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a b s t r a c t

We extend previous work of max-linear models on finite directed acyclic graphs to
infinite graphs as well as random graphs, and investigate their relations to classical
percolation theory, more particularly the impact of Bernoulli bond percolation on such
models. We show that the critical probability of percolation on the oriented square
lattice graph Z2 describes a phase transition in the obtained model. Focus is on the
dependence introduced by this graph into the max-linear model. We discuss natural
applications in communication networks, in particular, concerning the propagation of
influences.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Extreme value theory is concerned with max-stable random elements which occur as limits of normalized maxima.
he theory has progressed in recent years from classical finite models to infinite-dimensional models (see, for example,
8,27,28]). A monograph relevant in the infinite-dimensional context is [15]. Prominent models are stochastic processes in
pace and/or time having finite dimensional max-stable distributions (e.g., see [9,14,19]). Such processes model extreme
ependence between process values at different locations and/or time points.
Max-linear models are natural analogues of linear models in an extreme value framework. Within the class of

ultivariate extreme value distributions, whose dependence structures are characterized by a measure on the sphere,
hey are characterized by the fact that this measure is discrete (e.g. [29]).

In this paper we connect two research fields, namely max-linear models on directed acyclic graphs and percolation
heory. Directed acyclic graphs, also called Bayesian networks, describe conditional independence properties between
andom variables. Percolation, in particular Bernoulli bond percolation is a simple way of obtaining a random version of
directed acyclic graph using a sample of iid Bernoulli random variables.
We extend previous work of max-linear models on finite directed acyclic graphs (e.g. [10,12,20]) to infinite graphs.

he model allows for finite subgraphs with different dependence structures, and we envision applications where this may
lay a role as, for instance, a hierarchy of communities with different communication structures. Max-linear models on
irected acyclic graphs have been the subject of concrete useful applications, for example in [7] they have been fitted in
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rder to explain properties of European stock markets, in which the economic sector influences the tail behavior of stock
eturns by means of max-linear behavior. The model we propose is quite flexible, as we work on arbitrary subgraphs
f the oriented 2-dimensional lattice, additionally incorporate randomness. Thus our model allows to capture arbitrary
finite) directed acyclic graphs by identifying their edges with paths in our model. Therefore, such directed acyclic graphs
hich can be fitted in the description of European stock markets are included in our model as well.
We investigate the relation of the infinite max-linear model to classical percolation theory, more precisely to nearest

eighbor bond percolation (e.g. [4,13]). We focus on the square lattice Z2 with edges to the nearest neighbors, where we
rient all edges in a natural way (north-east) resulting in a directed acyclic graph (DAG) on this lattice. On this infinite
AG a random sub-DAG may be constructed by choosing nodes and edges between them at random. In a Bernoulli bond
ercolation DAG edges are independently declared open with probability p ∈ [0, 1] and closed otherwise. The random

graph consists then of the nodes and the open edges. The percolation probability is the probability Pp(|C(i)| = ∞), with
|C(i)| denoting the cardinality of C(i), that a given node i belongs to an infinite open cluster C(i), which is 0 if p ≤ 1/2 and
positive for p > 1/2. Kolmogorov’s zero–one law entails that an infinite open cluster exists for p > 1/2 with probability
1, and otherwise with probability 0.

We combine percolation theory with an infinite max-linear model by assigning to each node a max-linear random
variable. Sampling a random graph by Bernoulli bond percolation, we use this subgraph for modeling the dependence
in the max-linear process on the oriented square lattice. The max-linear models we envision are recursively constructed
from independent continuously distributed random variables (Zj)j∈Z2 , which include the class of variables belonging to
the max-domain of attraction of the Fréchet distribution. More precisely, each random variable Xi on a node i ∈ Z2 with
ancestral set an(i) exhibits the property

Xi =

⋁
j∈{i}∪an(i)

bijZj, (1.1)

in distribution on every finite DAG, where bji are positive coefficients. As this model is defined on a random graph it is a
max-linear model in random environment. According to our terminology models investigated in [18,23] can also be seen
as models in random environment. For related work we also refer to [21]. To the best of our knowledge, our model is
the first such model studying the impact of Bernoulli bond percolation on max-linear models in the sense that we show
that classical results regarding two different phases of Bernoulli bond percolation can be transferred into two distinct
phases of typical behavior of naturally investigated properties of max-linear models, namely the dependence structure in
max-linear models.

One prerequisite for this work is the fact that max-stable random variables on different nodes (that is random variables
Xi and Xj) of a DAG are independent if and only if they have no common ancestors, see [12, Theorem 2.3]. As a consequence
of this and percolation theory we find for the subcritical case p ≤ 1/2 that two random variables become independent
with probability 1, whenever their distance tends to infinity. In contrast, for the supercritical case there exists 1

2 < p∗ < 1
such that for p > p∗ two random variables are dependent with positive probability, even when their node distance tends
to infinity.

Finally, we consider changes in the dependence properties of random variables on a sub-DAG H of a finite or infinite
graph on the oriented square lattice Z2, when enlarging this subgraph. The method of enlargement consists of adding
nodes and edges of Bernoulli bond percolation clusters. Here we start with Xi and Xj independent in H , and answer the
question, whether they can become dependent in the enlarged graph. We evaluate critical probabilities such that Xi and
Xj become dependent in the enlarged graph with positive probability or with probability 1. We find in particular that for
every DAG H with finite number of nodes, in the enlarged graph Xi and Xj remain independent with positive probability.
On the other hand, if H has nodes Z2 and percolates everywhere; i.e., every connected component of H is infinite, then
Xi and Xj become dependent with probability 1 in the enlarged graph.

The recursive max-linear process X from Definition 2.1, may be viewed as a model for the communication between
members of an infinitely large network, which may be regarded as an arbitrarily large union of individual networks
of finite size, where each finite network has its own communication structure. These are represented by finite sub-
DAGs. A practical example in which a max-linear process is eligible as a model is given by the exploration of web-based
communication or, more generally, complex networks in which it is of considerable interest to determine (the most)
influential nodes. Concerning web-based communication as a (random) graph model nodes may be identified with ranks
of a certain webpage, that is realizations of the random variables Xi may correspond to concrete values of ranks. When
using the PageRank as a tool in order to detect influences, several results [17,31] approve that the distribution of a rank
is heavy-tailed, giving rise to employ max-linear models as an alternative to capture the evolution of influences [24].

Besides, we believe the scope of applicability of the model under discussion is quite flexible. A concrete example,
mentioned in more detail in Section 5, that we propose is the modeling the course of an auction. Numerous auction
houses nowadays offer live auctions, in which bidders from all over the world can place their bids on the internet. We
assess the max-linear models to be suitable in terms of modeling the course of such auctions. For further discussion on
this topic we refer to Section 5.

