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A B S T R A C T

In cardiovascular mechanics, reaching consensus in simulation results within a physiologically
relevant range of parameters is essential for reproducibility purposes. Although currently
available benchmarks contain some of the features that cardiac mechanics models typically
include, some important modeling aspects are missing. Therefore, we propose a new set
of cardiac benchmark problems and solutions for assessing passive and active material be-
havior, viscous effects, and pericardial boundary condition. The problems proposed include
simplified analytical fiber definitions and active stress models on a monoventricular and
biventricular domains, allowing straightforward testing and validation with already developed
solvers.
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1. Introduction

In computational biomechanics in general, efforts of defining benchmarks for verification and validation have been sparse
hroughout the years and are application dependent [1–4].

In particular, in the context of cardiovascular mechanics, reaching consensus in simulation results is an important task, since,
or a given set of physical constants, different numerical solutions can be obtained, e.g., due to discretization strategies, polynomial
egree of basis functions, numerical quadratures and time integrators [5–14]. Specially, when parameters are optimized from clinical

data, it is crucial that these parameters may be valid for other groups and hence could be reused, given the high complexity involved
in solving these inverse problems [15–17]

In [2] was proposed a first benchmark containing some of the features that cardiac mechanics models typically include. However
some important features are lacking, such as the inclusion of state-of-the-art passive and active models, idealized geometrical
dimensions, boundary conditions as well as time dependent effects (i.e. inertia and viscosity).

Therefore, we propose here a new set of cardiac benchmark problems and computed solutions for assessing passive and active
material behavior as in [18] with viscous effects and pericardial boundary conditions as in [7]. The problems proposed in this work
nclude a simplified analytical fiber definition with active stress model by [19], allowing straightforward testing and validation with
lready developed solvers. The benchmark definition is agreed upon nine different research groups, who computed their solutions
ith numerical methods and software of their choice. A comparison is carried out among the solutions computed by the different
roups, whose results demonstrate a substantial agreement between the participating teams.

The remainder of this article is organized as follows. Section 2 describes the mechanical problem in continuous form, its material
roperties and boundary conditions. Section 3 proposes the first benchmark problem in a monoventricular domain, with analytical

geometry, fibers orientation and simulations setup for blinded and non-blinded phases among participants. Section 4 proposes
a second benchmark for a biventricular domain, with state-of-the-art fiber orientation, constitutive law and analogous setups to
ection 3 comprising a non-blinded phase only. Section 5 describes all participant software as well as their solver strategies. Section 6

contains computed results with a qualitative and quantitative analysis of the first and second benchmark. Section 7 provides a
discussion of the different approaches and results, finally in Section 9 the conclusion.

2. The mathematical model

2.1. Strong form

We define the problem in a domain 𝛺 ⊂ R3 with boundary 𝜕 𝛺 ∶= 𝛤𝑡𝑜𝑝∪𝛤𝑒𝑝𝑖∪𝛤𝑒𝑛𝑑 𝑜. Let us denote by 𝐮 ∶ 𝛺 → R3 the displacement
ield to be found, 𝐮(𝐗) its evaluation in 𝐗 for 𝐗 ∈ 𝛺, by F ∶= I +𝐆𝐫 𝐚𝐝(𝐮) ∶= I + 𝜕𝐮

𝜕𝐗 the deformation gradient, 𝐃𝐢𝐯(𝐮) ∶= 𝜕
𝜕𝐗 ⋅ 𝐮 the

divergence, 𝐽 ∶= det(F(𝐮)) ∶= det(F) the jacobian, E = 1
2 (C− I) the Green–Lagrange tensor, C ∶= F⊤F the right Cauchy tensor and I

and the identity matrix respectively.
Let us denote T ∶= T(𝐮) the Cauchy stress tensor associated to the unknown displacement field 𝐮 and the second Piola Kirchhoff

stress tensor denoted by S ∶= 𝐽F−1TF−⊤, the problem to solve over the time-interval (0, 1], is described by the equations:
𝜌�̈� − 𝐃𝐢𝐯

(

𝐽TF−⊤) = 𝟎 in 𝛺

𝐽TF−⊤𝐍 = 𝑝𝐽F−⊤𝐍 on 𝛤𝑒𝑛𝑑 𝑜
𝐽TF−⊤𝐍 ⋅ 𝐍 + 𝛼𝑒𝑝𝑖𝐮 ⋅ 𝐍 + 𝛽𝑒𝑝𝑖�̇� ⋅ 𝐍 = 0 on 𝛤𝑒𝑝𝑖

𝐽T(F−⊤𝐍) × 𝐍 = 𝟎 on 𝛤𝑒𝑝𝑖
𝐽TF−⊤𝐍 + 𝛼𝑡𝑜𝑝𝐮 + 𝛽𝑡𝑜𝑝�̇� = 𝟎 on 𝛤𝑡𝑜𝑝

(1)

with 𝐍 the unit wall normal vector and ⊤ the transpose if used as superscript.

2.2. Material model

The material behavior is characterized via S including the anisotropic, viscous and active parts, namely

S(𝑡) ∶= 𝜕 𝛹𝑎𝑛𝑖𝑠𝑜
𝜕E

+
𝜕 𝛹𝑣𝑖𝑠𝑐 𝑜
𝜕Ė

+ 𝜏(𝑡)𝐟 ⊗ 𝐟 , (2)

with each term described below2:

2 Models aiming at characterizing the strain–stress behavior have been substantially studied [18,20–22]. The literature points at the work of Guccione
t al. [23] and Holzapfel et al. [18], the latter widely used for human cardiac models. Nevertheless, not only one convention has been used to characterize the

fiber orientation, especially with the choice of the sheet and sheet-normal directions. Several works implementing either case have shown consistent deformations,
endocardial pressure as well as ejection volumes [6,24–30].
2 
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• The anisotropic material energy 𝛹𝑎𝑛𝑖𝑠𝑜 describes the nearly incompressible Holzapfel–Ogden material [18] with isochoric-
volumetric split, via the isotropic invariant 𝐼1 = 𝐽−2∕3tr(C), the transverse isotropic invariants 𝐼4𝑓 ∶= 𝐟 ⋅ C𝐟 and 𝐼4𝑠 ∶= 𝐬 ⋅ C𝐬
for the fiber directions at the reference domain 𝐟 , 𝐬 ∶ 𝛺 → R3 and anisotropic invariant 𝐼8𝑓 𝑠 ∶= 𝐟 ⋅C𝐬. Explicitly 𝛹𝑎𝑛𝑖𝑠𝑜 is given
by:

