Elsevier Inc. This is an open access ar
cterise early development of the structural connectome ( Fan et al.,

011 ; Hagmann et al., 2010 ). Subtle alterations in the development of

rain connectivity have been suggested to underlie atypical neurode-

elopmental outcome in populations with perinatal risk factors, such as

hildren born preterm ( Batalle et al., 2018 ). Preterm birth comprises ap-

roximately 11% of all births, and is the main global cause of death and

isability in children under 5 years of age ( Blencowe et al., 2012 ), as

ell as representing one of the most pervasive perinatal risk factors for

typical neurodevelopment ( Wood et al., 2000 ). It has been associated

ith an increased risk of developing motor, visuospatial and sensorimo-

or delay ( Marlow et al., 2007 ), inattention, anxiety and social difficul-

ies ( Johnson and Marlow, 2014 ), autism spectrum disorders ( Johnson

t al., 2010 ), cerebral palsy ( Marlow et al., 2005 ) and psychiatric dis-

rders in adulthood such as depression and bipolar disorder ( Nosarti et
e, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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l., 2012 ). Improving our understanding of how preterm birth affects

tructural brain development remains an important goal. 

With this goal in mind, the developing Human Connectome Project

dHCP) has collected demographic and MRI data from a large cohort

f term and preterm-born neonates. The dHCP dataset comprises struc-

ural, diffusion and functional MRI data with high spatial, angular, and

emporal resolutions. Features of this project include: advances in hard-

are ( Hughes et al., 2017 ) and protocols for neonatal diffusion MRI

cquisition ( Hutter et al., 2018a ); the use of multiband techniques to ac-

elerate acquisition time combined with approaches to correct motion

 Cordero-Grande et al., 2016 ; Cordero-Grande et al., 2019 ; Christiaens

t al., 2021 ); and the development of state-of-the-art preprocessing

ipelines for neonatal MRI data ( Bozek et al., 2018 ; Christiaens et al.,

018 ; Bastiani et al., 2019 ; Fitzgibbon et al., 2020 ; Makropoulos et al.,

018 ). Together, these have significantly improved neonatal MRI acqui-

ition and reconstruction methods. 

Despite the resultant advances in data quality, studying the neonatal

onnectome remains challenging. Indeed, many methodological issues

amper the interpretation of the connectome ( Sporns, 2013 ) including

he difficulty of detecting origins and termination of connections ( Jbabdi

nd Johansen-Berg, 2011 ) and returning a high number of false pos-

tive streamlines ( Maier-Hein et al., 2017 ). However, the development

f state-of-the-art diffusion MRI pipelines have partially addressed some

f these issues ( Makropoulos et al., 2018 ; Christiaens et al., 2021 ), and

achine learning approaches are now well suited to discover complex

nderlying patterns in the structural connectome. Deep neural networks,

hich are known for their ability to model complex non-linear multi-

ariate relationships, can help uncover hidden patterns in the connec-

ome, and potentially detect atypical patterns of connectivity in individ-

al subjects. 

In adult brain connectivity research, a number of studies have used

achine learning and deep learning to study the structural connectome

see ( Brown and Hamarneh, 2016 ) for a summary). Some studies also

sed similar approaches in neonates: Kawahara and colleagues have de-

eloped BrainNetCNN, a Convolutional Neural Network composed of

dge to edge, edge to node, and node to graph convolution filters on

tructural connectivity to predict post menstrual age (PMA) at scan and

ognitive performance from the structural connectome ( Kawahara et

l., 2017 ). A recent study by Girault and colleagues similarly focused

n using the structural connectome at birth to predict cognitive abili-

ies (Mullen score) at age 2 with dense neural networks ( Girault et al.,

019 ). However, little is known about the predictive power of the con-

ectome in a large normative neonatal population such as that of the

HCP. 

A promising method in adult and neonatal neuroscience is the study

f the “brain maturation index ” (also known as “brain age ”, “brain

elta ” or “predicted age difference ”) corresponding to the apparent age

f the subject as compared to the norm ( Dosenbach et al., 2010 ; Cao et

l., 2015 ; Jonsson et al., 2019 ; Liem et al., 2017 ; Smith et al., 2019 ). By

raining regression models to fit the age of subjects from large norma-

ive imaging datasets, we can predict the age of individual subjects and

ompute the difference between the prediction and subject’s true age.

his difference gives information about brain maturation and its diver-

ence from the population norm. As such, in adults, a positive difference

predicted age > true age) is interpreted as demonstrating accelerated

geing, and is associated with disorders such as cognitive impairment

 Liem et al., 2017 ), schizophrenia ( Koutsouleris et al., 2014 ) or diabetes

 Franke et al., 2013 ). In addition to these disease processes one recent

tudy has suggested that brain maturation is in part influenced by ge-

etics, and may be set from the perinatal period ( Vidal-Pineiro et al.,

021 ). Studying the brain maturation index is therefore extremely rel-

vant for preterm born infants where neurodevelopmental delays and

sychiatric disorders often occur ( Brown et al., 2017 ; Galdi et al., 2020 ;

asmussen et al., 2017 ). 

In this work, we use two different machine learning algorithms - Ran-

om Forests (RF) and Deep Neural Networks (DNN) - to predict PMA
2 
t scan (i.e. brain maturation), and gestational age (GA) at birth (i.e.

egree of prematurity), from the neonatal structural connectome in a

arge sample of neonates scanned at term equivalent age. Additionally,

e use sensitivity analysis to obtain feature relevance in the predic-

ion models thereby identifying the connections and brain regions im-

acting the predictions. Finally, using models obtained for the term-

orn cohort, brain maturation index was computed for our preterm-

orn cohort and subsequently correlated to neurodevelopment at

8 months. 

. Methods and materials 

.1. Participants 

All participants were part of the dHCP, approved by the National

esearch Ethics Service West London committee (14/LO/1169). 

524 infants (240 female and 284 male), born between 23 + 0 weeks

nd 42 + 2 week of gestation, underwent MRI between 37 + 1 weeks and

5 + 1 weeks as part of the dHCP (2 nd data release). The participant ges-

ational age at birth (GA) and postmenstrual age at scan (PMA) distri-

ution is presented in Fig. 1 A-B. Full participant clinical information

s presented in Table 1 . Socioeconomic status of participants was de-

cribed using the English Index of Multiple Deprivation (IMD). IMD is

 geographical measure that summarizes information from 38 different

actors such as income, employment, education, crime rates and health

ituation for all postcode areas in England (Index of Multiple Depriva-

ion, 2015). A lower IMD rank indicates a lower level of deprivation,

nd we used the mother’s postcode at the time of birth to calculate this.

e used the total number of days when the baby was recorded as re-

eiving any oxygen by any means as a measure of perinatal health; and

eport the requirement of intermittent or continuous supplementation

ith oxygen on the day of discharge and to be continued following dis-

harge as a measure of clinical health at discharge. We also reported

resence of congenital abnormalities and presence of incidental findings

ith possible clinical significance (radiology score 4 or 5 as described

n dHCP data release). In this study we aimed to assess the performance

f our predictive algorithms in a representative neonatal sample; hence

e included all available data for analysis with no specific exclusion

riteria. 

The Bayley III Scales of Infant and Toddler Development (BSID-III)

 Bayley 2006 ) were collected at 18 months corrected age and available

or 314 infants including 50 preterm-born infants. We used scores of

otor (fine and gross), language (expressive and receptive) and cogni-

ive (raw) score. Assessments were carried out by experienced paediatri-

ians or psychologists. Detailed assessment distributions are presented

n Table 1 . 