Another practical application, particularly of statistical interest, is the identifiability of recursive max-linear processes
from concrete observations and known DAGs. In particular, [11] provides estimation procedures for crucial parameters
in the model, namely the edge-weights and max-linear coefficient matrix discussed below. More precisely, for n ∈ N let
2
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1, . . . , Xn be independent realizations of a max-linear model, i.e., a random vector as given in Definition 2.1. Assume
hat for each X j, 1 ≤ j ≤ n, its distribution (which is assumed to have atom-free margins on R+) and the underlying DAG
re known. Then, according to [11, Section 4] one can estimate the corresponding max-linear coefficient matrix without
eeding further conditions.
Our paper is organized as follows. In Section 2 we introduce recursive max-linear models on DAGs in Z2. In particular,

e give sufficient conditions under which max-linear models on infinite graphs are well-defined. Section 3 uses the fact
hat the max-linear coefficients bji originate from an algebraic path analysis by multiplying edge weights along a path
etween nodes j and i with j being an ancestor of i. This concept, known from finite recursive max-linear models, extends

to infinite DAGs. Example 2.5 shows that the important class of max-weighted models can be extended from finite to
infinite graphs such that the max-weighted property remains. Recursive max-linear processes on a DAG have the nice
property that independence between random variables on two different nodes is characterized by their ancestral sets. We
prove that this also holds in the setting of infinite graphs. This is the starting point of our investigation. Section 4 contains
the dependence results. Here we investigate the Bernoulli bond percolation DAGs. In Section 4.1 we prove that nearest
neighbor bond percolation on Z2 yields independence of Xi and Xj with probability 1 provided |i − j| → ∞ for p < p∗,
whereas it yields dependence with positive probability for p > p∗ and some 1

2 < p∗ < 1. In Section 4.2 we investigate
or Xi and Xj, which are independent in some subgraph H , whether enlargement of H can result in dependence between
i and Xj. Finally, in Section 5 we discuss applications in communication networks in more detail and interpretations of
ur results in this context.

. Max-linear processes on directed acyclic lattice graphs

This section presents a description of infinite max-linear models on directed acyclic lattice graphs. We first explain
he structure of the directed graph on a lattice before we define and show the existence of a random field with
inite-dimensional distributions entailing a dependence structure of max-linear type encoded in such graphs.

.1. Graph notation and terminology

Let Z2 be the oriented square lattice as follows (e.g. [1,4,6,13]). We write i = (i1, i2) for elements in Z2 and refer to
hem as nodes. The distance from i to j is defined in terms of the Manhattan metric given by

δ(i, j) = |i1 − j1| + |i2 − j2|

for i, j ∈ Z2. We regard Z2 as a graph by adding edges between all nodes i, j with δ(i, j) = 1. In addition, we assume
he edges to be oriented in the following manner. Denote by pa(i) and ch(i) the parents and children of node i = (i1, i2),
espectively. Then j = (j1, j2) ∈ pa(i) if and only if either (j1, j2) = (i1 − 1, i2) or (j1, j2) = (i1, i2 − 1) and, consequently,
= (j1, j2) ∈ ch(i) if and only if either (j1, j2) = (i1 +1, i2) or (j1, j2) = (i1, i2 +1). We may write i → j if there is a directed
dge from i to j, that is if i is a parent of j. The set of edges in this oriented lattice Z2 is E(Z2), which is a subset of Z2

×Z2.
In this paper we work with graphs G =

(
V (G), E(G)

)
with V (G) ⊂ Z2 and E(G) ⊂ E(Z2), which are directed acyclic lattice

graphs. We refer to them simply as DALGs or DAGs. When there is no ambiguity, we often abbreviate V = V (G) and
E = E(G). Thus, every node i ∈ V has at most two children and two parents, but possibly infinitely many descendants and
ancestors, denoted by de(i) and an(i), respectively. Moreover, we define De(i) = {i} ∪ de(i) and An(i) = {i} ∪ an(i). Note
that such a DAG may have no roots, i.e., it might be the case that for all i ∈ V we have an(i) ̸= ∅, which proves relevant
for the questions we want to answer.

2.2. Infinite recursive max-linear models

We now introduce recursive max-linear processes. Let G = (V (G), E(G)) be a DAG with some possibly infinite set of
nodes V (G) ⊂ Z2. Moreover, we assume that all the nodes i ∈ V (G) and all the edges (i, j) ∈ E(G) are equipped with
prespecified (strictly) positive weights cii and cij, respectively. Recall from [10, Section 1] that if |V (G)| < ∞ a recursive
max-linear model X = (Xi)i∈V (G) on G is given by

Xi =

⋁
k∈paG(i)

ckiXk ∨ ciiZi, i ∈ V (G),

where (Zj)j∈V (G) are independent continuously distributed non-negative noise variables with infinite support on (0, ∞)
and paG(i) denotes the parents of i which belong to the DAG G. Recall that cii is the weight of a node i. By [10, Theorem
2.2], applying a standard path analysis, the vector X exhibits a max-linear structure, that is

Xi =

⋁
j∈anG(i)∪{i}

bGijZj, i ∈ V (G), (2.1)

where we denote by anG(i) the ancestors of i on the DAG G and the matrix BG
= (bGij )i,j∈V (G) is given by

bGij =

⋁
dji(p) for j ∈ anG(i), bGii = cii, and bGij = 0 for j ∈ V (G) \

(
anG(i) ∪ {i}

)

p∈Pji(G)

3
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ith Pji(G) denoting the set of all paths in G from j to i and dji(p) is defined by

dji(p) = cjj
n−1∏
l=0

cklkl+1

or every path p = [j → k1 → . . . → kn = i]. Note that this representation explicitly depends on G and BG is called the
max-linear coefficient matrix of X with respect to G. We now provide an extension of this to infinite graphs, in which a
family of infinitely many random variables is characterized by a graph G with infinitely many nodes and edges.

Definition 2.1. We call a family of random variables X := {Xi : i ∈ V (G)} recursive max-linear process if for every i ∈ Z2

the random variable Xi is given by the representation

Xi =

⋁
j∈anG(i)∪{i}

bGijZj,

provided that the latter maximum is almost surely finite, (Zj)j∈V (G) are independent continuously distributed non-negative
noise variables with infinite support on (0, ∞) and bGji is computed by the path analysis described above.

We now prove the existence of a stochastic process with the dependence structure described by infinite recursive
max-linear processes as in Definition 2.1. Furthermore, we give a sufficient condition on the weights under which there
exists a stochastic process X = {Xi : i ∈ V (G)} as in Definition 2.1.