𝛹𝑎𝑛𝑖𝑠𝑜 =
𝑎
2𝑏

exp
{

𝑏(𝐼1 − 3)} +
∑

𝑖∈{𝑓 ,𝑠}
𝑎𝑖
2𝑏𝑖

𝜒(𝐼4𝑖)
(

exp
{

𝑏𝑖(𝐼4𝑖 − 1)2} − 1)

+
𝑎𝑓 𝑠
2𝑏𝑓 𝑠

(

exp{𝑏𝑓 𝑠𝐼28𝑓 𝑠} − 1) + 𝜅
4
(

𝐽 2 − 1 − 2 ln(𝐽 ))
(3)

with 𝜒(𝑥) = 𝑥 if 𝑥 > 1 and 0 elsewise, for 𝑥 ∈ R+, denoting the fiber compression switch model. The last term denotes the
incompressibility penalty proposed in [31] with parameter 𝜅 > 0.
A suggested approximation is given by 𝜒(𝑥) ≈ 1

1+𝑒−𝑘(𝑥−1) , for 𝑘 > 0 a fixed parameter specified later on.
• The viscoelastic energy is characterized with parameter 𝜂 in the form [32]:

𝛹𝑣𝑖𝑠𝑐 ∶=
𝜂
2

tr(Ė2) (4)

• The active stress is taken as in [19], characterized by a time-dependent stress function 𝜏, solution to the evolution equation

�̇�(𝑡) = −|𝑎(𝑡)|𝜏(𝑡) + 𝜎0|𝑎(𝑡)|+ (5)

denoting 𝑎(⋅) the activation function and 𝜎0 contractility, and the remaining terms defined as:

|𝑎(𝑡)|+ = max{𝑎(𝑡), 0}
𝑎(𝑡) ∶= 𝛼𝑚𝑎𝑥 ⋅ 𝑓 (𝑡) + 𝛼𝑚𝑖𝑛 ⋅ (1 − 𝑓 (𝑡))
𝑓 (𝑡) = 𝑆+(𝑡 − 𝑡𝑠𝑦𝑠) ⋅ 𝑆−(𝑡 − 𝑡𝑑 𝑖𝑎𝑠)

𝑆±(𝛥𝑡) = 1
2
(

1 ± tanh(𝛥𝑡
𝛾
)
)

.

(6)

2.3. Pressure model

We consider a time-dependent pressure for (1), derived from the active stress function. The solution 𝑝 = 𝑝(𝑡) is characterized by
the evolution equation

�̇�(𝑡) = −|𝑏(𝑡)|𝑝(𝑡) + 𝜎𝑚𝑖𝑑 |𝑏(𝑡)|+ + 𝜎𝑝𝑟𝑒|𝑔𝑝𝑟𝑒(𝑡)|+ (7)

with 𝑏(⋅) the activation function described as:
𝑏(𝑡) = 𝑎𝑝𝑟𝑒(𝑡) + 𝛼𝑝𝑟𝑒𝑔𝑝𝑟𝑒(𝑡) + 𝛼𝑚𝑖𝑑

𝑎𝑝𝑟𝑒(𝑡) ∶= 𝛼𝑚𝑎𝑥 ⋅ 𝑓𝑝𝑟𝑒(𝑡) + 𝛼𝑚𝑖𝑛 ⋅ (1 − 𝑓𝑝𝑟𝑒(𝑡))
𝑓𝑝𝑟𝑒(𝑡) = 𝑆+(𝑡 − 𝑡𝑠𝑦𝑠−𝑝𝑟𝑒) ⋅ 𝑆−(𝑡 − 𝑡𝑑 𝑖𝑎𝑠−𝑝𝑟𝑒)
𝑔𝑝𝑟𝑒(𝑡) = 𝑆−(𝑡 − 𝑡𝑑 𝑖𝑎𝑠−𝑝𝑟𝑒)

(8)

and 𝑆± defined as in (6).

3. Benchmark 1: monoventricular mechanics

3.1. Geometry

Using the same analytical formula as in [2], we define the domain via the parametrization (in R3) for a truncated ellipsoid,
.e., satisfying:

(𝑥, 𝑦, 𝑧) = (

𝑟long cos(𝜇), 𝑟short sin(𝜇) cos(𝜃), 𝑟short sin(𝜇) sin(𝜃)
)

(9)

with the following dimensions:

• The endocardial surface

𝑟short = 2.5 × 10−2 [m], 𝑟long = 9.0 × 10−2 [m], 𝜇 ∈ [−𝜋 ,−arccos( 5
17

)], 𝜃 ∈ [−𝜋 , 𝜋] (10)

• The epicardial surface

𝑟short = 3.5 × 10−2 [m], 𝑟long = 9.7 × 10−2 [m], 𝜇 ∈ [−𝜋 ,−arccos( 5
20

)], 𝜃 ∈ [−𝜋 , 𝜋] (11)
3 
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The domain is created using the software Gmsh [33] and distributed to all participants in different formats, created with an
lement size3 ℎ = 5 × 10−3 [m]. Supplemented material is provided with such data as well as a repository including implementation
etails.4

3.2. Fibers

The definition of fibers is based on a local coordinate system derived from the ellipsoid parametrization. Using the ellipsoid
parametrization, a point 𝐱 in the domain 𝛺 is described as:

𝐱(𝜇 , 𝜃 , 𝑡) = (

𝑟𝑙(𝑡) cos(𝜇), 𝑟𝑠(𝑡) sin(𝜇) cos(𝜃), 𝑟𝑠(𝑡) sin(𝜇) sin(𝜃)
)

, (12)

with 𝜇 , 𝜃 as defined previously and 𝑡 ∶ 𝛺 → [0, 1] is defined as the solution to the problem:
𝛥𝑡 = 0 in 𝛺

𝑡 = 0 on 𝛤𝑒𝑛𝑑 𝑜
𝑡 = 1 on 𝛤𝑒𝑝𝑖

𝜕𝑡
𝜕𝐍

= 0 on 𝛤𝑡𝑜𝑝.