.2. MRI acquisition 

All scans were collected in the Evelina Newborn Imaging Centre

ased on the Neonatal Intensive Care Unit, St Thomas hospital Lon-

on using a Philips Achieva 3T scanner (Best, NL) and the dHCP neona-

al brain imaging system which includes a 32 channel receive neonatal

ead coil (Rapid Biomedical GmbH, Rimpar, DE) ( Hughes et al., 2017 ).

nformed written parental consent was obtained prior to imaging. Po-

itioning of all infants was done with a lightweight protective “shell ”,

hich was positioned on an MRI safe trolley to ease transportation. Im-

obilization of the infants in the shell was done using bead filled inflat-

ble pads (Pearltec, Zurich, CH). In addition to the pads, acoustic protec-

ion included earplugs moulded from a silicone-based putty (President

utty, Coltene Whaledent, Mahwah, NJ, USA) placed in the external au-

itory meatus and neonatal earmuffs (MiniMuffs, Natus Medical Inc, San

arlos, CA, USA). To avoid sudden sound changes which might wake up

he infant, the MRI software was modified in order to gradually increase

he noise from 0 to the average operating point ( Hughes et al., 2017 ). All

cans were supervised by a paediatrician or neonatal nurse experienced



Y. Taoudi-Benchekroun, D. Christiaens, I. Grigorescu et al. NeuroImage 257 (2022) 119319 

Fig. 1. Distribution of (A) GA at birth and (B) 

PMA at scan of full cohort (N = 524). (C) GA at 

birth of cohort used for predicting GA at birth. 

Table 1 

Detailed sample and outcome characteristics. Categorical variables expressed as mean and standard deviation and categorical variables expressed as number and 

percentage except indicated otherwise. 

Term Born(N = 418) Preterm born(N = 106) p-value 1 

Socio- 

demographic 

and clinical 

characteristics 

Gestational age at birth [weeks + days ], median (IQR) 40 + 1 (39 + 0 – 40 + 6 ) 32 + 2 (28 + 5 – 34 + 4 ) < 0.001 

Postmenstrual age at scan [weeks + days ], median (IQR) 41 + 0 (39 + 6 – 42 + 2 ) 41 + 0 (39 + 5 – 42 + 2 ) 0.771 

Sex, number of female (%) 195 (47%) 45 (42%) 0.439 + 

Index of Multiple Deprivation (IMD) [rank], median (IQR) 13509 (7225) 15154 (81143) 0.042 

Number of days receiving oxygen by any means [days] 2.3 (12.6) 8.1 (26.2) 0.001 

Receiving oxygen by any means (yes/no), 

number (%) 

43 (10.3%) 20 (18.9%) 0.015 + 

Receiving oxygen by any means for more than one week, number (%) 20 (4.8%) 13 (12.3%) 0.005 + 

Receiving oxygen after discharge 2 , 

number (%) 

0 (0%) 24 (22.6%) < 0.001 

Genetic abnormalities, number (%) 9 (2.2%) 0 (0%) < 0.001 

Incidental findings of possible clinical significance, number (%) 24 (5.7%) 25 (23.6%) < 0.001 

Motion 

parameters 

Average intra-volume translation [mm] 0.136 (0.158) 0.135 (0.133) 0.938 

Average intra-volume rotation [a.u.] 0.094 (0.130) 0.079 (0.065) 0.260 

Outlier ratio [%] 22.0 (8.6) 22.1 (8.2) 0.883 

Outcome at 18 

months of age 

BSID-III, no. (% of total population) 322 (77%) 77 (73%) 0.343 

Gestational age at birth (weeks + days ) of subjects with BSID-III data available, 

median (IQR) 

39 + 6 (39 + 1 – 40 + 5 ) 31 + 6 (28 + 4 – 34 + 5 ) < 0.001 

Postmenstrual age at scan (weeks + days ) of subjects with BSID-III data available, 

median (IQR) 

41 + 1 (39 + 6 – 42 + 2 ) 41 + 1 (39 + 5 – 42 + 3 ) 0.957 

IMD Score of subjects with BSID-III data available 13839 (7387) 16465 (7856) 0.005 

Fine Motor 20.69 (3.12) 20.22 (3.36) 0.241 

Gross Motor 17.34 (2.37) 16.75 (2.40) 0.052 

Cognitive Score 10.08 (2.15) 9.79 (2.59) 0.303 

Expressive language 17.26 (3.62) 16.89 (4.03) 0.434 

Receptive language 18.36 (4.29) 18.51 (5.26) 0.800 

1 p-values computed with two tailed independent t-test, Chi-square test ( + ) as appropriately. 
2 Requirement of intermittent or continuous supplementation with oxygen on the day of discharge and to be continued following discharge 
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n MRI procedures; vital signs including pulse oximetry, temperature

nd electrocardiography data were monitored throughout data acquisi-

ion. All infants were scanned during natural unsedated sleep following

eeding. 

T2-weighted images were acquired using a Turbo spin echo sequence

ith parameters TR = 12s and TE = 156ms, SENSE factor 2.11 (axial)

nd 2.54 (sagittal) with overlapping slices (resolution = 0.8 ×0.8 ×1.6

m 

3 ). Super-resolution methods ( Kuklisova-Murgasova et al., 2012 )

s well as motion correction methods ( Cordero-Grande et al., 2018 )

ere combined to maximise precision and resolution of T2-weighted

mages (resolved to 0.8 ×0.8 ×0.8 mm 

3 ). Diffusion weighted imaging

as acquired in 300 directions with parameters TR = 3.8s, TE = 90ms,

ENSE factor 1.2, multiband factor 4, resolution = 1.5 ×1.5 ×3mm 

3 
3 
with 1.5mm slice overlap), diffusion gradient encoding: b = 0 s/mm

n = 20), b = 400 s/mm (n = 64), b = 1000 s/mm (n = 88), b = 2600 s/mm

n = 128), and using interleaved phase encoding ( Hutter et al., 2018a ). 

.3. Pre-processing and connectome generation 

Tissue segmentation of T2-weighted volumes was performed using a

eonatal specific segmentation pipeline ( Makropoulos et al., 2014 ) and

emplate ( Schuh et al., 2018 ). Parcellation of 90 cortical and subcorti-

al regions ( Shi et al., 2011 ) adapted to the dHCP weekly age-dependant

igh-resolution bespoke template ( Schuh et al., 2018 ) was propagated

o each subject’s T2w native space through non-linear registration based

n a diffeomorphic symmetric image normalization method (SyN) avail-
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l  
ble in ANTS software ( Avants et al., 2011 ), using T2w contrast and tis-

ue segmentation as input channels. Tissue maps and atlas parcellation

ere propagated from each T2w native space to each subject’s diffusion

ative space with a rigid registration using b = 0 volumes as target. All

igid registrations were performed with IRTK software ( Schnabel et al.,

001 ). Details of the 90 cortical and subcortical regions are presented

n Supplementary Table 1. 