We illustrate the procedure of extending max-linear models in case of two finite subgraphs of the lattice. Assume that
(V1 = {i1, . . . , im}, E1) and (V2 = {j1, . . . , jn}, E2) are two such finite subgraphs. Suppose that X1

= (Xi1 , . . . , Xim ) and
X2

= (Xj1 , . . . , Xjn ) are the corresponding recursive max-linear models with coefficient matrices B1 and B2, respectively
with recursive max-linear representation

Xik =

⋁
r∈pa1(ik)

crikXr ∨ cikikZik , k ∈ {1, . . . ,m}, Xjl =

⋁
s∈pa2(jl)

csjlXs ∨ cjljlZjl , l ∈ {1, . . . , n},

with pa1 and pa2 denoting the parents with respect to the graphs (V1, E1) and (V2, E2), respectively. Consider the enlarged
finite graph (V = V1 ∪ V2, E = E1 ∪ E2). Then a recursive max-linear model on this graph is given by

Yik =

⋁
r∈pa1,2(ik)

crikYr ∨ cikikZik , k ∈ {1, . . . ,m}, Yjl =

⋁
s∈pa1,2(jl)

csjlYs ∨ cjljlZjl , l ∈ {1, . . . , n},

with pa1,2 denoting the parents with respect to the graph (V , E) and coefficient matrix B1,2 calculated by the usual path
analysis (see [10, Theorem 2.2]). In the following for notational simplicity write bij = bGij .

Lemma 2.2. Let α ∈ (0, ∞) and assume that∑
j∈Z2

(bij)α < ∞ ∀i ∈ Z2. (2.2)

Moreover, assume that (Zk)k∈Z2 is a sequence of independent standard α-Fréchet distributed noise variables. Then there exists
a max-linear process as in Definition 2.1.

Proof. We prove that the weighted maximum of infinitely many noise variables is finite with probability one. Indeed, let
x ∈ (0, ∞) and define

Xi =

⋁
j∈AnG(i)

bijZj

for i ∈ Z2. Then

Pr(Xi ≤ x) ≤ Pr
(
bijZj ≤ x , ∀j ∈ AnG(i)

)
=

∏
j∈AnG(i)

Pr(Zj ≤
x
bij

) =

∏
j∈AnG(i)

exp
(
−x−α(bij)α

)
= exp

(
−x−α

∑
j∈An (i)

(bij)α
)

∈ (0, 1)

G

4
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y condition (2.2). Thus, Xi has a Fréchet distribution. Moreover, let i1, . . . , id ∈ Z2, d ≥ 1, and xi1 , . . . , xid ∈ (0, ∞). Then,
by a simple calculations, the finite-dimensional distributions of X = {Xi : i ∈ V (G)} are given by

Pr(Xi1 ≤ xi1 , . . . , Xid ≤ xid ) = Pr
( ⋁

j∈AnG(ik)

bikjZj ≤ xik , k = 1, . . . , d
)

=

d∏
k=1

Pr
(
Zj ≤

⋀
ik∈DeG(j)

xik
bikj

, ∀j ∈ V (G)
)

= exp
(
−

d∑
j=1

⋁
k∈DeG(ij)

(bkij
xk

)α)
.

In particular, every recursive max-linear process in which the noises are standard α-Fréchet as in Definition 2.1 exhibits
these finite-dimensional distributions. □

Consider the following example of a (max-weighted) max-linear process X with weights satisfying the assumption
(2.2), see also Example 2.5. For simplicity assume that for every i, j ∈ Z2 with j ∈ An(i) there is only one path from j to i.
Let p = [j = k0 → k1 → . . . → kn = i] be the path from j to i. Assume that the edges are equipped with the weights

ckνkν+1 =

( 1
|kν | + 1

)2
, 0 ≤ ν ≤ n − 1,

here cii = 1 for every i. Note that condition (2.2) is satisfied. In particular, since the weights are vanishing, this shows
hat the larger the distance between a node and its ancestor, the smaller the contribution of the ancestor, which is a
atural property to hold.
Different blocks of the matrix B may correspond to distinct communities with different communication structure. The

alues of the random variables Xi may correspond to extreme observations.
The following limit result, which can be found in [29, Lemma 2.1(iv)], shows that we can regard a max-linear model

n an infinite graph as a limit of a sequence of max-linear models on finite graphs. We precise this now in the following
emark.

efinition 2.3. In the following we say that a sequence of subgraphs (Vn, En)n∈N of a graph (V , E) tends to (V , E) if for
very j ∈ V and e ∈ E there exists n ∈ N such that also j ∈ Vm and e ∈ Em for every m ≥ n.

emark 2.4. If (Zj)j∈Z2 are independent standard α-Fréchet random variables and (Vn, En)n∈N is a sequence of finite
ub-DAGs of the oriented square lattice Z2 then from Lemma 2.2 we know that for each n ∈ N

X (n)
i =

⋁
j∈Vn

bijZj, i ∈ Vn, (2.3)

as α-Fréchet distribution with scale parameter (
∑

j∈Vn (bij)
α)1/α . Suppose that the sequence of DAGs (Vn, En)n∈N tends to

DAG (V , E) with infinitely many nodes as n → ∞ and that

b := lim
n→∞

∑
j∈Vn

(bij)α

xists. Then X (n)
i

a.s.
→ Xi, n → ∞, where Xi has α-Fréchet distribution with scale parameter b1/α < ∞. If the series

lim
n→∞

∑
j∈Vn

(bij)α

iverges then X (n)
i

a.s.
→ ∞ as n → ∞.

Provided Xi is almost surely finite, the value at node i may originate in a large number of values along an infinite path.
s there may be many sequences of subgraphs with limit (V , E) the random variable at node i depends on this sequence.
here may be sequences of subgraphs or paths in subgraphs leading to very large values of Xi, as a consequence, all its
escendants also become large.
We now treat the case that V (G) ⊂ N2

0 = N0 × N0, so that every node has at most finitely many ancestors and give
n example of a max-weighted process. To this end,we consider infinite DAGs on N2

0, which we view as a prototypical
ub-DAG with infinitely many nodes of the oriented square lattice Z2, such that each node has at most finitely many
ncestors.

.3. Max-weighted process

Let G = (V , E) be a DAG with V ⊂ N2
0 = N0 × N0 and corresponding edges E. Assume a recursive max-linear process

= {Xi : i ∈ V } on G. In the following the aim is to give a canonical choice of a possible max-linear coefficient matrix B
ssociated with the process X and to introduce a process that we call max-weighted.
5
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Assume that the edges of G are equipped with positive weights cki for every i ∈ V and k ∈ {i} ∪ pa(i). For n ∈ N let
Gn = (Vn, En) be the DAG with nodes Vn = {i = (i1, i2) ∈ V : i1 + i2 ≤ n} and corresponding edges taken from E, so
that limn→∞ Gn = G. By Definition 2.1 there are independent non-negative noise variables (Zi)i∈Vn with infinite support
on (0, ∞) and a max-linear coefficient matrix B = (bij)i,j∈Vn with non-negative entries such that X (n)

i is as in (2.3). Indeed
the entries bij may be derived from the path analysis mentioned in Section 2. This in particular shows that for i ∈ V the
bij do not depend on the descendants de(i). Thus, an infinite max-linear coefficient matrix B is built up from increasing
finite blocks representing Vn for increasing n ∈ N.

