
Journal of Algebra 602 (2022) 130–153
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Category decomposition of Repk(SLn(F ))

Peiyi Cui
Department of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 October 2021
Available online 17 March 2022
Communicated by Gunter Malle

Keywords:
Modulo � representations of p-adic 
groups
Special linear groups
Block decomposition
Bernstein decomposition

Let F be a non-archimedean local field with residual char-
acteristic p, and k an algebraically closed field of charac-
teristic � �= p. We establish a category decomposition of 
Repk(SLn(F )) with respect to the GLn(F )-inertially equiv-
alent supercuspidal classes of SLn(F ), and we establish a 
block decomposition of the supercuspidal subcategory of 
Repk(SLn(F )). Finally we give an example to show that in 
general a block of SLn(F ) is not defined with respect to a 
unique inertially equivalent supercuspidal class of SLn(F ), 
which is different from the case when � = 0.

© 2022 The Author. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
1.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.2. Structure of this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2. Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.2. Maximal simple k-types of M′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3. Category decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.1. Projective objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.2. Category decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4. Supercuspidal subcategory of Repk(M′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.1. M′-inertially equivalent supercuspidal classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

E-mail address: peiyi.cuimath@gmail.com.
https://doi.org/10.1016/j.jalgebra.2022.02.016
0021-8693/© 2022 The Author. Published by Elsevier Inc. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jalgebra.2022.02.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2022.02.016&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:peiyi.cuimath@gmail.com
https://doi.org/10.1016/j.jalgebra.2022.02.016
http://creativecommons.org/licenses/by/4.0/


P. Cui / Journal of Algebra 602 (2022) 130–153 131
4.2. Supercuspidal blocks of Repk(M′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

1. Introduction

Let F be a non-archimedean local field with residual characteristic p, and k an alge-
braically closed field with characteristic � different from p. We say G is a p-adic group 
if it is the group of F -rational points of a connected reductive group G defined over F . 
Let Repk(G) be the category of smooth k-representations of G. In this article, we always 
denote by M′ a Levi subgroup of SLn(F ), and we study the category Repk(M′).

For arbitrary p-adic group G, we say that Repk(G) has a category decomposition with 
respect to an index set A, if there exists an equivalence:

Repk(G) ∼=
∏

α∈A
Rep(G)α, (1)

where Repk(G)α are full sub-categories of Repk(G). The equivalence implies that:

• Each object Π ∈ Repk(G) can be decomposed as a direct sum Π ∼= ⊕α∈AΠα, where 
Πα ∈ Repk(G)α.

• For i = 1, 2 and αi ∈ A, if α1 �= α2, then HomG(Π1, Π2) = 0 for Πi ∈ Repk(G)αi
;

Furthermore, if

• for α ∈ A, there is no such decomposition for Repk(G)α, we say that Repk(G)α is
non-split.

If Repk(G)α is non-split for each α ∈ A, we call this category decomposition a block 
decomposition of Repk(G), which means the finest category decomposition of Repk(G), 
and we call each Repk(G)α a block of Repk(G).

When � = 0, a block decomposition of Repk(G) has been established with respect 
to A = SCG, where SCG is the set of G-inertially equivalent supercuspidal classes of G
(see Section 2.1 for the definition). Let [M, π]G ∈ SCG, where (M, π) is a supercuspidal 
pair of G (see Section 2.1). The subcategory Repk(G)[M,π]G consists of the objects whose 
irreducible subquotients have supercuspidal supports (see Section 2.1) in [M, π]G.

When � is positive, a block decomposition has been established when G is GLn ([8]) 
and its inner forms ([11]). For G = GLn, the block decomposition is with respect to SCG
as well, which is the same as the case when � = 0. It is worth noting that when we restrict 
the block decomposition in Equation (1) to the set of irreducible k-representations of 
G, the block decomposition with respect to SCG requires the supercuspidal support of 
which is an irreducible k-representation of G belongs to a unique G-inertially equivalent 
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supercuspidal class, which can be deduced from the uniqueness of supercuspidal support 
proved in [13, §V.4] for GLn(F ). However the uniqueness of supercuspidal support is not 
true in general, in [6] an irreducible k-representation of Sp8(F ) that the supercuspidal 
support is not unique up to Sp8(F )-conjugation has been found. As for SLn(F ), the 
uniqueness of supercuspidal support holds true and has been proved in [5], hence the 
block decomposition with respect to SLn(F )-inertially equivalent supercuspidal classes 
was expected. However in this article, we show that this is not always true by providing 
a counter-example in Section 4.

1.1. Main results

Now we describe the work in this article with more details. Let G′ be SLn(F ), and M′

be a Levi subgroup of G′. Let M be a Levi subgroup of GLn(F ) such that M ∩G′ = M′. 
We establish a category decomposition of Repk(M′) with respect to M-inertially equiv-
alent supercuspidal classes SCM

M′ (see Section 2.1 for the definitions), which is different 
from SCM′ , the set of M′-inertially equivalent supercuspidal classes. In fact, let L be a 
Levi subgroup of M and L′ = L ∩ M′ a Levi subgroup of M′, and let τ be an irreducible 
supercuspidal k-representation of L. Denote by I(τ) the set of isomorphic classes of irre-
ducible components of τ |L′ . Let τ ′ ∈ I(τ), denote by [L′, τ ′]M′ the M′-inertially equivalent 
supercuspidal class defined by (M′, τ ′). The M-inertially equivalent supercuspidal class 
of (L′, τ ′) is ∪γ′∈I(τ)[L′, γ′]M′ , and we denote it by [L′, τ ′]M.

Theorem 1.1 (Theorem 3.15). Let SCM
M′ be the set of M-inertially equivalent supercuspidal 

classes of M′. There is a category decomposition of Repk(M′) with respect to SCM
M′ .

In particular, let [L′, τ ′]M ∈ SCM
M′ , a k-representation of M′ belongs to the full subcat-

egory Repk(M′)[L′,τ ′]M , if and only if the supercuspidal support of each of its irreducible 
subquotients is contained in [L′, τ ′]M.

The above theorem gives a category decomposition

Repk(M′) ∼= Repk(M′)SC × Repk(M′)non−SC ,

where a k-representation Π of M′ belongs to Repk(M′)SC (resp. Repk(M′)non−SC) if each 
(resp. none) of its irreducible subquotients is supercuspidal. We call Repk(M′)SC the 
supercuspidal subcategory of Repk(M′). In Section 4, we establish a block decomposition 
of Repk(M′)SC .

Let π be an irreducible supercuspidal k-representation of M, and let I(π) be the set of 
isomorphic classes of irreducible components of π|M′ . In Section 4, we introduce an equiv-
alence relation ∼ on I(π). For π′ ∈ I(π), an irreducible supercuspidal k-representation 
of M′, let (π′, ∼) be the connected component of I(π) containing π′ under this equiv-
alence relation, which is the subset of I(π) consisting of the elements equivalent to π′. 
Let [π′, ∼] be the union of M′-inertially equivalent supercuspidal classes of π′

j ∈ (π′, ∼). 
In general, we have
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[M′, π′]M′ � [π′,∼] � [M′, π′]M.

Denote by SCM′,∼ the set of pairs of the form [π′, ∼]. We establish a block decomposition 
of Repk(M′)SC :

Theorem 1.2 (Theorem 4.12). There is a block decomposition of Repk(M′)SC with respect 
to SCM′,∼. In particular, let [π′, ∼] ∈ SCM′,∼. A k-representation Π of M′ belongs to 
Repk(M′)[π′,∼] if and only if each of the irreducible subquotients of Π belongs to [π′, ∼].

This article ends with Example 4.13 of a k-representation in the supercuspidal sub-
category of Repk(SL2(F )) when � = 3. In this example, we construct a finite length 
projective k-representation of SL2(F ) which is induced from a projective cover of a max-
imal simple supercuspidal k-type of depth zero. By using the theory of k-representations 
of finite SL2 group, we compute the irreducible subquotients of this projective cover, and 
we show that there exist two different supercuspidal k-representations of SL2(F ), which 
are not inertially equivalent, such that they belong to a same block. Or equivalently, 
this example shows that there exists an irreducible supercuspidal k-representation π′

of SL2(F ), such that [π′, ∼] is not a unique SL2(F )-inertially equivalent supercuspidal 
class, hence the equivalence relation defined on I(π) is non-trivial in general. This ex-
ample shows that a block decomposition of Repk(G′) (resp. Repk(M′)) with respect to 
G′-inertially equivalent supercuspidal classes SCG′ (resp. Repk(M′)-inertially equivalent 
supercuspidal classes SCM′) is not always possible in general.

1.2. Structure of this paper

The author is inspired by the method in [8]. We use the theory of maximal simple 
k-types, which has been firstly established for C-representations of GLn(F ) in [2] and 
generalised by the author to the cuspidal k-representations of M′ a Levi subgroup of 
SLn(F ) in [4]. In this article, we construct a family of projective objects defined from 
the projective cover of maximal simple k-types. In Section 3.1, we show that the pro-
jective cover of a maximal simple k-type of M′ is an indecomposable direct summand of 
the restriction of the projective cover of a maximal simple k-type of M. We apply the 
compact induction functor indM

M′ to these projective objects and describe their decompo-
sition under the block decomposition of Repk(M). The above two parts lead to a family 
of injective objects verifying the conditions stated in Proposition 2.1, which gives the 
category decomposition in Theorem 1.1.

