
Pattern Recognition 127 (2022) 108648 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Automatic fine-grained glomerular lesion recognition in kidney 

pathology 

Yang Nan 

a , 1 , ∗, Fengyi Li b , 1 , Peng Tang 

c , Guyue Zhang 

b , Caihong Zeng 

d , Guotong Xie 

b , ∗, 
Zhihong Liu 

d , ∗, Guang Yang 

a , ∗

a National Heart and Lung Institute, Imperial College London, London, United Kingdom 

b PingAn Healthcare Technology, Shanghai, China 
c Department of Informatics, Technical University of Munich, Munich, Germany 
d National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China 

a r t i c l e i n f o 

Article history: 

Received 29 October 2021 

Revised 15 February 2022 

Accepted 11 March 2022 

Available online 12 March 2022 

Keywords: 

Deep convolutional neural network 

Glomerulus segmentation 

Fine-grained lesion classification 

Uncertainty assessment 

Kidney pathology 

a b s t r a c t 

Recognition of glomeruli lesions is the key for diagnosis and treatment planning in kidney pathology; 

however, the coexisting glomerular structures such as mesangial regions exacerbate the difficulties of 

this task. In this paper, we introduce a scheme to recognize fine-grained glomeruli lesions from whole 

slide images. First, a focal instance structural similarity loss is proposed to drive the model to locate 

all types of glomeruli precisely. Then an Uncertainty Aided Apportionment Network is designed to carry 

out the fine-grained visual classification without bounding-box annotations. This double branch-shaped 

structure extracts common features of the child class from the parent class and produces the uncertainty 

factor for reconstituting the training dataset. Results of slide-wise evaluation illustrate the effectiveness 

of the entire scheme, with an 8–22% improvement of the mean Average Precision compared with remark- 

able detection methods. The comprehensive results clearly demonstrate the effectiveness of the proposed 

method. 

© 2022 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Immunoglobulin A nephropathy (IgAN) is the leading cause 

f chronic kidney disease worldwide, especially in Asian regions, 

ith nearly 40% of patients developing the end-stage renal disease 

ithin decades. Patients with this nephropathy have varied histo- 

ogical lesions, ranging from crescentic glomerulonephritis, mesan- 

ial proliferation to global and segmental sclerosis. The five main 

ypes of structure () in IgAN ( Fig. 1 ) includes Neg (tubule and arte-

iole), GS (Global Sclerosis), C (Crescent), SS (Segmental Sclerosis) 

nd NoA (None of Above). However, due to the collapse and prolif- 

ration of capillary loops, some pathological changes in IgAN share 

 high visual similarity that even pathologists cannot achieve sat- 

sfactory agreement. A previous study found a low intra-class cor- 

elation coefficients of recognizing SS (0.66) and C (0.46) in IgAN, 

iven by three to five pathologists [1] . Evidently, there is an urgent 
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eed to shift the balance of pathological changes’ identification to- 

ards more objective and quantification. 

As digital pathology evolves, biopsy tissues can be scanned as 

hole slide images (WSIs) through micro-scanners. Meanwhile, the 

emarkable success of deep convolutional neural networks also 

rovide pathways to address the above intractable issues. With 

hese efforts, researchers have studied computer-aided diagnosis 

or renal pathological feature recognition, including glomeruli loca- 

ion and lesion classification. Current location methods are mainly 

ased on the combination of patch-wise predictions, including de- 

ection [2] and segmentation [3] of numerous glomeruli in large 

atches, or binary classification (glomerulus or non-glomerulus) in 

mall patches [4] . However, most existing studies typically focus on 

lassifying sclerosis and non-sclerosis and do not involve compli- 

ated lesion types, indicating the insufficient exploration of IgAN. 

o identify complex pathological changes in IgAN, several difficul- 

ies need to be addressed. Firstly, each glomerulus should be ac- 

urately localized. In addition, glomerular lesions with low intra- 

lass variances should be precisely classified, even under an im- 

alanced data distribution. Unfortunately, most fine-grained classi- 

cation tasks were performed on natural images [ 5 , 6 ] with rela-

ively unitary background regions, which are contrary to the com- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Glomeruli in IgAN whole slide images with periodic acid–Schiff stain. Pathological changes of sclerosis and crescent are marked with yellow and cyan boxes, respec- 

tively. 

Fig. 2. Overview of the proposed scheme. The fine-grained detection task is divided into two sub-tasks, including glomerulus location and fine-grained classification. 
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lex background regions in renal pathological images (Supplement- 

ig. 1). Besides, methods that heavily rely on part annotations [7] , 

uch as bounding boxes or masks that label the sub-regions, are 

mpractical for medical images due to the high cost of manual an- 

otations. For fine-grained recognition, the network should assess 

he ‘confidence’ of its prediction to express the certainty of its out- 

ut. Unfortunately, methods such as Bayesian deep learning and 

onte Carlo dropout require repetitious inferences, which are in- 

onvenient and time-consuming. Last but not least, the network 

pplied in medical image analysis should be able to reduce the 

egative impact of inconclusive annotations. 