Diffusion MRI was reconstructed at an effective resolution of 1.5mm

sotropic and denoised using a patch-based estimation of the diffusion

ignal based on random matrix theory ( Veraart et al., 2016 ). Gibbs

inging was suppressed ( Kellner et al., 2016 ) and B0 field map esti-

ated from b = 0 volumes in order to correct magnetic susceptibility-

nduced distortion using FSL Topup ( Andersson et al., 2003 ). Data was

orrected for subject motion and EPI distortion using slice-to-volume

econstruction in a data-driven spherical harmonics and radial decom-

osition (SHARD) basis as described in Christiaens et al. (2021 ). Mean

ntra-volume translation (mm) and rotation (a.u.) and outlier ratio (%)

ere calculated as previously described ( Christiaens et al., 2021 ) and

eported in Table 1 . DWI intensity inhomogeneity field correction was

erformed using the ANTs N4 algorithm ( Tustison et al., 2010 ). Tools

nd pipelines implemented in MRtrix3 ( Tournier et al., 2019 ) were used

or quantitative analysis of the diffusion MRI data. Developing neonatal

rain tissue undergoes rapid changes in cellular properties and water

ontent that can be to a first approximation captured by a non-negative

inear combination of anisotropic signal from relatively mature WM and

rom isotropic free fluid ( Pietsch et al., 2019 ). We use data from 20

ealthy full term control babies from our sample to extract a set of two

epresentative WM ( Tournier et al., 2013 ) and fluid-like ( Dhollander

t al., 2016 , Dhollander et al., 2018 ) signal fingerprint ( response func-

ions ) that are used to deconvolve each subject’s diffusion signal into a

bre orientation distribution (FOD) image, capturing WM-GM-like sig-

al, and scalar fluid density image using the multi-tissue multi-shell

onstrained spherical deconvolution technique ( Jeurissen et al., 2014 ).

esidual intensity inhomogeneity was corrected, and component densi-

ies calibrated using a multi-tissue log-domain intensity normalisation

 Raffelt et al., 2017 ). Resulting normalised WM-GM-like FODs were used

o generate 10 million streamlines with an anatomically constrained

robabilistic tractography (ACT) ( Smith et al., 2012 ) with biologically

ccurate weights (SIFT2) ( Smith et al., 2015 ). The fibre density SIFT2

roportionality coefficient ( 𝜇) for each subject was obtained to achieve

nter-subject connection density normalisation. The structural connec-

ivity network of each infant was then constructed by calculating the

× SIFT2-weighted sum of streamlines connecting each pair of regions

thus built as a symmetric adjacency matrix of size 90 ×90). 

In addition, we used 73 structural connectivity matrices obtained

rom an independent dataset ( Batalle et al., 2017 ) to test the design of

he initial hyperparameters and architecture for predictive algorithms

resented in Sections 2.4.3 and 2.4.4 . 

.4. Prediction of age at scan and age at birth 

All analyses on this section were performed using Python 3.7. The

achine learning library Scikit Learn ( Pedregosa et al., 2011 ) was used

or training the RF algorithm. The deep learning framework Keras (ver-

ion 2.0.3) ( Chollet et al., 2015 ) was used to train the deep learning

odels. 

.4.1. Feature set 

As the structural connectome is presented as a symmetric adjacency

atrix (in our case of size 90 ×90, with 90 brain regions) the lower

riangle of the matrix contains all information. We thus extracted and

eshaped the lower triangle of each subject’s structural connectome 𝑆 𝑖 

s a 1D vector 𝑋 with number of connectivity elements n = 4005, thus
𝑖 

4 
eading to the ensemble 𝑋 of connectivity vectors across 𝑁 subjects: 

 = 

𝑋 1 
𝑋 2 
…
𝑋 𝑁 

, 𝑤𝑖𝑡ℎ 𝑋 𝑖 = 

[
𝑥 𝑖, 1 , 𝑥 𝑖, 2 , … , 𝑥 𝑖,𝑛 

]
; 𝑥 𝑖,𝑗 ∈ ℝ 

+ 𝑎𝑛𝑑 𝑛 = 4005 

We normalized each data point across the training sets, and nor-

alized the testing set with the training normalization values using a

in-max normalization: 

̃ 𝑖,𝑗 = 

𝑥 𝑖,𝑗 − 𝑀𝑖𝑛 ( 𝑋 ) 
𝑀 𝑎𝑥 ( 𝑋 ) − 𝑀 𝑖𝑛 ( 𝑋 ) 

𝑤𝑖𝑡ℎ 𝑀 𝑖𝑛 ( 𝑋 ) 𝑎𝑛𝑑 𝑀 𝑎𝑥 ( 𝑋 ) ∈ ℝ 

+ 

Thus, assuming that testing data also falls between previous ranges,

ur training and testing data has the following form: 

̃
 = 

𝑋̃ 1 
𝑋̃ 2 
…
𝑋̃ 𝑁 

, 𝑤𝑖𝑡ℎ 𝑋̃ 𝑖 = 

[
𝑥̃ 𝑖, 1 , 𝑥̃ 𝑖, 2 , … , 𝑥̃ 𝑖,𝑛 

]
; 𝑥̃ 𝑖,𝑗 ∈ [ 0 , 1 ] 𝑎𝑛𝑑 𝑛 = 4005 

.4.2. Prediction models 

We carried a set of predictions of demographic information on dif-

erent population samples using different regression algorithms. In each

ase, we fitted a regression model 𝑓 to predict a variable 𝑌 representing

emographic information (e.g. GA at birth or PMA at scan) for subjects

n our dataset. We thus had prediction Y’ as follows: 

 

′ = 𝑓 
(
𝑋̃ 

)
; 𝑤𝑖𝑡ℎ 𝑌 ′ = 

[
𝑦 ′1 , 𝑦 

′
2 , … , 𝑦 ′

𝑁 

]𝑇 

We computed the regressor 𝑓 that minimizes ∣ 𝑌 ′ − 𝑌 ∣2 . We used two

ifferent supervised machine learning regression algorithms to do this:

F and DNN. 

.4.3. Random forests regression 

RF are an ensemble learning method for classification and regres-

ion based on constructing a multitude of decision trees (weak learners)

hich are individually trained through the technique of “bagging ”. RF

akes predictions by averaging the prediction of each individual tree,

ence acting as a strong learner ( Breiman L., 2001 ). For optimal per-

ormance, two main hyperparameters should be tuned: the number of

rees (estimators) in the forest and the maximum depth of each tree. The

umber of trees determines the smoothness of the decision boundary,

nd the depth corresponds to the maximum number of levels allowed

or each tree. RF regressors’ performance often depends on finding the

ptimal value for these to ensure that there is no overfitting or under-

tting. 

Here we use the RF regressor from the Scikit Learn RandomForestRe-

ressor implementation ( Pedregosa et al., 2011 ). The RF were trained

sing mean squared error (MSE) as loss function. Hyperparameters were

uned separately for the PMA at scan and GA at birth prediction by per-

orming a grid search on a set of 73 structural connectomes from an

ndependent dataset ( Batalle et al., 2017 ). This allowed us to choose

ptimal parameters without overfitting our model to the studied data.

yperparameters used are presented in Sections 2.4.6 and 2.4.7 . 

.4.4. Deep neural networks regression 

Deep (Fully Connected) Neural Networks (DNN) are universal func-

ion approximators whose parameters can be trained to model complex

onlinear relationships between features and labels via backpropaga-

ion ( Rumelhart et al., 1986 ). However, the performance of a DNN also

epends on the hyperparameters: design choices are mainly related to

he architecture of the network (the layer types, number of layers and

umber of nodes per layers, activation functions at each layer), the loss

unction, and the training method (the number of epochs, the optimiza-

ion function and its parameters). 

