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A B S T R A C T   

This paper addresses the challenge of enriching geometric digital twins of buildings, with a particular emphasis 
on capturing small but important entities from the electrical and the fire-safety domain, such as signs, sockets, 
switches, smoke alarms, etc. Unlike most previous research that focussed on structural elements and processed 
laser point clouds and images separately, we propose a novel method that fuses laser scanning and photo-
grammetry methods to capture the relevant objects, recognise them in 2D images and then map these to a 3D 
space. The considered object classes include electrical elements (light switch, light, speaker, socket, elevator 
button), safety elements (emergency switch, smoke alarm, fire extinguisher, escape sign), plumbing system el-
ements (pipes), and other objects with useful information (door sign, board). Semantic information like class 
labels is extracted by applying AI-based image segmentation and then mapped to the 3D point cloud, segmenting 
the point cloud into point clusters. We subsequently fit geometric primitives to the point clusters and extract text 
information by AI-based text detection and recognition. The final output of our proposed method is an 
information-rich digital twin of buildings that contains geometric information, semantic information such as 
object categories and useful text information which is valuable in many aspects, like condition monitoring, fa-
cility maintenance and management. In summary, the paper presents a nearly fully-automated pipeline to enrich 
a geometric digital twin of buildings with details and provides a comprehensive case study.   

1. Introduction 

This research is about enriching gdt with small objects. By enriching, 
we refer here to the process of adding more categories of objects to the 
Gdts of basic elements in a building. By geometric digital twins, we refer 
here to a digital twin with geometric data only. A digital twin of a 
building here is defined as a regular-updated digital replica of a physical 
building that can represent the current condition of the building [1]. By 
small objects, we refer here to the elements that are smaller in scale in 
comparison with structural elements (like walls, floors, ceilings). In this 
paper, we focus on enriching geometric digital building twins by adding 
these elements. Meanwhile, instead of only segmenting point clouds, we 
extract text information such as object IDs to recognise object instances. 

Generating a geometric digital twin of an existing asset is a process 
that consists of the following steps: (1) capturing raw visual and spatial 
data in the form of RGB imagery and laser-scanned point clouds; (2) 

detecting geometric objects and geometric relationships of objects in the 
raw data. Step 1 of this process is significantly more automated than step 
2 and requires much fewer labour hours [2]. The cost and effort needed 
to complete step 2 for most assets appear to counteract the perceived 
value of the resulting gdt. Step 2 can be broken down into the detection 
of large objects (such as ceilings, floors, walls) and small objects (such as 
fire extinguishers, smoke alarms) by their scale. Several recent methods 
have been proposed for the former ([3], [4], [5]), and have been vali-
dated to robustly automate this task. However, no method has yet been 
proposed for the latter. This is the challenge that this paper aims to focus 
on. 

Apart from those relatively large structural elements, small elements 
(such as fire alarms, emergency switches) should also be included in an 
enriched building twin, these being helpful for facility managers. In the 
Repair and Maintenance (R&M) activities of a building, Mechanical, 
Electrical and Plumbing (MEP) costs usually constitute the largest share 
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of total costs [6]. Therefore, a building twin would be more valuable if it 
were to contain those elements that are frequently required in facility 
management processes. In addition, facility management involves more 
accurate data about the floor plans, space utilization, asset location, and 
technical plants [7]. Text information such as room numbers and serial 
numbers (IDs) next to assets that can identify the corresponding assets 
(as shown in Fig. 1) is very helpful, especially when managing large 
facilities. These IDs exactly represent the corresponding object instances 
in an asset and make the link between physical assets and digital twins 
much clearer. Therefore, it is valuable to add the information to an 
enriched digital twin of buildings. Unfortunately, this work is currently 
mostly manual work. 

In summary, the great manual effort required to create an enriched 
digital twin is too costly when compared with the perceived value of the 
resulting model. For these reasons, there is a high demand for a higher 
degree of automation in the generation of an information-rich digital 
building twin. 

In this paper, the authors propose a novel framework to enrich a 
geometric building twin by fusing point cloud processing and object 
detection in images. The proposed method of information enrichment 
can be used to complete as-built models generated by other methods of 
creating geometric digital twins of structural elements. In particular, this 
paper presents the following contributions: 

a) Because the performance of detecting small-scale elements 
directly in point clouds is significantly lower than in images, unlike most 
previous methods that exclusively use point clouds as input, the 
approach presented here extracts semantic information from images by 
deep learning and then maps the extracted semantic information to 
laser-scanned point clouds. 

b) While most of the previous approaches only detect primary ele-
ments (like ceilings, walls, floors, windows and doors), our proposed 
method includes small but highly relevant objects in the energy and the 
fire-safety sub-systems that are essential for maintaining and monitoring 
buildings (like smoke alarms, emergency switches); 

c) In order to create an information-rich building twin, other useful 
information (text and numbers) is detected in images by applying optical 
character recognition (OCR) technologies to detect object IDs and 
recognise object instances. Some examples are shown in Fig. 1. The 
detected machine-encoded texts include the room number on the door 
sign, as well as numbers or text corresponding to the detected objects, 
which helps to identify the object instance in the physical asset. 

The rest of this paper is organised as follows: research background 
including state of the art is reviewed in Section 2; the proposed pipeline 
is introduced in Section 3 in detail; experiments and implementation 
details are shown in Section 4; conclusions and future work are dis-
cussed in Section 5. 

2. Background 

In this paper, the authors aim to enrich a geometric digital building 

twin. Apart from structural objects such as ceilings, floors and walls, a 
rich building twin should also contain other small but important objects, 
for example objects from the energy and fire-safety sub-systems such as 
smoke alarms, emergency switches, etc. In our previous research [3], we 
have already reconstructed ceilings, floors, and walls of buildings by 
initially detecting the void space inside rooms. These structural elements 
do not fall within the scope of this paper. Compared to structural ele-
ments in a building, other components are usually small in size and have 
different geometry properties, which makes it hard to apply the same 
methods to detect those small-scale elements. Therefore, 2D information 
from images and 3D information from laser-scanned point clouds are 
connected and integrated into the proposed approach. We believe that 
this combination provides a significant advantage over using the laser- 
scanned point cloud alone, especially for detecting small-scale compo-
nents in a building. In addition, text information, including serial 
numbers and IDs, can also be extracted from 2D images, and the 
detected information can be used to enrich the digital twin further. 