Section 4 concentrates on the supercuspidal subcategory of Repk(M′), where M′ is a 
Levi subgroup of SLn(F ). We introduce an equivalence relation generated by putting all 
the irreducible subquotients of the projective cover of a maximal simple supercuspidal 
k-type of M′ into a same equivalent class. Let π be an irreducible supercuspidal k-
representation of M. The above equivalence relation on maximal simple supercuspidal 
k-types induces an equivalence relation on I(π), which is the equivalence relation ∼
needed in Theorem 1.2.
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It is natural to expect that a block decomposition of Repk(G′) can be given with re-
spect to the set of G′-conjugacy classes of elements in SCM′,∼ for all Levi subgroup 
M′, which involves the study of projective cover of maximal simple k-types (non-
supercuspidal) of M′ and leads to a study of semisimple k-types of G′.

2. Preliminary

2.1. Notations

Let F be a non-archimedean local field with residual characteristic equal to p.

• oF : the ring of integers of F , and pF : the unique maximal ideal of oF .
• k: an algebraically closed field with characteristic � �= p.
• Let K be a closed subgroup of a p-adic group G, then indG

K : compact induction, 
IndG

K : induction, resGK : restriction.
• Fix a split maximal torus of G, and M be a Levi subgroup, then iGM, rG

M: normalised 
parabolic induction and normalised parabolic restriction.

• Denote by δG the module character of G.

In this article, without specified we always denote by G the group of F -rational points 
of GLn and by G′ the group of F -rational points of SLn. Let ι be the canonical embedding 
from G′ to G, which induces an isomorphism between the Weyl group of G′ and G, hence 
gives a bijection from the set of Levi subgroups of G′ to those of G. In particular, if M is 
a Levi subgroup of G, we always denote by M′ the Levi subgroup M ∩G′ of G′. We say 
an irreducible k-representation π of a p-adic group G is cuspidal, if rG

Mπ is zero for every 
proper Levi subgroup M; we say π is supercuspidal if it does not appear as a subquotient 
of iGMτ for each proper Levi subgroup M and its irreducible representation τ .

Let π be an irreducible k-representation of G. Its restriction π|G′ is semisimple with 
finite length, and each irreducible k-representation π′ of G′ appears as a direct component 
of π|G′ . A pair (M, τ) is called a cuspidal (resp. supercuspidal) pair if M is a Levi subgroup 
and τ is an irreducible cuspidal (resp. supercuspidal) of M. Let (M′

1, τ
′
1), (M′

2, τ
′
2) be two 

cuspidal pairs of G′ and K be a subgroup of G. We say they are K-inertially equivalent, 
if there exists an element g ∈ K such that g(M′

1) = M′
2 and there exists an unramified k-

quasicharacter θ of F× such that g(τ ′1) ∼= τ ′2 ⊗ θ. We denote by [M′, τ ′]K the K-inertially 
equivalent class defined by (M′, τ ′), and we call it a K-inertially equivalent supercuspidal 
(resp. cuspidal) class if (M′, τ ′) is a supercuspidal (resp. cuspidal) pair. A same definition 
of [M, τ ]G is applied for cuspidal pairs of G. We always abbreviate [M′, τ ′]G′ as [M′, τ ′], 
and abbreviate [M, τ ]G as [M, τ ].

We say that a cuspidal (resp. supercuspidal) pair (M, τ) belongs to the cuspidal
(resp. supercuspidal) support of π, if π appears as a subrepresentation or a quotient-
representation (resp. subquotient representation) of iGMτ . When π is an irreducible k-
representation of G (resp. G′), its supercuspidal support as well as its cuspidal support 
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is unique up to G (resp. G′)-conjugation (see Theorem 4.16 of [5] and §V.4 of [13] for 
the uniqueness of supercuspidal support, and see §III 2.4 of [12] for the uniqueness of 
cuspidal support).

To decompose Repk(G′) as a direct product of a family of full-subcategories, we con-
struct a family of injective objects and follow the method as below, which is the same 
strategy as in [8, Proposition 2.4]. We state it here for convenient reason.

Proposition 2.1. Let I1, I2 be two injective objects in Repk(G′), and denote by S1, S2
the sets of irreducible k-representations of G′ which appear as subquotients of I1 and I2
respectively. Suppose the following conditions are verified:

• an object in S1 can be embedded into I1;
• an object in S1 does not belong to S2 up to isomorphism;
• an irreducible k-representation of G′, which does not belong to S1 up to isomorphism, 

can be embedded into I2.

Then Repk(G′) can be decomposed as a direct product of two full subcategories R1 and 
R2, such that

• every object Π ∈ Repk(G′) is isomorphic to a direct sum π1 ⊕ π2, where each irre-
ducible subquotient of π1 belongs to S1 and each irreducible subquotient of π2 belongs 
to S2;

• every object in R1 has an injective resolution by direct sums of copies of I1, and 
every object in R2 has an injective resolution by direct sums of copies of I2 (copies 
means direct product by itself).

Remark 2.2 (Projective version). Let P1, P2 be two projective objects in Repk(G′), and 
denote by S1, S2 the sets of irreducible k-representations of G′ which appears as a sub-
quotient of P1 and P2 respectively. Suppose the following conditions are verified:

• an object in S1 is a quotient of P1;
• an object in S1 does not belong to S2 up to isomorphism;
• an irreducible k-representation of G′, which does not belong to S1 up to isomorphism, 

can be realised as a quotient of P2.

Then Repk(G′) can be decomposed as a direct product of two full subcategories R1 and 
R2, such that every object Π ∈ Repk(G′) is isomorphic to a direct sum π1 ⊕ π2, where 
each irreducible subquotient of π1 belongs to S and each irreducible subquotient of π2
belongs to S2.

The proof of Remark 2.2 is done in the same manner as in Proposition 2.4 of [8] by 
changing injective objects to projective objects as suggested in Remark 2.5 of [8].
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2.2. Maximal simple k-types of M′

In this section, we recall notations and definitions in the theory of maximal simple 
k-types of Levi subgroups M′ of G′ which has been studies in [4]. It requires the theory of 
maximal simple k-types of G which has been established in [3] for complex case. The later 
is related to modulo � maximal simple types in [12, §III] by considering the reduction 
modulo �, while [9] gives a more intrinsic description. We state some useful properties 
which will be needed for the further use.

A maximal simple k-type of G is a pair (J, λ), where J is an open compact subgroup 
of G and λ is an irreducible k-representation of J . We have a groups inclusion:

H1 ⊂ J1 ⊂ J,

where J1 is a normal pro-p open subgroup J1 of J , such that the quotient J/J1 is 
isomorphic to GLm(Fq), where Fq is a field extension of the residue field of F , and 
H1 is open. The k-representation λ is a tensor product κ ⊗ σ, where κ is irreducible 
whose restriction to H1 is a multiple of a k-character, and σ is inflated from a cuspidal 
k-representation of J/J1. By [12, §III 4.25] or [9, Proposition 3.1], for an irreducible 
k-cuspidal representation π of G, there exists a maximal simple k-type (J, λ), a compact 
modulo centre subgroup K and an irreducible representation Λ of K, where J is the 
unique largest compact open subgroup of K and Λ is an extension of λ, such that 
π ∼= indG

KΛ. Since a Levi subgroup of G is a tensor product of GL-groups of lower rank, 
so we can define maximal simple k-types (JM, λM) and obtain the same property for 
cuspidal k-representations of M as above.

For the reason that a Levi subgroup M′ of G′ is not a product of SL-groups of lower 
rank, so it is not sufficient to consider only the maximal simple k-types of G′. Let 
(JM, λM) be a maximal simple k-type of M. The group of projective normaliser J̃M
contains JM as a normal subgroup, which is defined in [4, 2.15] and [3, 2.2]. In particular, 
for any g ∈ J̃M, we have g(λM) ∼= λM ⊗ χ, where χ is a k-quasicharacter of F×. As in 
[4, 2.48], a maximal simple k-type of M′ is a pair of the form (J̃ ′

M, ̃λ′
M), where λ̃′

M is 
an irreducible direct component of (indJ̃M

JM
λM)|J̃ ′

M
, and we set λ̃M := indJ̃M

JM
λM, which is 

irreducible as proved in [4, Theorem 2.47]. For any irreducible cuspidal k-representation 
π′ of M′, there exists an irreducible cuspidal k-representation π of M such that π′ is 
a direct component of π|M′ . Let (JM, λM) be a maximal simple k-types contained in 
π, then there exists a maximal simple k-type (J̃M, ̃λ′

M) as well as an open compact 
modulo centre subgroup NM′(λ̃′

M), the normaliser group of λ̃′
M in M′, containing J̃ ′

M as 
its largest open compact subgroup, as well as an extension ΛM′ of λ̃′

M to NM′(λ̃′
M), such 

that π′ ∼= indM′

NM′ (λ̃′
M)ΛM′ . We call (NM′(λ̃′

M), Λ′
M) an extended maximal simple k-type.

Proposition 2.3 (Proposition 2.29 and Lemma 4.2 of [5]). Let π′ be an irreducible cuspidal 
k-representation of M′. There exists a cuspidal k-representation π of M, such that π′ is 
a direct component of π|M′ . Then π′ is supercuspidal if and only if π is supercuspidal. 
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When π is supercuspidal, we call a k-type (JM, λM) (resp. (J̃ ′
M, ̃λ′

M)) contained in π (resp. 
π′) a maximal simple supercuspidal k-type.