(13)

The tangent basis derived from (12), denoted as [𝐞𝑡, 𝐞𝜇 , 𝐞𝜃], is defined as:

�̃�𝑡 =
𝜕𝐱
𝜕𝑡
, �̃�𝜇 = 𝜕𝐱

𝜕 𝜇 , �̃�𝜃 =
𝜕𝐱
𝜕 𝜃

𝐞𝑡 =
�̃�𝑡

‖�̃�𝑡‖R3
, 𝐞𝜇 =

�̃�𝜇
‖�̃�𝜇‖R3

, 𝐞𝜃 =
�̃�𝜃

‖�̃�𝜃‖R3
,

(14)

Using (14), the fiber, sheet-normal and sheet directions are defined as follows:
𝐟 (𝑡, 𝜇 , 𝜃) = sin(𝛼(𝑡)) 𝐞𝜇 + cos(𝛼(𝑡)) 𝐞𝜃
𝐧(𝑡, 𝜇 , 𝜃) = 𝐞𝜇 × 𝐞𝜃

‖𝐞𝜇 × 𝐞𝜃‖R3

𝐬(𝑡, 𝜇 , 𝜃) = 𝐟 (𝑡, 𝜇 , 𝜃) × 𝐧(𝑡, 𝜇 , 𝜃)
‖𝐟 (𝑡, 𝜇 , 𝜃) × 𝐧(𝑡, 𝜇 , 𝜃)‖R3

(15)

with 𝛼(𝑡), 𝑟𝑙(𝑡), 𝑟𝑠(𝑡) parameters defined as:
𝛼(𝑡) = (

𝛼𝑒𝑛𝑑 𝑜 + (𝛼𝑒𝑝𝑖 − 𝛼𝑒𝑛𝑑 𝑜)𝑡
) 𝜋
180

𝑟𝑙(𝑡) = 𝑟long_endo + (𝑟long_epi − 𝑟long_endo)𝑡

𝑟𝑠(𝑡) = 𝑟short_endo + (𝑟short_epi − 𝑟short_endo)𝑡

(16)

for 𝑟long_endo, 𝑟short_endo the long/short radius in (10) and 𝑟long_epi, 𝑟short_epi the long/short radius in (11).
The computation of the fibers close to the apex is problematic. Given a point in the ellipsoid 𝐱 = (𝑥, 𝑦, 𝑧) and 𝑡 = 𝑡(𝐱) we propose

to compute the associated parameters 𝜇 , 𝜃 to such a point as 𝜇 = atan2(𝑎, 𝑏) for 𝑎 =
√

𝑦2+𝑧2
𝑟𝑠(𝑡)

, 𝑏 = 𝑥
𝑟𝑙 (𝑡)

and 𝜃 = 0 if 𝜇 ≤ 10−7 else
𝜃 = 𝜋 − atan2(𝑧,−𝑦).

Depicted in Fig. 1 is the labeled ellipsoid geometry, including the fiber and sheet directions.

3.3. Step 0 (non-blinded): Splitting passive and active responses

We first perform a validation with teams having access to the solutions of the rest of participants. This served to refine the
problem description and to encourage a larger number of participants.

3.3.1. Case A: Active response
Each group solves numerically the equations described in Section 2, with geometry and fibers as in Sections 3.1 and 3.2

respectively, parameters as in Tables 1, 2, 3 and a zero endocardial pressure, i.e. 𝑝 = 0 on 𝛤𝑒𝑛𝑑 𝑜 over all timesteps.
The groups are requested to provide the displacement field 𝐮ℎ(𝐗) over time at two spatial locations, 𝐩0 = (0.025, 0.03, 0), 𝐩1 =

(0, 0.03, 0). Such spatial locations do not describe points of the mesh provided to the participants, thus each team must have
nterpolation algorithms available.

Depicted in Fig. 2 is the evolution of the stress function 𝜏 over time for physical parameters specified therein.

3 The element size is defined as the optimal edge length around any point node in the mesh with specified target size ℎ > 0. Therefore, not a lower or upper
dge limit, rather, an averaged value computed to match a user-provided target size. For further details, we refer to [33].

4 The repository cardiac-benchmark-toolkit stores the data provided to all teams in several formats .geo, .msh, .xdmf, .h5, as well as an user-friendly
interface to recreate the monoventricular domain at different mesh sizes.
4 
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Fig. 1. The labeled ellipsoid geometry (left) includes positions of particles 𝐩0 ,𝐩1 for reference. The fiber (center) and sheet (right) directions described in (15)
for a ∓60◦ angle configuration, are colored using the transmural distance 𝑡 over the domain. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Parameters describing the strong form of the problem defined in (1).
Parameter 𝜌 [ k g

m3 ] 𝜂 [Pas] 𝜅[Pa] 𝑘 [–] 𝛼𝑡𝑜𝑝 [
Pa
m
] 𝛼𝑒𝑝𝑖 [

Pa
m
] 𝛽𝑡𝑜𝑝 [Pa

s
m
] 𝛽𝑒𝑝𝑖 [Pa

s
m
]

Value 103 102 106 100 105 108 5 × 103 5 × 103

Table 2
Parameters of the constitutive law describing the directional behavior through fiber and sheet directions, described in (3).
Parameter 𝑎 [Pa] 𝑎𝑓 [Pa] 𝑎𝑓 𝑠 [Pa] 𝑎𝑠 [Pa] 𝑏[⋅] 𝑏𝑓 [⋅] 𝑏𝑓 𝑠[⋅] 𝑏𝑠[⋅]

Value 59.0 18 472.0 216.0 2481.0 8.023 16.026 11.436 11.12

Table 3
Parameters defining the active stress activation function, solution to (5) and fibers’ angles at endo/epi-cardium, as in [7].
Parameter 𝜎0 [Pa] 𝛾 [s] 𝛼min 𝛼max 𝑡sys [s] 𝑡dias [s] 𝛼endo 𝛼epi

Value 1.5 × 105 0.005 −30 5 0.16 0.484 −60◦ +60◦

Fig. 2. Evolution of the stress function 𝜏 described in (5) over the time interval [0, 1] with physiological parameters proposed in Table 3 from [7]. It reaches a
maximum value of 118817.07 [Pa].

3.3.2. Case B: Passive response
Each group solves numerically the equations described in Section 2 with geometry, fibers as in Sections 3.1, 3.2, and parameters

as in Tables 1, 2, 4 and no active part, i.e. 𝜏(𝑡) = 0 ∀𝑡 > 0. The groups are requested to provide the displacement field 𝐮ℎ(𝐗) over
time at 𝐩 ,𝐩 .
0 1

5 
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Table 4
Parameters for the pressure model (7).
Parameter Values

𝛼𝑚𝑖𝑛 [–] −30
𝛼𝑚𝑎𝑥 [–] 5
𝛼𝑝𝑟𝑒 [–] 5
𝛼𝑚𝑖𝑑 [–] 1
𝜎𝑝𝑟𝑒 [Pa] 7000
𝜎𝑚𝑖𝑑 [Pa] 16 000
𝑡𝑠𝑦𝑠−𝑝𝑟𝑒 [s] 0.17
𝑡𝑑 𝑖𝑎𝑠−𝑝𝑟𝑒 [s] 0.484
𝛾 [s] 0.005

Fig. 3. Evolution of the pressure 𝑝(𝑡) described in (7) over the time interval [0, 1]. Parameters as in Table 4. It reaches a maximum of 16117.52 [Pa].