For a communication network on N2
0 the representation (2.3) reduces to a maximum over finitely many random

variables, for instance, the root 0 influences all the other nodes in the network. Hence, if the root node happens to hold
the maximum of all Zj for j ∈ N2

0 its influence may dominate the whole network, although by the max-linear coefficient
matrix B all other nodes may have different realizations.

As there may be several paths between nodes with different path-weights, so-called max-weighted models with same
paths-weights along all possible directed paths between two nodes play an important role. We now give an example
of such a max-linear process relying on the definition of max-weighted models presented in [10, Definition 3.1] and
discussed in [12, Section 3]. Resulting as a limit of max-weighted paths, we may call such a process max-weighted.

Example 2.5 (Max-Weighted Process). Let V = N2
0 be the set of nodes and assume oriented edges between all nodes

i, j with δ(i, j) = 1. Start with a subgraph in which the set of nodes is bounded and of the form Vn = {(i1, i2) ∈ N2
0 :

i1 + i2 ≤ n} for some n ∈ N0 and the corresponding set of edges is denoted by En. Assume that the corresponding
model is max-weighted so that every entry of the max-linear coefficient matrix is given by bji = dp

(
(j1, j2), (i1, i2)

)
,

where dp
(
(j1, j2), (i1, i2)

)
is calculated by a path analysis along the edge-weights as in equation (1.5) in [10]. Since

the model is max-weighted, dp
(
(j1, j2), (i1, i2)

)
is the same value for every path p from i to j and thus we can write

dp
(
(j1, j2), (i1, i2)

)
= d

(
(j1, j2), (i1, i2)

)
, since the latter value is independent of the chosen path p. We now show that the

DAG can be enlarged in such a way that the enlarged new subgraph is again max-weighted. Moreover, this procedure
can be executed infinitely often. Let n ≥ 1 and assume that we add a node, say (ℓ1, ℓ2) which we connect with the nodes
(ℓ1−1, ℓ2) and (ℓ1, ℓ2−1) in V by two edges with corresponding weights c

(
(ℓ1−1, ℓ2), (ℓ1, ℓ2)

)
and c

(
(ℓ1, ℓ2−1), (ℓ1, ℓ2)

)
.

By choosing these appropriately we can ensure that the new model is again max-weighted. More precisely, we choose
the weights satisfying

c
(
(ℓ1 − 1, ℓ2), (ℓ1, ℓ2)

)
=

c
(
(ℓ1, ℓ2 − 1), (ℓ1, ℓ2)

)
· d
(
(0, 0), (ℓ1 − 1, ℓ2)

)
d
(
(0, 0), (ℓ1, ℓ2 − 1)

) .

We now show that the enlarged DAG again leads to a max-weighted model. Let p1 be a path from the root to (ℓ1, ℓ2)
containing (ℓ1 − 1, ℓ2) and let p2 be such a path containing the node (ℓ1, ℓ2 − 1). Then we have by definition

dp1
(
(0, 0), (ℓ1, ℓ2)

)
= d

(
(0, 0), (ℓ1, ℓ2 − 1)

)
· c
(
(ℓ1 − 1, ℓ2), (ℓ1, ℓ2)

)
= c

(
(ℓ1, ℓ2 − 1), (ℓ1, ℓ2)

)
· d
(
(0, 0), (ℓ1 − 1, ℓ2)

)
= dp2

(
(0, 0), (ℓ1, ℓ2)

)
.

Thus every path from the root to (ℓ1, ℓ2) is max-weighted and this shows that the new model is max-weighted.

In the following section we return to DAGs on Z2, which allow for infinitely many ancestors. We consider percolation
(dependence) properties between two fixed nodes i and j on Z2.

3. Common ancestors and dependence structure

In this section we let G = (V , E) be an arbitrary, possibly infinite DAG with nodes V ⊂ Z2 and oriented edges E.
Furthermore, we let X be a recursive max-linear process on G as in Definition 2.1.

The following result is an analogue to [12, Theorem 2.3] and its proof justifies the extension of the arguments to infinite
dimension.

Proposition 3.1. Let X := {Xu : u ∈ V (G)} be a recursive max-linear process and i, j ∈ V (G). The following statements are
equivalent:
(i) Xi and Xj are independent,
(ii) An(i) ∩ An(j) = ∅.

Proof. The proof extends [12, Theorem 2.3]. By Definition 2.1 there exist independent noise variables Zk, k ∈ V (G), with
infinite support on (0, ∞) and a matrix B = (buk) such that

Xu =

⋁
bukZk, u ∈ V (G).
k∈An(u)

6
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T
hus Xi and Xj are independent if and only if An(i)∩An(j) = ∅. Indeed, first assume that An(i)∩An(j) = ∅. Then we obtain

Pr(Xi ≤ xi, Xj ≤ xj) = Pr
( ⋁
k∈An(i)

bikZk ≤ xi,
⋁

k∈An(j)

bjkZk ≤ xj
)

= Pr
( ⋁
k∈An(i)

bikZk ≤ xi
)
Pr
( ⋁
k∈An(j)

bjkZk ≤ xj
)

= Pr(Xi ≤ xi) Pr(Xj ≤ xj)

for every xi, xj ∈ (0, ∞), by independence of the noise variables Zk, k ∈ V (G). On the other hand assume that Xi and Xj are
independent. By way of contradiction let us suppose that An(i)∩An(j) ̸= ∅. Let [−n, n]2 = {(x1, x2) ∈ Z2

: |x1| + |x2| ≤ n}
for n ∈ N. Consider a finite subgraph H with V (H) = [−n, n]2 ∩ V (G), where n ∈ N is so large such that

An(i) ∩ An(j) ∩ [−n, n]2 ̸= ∅, i, j ∈ [−n, n]2,

and H contains all the edges of G that are connecting nodes in [−n, n]2. Write V (H) = {i, j, i1, . . . , ik} for some k ∈ N.
Observe that (Xi, Xj, Xi1 , . . . , Xik ) is a max-linear model on H with almost surely finite, but not necessarily independent
innovation noise variables given by

Z̃m =

⋁
k∈
(
An(m)\V (H)

)
∪{m}

bmkZk, m ∈ V (H).

Let l ∈ An(i) ∩ An(j) ∩ V (H). Then, by the assumptions on the noise variables Z̃k, k ∈ V (H), we have⋁
k∈AnH (i)

bikZ̃k = bilZ̃l,
⋁

k∈AnH (j)

bjkZ̃k = bjlZ̃l

with positive probability, which implies that

Pr(Xi =
bil
bjl

Xj) > 0.