The DNN in this work were implemented using the deep learning

ibrary Keras (version 2.0.3) ( Chollet et al., 2015 ). As performing a grid



Y. Taoudi-Benchekroun, D. Christiaens, I. Grigorescu et al. NeuroImage 257 (2022) 119319 

s  

s  

p  

q  

a  

o  

p  

a  

t  

a  

t

2

 

m  

p  

m  

w  

e

 

t  

f  

h  

fi  

a

 

2  

u  

u  

e  

d  

fi  

𝑌

 

m  

e

 

𝑌  

a  

a

𝑀

𝑅

 

s  

o  

(  

𝑟  

F  

b  

s

2

 

f  

s

 

s  

t  

f  

2  

d  

i  

c

 

P  

𝑋  

l  

o  

i  

s

 

D  

a  

b

2

 

t  

R  

s

 

p  

t  

l  

o  

w  

…  

W  

e  

t  

a  

i

 

n  

m  

u  

t  

G

 

T  

e  

u  

d  

F

 

𝛼  

m

2

 

d  

p  

𝛿

 

m  

P  

i  

𝐹

𝑌

 

p

𝛿

earch to find the best model hyperparameters is computationally expen-

ive when training DNN, we started with a basic architecture built from

revious work and common DNN knowledge ( Smith 2018 ), and subse-

uently optimized these via manual refinement architecture search. To

void overfitting the model to the data used in this paper, this was done

n the same set of 73 structural connectomes from an independent sam-

le as was used for the RF training, independently for the GA at birth

nd PMA at scan prediction. For both prediction tasks, the models were

rained using MSE as a loss function and the Adam optimizer (Kingma

nd Ba, 2015), albeit with different learning rates. Further details on

he network architecture are included in Sections 2.4.6 and 2.4.7 . 

.4.5. Training and evaluation of the models 

To assess the performance of the prediction models, the evaluation

etric was calculated on test data excluded from training and hyper-

arameter tuning. We split the dataset into k groups (folds) and fit the

odel k times. Each time, one group is used to evaluate performance,

hile the rest of the groups are used for training and validation. The

valuation scheme is presented in Fig. 2 B. 

We split the data into k = 5 groups (folds), with 20% of data used for

esting at each fold. The remaining 80% of the data were further split

or training (65%) to fit the models and validation (15%) to tune the

yperparameters. Min-max normalisation presented in Section 2.4.1 is

tted on the training/validation set, where normalization parameters

re saved and applied to the test set. 

We added a bias correction as previously described ( Smith et al.,

019 ; Peng et al., 2021 ) to correct age dependency of the training resid-

als. Briefly, we used a linear model 𝑌 ′ = 𝑓 ( 𝑋) = 𝛼𝑌 + 𝛽 to obtain an

nbiased estimate of 𝑌 ′ as 𝑌 = 

𝑌 ′− 𝛽
𝛼

, where the parameters 𝛼 and 𝛽 are

stimated during training (on both the combination of training and vali-

ation set) and are thus applied directly to the test set. We obtained our

nal corrected prediction 𝑌 𝑖 for each structural connectome as follows:

̂
 𝑖 = 

𝑓 
(
𝑋̃ 𝑖 

)
− 𝛽

𝛼
= 

𝑌 ′
𝑖 
− 𝛽

𝛼
= 𝐹 

(
𝑋̃ 𝑖 

)
; 𝛼, 𝛽 ∈ ℝ 

The final performance is calculated by averaging test-set perfor-

ance over the 5 folds. We used mean absolute error (MAE) as our

valuation metric, calculated on each test set k as follows: 

𝑀𝐴𝐸 𝑘 = 

1 
𝑁 𝑘 

∑
∀𝑖 ∈S 𝑘 

|𝑌 𝑖 − 𝑌 𝑖 |
Where 𝑁 𝑘 is the number of subjects belonging to test set k ( S 𝑘 ) and

 𝑖 and 𝑌 𝑖 are actual and predicted outcome of subject i . In addition, we

lso evaluate MSE and 𝑅 

2 scores for each test set k, which are calculated

s follows: 

𝑆𝐸 𝑘 = 

1 
𝑁 𝑘 

∑
∀𝑖 ∈S 𝑘 

(
𝑌 𝑖 − 𝑌 𝑖 

)2 

 

2 
𝑘 
= 1 − 

∑
∀𝑖 ∈S 𝑘 

(
𝑌 𝑖 − 𝑌 𝑖 

)2 
∑

∀𝑖 ∈S 𝑘 

(
𝑌 𝑖 − 𝑌 

)2 

Where 𝑌 is the mean actual age of test set k . We also calculated Pear-

on’s Correlation ( 𝑟 𝑘 ) and p-value ( 𝑝 𝑘 ) between actual ( 𝑌 ) and predicted

utput ( ̂𝑌 ) for each test set. As we obtain a prediction for every subject

albeit with different models) we can compute the 𝑀 𝐴𝐸 𝑡𝑜𝑡 , 𝑀 𝑆𝐸 𝑡𝑜𝑡 , 𝑅 

2 
𝑡𝑜𝑡 

,

 𝑡𝑜𝑡 and 𝑝 𝑡𝑜𝑡 by considering the predictions of the 5 test sets (see Fig. 2 A).

inally, we assessed the presence of heteroscedasticity in our predictions

y comparing the variance 𝜎2 
𝑒𝑟𝑟 

of the absolute error – a lower variance

ignifies more homoscedastic predictions. 

.4.6. Prediction of PMA at scan in term-born infants 

To build a model of typical development of connectivity we used the

ull cohort of 418 term-born babies (GA at birth > = 37) with PMA at

can between 37 and 45 weeks. 

We first predicted PMA at scan from the vectorised and normalized

tructural connectome 𝑋̃ using RF regressor model. Optimal parame-

ers of the model (max depth = 250, number of estimators = 30) were
5 
ound by performing a grid search in an independent dataset (see Section

.4.3 ). We trained each fold on N ≈335 samples (80%) including a vali-

ation set. We then tested the model on the remaining set (N ≈83, 20%)

n each fold, thus being able to predict age at scan on all 418 structural

onnectomes of term infants (see Fig. 2 A). 

In a similar fashion, we also trained a regression DNN to predict

MA at scan from the vectorised and normalized structural connectome
̃
 . This DNN comprises one input layer with 4005 input nodes, 7 hidden

ayers, 6 activation layers (ReLu), 5 batch normalisation layers and one

utput layer with one node. Training was done for 50 epochs with learn-

ng rate of 0.007 and remaining parameters with default value. Detailed

tructure of the architecture of this DNN is provided in Fig. 2 D. 

We applied the previously described bias correction method on both

NN and RF, by fitting 𝛼 and 𝛽 for each model 𝑓 𝑘 using both the training

nd validation set; thus reaching 5 distinct models 𝐹 1 , 𝐹 2 , … , 𝐹 5 for

oth the DNN and RF methods. 

.4.7. Prediction of GA at birth 

To assess the effect of preterm birth on structural connectivity we

rained a prediction model for GA at birth from 𝑋̃ with both DNN and

F in a similar fashion as previously described for prediction of PMA at

can. 