In this paper, we present the first attempt to conduct fine- 

rained visual recognition (FGVR) in large-scaled whole slide im- 

ges, aiming to recognize complex pathological changes in IgAN. 

ifferent from previous works, FGVR aims to locate but distinguish 

ne-grained subcategories.. To address the weak capacity of exist- 

ng detection modules (such as Mask R-CNN [8] , FCOS [9] , etc.) 

n FGVR task, we propose a two-stage scheme, with glomerulus 

egmentation and classification, respectively. Initially, a focal in- 

tance structural similarity (FISS) loss is presented to acquire ac- 

urate segmentation results. It coalesces focal loss with instance 

tructural similarity loss to accurately segment the boundary of 

he glomerulus. Then, the glomerular lesions are divided into two 

roups based on pathological representation and lesion severity, 

ith Neg, GS, CSN (the combination of C, SS, and NoA) as a parent

lass and C, SS, NoA as a child class. Based on this definition, an

ncertainty-Aided Apportionment Network (UAAN) is proposed to 

lassify complex pathological changes in IgAN, yielding two groups 

f predictions (corresponded to the parent and child classes) and 

heir uncertainty. This uncertainty indicates the confidence coeffi- 

ient of the prediction of the proposed network, which can be fur- 

her applied to data reconstitution, including seeking missing an- 

otations, mislabeled, and hard samples. With this indicator, the 

ncertain annotations can be picked up, rechecked, and analyzed 

y experts. To better illustrate the mechanism of UAAN and the 

a

2 
nterpretability, heatmaps from different layers are visualized us- 

ng Gradient weighted Class Activation Mapping (Grad-CAM) [10] . 

esides, uniform manifold approximation and projection (UMAP) 

11] is applied to demonstrate the data distribution before and af- 

er data reconstitution. Experimental results on the Warwick-QU 

ataset [12] and our in-house renal pathology dataset are reported, 

ith a patch-wise and a slide-wise evaluation respectively. 

The main contributions of our work are: 

• We have introduced a scheme for fine-grained visual recogni- 

tion in kidney pathology, aiming to detect complex pathological 

changes in IgAN. 
• We have proposed a focal instance structural similarity loss to 

improve segmentation performance by assessing the structural 

integrity through the instance. 
• We have designed an effective architecture for fine-grained 

classification and uncertainty assessment, with detailed abla- 

tion experiments and heatmap visualization. 
• Comprehensive experiments have been conducted on multi- 

levels (patch-wise and slide-wise) to prove the effectiveness of 

our proposed network. 

. Related work 

.1. Loss functions for accurate segmentation 

The common loss functions mainly consist of Dice coefficient 

oss, cross-entropy loss, Jaccard loss, and focal loss [13] . In addition 

o the well-known losses, Tversky loss [14] was proposed as an ex- 

ension to the Jaccard loss, which restricted false positive and false 

egative rates through hyperparameters α and β . Lovasz loss com- 

ined Jaccard loss with Lovasz extension to find the minima of the 

ubmodular function [15] . Structural similarity was also introduced 

s an optimization function for segmentation based on sliding win- 

ows [16] . However, existing studies for segmentation losses barely 

ssess the predictions through instance level [17] . Specifically, the 
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oss function should be designed considering each object within 

he image respectively, rather than adopting the same strategy for 

ll the objects. In other words, the penalty of missing a small ob- 

ect should be higher than missing an equivalent area within the 

arge object. 

.2. Fine-grained visual classification 

The fine-grained visual classification (FGVC) was first defined 

o classify different species of birds from images with a single 

bject [ 18 , 19 ]. It could be divided into region-based and feature

xpression-based methods. The region-based approaches [ 20 , 21 ] 

redominantly involved independent locations and fine-grained 

eature learning (forcing the classification model to learn discrim- 

native features within specific regions). The feature expression- 

ased methods normally required complex architectures or custom 

perations. Wu et al [22] . built a multi-path model consisting of 

 + 1 branches (M is the number of stain modalities), aiming to 

xtract the complementary features from different stain modalities 

f a certain image. Ji et al [23] . incorporated convolutional oper- 

tions along the edges of the tree structure and used the rout- 

ng functions in each node to determine the root-to-leaf computa- 

ional paths within the tree. However, due to the complex and var- 

ous background samples, methods on natural images could barely 

chieve satisfactory performance in pathological studies. 

. Method 

.1. Overview 

Given a whole slide image H ∈ R W ×H× 3 that can be divided 

nto N P large patches P ∈ R w ×h × 3 and binary mask M ∈ R w ×h , 

he target bounding boxes B ∈ R n I × 4 are first extracted to train 

he segmentation module G ω . Optimized by the proposed Focal In- 

tance Structural Similarity loss ( L F ISS ), G ω aims to locate all types 

f the glomeruli for fine-grained classification. Then the classifica- 

ion module D θ is trained to predict the categories J of all seg- 

ented objects and produce the corresponding confidence coeffi- 

ient C as 

J, C = D ( G ( P, B;ω ) , F, l CSN ; θ ) (1) 

here F denotes the fixed samples, l CSN indicates CSN index lists 

details can be found in 3.3.1), ω and θ are the parameters of the 

egmentation module G ω and classification module D θ . During the 

nference, the glomeruli are extracted by the segmentation model, 

nstead of ground truth annotations. 