Recent research into small objects detection is discussed in Section 
2.1. As object detection and text recognition in images are achieved by 
deep learning in our approach, recent research in both fields is intro-
duced in Section 2.2 and 2.3 respectively. Finally, research gaps are 
summarised in Section 2.4. 

2.1. Secondary object reconstruction in buildings 

With regard to elements located on wall surfaces, such as sockets and 
light switches, in [8], the authors designed a robot that can recognise 
doors, door handles, and sockets to achieve the door task and plugging 
task. The electrical outlet pattern is detected in camera images by 
feature detection, and a laser scanning sensor is used to find the pose of a 
wall. In [9], the authors detect light switches and sockets in ortho-
graphic 2D images by a random forest classifier. They use a feature 
descriptor pool to measure the probability of the detection. A method 
was designed in [10] that allows a mobile robot to get on/off an elevator 
in a multistory building. An algorithm is presented for recognising 
elevator buttons, where the input image is first converted to a binary 
image, and then the candidates of buttons and floor numbers are filtered 
out and ambiguous candidates are rejected by applying a neural 
network. While most of these methods are used to help robots recognise 
specific objects in the environment and perform a given task, little work 
has been done in the AEC domain. In [6], the authors proposed a method 
to detect objects such as switches, ducts and signs in a coloured point 
cloud. Depending on whether the objects have geometric discontinuities 
or colour discontinuities in the wall area, potential regions of interest are 
computed in depth images and colour images with regard to the wall 
plane, respectively. The region of interest is then matched to a pre-
defined depth model database and a predefined colour model database 
that contain object classes in the scene. 

With regard to elements mounted on the ceiling such as lighting, in 
[11], the authors proposed a recognition method based on thermal- 

Fig. 1. Text information in building.  
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mapped point clouds for building elements consisting of electrical sys-
tems and heating, ventilation, and air-conditioning (HVAC) compo-
nents. Assuming the temperatures of these elements are different from 
other parts of the ceiling, the points of corresponding elements can be 
extracted from the point cloud. In [12], the authors used two steps to 
recognise objects in thermal-mapped point clouds: segmentation with 
thermal information and classification with geometric information. The 
target objects are light fixtures on the ceilings, monitors on the wall and 
humans in the environment. In [13], the authors extract the ceiling 
plane first and then convert the laser-scanned point cloud to an image of 
the ceiling. Fluorescent lightings and circular low-energy bulbs are 
detected from the image by Harris corner detector and Hough trans-
formation. In [14], a method to detect tunnel luminaires from the point 
cloud is proposed. In this approach, they use assumptions that are only 
valid in the tunnel, for example luminaires are located at higher points at 
the side of the tunnel and have brighter colour patterns than their 
surroundings. 

With regard to identifying pipes, in [15], the authors proposed a 
method to detect pipe spools in a cluttered point cloud. The method used 
curvature estimation, points clustering, and feature matching to extract 
pipe spool objects. In an office building, pipes are rarely visible because 
they are usually located inside the walls or behind suspended ceilings. In 
[16], the authors proposed a neural network to segment RGBD images 
into 13 building component classes which include classes of small 
components such as duct, plumbing, conduit, etc. In [17], the authors 
used deep learning to detect and differentiate between different pipes in 
laser scanning point clouds of industrial facilities. 

2.2. Object detection networks and transfer learning 

In computer vision, object detection refers to identifying an object 
and precisely estimating its location [18]. One of the most widely used 
algorithms in object detection is RCNN [19]. In rcnn, regions of interest 
are identified first and then classified by CNN to detect objects in the 
regions. Since original RCNN is relatively slow, some variants of RCNN 
have been proposed, like fast-RCNN [20], mask-RCNN [21]. 

In the AEC domain, researchers have also applied and proposed 
different network architectures to achieve their research objectives, for 
example defect and damage detection ([22], [23], [24]), worker 
detection on construction sites ([25], [26], [27]). 

A neural network can be trained from scratch on a specific dataset. 
However, in order to achieve optimal results, it requires a large training 
set as well as substantial processing time [28]. Therefore, transfer 
learning [29] is proposed to overcome the problems and improve per-
formance. Transfer learning is a process where a neural network is pre- 
trained on a related larger dataset and re-trained on a user-specific 
dataset. Currently, there are several large, publicly available datasets 
that are used to pre-train a neural network, such as ImageNet [30], 

which contains more than one million images for training, the Pascal 
VOC 2012 dataset that contains more than 20,000 images [31], the 
COCO dataset contains more than 300,000 images [32] with 2.5 million 
instances. 

2.3. Text detection and recognition 

In a building, some elements contain texts and numbers that are also 
valuable for facility management, such as room numbers on a door sign. 
In large facilities, entities of some electrical elements (such as smoke 
alarms, emergency switches) usually have a unique serial number in 
order to clearly label entities and make facility management more effi-
cient. It is also very helpful to attach this information to the objects in 
the building twin, recognising and identifying objects at an instance 
level. There are usually two steps to extracting the information from 
images: text detection and text recognition. 

With regard to text detection, neural networks that are used in object 
detection can also be used to detect text in an image, such as Mask-RCNN 
[21] because text area can also be considered a type of object. Re-
searchers have also proposed neural networks that aim to detect text in 
an image, like [33], [34], [35], [36], [37]. These networks were pro-
posed to detect arbitrary-shaped text in an image and can be trained on 
large, publicly available datasets like ImageNet [30]. 

With regard to text recognition, some neural networks have been 
proposed to recognise regular and irregular text in an image, like [38], 
[39], [40], [41]. These networks can be trained on text image datasets, 
such as the SynthText dataset [42], which contains approximately 800 
thousand synthetic scene-text images, the COCO-Text dataset [43] with 
more than 60 thousand real images and around 239 thousand annotated 
text instances. 

In the field of building reconstruction, only a few previous works 
deal with text detection and recognition, and these focus on CAD 
drawings. In [44], the authors used Optical Character Recognition 
(OCR) technology to extract text information from CAD drawings and 
then added detected information to the as-is digital model of buildings. 
In [45], the authors applied OCR to extract the object information from 
the images of structural drawings (i.e., grids, columns and beams) and 
generate Industry Foundation Class (IFC) models for buildings. 

