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Abstract

Autonomous vehicles (AVs) have the potential to transform transportation systems by
significantly improving road safety, reduce congestion, optimize traffic flow, and con-
tributing to environmental sustainability. Assessing the potential impacts of AVs re-
quires robust quantification methods that encompass both macroscopic and microscopic
effects. Given that conducting large-scale real-world tests of AVs is impractical due to
the costs, safety concerns, and regulatory hurdles involved in deploying fleets of AVs
on public roads, researchers conduct simulation-based assessments. Especially many
studies utilizes microscopic traffic models (MTMs) to conduct experiments and assess
the impacts of AVs deployment scenarios. However, accurately replicating AV driving
behavior in MTMs and understanding their impacts on traffic systems remain significant
challenges. The main aim of this doctoral dissertation is to develop advanced models for
simulating the driving behavior of AVs and assessing their impacts on traffic efficiency
and safety in urban networks. This includes the creation of an optimization framework
for AV behavioral modeling, the development of a deep learning-based trajectory pre-
diction model, and the evaluation of AV deployment scenarios in urban traffic networks
to understand their effects on overall traffic performance and safety.

A comprehensive review of existing AV modeling techniques is conducted to evaluate
current CF models and identify gaps in the literature. The review paper, presented in
this dissertation, categorizes CF models into mathematical and data-driven approaches,
assessing their strengths and weaknesses. It was found that most mathematical CF
models, originally designed for human-driven vehicles, are insufficient for accurately
capturing AV behavior, particularly in mixed traffic scenarios. On the other hands,
data-driven approaches, although promising, face challenges in terms of interpretability
and integration into simulation tools. This review highlights the need for modeling
techniques that can more effectively and accurately capture AV dynamics.

To address these limitations, an optimization framework is proposed. This framework
extracts optimized parameter values for commonly used CF models, such as the Intelli-
gent Driver Model (IDM), Krauss model, and Adaptive Cruise Control (ACC) model to
better replicate AV driving behavior. By fine-tuning parameters such as time headway,
reaction time, and minimum gap, the optimized models achieve a more accurate rep-
resentation of AVs in simulations. The results indicate that the optimized CF models
significantly improve the replication of AV driving dynamics, leading to reductions in
traffic conflicts in the network.

In the next phase, a novel deep learning-based trajectory prediction model is intro-
duced to capture the complex driving behaviors of AVs. The model utilizes a dynamic
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spatio-temporal graph convolutional network (STGCN) to predict future AV trajecto-
ries. By integrating reciprocal distance and angular encoding into a weighted adjacency
matrix, the model effectively captures spatial dependencies between vehicles in the traf-
fic scene. Temporal dependencies are learned through a temporal convolutional network
(TCN), which processes historical vehicle trajectories to forecast future movements. The
proposed model, tested on real-world traffic datasets, achieves a 34% reduction in pre-
diction errors over a 5-second prediction horizon compared to existing models. This
improved prediction accuracy provides critical insights into AV decision-making and
navigation in complex traffic environments.

The final section of the dissertation presents a simulation-based impact assessment
that evaluates the effects of varying AV penetration rates on traffic efficiency and safety
in urban networks. Using the optimized CF models for AVs, multiple deployment sce-
narios were simulated within a detailed model of Munich’s urban traffic network, with
AV penetration rates ranging from 0% to 100%. The findings reveal that while AVs have
a substantial potential to improve road safety at higher penetration rates—resulting in a
25% reduction in traffic conflicts in fully AV environments—their impact on traffic effi-
ciency is more limited. Modest improvements in travel time and vehicle throughput were
observed, especially under existing infrastructure constraints. These findings highlight
the importance of further adjustments to urban infrastructure, such as adaptive traffic
signal controls and dedicated AV lanes, to maximize the benefits of AV deployment.
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Zusammenfassung

Autonome Fahrzeuge (AVs) haben das Potenzial, Transportsysteme zu transformieren,
indem sie die Verkehrssicherheit erheblich verbessern, Staus reduzieren, den Verkehrs-
fluss optimieren und zur ökologischen Nachhaltigkeit beitragen. Die Bewertung der
potenziellen Auswirkungen von AVs erfordert robuste Quantifizierungsmethoden, die
sowohl makroskopische als auch mikroskopische Effekte umfassen. Da groß angelegte
Tests von AVs in der realen Welt aufgrund der damit verbundenen Kosten, Sicherheits-
bedenken und regulatorischen Hürden unpraktisch sind, greifen Forscher auf simula-
tionsbasierte Bewertungen zurück. Insbesondere nutzen viele Studien mikroskopische
Verkehrsmodelle (MTMs), um Experimente durchzuführen und die Auswirkungen von
AV-Einsatzszenarien zu bewerten. Allerdings bleibt die genaue Nachbildung des Fahrver-
haltens von AVs in MTMs und das Verständnis ihrer Auswirkungen auf Verkehrssysteme
eine bedeutende Herausforderung. Das Hauptziel dieser Doktorarbeit ist die Entwicklung
fortschrittlicher Modelle zur Simulation des Fahrverhaltens von AVs und die Bewertung
ihrer Auswirkungen auf die Verkehrseffizienz und -sicherheit in städtischen Netzwerken.
Dies umfasst die Entwicklung eines Optimierungsrahmens für die Modellierung des AV-
Verhaltens, die Entwicklung eines auf Deep Learning basierenden Trajektorienvorher-
sagemodells und die Bewertung von AV-Einsatzszenarien in städtischen Verkehrsnetzen,
um deren Auswirkungen auf die allgemeine Verkehrseffizienz und -sicherheit zu verste-
hen.

Eine umfassende Überprüfung bestehender AV-Modellierungstechniken wird durchgeführt,
um aktuelle CF-Modelle zu bewerten und Lücken in der Literatur zu identifizieren. Das
in dieser Dissertation vorgestellte Übersichtsartikel kategorisiert CF-Modelle in mathe-
matische und datengetriebene Ansätze und bewertet deren Stärken und Schwächen. Es
wurde festgestellt, dass die meisten mathematischen CF-Modelle, die ursprünglich für
menschgesteuerte Fahrzeuge entwickelt wurden, nicht ausreichen, um das Verhalten von
AVs, insbesondere in gemischten Verkehrsszenarien, genau zu erfassen. Datengetriebene
Ansätze hingegen sind zwar vielversprechend, stehen jedoch vor Herausforderungen in
Bezug auf Interpretierbarkeit und Integration in Simulationstools. Diese Übersicht hebt
die Notwendigkeit von Modellierungstechniken hervor, die die Dynamik von AVs effek-
tiver und genauer erfassen können.

Um diese Einschränkungen zu überwinden, wird ein Optimierungsrahmen vorgeschla-
gen. Dieser Rahmen ermittelt optimierte Parameterwerte für häufig verwendete CF-
Modelle wie das Intelligent Driver Model (IDM), das Krauss-Modell und das Adap-
tive Cruise Control (ACC)-Modell, um das Fahrverhalten von AVs besser nachzubilden.
Durch die Feinabstimmung von Parametern wie Zeitabstand, Reaktionszeit und Min-
destabstand erzielen die optimierten Modelle eine genauere Darstellung von AVs in Sim-
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ulationen. Die Ergebnisse zeigen, dass die optimierten CF-Modelle die Nachbildung der
Fahrdynamik von AVs erheblich verbessern und zu einer Reduzierung von Verkehrskon-
flikten im Netzwerk führen.

In der nächsten Phase wird ein neuartiges, auf Deep Learning basierendes Trajekto-
rienvorhersagemodell eingeführt, um das komplexe Fahrverhalten von AVs zu erfassen.
Das Modell verwendet ein dynamisches spatio-temporales Graph Convolutional Network
(STGCN), um zukünftige AV-Trajektorien vorherzusagen. Durch die Integration von
reziproker Distanz und Winkelkodierung in eine gewichtete Adjazenzmatrix erfasst das
Modell effektiv räumliche Abhängigkeiten zwischen Fahrzeugen in der Verkehrsszene.
Zeitliche Abhängigkeiten werden durch ein Temporal Convolutional Network (TCN)
gelernt, das historische Fahrzeugtrajektorien verarbeitet, um zukünftige Bewegungen
vorherzusagen. Das vorgeschlagene Modell, getestet an realen Verkehrsdaten, erreicht
eine Reduzierung der Vorhersagefehler um 34 % über einen Vorhersagehorizont von
fünf Sekunden im Vergleich zu bestehenden Modellen. Diese verbesserte Vorhersage-
genauigkeit liefert wichtige Erkenntnisse über die Entscheidungsfindung und Navigation
von AVs in komplexen Verkehrsumgebungen.

Der letzte Abschnitt der Dissertation präsentiert eine simulationsbasierte Wirkungsbe-
wertung, die die Auswirkungen variierender AV-Durchdringungsraten auf die Verkehrsef-
fizienz und -sicherheit in städtischen Netzwerken bewertet. Mithilfe der optimierten
CF-Modelle für AVs wurden mehrere Einsatzszenarien in einem detaillierten Modell des
städtischen Verkehrsnetzes von München simuliert, wobei die AV-Durchdringungsraten
von 0% bis 100% reichten. Die Ergebnisse zeigen, dass AVs bei höheren Durchdringungsraten
ein erhebliches Potenzial zur Verbesserung der Verkehrssicherheit haben – mit einer Re-
duzierung von Verkehrskonflikten um 25% in vollständig von AVs dominierten Umge-
bungen. Ihre Auswirkungen auf die Verkehrseffizienz sind jedoch begrenzter. Es wurden
nur moderate Verbesserungen bei Reisezeit und Fahrzeugdurchsatz festgestellt, insbeson-
dere unter den bestehenden Infrastrukturbedingungen. Diese Ergebnisse verdeutlichen
die Bedeutung weiterer Anpassungen der städtischen Infrastruktur, wie z. B. adap-
tive Verkehrssteuerungssysteme und dedizierte AV-Fahrspuren, um die Vorteile des AV-
Einsatzes zu maximieren.

vi



Acknowlegements

Science is vast and ever-evolving, a boundless ocean of discovery and understanding.
Through this dissertation, I have endeavored to make a small contribution to this im-
mense collective endeavor. While the journey has been challenging, it has also been
deeply rewarding, and I could not have completed it without the support and encour-
agement of many remarkable individuals.

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Prof.
Dr. Constantinos Antoniou, for his invaluable guidance, insightful feedback, and unwa-
vering support throughout this journey. Your expertise, patience, and encouragement
have been instrumental in shaping both my research and my academic growth.

A special thanks to my colleagues—both the current and former members of the TSE
group—and fellow researchers, whose collaboration, insightful discussions, and shared
passion for knowledge have profoundly enriched this journey.

This work would not have been possible without the generous financial support provided
by the German Academic Exchange Service (DAAD). I am deeply thankful for the
opportunity and trust that DAAD extended to me, which allowed me to pursue my
academic aspirations and conduct this research.

I owe a profound debt of gratitude to my family, whose unconditional love and belief in
me have been my constant source of strength. To my wife, thank you for your patience,
understanding, and endless encouragement during the countless late nights and long
hours I spent on this work. To my parents, your sacrifices and unwavering support have
made all of this possible; I can never thank you enough for everything you have done for
me. To my brother, thank you for your steadfast support and encouragement throughout
this journey. To my friends, thank you for your unwavering support, uplifting words of
encouragement, and timely reminders to pause and recharge when it was most needed.

To my son, you have brought an unparalleled joy to my life during this journey. Being
your parent while pursuing my doctoral degree has been one of the greatest privileges
of my life. Your laughter, curiosity, and unconditional love have been a source of daily
inspiration and a reminder of life’s greatest blessings.