.2. Accurate segmentation of glomeruli using FISS 

In this study, the segmentation module G ω is modified based on 

egNet [24] , introducing the group normalization and leaky relu. 

urrently, most segmentation losses are designed based on over- 

ap measurements, while it makes the network only focus on the 

orrect ratio of predicted pixels to the ground truth. To address 

his issue, a compound loss (DL + FISS) that considers overlap and 

egional structural similarity is introduced, which can be easily 

dopted in various architectures. The FISS loss combines focal loss 

 F with instance structural similarity (ISS) loss L ISS 

 F ISS = α · L F ( p, g ) + β · L ISS ( p, g, B ) (2) 

here α and β are constraint weights, p and g represent the pre- 

iction and ground truth, B indicates the bounding box of each 

arget in the ground truth. Since we want to balance the constraint 

rom L F and L ISS , we set both α and β to 1, which was also proved 

ppropriate in our initial pilot study. The Instance Structural Simi- 

arity (ISS) loss is inspired by Wang et al. [25] , aiming to assess the
3 
tructural integrity of each target 

L ISS = 1 − ( IS S P + IS S N ) , (3) 

here IS S P is the instance similarity of the image with Region of 

nterests (ROI) and IS S N indicates the similarity of background sam- 

les (images without ROI). For images with multi-objects, ISS first 

valuates the similarity between the prediction and the ground 

ruth of each object. Then, a list that includes similarity indexes 

f instances is acquired, e.g., list [ I 0 , I 1 , I 2 , I 3 , I 4 , I 5 ] will be ac-

uired when there are six instances within the input image (shown 

n Supplement-Fig. 2). Let n I be the number of instances in an 

nput image x, μi , σi be the mean and variance of i -th instance 

ithin the x, the IS S P can be given through 

S S P = 

1 

n I 

∑ n I 

i =1 

(
2 μp i μg i + c 1 i 

)(
2 σp i g i + c 2 i 

)
(
μ2 

p i 
+ μ2 

g i 
+ c 1 i 

)(
σ 2 

p i 
+ σ 2 

g i 
+ c 2 i 

) , (4) 

here p i and g i indicate the region of the i th instance extracted 

rom the prediction and the ground truth of x. Instances that are 

maller than the sliding window during similarity calculation are 

pplied with zero paddings to ensure the kernel can slide across 

he object. Image without ROI is divided into λ patches (we set λ
o 4) to compute IS S N instead of evaluating the similarity directly 

IS S N = min [ SSIM ( G 1 , P 1 ) , . . . , SSIM ( G λ, P λ) ] . (5) 

By combining L ISS and L F ocal , it will focus on the imbalanced 

amples while maintaining the structural integrity, which can out- 

ut smoother boundaries and fewer false negative samples. Further 

xploration of FISS is illustrated in Supplement-3. 

.3. Fine-grained lesion classification via UAAN 

This section introduces the details of UAAN ( D θ ), including hi- 

rarchical structure design, feature apportionment mechanism, un- 

ertainty aided data reconstitution, and solutions for imbalanced 

ataset. 

.3.1. Hierarchical structure design 

Deep networks can achieve superior results when categories are 

ndependent and identically distributed. However, due to the com- 

lex pathological changes in IgAN, lesions cannot be well classified 

hrough normal solutions. In this section, we design a hierarchical 

rchitecture for fine-grained classification, with the parent branch 

 p for classifying classes with large variation and child branch B c 
or dividing class with small variation (shown in Fig. 3 ). 

The backbone of UAAN is inspired by the Inception-ResNetV2 

26] by introducing Group normalization, PReLU [27] (to 

trengthen the generalization ability), and basic convolution 

lock (including convolution layer, GN, and PReLU). After the back- 

one, feature maps are separately transported to two sub-branches 

 B p and B c ) through CSN index list l CSN , which is acquired during 

he data preparation with its elements representing the index 

f CSN samples in current batch. Assume a batch of N images 

ontaining m CSN samples, then B c ∈ R m ×w 

′ ×h ′ ×c ′ , B P ∈ R N×w 

′ ×h ′ ×c ′ , 
here w 

′ , h ′ , c ′ is the number of width, height, and channel in the

ast feature map of the backbone. This unique mechanism requires 

hat each batch should include at least one CSN sample. 

After the backbone of UAAN, the B p and B c are performed to 

ive parent and child class predictions, respectively. In addition, a 

eature apportionment mechanism is proposed between these two 

ranches to transfer valuable information of subcategories. In both 

 p and B c , the global maxpooling layers (GMP) are applied to ex- 

ract the most intense response in each channel in the last feature 

ap. And the dropout layers are implemented to force the net- 

ork to learn more robust features that are useful in conjunction 

ith different random subsets of other neurons. Details of the two 

ranches can be found in Fig. 4 . 
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Fig. 3. The schematic diagram of the uncertainty-aided apportionment network. Each input mini-batch includes regular samples, a fixed sample, and a CSN index list. 

Fig. 4. The schematic diagram of the specific layers of the UAAN is shown in A. Parent branch. B. Feature apportion layer. C. Child branch. 
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.3.2. Feature apportionment mechanism 

Feature apportionment plays a crucial role in UAAN and is per- 

ormed through the Grasper layer ( Fig. 4 B), aiming to extract CSN 

ommon features in the latent feature space. There are 5 classes: 

eg, GS, C, SS, NoA, with a small inter-class variance between C, SS 
4 
nd NoA, and large inter-class variance between Neg, GS and CSN 

the union of C, SS and NoA). 