But by continuity of the noise variables, this contradicts the fact that Xi and Xj are independent. This finishes the proof. □

Having characterized the dependence between two random variables we are now interested in the following. We use
Bernoulli bond percolation to generate random DAGs on the oriented square lattice Z2 and, thus, random dependence
structures.

We want to answer the following question: given an extreme quantity, observed at two nodes i and j, is there a
common cause in the network (a common ancestor) or not?

4. Bernoulli bond percolation DAGs

The main purpose of this section is to construct max-linear models on randomly obtained DAGs with a possibly infinite
number of nodes in order to investigate a randomized dependence structure.

In view of Proposition 3.1 the probability that two random variables Xi and Xj on the random graph are dependent is
nothing else than the probability that i and j have common ancestors inside the random open cluster containing nodes
i and j. Our setting is a max-linear model on the oriented square lattice and percolation on this simple graphical model.
This is a first step of linking percolation with max-linear models, and we envision further results on more sophisticated
graphs as can be found, for instance, in [16] and [30].

4.1. Max-linear models on random open clusters

Recall that we consider the oriented square lattice Z2. For this oriented model, the open cluster at 0 is usually defined
as the set of all points we can reach from the origin by traveling along open edges in the direction of the orientation;
see [1,6], or [13, Section 12.8]. As this open cluster always has root 0, all nodes i and jwould have at least common ancestor
0, and would make the problem discussed below trivial. Consequently, we consider unoriented, but not undirected, paths
in (4.2) as we will make precise below.

Let us first recall the framework of Bernoulli bond percolation from any book on percolation as e.g. [4,13]. Given the
oriented square lattice Z2 with edge set E ⊂ Z2

× Z2, a (bond) configuration is a function ω : E → {0, 1}, e ↦→ ωe. An
edge e is open in the configuration ω, if and only if ωe = 1, so configurations correspond to open subgraphs. Recall from
Section 2 that in our setting open edges are directed, hence a configuration is a DAG denoted by (V , E) with V ⊂ Z2 and
directed edges E. Each edge is declared open with probability p and closed otherwise, different edges having independent
designations. This gives the Bernoulli measure Pp, p ∈ [0, 1] on the space Ω = {0, 1}E of configurations. The σ -field F is
generated by the finite-dimensional cylinders of Ω . In summary, the probability space is (Ω,F, Pp).

Let C(k) be the open cluster containing the node k ∈ V . The distribution of |C(k)| is, by the translation-invariance
of the measure P , well-known to be independent of k ∈ V , so that we assume in the following k = 0 ∈ V without
p

7
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oss of generality. If |C(0)| denotes the (random) number of nodes of C(0) then Pp(|C(0)| = ∞) is called the percolation
robability. This probability depends on p ∈ [0, 1], and Hammersley’s critical percolation probability is defined as

p1c (V ) = inf{p ∈ (0, 1) : Pp
(
|C(0)| = ∞

)
> 0}. (4.1)

hus, for p > p1c (V ) it is possible to generate infinite open clusters with positive probability. By Kolmogorov’s zero–one
aw (cf. [13, Theorem 1.11]) there exists an infinite open cluster with probability 1 for p > p1c (V ), and otherwise with
robability 0. Similarly, for two different given nodes i, j ∈ V we can define C(i, j) as the open cluster containing i and j,
ith the convention that C(i, j) = ∅ if there is no path (of open edges) from i to j. For notational simplicity in the following
ithout loss of generality we assume that j = 0. The following definition is related to the radius of a finite open cluster
s investigated in [13, Sections 6.1 and 8.4].
As in (4.1) we define the critical probability

p2c (V ) = inf{p ∈ (0, 1) : Pp
(
|C(i, 0)| = ∞

)
> 0}, (4.2)

here we use the convention that |C(i, 0)| > 0 if and only if there exists a (possibly undirected) path,

[0 ↔ i] := [0 = k0 ↔ k1 ↔ · · · ↔ kn = i] (4.3)

f open edges from 0 to i, called an open path.
It is not difficult to see that p1c (V ) = p2c (V ). Indeed, let A = {0 ↔ i} be the event that there exists an open path from

he origin to node i. Note that this event has strictly positive probability Pp(0 ↔ i), also called the two-point connectivity
unction in [13, Section 8.5]. Thus

Pp
(
|C(i, 0)| = ∞ | A

)
= Pp

(
|C(0)| = ∞ | A

)
.

et ω = (ωe)e∈E, ω′
= (ω′

e)e∈E ∈ Ω with ωe ≤ ω′
e for every e ∈ E. We recall that an event A ⊂ Ω is increasing if ω ∈ A

mplies that ω′
∈ A. Since all the considered events are increasing, the Fortuin–Kasteleyn–Ginibre (FKG)-inequality [13,

heorem 2.4] further yields

Pp
(
|C(i, 0)| = ∞

)
Pp(A)

=
Pp
(
{|C(i, 0)| = ∞} ∩ A

)
Pp(A)

≥ Pp
(
|C(0)| = ∞

)
.

Since Pp(A) > 0 altogether we obtain

Pp
(
|C(i, 0)| = ∞

)
> 0 ⇔ Pp

(
|C(0)| = ∞

)
> 0

and thus p1c (V ) = p2c (V ). Recall that the critical percolation probability p1c (Z
2) on the whole unoriented square lattice Z2

equals 1
2 and moreover satisfies P 1

2

(
|C(i, 0)| = ∞

)
= 0 ([13, Chapter 11]).

Given such an infinite open cluster, we are interested in the probability that the random variables Xi and Xj on the
random DAG are independent. First, we give a formal definition of a max-linear model on a random environment.

Definition 4.1. Let {Xu : u ∈ Z2
} be a max-linear model. Let ω ∈ Ω be a configuration, i.e. a realization of a sequence of iid

Bernoulli random variables indexed by the possible edge-set, in which an edge e ∈ E is present if and only if ωe = 1. Let
V (ω) be its corresponding set of nodes. The process {Xu : u ∈ V (ω)} is called a max-linear model in random environment.

From now on we suppose that {Xu : u ∈ V (ω)} is a max-linear model in random environment and we investigate
the probability Pp

(
Xi and Xj are independent

)
. That is to say, we are mainly interested in the max-linear process {Xi : i ∈

C(i, 0)} on the random sub-DAG with nodes V (C(i, 0)) and edges E(C(i, 0)).
We observe that the events

{Xi and Xj are dependent} = {An(i) ∩ An(0) ̸= ∅}

and {De(i) ∩ De(0) ̸= ∅} are increasing as defined above.
Let

Σ := {An(i) ∩ An(0) ̸= ∅} ∪ {De(i) ∩ De(0) ̸= ∅} (4.4)

denote the event that node i and node 0 have common ancestors or descendants. From arguments given below, it is not
difficult to see that

1
2
Pp(Σ) ≤ Pp

(
{An(i) ∩ An(0) ̸= ∅}

)
.