2.4. Research gaps 

We summarise the research gaps in enriching a geometric digital 
twin of buildings as follows: 

a) Previous work focuses solely on structural elements and does not 
consider other smaller but still valuable objects in a building. While 
some researchers detect geometric and colour discontinuities to find 
specific classes of small objects in images, these approaches do not apply 
AI-based methods to enhance the performance of detection in point 

Fig. 2. Overall procedure of proposed method.  
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clouds. Moreover, most previous work dealt with only some classes of 
objects, and there is still a lack of comprehensive object categories when 
creating a building twin. The reason is that, unlike structural elements, 
visible small object classes differentiate much in different facilities. 

b) Most previous work used only point clouds to achieve object 
detection and reconstruction. 3D deep learning networks for point cloud 
segmentation perform well for structural elements but much worse for 
smaller objects, as shown in Table 3. Because methods of object detec-
tion in 2D images are more mature and can provide better performance 
than those in 3D point clouds, there is a potential performance 
improvement when concatenating the information from various input 
sources. But there is still a lack of a straightforward way to map infor-
mation in images to point clouds. 

c) While text information like object IDs attached to corresponding 
objects is also important in a rich building twin, none of the previous 
works considered adding text information, while such information can 
usually be extracted only in 2D images. There is still a lack of creating a 
comprehensive information-rich building twin which contains geo-
metric and semantic information. 

3. Proposed solution 

3.1. Scope 

In our previous research [3], we already reconstructed structural 
elements, so that these do not fall within the scope of this paper. In this 
paper, we propose a novel approach that processes information from 
images as well as point clouds together. Our methods focus on 12 
important and relatively small-scale elements (compared to walls, ceil-
ings, floors) in buildings: light switch, emergency switch, light, smoke 
alarm, escape sign, speaker, fire extinguisher, socket, pipe, board, door 
sign, elevator button, trash bin. 

3.2. Overview 

The overall process of the proposed method is illustrated in Fig. 2. 
The inputs for our proposed method are point clouds acquired by laser 
scanners and videos or images captured in the same area of a building. It 
should be noticed that we also collect an annotated image dataset that 
contains the target objects. But these images are only used to train a deep 
learning model and are not required in the reconstruction pipeline. The 
outputs are point clusters with labels and a mesh model for each element 
that is found. All points in one point cluster have an identical label. The 
overall goal is to create a comprehensive digital building model repre-
sented by mesh geometry and enriched with semantic information of the 
detected elements. To achieve this, we map information in 2D images 
onto a 3D laser-scanned point cloud. We start by detecting objects in 
images or videos by applying the transfer learning technique. The next 
step is to construct a photogrammetric point cloud and align this point 
cloud to the laser-scanned point cloud. Subsequently, the semantic in-
formation from 2D images or videos is projected onto the 3D point 
cloud. After finding a best-fitting label for each point, we obtain the 
output point clusters of different objects. In the final step, we fit a pre- 
defined mesh model to each found instance. 

3.3. Object detection in image 

In this step, we aim to detect the 12 element classes listed in Section 
3.1 from images or videos. Recently, Deep Neural Networks (DNN) [46], 
especially the introduction of rcnn [19], have proven effective in object 
detection in 2D images [47]. But we still need to prepare our own 
dataset because those publicly available datasets, like Imagenet [30], 
one of the largest online available image datasets, does not contain all of 
the categories we need. Even if some of the target categories are present 
in Imagenet, such as fire alarms and fire extinguishers, there are no 
labelled instances available. Therefore, we cannot detect the target 

objects in images or videos that were captured in buildings by publicly 
available pre-trained models because these models are trained on a 
dataset lacking the categories we require. The available networks must 
be re-trained for our application domain. In the conducted research, we 
prepared our own dataset by manually labelling images that we 
captured in public buildings, more precisely office buildings on the 
inner-city campus of the Technical University of Munich (TUM). 

In practice, there is no required minimum number of images when 
training a neural network. In Imagenet [30], categories like fire/smoke 
alarm and fire bell contain hundreds of labelled images. If we follow the 
similar setup that each category has hundreds of images, thousands of 
images are required for a dataset with 12 classes, which leads to a huge 
amount of labelling work. Considering the vast human effort to label 
these images manually, we decided to use transfer learning techniques. 
As its name implies, transfer learning [29] means using the knowledge 
learned previously to solve new, but related problems. When starting 
with a pre-trained model that has already been trained on thousands of 
images, we do not need as many images as if we were training a network 
from scratch because the model has already “seen” and “learnt” from lots 
of images. 

Object detection in images results in finding a bounding box for a 
detected instance. Obviously, some regions within the bounding box do 
not belong to this instance, especially when the object is not a rectangle 
or inclined in the image. Since we want to map semantic information 
obtained in 2D images to the 3D point cloud in further steps, we need to 

Fig. 3. Object detection result by image segmentation mask and bounding box.  
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reduce this kind of error here and apply image segmentation instead of 
instance detection. To this end, we use a variant of cnn called Mask rcnn 
[21] that detects objects in images by generating a mask for each 
instance. By doing so, we can find a more precise contour of the object 
instance than the mere bounding box. Some results of image segmen-
tation and bounding box prediction of various objects are illustrated in 
Fig. 3. 

3.4. Creating a photogrammetric point cloud 

In [48], the authors used the photogrammetric point cloud to con-
nect images and Building Information Modeling (BIM) models. Simi-
larly, in our proposed approach, the photogrammetric point cloud acts 
as the bridge that connects 2D information in images with 3D infor-
mation in the laser-scanned point cloud. In the photogrammetric pro-
cess, the extrinsic and intrinsic camera parameter matrices of pictures 
are estimated. Images or videos are supposed to be taken from different 
viewpoints within the area and cover as much information as possible. In 
our approach, we apply COLMAP [49] [50], an open-source Structure- 
from-Motion (SfM) and Multi-View Stereo (MVS) software, to recon-
struct photogrammetric point clouds. The input of SfM is a set of over-
lapping images taken from different viewpoints. It starts with feature 
detection and extraction, continues with feature matching and geo-
metric verification, and then reconstructs the object in 3D space, 
including the reconstructed intrinsic and extrinsic camera parameters of 
all images. MVS takes the output of SfM to compute depth and normal 
information for pixels in all images and creates a dense point cloud of the 
scene. 