Table 5
Each case combines a change in stiffness parameters 𝑎, 𝑎𝑓 , 𝑎𝑓 𝑠 , 𝑎𝑠
with changes in the contractibility parameter 𝜎0.
Setup 𝑎 𝑎𝑓 𝑎𝑓 𝑠 𝑎𝑠 𝜎0
Case A 177 55 416 648 7443 2 × 105
Case B 295 92 360 1080 12 405 1 × 105
Case C 19 6157 72 827 2 × 105

Depicted in Fig. 3 is the evolution of the pressure 𝑝(𝑡) over time for the parameters specified therein.

3.4. Step 1 (non-blinded): active and passive response

Each group solves numerically the equations described in Section 2 with geometry, fibers as in Sections 3.1, 3.2 and parameters
as in Tables 1, 2, 3, 4. The groups are requested to provide the displacement field 𝐮ℎ(𝐗) over time at two spatial locations, 𝐩0, 𝐩1,
as described in Section 3.3.1.

3.5. Step 2: Blinded variation of physical parameters

In the second step, all groups are requested to run computations – fully blinded from each other – with modified physical
constants with respect to Section 3.4. As an exception, the results computed with Simvascular were obtained non-blinded, meaning
that they were produced after all other groups shared theirs. Here we changed a specific combination of parameters, namely
𝑎, 𝑎𝑓 , 𝑎𝑓 𝑠, 𝑎𝑠 by a constant factor and 𝜎0. The values taken for each parameter combination are given in Table 5, accounting for
3 different cases. The values have been chosen to get noticeably different results among the proposed cases and to challenge the
robustness of the solvers.

Each group is requested to compute the displacement field at points 𝐩 , 𝐩 for each case.
0 1
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4. Benchmark 2: biventricular mechanics (blinded)

4.1. Strong formulation

Let us consider an idealized biventricular domain 𝛺 ⊂ R3 with boundaries 𝜕 𝛺 ∶= 𝛤𝑒𝑛𝑑 𝑜−𝑙 𝑣 ∪ 𝛤𝑒𝑛𝑑 𝑜−𝑟𝑣 ∪ 𝛤𝑒𝑝𝑖 ∪ 𝛤𝑡𝑜𝑝. We denote
y 𝐮 ∶ 𝛺 → R3 the displacement field, T ∶= T(𝐮) the stress tensor as in Section 2.2 and 𝑝𝑙 𝑣(𝑡), 𝑝𝑟𝑣(𝑡) for each 𝑡 > 0 pressure terms
olving (7), with parameters to be specified below. We define the remaining operators F, 𝐽 as in Section 2. The problem to solve is

described by the equations:
𝜌�̈� − 𝐃𝐢𝐯(𝐽TF−⊤) = 𝟎 in 𝛺

𝐽TF−⊤𝐍 = 𝑝𝑙 𝑣𝐽F−⊤𝐍 on 𝛤𝑒𝑛𝑑 𝑜−𝑙 𝑣
𝐽TF−⊤𝐍 = 𝑝𝑟𝑣𝐽F−⊤𝐍 on 𝛤𝑒𝑛𝑑 𝑜−𝑟𝑣

𝐽TF−⊤𝐍 ⋅ 𝐍 + 𝛼𝑒𝑝𝑖𝐮 ⋅ 𝐍 + 𝛽𝑒𝑝𝑖�̇� ⋅ 𝐍 = 0 on 𝛤𝑒𝑝𝑖
𝐽T(F−⊤𝐍) × 𝐍 = 𝟎 on 𝛤𝑒𝑝𝑖

𝐽TF−⊤𝐍 + 𝛼𝑡𝑜𝑝𝐮 + 𝛽𝑡𝑜𝑝�̇� = 𝟎 on 𝛤𝑡𝑜𝑝

(17)

4.2. Geometry

To define the geometry we will introduce some notation. Given 𝐱𝑐 𝑒𝑛 ∈ R3 and {𝑎, 𝑏, 𝑐} ∈ R+, we define 𝑉 (𝐱𝑐 𝑒𝑛, (𝑎, 𝑏, 𝑐)) ⊂ R3 an
ellipsoidal domain, centered at 𝐱𝑐 𝑒𝑛 with (𝑎, 𝑏, 𝑐) the length of each (�̂�, �̂�, �̂�) semiaxis, 𝜕 𝑉 (𝐱𝑐 𝑒𝑛, (𝑎, 𝑏, 𝑐)) its boundary.

The biventricular domain 𝛺 ⊂ R3 is characterized by four different surfaces:

• Epicardial surface (𝛤𝑒𝑝𝑖) described as a set of points 𝐱 = (𝑥, 𝑦, 𝑧) ∈ R3 satisfying
𝐱 ∈𝜕 𝑉 (

𝟎, (𝑎lv-epi, 𝑏lv-epi, 𝑐lv-epi)
)

𝛥𝜕 𝑉 (

𝐱rv, (𝑎rv-epi, 𝑏rv-epi, 𝑐rv-epi)
)

𝐱 s.t. 𝑥 < 0
(18)

for 𝐱𝑟𝑣 = (0, 0, 0.02) and centers (𝑎lv-epi, 𝑏lv-epi, 𝑐lv-epi) = (0.08, 0.039, 0.039) and
(𝑎rv-epi, 𝑏rv-epi, 𝑐rv-epi) = (0.075, 0.038, 0.059).

• Left endocardial surface (𝛤𝑒𝑛𝑑 𝑜−𝑙 𝑣) described as the set 𝐱 = (𝑥, 𝑦, 𝑧) ∈ R3 satisfying
𝐱 ∈𝜕 𝑉 (

𝟎, (𝑎lv-endo, 𝑏lv-endo, 𝑐lv-endo)
)

𝐱 s.t. 𝑥 < 0
(19)

for (𝑎lv-endo, 𝑏lv-endo, 𝑐lv-endo) = (0.069, 0.025, 0.025).
• Right endocardial surface (𝛤𝑒𝑛𝑑 𝑜−𝑟𝑣) described as the set 𝐱 = (𝑥, 𝑦, 𝑧) ∈ R3 satisfying

𝐱 ∈𝜕 𝑉 (

𝐱𝑟𝑣, (𝑎rv-endo, 𝑏rv-endo, 𝑐rv-endo)
)

𝐱 s.t. 𝑥 < 0
(20)

for (𝑎rv-endo, 𝑏rv-endo, 𝑐rv-endo) = (0.07, 0.033, 0.054).
• Base (𝛤𝑡𝑜𝑝) as the set 𝐱 = (𝑥, 𝑦, 𝑧) ∈ 𝛤𝑒𝑝𝑖 ∪ 𝛤endo-lv ∪ 𝛤endo-rv s.t. 𝑥 = 0
The proposed geometry is depicted in Fig. 4.