The following lemma gives a refinement of this bound, which may be of interest in its own right.

Lemma 4.2. For 0 ≤ p ≤ 1 we have

P
(
{An(i) ∩ An(0) ̸= ∅}

)
≥ 1 −

(
1 − P (Σ)

) 1
2 .
p p

8
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roof. As before, for notational simplicity assume that j = 0. By translation invariance we find

Pp
(
{De(i) ∩ De(0) ̸= ∅}

)
= Pp

(
{An(i) ∩ An(0) ̸= ∅}

)
,

more precisely, {De(i) ∩ De(0) ̸= ∅} and {An(i) ∩ An(0) ̸= ∅} are two increasing sets of equal probability. Recall from
inequality (11.14) in [13, p. 289] that if A1, . . . , Am are increasing events with equal probability then

Pp(A1) ≥ 1 −

(
1 − Pp

( m⋃
j=1

Aj

)) 1
m

.

Using this inequality we get

Pp
(
{An(i) ∩ An(0) ̸= ∅}

)
≥ 1 −

(
1 − Pp

(
{An(i) ∩ An(0) ̸= ∅} ∪ {De(i) ∩ De(0) ̸= ∅}

)) 1
2 = 1 −

(
1 − Pp(Σ)

) 1
2 . □

In what follows we need the analog C→(k) := An(k) ∪ De(k) of the open cluster C(k) containing k ∈ V in the oriented
square lattice. We denote by Pp(|C→(k)| = ∞) the probability that there exists an oriented path from k ∈ Z2 to ∞, which
is by translation-invariance independent of k. In [6, Section 3] it is shown that

p∗
:= inf{p ∈ (0, 1) : Pp

(
|C→(0)| = ∞

)
> 0}

holds for some critical probability 1
2 < p∗ < 1. The exact value for p∗ is unknown; however, it is known that

, 6298 ≤ p∗ < 0, 6735 ([13, Chapter 10] and [1]).

heorem 4.3. There exists 1
2 < p∗ < 1 with the following properties. For p < p∗ we have

lim
|i−j|→∞

Pp(Xi and Xj are independent) = 1. (4.5)

or p > p∗ there exists a constant 0 < C < 1 not depending on |i − j| with

0 <Pp(Xi and Xj are independent) ≤ C . (4.6)

roof. By translation-invariance the distribution of the above event only depends on the edge distance |i|. We will make
se of results on oriented percolation as discussed in [6]. In particular, in [6, Section 7] it is shown that

Pp(|C→(k)| ≥ n) ≤ Ce−γ n

or some C > 0, γ > 0 decays exponentially as n → ∞ for p < p∗, where p∗ is introduced above. From this and from
roposition 3.1 for every p < p∗ we obtain

Pp
(
Xi and Xj are dependent

)
= Pp

(
{An(i) ∩ An(0) ̸= ∅}

)
≤ Pp

(
|C→(0)| ≥ |i|

)
→ 0

as |i| = |i − j| → ∞, giving (4.5).
In order to prove the second statement we assume that p > p∗. Furthermore, let Σ be the event in (4.4) and let Σ∁ be

its complement, which is the event that i and j have neither common ancestors nor descendants. Applying Kolmogorov’s
zero–one law one can easily deduce that for i, j ∈ Z2

Pp
(
Σ∁
⏐⏐|C→(0)| = ∞, |C→(i)| = ∞

)
= 0,

which implies that

Pp
(
|C→(0)| = ∞, |C→(i)| = ∞

)
= Pp

({
|C→(0)| = ∞, |C→(i)| = ∞

}
∩ Σ

)
≤ Pp(Σ).

Hence, by Lemma 4.2 we can estimate for p ̸= 1

1 > Pp
(
{An(i) ∩ An(0) ̸= ∅}

)
≥ 1 −

(
1 − Pp(Σ)

) 1
2 ≥ 1 −

(
1 − Pp

(
|C→(0)| = ∞, |C→(i)| = ∞

)) 1
2

≥ 1 −
(
1 − Pp

(
|C→(0)| = ∞

)2) 1
2 > 0

for every |i|, where the second last inequality follows from the FKG-inequality ([13, Theorem 2.4]). Thus, in the
supercritical phase, with positive probability one can generate dependence between random variables Xi and Xj, which
proves (4.6). □

Theorem 4.3 links the subcritical and supercritical case to probabilities for dependence and independence of Xi and Xj.
For the communication in a Bernoulli bond percolation network, we conclude that for edges being open (communica-

tion channels) with small probability, extreme observations at two different nodes become a.s. independent, when nodes
are far apart. However, if edges are open with high probability then there is a positive probability that two extreme values
are observed dependently; i.e., there may be a common source.

Also further properties of Xi and Xj within the oriented square lattice Z2 can be derived similarly using percolation
properties. The following remark gives an example.
9
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emark 4.4 (Number of Common Ancestors Per Pair of Nodes). Let 0 ≤ p ≤ 1 and A(i, j, n) := |An(i) ∩ An(j) ∩ B(n)| the
umber of common ancestors of i and j inside the box B(n) = [−n, n]2. Then by an ergodic theorem (cf. [13, Theorem
.2]) Pp-a.s. and in L1(Pp),

1
|B(n)|

∑
k,ℓ∈B(n)

|k−ℓ|=|i−j|

|A(k, ℓ, n)|−1
→ Ep(|An(i) ∩ An(j)|−1), n → ∞.

.2. Enlargement of DAGs using Bernoulli percolation

Throughout this section fix two nodes i, j ∈ Z2. We are again interested in dependence properties of the random
ariables Xi and Xj. We write P for the property that Xi and Xj are dependent, and for a DAG G we write G ∈ P if a

max-linear model X on G has the property that the components Xi and Xj are dependent.
Suppose that H =

(
V (H), E(H)

)
, V (H) ⊂ Z2, is a sub-DAG of the oriented square lattice Z2 containing i, j such that Xi

and Xj are independent on H , equivalently An(i) ∩ An(j) ∩ V (H) = ∅ by Proposition 3.1; i.e., H /∈ P . We utilize a method
introduced in [26] in order to enlarge the sub-DAG H by adding possibly infinitely many nodes and edges of open clusters
and investigate the probability that Xi and Xj become dependent on the randomly enlarged DAG.

In the framework of communication in a network, if two extremes are observed seemingly independent, we investigate
if a possible dependence could arise by a different network of a network member i, which are not present in the original
network. The following results answer this question.

Recall that for k ∈ Z2 the open cluster containing k is denoted by C(k). The following definition is taken from [26,
Definition 1.1]. For an analogous definition of enlargement of percolating everywhere subgraphs as in Theorem 4.10 we
also refer to [3].