The estimated camera poses (position and orientation) of each image 
and the reconstructed sparse photogrammetric point cloud are 

illustrated in Fig. 4. As we can see, the edges are reconstructed quite 
well, while plane faces of elements like walls, ceilings, and floors are 
missing. This is because almost no features can be detected and 
extracted on these weakly textured surfaces, like a planar white wall, in 
the SfM process. However, these weakly textured surfaces can be 
captured quite well by laser scanners. This is one of the reasons why we 
propose the use of both laser-scanned point clouds and images to create 
sufficiently detailed and complete digital twins. In this way, we can 
acquire all of the required information by using both techniques to 
capture buildings. 

3.5. Point clouds alignment 

Laser scanners measure the distance by transmitting light and 
sensing the return from objects [51] so that laser-scanned point clouds 
represent the actual scale of the environment. In contrast, photogram-
metric point clouds extract information from 2D images – they do not 
represent the actual scale in world units unless additional information is 
considered, such as the size of an object. To perform the necessary 
registration of the two point clouds, we align the photogrammetric point 
cloud with the laser-scanned point cloud so that the photogrammetric 
point cloud also represents the environment in its actual size. 

The photogrammetric point cloud is transformed to the coordinate of 
laser-scanned point cloud by 

Q = MP, (1)  

where P denotes the point set of the photogrammetric point cloud, Q 
denotes the point set of the photogrammetric point cloud transformed to 
the coordinate of the laser-scanned point cloud, M denotes the trans-
formation matrix that transforms points from the coordinate of the 

Fig. 4. Example of estimated camera poses and reconstructed point cloud.  

Fig. 5. The alignment process of photogrammetric and laser-scanned point cloud.  
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photogrammetric point cloud to the coordinate of the laser-scanned 
point cloud. 

4 × 4 transformation matrices are widely used to represent non- 
linear transformations in 3D space. In our approach, we use two steps 
to determine the 4 × 4 transformation matrix: the rough alignment step 
and the refinement step. In the rough alignment step, we use 4 pairs of 
points from the photogrammetric point cloud and laser-scanned point 
cloud to compute the roughly estimated transformation matrix from 
photogrammetric point cloud coordinate to laser-scanned point cloud 
coordinate, denoted by M1. In this step, we only need to select points 
roughly and get a rough alignment result. These point pairs can be 
chosen at random, and could be any key points in point clouds, such as 
room and door corners, the centre of an object, etc. After rough align-
ment, we use the Iterative Closest Point (ICP) algorithm [52], to refine 
the alignment and obtain the refinement transformation matrix M2. The 
overall transformation matrix M can be computed by 

M = M2M1. (2)  

The photogrammetric point cloud can then be transformed to the co-
ordinates of the laser-scanned point cloud by applying Eq. (1). This 
alignment process is illustrated in Fig. 5. When comparing the marked 
area in Fig. 5 with that in Fig. 5, it is clear that the refinement step 
improves the alignment result. 

3.6. Find visible laser scanning points in each image 

In this step, we determine whether a point from the laser-scanned 
point cloud is visible in each image that is used to reconstruct the 
photogrammetric point cloud. Because the photogrammetric point cloud 
and the laser-scanned point cloud are aligned already, the estimated 
parameters (extrinsic and intrinsic camera parameters) from the 
reconstruction process are also mapped into 3D space. The extrinsic 
camera matrix and intrinsic parameter matrix are known for each image 
or frame of a video. Based on the matrices, we can find which points are 

visible at each camera position and captured in the corresponding 
image. 

As the transformation matrix that transforms points from a photo-
grammetric point cloud coordinate to a laser-scanned point cloud co-
ordinate is M, any point p = [ x0, y0, z0 ]

T in the original laser-scanned 
point cloud S can be transformed to the coordinate of the photogram-
metric point cloud by 
⎡

⎢
⎢
⎣

x1
y1
z1
d1

⎤

⎥
⎥
⎦ = M− 1

⎡

⎢
⎢
⎣

x0
y0
z0
1

⎤

⎥
⎥
⎦, (3)  

where [ x0, y0, z0,1 ]
T is the homogeneous coordinates of this point p, 

M− 1 is the inverse matrix of M, and [ x1, y1, z1, d1 ]
T is the new calculated 

homogeneous coordinates of the point in the coordinate of photo-
grammetric point cloud. Normalization is then applied by dividing each 
vector component by d1, 
⎡

⎢
⎢
⎣

x2
y2
z2
1

⎤

⎥
⎥
⎦ =

1
d1

⎡

⎢
⎢
⎣

x1
y1
z1
d1

⎤

⎥
⎥
⎦, (4)  

where [ x2, y2, z2,1 ]
T is the normalized homogeneous coordinate vector 

of point p in the coordinate of photogrammetric point cloud. 
The next step is to transform every point from the coordinate of the 

photogrammetric point cloud to the camera coordinate of the image. In 
this paper, we use N to denote the whole image set that is used to 
reconstruct the photogrammetric point cloud, ni to denote the ith image 
in the image set N. For one single image ni, Mi

ext and Mi
int denote the 

corresponding camera extrinsic and intrinsic parameter matrices. The 
extrinsic parameter matrix can be defined as 

Fig. 6. Process of finding visible points in image (ceiling points in point cloud are removed for better visualisation).  
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Mi
ext =

⎡

⎣
Ri Ti

0 0 0 1

⎤

⎦, (5)  

where Ri is the 3 × 3 rotation matrix Ri =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ri
11 ri

12 ri
13

ri
21 ri

22 ri
23

ri
31 ri

32 ri
33

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, and Ti is the 

3 × 1 translation matrix Ti =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ti
1

ti
2

ti
3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

of the image ni. 

The intrinsic parameter matrix can be represented by 

Mi
int =

⎡

⎢
⎢
⎣

fx s cx
0 fy cy
0 0 1

⎤

⎥
⎥
⎦, (6)  

where fx and fy are the effective focal length of the camera measured in 
units of image pixels in the horizontal and vertical directions, cx and cy 
are the pixel coordinates of the principal point. Additionally, s denotes 
the skew coefficient for the camera. This is zero if the image axis is 
perpendicular to the image plane. It should be noticed that no distortion 
is assumed here. 3D points can be then transformed in camera co-
ordinates by 
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and subsequently transformed to the image plane by computing 
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where x3, y3, z3 are coordinates in the camera coordinate, and x4, y4, z4 
are the perspective projected coordinates on the image coordinate. By 
homogeneous coordinate normalisation, we obtain the image co-
ordinates of the projected point in the image plane: 
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where u and v are the pixel coordinates in the horizontal and vertical 
direction in the image plane. 