The gather operation in the Grasper layer extracts the certain 

eature maps of CSN, based on l CSN . Since B p is designed to clas- 

ify Neg, GS, and CSN (here C, SS and NoA are regarded as a sin-
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le parent class), the layers in B p aims to learn discriminative fea- 

ures among Neg, GS, and CSN samples. Therefore, the CSN feature 

n B p can be regarded as the common feature of C, SS, and NoA 

 f c−CSN ) that rarely exists in GS and Neg samples (e.g., capillary 

oops, mesangial regions). On the contrary, since B c aims to classify 

he C, SS, and NoA, layers in B c are optimized to extract discrimina- 

ive features of child classes. Therefore, the utilization of common 

nd discriminative features can be promoted by transferring f c−CSN 

rom B p to B c through a sigmoid activation layer. This mechanism 

ill help the network not only be trained with the discriminative 

eatures but also make use of common features. 

.3.3. Uncertainty aided data reconstitution 

The hard samples in this study are samples that include 

any resembled features (or similar morphological characteristics) 

mong C, SS, and NoA. For instance, the mesangial proliferation 

nd crescent may co-exist in a single glomerulus, and experts usu- 

lly give out their subjective judgment according to the severity 

egree. Due to these hard samples, even a large amount of data is 

rovided, the network training can barely get good results. This is 

ecause including these samples in the training set makes it diffi- 

ult for the network to extract features that are highly related to 

he real sub-category. In natural image analysis, these ‘unreliable’ 

nd hard samples are usually tracked, relabeled, and augmented to 

nhance the capacity of computational modules. However, it is un- 

ffordable f or biomedical image analysis due to the heavy cost of 

xpert annotation. We hold that some hard samples do not help to 

rain a robust module, which leads to a negative swing of classifi- 

ation boundaries. 

To bridge this gap, an uncertainty assessment is proposed to 

utput the confidence coefficient of the prediction as to remove 

unreliable’ and hard samples from the raw training set, calculated 

rom the logits of the softmax layer S (p) ( S (c) ) and vectors of the 

MP layer ϕ 

(p) ( ϕ 

(c) ) in both B c and B p . Deep networks can be re- 

arded as powerful feature extractors that extract multi-level fea- 

ures in different layers. The dense layer and global pooling (GP) 

ayer are in charge of dimension reduction, while the prediction is 

sually given in the last dense layer by weighing up the “evidence”

rom the previous layer. Because the input of the softmax layer is 

erived from the representation of a high dimensional feature vec- 

or, we consider the output of the softmax layer (representing a 

robability distribution over n different possible outcomes) as the 

stimated probability density P e . Thus, the feature vectors S (p) ( S (c) ) 

re considered as the estimated probability density P 
(p) 
e (P ) (c) 

e . 

P ( 
p ) 

e , ( P ) ( 
c ) 

e = φ( D ( I G , F, l CSN ; θ ) ) , (6) 

here I G refers to each glomerulus segmented by G ω , φ indicates 

oftmax activation, P 
(p) 
e , (P ) (c) 

e represent the estimated probability 

ensity of B c and B p . Besides, since the output ϕ 

(p) ( ϕ 

(c) ) of the 

ast convolution layer can be regarded as the representation of I G , 

he distribution of ϕ 

(p) ( ϕ 

(c) ) is close to the original distribution 

f the category that I G belongs to. Thus, ϕ 

(p) and ϕ 

(c) are used 

o calculate the raw probability density function P 
(p) 
r (P ) (c) 

r to ap- 

roximate the real probability distribution. Assuming the glomeruli 

eature distribution follows a Gaussian distribution, the feature 

ectors ϕ 

(p) and ϕ 

(c) are considered as a sampling from fea- 

ure space. Therefore, the mean μ(p) ( μ(c) ) and variance σ (p) ( σ (c) ) 

f ϕ 

(p) ( ϕ 

(c) ) , and the corresponding predictions can be calculated 

nd substituted into 

P r ( μ, σ ) = 

1 √ 
2 πσ

e 
− | k −μ| 2 

2 σ2 

∑ K−1 
k =0 

1 √ 
2 πσ

e 
− | k −μ| 2 

2 σ2 

(7) 

o calculate the probability density function P , where K is the num- 

er of classes. 
5 
With the estimated probability density function P e and the raw 

robability density function P r , the uncertainty factor can be calcu- 

ated using 

U ( P r , P e ) = 1 −
∑ K−1 

k =0 ( p k r −P̄ r ) ( p k e −P̄ e ) √ ∑ K−1 
k =0 ( p k r −P̄ r ) 

2 
√ ∑ K−1 

k =0 ( p k e −P̄ e ) 
2 
, (8) 

here P r and P e are denoted as 

 ̄r = 

1 
K 

K−1 ∑ 

k =0 

p k r 

P̄ e = 

1 
K 

K−1 ∑ 

k =0 

p k e 

. (9) 

With this uncertainty factor, data reconstitution can be intro- 

uced to pick out and remove the ‘unreliable’ and hard samples. 

uring the training procedure, the model was first trained from 

cratch on the raw dataset D r , and then inferenced on D r to con- 

uct data reconstitution. The annotation is considered credible if 

here exists a strong correlation between P r and P e , and vice versa. 

ased on the uncertainty index, we picked up 2.33% NoA, 35.91% 

S, 15.15% C, and 6.42% GS in total (when the uncertainty threshold 

as set as 0.5). Then, those "unreliable" samples are removed from 

 r to reconstitute the training set D c with the convinced samples. 

t is of note that the evaluation dataset remains unchanged during 

he entire period. 