Let K1, K2 be two open subgroups of M′ and ρ1, ρ2 two irreducible k-representations 
of K1, K2 respectively. We say that ρ1 is weakly intertwined with ρ2 in M′, if 
there exists an element m ∈ M′ such that ρ1 is isomorphic to a subquotient of 
indK1

K1∩m(K2)res
m(K2)
K1∩m(K2)m(ρ2).

Proposition 2.4 (Theorem 3.19 and Theorem 3.25 of [4]).

1. We have J̃M = J̃ ′
MJM.

2. Let (J̃ ′
M,1, ̃λ

′
M,1) and (J̃ ′

M,2, ̃λ
′
M,2) be two maximal simple k-types of M′. They are 

weakly intertwined in M′ if and only if they are M′-conjugate.

3. Category decomposition

In this section, to simplify the notations, we denote by G a Levi subgroup of GLn(F )
and G′ = G ∩ SLn(F ), which is a Levi subgroup of SLn(F ). Let M be a Levi subgroup 
of G. We denote by M′ = M ∩G′ a Levi subgroup of G′, and let K be an open subgroup 
of G. We always denote by K ′ = K ∩ G′. If π is an irreducible k-representation of K, 
then π′ is one of the irreducible summand of π|K′ .

3.1. Projective objects

In this section, we will follow the strategy of [8] to construct some projective ob-
jects of Repk(G′). We study first the projective cover of maximal simple k-types of 
Levi subgroups M′, then we consider their induced representations. Proposition 3.6
and Corollary 3.7 give the relation between these projective objects and irreducible k-
representations whose cuspidal support is given by the corresponding maximal simple 
k-type. The later properties will be used in Section 3.2.

Let (JM, λM) be a maximal simple k-type of M, and J̃M be the group of projective 
normaliser of (JM, λM) (see Section 2.2). Write λM as κM ⊗ σM. Let PλM be the projec-
tive cover of λM. From [8, Lemma 4.8] we know that PλM is isomorphic to PσM ⊗ κM, 
where PσM is the projective cover of σM. Denote by λ̃M the irreducible k-representation 
indJ̃M

JM
λM. Let (J̃ ′

M, ̃λ′
M) be a maximal simple k-type of M′ defined from (JM, λM) as in 

Section 2.2. Since PλM has finite length, we have PλM |J ′
M

= ⊕s
i=1Pi, where Pi is an 

indecomposable projective k-representation of J ′
M for each i.

Remark 3.1. The projective cover PσM is given by the theory of k-representations of finite 
general linear groups. When σM is inflated from a supercuspidal k-representation of M, 
which means (JM, λM) is a maximal simple supercuspidal k-type of M, according to the 
construction of PσM (see Lemma 5.11 of [7] or see Corollary 3.5 of [5]) as well as Deligne-
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Lusztig theory, we conclude that the irreducible subquotients of PσM are isomorphic to 
σM.

Let π be an irreducible cuspidal k-representation of M which contains (JM, λM), and 
π′ be an irreducible cuspidal k-representation of M′ which contains (J̃ ′

M, ̃λ′
M) such that 

π′ ↪→ π|M′ . We denote by

P[M,π] = iGMindM
JM

PλM ,

and by

P[M′,π′] = iG
′

M′ indM′

J̃ ′
M
Pλ̃′

M
.

Lemma 3.2. P[M′,π′] is an direct summand of P[M,π]|M′ .

Proof. We have

(iGMindM
JM

PλM)|G′ ∼= iG
′

M′(indM
JM

PλM)|M′ .

Since indJ̃M
JM

Pλ|J̃ ′
M

is projective and has a surjection to λ̃′
M, we obtain that Pλ̃′

M
is a 

direct summand of indJ̃M
JM

Pλ|J̃ ′
M

. Hence Pλ̃′
M

is a direct summand of Pλ̃M
|M′ where Pλ̃M

∼=
indJ̃M

JM
PλM , and P[M′,π′] is a direct summand of P[M,π]|G′ . �

Let (JM, λM) be a maximal simple supercuspidal k-type of M, and (J̃ ′
M, ̃λ′

M) be a 
maximal simple supercuspidal k-type of M′ defined from (JM, λM) as in Section 2.2.

Lemma 3.3. Let π be an irreducible supercuspidal k-representation of M which contains 
(JM, λM), and τ ′ be an irreducible subquotient of the projective cover Pλ̃′

M
of λ̃′

M. Then 

(J̃ ′
M, τ ′) is also a maximal simple supercuspidal k-type defined by (JM, λM), and there 

exists an irreducible direct component π′
0 of π|M′ which contains (J̃ ′

M, τ ′). In particular, 
when M′ = G′ = SLn(F ), if τ ′ is different from λ̃′

M, and suppose π′ is an irreducible 
direct component of π|M′ containing λ̃′

M, then π′
0 is different from π′.

Proof. Recall that PλM is the projective k-cover of λM, as explained in Remark 3.1, 
its irreducible subquotients are isomorphic to λM. As in the proof of Lemma 3.2, we 
know that the projective representation Pλ̃′

M
is an indecomposable direct component 

of indJ̃M
JM

PλM |J̃ ′
M

. As in Section 2.2, the induced representation λ̃M := indJ̃M
JM

λM is irre-
ducible. By the exactness of induction functor, we know that the irreducible subquotients 
of indJ̃M

JM
PλM are isomorphic to λ̃M, which implies that an irreducible subquotient of Pλ̃′

M

is isomorphic to an irreducible direct component of λ̃M|J̃ ′
M

. Since π contains λ̃M after 
restricting to J̃M, by the Mackey’s theory, any irreducible direct component of λ̃M|J̃ ′

M
must be contained in an irreducible direct component of π|M′ .
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When M′ = G′ = SLn(F ), by Mackey’s theory the induction indG′

J̃ ′
G
resJ̃G

J̃ ′
G
λ̃G is a 

subrepresentation of π|G′ , and each irreducible component of λ̃G|J̃ ′
G

is irreducibly induced 
to G′. The second statement is directly from the fact that π|M′ is multiplicity-free as 
proved in Proposition 2.35 of [4]. �
Remark 3.4. When M′ is a proper Levi subgroup of G′, it is possible that two different 
maximal simple supercuspidal k-types (J̃ ′

M, ̃λ′
M) and (J̃ ′

M, τ ′), which are defined from 
a same maximal simple supercuspidal k-type, are M′-conjugate to each other, which 
implies that they may be contained in a same irreducible supercuspidal k-representation 
of M′.

Lemma 3.5.

1. Let α ∈ J̃M, then α(PλM) ∼= Pα(λM) ∼= PλM ⊗ θ, where θ is a k-quasicharacter of 
det(JM) and α(λM) ∼= λM ⊗ θ.

2. Let (J̃ ′
M, ̃λ′

1) and (J̃ ′
M, ̃λ′

2) be two different maximal simple k-types defined from 
(JM, λM). Let α ∈ J̃M such that α(λ̃′

1) ∼= λ̃′
2, then for the projective covers we have 

α(Pλ̃′
1
) ∼= Pλ̃′

2
.

Proof. For the first part, there is a surjective morphism from PλM ⊗ θ to λM ⊗ θ and 
is indecomposable. Moreover, the projectivity can be easily deduced directly from the 
definition. Since α(PλM) is the projective cover of α(λM), we obtain the expected equality. 
The second part can be deduced in a similar way. �
Proposition 3.6. Recall that G′ is a Levi subgroup of SLn(F ). Let ρ′ be an irreducible 
k-representation of G′ and (M′, π′) be a cuspidal pair of G′ inside the cuspidal support 
of ρ′, then there is a surjective morphism

P[M′,π′] → ρ′.

Proof. Let (J̃ ′
M, ̃λ′

M) be a maximal simple k-type contained in π′, hence there is an 
injection λ̃′

M → resM′

J̃ ′
M
π′. By Frobenius reciprocity, it gives a surjection indM′

J̃ ′
M
Pλ̃′

M
→ π′, 

which induces a surjection P[M′,π′] → iG
′

M′π′, hence a surjection from P[M′,π′] to ρ′ by [12, 
§II, 2.20]. �
Corollary 3.7. Let I[M′,π′] be the contragredient of P[M′,π′ ∨], where π′ ∨ is the contragre-
dient of π′. Suppose that the cuspidal support of τ ′ is [M′, π′], then τ ′ is embedding to 
I[M′,π′].

3.2. Category decomposition

Recall that in this section G′ is a Levi subgroup of SLn(F ) and G is a Levi sub-
group of GLn(F ) such that G′ = G ∩ SLn(F ). A decomposition of Repk(G′) by its 
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full sub-categories will be given in Theorem 3.15 with respect to the G-twist equivalent 
supercuspidal classes of G′ (see the paragraph below Proposition 3.12 for G-twist equiv-
alent equivalence). This will not be a block decomposition in general, which means it 
does not always verify the last condition of Equation (1), however we will see in Section 4
that it is not always possible to decompose Repk(G′) with respect to the G′-inertially 
equivalent supercuspidal classes as for Repk(G) in Equation (1).

Let A be a family of G-inertially equivalent supercuspidal classes of G, and denote 
by Repk(G)A the union of blocks 

⋃
[M,π]G∈A Repk(G)[M,π]G . Let A′ be a family of G′-

inertially equivalent supercuspidal classes of G′, verifying that [M′, π′]G′ ∈ A′ if and 
only if there exists [M, π]G ∈ A such that M′ = M ∩ G′ and π′ → π|M′ . Let L be a Levi 
subgroup of G which contains M. Denote by AL the family of L-inertially equivalent 
supercuspidal classes of the form [w(M), w(π)]M, where [M, π]G ∈ A, and recall that 
[·, ·]L is the L-inertially equivalent class, and w ∈ G such that w(M) ⊂ L. We define A′

L
in the same manner of A′ by replacing G by L.