By using the Eqs. (3) to (9), all points in the original laser-scanned 
point cloud can be projected into the image plane. However, there are 
points in the cloud that are not in the field of view of the given camera 
pose and intrinsic parameters. Assuming the dimension of the image in 
pixels is W × H, if a point (x0, y0, z0) in the original laser-scanned point 
cloud and its projected point in the image plane (u, v) can be seen in the 
image, the point should follow these conditions: 

0 ≤ u ≤ W, 0 ≤ v ≤ H. (10) 

The process of checking the visibility of laser-scanned points for one 
image is illustrated in Fig. 6. As we can see in subfigure (d), the visible 
area shown in the laser-scanned point cloud is identical to the image 

scene. 
Up to this step, the visibility of a point is only determined by the 

camera parameters. That means that as long as the points fulfil Condi-
tion (10), they are considered visible points, which makes the camera 
see “through” the wall. As shown in Fig. 7, it is obvious that some points 
should not be visible, like points behind the surface of the wall. 

We use the raycasting method [53] to remove those points that 
should not be seen at the current camera position. However, rays might 
pass through the point cloud without intersecting any points because 
point clouds are actually discrete points in 3D space. Therefore, point 
clouds are usually voxelised before raycasting [54]. Fig. 8 shows how 
raycasting works in a voxelised point cloud. Rays shoot from the camera 
position to each point in the point cloud. While a dark blue voxel means 
there are points within the voxel, a light blue voxel indicates no points in 
the voxel. If a ray starting from the camera does not pass through any 
other dark blue voxels, its target point is visible at the camera position. 
In contrast, if a ray passes through at least one other dark voxel before 
reaching the target point, this target point is occluded by other voxels in 
between. 

The remaining visible points after applying the raycasting method to 

Fig. 7. Top view of visible points at camera position in Fig. 6. Points behind the 
wall (within the red dash line) are actually not visible from the camera pose. 

Fig. 8. Raycasting method in voxelized point cloud. There are points in dark 
blue voxels but no points in light blue voxels. Rays of dotted lines starting from 
the camera intersect other dark blue voxels before reaching the target voxel. 
These target voxels are occluded by the voxels between the camera and 
themselves.(For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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the point cloud are shown in Fig. 9. In the raycasting process, the voxel 
size has an enormous impact on performance. A further discussion on 
finding the best voxel size is presented in Section 4.3. 

3.7. Map 2D semantic information to a 3D space 

In this step, the semantic information detected from 2D images or 
videos in Section 3.3 is mapped to the 3D space. We use Mask-RCNN 
[21] to detect objects in images, and the result for each detected 

instance (like a board, a smoke alarm, etc.) is a mask. The mask is a 
matrix that is exactly the same size as the input image, but has only two 
values, 0 and 1. While pixels with a value of 0 are background, pixels 
with a value of 1 are where the detected instance is located in the image. 
As shown in Fig. 10 c,e, and 10g, when a mask is applied to an image, 
only the image area that belongs to the detected area can be seen. 

In the previous step, all visible points (x0, y0, z0) in 3D space are 
already transformed to 2D coordinates (u, v) in the image plane. At this 
step, we check that every point in the image plane is in the predicted 

Fig. 9. Apply raycasting to visible points at camera position.  

Fig. 10. Image segmentation masks and corresponding points in 3D of different instances.  
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segmentation mask or the background area. Points located in the 
instance mask of three categories are shown in Fig. 10c, 10e and 10g for 
example. 

Because we use images/videos to reconstruct the photogrammetric 
point cloud, many images have overlapping areas. In order to record 
semantic information from all images, an M × N matrix L is used to 
accumulate predicted information from all images, where M denotes the 
number of categories and N denotes the number of points in the laser- 
scanned point cloud. If the kth point's projection in the image plane is 
within a mask of category j, the term Lj,k in the matrix L would be 
increased by 1, where 1 ≤ j ≤ M and 1 ≤ j ≤ L. 

One point in the laser-scanned point cloud is usually visible in 
multiple images, and the predicted labels from these images might be 
different. Therefore, it is necessary to retain all information and find the 
best-fitting label prediction for each point in later steps. The pseudocode 
of the method proposed in Section 3.5 to 3.7 is shown in Algorithm 1. 

Algorithm 1. (Mapping algorithm from 2D to 3D)  

3.8. Find best-fitting labels for all points 

As described in the previous section, we need to find a best-fitting 
label for each point in 3D from the M × N label matrix L. 

Two values are used to determine the best label for each point. For 
one point pi in the laser-scanned point cloud, Ni is the number of images 
where the point can be seen, Lj,i is the number of images where the point 
is within the predicted mask of category j. But it should be noted that Ni 

is not equal to the sum of Nj
i for all categories because a point could also 

be located in the “background” area instead of the mask area. Basically, 
a point in the 3D point cloud would be assigned to the label with the 

maximum occurrence from different images when it is predicted 
diversely in different images. Furthermore, we use two values to 
represent how certain the label assigned to the ith point pi is: 

Ui = max1≤j≤MLj,i
/

Ni, (11)  

Vi = max1≤j≤MLj,i

/
∑M

j=1
Lj,i. (12) 

Because the pixels at the border of the predicted mask area can 
probably be mapped to an object's surrounding points that do not belong 
to the object (for example, some points on the ceiling are predicted as 
points of a smoke alarm), these wrongly predicted points need to be 
removed. Unlike the points of an object, these neighbouring points do 
not appear in all images of the object. Moreover, some of them may only 
appear in one image, but are predicted as object points. Therefore, it is 
not enough to rely solely on prediction accuracy from all images. The 
value Ui is used to filter the surrounding points out and we illustrate how 

it works in Fig. 11. 
Fig. 11 is a part of the point cloud that shows the ceiling and three 

kinds of objects (lighting, speaker, smoke alarm) mounted to it from the 
bottom view. Fig. 11 b shows the distribution of Ui. Many points on the 
ceiling are predicted as a point of the object because the prediction is 
mapped from 2D images that are taken from different views. 

Most of the surrounding points (ceiling points) are distributed in the 
low-value range of Ui. Fig. 12 a and Fig. 12 b show the points left after 
filtering out those points with the criteria Ui > 0.5 and Ui > 0.7. Objects’ 
points can be extracted from their neighbouring points on the ceiling. 