Definition 4.5. For 0 ≤ p ≤ 1 let U(H) = U(ω, p,H) be the random subgraph of the oriented square lattice Z2 with
node set

V
(
U(H)

)
=

⋃
k∈V (H)

V (C(k))

and edge set

E
(
U(H)

)
= E(H) ∪

⋃
k∈V (H)

E(C(k)).

Note that by definition U(H) is a DAG containing the nodes i and j, as H is assumed to contain i and j. Furthermore, we
add finitely many or possibly infinitely many nodes, according as p ≤

1
2 or p > 1

2 . Moreover, Definition 4.5 corresponds
o percolation with underlying probability measure PH

p on {0, 1}E(Z
2) satisfying

PH
p (ωe = 1) = 1 if e ∈ E(H) and PH

p (ωe = 1) = p else, (4.7)

for all ωe ∈ {0, 1}E(Z
2). In addition, we have by definition that

Pp
(
U(H) ∈ P

)
= PH

p

(
An(i) ∩ An(j) ̸= ∅

)
. (4.8)

One prerequisite is the measurability of the event (4.8), and we verify this by observing that {U(H) ∈ P} is equivalent
to the existence of some n ∈ N such that An(i) ∩ An(j) ̸= ∅ holds on the ball B(i, n) = {y ∈ Z2

: δ(y, i) ≤ n} and, thus,
{U(H) ∈ P} is determined by configurations of edges in a finite ball, and hence measurable.

In analogy to [26, Definition 1.3] we regard certain kinds of critical probabilities

pc,1,P,H := inf{p ∈ [0, 1] : Pp
(
U(H) ∈ P

)
> 0} (4.9)

pc,2,P,H := inf{p ∈ [0, 1] : Pp
(
U(H) ∈ P

)
= 1}. (4.10)

We first remark that {U(H) ∈ P} has positive probability for all p > 0, such that pc,1,P,H = 0 holds, and the interesting
question is for which choice of sub-DAGs H we have pc,1,P,H = pc,2,P,H . As an easy example we might first consider the
non-connected DAG H with node set V (H) = {i, j} and E(H) = ∅. It is straightforward to see that Pp(U(H) /∈ P) > 0 for
every p ∈ [0, 1) and this implies pc,2,P,H = 1 ̸= pc,1,P,H . On the other hand, the following Lemma gives an example of a
DAG, where the latter assertion is not true, i.e. pc,1,P,H = pc,2,P,H = 0.

Lemma 4.6. Let H be an infinite DAG with nodes V (H) = Z2 and let k ∈ Z2 such that i1 ≤ k1 ≤ j1. Assume edges E(H) only
inside the set(

Z2
\ {(k1 ± 1, i2 − n) : n ∈ N0}

)
×

(
Z2

\ {(k1 ± 1, i2 − n) : n ∈ N0}

)
.

Then p = 0.
c,2,P,H

10
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Fig. 1. Visualization of one possible example in Lemma 4.6. Lines indicate edges, which may be present or not; dashed lines indicate edges not
allowed in H .

Proof. Fix p ∈ (0, 1). We show that pc,2,P,H ≤ p by calculating Pp(U(H) /∈ P). By choice of H the event {U(H) /∈ P} does
ot depend on finitely many edges, see also Fig. 1. Hence, by Kolmogorov’s zero–one law,

Pp
(
U(H) /∈ P

)
∈ {0, 1}.

rom p ∈ (0, 1) we further get Pp(U(H) /∈ P) < 1 and therefore Pp(U(H) /∈ P) = 0. This yields Pp(U(H) ∈ P) = 1 for every
∈ (0, 1) and concludes the proof. □

If we inspect the examples presented so far we recognize that the number of nodes and edges of the chosen DAG H
as a strong impact on whether we have pc,1,P,H = pc,2,P,H or not. The following result substantiates this observation.

heorem 4.7. Let H be a DAG and j ∈ V (H) such that the cluster containing j is finite. Then we have pc,2,P,H = 1.

roof. Let p < 1 and recall that

Pp
(
U(H) ∈ P

)
= PH

p

(
An(i) ∩ An(j) ̸= ∅

)
.

e prove the assertion by making use of planar duality arguments discussed in [13, Section 1.4]. Let Ld be the dual graph
f Z2 with nodes given by the set {x + ( 12 ,

1
2 ) : x ∈ Z2

} and edges joining two neighboring nodes so that each edge of
Ld is crossed by a unique edge of its dual Z2. As introduced in [13, Section 1.4, p. 16] an edge of the dual is declared
to be open if it crosses an open edge of Z2 and closed otherwise. Recall that a circuit of Ld is an alternating sequence
0, e0, k1, e1, . . . , kn, en, k0 of nodes k0, . . . , kn and edges e0, . . . , en forming a cyclic path from k0 to k0.
Let A be the event that there is a sub-path of closed edges of a circuit containing j in its interior and i in its exterior.

Since the connected component containing node j is finite, we have

0 < PH
p (A) ≤ PH

p

(
An(i) ∩ An(j) = ∅

)
which yields Pp

(
U(H) ∈ P

)
< 1, for every p ∈ [0, 1). Thus, by definition we get pc,2,P,H = 1 as claimed. □

Corollary 4.8. Let H be a finite DAG. Then we have pc,2,P,H = 1.

Remark 4.9. Corollary 4.8 enlightens the fact that the events {An(i) ∩ An(j) ̸= ∅} and {i ↔ j} are essentially different.
Indeed, if we choose a DAG H /∈ P with {De(i) ∩ De(j) ̸= ∅} we have for every 0 ≤ p < 1,

PH
p (i ↔ j) = 1, PH

p

(
An(i) ∩ An(j) ̸= ∅

)
< 1,

where {i ↔ j} denotes the event that there is a path of open edges from i to j.

Now we want to examine DAGs with the property that pc,1,P,H = pc,2,P,H = 0. In Lemma 4.6 we gave an example of
a sub-DAG H satisfying this equality. We can prove the same identity for the class of percolating everywhere subgraphs,
which is an analogous result to [26, Theorem 1.13 (i)]. According to [2], a sub-DAG H is called percolating everywhere if
V (H) = Z2 and every connected component of H is infinite.
11
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T
heorem 4.10. Let H be a percolating everywhere sub-DAG of the oriented square lattice Z2. Then we have pc,2,P,H = 0.

Proof. The proof partially relies on the proof of [26, Theorem 1.13]. As there we work with the probability measure PH
p

on {0, 1}E(Z
2) given in (4.7). Let J be the graph with node set

V (J) = {(k1, k2) ∈ Z2
: k1 ≤ i1, k2 ≤ i2} ∪ {(k1, k2) : k1 ≤ j1, k2 ≤ j2}.