.3.4. Solutions for the imbalanced dataset in classification 

Details of imbalanced solution is presented in Supplement-4. 

. Experiments and results 

.1. Datasets and training strategies 

The datasets in this study include Warwick-QU and our in- 

ouse Renal Pathological Whole Slide Images (RP-WSIs). The 

arwick-QU dataset is used to assess the effectiveness of FISS loss 

since segmentation of circular glomeruli is a relatively simple task 

ompared to segmentation of various glands). The RP-WSIs is used 

o assess the effectiveness of. Details of these two sets are shown 

n Supplement-5. 

Warwick-QU Dataset: The Warwick-QU [12] includes 85 train- 

ng images and 80 test images, with the outer margin of glands 

nnotated. The size of these images is 775 × 22 pixels. 

Renal Pathological Whole Slide Images (RP-WSIs): 400 Peri- 

dic acid–Schiff stained WSIs of patients with biopsy-proven IgAN 

re selected from the National Clinical Research Center of Kid- 

ey Diseases in Jinling Hospital, ranging from 10,0 0 0 × 30,0 0 0 

o 30,0 0 0 × 50,0 0 0 pixels. Essentially, 30 0 WSIs were used for

raining and validation and 100 WSIs were used for testing [28] . 

etails of preprocessing and training strategies can be found in 

upplement-6. 

.2. Evaluation scheme and metrics 

The evaluation scheme is divided into patch-wise and slide- 

ise. Patch-wise experiments aim to prove the capacity of FISS loss 

nd UAAN, while those slide-wise are designed to demonstrate the 

omprehensive performance of the proposed scheme. 

.2.1. Patch-wise evaluation 

a) Evaluation of FISS Loss aims to illustrate the effectiveness 

of the FISS loss without considering any other interferences 

such as network architecture, tricks, data augmentation, and 

unique training strategies. We implemented ablation experi- 

ments without changing the network architecture to give. The 

participated loss functions include Dice coefficient loss (DL), 

Cross-Entropy loss (CE), Focal loss (FL), Tversky loss, Lovasz loss, 
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Table 1 

Ablation study of UAAN. 

Feature Apportionment Uncertainty Ac c micro Ac c macro 

× × 0.8960 0.8677 

× √ 

0.9132 0.8935 √ × 0 0.9294 0.8723 √ √ 

0.9517 0.9146 

Table 2 

Results of fine grained glomeruli lesion classification. 

Model Ac c micro - D r Ac c micro - D c Ac c macro - D c 

ResNet-50 [31] 0.8495 0.8717 0.7773 

ResNeXt-50 [32] 0.8294 0.8474 0.6568 

DenseNet-121 [33] 0.8635 0.8817 0.7757 

EfficientNet-B6 [34] 0.9092 0.9235 0.7899 

Inception-ResNet-v2 [26] 0.8507 0.8830 0.7396 

Mean Teacher (70% annotation) [35] / 0.7605 0.6067 

DCL [36] 0.8176 0.8373 0.6770 

SE-ResNeXt-101 [37] 0.8943 0.9106 0.7638 

DenseNet + LSTM-GCNet [38] 0.9120 0.9295 0.8263 

UAAN (ours) 0.9294 0.9517 0.9146 
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SSIM loss, Instance Structural Similarity loss (ISS), and Focal In- 

stance Structural Similarity loss (FISS). Assume P as the predic- 

tion given by the segmentation network and G represents the 

ground truth, the segmentation task is assessed through Dice 

coefficient. 

Dice = 

2 | P ∩ G | 
| P | + | G | . (10) 

All these losses are trained on the same network without any 

rchitectural modification. 

a) Evaluation of UAAN consists of five parts. Firstly, we adopt 

ablation experiments to analyze the effectiveness of differ- 

ent techniques in UAAN, including feature apportionment and 

uncertainty-guided data reconstitution. All these models are 

trained from scratch and optimized by weighted cross-entropy 

loss with the same parameters. Secondly, we explore the per- 

formance of different networks to illustrate the capacity of the 

proposed UAAN on the raw dataset D r (without data recon- 

stitution) and convinced dataset D c . Assume K as the number 

of classes, N as the number of whole test images. The micro- 

accuracy and macro-accuracy are reported as: 

Ac c micro = 

T P + T N 

T P + T N + F P + F N 

Ac c macro = 

∑ K 
i =0 

T P i 
N i 

K 

. (11) 

here N is the total number of tested images and K is the num- 

er of classes, T P i , N i are the number of true positive, number 

f samples corresponding to the ith category, respectively. Thirdly, 

e visualize heatmaps of comparison models and that of the dif- 

erent layers in UAAN by Grad-CAM [10] . Heatmaps of the last 

onvolution block in the parent branch f F AM 

, common features 

f CSN f c−CSN , and refined feature map of CSN f r−CSN are visual- 

zed. Fourthly, we expurgate the “unreliable” data under different 

ncertainty thresholds from D r and perform a second review by 

xperts to explore the influence of different uncertainty thresh- 

lds. At last, the data distribution in latent space before and af- 

er uncertainty-aided data reconstitution is visualized by uniform 

anifold approximation and projection (UMAP) [11] , calculated by 

ectors from GMP and Dense layer. 