Lemma 3.8. Let P ∈ Repk(G)[M,π]G , and L be a Levi subgroup of G. Then rG
L P ∈∏

w∈G,w(M)⊂L Repk(G)[w(M),w(π)]L .

Proof. Suppose Π is an irreducible subquotient of rG
L P , whose cuspidal support is (N, τ), 

where N is a Levi subgroup of L and τ is a cuspidal representation of N. Let P[N,τ ]L be the 
projective object defined from the maximal simple k-type of τ , then there is a non-trivial 
morphism P[N,τ ]L → rG

L P . By the second adjunction of Bernstein, we have a non-trivial 
morphism from iGLP[N,τ ]L to P , where iGL is the opposite normalised parabolic induction 
from L to G. Since the module character δL is an unramified character on L, the k-
representation iGLP[N,τ ]L belongs to the same block as iGLP[N,τ ]L , which implies that the 
supercuspidal support of τ belongs to the union ∪w∈G,w(M)⊂L(w(M), w(π)). We finish 
the proof. �
Lemma 3.9. Let P ∈ Repk(G)A, and τ ′ be an irreducible subquotient of P |G′ , then the 
supercuspidal support of τ ′ belongs to A′.

Proof. Suppose firstly that τ ′ is cuspidal, then there exists a maximal simple k-type 
(J, λ) of G, such that an irreducible component (J ′, λ′) of λ|G′ is contained in τ ′ as a 
subrepresentation. By [4, Lemma 2.14], up to twist a k-character of F×, we can assume 
that λ is a subquotient of P |J . Hence there is a non-trivial morphism from the projective 
cover Pλ of λ to P |J , which implies that for any irreducible cuspidal k-representation τ
of G which contains (J, λ), its supercuspidal support must belong to A. In particular, 
we can choose τ such that τ ′ ↪→ τ |G′ , hence by [5, Proposition 4.4] we know that the 
supercuspidal support of τ ′ must belong to A′.

Now suppose τ ′ is not cuspidal. Let (L′, ρ′) belong to its cuspidal support. The ρ′

appears as a subquotient of rG′

L′ P |G′ ∼= (rG
L P )|L′ . By Lemma 3.8, and the previous 
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paragraph, we know that the supercuspidal support of ρ′ must belong to A′
L, from which 

we deduce the desired property of supercuspidal support of τ . �
Lemma 3.10. Let π and π′ be cuspidal k-representations of M and M′ respectively and 
π′ ↪→ π|M′ . Let (JM, λM) be a maximal simple k-type of π and (J̃ ′

M, ̃λ′
M) be a maximal 

simple k-type of π′ defined from (JM, λM). Suppose [L, τ ] is the supercuspidal support of 
[M, π], then we have

indG
G′P[M′,π′] ∈

∏

χ∈(O×
F )∨

Repk(G)[L,τ⊗χ].

Proof. We set P ′ := P[M′,π′], P ′
M′ = indM′

J̃M′
Pλ̃′

M
and Pλ̃M

= indJ̃M
JM

PλM in this proof. 
Recall that P ′ = iG

′

M′ indM′

J̃ ′
M
P̃λ̃′

M
. Since the module character δM′ = δM|M′ , we have

indG
G′P ′ ∼= iGMindM

M′P ′
M′ ↪→ iGMindM

J̃M
(Pλ̃M

⊗ indJ̃M
J̃ ′
M
1),

where

resJ̃M
J1
M

(Pλ̃M
⊗ indJ̃M

J̃ ′
M
1) = resJ̃M

J1
M

indJ̃M
JM

PλM ⊗ resJ̃M
J1
M

indJ̃M
J̃ ′
M
1

= ⊕α∈J̃M\JM
resJM

J1
M
α(PλM) ⊗⊕J̃ ′

M\J̃M/J1
M

indJ1
M

J1
M∩J̃ ′

M
1.

(2)

Since J1
M is a pro-p group, and by the definition of J̃M the above representation is 

semisimple whose direct components are of the form η ⊗ θ, where η is the Heisenberg 
representation of the simple character of λM, and θ ∈ (det(J1

M))∧ which can be extended
to a character of F× and we fix one of such extension by denoting it as θ as well. Hence 
we have the decomposition

resJ̃M
JM

(Pλ̃M
⊗ indJ̃M

J̃ ′
M
1) ∼= ⊕θ∈(det(H1

M))∧Pθ, (3)

where Pθ is the η ⊗ θ-isogeny subrepresentation. Notice that we require θ is non-trivial 
on H1

M, because otherwise η ∼= η ⊗ θ. By a similar computation as in Equation (2), we 
have

resJ̃M
JM

(Pλ̃M
⊗ indJ̃M

J̃ ′
M
1) ∼= ⊕α∈J̃M/JM

α(PλM) ⊗⊕ρ∈(det(JM))∧ρ⊗ indJM
JM,�′

1,

where JM,� is the subgroup of JM consisting with the elements whose determinant be-
longs to the �′-part of F×. By Lemma 3.5, the right hand side of the above equation is 
isomorphic to ⊕ρ∈(det(JM))∧(PλM⊗ρ)q̃⊗indJM

JM,�′
1, where q̃ is the index [J̃M : JM] and (·)q̃

is the q̃-multiple of ·. Hence Pθ in Equation (3) is isomorphic to ⊕ρ(PλM⊗ρ)q̃⊗indJM
JM,�′

1, 
where ρ ∈ (detJM)∧, ρ|H1

M
= θ. Recall that λM ∼= κ ⊗σ, where σ is inflated from a super-

cuspidal k-representation of JM/J1
M, and Pλ

∼= Pσ ⊗ κ. Since an irreducible subquotient 
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of Pθ is isomorphic to κ ⊗σ0 ⊗ρ, where σ0 is inflated from JM/J1
M and its supercuspidal 

support is the same as that of σ, and ρ is an character as above. Now we fix an extension 
of θ to JM and denote it again by θ. We have Pθ

∼= Πθ ⊗κ ⊗ θ, where Πθ is inflated from 
JM/J1

M, and the supercuspidal support of each of its irreducible subquotient is the same 
as σ⊗ ρ, where ρ ∈ det(JM/J1

M)∧. By [11, Theorem 9.6], the induction indM
JM

Pθ belongs 
to the subcategory 

∏
χ∈(o×

F )∧ Repk(M)[L,τ⊗χ], hence iGMPθ ∈
∏

χ∈(o×
F )∧ Repk(G)[L,τ⊗χ]. 

Since indG
G′P ′ ∼= ⊕θ∈(det(H1

M))∧i
G
MindM

JM
Pθ, we deduce the desired property. �

Lemma 3.11. Let A be as above, and P ∈ Repk(G)A. Then P∨ ∈ Repk(G)A∨ , where A∨

consists of the G-inertially equivalent supercuspidal classes [M, π∨] such that [M, π] ∈ A.

Proof. Suppose there exists an irreducible subquotient π of P∨. Denote by [M0, τ0] its 
supercuspidal support and by [L0, π0] is cuspidal support. There is non-trivial morphism 
P[L0,π0] → P∨, which implies a non-trivial morphism P → P∨

[L0,π0]. Since P∨
[L0,π0] belongs 

to the block Repk(G)[M0,τ∨
0 ] by [8, Corollary 11.7], we have [M0, τ∨0 ] ∈ A by the Bernstein 

decomposition [8, Theorem 11.8]. �
Proposition 3.12. We keep the notations as in Lemma 3.10. Let ρ′ be an irreducible 
subquotient of the contragredient P∨

[M′,π′], then the supercuspidal support of ρ′ is contained 
in union of G-conjugacy classes of [L′, τ ′ ∨]. In other words, let τ |L′ = ⊕i∈Iτ

′
i , then the 

supercuspidal support of ρ′ is contained in 
⋃

i∈I [L′, τ ′ ∨i ].

Proof. Let P ′ be P[M′,π′] in this proof. Since there is no non-trivial character on G′, we 
have (indG

G′P ′)∨ ∼= IndG
G′P ′ ∨. By Lemma 3.10 and Lemma 3.11, we have

(IndG
G′P ′)∨ ∈

∏

χ∈(o×
F )∨

Repk(G)[L,τ∨⊗χ].

By the surjective morphism resGG′IndG
G′P ′ ∨ → P ′ ∨ and Lemma 3.9, we conclude that 

the supercuspidal support of an arbitrary irreducible subquotient of P ′ ∨ belongs to the 
G-conjugation of [L′, τ ′]. �
Definition 3.13. Let (L1, τ1) and (L2, τ2) be cuspidal pairs of G. We say they are G-twist 
equivalent, if there exists g ∈ G such that g(L1) = L2 and g(τ1) is isomorphic to τ2 up 
to a k-quasicharacter of F×, which is an equivalence relation and denote by [L1, τ1]tw
the G-twist equivalent class defined by (L1, τ1).