4.3. Fibers

For the fiber directions, we use a Laplace–Dirichlet Rule-Based (BT-LDRB) algorithm [34], modified to adhere to the convention
tilized for the cross-fiber orientations.5 We take a values of ∓60◦ (with respect to a local coordinate system) for the left and right
ndo/epi- cardial fiber angles.6

The fibers are created using the lifex software [41,42]. Fig. 5 depicts the step-by-step procedure to prescribe the fiber
architecture in the biventricular geometry [34,41]. For further details refer to [34].

4.4. Physical constants and evaluation of results

Each group is requested to solve problem (17) with parameters as in Tables 2, 7, 8, , with geometry and fibers as in Sections
4.2, 4.3, for two refinement levels.7 Table 6 details the number of tetrahedra and nodes:

5 In the last decades, myocardial orientation has been studied from histological data [18,35] and Diffusion Tensor Imaging [36,37], but their reconstructed
noisy data suffers from low resolution, limiting its characterization, especially given the thickness of ventricles, which is usually smaller than the voxel size [38].
Several construction algorithms have been proposed to recreate the fiber orientation, ranging from complex registration data-dependent algorithms to Rule-Based
Methods, which remains an active area of research [34,39,40].

6 The convention in this work entails switching the directions 𝐬 and 𝐧 in relation to the formalism entailed in the state-of-the-art [34].
7 The repository cardiac-benchmark-toolkit stores the biventricular domain in several formats .geo, .msh, .xdmf, .h5.
7 
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Fig. 4. Geometry for the biventricular domain with colored boundaries: 𝛤𝑒𝑝𝑖 , 𝛤𝑒𝑛𝑑 𝑜−𝑙 𝑣 , 𝛤𝑒𝑛𝑑 𝑜−𝑟𝑣 and 𝛤𝑡𝑜𝑝. Positions of particles of interest 𝐩0 ,𝐩1 and 𝐩2 are depicted
with circles for reference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Step-by-step procedure for the fiber architecture. In 1. labeled mesh with boundaries, 2. transmural distances 𝜙𝑙 , 𝜙𝑟 , 𝜙𝑒𝑝𝑖, 3. transmural directions
𝛾 = ∇𝜙𝑙 ,∇𝜙𝑟 ,∇𝜙𝑒𝑝𝑖, 4. normal direction 𝑘 = ∇𝜓 , 5. local coordinate definition 𝑒𝑡 , ̂𝑒𝑛 , ̂𝑒𝑙 , 6. rotation of axis and fiber field system [𝐟 , 𝐬,𝐧]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Extending Step 2 of Benchmark 1, groups are requested to provide displacement fields 𝐮ℎ(𝐗) over time at three spatial locations
𝐩0 = (0.025, 0.03, 0),𝐩1 = (0, 0.03, 0),𝐩2 = (0.025, 0, 0.072).

Depicted in Figs. 6 and 7 are the time-evolution of the activation function and pressure curves with parameters specified
therein.
8 
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Table 6
Number of tetrahedra and nodes for two refinement levels,
denoted by 𝛺ℎ1 and 𝛺ℎ2 .

Mesh Num. of tetrahedra Num. of nodes

𝛺ℎ1 45,304 11,444
𝛺ℎ2 121,133 27,807

Table 7
Parameters describing the strong form of the problem defined in (17).
Parameter 𝜌 [ k g

m3 ] 𝜂 [Pa s] 𝜅 [Pa] 𝑘 [–] 𝛼𝑡𝑜𝑝 [
Pa
m
] 𝛼𝑒𝑝𝑖 [

Pa
m
] 𝛽𝑡𝑜𝑝[Pa

𝑠
𝑚
] 𝛽𝑒𝑝𝑖 [Pa

s
m
]

Value 103 102 106 100 106 108 5 × 103 5 × 103

Table 8
Parameters defining the active stress activation function, solution to (5), for the biventricular model.
Parameter 𝜎0 [Pa] 𝛾 [s] 𝛼min 𝛼max 𝑡sys [s] 𝑡dias [s]

Value 1.5 × 105 0.005 −30 5 0.163 0.5

Table 9
Left table: parameters used for 𝑝𝑙 𝑣(𝑡), so that it attains a maximum of
16491.14 [Pa] ≈ 123 [mmHg]. Right: parameters used for 𝑝𝑟𝑣(𝑡) with a
maximum of 4166.66 [Pa] ≈ 31 [mmHg].

Parameter (𝑝𝑙 𝑣) Value

𝛼𝑚𝑖𝑛[⋅] −30
𝛼𝑚𝑎𝑥[⋅] 5
𝛼𝑝𝑟𝑒[⋅] 5
𝛼𝑚𝑖𝑑 [⋅] 15
𝜎𝑝𝑟𝑒 [Pa] 12 000
𝜎𝑚𝑖𝑑 [Pa] 16 000
𝑡𝑠𝑦𝑠−𝑝𝑟𝑒 [s] 0.17
𝑡𝑑 𝑖𝑎𝑠−𝑝𝑟𝑒 [s] 0.484
𝛾 [s] 0.005

Parameter (𝑝𝑟𝑣) Value

𝛼𝑚𝑖𝑛[⋅] −30
𝛼𝑚𝑎𝑥[⋅] 5
𝛼𝑝𝑟𝑒[⋅] 1
𝛼𝑚𝑖𝑑 [⋅] 10
𝜎𝑝𝑟𝑒 [Pa] 3000
𝜎𝑚𝑖𝑑 [Pa] 4000
𝑡𝑠𝑦𝑠−𝑝𝑟𝑒 [s] 0.17
𝑡𝑑 𝑖𝑎𝑠−𝑝𝑟𝑒 [s] 0.484
𝛾 [s] 0.005

Fig. 6. Evolution of the stress function 𝜏 described in (5) over the time interval [0, 1] with parameters as in Table 8. It reaches a maximum value of 120775.56 [Pa].