Since the dHCP cohort has significantly more term-born than

reterm-born infants, there is a “class imbalance ” in the GA distribu-

ion that may skew the model prediction. We therefore randomly se-

ected a sub-sample of term subjects that had, on average, equal density

f subjects on each GA at birth weekly bin. Our 106 preterm infants

ere distributed in 15 different GA at birth bins (22w-23w; 23w-24w

36w-37w), thus providing an average of 7 infants per age category.

e kept all 106 preterm infants and randomly sampled 7 infants from

ach of the term age categories (37w-38w, 38w-39w, … 41w-42w) and

he 4 subjects born 42w-43w (as only 4 were available between 42w

nd 43w), for a total of 39 term infants. This resulted in a total of 145

nfants with a balanced distribution (see Fig. 1 C). 

We first attempted prediction of GA at birth from the vectorised and

ormalized structural connectome 𝑋̃ using RF with optimal parameters

ax depth = 300, number of estimators = 50. For each fold, we trained

sing N ≈116 samples (80%) including a validation set. We then tested

he model on the remaining set (N ≈29, 20%) in each fold, predicting

A at birth for all 145 structural connectomes considered. 

In a similar fashion, we also trained a DNN to predict GA at birth.

his DNN consists of one input layer, 6 hidden layers, 6 activation lay-

rs (ReLu), one dropout layer, and one output layer. 120 epochs were

sed for training, with learning rate 0.003 and remaining parameters at

efault value. Detailed information on the architecture is provided in

ig. 2 E. 

We applied the bias correction method on both DNN and RF by fitting

and 𝛽 for each model ℎ 𝑖 from the validation set; thus reaching 5 distinct

odels 𝐻 1 , 𝐻 2 , … , 𝐻 5 for both the DNN and RF methods. 

.4.8. Brain maturation index 

We defined brain maturation index 𝛿 (also called brain age or pre-

icted age difference in the literature) as the difference between the

redicted age 𝑌 and true age 𝑌 of a subject n ( Dosenbach et al., 2010 ):

𝑖 = 𝑌 𝑖 − 𝑌 𝑖 
We developed a model of typical brain development by training 5

odels to predict PMA at scan on term-born infants only ( Section 2.4.6 ).

rediction of PMA at scan for each preterm subject was computed by tak-

ng the mean of the predictions from each of the 5 DNN trained models

 𝑘 from each cross-validation partition: 

̂
 𝑖 = 

1 
5 

5 ∑
𝑘 =1 

𝐹 𝑘 
(
𝑋̃ 𝑖 

)
= 𝐺 

(
𝑋̃ 𝑖 

)

Following this, we computed the brain maturation index 𝛿𝑖 of each

reterm subject: 

𝑖 = 𝑌 𝑖 − 𝑌 𝑖 = 𝐺 

(
𝑋̃ 𝑖 

)
− 𝑌 𝑖 
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Fig. 2. (A) Pipeline for age prediction from 

MRI. (B) Cross Validation protocol. (C) Legend 

for DNN architecture components. (D) PMA at 

scan DNN architecture. (E) GA at birth DNN ar- 

chitecture. 
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.5. Sensitivity analysis to obtain feature relevance 

The interpretation of models was computed using feature sensitivity

nalysis ( Saltelli 2002 ) in a similar fashion for both the RF and DNN

odels on both predictions of GA and PMA (thus obtaining 4 differ-

nt interpretations or “relevance maps ”). We iteratively zeroed out ev-

ry one of the 4005 connections and computed the magnitude of the

hange in predictions when zeroing out each feature compared to pre-

iction from the unaltered connectome. The higher the magnitude of

he change, the more impacted the model is to the given feature in the

omputing predictions. For each model, this was computed across all

ubjects and all folds; we took the mean magnitude of change across all

olds as final feature of importance. We thereby obtained for each model

eatures of importance for each of the 4005 connections. Following this

tep, we were also able to identify the most relevant brain regions, by
 a

6 
umming the relevance across each column of each of the 4 relevance

aps obtained. We used BrainNetViewer ( Xia et al, 2013 ) to visualize

he different relevance maps. 

.6. Statistical methods 

Differences between term and preterm cohorts on all relevant char-

cteristics were assessed by computing a two tailed independent t-test

r chi-square test as appropriate. The association between brain matura-

ion index 𝛿𝑖 and neurodevelopmental outcomes was assessed with Pear-

on’s Correlation coefficient for all preterm infants having both 𝛿𝑖 and

SID-III developmental outcomes at age 18 months corrected age. All

utcomes were corrected for socio economic status, captured by the En-

lish Index of Multiple Deprivation (IMD) Rank. All p-values presented

re uncorrected for multiple comparisons. 
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.7. Data availability 

The imaging and collateral data from the dHCP can be downloaded

y registering at https://data.developingconnectome.org/ 

Structural connectivity networks and code used to predict age at

irth and age at scan are available in https://github.com/CoDe-Neuro/

redicting- age- and- clinical- risk- from- the- neonatal- connectome 

. Results 

.1. Sample characteristics 

There were no significant differences in PMA at scan and

ale/female proportion between term and preterm neonates in this

tudy. For the subjects for which 18 months BSID-III follow-up neurode-

elopmental assessment was available, there were no significant differ-

nces in outcomes between term and preterm infants. However, a sig-

ificant group difference (p = 0.005) was found in IMD scores, with term

nfants showing significantly higher social deprivation than preterm in-

ants. Detailed cohort characteristics are provided in Table 1 and Fig. 1 .

eurodevelopmental outcome details are provided in Table 1 . 

.2. Prediction of PMA at scan 

.2.1. Prediction of PMA at scan with RF 

We trained a RF regressor to fit for PMA at scan from vectorised

nd normalized structural connectome 𝑋̃ on term infants only. We ob-

ained 𝑀 𝐴𝐸 𝑡𝑜𝑡 = 0 . 84 weeks, 𝑀 𝑆𝐸 𝑡𝑜𝑡 = 1 . 10 , 𝑅 

2 
𝑡𝑜𝑡 

= 0.61, 𝜎2 
𝑒𝑟𝑟 

= 1 . 10
ith correlation between true and predicted 𝑟 𝑡𝑜𝑡 = 0 . 79 𝑝 𝑡𝑜𝑡 < 0 . 001 . Fig.

 A shows true PMA vs predicted PMA on each of the 5 cross-validation

olds. Detailed results of each fold are presented in Fig. 3 C. 

.2.2. PMA at scan prediction with DNN 

Similarly, we trained a DNN regressor to fit for PMA at scan from

ectorised and normalized structural connectome 𝑋̃ on term infants

nly. We obtained 𝑀𝐴𝐸 𝑡𝑜𝑡 = 0 . 72 weeks, 𝑀𝑆𝐸 𝑡𝑜𝑡 = 0 . 94 , 𝑅 

2 
𝑡𝑜𝑡 

= 0.67,
2 
𝑒𝑟𝑟 

= 0 . 94 with correlation between true and predicted 𝑟 𝑡𝑜𝑡 = 0 . 83 and

 𝑡𝑜𝑡 < 0 . 001 . Fig. 3 B shows true PMA vs predicted PMA on each of the 5

ross-validation folds. Detailed results of each fold are presented in Fig.

 D. 

.3. Prediction of GA at birth 

.3.1. Prediction of GA at birth with RF 

We trained a RF regressor to fit GA at birth from vectorised and

ormalized structural connectome 𝑋̃ on balanced data (145 infants).

e obtained 𝑀 𝐴𝐸 𝑡𝑜𝑡 = 2 . 76 weeks, 𝑀 𝑆𝐸 𝑡𝑜𝑡 = 12 . 95 , 𝑅 

2 
𝑡𝑜𝑡 

= 0.43, 𝜎2 
𝑒𝑟𝑟 

=
2 . 93 with correlation between true and predicted 𝑟 𝑡𝑜𝑡 = 0 . 67 and 𝑝 𝑡𝑜𝑡 <
 . 001 . Fig. 4 A shows true GA at birth vs predicted GA at birth on each

f the 5 folds fold. Detailed results of each fold are presented in Fig. 4 B.