This dissertation is a reflection of not only my efforts but also the collective support,
guidance, and love of the incredible people in my life. To all who have played a part in
this journey, whether mentioned here or not, I am deeply thankful.

vii





Contents

Abstract iii

Zusammenfassung v

Acknowlegements vii

Contents ix

List of Figures xiii

Acronyms xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition and Dissertation Objectives . . . . . . . . . . . . . . . 2

1.3 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical Background 7
2.1 Mathematical CF Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Physics-based Models . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Psycho-physical Models . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Data-driven Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 CF-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Trajectory-based Models . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Methodology 15
3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 RQ1: Current Trends and Challenges in Autonomous Vehicle Mod-
eling & Impact Assessment . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 RQ2: Simulating Autonomous Vehicles Behavior with a Mathe-
matical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 RQ3: Deep Learning Approach for Predicting Autonomous Vehi-
cles Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.4 RQ4: Impacts of Autonomous Vehicles Deployment Scenarios on
Urban Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ix



CONTENTS

3.2 Research Design and Methodology . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 A Comprehensive Review of the Current State-of-the-art on Mod-
elling and Simulation of Longitudinal Driving Behavior of AVs . . 16

3.2.2 Development of an Optimization Framework to Replicate the Car-
following Behavior of AVs . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3 Development of a Trajectory Prediction Model . . . . . . . . . . . 19

3.2.4 Conducting a Network-wide Impact Assessment on Traffic Effi-
ciency and Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Modelling and Simulation of Autonomous Vehicles 23

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Optimized Driving Behavior of Autonomous Vehicles 25

5.1 Introduction and Research Objectives . . . . . . . . . . . . . . . . . . . . 25

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Deep Learning-based Trajectory Prediction of Autonomous Vehicles 29

6.1 Introduction and Research Objective . . . . . . . . . . . . . . . . . . . . . 29

6.2 Problem Formulation and Methodology . . . . . . . . . . . . . . . . . . . 29

6.3 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Impact Assessment of Autonomous Vehicles Deployment Scenarios 33

7.1 Introduction and Research Objectives . . . . . . . . . . . . . . . . . . . . 33

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Discussion, Limitations, and Directions for Future Research 37

8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.1.1 Driving Behavior of AVs . . . . . . . . . . . . . . . . . . . . . . . . 37

8.1.2 Data-driven Models Synergies . . . . . . . . . . . . . . . . . . . . . 39

8.1.3 Impact Evaluation of AVs Deployment Scenarios . . . . . . . . . . 39

8.2 Limitations and Directions for Future Research . . . . . . . . . . . . . . . 41

8.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.2.2 Recommendations and Directions for Future Work . . . . . . . . . 42

9 Conclusion 45

Bibliography 47

x



CONTENTS

A Sadid and Antoniou (2023). Modelling and Simulation of (Connected)
Autonomous Vehicles Longitudinal Driving Behavior: A State-of-the-art 59

B Sadid and Antoniou (2024). Policy-aware Optimization-based Modeling of
Autonomous Vehicle’s Longitudinal Driving Behavior 81

C Sadid and Antoniou (2024). Dynamic Spatio-temporal Graph Neural Net-
work for Surrounding-aware Trajectory Prediction of Autonomous Vehicles 103

D Sadid and Antoniou (2024). A Simulation-based Impact Assessment of
Autonomous Vehicles in Urban Networks 119

xi





List of Figures

1.1 Illustration of the overall structure of this dissertation . . . . . . . . . . . 6

2.1 Classification of Mathematical and Data-driven CF models. . . . . . . . . 14

3.1 Overview of the Research Design: Main Goal, Key Phases, and Alignment
with the Research Questions. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 The methodological framework in this research. (Source: [68]) . . . . . . . 19
3.3 The illustration of the interaction among vehicles over time; both the

strategic position and distance of vehicles in respect to the target vehicle
changes over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Illustration of PSO calibration method . . . . . . . . . . . . . . . . . . . . 22

5.1 Road network of Maxvorstadt district in Munich city center. (Source: [68]) 26

6.1 The overall architecture of the proposed dynamic STGCN architecture.
In each traffic scene, GCN takes the trajectories of vehicles as input and
learns the spatial dependencies among them. This is done for all traf-
fic scenes, and the results are mapped on the features maps. The TCN
module then operates on the features maps to extract the temporal de-
pendencies and predict the future trajectories. (Source: [65]) . . . . . . . 31

7.1 Schematic of the research methodology, showing scenario generation, sim-
ulation environment, and output analysis. (Source: [34]) . . . . . . . . . . 34

xiii





Acronyms

ACC Adaptive Cruise Control.
ADE Average Displacement Error.
ANN Artificial Neural Network.
AV Autonomous Vehicle.

CACC Cooperative Adaptive Cruise Control.
CAV Connected Autonomous Vehicle.
CF Car-Following.

DQN Deep Q-Networks.
DRL Deep Reinforcement Learning.

GCN Graph Convolutional Network.
GRU Gated Recurrent Unit.

IDM Intelligent Driver Model.

KPI Key Performance Indicator.

LC Lane-Changing.
LSTM Long Short-Term Memory.

PR Penetration Rate.

RL Reinforcement Learning.
RMSE Root Mean Square Error.

STGCN Spatio-Temporal Graph Convolutional Network.

TCN Temporal Convolutional Network.
TTC Time-to-Collision.

xv





1 Introduction

1.1 Motivation

Autonomous vehicles (AVs), also known as self-driving cars, represent a transformative
shift in transportation technology [1]. Equipped with advanced sensing technologies
such as lidar, radar, ultrasonic sensors, and high-resolution cameras, alongside machine
learning algorithms and artificial intelligence, these vehicles can navigate roads, detect
obstacles, and make real-time decisions without human intervention [2]. Optimistic
views predict the mass deployment of AVs in our transportation system in the near fu-
ture. However, their widespread adoption faces challenges, including regulatory hurdles,
ethical considerations [3], costs [4], induced traffic demand [5] and the need for further
technological refinement [6, 7] to ensure safety and reliability in all driving conditions.

AVs are gaining prominence not just for their self-driving capabilities but also for
their ability to generate vast amounts of data through Information and Communication
Technology (ICT). When these capabilities are combined, they form Connected Au-
tonomous Vehicles (CAVs), collectively known as Autonomous and Connected Transport
(ACT) [8–10]. This evolution opens new opportunities for stakeholders, particularly ICT
firms and SMEs, to collaborate in developing traffic sensors and communication systems.
In Europe, the EU has heavily invested in ACT-related projects like 5G-MOBIX [11,12],
Drive2TheFuture [13], CoExist [14], and Autodrive to address the deployment barriers,
foster economic growth, and enhance job creation and training opportunities across Eu-
rope.

The advent of AVs is expected to have broad societal and economic impacts, including
the creation of new business models and industries. For instance, AVs could revolutionize
the logistics and transportation sectors by enabling fully automated delivery services,
reducing costs, and increasing efficiency [15]. Additionally, ride-sharing services like
Waymo [16], Uber [17], and Lyft [18] are already exploring or deploying AVs, making
these services more accessible and affordable by eliminating labor costs. The rise of AVs
is also likely to spur innovation in related sectors such as insurance, urban planning,
and infrastructure development [19–21]. Moreover, AVs could contribute to the growth
of smart cities, where transportation systems are integrated with digital infrastructure,
enhancing overall urban efficiency [19,22].

AVs are expected to have significant impacts on transportation systems. The most
immediate effect could be on traffic safety, as AVs have the potential to reduce accidents
caused by human error, which is responsible for over 90% of road accidents [23–25].
Meanwhile, AVs hold the potential to increase fuel efficiency [26–28], and improve mo-
bility for those unable to drive [25,29]. Additionally, AVs could improve traffic flow and
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reduce congestion [30] through more efficient driving patterns and coordination between
vehicles, however, their effects are not yet quantitatively confirmed [31,32].

Assessing the potential impacts of AVs requires robust quantification methods that
encompass both macroscopic and microscopic impacts. Macroscopic impacts refer to
large-scale effects such as overall changes in traffic flow, congestion levels, and emissions
on a regional or national scale. These are typically evaluated using traffic simulation
models, economic analysis, and environmental impact assessments. On the other hand,
microscopic impacts focus on the behavioral changes at the individual or vehicle level,
such as changes in driving patterns, route choices, and vehicle interactions. Behavioral
models and detailed simulation tools are often employed to study these microscopic
impacts, which can provide insights into how AVs might influence driving behavior,
road safety, and vehicle dynamics. Given that the current technology and infrastructure
are not yet capable of supporting extensive, real-world testing of large fleets, primarily
due to regulatory constraints, safety concerns, and the high costs associated with such
large-scale trials, researchers conduct simulation-based evaluations of AVs and CAVs
using traffic models.

Traffic models are categorized into microscopic, mesoscopic, and macroscopic mod-
els, each distinguished by their complexity and network scale [2, 31, 33]. Microscopic
models offer high detail, simulating individual vehicle behaviors like lane changes and
interactions. Macroscopic models treat vehicles as continuous flow patterns across large
networks, focusing on flow, velocity, and density, with less complexity and detail. Meso-
scopic models combine aspects of both, capturing individual vehicle behaviors while
considering overall traffic flow, offering a balanced approach that is detailed yet less
complex than microscopic models.

Microscopic traffic models (MTMs) are increasingly utilized in impact assessment
studies of AVs [34–42]. These models simulate the detailed movements and interactions
of individual vehicles within a traffic network, allowing researchers to analyze the poten-
tial effects of AVs on traffic dynamics, safety, and efficiency. By incorporating various
driving behaviors (car-following and lane-changing), vehicle types, and traffic conditions,
microscopic simulation models can provide a comprehensive understanding of how AVs
might perform in real-world scenarios. They are particularly valuable for evaluating
scenarios such as mixed traffic conditions, where both AVs and human-driven vehicles
coexist.

1.2 Problem Definition and Dissertation Objectives

The driving behavior of AVs might differ significantly from that of human-driven vehicles
[39, 43]. These behaviors are represented in MTMs through car-following (CF), and
lane-changing (LC) configurations. In recent researches, considerable efforts have been
made to accurately model these behaviors, particularly the CF behavior, for AVs and
CAVs within MTMs [37, 39, 40, 42, 44–48]. The CF behavior is a sequence of decisions
made by a vehicle to safely follow a leading vehicle, and there are various state-of-the-art

2



1.2 Problem Definition and Dissertation Objectives

methods, including both mathematical [49–53] and data-driven models [54–60], designed
to replicate this behavior for AVs and CAVs.

Mathematical CF models consist of modifiable parameters that replicate vehicle driv-
ing behavior under different traffic conditions. These parameters are often calibrated
using extensive field driving data. Conversely, data-driven models leverage various al-
gorithms and trajectory datasets to establish relationships between a following vehicle’s
driving decisions and influencing factors such as the speed and gap of the leading vehi-
cle. Although data-driven models often outperform mathematical models in replicating
vehicle CF behavior, they are not widely used in impact assessment studies.

In simulation-based impact assessment studies, the selection of a CF model is influ-
enced by two main factors: the model’s ability to accurately replicate driving behavior
and its integration into widely used simulation tools. Due to the complexity of traffic
flow and the high computational demands of microsimulation tools, simpler and well-
established mathematical models are typically integrated into these tools. Researchers
distinguish AVs’ driving behavior from that of human-driven vehicles based on factors
such as time gap, reaction time, headway, and driving imperfection. However, due to
the lack of extensive field data for AVs, researchers often make assumptions about AVs’
driving capabilities, leading to varying and sometimes questionable conclusions regarding
their potential impacts.

Data-driven models are particularly powerful in capturing AV driving behavior within
a traffic scene, which has drawn attention to the trajectory prediction problem in recent
years. In the context of AVs, predicting the future motion and trajectory of surrounding
vehicles is crucial for safe and efficient driving decisions. This prediction involves both
the CF and LC configurations of nearby vehicles. Despite several proposed methods in
the literature for AV trajectory prediction, the interpretability of these models remains
a significant challenge [60–67].

Given that accurate impact assessment of AVs relies on the ability to replicate their
driving behavior accurately, this dissertation aims to achieve two primary goals: First,
to develop methods (mathematical and data-driven) for replicating the driving behavior
of AVs under varying traffic conditions; and second, to conduct a network-wide simula-
tion based impact assessment to systematically evaluate the effects of AV deployment
scenarios under different traffic demand conditions using the developed methods.

To support the achievement of these primary objectives, the following sub-objectives
are also integral to this dissertation:

� To conduct a systematic review and meta-analysis of the existing state-of-the-art
on AVs and CAVs behavioral modelling, and impact assessment.

� To develop a method for replicating the driving behavior of AVs using a mathe-
matical CF model.

� To create a novel deep learning-based approach to accurately predict the trajectory
of AVs in a traffic scene.
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� To conduct a simulation-based impact assessment of AVs in an urban traffic net-
work.

1.3 Dissertation Contributions

This doctoral dissertation compiles, summarizes, and documents the author’s research
[1,34,65,68], particularly focused on understanding and modeling the driving behavior of
AVs in urban traffic networks and conducting a network-wide impact assessment of AV
deployment scenarios. Thus, this doctoral research makes the following contributions at
theoretical, methodological, and practical levels:

1. A systematic review of modelling and simulation of AVs and CAVs
longitudinal driving behavior (Sadid and Antoniou (2023) [1], see Ap-
pendix A): This involves a comprehensive analysis of current methods and models
used for simulating AV and CAV driving behaviors, focusing on both mathemat-
ical and data-driven approaches. The review identifies the strengths, weaknesses,
and gaps in the current literature, providing a foundation for further development.
Furthermore, to focus on identifying the set of KPIs that are commonly used in
the impact assessment of AVs, such as safety metrics, traffic efficiency, and envi-
ronmental impacts. It also involves analyzing the impacts revealed through these
KPIs in existing studies, thereby providing insights into the broader effects of AV
deployment.

2. Development of an optimization-based model to replicate the driving
behavior of AVs (Sadid and Antoniou (2024) [68], see Appendix B):
Developing a policy-aware optimization framework that finds a set of optimized
driving parameters for AVs under various scenarios, aiming to achieve specific
objectives such as reducing travel time and improving safety through a well-defined
simulation-based objective function.

3. Development of a dynamic graph-based deep learning method to predict
the trajectory of AVs (Sadid and Antoniou (2024) [65], see Appendix
C): This considers developing a novel dynamic STGCN to predict the trajectories
of AVs by capturing both spatial and temporal dependencies among vehicles. This
model utilizes a weighted adjacency matrix based on the strategic positions and
distances of vehicles, which significantly improves prediction accuracy by better
reflecting real-world driving behaviors.

4. Impact assessment of AVs deployment scenarios in urban networks (Sa-
did and Antoniou (2024) [34], see Appendix D): Conducting a comprehen-
sive simulation-based impact assessment of AVs in urban networks using a SUMO-
based simulation platform. The assessment incorporated optimized AV driving
behavior, varied penetration rates (PRs), and different demand scenarios.
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1.4 Dissertation Structure

1.4 Dissertation Structure

This dissertation is structured into nine chapters, each addressing a specific aspect of
the research on AVs. The first chapter introduces the research, outlining the motivation,
problem definition, and objectives of the study, setting the stage for exploring AV de-
ployment scenarios. Chapter 2 presents the Theoretical Background, providing a review
of existing literature and foundational concepts related to behavioral modeling.