5. Numerical solvers and participants

Each group was requested to disclose their strategies to solve problems (1) and (17). Settings for the software, spatial and
temporal discretization methods are described in Table 10. The notation P2 indicates that the incompressibility is handled via
penalization (as described in the previous sections), and therefore only the displacements are discretized with quadratic basis
9 
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Fig. 7. Evolution of pressure 𝑝𝑙 𝑣(𝑡), 𝑝𝑟𝑣(𝑡) are shown with blue and brown colors respectively over the time interval [0, 1]. Parameters as in Table 4. Maximum
values of 16491.15 [Pa] and 4171.07 [Pa] for 𝑝𝑙 𝑣 , 𝑝𝑟𝑣 respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 10
Summary table of strategies. All problems are solved using the Newton method. Notation: Gen-𝛼 denotes the generalized-𝛼 scheme [43] and KGen-𝛼 an subclass
of Gen-𝛼 with specific spectral properties [44]. GL denotes the Gauss–Legendre and KL the Keast Lyness quadrature rules, respectively. FEniCSx [45–47] is
the succesor of FEniCS [48–50]. In the linear solver column, teams differ between linear algebra backend such as MUMPS [51], SuperLU [52], PETSc [53],
Trilinos [54] and PARDISO [55], to solve the linear system of the newton step.

Affiliation Software Spatial
discr.

Quad. type –
degree

Linear solver Time discretization

Medical University
of Graz

CARPentry
[56]

P1-P1
[57]

KL - 6 GMRES [58] with GAMG precond KGen-𝛼 with spectral radius
𝜌∞ = 0.5, timestep at 1 [ms]

King’s College
London

Ambit [59]
(FEniCSx)

P2 GL - 6 LU [51] for bench. 1 and GMRES
with AMG precond. [53] for
bench. 2

Gen-𝛼 with
𝛼𝑚 = 𝛼𝑓 = 0, 𝛽 = 0.25, 𝛾 = 0.5,
timestep at 1 [ms]

Technische
Universit̀‘at
M’́unchen

[4C] [60] P2 GL - 4
(stiffness), 11
(mass)

GMRES with AMG precond. Gen-𝛼 with
𝛼𝑚 = 𝛼𝑓 = 0.5, 𝛽 = 0.25, 𝛾 = 0.5,
timestep at 1 [ms].

Simula Research FEniCS [61] P2 GL - 6 LU [52] Gen-𝛼 with 𝛼𝑚 = 0.2, 𝛼𝑓 = 0.4,
timestep at 1 [ms].

University of
Groningen

CHIMeRA
(FEniCS)

P2 GL - 6 LU [51] Gen-𝛼 with 𝛼𝑚 = 𝛼𝑓 = 0,
𝛽 = 0.25, 𝛾 = 0.5, timestep at 1
[ms].

University of
Michigan

Heart [62] P2 KL - 4 LU [51] Mid-point rule, timestep at 1 [ms]

Politecnico di
Milano

lifex [41] P2 GL - 4 GMRES with AMG precond. BDF1 Implicit, timestep at 1 [ms].

Technische
Universiteit Delft

COMSOL
Multiphysics
v.6.1 [11,63,64]

P2 GL - 4 LU [55] Gen-𝛼 with 𝛼𝑚 = 𝛼𝑓 = 0,
𝛽 = 0.25, 𝛾 = 0.5, timestep at 1
[ms]

Columbia University SimVascular
[svFSI]
[65–67]

P1-P1 GL - 4 GMRES with Schwarz Prec.
(bench. 1) and GMRES with iLU
[54] (bench. 2)

KGen-𝛼 with spectral radius
𝜌∞ = 0.5, timestep at 1 [ms]

Columbia University SimVascular
[svFSI]
[65–67]

P2 GL - 11 GMRES with AMG Precond. for
bench. 1

idem

functions. The notation P1 indicated the analogous case for linear basis functions. The notation P1−P1 indicates that incompressibility
is handled directly using the pressure as unknown, where the saddle-point problem is discretized with linear basis functions,
including a stabilization term for the pressure field. This variable, defined in the muscle, differs from the pressure prescribed at
the boundaries, describing chamber and epicardial effects.
10 
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Fig. 8. Comparison per component of displacement 𝐮ℎ(𝐩0) and 𝐮ℎ(𝐩1) for Step 0, case A - active response. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

6. Results

In this section, we provide comparison results for the two benchmark problems. Quantitative and qualitative assessment is
done using displacement tracking and by defining a measure of discrepancy between teams. Solutions from different teams can
be distinguished with different colors, which are provided in displacement curves for benchmark 1 and including visualizations for
benchmark 2. Comparisons between P1 and P2 are also provided for benchmark 2.

6.1. Benchmark 1

6.1.1. Step 0 (non-blinded): Splitting passive and active response
The comparison of displacement curves at particles 𝐩0,𝐩1 is depicted in Fig. 8 for active response alone and in Fig. 9 for

passive response. Each figure presents displacements for each of the component, allowing a straightforward assessment of differences
11 
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Fig. 9. Comparison per component of displacement 𝐮ℎ(𝐩0) and 𝐮ℎ(𝐩1) for Step 0, case B - passive response. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

between teams. The largest differences can be observed primarily along the interval (0.2, 0.6) [s], and especially for the x-component
of both particles in the case of passive response.

6.1.2. Step 1 (non-blinded): active and passive response
The comparison results for each requested quantity are depicted in Fig. 10. The componentwise representation of displacement

showcases the differences in the order of magnitude of deformation. Displacements along the z-component are one order of
magnitude smaller than those of the x-component. Maximum differences between teams remain smaller than 0.5 [mm] in the worst
case, as seen in the z-component.
12 
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Fig. 10. Comparison per component of displacement 𝐮ℎ(𝐩0) and 𝐮ℎ(𝐩1) for Step 1, case of joint active and passive response. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

6.1.3. Step 2
A qualitative comparison of displacement curves at different particles is depicted in Figs. 11–13. For a quantitative assessment

of the curves, we propose a [RE]lative [D]iscrepancy between each dataset, denoted by 𝚁𝙴𝙳, defined as:

𝚁𝙴𝙳(𝐩) = 1
𝑇

𝑇
∑

𝑡𝑛=0

‖𝐮(𝑡𝑛,𝐩) − �̄�(𝑡𝑛,𝐩)‖𝓁2
‖�̄�(𝑡𝑛,𝐩)‖𝓁2

𝐩 ∈ {𝐩0,𝐩1} (21)

with �̄�(𝑡, ⋅) = 1
𝑁

∑𝑁
𝑖=1 𝐮

𝑖(𝑡, ⋅) for 𝑡 ∈ (0, 1), 𝐮𝑖 the displacement field of team 𝑖 and 𝑁 the total number of teams. The datasets are
subsampled at 10 [ms], i.e. 𝑇 = 101 datapoints. If a group simulated with a different timestep, then linear interpolation is used to
compute the corresponding displacement values. Intuitively, the relative discrepancy function provides a time-averaged discrepancy
to an average result, using the 𝓁2 norm to add each direction. Table 11 summarizes the relative discrepancies for each team.
13 
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Table 11
Comparison of relative deviations for each participant group.
Setup Case A Case B Case C