Note that if J is connected then An(i)∩An(j) ̸= ∅. Define the equivalence relation k ∼ ℓ on Z2 if and only if PH
p (k ↔ ℓ) = 1.

Denote by [k] the equivalence class containing k and Z2/∼ =Z ′
= Z ′(ω) the (Bernoulli) quotient graph with node set given

by

V (Z ′) = {[k] : k ∈ Z2
}.

If |V (Z ′)| = 1 then

PH
p

(
U(H) is connected and V (U(H)) = Z2)

= 1.

Thus, with probability one there exists k ∈ An(i) ∩ J with k ↔ j so that An(i) ∩ An(j) ̸= ∅.
Now assume that |V (Z ′)| ≥ 2. For sets A, B ⊂ Z2 let

E(A, B) = {(a, b) ∈ E(Z2) : a ∈ A, b ∈ B}.

By the same arguments as in the proof of [26, Theorem 1.13] we can choose a partition V (Z ′) = A ∪ B, A ∩ B = ∅ with
|E(A, B)| = ∞. At this point observe that the number of connected components of H is infinite, otherwise we would have
|E(A, B)| < ∞ for every partition V (Z ′) = A ∪ B. Thus, by an application of Kolmogorov’s zero–one law we have

PH
p

(
An(i) ∩ An(j) = ∅

)
∈ {0, 1},

so that Pp
(
U(H) ∈ P

)
∈ {0, 1}. This in particular implies that pc,2,P,H = pc,1,P,H = 0 by definition and concludes the

proof. □

5. Communication networks

As indicated before, the question we answer here by means of a simple probabilistic model is the following: given an
extreme observation in a communication network, observed at two nodes, is there a common cause (a common ancestor)
in the network or in an enlarged network or not.

In terms of the propagation of influence, every node may be interpreted as a network member, a directed edge between
two nodes may be seen as a communication channel, and the weights represent the degree of influence between two
members. A phase transition in such a network indicates the non-existence or existence of a common cause of extreme
observations of two different network members.

Probabilistic communication models using tools from percolation theory to investigate phase transitions in graph
structures are numerous in the literature; see e.g., [13, Ch. 13], [22], and [25, Part IV], to name only a few. They model
spread of diseases, voter behavior, optimal behavior of market agents, etc. within nearest neighbor lattice graphs, in
preferential attachment models, or in small-world networks.

A basic model is explained in [5] as follows: the authors assume the network nodes to take values randomly in {0, 1}
representing two possible states. A network member changes its state provided enough neighbors share a different state.
In contrast to this simple model, in the present paper the community members at every node exhibit observations, which
can be modeled by any distribution, thus allowing for a more refined analysis and larger scope of interpretation for
applications. For example, as already mentioned in the introduction, we can model the course of an auction. In this sense
a community member represents a bidder in an auction, and we observe the bid placed by this person. Hence, the bid
(for example money in dollars) is modeled by the random variable X . Since the purpose of a bid is to overbid the previous
offers, a propagation by means of max-linear behavior is plausible, in which the noise variables Z represent the amount of
money the bidder is willing to spend independently, and in several cases depending on the type of auction a heavy-tailed
distribution might be required. One possible and eligible question of interest is to understand cause and effect of such
extreme observations.

Example 5.1. Consider two arbitrary choices of finite communication networks modeled by X as in Definition 2.1. More
precisely, let H1 be the DAG with nodes represented by V = {1, 2, 3} and edge-set E = {(2, 3)} consisting of one single
edge, i.e. we have three network members and only X2 and X3 communicate, where X3 is influenced by X2. We assume
the second DAG H2 to be obtained from H1 simply by adding the edge (1, 3), i.e. X1 and X3 start to communicate and
X3 is influenced by more than one source. Assume that the nodes and edges are equipped with positive weights cij,
i, j ∈ {1, 2, 3}, and for i ̸= j we have cij ̸= 0 if and only if there is an edge from i to j. We now want to characterize
the communication activities with the aid of max-linear coefficient matrices. For two matrices M1,M2 of same size we

0
write M1 ⪯ M2 if all non-zero entries of M1 are also non-zero entries of M2 and there exists a zero entry of M1 which

12
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s a non-zero entry of M2. Let B1 and B2 be the max-linear coefficient matrices corresponding to H1 and H2, respectively.
pplying the path analysis mentioned in Section 2 (cf. Theorem 2.4 of [10]) we obtain

B1 =

(c11 0 0
0 c22 c22c23
0 0 c33

)
, B2 =

(c11 0 c11c13
0 c22 c22c23
0 0 c33

)
,

so that B1 ⪯
0 B2. Note that this stems from the fact that H2 contains the edge (1, 3) not included in H1. Thus, inspecting

zero entries of the max-linear coefficient matrix helps in detecting communication channels.

Such observation holds in general and we summarize it in the following result.

Proposition 5.2. Let X be a max-linear process with node-set V and let H1 and H2 be two DAGs over the same finite set
of nodes VH

⊂ V and max-linear coefficient matrices B1 and B2, respectively. If B1 ⪯
0 B2 then H2 has more communication

channels than H1.

Theorem 4.3 gives rise to the following obvious interpretation. For a network with only moderately many commu-
nication channels, extreme observations at two nodes, which are far apart, are a.s. independent. However, in a highly
communicative network, there may be a common source for an extreme observation presented at a specific node.

We now want to interpret the results in Section 4.2 concerning random DAGs obtained from Bernoulli bond percolation
clusters. Randomly added nodes and edges correspond to the formation of additional communication channels. Consider
the probability p of an edge being open in the original network. For high values of p the influences are more likely
to spread. We investigate this in more detail for a DAG H . Assume that members of H hold additional communication
channels outside the communication network. We call the combined network a network with randomly spreading
influences. What is the probability that two network members with independent observations become influenced by
the same source in the combined larger network?

Theorems 4.7 and Corollary 4.8 describe a situation, where the answer rather depends on the number of participants
in the network and not so much on the structure of communication channels. This observation may be helpful in order to
detect extreme observations simply by considering how many agents are affected by the spread of influences. In a wide
sense, our results propose that extreme influences are less likely to spread if less agents are affected, being more decisive
than the structure of communication channels.

Example 5.3 (Continuation of Example 5.1). To precise these arguments we again compare two finite networks H1 and H2.
y Corollary 4.8 two independent observations become influenced with certainty by a common source inside a network
ith randomly spreading influences, if these influences disseminate almost surely and only in this case, regardless of
he setup of connections inside the network. Recall that here p can be regarded as the probability that a communication
hannel emerges. In such a case we have p = 1, which may correspond to very strong influences.

Theorem 4.10 on the other hand, describes the situation, where the network has already many communication
hannels itself. Only some links between large communication communities are missing. Then links between these large
ommunication communities are created a.s. whenever some randomly spreading influence arrives in the network at all.
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