We observe that in the above definition, we do not require the k-quasicharacter of 
F× is unramified, which is different comparing to the relation of G-inertial equivalence. 
We define the depth of a G-twist equivalent class as the minimal depth among all the 
pairs inside this class. Denote by C[L,τ ]tw the set of G-twist equivalent cuspidal classes 
whose supercuspidal support belong to [L, τ ]tw up to an isomorphism, and denote by 
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C[L,τ ]tw the set of G-twist equivalent cuspidal classes whose supercuspidal support does 
not belong to [L, τ ]tw up to an isomorphism. It is worth noticing that

1. C[L,τ ]tw is a finite set;
2. fix a positive number n ∈ N, there are only finitely many object in C[L,τ ]tw whose 

depth is smaller than n.

Define

I(L,τ) =
⊕

[M′,π′]∈C′
[L,τ]tw

P∨
[M′,τ ′ ∨],

I(L,τ) =
⊕

[M′,π′]∈C′
[L,τ]tw

P∨
[M′,τ ′ ∨],

where the relation between C[L,τ ]tw and C′
[L,τ ]tw is as explained in the beginning of Sec-

tion 3.2.

Lemma 3.14. I(L,τ) is injective.

Proof. In fact I(L,τ) is the smooth part of the contragredient 
∏

[M′,π′]∈C′
[L,τ]tw

P∗
[M′,τ ′ ∨] of 

⊕[M′,π′]∈C′
[L,τ]tw

P[M′,τ ′ ∨], where P∗
[M′,τ ′ ∨] is the contragredient (not necessarily smooth) 

of P[M′,τ ′ ∨]tw . Fix an open compact subgroup K ′ of G′, there exist finitely many 
[M′, π′] ∈ C′

[L,τ ]tw such that the K-invariant part of P[M′,τ ′ ∨] is non-trivial, which implies 
the same property for the contragredient P∗

[M′,τ ′ ∨] by [12, §4.15]. Hence an K-invariant 
non-trivial linear form f in the smooth part of 

∏
[M′,π′]∈C′

[L,τ]tw
P∗

[M′,τ ′ ∨] must belong to 

⊕[M′,π′]∈C′
[L,τ]tw

P∨
[M′,τ ′ ∨], which finishes the proof. �

Theorem 3.15. Let G be a Levi subgroup of GLn(F ) and G′ be a Levi subgroup of SLn(F ), 
such that G′ = G ∩ SLn(F ). We have a category decomposition

Repk(G′) ∼=
∏

[L,τ ]tw∈SCtw
G

Repk(G′)[L,τ ]tw ,

where

1. SCtw
G is the set of G-twist equivalent supercuspidal classes in G;

2. Repk(G′)[L,τ ]tw is the full subcategory consisting with the objects whose irreducible 
subquotients have supercuspidal support belonging to [L′, τ ′]G and τ ′ is an irreducible 
direct component of τ |L′ .

In particular, each object in Repk(G′)[L,τ ]tw has an injective resolution with direct sums 
of copies of I(L,τ).
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Proof. By the definition of I(L,τ), Corollary 3.7 and Proposition 3.12, each irreducible 
subquotient of I(L,τ) is a subrepresentation of I(L,τ), and none of the irreducible sub-
quotient of I(L,τ) appears as a subquotient of I(L,τ). Furthermore, each irreducible 
k-representation is either a subrepresentation of I(L,τ) or a subrepresentation of I(L,τ) by 
the unicity of cuspidal support as well as the unicity of supercuspidal support. Hence by 
Proposition 2.1, for any object Π ∈ Repk(G′) and any G-twist equivalent supercuspidal 
class [L, τ ]tw of G, define Π[L,τ ]tw to be the largest subrepresentation of Π belonging to 
Repk(G′)[rL,τ ]tw , we have Π ∼= ⊕[L,τ ]∈SCGΠ[L,τ ]tw , and by applying Proposition 2.1 we 
know that there is no morphism between objects of sub-categories defined from different 
G-twist equivalent supercuspidal classes, hence we finish the proof. �
Remark 3.16. Let (L, τ) be a supercuspidal pair of G, and τ |L′ ∼= ⊕s

j=1τ
′
j , where (L′, τ ′j)

are supercuspidal pairs of G′. Denote by Repk(G′)[L′,τ ′
j ] the full subcategory of Repk(G′), 

consisting of objects of which any irreducible subquotient has supercuspidal support 
belonging to the G′-inertially equivalent class [L′, τ ′j ]. The subcategory Repk(G′)[L,τ ]tw

is generated by sub-categories Repk(G′)[L′,τ ′
j ], for all 1 ≤ j ≤ s. In other words, let SCG

G′

be the set of G-inertially equivalent supercuspidal classes of G′. Theorem 3.15 establishes 
a category decomposition of Repk(G′) with respect to SCG

G′ .

Corollary 3.17. Let [L, τ ] be a G-inertially equivalent class of G, where G is a Levi 
subgroup of GLn(F ). The functor resGG′ gives functors from blocks Repk(G)[L,τ⊗χ] for 
any k-quasicharacter χ of F× to the subcategory Repk(G′)[L,τ ]tw .

Proof. It follows directly from Theorem 3.15 and Lemma 3.9. �
Corollary 3.18. Let G′ be a Levi subgroup of SLn(F ). There is a category decomposition

Repk(G′) ∼= Repk(G′)SC × Repk(G′)non−SC ,

where

1. an object belongs to Repk(G′)SC, if and only if all its irreducible subquotients are 
supercuspidal;

2. an object belongs to Repk(G′)non−SC, if and only if none of its irreducible subquo-
tients is supercuspidal.

Proof. Directly from Theorem 3.15. �
Definition 3.19. We call Repk(M′)SC the supercuspidal sub-category of Repk(M′), and 
the blocks of Repk(M′)SC are called supercuspidal blocks of Repk(M′).
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4. Supercuspidal subcategory of Repk(M′)

In this section, let G be GLn(F ) and G′ be SLn(F ). In the previous section, Theo-
rem 3.15 gives a category decomposition of Repk(G′), according to which we define the 
supercuspidal subcategory Repk(G′)SC . In this section, Theorem 4.12 gives a description 
of the blocks of the supercuspidal subcategory of Repk(G′) and Repk(M′), where M′ is 
a Levi subgroup of G′.

4.1. M′-inertially equivalent supercuspidal classes

In this section, we give a bijection between M′-conjugacy classes of maximal simple 
k-types of M′, and M′-inertially equivalent cuspidal classes of M′. The most complexity 
of this section comes from the fact that the Levi subgroup of G′ is not a special linear 
group in lower rank.

Let M be a Levi subgroup of G such that M′ = M ∩ G′. Let (J̃ ′
M, ̃λ′

M) be a maximal 
simple k-type of M′ defined from a maximal simple k-type (JM, λM) of M. As explained 
in Section 2.2, if π is an irreducible cuspidal k-representation of M containing (JM, λM), 
then there exists a direct component π′ of π|M′ , such that π′ contains (J̃ ′

M, ̃λ′
M).

Lemma 4.1. Let E be a field extension of F , such that there is an embedding E× ↪→
GLn(F ). Let �E be a uniformiser of E, and Z�E

be a subgroup of GLn(F ) generated by 
the image of �E under the embedding. Then a k-character of Z�E

can be extended to a 
character of GLn(F ).

Proof. A k-character of Z�E
factors through determinant of GLn(F ). �

Under the assumption on E as in Lemma 4.1, denote by ZOE
the group generated by 

the image of O×
E under the embedding. For general Levi subgroup M of G = GLn(F ). 

Suppose M is a direct product of m general linear groups, and there exist field extensions 
Ei, 1 ≤ i ≤ m of F , such that 

∏m
i=1 E

×
i ↪→ M. Then after fixing a uniformiser �i for each 

Ei, we denote by Z�EM
the group generated by the image of {1 ×· · ·×�i×· · ·×1, 1 ≤ i ≤

m} under the embedding, and by ZOEM
the group generated by the image of 

∏m
i=1 O×

i , 
where Oi is the ring of integers of Ei. It is obvious that the image of 

∏m
i=1 E

×
i can be 

decomposed as a direct product Z�EM
×ZOEM

. In particular, when Ei = F for 1 ≤ i ≤ m, 
we consider the canonical embedding, which is the equivalence between (F×)m and the 
centre of M. Then the centre ZM of M decomposes as Z�FM

×ZOFM
. We denote by Z ′

�EM
as Z�EM

∩ M′ and Z ′
OEM

as ZOEM
∩ M′.

Remark 4.2. Lemma 4.1 implies that a k-character of Z�FM
can be extended to a k-

character of M. In particular, for two irreducible k-representations of M, if their central 
characters coincide to each other on ZOFM

, then up to modifying by an unramified k-
character, they share the same central character.
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Proposition 4.3. Let π1, π2 be two irreducible cuspidal k-representations of M′ which 
contain (J̃ ′

M, ̃λ′
M). Then there exists an unramified k-character χ of F×, such that π1 ∼=

π2 ⊗ χ.

Proof. Let NM′(λ̃′
M) be the normaliser of λ̃′

M in M′, which contains the centre ZM′ of M′

as mentioned in Section 2.2, then by Theorem 4.4 of [4] there exist extensions ΛM′,1, ΛM′,2
of λ̃′

M to NM′(λ̃′
M), such that π1 ∼= indM′

NM′ (λ̃′
M)ΛM′,1 and π2 ∼= indM′

NM′ (λ̃′
M)ΛM′,2.