Chapter 3 details the Methodology, explaining the research design, the key research
questions, and the methodological framework used to achieve the objectives of the study.
Chapter 4 presents the summary of the review paper. Chapter 5 addresses the Opti-
mized Driving Behavior of Autonomous Vehicles, introducing the developed optimization
framework to enhance AV behavior modeling. In Chapter 6, the dissertation discusses
the Deep Learning-based Trajectory Prediction model, which is designed to predict AV
movement in complex traffic scenarios using advanced machine learning techniques.

Chapter 7 covers the Impact Assessment of Autonomous Vehicles Deployment Sce-
narios, where the effects of different AV PRs on traffic efficiency and safety in urban
networks are evaluated. Chapter 8 provides a Discussion of the results, highlights the
Limitations of the study, and outlines Future Research Directions, summarizing the key
findings and proposing avenues for future work. Finally, Chapter 9 presents the conclu-
sion of this dissertation. The schematic diagram in Figure 1.1 shows the overall structure
of this dissertation.
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Doctoral Dissertation:

Microscopic Behavioral Modelling, and Simulation-based
Evaluation of Autonomous Vehicles Deployment Scenarios
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Figure 1.1: Illustration of the overall structure of this dissertation
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2 Theoretical Background

Impact assessment of AVs deployment scenarios require the modelling and simulation
of their potential driving behavior. The driving behavior of a vehicle could be well de-
scribed using its CF or LC configurations. A CF model presents a driver’s actions to
follow a leading vehicle safely and efficiently, whereas a LC model replicate a driver’s
intention to change its lane in order to achieve strategic, cooperative, tactical or regu-
latory objectives. Given the scarcity of reliable data on LC dynamics, most researchers
focus on CF configurations to capture the overall driving behavior of vehicles and con-
duct impact assessment. This is also true for AVs, where most simulation-based impact
assessment studies are associated with AVs’ CF behavior. There are many methods
proposed in the literature for modelling of a vehicle’s CF behavior. Generally, these
methods are categorized into mathematical and data-driven models. In the following
sections, we briefly describe each category.

2.1 Mathematical CF Models

Mathematical models are comprised of a set of equations and rules that describe the
relationship between parameters such as speed, distance, acceleration, etc. to predict
the behavior of a following vehicle using the current and past driving actions. These
models typically use deterministic or stochastic methods to capture the dynamics of CF
behavior [33, 69]. In addition, mathematical models are usually simple and computa-
tionally efficient, and are widely used in microsimulation tools. However, they fail to
capture sophisticated driving situations. Most of these models are developed to replicate
the driving behavior of human-driven vehicles, however, they are also widely utilized for
approximating the driving behavior of AVs. The parameters of a mathematical CF
model are calibrated using a mass-field driving data, whereas for AVs these parameters
are often assumed.

Generally mathematical CF models are categorized into physics-based and psycho-
physical models. Physics-based models primarily rely on physical laws (like Newtonian
mechanics) and principles such as speed, acceleration, deceleration, distance, and relative
speed. These models focus on the vehicle’s dynamics and the mechanical response re-
quired to maintain safe and efficient traffic flow. According to [69], physics-based models
could be technically categorized into stimulus-based, safety distance, desired measures,
and optimal velocity models.
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2 Theoretical Background

2.1.1 Physics-based Models

Stimulus-based models are some of the earliest types of CF models. They are grounded
in the idea that a driver’s acceleration or deceleration response (the ”response”) is a
direct reaction to the behavior of the vehicle ahead (the ”stimulus”). In these models,
the stimulus is typically measured in terms of the relative speed or distance between the
following vehicle and the leading vehicle. The core concept is that the follower vehicle’s
driver adjusts their speed based on the change in relative speed or the gap to the car
in front. The relationship between stimulus and response can be modeled using either
linear or nonlinear functions, depending on the complexity desired in representing driver
behavior. Stimulus-based models emphasize the driver’s sensitivity to changes in relative
speed and distance, often assuming that the response is proportional to the stimulus.
Stimulus-based models include the Chandler, Herman, and Montroll (CHM) Model, also
known as the Gazis-Herman-Rothery (GHR) model [49]. This model assumes that the
acceleration of the following vehicle is directly proportional to the relative speed and
inversely proportional to the distance from the leading vehicle, introducing sensitivity
factors to adjust the driver’s responsiveness to different stimuli. Another example is the
General Motors (GM) Model, which follows a similar concept where the acceleration
is a function of the relative speed and distance between vehicles [70]. The GM model
provides a simple linear form that relates driver reaction to changes in traffic conditions,
making it a foundational model in early traffic flow theory [33,69,71,72].

Safety distance models are centered on the concept of maintaining a safe distance
between vehicles to prevent collisions. These models prioritize safety by ensuring that
the following vehicle maintains a sufficient distance to allow for safe braking in response
to the actions of the leading vehicle. The key idea is to maintain a buffer zone that
accommodates sudden deceleration or stops by the leading vehicle, thereby reducing
the risk of rear-end collisions. Safety distance models take into account various factors,
such as relative speed, reaction time, and braking capabilities, and often include safety
margins to compensate for human reaction times and braking delays. Examples of
safety distance models include the Gipps Model [50], which calculates a safe distance
based on the maximum acceleration, desired speed, and a safety margin that accounts
for reaction time and deceleration capabilities of both vehicles. This model provides a
realistic representation of safe CF behavior by incorporating the psychological comfort of
drivers in maintaining a safe distance. Another example is the Krauss Model [73], which
is designed for microscopic traffic simulation and uses a safety distance formula that
considers both the speed of the following vehicle and the relative speed difference. The
Krauss model is widely used in traffic simulators due to its simplicity and computational
efficiency, allowing for practical application in various traffic analysis scenarios.

Desired measure models are based on the notion that drivers have specific preferences
or ”desired” values for certain traffic parameters, such as speed, headway (time gap), or
acceleration. These models aim to adjust the behavior of the following vehicle to achieve
or maintain these desired measures. The focus is on aligning the vehicle’s acceleration or
deceleration with the driver’s preferred speed or desired time gap, reflecting individual

8



2.1 Mathematical CF Models

driving styles and preferences. Desired measure models emphasize the idea that each
driver has unique behavioral tendencies that influence their driving decisions, such as
maintaining a certain speed or following distance. Desired measure models include the
Helly Model [74], which integrates desired speed and desired time gap into the CF be-
havior. The Helly model adjusts the acceleration of the following vehicle based on the
difference between the current and desired headway, as well as the difference between the
current speed and the desired speed. Another example is the Intelligent Driver Model
(IDM), which considers a driver’s desired speed and a dynamically adjusted spacing
that reflects traffic density [51]. The IDM model calculates the acceleration based on
the difference between the current and desired speed, incorporating driver preferences
and traffic conditions to simulate realistic CF behavior. Additionally, Adaptive Cruise
Control (ACC) and Cooperative Adaptive Cruise Control (CACC) are advanced im-
plementations of desired measure models, where ACC model estimates the speed of an
ACC-equipped vehicle in next time steps focusing on maintaining a desired headway us-
ing onboard sensors, and CACC extends this by incorporating V2V communication for
cooperative vehicle behavior, enabling smoother traffic flow and greater synchronization
among vehicles.

Optimal velocity models are based on the principle that each driver has an ”optimal”
velocity depending on the distance to the vehicle ahead. These models assume that
drivers adjust their acceleration to reach this optimal velocity, which varies according to
the spacing to the preceding vehicle. The key idea is that the optimal velocity reflects
the safest and most efficient speed a driver should maintain based on the current traffic
conditions. Optimal velocity models are particularly useful for studying traffic flow
instabilities, such as the formation of traffic jams and stop-and-go waves, as they provide
insights into how drivers’ speed adjustments can lead to different traffic flow phenomena.
Optimal velocity models include the Bando Model [52], which posits that drivers adjust
their speed to achieve an optimal velocity that depends on the distance to the leading
vehicle. This model uses a nonlinear function to represent the optimal velocity, which
changes with the headway, allowing the study of traffic phenomena like stop-and-go waves
and shockwaves. Another example is Newell’s CF Model [75], a simplified version of the
optimal velocity concept, where drivers are assumed to maintain a constant headway and
adjust their speed to follow the leader while maintaining this spacing. Newell’s model is
simple yet effective in capturing essential traffic behaviors, such as smooth acceleration
and deceleration.

2.1.2 Psycho-physical Models

On the other hand, psycho-physical models incorporate psychological and perceptual
thresholds to describe driver behavior [53, 76]. These models consider how drivers per-
ceive their environment and react based on psychological factors such as comfort, stress,
and safety. Psycho-physical models often involve multiple regimes of behavior, depend-
ing on the distance and speed differences between vehicles. The idea is to capture
the variability in human behavior by considering different thresholds for driver reac-
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2 Theoretical Background

tions, such as reaction time and perception limits. Psycho-physical models reflect a
more nuanced approach to CF behavior by considering how different psychological and
perceptual processes influence driving decisions. Wiedemann Model is a well known
example of psycho-physical models, which is widely used model in microscopic traffic
simulation [53]. The Wiedemann model divides CF behavior into several regimes, such
as free driving, approaching, following, and emergency braking. It incorporates driver
perception thresholds and stochastic elements to reflect the variability in driver response,
making it suitable for simulating real-world traffic conditions.

2.2 Data-driven Models

Data-driven models leverage the availability of open-access trajectory data and the suc-
cess of machine learning-based techniques to capture the complex, often non-linear in-
teractions between vehicles. Unlike traditional mathematical models that are based on
predefined equations and physical laws, data-driven models use machine learning meth-
ods, such as neural networks, support vector machines, reinforcement learning or deep
learning, to learn from large datasets of real-world driving behavior. These models could
be categorized into two main types: CF-based models and trajectory-based models.

2.2.1 CF-based Models

CF-based models focus on capturing the behavior of a vehicle when following a leading
vehicle. These models rely on data that describes the interactions between a lead vehicle
and a following vehicle, including how the following vehicle adjusts its speed, acceler-
ation, and braking in response to the actions of the leading vehicle. Machine learning
techniques are employed to learn these behaviors from large datasets (i.e., HighD [77],
NGSIM [78], pNEUMA [79], Waymo [80], and nuScenes [81]), enabling the model to pre-
dict how drivers would react in various traffic scenarios. Studies relevant to data-driven
CF models can be categorized into five main types: nonparametric models, artificial neu-
ral networks (ANNs), reinforcement learning (RL), deep reinforcement learning (DRL),
and combined mathematical and data-driven models. Each of these approaches offers
unique strengths in modeling and predicting complex driver behaviors and vehicle inter-
actions in a traffic scene.

Nonparametric models are capable of fitting a large number of functional forms with
no or weak assumptions. These models, such as k-nearest neighbors (KNN) and locally
weighted regression, do not assume a fixed form for the relationship between variables.
They rely on the data itself to determine the model’s structure, making them flexible and
adaptable to complex, nonlinear relationships. In CF models, nonparametric methods
can effectively capture diverse driving behaviors by focusing on local patterns rather
than global trends [54–56,82].

ANNs on the other hand are a class of machine learning models inspired by the hu-
man brain’s architecture, consisting of interconnected layers of nodes or neurons [83]. In
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2.2 Data-driven Models

CF models, ANNs can learn to predict vehicle behavior such as acceleration or braking
based on various inputs like current speed, distance to the leading vehicle, and road con-
ditions [84,85]. Feedforward Neural Networks (FNNs) might be used for straightforward
predictions, while Recurrent Neural Networks (RNNs) are suitable for modeling tem-
poral dynamics by remembering past behaviors and predicting future states [61,86–88].
ANNs are powerful in capturing complex, non-linear relationships and can adapt to
diverse driving conditions. However, they require careful tuning and may lack inter-
pretability, making it challenging to understand the basis of their predictions.

Furthermore, RL is a method where an agent learns to make decisions by receiv-
ing rewards or penalties based on its actions. In CF scenarios, RL algorithms such as
Q-learning train the agent to optimize driving strategies, like how to adjust speed or
maintain safe distances, to maximize overall rewards [89, 90]. The agent learns from
interactions with the environment and refines its policy based on feedback. Policy gra-
dients, another RL approach, optimize the strategy directly to improve performance.
While RL can adapt to various driving situations and continuously learn from expe-
rience, it often requires extensive training and computational resources, and designing
effective reward functions can be challenging.

DRL combines deep learning with RL, utilizing deep neural networks to handle com-
plex, high-dimensional input data. This approach is particularly useful in CF models
where inputs may include raw sensor data or images from cameras. For example, Deep
Q-Networks (DQN) use deep neural networks to approximate the Q-function, enabling
the model to learn effective driving policies even in complex environments. Addition-
ally, Actor-Critic methods, integrate both value-based and policy-based approaches for
improved efficiency. DRL can manage intricate and high-dimensional data, but it re-
quires significant computational power and careful tuning of network architectures and
hyperparameters to achieve stable and effective learning [62,63].

Finally, combined mathematical and data-driven models integrate traditional mathe-
matical approaches with empirical data-driven techniques to create a more robust and
interpretable model. In CF scenarios, these models might start with a mathematical
framework based on CF theories or physical laws and then use data-driven methods to
refine or adapt these models based on real-world observations [91–93]. This approach
leverages the strengths of both theoretical and empirical methods, potentially leading to
more accurate and generalizable models. However, it requires expertise in both domains
to effectively develop and balance the mathematical and data-driven components.