Unlike Ui, which aims to remove surrounding points of an object, Vi is 
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used to show how certain we are when assigning a class label with a 
point. Fig. 13 shows the distribution of how certain we are when 
assigning the label that occurs mostly as the class of the point for the 
same area. In this case, it is quite certain that the assigned labels are 
correct as most points are located in the range close to 1. Fig. 13 shows 
points in different colours according to their assigned labels. 

3.9. Fit shape to each point cluster 

In this step, we fit a geometric shape to each extracted point cluster. 
Different object types are reconstructed by varying strategies. 

For small objects mounted on the ceiling and wall (like smoke 
alarms, sockets, switches), the extracted point clusters from the previous 
section are projected on the plane of the ceiling or wall. By then fitting 
simple geometric shapes (like circles and rectangles) in the wall or 
ceiling plane, the location and size in the 2D plane can be found. The 

Fig. 11. Distribution of Ui for part of point cloud of ceiling  

Fig. 12. Remaining point cloud by filtering out ceiling points.  
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reason we choose to fit geometric shapes in 2D planes rather than in 3D 
point clouds is: a) Some surfaces of the elements might not be captured 
when capturing buildings with a laser scanner. It is hard to fit geometric 
shapes in the 3D point cloud directly, especially for small elements (like 
smoke alarms) that lack points on their surface. b) Some elements are 
commonly standardised elements (sockets, light switches, smoke 
alarms) whose instances are identical across the entire facility. Fitting 
shapes in the 2D plane can also reduce the computing cost. 

The random sample consensus (RANSAC) algorithm [55] is used to 
fit circles for cylindrical objects (such as a light, speaker, smoke alarm) 
and rectangles for “cuboid-like” objects (socket, switch, door sign, 
board, elevator button). We then extrude the 2D shapes from the wall or 
ceiling plane by default thickness (if available) or estimate the thickness 
of the object in the 3D point cluster by finding the maximum distance to 
the plane. The fitting circles of three classes of objects (light, speaker, 
smoke alarm) on the ceiling plane are shown in Fig. 14 and corre-
sponding extruded cylinders are shown in Fig. 15 by way of example. 

With regard to pipes and fire extinguishers that are usually cylin-
drical, RANSAC is used to fit a cylinder to the point cluster and find its 
dimension and position. The extracted cylinder of a fire extinguisher is 

illustrated in Fig. 16 for example. As shown in Fig. 16c, only one cylinder 
is reconstructed in this step, based on the major part of the fire extin-
guisher body. A more detailed structure of the fire extinguisher body and 
hose pipe would be ignored. 

3.10. Text detection and recognition 

In this step, text information attached to objects is extracted from 
images. As shown in Fig. 1, text information for facility management is 
available on or next to dedicated objects in a building, like the room 
number on a door sign (shown in Fig. 1a), the serial number on an 
emergency switch (shown in Fig. 1b), the serial number next to a smoke 
alarm (shown in Fig. 1c). Apart from detecting and recognising texts, the 
aim of this step is also to link the detected information to the corre-
sponding objects. 

With regard to text detection, text can be located in the object area as 
well as next to the object (like numbers next to the smoke alarm in 
Fig. 1). No valid result could be found for the second case if detecting 
text only within the object area. In order to solve this problem, we 
enlarge the predicted object area by increasing its width and length by 

Fig. 13. Distribution of Vi and extracted points of different classes.  

Fig. 14. Bottom view of part of ceiling and fitting result.  
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50%, assuming related texts to the object are within the enlarged region. 
The text detection network model with differentiable binarization [36], 
pre-trained on [42], is applied within the enlarged area and outputs the 
corresponding text bounding boxes. 

With regard to text recognition, the text recognition network model 
for irregular text [56] is applied to detected text bounding boxes. The 
recognised text is the information related to the corresponding object 
that contains or is close to the text area. The text detection and recog-
nition result of a door sign and an emergency switch is illustrated in 
Fig. 17. Most texts can be recognised correctly, especially those numbers 
that are very useful for building management. 

Although the network we used is designed and trained to work with 
multi-oriented texts, the recognition result would suffer if texts were not 
horizontally-oriented. Non-horizontally-oriented texts usually occur in 
the images of the ceiling because it is hard to make sure the texts in all 
images are horizontally-oriented when holding a camera to collect im-
ages. In order to solve this problem, we inserted an intermediate step 
between text detection and text recognition. In this step, the detected 
text bounding box would be rotated to the position where its longer side 
is horizontal by assuming texts are oriented along the longer side. Two 
angles (clockwise and counterclockwise) can rotate the bounding box to 
the horizontal position and produce two new bounding boxes. One of the 
angles would flip the text. The two new bounding boxes are then the 
input for the text recognition step. The flipped texts can be discarded by 

the lower prediction score, and the results are shown in Section 4.2.3. 
In summary, the input to the proposed processing pipeline are im-

ages/videos and point clouds. Point clusters with semantic information 
are created by mapping semantic information detected by deep learning 
to the 3D point cloud. The 3D mesh model is reconstructed by fitting 
geometric shapes to point clusters and then enriched by useful infor-
mation that is valuable for maintaining the building by detecting and 
recognising text information on or close to objects. 

4. Implementation and result 

4.1. Implementation 

The proposed processing pipeline is implemented in a software 
prototype written in C++ and Python and is tested in the point cloud 
collected in the Chair of Computational Modeling and Simulation at the 
Technical University of Munich (TUM) with the help of NAVVIS (www. 
navvis.com). The annotated dataset used for transfer learning contains 
more than 1000 instances, including 120 boards, 124 door signs, 34 
elevator buttons, 52 emergency switches, 34 fire extinguishers, 30 
escape signs, 357 lights, 94 light switches, 45 pipes, 137 smoke alarms, 
123 sockets, and 91 speakers. These images are taken in different areas 
of the buildings in the city centre campus at TUM. 

In point cloud processing, the PCL library [57] is used to implement 

Fig. 15. Part of ceiling in 3D space.  

Fig. 16. Part of wall and fitting result in 3D space.  
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the proposed algorithm. Object detection in images is done with 
Detectron2 [58]. In our experiment, we use the pre-trained Mask-RCNN 
model [21] provided by Facebook [58] that has been trained on the 
COCO dataset (more than 100k images) [32] and retrained on our an-
notated dataset. The photogrammetric point cloud is created by using 
COLMAP [49] [50]; text detection and recognition are implemented by 
means of the MMOCR tool [59]. The detailed implementation infor-
mation, including the used technologies and frameworks, is listed in 
Table 1. 