After modifying an unramified k-character of M′, we can assume that ΛM′,1 and 
ΛM′,2 have the same central character on ZM′ . In fact, we have Z ′

OFM
⊂ J ′

M ⊂ J̃ ′
M, hence 

the central characters of ΛM′,1 and ΛM′,2 coincide on Z ′
OFM

. On the other hand, since 
Z�FM

∼= Zm for an integer m decided by M, a character of a sub-Z-module of Z�FM
can 

be extended to Z�FM
. In particular, we can extend a character of Z ′

�FM
to Z�FM

, then 
to M by Lemma 4.1, finally restricting to M′. Hence we prove that a character of Z ′

�FM
can be extended to M′. Combining with the above discussion, we conclude that there is 
an unramified k-character χ1 of M′, such that ΛM′,1 ⊗ χ1|ZM′ J̃ ′

M
∼= ΛM′,2|ZM′ J̃ ′

M
. By the 

Frobenius reciprocity, there is an injection

ΛM′,1 ⊗ χ1 ↪→ ΛM′,2 ⊗ indNM′ (λ̃′
M)

ZM′ J̃ ′
M

1. (4)

As observed in Remark 2.42 of [4], the group NM′(λ̃′
M) (see Section 2.2 for definition) 

is a subgroup with finite index of E×
MJ̃M ∩ M′, where E×

M
∼=

∏m
i=1 E

×
i and Ei is a 

field extension of F for each 1 ≤ i ≤ m. Since the quotient group NM′(λ̃′
M)/Z ′

MJ̃ ′
M is 

isomorphic to a subquotient group of Z�EM
, hence a character of NM′(λ̃′

M)/ZM′ J̃ ′
M can 

be extended to a character of M by Lemma 4.1, hence a character of M′.
Now we look back to Equation (4). The k-representation indNM′ (λ̃′

M)
ZM′ J̃ ′

M
1 has finite length 

and each of its irreducible subquotient is a character of NM′(λ̃′
M)/Z ′

MJ̃ ′
M, hence can be 

viewed as a character of M′. By the unicity of Jordan-Hölder factors, there exists a 
character χ2 of M′, such that ΛM′,1 ⊗ χ1 ∼= ΛM′,2 ⊗ χ2, since χ1, χ2 are k-characters of 
M′, applying the induction functor indM′

NM′ (λ̃′
M) on both sides gives an equivalence that 

π1 ⊗ χ1 ∼= π2 ⊗ χ2. Define χ to be χ2χ
−1
1 , which is the required unramified k-character 

of M′. �
Proposition 4.4. Let (J̃ ′

M, ̃λ′
M) be a maximal simple k-type of M′, and π′ an irreducible k-

representation of M′ containing (J̃ ′
M, ̃λ′

M). Then any irreducible subquotient of indM′

J̃ ′
M
λ̃′

M
must belong to [M′, π′]M′ , or equivalently saying, must be M′-inertially equivalent to π′.

Proof. By Proposition IV.1.6 of [13], we know that indM
JM

λM is cuspidal, hence its sub-
representation indM′

J̃ ′
M
λ̃′

M is cuspidal as well. Let π0 be an irreducible subquotient of 
indM′

J̃ ′
M
λ̃′

M, and (J ′
0, λ

′
0) a maximal simple k-type contained in π0. The latter is weakly 

intertwined with (J̃ ′
M, ̃λ′

M) by Mackey’s theory. By the property of weakly intertwining 
implying conjugacy of maximal simple k-types of M′ in Theorem 3.25 of [4], we conclude 
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that a maximal simple k-type contained in π0 must M′-conjugate to (J̃ ′
M, ̃λ′

M), and hence 
π0 contains (J̃ ′

M, ̃λ′
M). By Proposition 4.3, we conclude that π0 is M′-inertially equivalent 

to π′. �
Remark 4.5.

1. Lemma 4.3 and Proposition 4.4 give a bijection between the set of M′-conjugacy 
classes of maximal simple k-types and the set of M′-inertially equivalent cuspidal 
classes:

ν : [J̃ ′
M, λ̃′

M]M′ �→ [M′, π′]M′ ,

where [J̃ ′
M, ̃λ′

M]M′ is the M′-conjugacy class of (J̃ ′
M, ̃λ′

M), and π′ is an irreducible 
cuspidal k-representation that contains (J̃ ′

M, ̃λ′
M).

2. Let (J̃ ′
M, ̃λ′

1) and (J̃ ′
M, ̃λ′

2) be two different maximal simple k-types defined by 
(JM, λM). When M′ = G′ = SLn(F ) by Lemma 3.3, the associated G′-inertially 
equivalent cuspidal classes defined by (J̃M′ , ̃λi), i = 1, 2 are different. When M′ is a 
proper Levi of SLn(F ) by Remark 3.4, the associated G′-inertially equivalent cuspidal 
classes may be the same.

4.2. Supercuspidal blocks of Repk(M′)

In this Section, we give a block decomposition of the supercuspidal subcategory 
Repk(M′)SC of Repk(M′), of which the blocks are called supercuspidal blocks of Repk(M′)
as defined in the end of Section 3.2. Let [M′, π′]M′ be a M′-inertially equivalent super-
cuspidal class of M′. Denote by Repk(M′)[M′,π′] the full subcategory of Repk(M′), such 
that the irreducible subquotients of an object of Repk(M′)[M′,π′] belong to [M′, π′]M′ . 
As in Proposition of [13][§III], a subcategory Repk(M′)[M′,π′] is non-split, and a 
block of Repk(M′)SC is generated by a finitely number of subcategories of the form 
Repk(M′)[M′,π′].

Let (JM, λM) be a maximal simple supercuspidal k-type of M, and (J̃ ′
M, ̃λ′

M) be a 
maximal simple supercuspidal k-type defined from (JM, λM) as explained in Section 2.2. 
Recall that Pλ̃′

M
is the projective cover of λ̃′

M. By Lemma 3.3, its irreducible subquotients 
are maximal simple supercuspidal k-types of M′ as well, and we denote by I(λ̃′

M) the set 
of isomorphic classes of irreducible subquotients of Pλ̃′

M
. We define a set of M′-inertially 

equivalent supercuspidal classes SC(λ̃′
M), such that there is a bijection

ν : I(λ̃′
M) → SC(λ̃′

M),

which is given as in Remark 4.5.

Proposition 4.6. Suppose that the image SC(λ̃′
M) is not a singleton. For any non-trivial 

disjoint union SC(λ̃′
M) = SC1 SC2, and let I(λ̃′

M) = I1 I2 such that SC1 = ν(I1) and 



148 P. Cui / Journal of Algebra 602 (2022) 130–153
SC2 = ν(I2). It is not possible to decompose indM′

J̃ ′
M
Pλ̃′

M
as P1⊕P2, where any irreducible 

subquotients of P1 belongs to SC1 and any irreducible subquotients of P2 belongs to SC2.

Proof. We abbreviate indM′

J̃ ′
M
Pλ̃′

M
by PM′ in this proof. By Theorem 3.15, the irreducible 

subquotients of PM′ are supercuspidal. Suppose the contrary that, there exists a non-
trivial disjoint union SC(λ̃′

M) = SC1  SC2, such that PM′ = P1 ⊕ P2 verifying the 
conditions in the statement of the proposition. Without loss of generality, we suppose 
λ̃′

M ∈ I1. Let ι′M be a maximal simple supercuspidal k-type in I2, and τ ′ be a supercus-
pidal k-representation of M′ containing ι′M. Hence τ ′ is a subrepresentation of indM′

J̃ ′
M
ιM′ , 

and the later is a subquotient of PM′ , hence P2 is non-trivial (P1 is also non-trivial since 
λ̃′

M ∈ I1).
By Lemma 3.3, there exists a filtration of {0} = W0 ⊂ W1 · · · ⊂ Ws = Pλ̃′

M
for an 

s ∈ N, such that each quotient λ̃′
i := Wi/Wi−1, 1 ≤ i ≤ s is irreducible and (J̃ ′

M, ̃λ′
i) is a 

maximal simple supercuspidal k-type of M′ defined also from (JM, λM). In particular, λ̃′
M

as well as ι′M are isomorphic to λ̃′
i for some 0 ≤ i ≤ s respectively. Now define λ̃′

0 to be 
null, and denote by Vi = indM′

J̃ ′
M
Wi, then {Vi}0≤i≤s is a filtration of PM′ and Vi/Vi−1 ∼=

indM′

J̃ ′
M
λ̃′
i, 1 ≤ i ≤ s. Denote by Vi,1 the image of Vi in P1 under the canonical projection, 

and Vi,2 the image of Vi in P2 under the canonical projection. Hence {Vi,1}0≤i≤s (resp. 
{Vi,2}0≤i≤s) forms a filtration of P1 (resp. P2). By Proposition 4.4, the quotient Vi,1/

Vi−1,1 (resp. Vi,2/Vi−1,2) is non-trivial if and only if λ̃′
i ∈ I1 (resp. λ̃′

i ∈ I2).
Now we consider the canonical injective morphism

α : Pλ̃′
M
↪→ resM

′

J̃ ′
M
PM′ .

Under the above assumption, we have resM′

J̃ ′
M
PM′ ∼= resM′

J̃ ′
M
P1 ⊕ resM′

J̃ ′
M
P2. Since we consider 

a representation of infinite length, the unicity of Jordan-Hölder factors is not sufficient, 
and we need a simple but practical lemma as below to continue the proof: �
Lemma 4.7. Let G be a locally pro-finite group, and π a k-representation of G. Let π1 be 
a subrepresentation of π. Suppose τ is an irreducible subquotient of π, then τ is either 
isomorphic to an irreducible subquotient of π1 or to an irreducible subquotient of π/π1.