2.2.2 Trajectory-based Models

Trajectory-based models analyze the complete path or trajectory of a vehicle over time,
taking into account not just the interactions with a leading vehicle but also lateral
movements, lane changes, and interactions with multiple vehicles. These models utilize
detailed trajectory data to learn complex driving patterns and maneuvers, often incor-
porating spatial and temporal dependencies. They are widely used in the development
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of autonomous driving systems, where understanding the full vehicle trajectory is crit-
ical for navigating complex environments, executing safe lane changes, and merging in
traffic. These methods often employ techniques such as RNN [94], Convolutional Neu-
ral Network (CNN) [95, 96], Long Short-Term Memory (LSTM) [64, 97–100] methods,
Transformer models [101–103], and graph-based deep learning methods [66,104,105], to
capture the complex dependencies in vehicle’s trajectory in a wide driving scenarios.

RNNs are particularly suited for sequential data and time-series predictions due to
their ability to maintain temporal context. In trajectory-based models, RNNs can learn
patterns and dependencies in vehicle trajectories over time. They are capable of process-
ing sequences of data, making them useful for predicting future positions based on past
movements. However, RNNs can struggle with long-term dependencies due to issues
like vanishing gradients. In contrast, LSTM networks which are a special type of RNN
designed to address the limitations of standard RNNs. LSTMs have mechanisms like
gates to control the flow of information and maintain long-term dependencies, which is
crucial for accurately predicting vehicle trajectories over extended periods. They are
effective in capturing complex temporal relationships and handling longer sequences of
data, making them suitable for modeling vehicle movements in diverse driving scenarios.

CNNs which are traditionally used for image and spatial data, have been adapted for
trajectory-based models, especially when dealing with spatial-temporal data. CNNs can
extract features from data representations like trajectory maps or grids, capturing spatial
patterns that might be important for understanding vehicle movement. For example,
CNNs can process data from traffic cameras or maps to infer patterns and predict vehicle
trajectories.

Transformer models, known for their effectiveness in natural language processing, have
also been applied to trajectory prediction [106]. Transformers use self-attention mech-
anisms to weigh the importance of different parts of the input data, allowing them to
capture complex dependencies across time and space. In the context of vehicle trajecto-
ries, transformers can model intricate patterns and relationships in the trajectory data,
providing robust predictions across varied driving scenarios.

Meanwhile, Graph-based deep learning methods are used to model data that is struc-
tured as graphs, where nodes represent entities (e.g., vehicles) and edges represent re-
lationships between them. In trajectory-based models, these methods can represent the
dynamic interactions between multiple vehicles and their surroundings. Graph Convolu-
tional Networks (GCNs), for instance, can capture the dependencies and interactions in
traffic networks, making them useful for understanding and predicting complex vehicle
movements in scenarios involving multiple agents and interactions [107]. GCNs can well
mimic the spatial dependencies among vehicles in traffic scenes; however, to capture
the temporal dependencies and predict the future trajectories, temporal extractors such
as Gated Recurrent Unit (GRU), LSTM, or Temporal Convolution Network (TCN) are
combined with the GCN model, which is called the Spatio-temporal GCN (STGCN)
model.

12



2.3 Summary

2.3 Summary

Mathematical models are foundational tools in vehicle simulation, characterized by their
simplicity and computational efficiency. These models are built upon deterministic or
stochastic equations to represent CF behavior based on predefined physical laws and re-
lationships between parameters like speed, distance, and acceleration. While traditional
mathematical models are well-established and commonly used in impact assessment stud-
ies, they often lack the flexibility to accurately capture the complex, real-world dynamics
of driving behavior, especially for AVs where no specific models are yet established. Re-
searchers frequently adapt conventional mathematical models to approximate AV CF
behavior by assuming the values of their parameters. However, this approach may not
fully account for all driving intricacies.

In contrast, data-driven models leverage machine learning techniques to learn from
extensive real-world driving data, offering a more nuanced and flexible alternative for
modeling CF behavior. These models excel at capturing complex, non-linear interactions
and adapting to various driving conditions. However, their application is constrained
by the limited availability of trajectory data for AVs, which is often restricted to spe-
cific locations and does not cover the full spectrum of potential driving scenarios. This
limitation hinders the ability to develop comprehensive data-driven models and remains
an open area of research. Additionally, data-driven models face challenges in integra-
tion with existing simulation tools and are less prevalent in impact assessment studies.
Their reliance on large datasets and advanced computational resources makes them less
accessible for certain applications but provides a more detailed and accurate representa-
tion of driving dynamics. Figure 2.1 illustrates the categorization of mathematical and
data-driven car-following (CF) models, providing an overview of their respective types
and methodologies.
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Figure 2.1: Classification of Mathematical and Data-driven CF models.
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3 Methodology

The methodology of this dissertation is designed to address the main goal and sub-
objectives of this research. A comprehensive simulation-based impact assessment of
AVs deployment scenarios in an urban network requires the exploration of two primary
aspects, namely: (i) the modeling of their driving behavior and (ii) development of a
simulation platform to systematically simulate and assess their impacts on urban net-
works under varying PRs and traffic conditions. This research is structured to provide a
comprehensive analysis through detailed simulations and scenario evaluations. However,
both developing a model and simulation platform requires understanding the current
state-of-the-art on different modelling techniques, identification of the KPIs and the po-
tential impacts on efficiency and safety reported by other researchers. Thus, in line with
the goals of this dissertation, we develop four main research questions. The methodolog-
ical approach of this dissertation employs a research design to address these research
questions.

3.1 Research Questions

The research questions outlined in this dissertation are crucial for advancing our un-
derstanding of AVs modelling, simulation, impact assessment, and integration within
urban traffic systems. They aim to address the complex challenges associated with AV
deployment and provide a foundation for developing effective modeling and simulation
strategies. The specific research questions are as follows:

3.1.1 RQ1: Current Trends and Challenges in Autonomous Vehicle
Modeling & Impact Assessment

What is the current state-of-the-art on modelling techniques and reported impacts of
AVs?

Understanding the current state of AV modeling is essential for identifying effective
techniques and methodologies that can improve traffic systems. This research ques-
tion addresses the need to synthesize existing literature to reveal gaps and challenges,
facilitating informed decisions in model development and integration strategies for AVs.

3.1.2 RQ2: Simulating Autonomous Vehicles Behavior with a Mathematical
Model

How can a mathematical car-following model replicate the potential driving behavior of
AVs in an urban traffic network?
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Developing accurate mathematical models to replicate AV driving behavior is crucial
for predicting their interactions within urban traffic networks. This research question
highlights the necessity of creating robust models that can effectively simulate AV dy-
namics, ultimately to inform traffic management systems and enhance overall road safety.

3.1.3 RQ3: Deep Learning Approach for Predicting Autonomous Vehicles
Motion

In what ways can a data-driven model leveraging deep learning techniques effectively
capture the potential motion of an AV across various driving conditions?

As AVs rely on complex decision-making processes influenced by various environmental
factors, leveraging deep learning techniques is vital for capturing this complexity. This
research question addresses the need for advanced predictive models that can adapt to
diverse driving conditions, thereby improving the reliability and safety of AV navigation.

3.1.4 RQ4: Impacts of Autonomous Vehicles Deployment Scenarios on
Urban Traffic

What are the potential impacts of AV deployment scenarios on overall traffic efficiency,
congestion, and traffic safety in urban networks?

Assessing the impacts of AV deployment scenarios is essential for understanding their
potential effects on traffic efficiency, congestion, and safety. This research question
underscores the importance of scenario-based simulations to provide policymakers and
stakeholders with insights on how AV integration can reshape urban transportation
systems, guiding future infrastructure investments and regulations.

3.2 Research Design and Methodology

The research design and methodology of this dissertation follows a three-phase approach
as illustrated in Figure 3.1. First, we conduct a comprehensive literature review on
modelling the longitudinal driving behavior of AVs to identify the research gaps both in
mathematical and data-driven models. Additionally, we explore the potential impacts of
AVs reported by other researchers including the used KPIs for impact assessment. The
second phase includes the development of modelling methods for replicating the driving
behavior of AVs. The findings of phase II are utilized in phase III to develop the impact
assessment simulation platform for AVs and conduct network-wide evaluation of the AVs
deployment scenarios. The description of each step is described as follows:

3.2.1 A Comprehensive Review of the Current State-of-the-art on
Modelling and Simulation of Longitudinal Driving Behavior of AVs

Developing an accurate CF model to replicate the driving behavior of AVs and to con-
duct a network-wide impact assessment, a thorough understanding the state-of-the-art
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Goal

Development of modelling methods to replicate the driving behavior
of autonomous vehicles and to conduct a network-wide impact as-
sessment of their deployment scenarios using a simulation platform.

Phase I
A Comprehensive Review of the Current State-of-the-art on Mod-
elling and Simulation of Longitudinal Driving Behavior of AVs.

RQ1

Phase II
Development of an Op-
timization Framework.

Development of a Tra-
jectory Prediction Model.

RQ2 RQ3

Phase III
Conducting a Network-wide Impact Assessment

of AVs Deployment Scenarios.

RQ4

Figure 3.1: Overview of the Research Design: Main Goal, Key Phases, and Alignment with the
Research Questions.

on AVs modelling and simulation is an essential step. This phase involves a compre-
hensive meta-analysis focusing on three critical aspects of AV-related studies. First, we
investigate various mathematical modeling techniques used to capture AV CF behavior
and explore how researchers differentiate the driving characteristics of AVs from human-
driven vehicles within microsimulation environments. Second, we evaluate the potential
of data-driven methods in modeling AV driving behavior by analyzing state-of-the-art
techniques and identifying key research gaps, such as scalability, interpretability and
adaptability to diverse driving scenarios. Third, to prepare a robust simulation platform
for AV deployment scenarios, we examine recent studies on impact assessment criteria,
including the definition of study scopes, impact areas, and KPIs. This analysis not only
identifies limitations in existing approaches but also helps in addressing research gaps
to enhance the impact assessment platform. The findings of this phase culminate in a
review article, as detailed in Section 4 of this dissertation.
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3.2.2 Development of an Optimization Framework to Replicate the
Car-following Behavior of AVs

The second phase of this research focuses on developing an optimization framework in-
tegrated into a simulation platform to extract the optimized driving behavior of AVs.
AVs are expected to exhibit an optimized driving behavior throughout their trips. How-
ever, this optimized behavior is defined based on a certain policy target (e.g. reaching
efficiently to destination, or safe or both). The proposed optimization framework aims
to determine the parameter values of a widely used mathematical CF model (e.g. IDM,
Krauss, ACC) to generate optimal driving behavior. Given the unavailability of mass-
field data for AVs and the limitations of existing trajectory data confined to specific
locations and driving conditions, it is not possible to calibrate (behavioral) the parame-
ters of a CF model to mimic AVs. As a result, the generated optimized parameters could
be potentially used as representative of their driving behavior in an impact assessment
study.

Methodologically, the framework integrates an optimization module with a simulation
platform to iteratively search for the optimal solutions that minimizes specific policy
targets within the simulation environment. To achieve this, we utilize Differential Evo-
lution (DE), a stochastic, population-based, and gradient-free optimization technique
well-suited for global optimization problems. DE is particularly advantageous for this
application due to its robustness in handling complex, multi-dimensional search spaces
and its efficiency in converging to optimal solutions.

The policy targets for optimization may include minimizing the average network travel
time, reducing the total number of conflicts in the network, or achieving a weighted
combination of both KPIs. Within the optimization module, scenario variables such as
PRs, demand levels, and the boundary and initial values of decision variables (parameters
of CF models) are predefined. The primary objective of the framework is to identify
parameter values that minimize the objective function, which reflects the selected policy
targets.

The objective function is formulated to account for diverse combinations of KPIs by
assigning varying weights to each, expressed as follows:

w · T + (1− w) · C,

where 0 ≤ w ≤ 1 represents the weight of the KPI, T is the normalized mean network
travel time, and C denotes the normalized total number of conflicts. This flexible for-
mulation allows for prioritizing different policy objectives by adjusting the weight w to
reflect specific priorities, such as emphasizing safety or efficiency. The overall method-
ology of this task is illustrated in Figure 3.2, providing a visual representation of the
framework’s structure and workflow. A detailed description of the framework, including
its implementation and performance, is further elaborated in Section 5.
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Figure 3.2: The methodological framework in this research. (Source: [68])

3.2.3 Development of a Trajectory Prediction Model

In phase II, we also develop a graph-based deep learning model to predict the trajec-
tory of AVs in mixed traffic scenarios. Data-driven models are particularly effective at
capturing the complexities of driving behaviors and often outperform traditional math-
ematical models. The proposed model utilizes a graph structure to represent the traffic
scene and the interactions among vehicles. The interaction among vehicles vary in each
traffic scene, depending on the motion features of each vehicle. As illustrated in Figure
3.3, the relationship between the target vehicle (the black-colored vehicle) and nearby
vehicles, in terms of their strategic positions and distances, changes over time. The
strategic position identifies the true influence of surrounding vehicles on the target ve-
hicle based on their driving positions (e.g., leading, following, right-lane, left-lane, etc.).
This dynamic interaction renders the trajectory prediction problem inherently variable
across both temporal and spatial dimensions.

To formalize the trajectory prediction problem, we consider a traffic scene with N
observed vehicles over tobs discrete time steps. The state of a single vehicle i, where
i ∈ {1, . . . , N}, at a specific time step t, where t ∈ {1, . . . , tobs}, is characterized by a set
of attributes denoted as:

Xt
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yi), . . .

]
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where (xti, y
t
i) are the vehicle’s spatial coordinates, (v

t
xi, v

t
yi) are its velocity components,

and (atxi, a
t
yi) are its acceleration components, with additional attributes as needed to

capture the driving state comprehensively.