.2.2. Slide-wise evaluation 

The overall performance of the proposed scheme on whole slide 

mages is assessed through the commonly used metric Average 

recision (AP) and mean Average Precision (mAP). In this exper- 

ment, the ground truths (bounding boxes with classes tag) are 

enerated through glomeruli boundaries given by experts. During 

he evaluation, the segmentation is first conducted to locate all 

lomeruli (stage-1), followed by the classification (stage-2). The in- 

uts of classification are given by cropping the minimum bounding 

oxes of segmented glomeruli (given from stage-1). It is of note 

hat all segmented objects except tiny objects (area less than 100 

ixels) will be transferred to UAAN including incorrect-segmented 

amples. Then, the classification module produces category predic- 

ions of these cropped rectangles, and the probability given from 

tage-2 is regarded as the confidence threshold in mAP computa- 

ions. Objects with a certain IoU threshold are considered as true 

ositive samples (threshold 0.5 in our experiments). We compared 

he A P 50 (mean average precision with 0.5 IoU thresholds) of each 

ubcategory among our scheme and various detection methods, in- 

luding Mask R-CNN [8] , FCOS [9] , Mask Scoring R-CNN [29] , and

ascade R-CNN [30] . All these models are trained from scratch 

ithout any pre-training. 
6 
.3. Results 

.3.1. FISS evaluation 

Experimental results on Warwick-QU and RP-WSIs-P datasets 

or FISS loss are reported in supplement-7 through Dice coefficient 

core. 

.3.2. Uncertainty-aided apportionment network evaluation 

Ablation Study of UAAN. The effectiveness of different tech- 

iques is presented in Table 1 . It can be found that employing fea-

ure apportionment significantly improves micro-accuracy (with a 

.34% relative gain), while the uncertainty-aided data reconstitu- 

ion effectively improves the macro-accuracy (with a 2.58% gain). 

hen employing both feature apportionment and data reconsti- 

ution, there was a significant increase in both micro (5.57%) and 

acro (4.69%) accuracy compared with the baseline module. 

Comparison of Fine-Grained Classification. UAAN is highly capa- 

le when dealing with fine-grained classification and outperforms 

ll competing architectures at this task ( Table 2 ). 

The proposed UAAN achieves the best performance on both 

 r and D c with 95.07% micro-accuracy (3–11% relative gain) 

nd 91.28% macro-accuracy (12–26%), respectively. It surpasses 

early 4% than EfficientNet-B6, 5.2% than SE-ResNeXt-101, 8% than 

nception-ResNet-V2 and DenseNet-121. Meanwhile, it demon- 

trates that by reconstituting the training set through uncertainty 

actor, the performance of all comparison models has been signifi- 

antly improved, with 1–4% micro-accuracy gain. 

Visualization of heatmaps. Heatmaps of UAAN and competing 

etworks are shown in Fig. 5 using Grad-CAM. The final predic- 

ion of UAAN is marked by black bounding boxes and the patho- 

ogical changes in GS, C, and SS are annotated with yellow curves, 

hile the “None” in f r−CSN indicates the heat map of these two cat- 

gories is not available in the child branch. It is obvious that heat 

aps of f c−CSN (marked by the green rectangle) are highly related 

o the CSN common features, highlighting the capillary loops, in- 

rinsic cells, and mesangial matrix. During the training procedure, 

hese features are filtered by the grasper layer and conveyed to the 

hild branch to enhance the common information. 

The highlight regions in f F AM 

straightly reflect where the net- 

ork is “focusing”, which directly affects the predictions among 

eg, GS, and CSN. For instance, the highlight regions in f F AM−NoA , 

f F AM−SS , and f F AM−C completely focus on the capillary loops, while 

he f F AM−GS focuses on the mesangial region and f F AM−Neg concen- 

rates on tubules and arteriole. Relevantly, these structures are ex- 
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Fig. 5. Heatmap visualization of comparison models and different stages in UAAN. The heatmaps of the final prediction of UAAN are marked by black boxes and heatmaps 

of f c−CSN are marked by the green rectangle. 

Fig. 6. Visualization of data distribution before (a–c) and after (d–f) data reconstitution via UMAP. (a) and (d) adopt the estimated probability vector from the last dense 

layer, (b) and (e) refer to raw probability vector from the GMP layer, (c) and (f) include both estimated and raw probability vector. 
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Table 3 

Performance of glomeruli detection. 