4.2. Results 

In this section, we present the results of our experiments from three 
aspects, point cloud segmentation result, reconstruction result and, text 
recognition result. We use the mean Intersection over Union (mIoU), one 
of the common used evaluation metrics for semantic segmentation, to 
evaluate the performance of all 12 classes of small objects. Then we 
show the qualitative result of the reconstructed model and evaluate the 
quantitative results of three classes (smoke alarm, light, speaker) in the 
facility. At last, we compare the text recognition result with and without 
the method proposed of rotating text boxes in Section 3.10. 

4.2.1. Point cloud segmentation result 
In our proposed pipeline, 2D semantic information detected from 

images is mapped to a 3D point cloud to identify the respective point 
clusters. The result is in the same format as that of point cloud seg-
mentation of 3D deep learning. We compared the segmentation results 
of our proposed approach with those of 3D deep learning. In this regard, 
the S3DIS dataset [60] contains the point cloud of the indoor environ-
ment that is similar to the point cloud captured on the TUM campus. As 
shown in Table 2, KPConv [61] is one of the best-performing network 
architectures with the mIoU around 70%. 

We choose KPConv for the experiments with the annotated laser- 
scanned point clouds captured at TUM and consider these are the 
reference values for further comparisons. We trained our model with 
two different downsampling sizes: 3 cm and 5 cm. As shown in Table 3, 
it is plain to see that the performance for large objects (wall, ceiling, 
floor) is much better than that for smaller objects. This result is 
consistent with that of the S3DIS dataset [60]. For a small object like a 
smoke alarm in particular, the performance is quite low, which means 
the current state-of-the-art network is not suitable for segmenting small 
objects. There are two possible explanations: a) the input point cloud 
resolution is too low for neural networks to understand small objects; b) 
small objects have much fewer points compared to larger ones (like a 

Fig. 17. Text detection and recognition.  
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ceiling, floor, and wall), and the unequal class distribution means this 
has to be compensated during training, which could sacrifice the per-
formance of some classes. 

The performance of our proposed approach for different classes is 
shown in Table 4. As we can see, compared with the state-of-the-art 
network that only uses point clouds as input, our approach with addi-
tional image input provides a significant improvement in the common 
classes which are available in the image as well as the point cloud 
(smoke alarm from 29.1% to 48.6%, light from 69.4% to 79.9%). 

4.2.2. Reconstruction result 
One example of the information-rich digital twin that is created by 

applying our processing pipeline is illustrated in Fig. 18. The digital twin 
is a comprehensive model which includes geometric information 
(reconstructed 3D geometric models), semantic information (point 
clusters of object instances with labels and useful text information). 

In Tables 5, 6 and 7 we compare the dimension result for some ob-
jects in three categories from one area against the corresponding 
manually created model from the laser-scanned point cloud. As most of 
the absolute deviations of the radius are less than 0.01m, the perfor-
mance is quite good, given the resolution of the point cloud we used is 
0.005m. The relative deviations of smoke alarm diameters are relatively 
larger than those of the other two classes because the smoke alarms are 
smaller, which means an absolute deviation in a similar range results in 
a larger relative deviation value. 

4.2.3. Text recognition result 
In our experiments, the text recognition network model [56] works 

well if the text in an image is horizontally oriented and performs worse if 
the text is not horizontal. The comparison of recognition results for texts 
attached to two objects is shown in Fig. 19. 

In order to improve the recognition result, we introduce a method of 

rotating the detected bounding boxes in Section 3.10. The corresponding 
result is shown in Fig. 20, for example. 

In order to discard the prediction of flipped texts, prediction scores 
are checked. The recognised texts and corresponding prediction score of 
four horizontal bounding boxes in Fig. 20 are listed in the Table 8. It is 
plain to see that two prediction scores (Nr.2 and Nr.4) are significantly 
lower than the other two (Nr.1 and Nr.3), which means the level of 
certainty is lower. And this lower prediction score comes from the 
flipped text. Therefore, it is very easy to identify the correct direction of 
text by analysing the prediction score. The texts from high score pre-
dictions are then chosen as the extracted text information if these pre-
dictions provide identical results (as in Table 8, where they both predict 
“501529/01”). If high score predictions are in conflict with each other, 
which usually happens when multiple images for the same object are 
available, all predicted texts are stored with their prediction scores. So 
the final decision is left up to the human user. 

4.3. Parameter study 

In Section 3.6, we use the ray-casting method to remove points that 
should not be visible at the given camera position. The aim of ray-casting 
is to make points visible in the real world that can also be seen in the 
point cloud. At the same time, it should not “look through” the wall 
either, seeing points that should be occluded. Therefore, the voxel size in 
Fig. 8 is essential. 

Fig. 21 shows a comparison of four different voxel size: 2 mm, 5 mm, 
1 cm, 2 cm. As we can see, rays can still go through the wall with a 
resolution of 2 mm and 5 mm, which makes the scene behind the wall 
visible. With a resolution of 2 cm, the handrail and its fence cause too 
much occlusion, making a relatively large part of the wall that should 
not be occluded invisible. In this case, the voxel size of 1 cm provides the 
best result. Moreover, the test point cloud resolution is also 1 cm in 
Fig. 21. This is not a coincidence, because a 1 cm resolution point cloud 
means the distance between neighbouring points is around 1 cm. 
Therefore, it is appropriate that the voxel size chosen for ray-casting is 
the same as the resolution of a point cloud, so that rays do not pass 
through a surface and at the same time avoid unnecessary occlusions. 

4.4. Discussion 

As shown in Section 4.2, the proposed pipeline provides convincing 
results in creating geometric digital twins of buildings from laser- 
scanned point clouds and images. Meanwhile, the method could be 
applied to other facilities if the environment is captured by a laser 
scanner and a camera. However, it should be noted that the photo-
grammetric process only works if a sufficient amount of images were 

Table 1 
Implementation details of each step.  