Proof. Easy to check. �
Continue the proof of Proposition 4.6. Suppose α(Pλ̃′

M
) ⊂ resM′

J̃ ′
M
P1. Let ι′M ∈ I2 be an 

irreducible subquotient of Pλ̃′
M

. By Lemma 4.7 there exists 1 ≤ i ≤ s, such that ι′M is an 

irreducible subquotient of Vi,1/Vi−1,1, and the later is a subquotient of indM′

J̃ ′
M
λ̃′
i. In other 

words, ι′M is an irreducible subquotient of indM′

J̃ ′
M
λ̃′
i. Applying Mackey’s theorem, it is 

equivalent to say that ι′M is weakly intertwined with λ̃′
i in M′ (see Section 2.2 for weakly 

intertwining), hence by Theorem 3.25 of [4] they are M′-conjugate to each other, hence 
they define the same M′-inertially equivalent class as in Remark 4.5. Meanwhile, by the 
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above analysis, we know that ν(λ̃i) ∈ SC1 and ν(ι′M) ∈ SC2, which is a contradiction. 
Hence α(Pλ̃′

M
) ∩ resM′

J̃ ′
M
P1 �= α(Pλ̃′

M
).

Now we consider α(Pλ̃′
M

)/(α(Pλ̃′
M

) ∩ resM′

J̃ ′
M
P1), which is non-null as above, and is a 

subrepresentation of resM′

J̃ ′
M
PM′/resM′

J̃ ′
M
P1 ∼= resM′

J̃ ′
M
P2. By the same manner as above, we 

conclude that each irreducible subquotient of α(Pλ̃′
M

)/(α(Pλ̃′
M

) ∩ resM′

J̃ ′
M
P1) belongs to I2, 

which implies that there exists λ̃′
i0
∈ I2 such that Pλ̃′

M
→ λ̃′

i0
. Since λ̃′

i0
is different from 

λ̃′
M, the maximal semisimple quotient of Pλ̃′

M
contains λ̃′

i0
⊕ λ̃′

M, which contradicts to 

the fact that Pλ̃′
M

is the projective cover of λ̃′
M by Proposition 41 c) [10]. Hence we finish 

the proof. �
Lemma 4.8. Let (J̃ ′

M, ̃λ′
1) and (J̃ ′

M, ̃λ′
2) be two maximal simple supercuspidal k-types. 

Suppose λ̃′
2 ∈ I(λ̃′

1), then λ̃′
1 ∈ I(λ̃′

2) (see the beginning of this section for the definition 
of I(·)).

Proof. Let W (k) be the ring of Witt vectors of k, and K be the fractional field of W (k). 
Let K̃ be a finite field extension of K, such that K̃ contains the |J̃M/N |-th roots, where 
N is the kernel of Pλ̃M

, and let Õ be its ring of integers. Consider the �-modular system 
(K̃, Õ, k), we have that Pλ̃M

⊗Õ K̃ is semisimple, whose direct components are absolutely 
irreducible. By Proposition 42 of [10], the projective cover Pλ̃′

1
can be lifted over Õ, 

and we denote the lifting to Õ by Pλ̃M
as well. Now we consider Pλ̃′

1
⊗Õ K̃, which 

is semisimple with finite length. Suppose P is an irreducible component of Pλ̃′
1
⊗Õ K̃, 

then the semisimplification of its reduction modulo � must contain λ̃′
1, otherwise it will 

induce a surjection from Pλ̃′
1

to an irreducible k-representation different from λ̃′
1, which 

contradicts with the fact the Pλ̃′
1

is the projective cover of λ̃′
1 by Proposition 41 of 

[10]. Since λ̃′
2 is a subquotient of Pλ̃′

1
, their exists an irreducible direct component P ′

2

of Pλ̃′
1
⊗Õ K̃, of which the semisimplification of reduction modulo-� contains λ̃′

1 as well 
as λ̃′

2. Let α ∈ J̃M, such that α(λ̃′
1) ∼= λ̃′

2. By the second part of Lemma 3.5, we have 
α(Pλ̃′

1
) ∼= Pλ̃′

2
, which implies that α(P ′

2) is a direct component of Pλ̃′
2
. We state that α

stabilises P ′
2. In fact, by the proof of Lemma 3.2, we have Pλ̃′

1
is an indecomposable direct 

factor of Pλ̃M
. In particular, the reduction modulo-� of each irreducible components of 

Pλ̃M
⊗Õ K̃ is isomorphic to λ̃M. By the unicity of Jordan-Holdar factors, there exists 

an irreducible component P2 of Pλ̃M
⊗Õ K̃, such that P ′

2 is an irreducible component 
of P2|J̃ ′

M
. Since α(λ̃′

1) ∼= λ̃′
2, the semisimplification of the reduction modulo-� of α(P ′

2)
contains λ̃′

2. Since α(P ′
2) is isomorphic to an irreducible component of P2|J̃ ′

M
, and the 

reduction modulo � of P2 is isomorphic to λ̃M, combining with the fact that λ̃M|J̃ ′
M

is 
multiplicity-free, we conclude that α(P ′

2) ∼= P ′
2. Hence λ̃′

1 ∈ I(λ̃′
2). �

Definition 4.9. Let (JM, λM) be a maximal simple supercuspidal k-type of M, and denote 
by I(λM) the set of isomorphic classes of maximal simple supercuspidal k-types of M′

defined by (JM, λM). Let (J̃ ′
M, γ′) and (J̃ ′

M, τ ′) be two elements in I(λM), we say
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1. γ′ is related to τ ′, if γ′ ∈ I(τ ′) (or equivalently τ ′ ∈ I(γ′) by Lemma 4.8) and we 
denote by γ′ ↔ τ ′;

2. γ′ ∼ τ ′ if there exists a series (J̃ ′
M, ̃λ′

i), 1 ≤ i ≤ t for an integer t, such that

γ′ ↔ λ̃′
1 ↔ · · · ↔ λ̃′

t ↔ τ ′,

and we call the series {λ̃′
i, 1 ≤ i ≤ t} a connected relation of γ′ and τ ′. The relation 

“∼” defines an equivalence relation on I(λM) (By Proposition 2.6 of [4], the relations 
↔ and ∼ on I(λM) do not depend on the choice of λM).

3. Denote by [λ̃′
M, ∼] the subset of I(λM) consisting of all τ ′ such that τ ′ ∼ λ̃′

M, or 
equivalently the connected component containing λ̃′

M defined by ∼.

Let π be an irreducible supercuspidal k-representation of M, and denote by I(π)
the isomorphy classes of the irreducible direct components of π|M′ . Let (JM, λM) be a 
maximal simple supercuspidal k-type contained in π. The above equivalence relation “∼” 
on I(λM) induces an equivalence relation on I(π).

Definition 4.10. Let π′
1, π

′
2 ∈ I(π), and we say π′

1 ∼ π′
2 if there exists a maximal simple 

supercuspidal k-type (JM, λM) contained in π, and two maximal simple supercuspidal k-
types (J̃M, ̃λ′

M,1) and (J̃M, ̃λ′
M,2) defined from (JM, λM), such that π′

i contains λ̃′
M,i for i =

1, 2, and λ̃′
M,1 ∼ λ̃′

M,2. By the unicity property that two maximal simple supercuspidal 
k-types of M′, which are contained in a same irreducible supercuspidal k-representation, 
are M′-conjugate to each other (Theorem 3.25 of [4]), we have that “∼” defines an 
equivalence relation on I(π).

Remark 4.11. Let π′ ∈ I(π), and define [π′, ∼] to be a subset of I(π), consisting of the 
elements that are equivalent to π′. In other words, (π′, ∼) is the connected component 
containing π′ under the equivalence relation “∼” on I(π). In particular, there exists a 
subset {π′

j , 1 ≤ j ≤ s} of I(π) for an integer s, such that (π′
j, ∼) are two-two disjoint, 

and ∪s
j=1(π′

j , ∼) = I(π). Denote by [π′
j , ∼] the family of M′-inertially equivalent classes 

of π′ ∈ (π′
j , ∼), and we call [π′

j , ∼] a connected M′-inertially equivalent class of π′
j .

By Theorem 3.15, giving a block decomposition of Repk(M′)SC is equivalent to 
giving a block decomposition of Repk(M′)[M,π]tw for each irreducible supercuspidal k-
representation π of M.

Theorem 4.12 (Block decomposition of Repk(M′)SC). Let π be an irreducible supercuspi-
dal k-representation of M, and we keep the notations in Remark 4.11. For each 1 ≤ j ≤ s, 
define the full subcategory Repk(M′)[π′

j ,∼], consisting of the objects, of which each irre-
ducible subquotient belongs to [π′

j , ∼]. Then Repk(M′)[π′
j ,∼] is a block, and the subcategory

Repk(M′)[M,π]tw ∼=
∏s

j=1 Repk(M′)[π′ ,∼].
j
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Proof. First we prove that Repk(M′)[π′
j ,∼] is non-split. By Proposition of [13][§III], we 

only need to prove that for any non-trivial disjoint union [π′
j, ∼] = I1  I2, where I1, I2

are two non-trivial families of M′-inertially equivalence classes, then there exists an 
object P ∈ Repk(M′)[π′

j ,∼], such that P cannot be decomposed as P1 ⊕ P2, where P1 ∈
Repk(M′)I1 and P2 ∈ Repk(M′)I2 . Without loss of generality, we assume that π′

j ∈
I1 and let π′

j0
∈ I(π) such that π′

j0
∈ I2. Since π′

j ∼ π′
j0

, there exists a maximal 
simple supercuspidal k-type (JM, λM) of π and two maximal simple supercuspidal k-
types (J̃ ′

M, ̃λ′
M) of π′

j and (J̃ ′
M, τ ′M) of π′

j0
, such that λ̃′

M ∼ τ ′M in I(λM). By the second 
part of Definition 4.9, let {λ̃′

i, 1 ≤ i ≤ t} be a series of a connected relation of λ̃′
M and τ ′M. 