.3.2. Prediction of GA at birth with DNN 

Similarly, we trained a DNN from vectorised and normalized

tructural connectome 𝑋̃ on balanced data. We obtained 𝑀𝐴𝐸 𝑡𝑜𝑡 =
 . 21 weeks, 𝑀𝑆𝐸 𝑡𝑜𝑡 = 8 . 90 , 𝑅 

2 
𝑡𝑜𝑡 

= 0.61, 𝜎2 
𝑒𝑟𝑟 

= 8 . 86 with correlation be-

ween true and predicted 𝑟 𝑡𝑜𝑡 = 0 . 82 and 𝑝 𝑡𝑜𝑡 < 0 . 001 . Fig. 4 B shows true

A vs predicted GA on each of the 5 folds. Detailed results of each fold

re presented in Fig. 4 D. 

.3. Sensitivity analysis 

We computed sensitivity analysis on each of the 4 models as de-

cribed in the methods section, thereby obtaining 4 distinct connection

elevance maps. From the relevance maps, we identified the 5 most rel-

vant connections and brain regions (nodes) from each model, which

re shown in Fig. 6 C, D, G and H. Detailed relevance maps are shown
7 
n Fig. 6 A, B, E and F). For visualization purposes, we computed and

howed the z-score of each connection and region relevance instead of

he raw relevance (magnitude of change) computed and show the 80

onnections with higher relevance for each model ( ∼2 centile). 

Visualisation of relevant connections shows different patterns across

odels, though similar types of connections and regions were detected

s important. The thalamus, temporal lobe, frontal cortex, cingulate

yrus and putamen regions were identified as particularly important

egions in all four models and were also involved in relevant connec-

ions. Connections within the frontal cortex, and between the frontal

ortex and temporal and parietal lobe, cingulate and precuneus were

ighly relevant. Though not statistically significant, right hemisphere

odes were on average more relevant across all 4 models. 

.4. Brain maturation index 

We computed the predicted PMA at scan of each preterm-born infant

canned at term-equivalent age by averaging out the 5 predictions from

he DNN term trained models. We obtained MAE of 1.01 weeks on pre-

iction of 106 preterm infants ( 𝑀𝑆𝐸 𝑡𝑜𝑡 = 2 . 24 , 𝑅 

2 
𝑡𝑜𝑡 

= 0.42, 𝜎2 
𝑒𝑟𝑟 

= 1 . 45 ),
ith correlation between true and predicted age between 𝑟 = 0 . 79 ,
 𝑝 < 0 . 001) . True vs predicted age is presented in Fig. 6 A. 

We computed the brain maturation index 𝛿𝑖 from each prediction.

rain maturation index ( 𝛿𝑖 ) was significantly correlated with BSID-III

ross motor scale at 18 months corrected age ( 𝑟 = 0 . 3751 , 𝑝 = 0 . 0008 ,
ig. 6 B and C). 

. Discussion 

We have used machine learning to uncover structural brain con-

ectivity patterns associated with trajectories of early life development

rom high dimensionality neonatal MRI data. This enabled us to accu-

ately predict PMA at scan in a large sample of term-born infants, and

ccurately predict GA at birth in a sample of preterm infants from scans

t term equivalent age. The connectome features driving our predic-

ions are of biological importance: in the preterm cohort we have shown

ignificant correlation between a connectome derived brain maturation

ndex and motor development at 18 months corrected age. 

We achieved high accuracy in our prediction of PMA at scan in

erm born babies, reaching a low MAE of 0.72 weeks ( 𝑀𝑆𝐸 𝑡𝑜𝑡 = 0 . 94 ,
 

2 
𝑡𝑜𝑡 

= 0 . 67 ) and a high correlation between true and predicted age

 𝑟 𝑡𝑜𝑡 = 0 . 83 ; 𝑝 𝑡𝑜𝑡 < 0 . 001 ). While the structural connectome presents sev-

ral important challenges to study brain connectivity ( Campbell and

ike, 2014 ) including high numbers of false positive streamlines ( Maier-

ein et al., 2017 ), our results suggest that there is reliable information

resent to capture the subtle changes associated with weekly devel-

pment. There have been several studies evaluating white matter mi-

rostructural and connectivity changes during the first days after birth.

ndeed, it has been found that the postnatal period is marked by fur-

her dendritic arborization, refinement of existing intracortical connec-

ions, and an increase in synaptogenesis which results in an abundance

f connections (for a review see ( Keunen et al., 2017 )). Some important

hanges have also been found in the structural connectome in the early

ostnatal period, mainly an increase in integration (the ease with which

ifferent brain regions communicate) and segregation (presence of clus-

ers, i.e., capacity for specialised processing) ( Batalle et al., 2017 ). These

hanges are likely captured by DNN and underlie the accurate prediction

f PMA at scan. To our knowledge only a few studies have attempted

he prediction of PMA at scan from the structural connectome. Using

n RF method Brown and colleagues achieved prediction precision of

.6 weeks using a sample of moderate and very preterm infants (77

cans, GA at birth between 24 and 32 weeks, scanned between 27 and

5 weeks) ( Brown et al., 2017 ). Kawahara et al. (2017 ) used a cohort

f 115 preterm infants (born between 24 and 32 weeks gestational age)

nd reported a MAE of 2.17 weeks and r between true and predicted age

https://data.developingconnectome.org/
https://github.com/CoDe-Neuro/Predicting-age-and-clinical-risk-from-the-neonatal-connectome
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Fig. 3. Detailed results of prediction of PMA 

at scan on term cohort. True vs Predicted with 

(A) RF, (B) DNN. Fold by fold result with (C) 

RF, (D) DNN. 
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f 0.87. Although widespread connections contributed to their predic-

ive models, one (between the Right Lingual Gyrus and Fusiform Gyrus)

as deemed to be of high importance. In addition to an improved MAE,

sing a sensitivity analysis approach we have shown a complex pattern

f connections used for prediction of PMA ( Fig. 5 A–D). The most im-

ortant connections identified were thalamocortical or between frontal

nd temporal lobes, although widespread connections across the whole

rain contributed to prediction. This is in keeping with a large body of

revious literature on early life brain development: thalamocortical con-

ections are developing late in the third trimester ( Batalle et al., 2018 ),

nd are sensitive to disruption due to preterm birth or perinatal pathol-

gy ( Ball et al., 2012 , 2013 ; Batalle et al., 2017 ). Thalamic maturation

ontinues in the first postnatal days (Kostovic and Jovanov-Milosevic,
8 
006, https://doi.org/10.1016/j.siny.2006.07.001), and it is therefore

ot surprising that inter-individual differences in thalamic connectivity

ppear to be important in the prediction of PMA at scan. We identi-

ed the superior frontal cortex and frontal orbital gyrus as two of the

ost important nodes in our PMA at scan prediction, which is in line

ith literature showing that connections to these regions are developing

apidly at term equivalent age ( van den Heuvel et al., 2015 ; Kawahara

t al., 2017 ). Right sided connections and nodes appear slightly more

redictive of PMA than those on the left (although this difference was

ot significant). Structural asymmetry is well established by term equiv-

lent age, although right sided connections are less efficient ( Ratnarajah

t al., 2013 ). One previous group has suggested that right sided connec-

ions are more important in predictions of neurodevelopment ( Girault et
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Fig. 4. Detailed results of prediction of GA at 

birth. True vs Predicted with (A) RF, (B) DNN. 