Technology Language and library used Automatic or manual 

Object detection in image by transfer learning (Section 3.3) Python, Detectron2 [58] automatic 
Creating photogrammetric point clouds (Section 3.4) Python, COLMAP [49] [50] automatic 
Point clouds alignment (Section 3.5) None manual 
Extract visible points (Section 3.6) C++, PCL library [57] automatic 
Map 2D information to 3D space (Section 3.7) C++ automatic 
Find best-fitting labels (Section 3.8) C++ automatic 
Fit shape to point clusters (Section 3.9) C++, PCL library [57] automatic 
Text detection and recognition (Section 3.10) Python, MMOCR [59] automatic  

Table 2 
Segmentation mIoUs on S3DIS dataset (evaluated 
with 6-fold cross-validation).  

Method mIoU 

PointNet [62] 47.6 
SPG [63] 62.1 
DGCNN [64] 56.1 
RSNet [65] 56.5 
PointCNN [66] 65.4 
KPConv [61] 69.6 
Point transformer [67] 73.5  

Table 3 
Segmentation mIoUs of related classes in our point cloud.  

Model Wall Ceiling Floor Smoke alarm Light 

KPConv (3 cm) 89.0 96.5 97.6 29.1 69.4 
KPConv (5 cm) 88.2 96.2 97.8 18.6 65.2  
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taken differently from different viewpoints. It is hard to say a minimum 
required number of images for the photogrammetric process because it 
depends on different aspects, such as the facility size, number of objects, 
the camera lens, etc. But according to the authors’ experience, more 
images from various viewpoints usually improves the reconstruction 
result. 

In addition, we also test the photogrammetric process with images 
and frames extracted from videos. In our experiment, photogrammetric 
point clouds created by video frames are usually noisier than those from 
camera images. Furthermore, a camera with a higher resolution and 
larger field of view can also contribute to a higher-quality point cloud, 
which usually requires a longer computation time. As the photogram-
metric process is only used to register images to laser-scanned point 
clouds, the strategies of increasing the quality of photogrammetric point 
clouds and reducing the cost are not in the scope of this paper. 

If the photogrammetric process in the pipeline fails, all the other 

parts can proceed as the same. But an alternative way to provide a 
camera's intrinsic and extrinsic parameters should be included, for 
example, using the referenced images taken by modern laser scanners 
that have cameras during data capturing, manually recording camera 
poses and calibrating parameters. 

Furthermore, there are still other limitations to our methods. Firstly, 
the object detection step can provide good results for standard objects 
like fire extinguishers, smoke alarms, etc. But it performs worse with 
objects that vary greatly in different environments, such as lights on the 
ceiling. More training pictures are required to solve this problem. Sec-
ondly, although we have already enlarged the number of reconstructed 
categories in the indoor environment, many other objects are still 
missing, such as desks, bookshelf, etc. These elements are also valuable 
in an information-rich building twin. 

Fig. 18. Input point cloud and created elements of building twin.  

Table 4 
Segmentation mIoUs of small objects in our point cloud.  

Board Door sign Elevator button Emergency switch Fire extinguisher Escape sign Light Light switch Pipes Smoke alarm Socket Speaker 

68.0 67.0 80.8 62.2 85.7 70.1 79.9 47.6 39.1 48.6 61.1 64.5  
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5. Conclusion 

In conclusion, we propose a novel pipeline to enrich the geometric 
digital twin of buildings with small objects along with useful text in-
formation. It can be used to enrich and complete as-built models 

generated by other methods of creating digital twins. The contributions 
of the paper are as follows: 

a) Unlike most previous work that used only laser scanning or 
photogrammetric technologies, we fuse both to enhance information 
input. Semantic information detected by deep learning in image 

Table 5 
Light radius comparison between model created from our approach and manually created model: (m).  

No. Radius Ground truth Deviation (abs.) Deviation (rel.%) 

1 0.116 0.110 0.006 5.5 
2 0.110 0.110 0 0 
3 0.118 0.110 0.008 7.3 
4 0.110 0.110 0 0 
5 0.118 0.110 0.008 7.3 
6 0.121 0.110 0.011 10.0 
7 0.116 0.110 0.006 5.5 
8 0.117 0.110 0.007 6.4 
9 0.118 0.110 0.008 7.3 
10 0.117 0.110 0.007 6.4 
11 0.121 0.110 0.011 10.0 
12 0.113 0.110 0.003 2.7  

Table 6 
Speaker radius comparison between model created from our approach and manually created model: (m).  

No. Radius Ground truth Deviation (abs.) Deviation (rel.%) 

1 0.072 0.070 0.002 2.9 
2 0.063 0.070 0.007 10.0 
3 0.068 0.070 0.002 2.9 
4 0.073 0.070 0.003 4.3  

Table 7 
Smoke alarm radius comparison between model created from our approach and manually created model: (m).  

No. Radius Ground truth Deviation (abs.) Deviation (rel.%) 

1 0.030 0.035 0.005 14.3 
2 0.032 0.035 0.003 8.6 
3 0.025 0.035 0.010 28.6 
4 0.028 0.035 0.007 20.0 
5 0.027 0.035 0.008 22.9  

Fig. 19. Comparison of recognition results between non- and horizontally-oriented text.  
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recognition is mapped into a 3D point cloud to obtain point clusters of 
different classes; 

b) We put emphasis on the object classes in building twins that 
represent electrical elements (light switch, light, speaker, socket, 
elevator button), safety elements (emergency switch, smoke alarm, fire 
extinguisher, escape sign), plumbing system elements (pipe), and other 
objects with useful information for facility management (door sign and 
boards); 

c) Apart from geometric and semantic information, we apply text 

Fig. 20. Counterclockwise rotation to horizontal position.  

Table 8 
Recognised text and prediction score.  

Image nr. Text Score 

1 501529/01 0.99995 
2 LO/SEZSLOS 0.78154 
3 501529/01 0.99824 
4 LO/62SLOS 0.84252  

Fig. 21. Ray-casting result with different voxel sizes.  
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detection and recognition technology to extract useful text information 
such as serial numbers and object IDs for related objects; 

d) The whole processing pipeline is almost completely automated. 
The only step that requires manual work is registering the photogram-
metric and laser-scanned point cloud, which can be easily achieved by 
off-the-shelve software products. 

In future, we want to collect more data and continue adding more 
classes (like furniture) to the building twin. While we only fit simple 
geometric shapes (like a cylinder) to the extracted point clusters at 
present, more complex shapes or CAD models can be considered as a 
potential improvement for the building twin. Furthermore, we would 
also combine 3D deep learning in the point cloud and 2D deep learning 
in images in one framework that can probably improve the segmentation 
performance. 
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