Given the observed attributes of vehicle i over the observation horizon tobs, represented
as:
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Figure 3.3: The illustration of the interaction among vehicles over time; both the strategic
position and distance of vehicles in respect to the target vehicle changes over time.

X1:tobs
i = [X1

i , X
2
i , . . . , X

tobs
i ],

the objective is to predict the future attributes of all vehicles in the scene. The predicted
attributes for vehicle i over the prediction horizon tpred are denoted as:

Y t
i = [Y

tobs+1

i , Y
tobs+2

i , . . . , Y
tpred
i ],

where t ∈ {tobs+1, . . . , tpred}.

The model maps the observed states X1:tobs
i to the predicted future states Y t

i by
considering both the dynamics of individual vehicles and their interactions within the
traffic scene, represented through a graph structure.

Considering a traffic scene as a graph structure G = (V,E), where vehicles represent
the nodes V of the graph and the interactions among vehicles are the edges E. The con-
struction of the interaction matrix is a core aspect of this research, where distance-based
interactions are combined with strategic-based interactions among vehicles to generate
the adjacency matrix. For a connection between node i and node j at time t, the
adjacency matrix is defined as:

At
ij =

{
d(pti, p

t
j) + cos(θtij), if edge etij = 1,

0, otherwise,
(3.1)

where:

d(pti, p
t
j) =

1√
(ptix − ptjx)

2 + (ptiy − ptjy)
2

and

θtij = arctan

(
ptiy − ptjy
ptix − ptjx

)
.

here, pti = (ptix, p
t
iy) and ptj = (ptjx, p

t
jy) represent the position of node i and j at time

t respectively, and etij indicates whether there is an edge (interaction) between nodes i
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and j at time t. The adjacency matrix At
ij effectively captures both spatial proximity

and directional alignment of the interactions between vehicles.

This graph-based representation enables the model to incorporate both individual
vehicle dynamics and relational information, facilitating more accurate trajectory pre-
dictions in complex mixed traffic scenarios. The outcome of this task is a peer-reviewed
journal paper. A detailed description of this research paper is presented in Section 6.

3.2.4 Conducting a Network-wide Impact Assessment on Traffic Efficiency
and Safety

In the phase III of this dissertation, we focus on integrating the optimized CF behavior of
AVs into a simulation platform to systematically evaluate the impacts of AVs deployment
scenarios in urban networks. The platform comprises three main modules, namely:
(i) a scenario generation module, (ii) a simulation module, and (iii) output module.
The scenario generation module takes a specific PR of AVs together with the related
optimized CF behaviors (generated in Section 5) and demand scale and sends it into
the SUMO-based simulation environment module. Within the simulation environment,
several simulation runs are conducted and the outputted data are sent into the output
module. The output module processes, analyzes, and visualizes the data.

To prepare the base model for impact assessment scenarios, behavioral calibration
based on real-field travel time data is conducted using the Particle Swarm Optimiza-
tion (PSO) algorithm. Inspired by the collective behavior of bird flocks, PSO efficiently
explores the solution space to optimize parameters such as desired time headway, accel-
eration, and deceleration limits for the CF model of human-driven vehicles.

Each particle in the algorithm represents a candidate set of parameters, iteratively
updated based on its personal best-known position (pbest) and the global best-known
position (gbest). The objective is to minimize the root mean square normalized error
(RMSN) between simulated and observed travel times. The diagram 3.4 illustrates
the integration of PSO with the SUMO traffic simulator, where PSO iteratively refines
parameters, simulates traffic flow, and evaluates the objective function. This calibration
process ensures a realistic replication of traffic behavior, creating a robust base model
for analyzing mixed traffic scenarios with varying AV PRs.

Furthermore, in this research, we select traffic efficiency and safety as evaluation areas
to estimate the impacts of AVs deployment scenarios on transport network performance.
To evaluate traffic efficiency, KPIs such as travel time, density, and average speed are
analyzed across various AV PRs. The study utilizes Generalized Estimating Equations
(GEE), a statistical method well-suited for clustered or longitudinal data, to model the
relationship between traffic characteristics and AV deployment scenarios. For instance,
edge-level travel times are treated as repeated measures within each road segment cluster,
capturing temporal and spatial dependencies. Meanwhile, for safety evaluation, the
study uses the total number of conflicts in the network as a KPI, with conflicts identified
using the Time-to-Collision (TTC) metric. Each vehicle is equipped with a surrogate
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Figure 3.4: Illustration of PSO calibration method

safety measure (SSM) device to log conflicts, which are analyzed to estimate unsafe
interactions. To further investigate the relationships between traffic characteristics, PRs,
and conflict counts, a zero-truncated Poisson (ZTP) regression model is employed. This
statistical approach is particularly suited for count data without zero values, enabling
a detailed understanding of how increasing AV PRs, alongside other factors, influences
network safety. The outcome of this task is also published in a scientific journal, with
details provided in Section 7.
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Sadid, H., Antoniou, C.: Modelling and simulation of (connected) autonomous vehicles longi-

tudinal driving behavior: A state-of-the-art. IET Intell. Transp. Syst. 17, 1051–1071 (2023).

https://doi.org/10.1049/itr2.12337

4.1 Summary

In this research, we present a comprehensive review on different CF models including
their adopted parameters for mimicking the driving behavior of AVs and CAVs. Addi-
tionally, we reviewed the recent research on data-driven CF models. We also report the
findings of several simulation-based impact assessment studies on potential impacts of
AVs, together with the employed KPIs and assessment areas.

In the context of AVs behavioral modelling, there is not an established CF model
to replicate the longitudinal driving behavior of AVs. Most researchers utilize the ex-
isting mathematical CF models and modify their parameters to investigate the driving
behavior of AVs. However, the values of the parameters of these models are based on
assumptions made by the authors. In most studies, IDM, MIXIC (MICroscopic Model
for Simulation of Intelligent Cruise Control) and their modified versions are frequently
used for modelling of AVs. The Wiedemann 99 and Krauss models are also used for
AVs impact assessments. Depending on the different CF model, researchers differentiate
the driving behavior of AVs from human-driven vehicles for time gap, reaction time,
headway, and driving imperfection factor. Among these parameters, time gap is the
most sensitive and crucial parameter which distinguishes AVs from human-driven vehi-
cles. Although, many studies make similar assumptions for potential driving behavior
of AVs, still there is still no concrete practical basis for the exact values of the assumed
parameters. Thus, AVs might behave differently than what are expected.

Additionally, data-driven models could accurately replicate the CF behavior of AVs.
There are various methods proposed in the literature. We found that the recent deep-
learning based models such as DDPG, RNN, GRU, LSTM, DDPG equipped with a
LSTM, and GAIL with GRU outperform mathematical CF models, nonparametric mod-
els, and conventional neural network-based models and could be potentially used for
modelling CF behavior of AVs. However, most of these proposed models are not inte-
grated into a simulation tool and hence they are not used in impact assessment studies.
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Meanwhile, used KPIs for impact assessment in MTMs differ depending on the as-
sessment criteria and study area (i.e. intersection, link, freeway, city network). First,
in mobility analysis, we noticed that most studies select flow, density, string stability,
lane capacity and throughput when conducting capacity and flow analysis in freeways,
highways and ring roads. Travel time and speed are frequently selected for traffic effi-
ciency analysis both on link level and city-wide. Second, for safety analysis, the number
of conflicts is the most commonly used KPI in all type of study areas, where, in free-
way analysis, some studies also used TTC, TET and TIT. Finally, the studies related to
emission analysis depict that CO2 and NOX emissions per kilometers (g/km) are widely
used KPIs for impact assessment.

4.2 Research Directions

Based on the findings of this review article, we identified the importance of developing
a CF model to replicate the driving behavior of AVs. Since there is no established CF
model for AVs, their driving behavior is often based on assumed parameters. Thus, a
potential work would be to develop a framework to find reasonable parameters’ values
rather than relying on weak assumptions. Second, deep learning models could present
promising opportunities to enhance our understanding of AVs driving behavior. The
development of a model that utilizes deep learning to replicate AVs driving actions could
provide valuable insight into how these vehicles respond to dynamic traffic environments.

In the following chapters, we introduce our proposed approaches: first, a mathemat-
ical CF model aimed at simulating AV driving behavior, and second, a deep learning-
based model designed for AVs trajectory prediction. These contributions are intended
to address the gaps identified in the existing literature and offer potential pathways for
improving the modeling and prediction of AV behavior.
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H. Sadid and C. Antoniou, ”Policy-aware Optimization-based Modeling of Autonomous Vehicles’

Longitudinal Driving Behavior”. Submitted to: IEEE Open Journal of Intelligent Transportation

Systems

5.1 Introduction and Research Objectives

The driving behavior of AVs differs significantly from that of human-driven vehicles,
and this disparity is captured in MTMs through their CF and LC configurations. A
CF model outlines the sequence of decisions a driver makes to follow a leading vehi-
cle efficiently and safely. Depending on the model, researchers differentiate AV driving
behavior from human-driven vehicles based on factors such as time gap, reaction time,
headway, and driving imperfection [68]. However, since mass-field data for AVs are lim-
ited, accurately quantifying AV behavior and calibrating CF parameters is challenging,
leading researchers to rely on assumptions about AV driving behavior. This practice
results in inconsistent conclusions about AVs’ potential effects. Unlike human-driven
vehicles, where their behavior is inherently stochastic and uncontrollable, AVs are con-
trollable agents, and their behavior can be optimized. AVs could be trained to drive in
most efficient manner possible, such as traveling safely from point A to point B while
optimizing travel time. This training can be conducted in a simulated environment,
where we regulate AVs to generate optimal trajectories for their trips. The resulting
CF driving behavior could approximate the desired optimal behavior of AVs and can be
used in simulation-based impact studies. Hence, in this research, we develop a frame-
work to identify a set of optimized driving parameters for AVs, with the goal of achieving
specific optimization objectives via a carefully defined simulation-based objective func-
tion. These objectives could target improvements in traffic efficiency (e.g., reduced travel
time), enhanced safety (e.g., fewer number of conflicts), and more.

5.2 Methodology

We introduce an optimization framework designed to identify the optimal driving be-
havior parameters for AVs to meet predefined policy targets. The framework consists
of two key components: an optimization module and a simulation environment. In the
optimization module, predefined scenario variables and initial parameters of the AVs’
CF model are provided as inputs for optimization. The module evaluates the objective
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function using potential solution sets, along with the scenario settings, into the simula-
tion environment. The simulation environment then performs multiple runs under these
conditions, evaluating the performance of the AVs with respect to the policy targets.
The output from the simulation runs is a set of policy targets, which are normalized and
fed back into the objective function in the optimization module. The module iteratively
tests different combinations of AVs’ CF model parameters by sending them back into the
simulation environment, updating the policy target values after each run. This process
continues until convergence is reached, meaning no further improvements can be made
to the policy targets.

5.3 Experiment and Results

In this research, we employ a SUMO-based simulation platform to systematically sim-
ulate and analyze mixed traffic with varying levels of AVs deployment scenarios. The
platform is built on three main components: (i) Scenario execution, (ii) SUMO envi-
ronment, and (iii) Output module. For each scenario, inputs such as demand scale,
AV PRs, and origin-destination (OD) matrices are fed into the scenario execution tool,
which assigns trips across the network and runs the SUMO microscopic model. The
CF behaviors of both AVs and human-driven vehicles are provided to guide the interac-
tions between vehicles in the network. Given the inherent stochasticity of microscopic
simulations, results are aggregated over multiple simulation runs to account for variabil-
ity and ensure reliability. We integrate the optimization framework into the simulation
platform to extract the optimized driving behavior. The study focuses on the traffic
network of Maxvorstadt, a central district in Munich, during morning peak-hour traffic.
A trip-based stochastic user route choice assignment is used for allocating OD pairs in
this urban network (see Figure 5.1).

Munich city center

Figure 5.1: Road network of Maxvorstadt district in Munich city center. (Source: [68])
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5.4 Discussion and Conclusion

The convergence analysis demonstrates that optimizing the total number of conflicts as
a policy target initially leads to substantial fluctuations in the objective function before
achieving the optimal solution. This indicates that optimizing the CF parameters can
significantly enhance network safety. However, the speed of convergence and the degree of
fluctuation depend on the specific CF model. For instance, the IDM and Krauss models
are highly sensitive to the number of conflicts in the network, causing more dramatic
changes, whereas the ACC model shows more stability and less fluctuation. Furthermore,
fluctuations in the objective function are more pronounced at higher AV PRs, likely due
to the larger search space or greater impact of optimization on the KPIs. When the
mean network travel time is chosen as the policy target, the variations in the objective
function are smoother. However, optimizing for travel time leads to a significant increase
in the number of conflicts, particularly in the IDM and Krauss models, whereas the ACC
model sees only minimal changes. Interestingly, when conflicts are targeted as the policy,
travel time does not worsen across all CF models as the optimization converges.

The optimized values of the objective function show that choosing the total num-
ber of conflicts as the policy target significantly reduces conflicts as AV PRs increase.
Conversely, selecting average network travel time as the policy target does not lead to
substantial improvements compared to a fully human-driven vehicle scenario. Addition-
ally, the analysis of parameter values reveals that using conflicts as the policy target
generates generalized CF parameters that are applicable across different demand scales
and PRs for all CF models.

The sensitivity analysis further indicates that the minimum gap (mingap) and time
headway (tau) are the most sensitive parameters affecting the total number of conflicts
in the IDM and Krauss models. Other parameters have a less significant influence on
the policy targets.