Model A P NoA A P SS A P GS A P C mAP

Mask R-CNN [8] 0.705 0.103 0.707 0.240 0.439 

FCOS [9] 0.789 0.280 0.751 0.336 0.539 

MS R-CNN [29] 0.674 0.110 0.555 0.230 0.392 

Cascade R-CNN [30] 0.785 0.165 0.780 0.194 0.481 

Our Method (full 2-stage) 0.780 0.394 0.718 0.575 0.613 

v

S

M

p

8

s

s

b

i  

c

p

a

m

i

s

g

ctly the main characteristics of distinguishing Neg, GS, and CSN 

y pathologists. Since the output of B child only contains C, SS, and 

oA, heat maps of Neg and GS are not available in f r−CSN and 

re marked with None in Fig. 5 . When observing f r−CSN , the high- 

ight areas appear high variance, with f r−CSN−C focusing on the 

roliferating cells in the Bowman’s space, f r−CSN−SS concentrating 

n the increased mesangial matrix and collapsed capillary loops, 

nd f r−CSN−NoA paying attention to global information (the network 

eeds to check whether there exist pathological changes in each 

orner within NoA samples). 

Ablation Study of Uncertainty Thresholds. The ablation study of 

ifferent uncertainty thresholds is illustrated in Supplement-8. 

Effectiveness of Data Reconstitution Fig. 6 (a–c) shows the data 

istribution before reconstitution, which is disordered, with certain 

oA, SS, and C densely mixed. From observation in Fig. 6 (e–f), em- 

loying data reconstitution via uncertainty factor tends to tear off

hose mislabeled or hard samples in feature space, especially for 

S, NoA, and C. While for those low variance categories, such as 

S and Neg, are less affected. The distribution map in Fig. 6 (f) in-

icates that the combination of probability vectors from GMP and 

ense layer exerts the clearest boundary, and the correlation be- 

ween these vectors builds a bridge for uncertainty index. 

.3.3. Slide-wise evaluation 

Table 3 presents the results of the slide-wise evaluation for 

ne-grained glomeruli detection on 100 whole slide images. The 
7 
isualization results of slide-wise evaluation are presented in 

upplement-9. 

Experimental results show that powerful detectors such as 

ask R-CNN, FCOS, MS R-CNN, and Cascade R-CNN present weaker 

erformance than the proposed method (0.613 mAP), with an 

–22% reduction of mAP. To further analyze the evaluation re- 

ults, the Wilcoxon-Mann-Whitney test is adopted. Statistical re- 

ults show that there is no significant differences ( p -value > 0.05) 

etween the proposed method and the above two when identify- 

ng GS ( p-value = 0.0727 for FCOS & ours, p-value = 0.0619 for Cas-

ade R-CNN & ours) and NoA ( p-value = 0.0895 for FCOS & ours, 

-value = 0.0978 for Cascade R-CNN & ours) samples. Though FCOS 

nd Cascade R-CNN appear similar performance to the proposed 

ethod in identifying NoA and GS samples, they show poor capac- 

ty in distinguishing SS and C. By contrast, the proposed method 

hows balanced performance and can effectively detect all kinds of 

lomerular lesions, especially for SS and C. 
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. Discussion 

This section provides discussions on the proposed method, in- 

luding (1) quantitative analysis of segmentation losses (2) fine- 

rained classification in pathological images (3) uncertainty assess- 

ent in the deep convolutional neural network, and (4) the limi- 

ation when current detection-based methods dealing with FGVR 

asks. 

Segmentation Loss Functions . We have compared different loss 

unctions with the FISS loss by evaluating the Dice score on sim- 

lated experiments, Warwick-QU and renal pathology datasets, 

espectively. Supplement-Fig. 3 shows that the proposed com- 

ound loss is the most sensitive one to different sizes of tar- 

ets. Supplement- Table 3 indicates the model trained with the 

roposed compound loss can achieve better performance among 

ainstream loss functions, including Dice loss, cross-entropy loss, 

ocal loss, Tversky loss, Lovasz loss, and SSIM loss. Although train- 

ng with Dice loss and other aided losses could effectively suppress 

alse-positive samples, it also leads to more false-negative samples, 

hile applying DL + FISS loss can achieve an equilibrium, perform- 

ng better boundaries and smooth predictions. Although there is a 

light reduction of the structural integrity, employing DL + FISS ac- 

ually achieves better performance compared to using the DL + ISS 

nly. 

Fine-Grained Classification in Pathological Images. The ablation 

tudy in Table 1 reminds researchers to make better use of com- 

on features between different categories, instead of only forcing 

he network to focus on discriminative regions. As Table 1 shows, 

eature apportionment mainly helps the network to distinguish 

oA from C and SS, while classifying C and SS still requires a 

leaner data constitution. Through the reconstitution of the train- 

ng set, the classification module can find a better boundary to dis- 

inguish fine-grained classes. By integrating uncertainty-aided data 

econstitution with a feature apportionment mechanism, both the 

icro and macro accuracy are significantly improved. In Table 2 , 

he proposed method has gained a competitive edge over other ba- 

ic models, with 95.07% micro-accuracy (3–11% relative gain) and 

1.28% macro-accuracy (12–26%). This huge gap has indicated the 

oor classification ability of current competitive models [ 26 , 31–

4 , 36 , 37 ] when dealing with data imbalanced issue. Compared 

ith most fine-grained classification methods, the proposed UAAN 

as several advantages: (1) It has not required a large number 

f branches or generative models (2) It has considered both dis- 

riminative features and common features between subcategories, 

nstead of focusing on the discriminative part only (3) It has a 

treamlined structure and can be further improved by adding com- 

lex operations such as atrous spatial pyramid pooling and atten- 

ion module. (4) It has not required any part annotations or sub- 

etworks. 