RED (𝐩0) RED (𝐩1) RED (𝐩0) RED (𝐩1) RED (𝐩0) RED (𝐩1)

CARPentry 0.134 0.229 0.360 0.301 0.060 0.118
Ambit 0.115 0.185 0.79 0.243 0.060 0.168
4C 0.080 0.115 0.171 0.136 0.059 0.059
Simula 0.094 0.200 0.311 0.352 0.041 0.054
CHIMeRA 0.078 0.108 0.149 0.135 0.045 0.056
Heart 0.202 0.198 0.300 0.250 0.048 0.045
life𝐗 0.108 0.154 0.273 0.252 0.049 0.129
SimVascular P1 0.220 0.371 0.309 0.267 0.156 0.211
SimVascular P2 0.276 0.370 0.360 0.328 0.146 0.157
COMSOL 0.186 0.196 0.287 0.329 0.105 0.111

Table 12
Comparison of relative deviations for each participant group in Benchmark 2.
Setup Blinded on 𝛺ℎ1 Blinded on 𝛺ℎ2

RED (𝐩0) RED (𝐩1) RED (𝐩2) RED (𝐩0) RED (𝐩1) RED (𝐩2)

CARPentry 0.915 0.545 0.415 1.019 0.504 0.452
Ambit 0.094 0.086 0.21 0.136 0.084 0.288
4C 0.104 0.129 0.221 0.108 0.094 0.278
Simula 0.564 0.848 1.472 0.446 0.513 1.769
CHIMeRA 0.121 0.108 0.182 0.111 0.079 0.347
Heart 0.144 0.11 0.226 0.137 0.085 0.406
life𝐗 0.125 0.099 0.144 0.103 0.077 0.318
SimVascular P1 0.483 0.295 0.95 0.294 0.184 0.508
COMSOL 0.14 0.158 0.335 0.183 0.155 0.326

6.2. Benchmark 2

To analyze the results, qualitative assessment is done through visual inspection and the displacement tracking at three particles
0,𝐩1 and 𝐩2. We provide quantitative assessment using the measure of discrepancy RED, as in Section 6.1.3, for all particles in both

meshes. Visual comparison between solutions can be depicted in Fig. 14 using overlapped views at two different times, namely,
0.3 [s] and 0.5 [s]. The views are defined using the two-chamber (long) axis and the base-to-apex (short) axis. Particle trajectories
re depicted in Figs. 15 for the coarse mesh 𝛺ℎ1 and 16 for the fine mesh 𝛺ℎ2 . Table 12 summarizes the discrepancies in each case.

Comparison curves between spatial discretization in P1 and P2 are depicted in Figs. 17 and 18, including only teams that provided
both datasets.

7. Discussion

This work proposes a set of benchmark problems and solutions for cardiac elastodynamics, in both, monoventricular and
biventricular geometries. Evaluation of the solutions is done both qualitatively (from the time evolution of displacements) and
quantitatively (using the discrepancy measure RED).

The benchmarks proposed here not only assess nonlinear elastodynamics but also test active material behavior and pericardial
oundary conditions [7]. They also showcase the potential variability in the results from different numerical approaches used by
he cardiac biomechanics community. This work not only provides the analytical description for the monoventricular case, as done
n [2], but also utilizes the state-of-the-art fiber generation pipeline [34] for the biventricular domain.

This report provides an unambiguous mathematical description of cardiac benchmark problems, sufficient for reproducibility
purposes with a reasonable agreement of solutions between teams for all proposed problems. In total, nine different research groups
ubmitted solutions to the benchmark problems, all computed with the finite element method but with different approaches to
andle (in)compressibility, see Table 10.

The monoventricular benchmark case comprises three different problems that aim to assess separately passive 3.3.2 and active
3.3.1 responses of the cardiac contractility, as well as their combined effect 3.4. In the non-blinded phase, teams had access to
umerical solutions provided by other participants. In this phase, solutions agree closely on the active, passive and joint responses,
s depicted in Figs. 8–10. The difference between curves is below 0.5 [mm], only a small fraction of the typical element size employed

(3–5 [mm]). The largest differences are observed when the discrete system is passively loaded as seen in Table 11.
In the blinded-phase, teams tested their numerical setup in three new sets of parameters. The choice of parameters defines

ifferent material regimes, a high and low stiffness set of parameters (Case A and C, respectively), tuned to have physiological
ontraction and a third case tuned to have small deformations to test robustness of the solvers. In all cases, a reasonable agreement

is observed among teams, as depicted in Figs. 11–13. This agreement is present despite some groups (SimVascular, CHIMeRA,
Heart and life𝑥) using different ways to generate or interpolate the fiber directions, as summarized in Table 10.
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Fig. 11. Comparison per component of displacement 𝐮ℎ(𝐩0) and 𝐮ℎ(𝐩1), case A. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The blinded biventricular case 4.4, aims to assess each solver in a more realistic scenario with a non-parametric fiber
configuration and a generalized elastodynamic formulation. As depicted in Figs. 15 and 16, there is a closer match between results
when using the finer mesh 𝛺ℎ2 compared to 𝛺ℎ1 . A qualitative comparison of the solutions along the short and long axis planes is
depicted in Fig. 14. Greater discrepancy is observed between solutions based on P1−P1 compared to P2 formulations. Discrepancies
are noticeable across all particle displacements in the coarser mesh, particularly for the particle 𝐩2, reflecting the variability of the
solutions across the mesh. Effects of the spatial discretization are also considered in this work. Comparisons between solution fields
in P1 and P2, depicted in Figs. 17 and 18 for the coarse and fine mesh, showcase a dependency of the solution on the discretization
space and to the fibers orientation, with differences larger than 5 [mm] in the interval (0.2, 0.5) [s].

A close agreement between most of the groups in the monoventricular case (Table 11) using different software and methods.
However, in the biventricular case, an increased discrepancy is evident (Table 12), even among the teams that used similar software
15 
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Fig. 12. Comparison per component of displacement 𝐮ℎ(𝐩0) and 𝐮ℎ(𝐩1), case B. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

platform, e.g. FEniCS (Ambit, Simula, CHIMeRA). This is likely due not only to differences in geometry but also to the rule-
based calculation of fibers, which were provided at the degrees of freedom and then interpolated to the quadrature points. This
interpolation process may introduce additional variability in the simulation outputs across the groups.

8. Limitations

This work presents a number of limitations that could be tackled in future studies.
Though this study represents a considerable improvement in modeling complexity, it still addresses only one physical field,

namely mechanics. Including additional fields in a multiphysics framework – such as fluid-solid interaction, poromechanics,
electromechanics, and 0D-3D models – would likely be the most reasonable next steps. However, this approach may reduce the
number of groups participating in each of these benchmarks.