5.4 Discussion and Conclusion

The proposed optimization framework identifies the optimal set of CF model parameters
for AVs, which can be utilized in impact assessment studies instead of relying on assumed
values. However, one limitation of this study is that the framework was tested in a single
study area. To generalize the findings, future research will need to apply the framework
in different locations with varying demand patterns to extract optimized CF parameters
accordingly. Additionally, this research employed the Wiedemann model to simulate
human-driven vehicles, but it would be beneficial to model both human-driven vehicles
and AVs using the same CF model and then optimize the AV parameters. This approach
would provide a more accurate assessment of the effects of varying AV PRs on the
network. Future work could involve a comprehensive network-level impact assessment of
AV PRs using the optimized CF parameters identified in this study. Moreover, this study
focused on extracting CF parameters for AVs where the following vehicle communicates
only with the leading vehicle via sensors. A future study could apply the methodological
framework to generate optimal CF parameters for CAVs, possibly using a modified IDM
model that accounts for interactions with multiple surrounding vehicles, as proposed
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in [46]. Finally, expanding the optimization framework to generate optimal driving
parameters that consider both CF and LC models is also an essential research work. This
will provide a more holistic view of AV driving behavior optimization across different
traffic scenarios.
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H. Sadid and C. Antoniou, ”Dynamic Spatio-temporal Graph Neural Network for Surrounding-

aware Trajectory Prediction of Autonomous Vehicles,” in IEEE Transactions on Intelligent Ve-

hicles, doi: 10.1109/TIV.2024.3406507

6.1 Introduction and Research Objective

Trajectory prediction is a crucial component of AVs to navigate safely and efficiently in
complex traffic environments [108–110]. An AV should predict the motion and trajectory
of surrounding road users to make informed and safe decisions regarding its own future
driving actions. A key challenge in trajectory prediction is accurately modeling the in-
teractions between vehicles, which are inherently dynamic and non-linear. Traditional
approaches often struggle to accurately represent these interactions effectively, especially
in non-Euclidean spaces where vehicle relationships do not follow simple grid patterns.
To address this, the current research focuses on enhancing trajectory prediction accu-
racy by developing a dynamic STGCN that operates on directed graphs, capturing the
nuanced spatial and temporal dependencies among vehicles.

In this research, we introduce a novel approach for the construction of a weighted
adjacency matrix that serves as the foundation for the STGCN. Unlike conventional
methods that rely solely on distance-based metrics, this research presents a novel ap-
proach that combines angular encoding with reciprocal distance to better represent the
strategic positioning of vehicles—whether leading, following, or adjacent—relative to a
target vehicle. This weighted adjacency matrix is crucial for accurately capturing the
directional influences that vehicles exert on each other in a traffic scene. The STGCN
leverages this matrix to perform graph convolution operations on directed graphs, al-
lowing it to dynamically adjust to changes in vehicle positions and interactions over
time. The research aims to significantly improve prediction accuracy, demonstrate the
model’s robustness across different datasets, and ultimately contribute to the safety and
reliability of autonomous driving technologies.

6.2 Problem Formulation and Methodology

In the context of autonomous driving, the problem of trajectory prediction is defined
as the task of predicting the future motion of all vehicles surrounding a target AV in
order to enable the AV to make decisions regarding its future actions. This is essential in
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dynamic traffic scenarios where vehicle positions, speeds, and interactions are changing.
The proposed methodology of this research involves combining a STGCN with a TCN
to capture both the spatial dependencies among vehicles and the temporal evolution of
these dependencies over time.

The first step in the methodology is to represent the traffic scene as a dynamic spatio-
temporal graph. In this graph, vehicles are represented as nodes, and the interactions
between them are represented as directed edges. To model these interactions more
accurately, a novel weighted adjacency matrix is constructed. The adjacency matrix
incorporates two important factors:

� Reciprocal Distance: This captures the influence of proximity between vehicles.
Vehicles closer to each other are more likely to influence each other’s movement
stronger.

� Angular Encoding: This factor accounts for the strategic positioning of vehi-
cles. For instance, leading vehicles exert more influence on a following vehicle’s
trajectory compared to vehicles behind. The angular encoding allows the model
to distinguish between vehicles based on whether they are leading, following, or
alongside the target vehicle.

These two factors are combined in the weighted adjacency matrix, which ensures that
the spatial dependencies are accurately represented. The adjacency matrix evolves over
time as the positions and interactions between vehicles change.

Second, the STGCN performs convolution operations on the directed graph. Each
node (vehicle) aggregates information from its neighboring nodes based on the weights
assigned by the adjacency matrix. This operation allows the STGCN to capture spatial
dependencies between vehicles at each time step. However, since vehicle interactions
are dynamic and change over time, the model also needs to capture how these spatial
dependencies evolve. For this, the TCN is applied. The TCN processes the sequence of
spatial embeddings generated by the STGCN to learn the temporal evolution of vehicle
interactions. By combining the spatial and temporal features, the model can predict
the future trajectory of each vehicle based on its historical interactions and movements.
The schematic diagram in Figure 6.1 depicts the overall methodology of this research.

6.3 Experiment and Results

The proposed dynamic STGCN was evaluated using the HighD dataset, with 80% of
the data allocated for training, 10% for validation, and 10% for testing. The model was
tested over a 5-second prediction horizon with a 3-second observation window. We use
the root mean square error (RMSE) to evaluate the performance of the proposed model.
The RMSE is calculated based on two key metrics: Average displacement error (ADE)
and final displacement error (FDE).
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Figure 6.1: The overall architecture of the proposed dynamic STGCN architecture. In each
traffic scene, GCN takes the trajectories of vehicles as input and learns the spatial
dependencies among them. This is done for all traffic scenes, and the results are
mapped on the features maps. The TCN module then operates on the features
maps to extract the temporal dependencies and predict the future trajectories.
(Source: [65])

An ablation study was conducted to understand the contributions of key components.
The weighted adjacency matrix, which combines angular encoding with reciprocal dis-
tance, was crucial in improving model accuracy. Without angular encoding, the model’s
performance decreased by approximately 30%. The best performance was achieved with
a single STGCN layer and five TCN layers, demonstrating that additional layers beyond
this configuration led to diminishing returns. Compared to state-of-the-art models,
the STGCN achieved a 34% reduction in FDE-based RMSE over the 5-second hori-
zon, significantly improving the accuracy of trajectory predictions across different traffic
conditions.

The model’s generalizability was tested using the NGSIM dataset through transfer
learning, where the pre-trained model from HighD was fine-tuned on a small portion
of NGSIM data. The transfer model outperforms the state-of-the-art methods, showing
strong adaptability to new environments with limited additional data. In terms of com-
putational efficiency, the model demonstrated an inference time of 0.037 milliseconds per
vehicle, making it suitable for real-time AV systems. The results affirm the STGCN’s
superior accuracy, generalizability, and efficiency compared to existing models, making
it a promising solution for trajectory prediction in autonomous driving.

6.4 Conclusion

In this research, we presented a dynamic STGCN model to predict the motion and tra-
jectories of vehicles in a traffic scene. The model successfully integrates GCN to capture
spatial dependencies among vehicles on a directed graph and a TCN to capture tempo-
ral dependencies in vehicle trajectory sequences. A key contribution of this work is the
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construction of a weighted adjacency matrix that accounts for the strategic positions
and distances of surrounding vehicles relative to the target vehicle. The experimental
evaluation using the HighD dataset demonstrated that our model outperforms existing
state-of-the-art models, with a 34% reduction in error over a 5-second prediction hori-
zon. Additionally, transfer learning on the NGSIM (US-101) dataset further validated
the generalizability of the model, showing strong performance even with limited data
availability.
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Sadid, H., Antoniou, C.: A simulation-based impact assessment of autonomous vehicles in urban

networks. IET Intell. Transp. Syst. 18, 1677–1696 (2024). https://doi.org/10.1049/itr2.12537

7.1 Introduction and Research Objectives

AVs have the potential to significantly enhance traffic safety, reduce congestion, and
lower emissions, largely due to their advanced sensing and decision-making capabili-
ties. Unlike human-driven vehicles (HDVs), AVs can accurately detect their surround-
ings and communicate with other vehicles and infrastructure through Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) technologies. These capabilities allow AVs
to respond more efficiently and safely to dynamic traffic conditions. However, the
actual impact of AVs on transportation networks remains uncertain due to the vari-
ability in assumptions made about their driving behavior in existing studies. These
assumptions often lead to conflicting conclusions about the potential impacts of AVs
[35, 37, 41, 44, 45, 48, 111, 112]. This paper uses optimized AV driving behaviors rather
than weak assumption within a simulation framework to assess their impact on an urban
network. The focus is on evaluating the effects of different AV PRs on traffic efficiency
and safety in a city-wide network of Munich city center. Additionally, the research in-
corporates advanced statistical methods, including Generalized Estimating Equations
(GEE) and Zero-truncated Poisson (ZTP) regression, to provide a robust analysis of the
factors influencing AV performance in urban settings.

7.2 Methodology

This research utilizes a simulation-based platform with the microscopic traffic simulator
SUMO to evaluate the impact of AVs on urban traffic networks. For AVs, the study
uses optimized driving parameters derived from our previous research in [113]. These
optimized parameters reflect the expected performance of AVs, including their ability
to maintain safe distances and react quickly to traffic situations. In contrast, the CF
behavior of HDVs is modeled using the Krauss CF model, which is calibrated using the
Particle Swarm Optimization (PSO) algorithm. PSO is employed to fine-tune the CF
model parameters based on real-world traffic data from Munich, ensuring that the HDV
behavior in the simulation environment accurately reflects observed driving patterns .
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The simulation platform is structured into three main components. First, different sce-
narios are generated, varying the PRs of AVs from 0% to 100% and considering different
traffic demand levels, such as peak hour and 30% below peak demand. Next, the simula-
tions are conducted within a detailed model of Munich’s city center, where the calibrated
CF model direct HDVs’ interactions. Multiple replications are performed for each sce-
nario to ensure robustness. Finally, the simulation data is analyzed to evaluate traffic
efficiency (including KPIs like travel time, speed, and density) and safety (measured by
the number of conflicts using Time-to-Collision (TTC) as a KPI). The methodology also
includes statistical analyses, such as one-way ANOVA and regression models (GEE and
ZTP), to assess the significance and relationships between different variables, allowing
for a comprehensive evaluation of AV impacts under various urban traffic conditions.
The schematic diagram in Figure 7.1 demonstrates the research methodology, outlining
scenario generation, simulation execution, and output analysis.

Figure 7.1: Schematic of the research methodology, showing scenario generation, simulation
environment, and output analysis. (Source: [34])
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7.3 Results

The findings of this research reveal that the impact of AVs on urban traffic networks
varies depending on their PRs. For traffic efficiency, the study found that at low to
moderate AV PRs (20% to 40%), there was a slight increase in average network travel
time compared to a fully HDV environment. However, as AV PRs increased beyond
40%, travel times began to decrease, approaching those observed in a fully HDV scenario.
Despite these variations, the overall impact of AVs on network performance was minimal,
suggesting that existing infrastructure, speed limits, and traffic signal controls may limit
the efficiency benefits of AVs. At intersections, no significant changes were observed
in average time loss per vehicle or passing speed, indicating that the distinct driving
behaviors of AVs did not substantially enhance efficiency under current traffic controls.

In terms of safety, the research found that increasing AV PR up to 40% initially led
to a higher number of traffic conflicts, likely due to the interaction between AVs and
HDVs. However, as AV PRs continued to rise, the total number of conflicts significantly
decreased. In a fully AV environment, the number of conflicts was reduced by approx-
imately 25% compared to a fully HDV scenario, highlighting the potential for AVs to
improve traffic safety at higher PRs. A sensitivity analysis further showed that AVs’
advanced sensing capabilities could enhance safety, as they allow quicker responses in
potential conflict situations.

Additionally, the results of the GEE regression analysis indicated that there is a sig-
nificant relationship between AV PR and travel time, with the GEE model successfully
accounting for the correlated nature of traffic data across the network. The ZTP re-
gression model further supported these findings by showing that higher AV PR were
associated with a reduction in the total number of traffic conflicts, particularly as AVs
become more prevalent in the network. Overall, the findings suggest that while AVs
may offer limited improvements in traffic efficiency, their potential to enhance safety is
significant, particularly at higher PRs. This underscores the need for further optimiza-
tion of AV behaviors and infrastructure adjustments to maximize the benefits of AV
deployment in urban networks.