Fold by fold result with (C)RF, (D)DNN. 
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l., 2019 ) and it is reasonable to hypothesize that inter-individual vari-

tion in the rate of development may also be important in prediction of

MA. 

We have also demonstrated good ability to predict GA at birth

rom the neonatal connectome (DNN performance of 𝑀𝐴𝐸 𝑡𝑜𝑡 =
 . 21 𝑤𝑒𝑒𝑘𝑠 ; 𝑀𝑆𝐸 𝑡𝑜𝑡 = 8 . 90; 𝑅 

2 
𝑡𝑜𝑡 

= 0 . 61; 𝑟 𝑡𝑜𝑡 = 0 . 82 ; 𝑝 𝑡𝑜𝑡 < 0 . 001 ). The

odes and connections of greatest importance to our models were mostly

n and between the thalamus, frontal, and temporal lobes, and showed a

light right sided dominance ( Fig. 5 E-H). The DNN model outperformed

he RF model in prediction of GA at birth ( Fig. 4 A-D), which may

e partially attributed to the difference in the fundamental mechan-

cs of the models used and the high nonlinearity of the data. The ef-
9 
ects of low GA at birth on structural brain development are widespread

nd complex: of particular relevance to our findings preterm birth has

een associated with reduced structural ( Ball et al., 2013 ) and func-

ional thalamocortical connectivity ( Toulmin et al., 2015 ). Organisa-

ion of fronto-temporal connectivity may also be impaired by preterm

irth although the reported pattern of preterm associated changes

s heterogeneous, including a higher proportion of cortical-cortical

onnections ( Ball et al., 2014 ), changes in global network efficiency

 Brown et al., 2014 ; Lee et al., 2019 ) and decreased fronto-limbic con-

ectivity ( de Almeida et al., 2021 ). It is worth noting that there is con-

iderable overlap in the features we found to be more important for pre-

icting PMA and GA at birth, and the critical regions used for prediction
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Fig. 5. Relevance of connections and nodes for predictions of PMA with RF (A) and DNN (B), as well as GA with RF (E) and DNN (F); colour scale of each connection 

and region is the z-value of the computed relevance. Tables showing five most relevant connections and regions for predictions of PMA with RF (C) and DNN (D), as 

well as GA with RF (G) and DNN (H). 
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thalamus, frontal and temporal lobes) are some of the most frequently

ited in other studies of early life connectivity ( van den Heuvel et al.,

015 ; Pandit et al., 2015). It may be the case that the rate of develop-

ent (and thus potential for inter individual difference) is highest for

hese connections in the neonatal period, which may explain why they

re most readily identified by machine learning techniques. 

Brain maturation indices, which compare a predicted age to true age

re a useful tool to characterise individual variations in the maturational

rajectory of brain connectivity ( Cao et al., 2015 ). In adults, a positive

(predicted age > true age) is viewed as undesirable, and possibly in-

icative of the emergence of cognitive decline ( Jonsson et al., 2019 ). In

eonates however the opposite is likely true - a negative 𝛿 (predicted age

 true age) may be indicative of developmental delay. We computed 𝛿
10 
or all preterm infants (n = 77) who had completed an 18-month follow-

p visit and found a positive correlation between brain maturation in-

ex and BSID-III gross motor score (r = 0.375, p < 0.001). There is a large

ody of research on the effects of prematurity on motor development

lower GA at birth is universally associated with lower BSID-III motor

cores ( Greene et al., 2012 ; Velikos et al., 2015 ; Ahn et al., 2017 ). There

s also some evidence that individual motor development differences in

reterm children are in part due to individual brain connectivity pro-

les – diffusion measures in the cingulum (Schadl et al., 2017), corpus

ollosum ( Lean et al., 2019 ), and global white matter diffusion tensor

maging measures ( Girault et al., 2019 ) have all been associated with

eurodevelopmental outcomes up to 2 years of age. Some of the brain re-

ions most important in our models have been previously independently
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ssociated with neurodevelopment. Thalamocortical connectivity, key

o the prediction of both PMA at scan and GA at birth, has previously

een associated with early life cognitive development ( Ball et al., 2015 ;

ixarch et al., 2016 ). Two recent studies also using the dHCP dataset

ave used normative modelling, and specifically individual deviations

rom population growth trajectories, to associate imaging and outcome

 Dimitrova et al., 2020 ; O’Muircheartaigh et al., 2020 ). The correlation

bserved here between our brain maturation index and gross motor de-

elopment is therefore in keeping with existing knowledge and gives

ur model biological validity. Although the correlation observed is to a

ertain degree expected, it is not obvious why we only see an association

etween brain maturation index and gross motor development, rather

han all aspects of neurodevelopment. The motor cortex is rapidly de-

eloping at the time of scan acquisition ( Dall’Orso et al., 2018 ), whereas

ore complex functions likely develop later in childhood – differences

etectable in our study may therefore be motor related rather than lan-

uage related. The neonatal brain exhibits significant plasticity, and mo-

or function often recovers from minor insults ( Futagi et al., 2006 ; Prins

t al., 2010 ). It is possible that only individuals with the most abnormal

onnectomes (and therefore the largest brain maturation index scores)

ave disrupted gross motor development ( Al Harrach et al., 2021 ). A

nal possible explanation for our pattern of findings is more simply that

ross motor functions are the most well studied in early life; a large

umber of tools have been demonstrated to robustly capture motor func-

ion at age 18 months ( Squires et al., 1997 ; Folio 1983 ; Libertus et al.,

013 ), whereas cognitive and language testing is less straightforward

t this age. With a larger sample size associations with other aspects of

eurodevelopment may become apparent. 

Brain maturation index is the prediction error obtained from a model

rained with term-born infants only. It is reasonable to expect larger

odel error (more negative 𝛿) linked to reduced GA at birth (extreme

rematurity), which is in turn associated with poorer neurodevelopmen-

al outcomes. In our sample subjects with the worst gross motor scores

in the 1 st decile) were more likely than others to require oxygen after

ischarge (55% vs. 19%, p = 0.015) and were more likely to have qualita-

ive abnormalities of possible clinical significance reported on their MRI

can (55% vs. 19%, p = 0.015) (data not shown). It is difficult to disen-

angle whether the brain maturation index is capturing features linked

o the structural connectivity phenotypes of prematurity and brain in-

ury, or if it is capturing information related to motor outcome at 18

onths that is embedded in the structural connectome at birth. 