In principle, the observed differences may disappear if the discretization is refined to the point where all solvers reach
convergence, but no detailed convergence analysis was performed in this study. At that stage, the comparison would focus primarily
16 
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Fig. 13. Comparison per component of displacement 𝐮ℎ(𝐩0) and 𝐮ℎ(𝐩1), case C. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

on computational cost, assuming that, as one would hope, all the solvers converge to the same solution but with different accuracy
orders.

The present work also has limitations regarding the realism of the fiber model. While the fiber-sheet-normal model is well
established for left ventricular geometries, there is a lack of data for the right ventricle and interventricular region [68]. The
benchmark could be updated with more realistic biventricular fiber models [34,69]. However, this is likely to introduce additional
numerical challenges and require more careful discretization due to the thinness of the right ventricular wall.

While incorporating a human or animal geometry, especially one including the atria, is feasible in principle, it falls outside the
scope of the proposed benchmark and would overly complicate the setup. Additionally, generating atrial fibers remains a significant
challenge [34,70]. Therefore, given the focus of our work, we rely on idealized ventricular geometries paired with state-of-the-art
fiber models. A more realistic and complex geometry could also lead to challenges in incorporating the fiber orientation and in the
comparison and interpretation of the results. The current study seeks to achieve a balanced model complexity, which would render
the results useful and relevant but still allow control of relevant model properties and facilitate the comparison of the results. The
17 
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Fig. 14. Visual overlapping of each team solution using two-chamber and short-axis views, at two different time instants 𝑡 = 0.3 [s] (left column) and 𝑡 = 0.5 [s]
(right column) in the coarse mesh 𝛺ℎ1 (top row) and fine mesh 𝛺ℎ2 (bottom row). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 15. Comparison per component of displacement 𝐮ℎ(𝐩0) (left), 𝐮ℎ(𝐩1) (center) and 𝐮ℎ(𝐩2) (right) in the coarse mesh 𝛺ℎ1 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Comparison per component of displacement 𝐮ℎ(𝐩0) (left), 𝐮ℎ(𝐩1) (center) and 𝐮ℎ(𝐩2) (right) in the fine mesh 𝛺ℎ2 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

study represents a significantly increased complexity compared with previous benchmarks in the field, and the inclusion of a more
realistic geometry is left for a potential follow-up.

We restricted ourselves to the study of the constitutive model in [18], which is the most commonly used one in continuum-based,
organ-scale simulations. In any case, apart from the newest viscoelastic model [71], we are not aware of important more recent
developments in this field. Therefore, we believe our choice remains highly relevant due to the widespread use of the presented
model. Providing benchmarks for other models, such as the ones reviewed recently in [72,73] is out of the scope of the present
study.

Another limitation of this study consists in that the variability of the output to all model parameters (such that representing
viscoelasticity and (in)compressibility) was not studied, though those effects where included in the model.

Though some insights for mesh sensitivity are given in Benchmark 2, this aspect was not fully explored in this article, and we
consider relevant for future benchmarking efforts, together with reporting more quantities such as strains and stresses, which are
often more sensitive to the discretization methods.

9. Conclusion

Consensus in simulation results is an important task, as several discretization parameters need to be selected. In this software
benchmark for cardiac elastodynamics, a set of physiological test cases is proposed, comprising two different geometries. The
methodology for assessment of results is based on a non-blinded calibration step and consecutive blinded steps. Nine research
teams within the domain of cardiac mechanics participated in this benchmark. The benchmarks are structured as a series of steps
with progressively increasing complexity, offering a step-by-step approach for verifying newly developed code. In the case of the
monoventricular domain, which includes analytical fiber definition, consensus of solutions is observed in all displacement directions
when changing the material parameters. Notably, different numerical methods and software implementations produced comparable
results, with agreement between all participating teams. For the biventricular domain, an idealized geometry is introduced, with
fibers based on the state-of-the-art in cardiac mechanics. Furthermore, tuned parameters for a physiological contraction are
introduced, generalizing the previous monoventricular benchmark. The results for the biventricular model become more subject
to differences arising from the incompressibility handling and space discretization as well as the fiber discretization. In this more
challenging case, a few groups produced consistently comparable results (qualitatively and quantitatively), though using fully
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Fig. 17. Comparison per component of displacement 𝐮ℎ(𝐩0) (left), 𝐮ℎ(𝐩1) (center) and 𝐮ℎ(𝐩2) (right) in the coarse mesh 𝛺ℎ1 . In dashed lines the P1 solutions
and in full lines the P2 solutions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

different software platform and libraries. However, it is important to note that since the test cases were deliberately chosen to
be realistic and complex, it makes it difficult to determine the ‘‘reference’’ solutions. Nevertheless, overall the results will still serve
as a range of values for valuable guidance to future authors and solver developers.
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Fig. 18. Comparison per component of displacement 𝐮ℎ(𝐩0) (left), 𝐮ℎ(𝐩1) (center) and 𝐮ℎ(𝐩2) (right) in the fine mesh 𝛺ℎ2 . In dashed lines the P1 solutions and
in full lines the P2 solutions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix. Fiber convention

The most appropriate modeling choice for the fiber, sheet, and normal directions in the ventricular region remains an active
rea of debate within the community of cardiac mechanics. Variability in histological studies and computational methods to extract
rincipal tissue directions exacerbate this discussion [20,21,34,74–76]. Whereas the transmural evolution of the myocardial fiber
irection across the transmural wall seems to be well accepted, two main modeling approaches can be distinguished with respect
o the assigned sheet and normal directions in computational ventricle models. Following the works in [18,20], various groups take

the sheet direction (𝐬) to be oriented along the transmural direction and the normal direction (𝐧) to be orthogonal to both fiber and
sheet directions [21,74,75,77,78]. Following the works in [6,7], other groups assume the normal direction (𝐧) to be oriented along
the transmural direction and the sheet direction (𝐬) to be orthogonal to both fiber and normal directions. With proper tuning of the
constitutive parameters, both approaches can lead to realistic deformation profiles during diastolic loading and systolic contraction.
Given our choice to use tuned constitutive parameters from a group using the second convention, we followed their myocardial
architecture convention for our monoventricular benchmark cases. In reality, sheet and normal vector fields can be considered to
have transmural radial-longitudinal angle variations [34,76]. As such, both conventions provide a simplified but relevant approach
towards simulating cardiac mechanics starting from the end-systolic and end-diastolic configuration, respectively.

Data availability

The input data and simulation results are publicly available in Zenodo. Some of the computational codes are also openly
available: CARPentry, Ambit, Simula’s, SimVascular, lifex .
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