7.4 Conclusion

This research demonstrates that AV deployment can lead to substantial safety improve-
ments, particularly at higher PRs. However, the effect of AVs on traffic efficiency is
more complex. At lower AV PRs, the mixed environment of AVs and HDVs creates in-
efficiencies due to differing driving behaviors, which results in increased travel times and
delays. As AV PRs exceed 60%, these inefficiencies diminish, and the optimized driving
behavior of AVs begins to positively influence network efficiency. The results suggest
that while AVs contribute to significant safety benefits, their efficiency advantages are
most pronounced when their penetration is sufficiently high. Additionally, factors such
as infrastructure and intersection control mechanisms play crucial roles in the overall
impact of AVs on urban networks.
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Future research should focus on addressing several limitations of the current study.
First, incorporating more real-world AV trajectory data for calibrating AV models would
lead to more accurate simulations. Second, expanding the study to include different ur-
ban environments and a wider range of traffic conditions, including multi-modal trans-
port systems, would provide a more comprehensive view of AVs’ potential impact. Third,
integrating advanced adaptive traffic control systems into simulations would reveal how
AVs can interact with smart infrastructure to further improve traffic efficiency and safety.
Fourth, future studies should explore mixed traffic environments with varying levels of ve-
hicle automation, such as semi-autonomous and CAVs, to assess their collective impact
on traffic dynamics. Finally, while this study focused on traffic efficiency and safety,
future work should evaluate the environmental impacts of AV deployment, including
emissions and energy consumption, under different scenarios. Addressing these research
directions will offer deeper insights into the long-term implications of AV deployment
and guide better strategies for integrating AVs into the transportation system.
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8 Discussion, Limitations, and Directions
for Future Research

The potential impacts of AVs on efficiency and safety in our transportation system are
associated to their behavioral differences compared to human-driven vehicles. Replica-
tion of the potential driving behavior of AVs is therefore an important step for impact
assessment of their deployment scenarios. Meanwhile, to design an experimental setup
and conduct impact assessment, selection of set of assessment objectives, KPIs and the
study scope are essential. In line with goal and sub-objectives of this dissertation, we
investigated the current state-of-the-art on the modelling of AV longitudinal driving
behavior, including the mathematical and data-driven methods. This dissertation also
contains the adopted parameters for AVs modelling, which leads to understand how and
with what magnitude the driving behavior of AVs might differ from the human-driven
vehicles. It addition, it identifies the assigned assessment areas, set of KPIs, and the
revealed impacts (Chapter 4). An optimization framework is proposed to extract the
optimized CF parameters related to assigned policy targets (Chapter 5). Meanwhile, a
data-driven model using dynamic STGCN is proposed to predict the trajectory of an
AV in a traffic scene aiming to improve accuracy, and strengthen the model reliability
under various traffic conditions. The proposed model not only predicts the CF configu-
rations of AVs in next time steps but also the LC decision of the vehicles (Chapter 6).
Finally, an experimental setup is designed to conduct impact assessment of AVs using
the optimized CF behavior of AVs in an urban network on efficiency and safety (Chapter
7). This chapter will provide a general discussion of the results and limitations of the
researchers performed, and recommendations for future researched will be provided.

8.1 Discussion

8.1.1 Driving Behavior of AVs

The advanced sensing and communication capabilities of AVs enable them to demon-
strate driving behavior distinct from that of human-driven vehicles. These distinctions
might include faster decision making, smoother driving patterns, elimination of driving
errors, and the ability to follow leading vehicles more closely. However, the extend of
these changes largely depends on assumptions made by the researchers, given the cur-
rent scarcity of extensive real-world AV data. As discussed in our comprehensive review
in Chapter 4, most studies suggest that AVs might tend to maintain shorter following
distances and could react relatively faster. Conversely, some researchers assume that
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AVs may have more cautious behavior and strictly follow the traffic rules, especially the
speed limits, compared to human-driven vehicles.

The results of our review paper in Chapter 4 show that in most studies related to
AVs and CAVs, the IDM, MIXIC and their modified versions are commonly used for
modelling the CF behavior. The Wiedemann 99 and Krauss models are also frequently
applied in impact assessments. Researchers distinguish the driving behavior of AVs from
human-driven vehicles by parameters such as time gap, reaction time, headway, and a
driving imperfection factor. Among these, time gap is the most critical parameter that
sets AVs apart from human-driven vehicles. In the IDM, it is typically assumed that AVs
can follow the leading vehicle with a time gap roughly 50% shorter than that of human-
driven vehicles, where the headway for AVs is often set at 0.6 seconds, compared to over
1 second for human-driven vehicles. Other parameters in the IDM, such as maximum
acceleration and comfort deceleration, are generally kept identical for both AVs and
human-driven vehicles. Similarly, the MIXIC model assumes that CAVs can maintain
lower time gaps. For instance, when a CAV follows another CAV, the time gap may be
up to three times shorter than when it follows a human-driven vehicle. In ACC-CACC
models, AVs and CAVs are primarily distinguished by their time gap settings. Due to
their communication capabilities and faster environmental analysis, CAVs are expected
to follow the leading vehicle at half the distance of AVs.

In our research in Chapter 5, we propose a different approach for modeling AVs.
Instead of relying on fixed assumptions, we suggest that AVs might optimize their driving
behavior based on specific targets. These targets could vary, ranging from reaching a
destination faster to ensuring the safest possible trip, or achieving a balance between
the two. To achieve this, we introduce an optimization framework designed to fine-tune
the parameters of existing CF models (e.g., IDM, Krauss, ACC) to generate optimal AV
driving behavior in relation to a defined policy target. This approach allows for more
accurate replication of AV behavior. By doing so, we can move away from the weak
assumptions often used in AV studies and instead provide more robust findings on the
potential impacts of AVs on traffic systems.

According to the findings of this research, the potential driving behavior of AVs in
regards to a policy target could be categorized into three regimes, namely: safe, neutral
and aggressive behaviors. A safe driving behavior exhibits higher gaps to the leading
vehicle, whereas the reaction time is relatively faster. In contrast, the aggressive driving
behavior shows that AVs might drive closer to the leading vehicle to reach the destination
faster. Meanwhile, the results reveal that a safe driving behavior of AVs improve the
driving safety (fewer conflicts in a traffic network) without deteriorating the efficiency.
Whereas, aggressive driving behavior does not significantly improve the efficiency of a
network (in terms of average network travel time), but instead increases the number
of traffic conflicts in the network and thus detriotes the traffic safety. Given that the
expectation from AVs in the future would be to have safe and compfortable driving
behavior, our recommendation for a possible driving behavior of AVs is a safe driving
profile. Thus, the findings of our research on safe driving behavior of AVs could be
potentially used in impact assessment studies.
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8.1 Discussion

8.1.2 Data-driven Models Synergies

There are two pillars supporting the researches working on developing data-driven mod-
els, namely: the availability of open-source trajectory datasets such as HighD [77],
NGSIM [78], pNEUMA [79], Waymo [80], and nuScenes [81], and the success of deep
learning methods. The findings of our review article in Chapter 4, and the research arti-
cle in Chapter 6 reveal that attempts have been made to replicate the driving behavior of
AVs and predict their possible movements in the next time steps. The proposed methods
are distinguished whether they predict the CF decision of a vehicle or trajectory of a
vehicle which includes both longitudinal and lateral configurations. In our review article,
we found that the recent deep learning-based models such as DDPG, RNN, GRU, LSTM,
DDPG equipped with a LSTM, and GAIL with GRU are proposed in the literature to
predict the CF decision of a target vehicle. These models outperform mathematical
CF models, nonparametric models, and conventional neural network-based models and
could be potentially used for modelling CF behavior of AVs.

On the other hand, the findings in [65] indicate that RNN, LSTM, Transformer, and
Graph-based methods are the core approaches for trajectory prediction of automated
driving in the literature. Among others, graph-based approaches have the better inter-
pretability, making it easy to understand the rationale behind the decision they make.
However, we found that in proposed graph-based methods in the literature, the building
of adjacency matrix and the graph structure do not match with real-world driving pat-
tern and interaction among vehicles. In our research in Chapter 6, we proposed a novel
graph-based model to better capture the interactions between vehicles, including AVs.
This model builds an interaction matrix using a graph structure, which represents the
relationships between vehicles in a traffic scene. By incorporating angular encoding into
a weighted adjacency matrix, our model can effectively replicate the decision-making
process for each vehicle’s driving actions in the subsequent time steps. Compared to
other state-of-the-art methods, such as LSTM-based models, and other graph-based
approaches, our model offers better performance and high interpretability.

To summarize, data-driven models have the potential to more accurately capture the
driving behavior of AVs under various driving conditions including the availability of
other road users (i.e., pedestrians, bicycles). However, they come with their own set of
challenges. They require significant computational effort and large amounts of training
data, which are currently not available for AVs. additionally, due to the complexity of
a traffic model, data-driven models are not integrated into simulation tools and hence
they are not used in impact assessment studies.

8.1.3 Impact Evaluation of AVs Deployment Scenarios

Simulation-based impact assessment of AVs is indeed a challenging and complex task
due to the wide range of factors that influence the results. The potential impacts re-
ported from simulation studies can vary significantly based on numerous aspects, and
understanding these aspects is key to interpreting simulation outcomes. These aspects
include the calibration of the base model, the selection of an appropriate CF model
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for replicating the driving behavior of AVs, defining the study scope (i.e., motorway,
urban links, urban network), setting the assessment areas and related KPIs to quantify
the impacts, and the choice of a powerful traffic simulation tool. The findings of our
review in Chapter 4, reveal that most studies selected mathematical models to estimate
the CF behavior of AVs. The reason is that most simulation tools are build based on
conventional mathematical models and they are computationally efficient to run large-
scale simulations. In addition, vast majority of researches conduct impacts assessment
of AVs and CAVs for safety and efficiency, where some also conduct investigation on
environmental effects. For each assessment area, various KPIs are chosen depending on
the scope of the study. For efficiency assessment, most researchers employed KPIs such
as traffic flow (e.g. traffic flow, density), average travel time, string stability, average
velocity, and more [36, 38–40]. For safety analysis, the number of conflicts is the most
used KPI in all type of study areas, where in freeway analysis, some studies also used
TTC, TET and TIT [35,37,39,114].

Given that in most studies the CF behavior of AVs is set based on assumptions,
the resulting impacts also differ among researchers. Regarding the mobility impacts,
researchers reported that higher PRs of AVs and CAVs reduce travel time and increase
capacity and throughput [37, 39, 41, 44, 112]. However, other studies claimed that in
a mixed driving environment where AVs interact with HDVs, the capacity degrades
[40, 45], and travel time increases [115]. In addition, it is reported that in higher speed
limits, the impact of AVs on Freeway capacity is significant. In contrast, in lower speed
limits, the change is not considerable [116]. Meanwhile, most studies reported that
CAVs outperform AVs in many aspects due to their communication capabilities. Second,
regarding safety impacts, most studies suggested that by increasing the PR of AVs, the
total number of conflicts in the network reduces significantly. Some also highlighted the
negative impacts of AVs on roundabout safety [117].

Meanwhile, in our research detailed in Chapter 7, we utilized an optimized CF behavior
of AVs for conducting the impact assessment. The findings of our study reveal that a
mixed environment of AVs and HDVs increases the network travel time, vehicle time loss,
and average flow. Regarding the safety, our research revealed that a comparable mix of
AVs and HDVs might result in an increased number of conflicts. Since different driving
behaviors of AVs and CAVs may lead to the frequent adjustment of driving actions,
the number of conflicts increases. However, with higher PRs of AVs (e.g. more than
80%), the total number of conflicts significantly reduces in comparison to a fully HDV
environment. With 100% AV PR, the total number of conflicts decreases by around
25%.

The inconsistent conclusion on the impacts of AV PRs could be associated with two
main influencing factors: the assumption on the potential CF parameters of AVs driving
behavior and the scope of the study.

First, a cautious driving behavior assumed for AVs results in more smoother and
safer behavior in the network which results in improved safety. Whereas, an aggressive
behavior (driving closer to the leading vehicle and reacting faster) results in improved
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traffic efficiency reported in literature. In contrast, our optimized view on the driving
behavior of AVs, result in improved safety in the network without deteriorating the traffic
efficiency. Another important aspect is the scope of the study, most studies conduct
the impact assessment on freeways and highways, where the fluctuation of traffic flow
elements is not huge. Thus, AV driving behavior brings a significant change in efficiency
and safety. In contrast, in an urban network, many other influencing factors such as
the type of roads, number of lanes, type and number of intersections, curvatures, control
devices, speed limits, and more could have direct impacts on the driving performance and
impress the potential effects of driving behavior itself. In other words, these influential
factors could diminish the effects of AV driving behavior on traffic efficiency. Therefore,
in this research, the findings differ for efficiency evaluation. A similar result is also
reported by [115], where the investigation is conducted at the network level. On the other
hand, regarding safety, driving behavior significantly affects the number of conflicts.
Since a conflict occurs between two vehicles (following and leading) in a short period
and is unrelated to the entire vehicle’s trip, the driving behavior is responsible for any
possible conflict.

8.2 Limitations and Directions for Future Research

The proposed methodological models and experimental setup for conducting the impact
assessment of AVs in urban network have successfully addressed the goals and sub-
objectives of this dissertation. However, like all research, this dissertation is not without
limitations that could potentially raise new lines of work for further studies. This section
is divided into two parts: (i) limitations related to AV behavioral modeling and impact
assessment, and (ii) recommendations and directions for future research.

8.2.1 Limitations

This dissertation focuses on two key aspects of AVs in mixed traffic: the modeling of AV
driving behavior and the impact assessment of AV deployment scenarios. Within each
of these areas, several limitations exist that should be acknowledged.

In this dissertation, we developed two modelling approaches (mathematical and data-
driven) to replicate the driving behavior of AVs. Regarding the mathematical model,
the proposed optimization framework finds the optimal CF model parameters for AVs.
However, the key limitation was that this framework was tested in one study area. The
experimental findings of this research are limited to similar study area, and demand
patterns, and therefore could not be generalized in all traffic situations. Second, the
extracted optimized CF model parameters are limited to AVs, where an AV only com-
municates with the leading vehicle through its sensor. However, in real application, it is
expected that all AVs might have communication capabilities with other AVs (CAVs).
Third, the generated optimal parameters are only related to CF configurations, whereas,
considering both CF and LC models would bring new insight into the optimal driving
behavior of AVs.
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Regarding the data-driven models, the major limitation of our proposed model is that
it is not integrated into a simulation tool and thus it can not be used in impact assessment
study. Second, the model is trained with HighD dataset, given that HighD dataset is
gathered from highways and includes only human-driven cars and trucks. Third, the
proposed model only considered the past trajectories involving the coordinates of AVs,
however, other important data sources, such as LiDAR and Radar with more features
are not considered.