Define a new series {λ̃′
i, 0 ≤ i ≤ t + 1}, by putting λ̃′

0 = λ̃′
M and λ̃′

t+1 = τ ′M. There exists 
0 ≤ i ≤ t, such that ν(λ̃′

i) ∈ I1 but ν(λ̃′
i+1) ∈ I2, where ν is defined as in Remark 4.5. 

Now we consider PM′ := indM′

J̃ ′
M
Pλ̃′

i
∈ Repk(M′)SC(λ̃′

i)
(see the beginning of Section 4.2

for the definition of SC(λ̃′
i)), hence PM′ ∈ Repk(M′)[π′

j∼]. Assume contrarily that PM′ ∼=
P1 ⊕ P2, where P1 ∈ Repk(M′)I1 and P2 ∈ Repk(M′)I2 . Then P1 ∈ Repk(M′)I1∩SC(λ̃′

i)
and P2 ∈ Repk(M′)I2∩SC(λ̃′

i)
. Since the union of I1 ∩ SC(λ̃′

i) and I2 ∩ SC(λ̃′
i) is a non-

trivial disjoint union of SC(λ̃′
i), the decomposition PM′ ∼= P1 ⊕ P2 is contradicted with 

Proposition 4.6.
Secondly, we prove that Repk(M′)[M,π]tw ∼=

∏s
j=1 Repk(M′)[π′

j ,∼]. We use the projec-
tive version in Remark 2.2. Now fix j0, and let (J̃ ′

M, ̃λ′
j0

) be a maximal simple super-
cuspidal k-type contained in π′

j0
, defined from a maximal simple supercuspidal k-type 

(JM, λM) of M. By Definition 4.10 and Remark 4.11, we fix a maximal simple supercus-
pidal k-type for each M′-inertially equivalent supercuspidal class contained in [π′

j0
, ∼], 

and denote by Ij0 the finite set of these maximal simple supercuspidal k-types. Define 
P[π′

j0
,∼] := ⊕τ ′∈Ij0

indM′

J̃ ′
M
Pτ ′ where Pτ ′ is the projective cover of τ ′. For each 1 ≤ j ≤ s

different from j0, and let [π′
j , ∼] = t

i=1[M′, π′
j,i]M′ where π′

j,i are irreducible supercusp-
idal and t ∈ N. Fix a maximal simple supercuspidal k-type (J̃ ′

j,i, ̃λ
′
j,i) contained in π′

j,i. 
Define [πj0 , ∼]⊥ to be the union ∪j =j0 [πj , ∼] and P[πj0 ,∼]⊥ := ⊕j =j0 ⊕t

i=1 indM′

J̃ ′
j,i
Pλ̃′

j,i
. We 

show that P[πj0 ,∼] and P[πj0 ,∼]⊥ verify the conditions in Remark 2.2. By Proposition 4.4
and Lemma 4.7, we know that an irreducible subquotient of P[πj0 ,∼] belong to [πj0 , ∼]. 
Meanwhile an irreducible subquotient of P[πj0 ,∼]⊥ belong to [πj0 , ∼]⊥ := ∪j =j0 [πj , ∼]. 
Condition 1 and 3 of Remark 2.2 can be deduced from Proposition 3.6. Condition 2 of Re-
mark 2.2 is verified from Remark 4.11 that “∼” defines an equivalent relation, and [π′

j0
, ∼]

is disjoint with [πj0 , ∼]⊥. Hence by repeating the same operation on Repk(M′)[πj0 ,∼]⊥ , 
and after finite times we obtain the desired decomposition. �
Example 4.13. For G′ = SLn(F ), when � is positive,

• it is not always true that the reduction modulo � of an irreducible �-adic supercuspidal 
representation of G′ is irreducible;

• it is not always true that Repk(G′) can be decomposed with respect to the G′-
inertially equivalent supercuspidal classes as in Equation (1) in the case where � = 0.
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Proof. Let p = 5, n = 2, � = 3, and denote by G = GL2(F5) and by G′ = SL2(F5). From 
[1, §11.3.2] we know that there exist two irreducible supercuspidal Q�-representations 
π1, π2 of G (π1 corresponding to −j∧ and π2 corresponding to θ0 as in [1, §11.3.2]), such 
that the reduction modulo � of π1 and π2 are irreducible and coincide to each other. 
Meanwhile, the restriction π1|G′ is irreducible but π2|G′ is semisimple with length 2. We 
denote by π̄2 the reduction modulo � of π̄2. By [1, §11.3.2] the length of π̄|G′ is two, and 
denote by π̄2,1, ̄π2,2 the two irreducible direct components of π̄2|G′ (in the notation of 
[1, §11.3.2], π̄2,1 and π̄2,2 correspond to the reduction modulo � of R′

−(θ0) and R′
+(θ0)

respectively). In other words, the reduction modulo � of the irreducible supercuspidal 
Q�-representation π1|G′ is reducible, and its Jordan-Hölder components consist of π̄2,1
and π̄2,2. Both of π̄2,1 and π̄2,2 are supercuspidal by [5, §3.2], since their projective covers 
are cuspidal.

We consider the Z�-projective cover Yπ̄2,1 of π̄2,1. The strategy is to prove that the 
irreducible Q�-representation π1|G′ is a subquotient of Yπ̄2,1 ⊗Q�, from which we deduce 
that π̄2,2 is a subquotient of Yπ̄2,1 ⊗ k, then we apply Proposition 4.6.

Let U be the subgroup of upper triangular matrices of G, then the reduction modulo 
� gives a bijection between non-degenerate Q�-characters of U and non-degenerate k-
characters of U. Let θQ�

be a non-degenerate Q�-character of U, and θ� be the reduction 
modulo � of θQ�

, which is a non-degenerate k-character of U, such that π̄2,1 is generic 
according to θ�. By the unicity of Whittaker model, it follows that π̄2,2 is not generic 
according to θ�. By [5], Yπ̄2,1⊗Q� is semisimple, and can be written as ⊕s∈Ss0

πs,θQ�
. Here 

s0 is the �′-semisimple conjugacy class in G corresponding to π2 by the theory of Deligne-
Lusztig (or equivalently s0 corresponds to θ0 under the notations of [1, §11.3.2]), and 
Ss0 is the set of semisimple conjugacy classes in G whose �′-part is equal to s0. Denote 
by πs the irreducible supercuspidal Q�-representation corresponding to s, and by πs,θ

the unique irreducible component of πs|G′ which is generic according to θQ�
. Hence π1 is 

a subrepresentation of Yπ̄2,1 ⊗Q�, which implies that π̄2,2 is a subquotient of Yπ̄2,1 ⊗ k, 
which is the k-projective cover of π̄2,1.

To go further to the p-adic groups, we conclude that the semisimplification of Yπ2,1⊗k

consists with a non-trivial multiple of π2,1 and a non-trivial multiple of π2,2.
Now we consider the p-adic groups G = GL2(F ) and G′ = SL2(F ), suppose that F =

Q5, and k = F3. Let J = GL2(Z5), J1 = 1 +M2(5Z5) and J ′ = J∩G′, J1′ = J1∩G′. We 
have J/J1 ∼= G, and J ′/J1′ ∼= G′. We still denote by πi, ̄πi, ̄π2,i, i = 1, 2 the corresponding 
inflation to J ′ respectively. Hence (J, ̄πi), i = 1, 2 are maximal simple supercuspidal k-
types of G. According to [4, 3.18] and the fact that there are 4 G′-conjugacy classes of 
non-degenerate characters on U, we deduce from the unicity of Whittaker models that 
for an irreducible cuspidal k-representation π of G, the length of π|G′ is a divisor of 
4, hence is prime to 5. By Theorem 3.18 of [4], the index |J̃ : J | is a p-power and a 
divisor of the length π|G′ , which implies that J̃ = J . We deduce firstly that (J ′, π1|J ′)
is a maximal simple supercuspidal Q̄�-type of G′, and (J ′, ̄π2,i), i = 1, 2 are maximal 
simple supercuspidal k-types of G′. Hence indG′

J ′ π1|J ′ is irreducible, but its reduction 
modulo � has length two, with two factors indG′

J ′ π̄2,i, i = 1, 2, which is the first of this 



P. Cui / Journal of Algebra 602 (2022) 130–153 153
example. Secondly, we have that (J ′, ̄π2,1) and (J ′, ̄π2,2) are non G′-conjugate by the 
second part of Remark 4.5. By [4, Proposition 2.35, Theorem 3.30], Π1 := indG′

J ′ π̄2,1 and 
Π2 := indG′

J ′ π̄2,2 are different irreducible supercuspidal k-representations, and they define 
different G′-inertially equivalent classes since there is no non-trivial k-character on G′. 
The inflation of Yπ̄2,1 to J ′ is the Z3-projective cover of π̄2,1. By applying the previous 
paragraphs, π̄2,2 appears as a subquotient of Yπ̄2,1 . Apply Theorem 4.12, we conclude 
that both the full subcategories Repk(G′)[G′,Π1] and Repk(G′)[G′,Π2] belong to the same 
block. �
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