Our analysis uses well established machine learning techniques;

owever, it is important to be aware of their limitations. We have as-

essed the performance of RF and DNN for prediction of key devel-

pmental characteristics in a large sample of neonates. To our knowl-

dge this is the first application of these techniques in a large cohort of

eonates. A previous study predicting PMA from the structural connec-

ome used a convolutional neural network approach (BrainNetCNN) to

xtract information from edge-to-edge, edge-to-node and node-to-node

ata from connectomes( Kawahara et al., 2017 ). The spatial distribution

f adjacency matrices is not necessarily reflective of brain region lo-

ality and connectivity characteristics, so in this study, when predict-

ng age directly from connectome data we instead chose to use RF and

NN, which do not require data known to have local correlations. Us-

ng this approach, we achieved better performance compared to RF on

ge prediction from the neonatal structural connectome. Prediction of

MA at scan was highly accurate with RF ( 𝑀 𝐴𝐸 𝑡𝑜𝑡 = 0 . 84; 𝑀 𝑆𝐸 𝑡𝑜𝑡 =
 . 10 ; 𝑅 

2 
𝑡𝑜𝑡 

= 0 . 61; 𝜎2 
𝑒𝑟𝑟 

= 1 . 10; 𝑟 = 0 . 79; 𝑝 < 0 . 001 ), but DNN achieved bet-

er performance ( 𝑀 𝐴𝐸 𝑡𝑜𝑡 = 0 . 72; 𝑀 𝑆𝐸 𝑡𝑜𝑡 = 0 . 94 ; 𝑅 

2 
𝑡𝑜𝑡 

= 0 . 67 ; 𝜎2 
𝑒𝑟𝑟 

=
 . 94; 𝑟 = 0 . 83; 𝑝 < 0 . 001) , with a more homoscedastic distribution of

redictions over each of the 5 cross-validation folds ( Fig. 3 ). The im-

roved performance of DNN over RF was more evident for prediction of

A at birth, with a better performance ( 𝑀 𝐴𝐸 𝑡𝑜𝑡 = 2 . 21; 𝑀 𝑆𝐸 𝑡𝑜𝑡 = 8 . 90 ;
 

2 
𝑡𝑜𝑡 

= 0 . 61; 𝜎2 
𝑡𝑜𝑡 

= 8 . 86; 𝑟 = 0 . 82; 𝑝 < 0 . 001 ) and more homoscedastic dis-

ribution of predictions on each fold with DNN over RF ( 𝑀𝐴𝐸 𝑡𝑜𝑡 =
11 
 . 76; 𝑀𝑆𝐸 𝑡𝑜𝑡 = 12 . 95 ; 𝑅 

2 
𝑡𝑜𝑡 

= 0 . 43; 𝜎2 
𝑡𝑜𝑡 

= 12 . 93; 𝑟 = 0 . 67; 𝑝 < 0 . 001 ) ( Fig.

 A-D). 

Another important consideration in machine learning MRI studies

s prediction bias. As can be observed in Figs. 3 A-B and 4 A-B, predic-

ion bias is still present after correction was applied (as described in

ection 2.4.5 ): since we fitted the bias correction values on the train-

ng set and blindly applied them to the respective test sets (to prevent

verfitting) the bias cannot be perfectly corrected. This is especially

rue for Random Forests – thus showing the higher stability and per-

ormance of DNN on unseen data. We chose to downsample the term

ohort to achieve balance between age categories. Although this re-

uced our sample size, it allowed us to avoid a class imbalance prob-

em, which could have caused a systematic positive bias for preterm

nfants (predicted GA > true GA). The relatively good performance of

ur model suggests that the impact of preterm birth on brain connec-

ivity development is important and clearly apparent in the neonatal

tructural connectome. We achieved high performance in the predic-

ion of PMA at scan in our preterm cohort by averaging the predictions

rom all 5 term trained DNN models ( 𝑀 𝐴𝐸 𝑡𝑜𝑡 = 1 . 01; 𝑀 𝑆𝐸 𝑡𝑜𝑡 = 2 . 24 ;
 

2 
𝑡𝑜𝑡 

= 0 . 42 ; 𝜎2 
𝑡𝑜𝑡 

= 1 . 45; 𝑟 = 0 . 79; 𝑝 < 0 . 001 ). Although there was high ac-

uracy in prediction and correlation between true and predicted age for

reterm infants, predictions were on average inferior to those obtained

or PMA at scan for term infants ( Fig. 6 A). This is expected as preterm

eonates are known to have specific differences in structural connec-

ivity when compared with their term counterparts which may have

educed the generalizability of the predictive model ( Ball et al., 2012 ;

atalle et al., 2017 ; Smyser et al., 2010 ). Of note, while we did not

orrect our connectivity metrics and predictive models for sex or brain

olume, prediction error was not driven by these features (Supplemen-

ary Fig. 1). It is also important to mention that many methods have

een proposed to interpret machine learning models and gain insight

nto the inner functioning of trained models (for a review, see Molnar

t al. (2020 ) and Xie et al. (2020 )). As we used both RF and DNN in this

ork, we chose to use a standard method of sensitivity analysis, as it

ould easily be applied in the same manner to both RF and DNN mod-

ls instead of using other interpretation methods specifically tuned for

ach model. Furthermore, sensitivity analysis allows to visualize feature

mportance throughout the entire data set as opposed to in individual

amples. This allowed us to easily compare network features contribut-

ng to the prediction of GA and PMA for both RF and DNN models. 

Although the dHCP dataset is one of the largest neonatal MRI

esources currently available a key next step will be to investigate

hether our results generalise to other cohorts. The regression al-

orithms were built and trained with the specific MRI acquisition

rotocol, brain parcellation and connectome generation meth-

ds developed for that project, which may limit how translatable

ur findings are. To enable this, our predictive algorithms have

een made publicly available ( https://github.com/CoDe-Neuro/

redicting- age- and- clinical- risk- from- the- neonatal- connectome ). As

he data was normalized prior to training, given a similar parcellation,

e expect that significant correlation between true and predicted GA at

irth or PMA at scan should be obtained if tested on different data. Fu-

ure work could also focus on implementation of more modern machine

earning approaches – for example geometric deep learning, which is

pecifically designed for data in non-Euclidean space ( Bronstein et al.,

017 ). There is also increasing interest in predicting outcomes at age

8-24 months directly from neonatal brain connectivity, as done in

 Girault et al., 2019 ). We have implemented our own version of their

ethod and tested on the sub-set of our data set with available BSID-III

t 18 months of age. However, no significant prediction capacity was

eached with our data (data not shown). This might be due to different

evelopmental outcome (Mullen scale instead of BSID-III), as well as

ifferences in the pre-processing pipeline, or differences in the sample

ize and characteristics. 

https://github.com/CoDe-Neuro/Predicting-age-and-clinical-risk-from-the-neonatal-connectome
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Fig. 6. Association of Brain Maturation In- 

dex with BSID-III outcomes in preterm-born in- 

fants. (A) True vs predicted PMA at scan for 

preterm infants. (B) Brain maturation index 

𝛿 vs BSID-III Gross motor outcome corrected 

for IMD. (C) Detailed correlation and p-values 

of preterm brain maturation index and BSID- 

III outcomes – statistically significant results 

surviving multiple comparisons correction are 

highlighted in bold red. 
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. Conclusion 

We have used DNN to accurately predict PMA and GA at Birth from

he neonatal connectome and have used sensitivity analysis to describe

he brain features most important in our models. We have addition-

lly computed a brain maturation index which is associated with future

otor development. We achieved a MAE of 0.72 weeks in predicting

MA at scan, demonstrating that the neonatal structural connectome

ontains key developmental information. Furthermore, prediction of GA

t birth with MAE of 2.21 weeks shows that the patterns characteristic

f prematurity are clearly present in the neonatal connectome, and can

e uncovered with machine learning approaches. Several connectivity

atterns identified as relevant for our models are in line with findings

rom existing neurodevelopmental studies. Lastly, brain maturation in-

ex was significantly correlated to BSID-III motor outcome at 18 months,

uggesting the potential of this approach to develop biomarkers for pre-

iction of atypical neurodevelopment. 
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