Interpretability of UAAN. The visualization of heat maps at dif- 

erent layers has proved the reasonability of our architectural de- 

ign. Besides, we have presented heatmaps of the comparison 

odels in terms of different glomerular lesions. Among these five 

ategories, SS has been found as the most difficult class for recog- 

ition, with only UAAN and DenseNet-121 focusing on the right 

lace. As Fig. 5 illustrated, even some state-of-the-art models exert 

igh accuracies (such as SE-ResNeXt-101, EfficientNet-B6), their at- 

ention regions have not been fully concentrated on the pathologi- 

al changes. In contrast, UAAN’s attention is much closer to pathol- 

gists, performing high interpretability of the prediction. 

Uncertainty in Deep Convolutional Neural Network. The uncer- 

ainty is quite important in deep convolutional neural networks 

especially in medical applications) since it reflects the confidence 

oefficient of the current predictions. In our study, we have in- 

roduced the uncertainty assessment by calculating the correlation 

etween two probability densities. Although our assessment has 
8 
ot provided a strict uncertainty calculation using Bayesian infer- 

nce, it can still estimate the confidence coefficient of the pre- 

ictions to some extent. Besides, it has also been used for se- 

ecting low-annotation data and hard samples, which has not re- 

uired multiple forward propagations. The ablation experiments in 

upplement-Table 5 show that, with the increase of uncertainty 

hreshold, fewer samples have been selected while the ratio of the 

islabeled samples is higher. With detailed inspection by three 

enior pathologists, 36% and 55% among the mislabeled images 

ave been corrected as C and SS (in case of U thresh = 0 . 5 ). This

as proved our assumption that the output of the GMP layer is 

ore correlated to the real distribution and can be used to sim- 

late the raw probability density function. If there is no obvious 

orrelation between P r and P e , we consider the features are misrep- 

esented in the last dense layer. That is, the output of the softmax 

ayer represents an erroneous probability distribution due to the 

naccurate feature representation process. It might be the reason 

hy CNN + SVM is better than pure CNN in some previous stud- 

es [39] . Aided by this uncertainty assessment, significant improve- 

ents (1–4%) of micro-accuracy have been achieved by current 

tate-of-the-art models [ 26 , 31–34 , 36 , 37 ] using data reconstitution. 

Comparisons with junior pathologists. We compared the perfor- 

ance of UAAN with a junior pathologist on a pilot dataset (200 

mages per class). The labels of this pilot dataset were given by 

wo senior pathologists, with the inter-observer agreement of Co- 

en’s Kappa = 0.791, p < 0.0 0 01. The junior pathologist achieved 

9.4% accuracy compared to the 90.7% of UAAN’s, while the UAAN 

7.57 ms per glomerulus on Nvidia Tesla V100 16GB, batch size 32) 

s nearly 260 times more efficient compared to a junior patholo- 

ist (2 s per glomerulus), which shows the feasibility of conducting 

athological diagnosis by neural networks. 

Why two stages? Though the current state-of-the-art detec- 

ion modules can achieve competitive performance for locating all 

ypes of glomeruli compared with the two-stage scheme, these 

odules cannot well classify the fine-grained lesions. One main 

eason is the resolution. Due to the scale of viewings, the de- 

ection module can only be well performed under 4X resolution 

2.468 μm/pixel) with an input size of 2048 × 2048, however, un- 

er certain resolution the model cannot extract fine-grained fea- 

ures to distinguish fine-grained subcategories. Moreover, adding 

omplex classification heads accounts for a huge module that leads 

o the shortage of GPU memory. 

Limitations. Although our work has achieved superior perfor- 

ance among the current methods, it has some limitations. The 

roposed two-stage scheme suffers from a complex feature ex- 

raction procedure, and the performance of stage-2 (fine-grained 

lassification) is highly related to that of the segmentation stage. 

or instance, the classification module cannot work well when 

wo contiguous glomeruli cannot be segmented individually. In 

ddition, the various annotation qualities, expert subjectivity, and 

ataset may affect the stability of data reconstitution. Indeed, ex- 

ernal validation can be helpful for testing the generalizability of 

ur proposed deep learning model, but at the moment we have no 

ccess to additional data resources. In lieu of constructing an ex- 

ernal validation dataset, we will publish our implementation on 

pensource platform for reproducibility studies and external vali- 

ation by other researcher groups. 

. Conclusion 

In this study, we have introduced a comprehensive scheme for 

lomeruli lesion recognition, employing focal instance structural 

imilarity loss and the uncertainty-guided apportionment network. 

his work is the first attempt to tackle the fine-grained visual 

ecognition task in pathological image analysis and has achieved 

uperior performance in IgAN whole slide images. Both the focal 
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nstance structural similarity loss and uncertainty-aided apportion- 

ent networks are effective, resulting in more than 8–22% im- 

rovement of the mAP compared with current schemes. The pro- 

osed method provides a high-precision computational scheme for 

ne-grained lesion identification of IgA nephropathy in whole slide 

mages, which helps pathologists make more objective and effec- 

ive clinical diagnoses. For future work, it is of note that the de- 

ected lesions are not specific for IgA nephropathy, and one of our 

uture research directions will be the transfer learning for the le- 

ion’s detection to other nephropathies with a similar presentation, 

.g., lupus nephritis and diabetic nephropathy. 
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