Similarly, in conducting the impact assessment, we faced several challenges that lim-
ited our investigations. First, while conducting the impact assessment of AVs PRs, we
only consider the changes associated to driving behavior, whereas infrastructure related
factors are ignored. By deployment of AVs in our transportation system, we might also
witness substantial changes in infrastructure and traffic regulations. These changes may
include smart traffic control devices, speed limit and lane-free traffic regulation, and
more. Second, we considered a fixed driving behavior for human-driven vehicles resulted
from the calibration process. However, the behavior of human-driven vehicles might also
change with different PRs of AVs. Third, the findings of our impact assessment is related
to a specific CF model, where it might give different results when a different modelling
technique is used.

8.2.2 Recommendations and Directions for Future Work

Based on the limitations mentioned in Section 8.2.1, this dissertation highlights several
areas for further research that are crucial to improving the modelling techniques for
AVs driving behavior and impact assessment. This section offers recommendations for
follow-up studies that address these challenges, alongside suggestions to overcome the
aforementioned limitations.

Optimization Framework:

Future research should focus on the advanced calibration and validation of AV behav-
ioral models, using real-world data from AVs to enhance model accuracy. While the
optimization framework developed in this study is robust, its potential will be fully
realized when more extensive AV-specific datasets are available. Collaborations with
AV manufacturers or pilot projects could facilitate data collection across diverse traf-
fic conditions, significantly improving the calibration of CF models. In addition, the
current framework optimizes AV behaviors based on policy targets such as safety and
efficiency. Expanding the framework to incorporate new policy goals, like environmental
sustainability and equitable mobility, could offer more comprehensive insights into AV
impacts. Research in this area could integrate emissions reduction and access equity
into the optimization process, providing a broader perspective on AV deployment.

There is also a need to extend simulation scenarios to different network types. While
this study focused on urban networks, the effects of AVs in highways, rural roads, and
suburban areas remain underexplored. Future research should incorporate these var-
ied settings to better understand how AVs perform across diverse infrastructures and
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traffic patterns. Another important direction is the study of mixed traffic dynamics,
particularly how human drivers adapt to AVs over time. Long-term simulations could
reveal how driving behaviors evolve as AV penetration increases, influencing safety and
deployment strategies. Further development of Surrogate Safety Measures (SSMs) is
also recommended. While this study took an important step forward in safety analysis,
more nuanced and diverse SSMs could better capture the safety impacts, especially in
complex urban environments with significant pedestrian and cyclist activity.

As vehicle-to-everything (V2X) communication systems are increasingly integrated
into AV operations, models should account for these technologies. Future research should
incorporate V2X capabilities into simulation environments to better predict how AVs
communicate with infrastructure and other vehicles, improving traffic flow and safety.
Additionally, testing the robustness of the optimization framework under a variety of
traffic conditions, including unpredictable events such as accidents or road closures, will
be crucial to adapting AVs for real-world scenarios. Finally, further sensitivity analysis
exploring AV behavior in response to diverse policy objectives, such as minimizing envi-
ronmental impacts or promoting public transport integration, will offer deeper insights
into how AVs can align with broader societal goals.

Deep Learning-Based Trajectory Prediction Model:

In the domain of trajectory prediction, future research should investigate the integra-
tion of multi-modal sensing data, such as lidar, radar, and camera inputs, to improve
prediction accuracy in complex urban environments. While this study relied on highway
datasets (e.g., HighD and NGSIM), urban traffic scenarios with intersections, pedestri-
ans, and mixed road users present additional challenges. Future studies should apply
the model to these urban networks and incorporate data from a broader range of road
users, such as cyclists and buses, to better capture the dynamics of urban traffic.

There is also an opportunity to enhance the generalization of the model across di-
verse datasets. While transfer learning was successfully applied, testing the model in a
wider variety of environments—including rural roads and high-density urban areas—will
improve its robustness and applicability. Furthermore, the current models do not ex-
plicitly incorporate traffic rules such as speed limits, traffic lights, or lane restrictions.
Future research should integrate these regulatory constraints into the trajectory predic-
tion models to ensure compliance with legal and road regulations, thus improving the
real-world applicability of the predictions.

Optimizing the computational efficiency of trajectory prediction models is another
promising direction. While the current model performs well, further optimizations, such
as using more efficient graph convolution methods or hardware acceleration (e.g., GPUs
or TPUs), could enhance real-time processing, particularly for large-scale implementa-
tions. Moreover, future research should consider human-in-the-loop simulations to reflect
mixed traffic scenarios, where AVs interact with human-driven vehicles. This approach
could provide valuable insights into how human drivers respond to AV behavior, con-
tributing to a better understanding of safety and acceptance in real-world deployments.
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Additionally, as traffic systems evolve, there is a need to adapt models for lane-free
environments, such as autonomous-only lanes or shared spaces with no clear road mark-
ings. These environments will offer greater flexibility in vehicle movement and trajectory
planning. Finally, future studies should explore how improved trajectory prediction can
impact broader traffic efficiency, congestion, and safety in mixed AV-human traffic en-
vironments. Integrating trajectory prediction models into traffic simulation tools could
help assess the effects of AV deployment on traffic throughput, traffic conflicts, and fuel
consumption.

Impact Assessment:

For more accurate impact assessments, future research should prioritize refining AV be-
havioral models to capture the complex decision-making processes of AVs, particularly
in challenging situations such as lane-merging, pedestrian interactions, or responding
to unexpected events. Real-world AV trajectory data and advanced data-driven mod-
els could significantly enhance the behavioral accuracy of these simulations. Machine
learning techniques could also be leveraged to improve AV control algorithms, further
enhancing the realism of AV behaviors in traffic simulations.

Improving models of interactions between AVs and human-driven vehicles in mixed
traffic is also crucial. Human drivers’ responses to AVs are not yet fully understood, and
future studies should explore the long-term adaptation of human drivers to AV pres-
ence. Conducting human-in-the-loop simulations or real-world trials could offer valuable
insights into these evolving dynamics. Expanding the scope of deployment scenarios
beyond urban networks is another key area for future research. Rural areas, highways,
and suburban settings offer different challenges, and understanding how AVs perform
in these environments will help generalize their potential impacts on traffic efficiency,
safety, and environmental outcomes.

As AV adoption increases, there will be shifts in travel demand, trip frequency, and
modal choice. Future studies should incorporate dynamic traffic demand models to
reflect these changing mobility patterns. Such models could also capture induced demand
or shifts to AV-based public transport systems. Additionally, as AV technology continues
to evolve, future research should develop flexible models that can adapt to advancements
in AV capabilities, such as improved V2V communication or enhanced sensors.

Beyond traffic flow and safety, future impact assessments should include broader met-
rics related to environmental and social outcomes, such as emissions, energy consump-
tion, and equity in AV access. Finally, addressing regulatory uncertainties is essential.
Future studies should simulate the effects of different regulatory approaches—such as AV-
only lanes, AV speed limits, or taxation incentives—on AV behavior and traffic network
performance. A better understanding of how these policies influence AV deployment
and interactions with human-driven vehicles will be invaluable for shaping effective AV
regulations.
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9 Conclusion

This doctoral dissertation consolidates the research conducted by Sadid and Antoniou
[1, 34, 65, 68], focusing on the microscopic behavioral modeling and simulation-based
evaluation of AV deployment scenarios. The research addresses several critical research
questions and fulfills the primary objective and sub-objectives related to AV modeling
and impact assessment in urban traffic systems.

Within the scope of this dissertation, various modeling approaches, including both
mathematical and data-driven models, were investigated to assess the state-of-the-art,
identify research gaps, and explore the potential for developing more accurate CF models
for AVs. In addition to modeling, several key aspects of impact assessment studies—such
as impact areas, KPIs, and reported effects of AV deployment—were identified and
discussed.

A core contribution of this dissertation is the development of an optimization frame-
work designed to extract optimized parameter values for widely used CF models, en-
abling a more realistic replication of AV driving behavior in urban traffic contexts. This
framework allows for more accurate simulations of AV impacts by fine-tuning driving
behaviors to meet specific traffic objectives, such as reducing travel time or enhancing
safety. The findings from this framework were then used in an impact assessment study,
presented in Chapter 7, to evaluate how different AV deployment scenarios influence
traffic performance.

Furthermore, a novel deep learning-based trajectory prediction model was introduced
to capture AV driving behavior. This model utilizes a dynamic STGCN model to pre-
dict the trajectories of AVs, considering both CF and LC configurations. By leveraging
historical driving data, the model can accurately forecast future driving actions, signif-
icantly enhancing the ability to model complex AV interactions in real-world scenarios.

The final impact assessment study examined how varying PRs of AVs affect traffic
efficiency and safety in urban networks. In this research, the optimized driving behavior
of AVs was used to mimic the potential AV driving patterns. The results revealed that
while AVs have the potential to enhance road safety, especially at higher PRs, their
influence on traffic efficiency is more limited, particularly under current infrastructure
and traffic management systems. These findings underscore the importance of further
optimizing AV driving behaviors and adjusting traffic infrastructure to maximize the
benefits of AV deployment in urban environments.
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9 Conclusion

In conclusion, this dissertation advances the state-of-the-art in AV modeling and im-
pact assessment by providing novel methodologies for simulating AV behavior, develop-
ing data-driven prediction models, and conducting comprehensive impact assessments.
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[117] A. Deluka Tibljaš, T. Giuffrè, S. Surdonja, and S. Trubia. Introduction of Au-
tonomous Vehicles: Roundabouts Design and Safety Performance Evaluation. Sus-
tainability, 10(4):1060, April 2018. doi:10.3390/su10041060.

57

http://dx.doi.org/10.1109/TPAMI.2020.3008558
http://dx.doi.org/10.1109/TITS.2021.3052908
http://dx.doi.org/10.1080/15472450.2017.1404680
http://dx.doi.org/10.1080/15472450.2017.1404680
http://dx.doi.org/10.1109/ISCTT51595.2020.00108
http://dx.doi.org/10.1109/ISCTT51595.2020.00108
http://dx.doi.org/10.1109/ITSC55140.2022.9922604
http://dx.doi.org/10.1016/j.aap.2018.12.019
http://dx.doi.org/10.1016/j.trpro.2021.01.094
http://dx.doi.org/10.1016/j.trc.2018.07.027
http://dx.doi.org/10.3390/su10041060




A Sadid and Antoniou (2023). Modelling
and Simulation of (Connected)
Autonomous Vehicles Longitudinal
Driving Behavior: A State-of-the-art

59



Received: 28 September 2022 Revised: 13 December 2022 Accepted: 20 January 2023 IET Intelligent Transport Systems

DOI: 10.1049/itr2.12337

REVIEW

Modelling and simulation of (connected) autonomous vehicles

longitudinal driving behavior: A state-of-the-art

Hashmatullah Sadid Constantinos Antoniou

Technical University of Munich (TUM), TUM
School of Engineering and Design, Chair of
Transportation Systems Engineering, Munich,
Germany

Correspondence

Hashmatullah Sadid, Technical University of Munich
(TUM), TUM School of Engineering and Design,
Chair of Transportation Systems Engineering,
Munich, Germany.
Email: hashmat.sadid@tum.de

Funding information

Deutscher Akademischer Austauschdienst (DAAD),
Grant/Award Number: Research Grants - Doctoral
Programmes in Germany; European Union’s
Horizon 2020 research and innovation programme,
Drive2TheFuture project, Grant/Award Number:
815001

Abstract

Microscopic traffic models (MTMs) are widely used for assessing the impacts of (con-
nected) autonomous vehicles ((C)AVs). These models utilize car-following (CF) and
lane-changing models to replicate the (C)AVs driving behaviors. Numerous studies are
being lately published regarding the approximation of the driving behaviors of (C)AVs
(especially CF behavior) with many state-of-the-art modelling methods. Still, there is no
established CF model to mimic the accurate behavior of (C)AVs. Researchers often uti-
lize existing mathematical CF models as well as limited data-driven models for (C)AVs
modelling. Meanwhile, several studies conduct simulation-based impact assessments with
various key performance indicators (KPIs). Identification of these KPIs is a crucial step for
future studies. Hence, this paper presents a comprehensive outlook on different CF mod-
els with their adopted parameters for (C)AVs modelling and investigates how and in which
aspects might the CF behaviors of (C)AVs are different from human-driven vehicles. In
addition, the recent publications in data-driven CF models including their methodologies
are explicitly discussed. This work also reviews simulation-based studies with the reported
impacts and used KPIs. Finally, in light of the findings of this paper, several future research
needs are highlighted.

1 INTRODUCTION

With the development of advanced driving assistance systems
(ADAS), such as adaptive cruise control, cooperative adaptive
driving control, lane keeping assistance, or emergency brake
assistance, our future transportation system is not far away from
the revolution of autonomous vehicles [1]. We will soon wit-
ness a different traffic situation, where vehicles with a high
degree of automation interact with low-level automated vehi-
cles [2]. According to the Society of Automotive Engineers
(SAE), vehicles are classified based on the degree of automation
from non-automated (level 0) to full automation (level 5) [3].
Full automation level is commonly known as full self-driving,
autonomous or driverless vehicles, where the vehicle itself is
responsible for all safety functions and navigation of the road
[1, 4].

The recent advanced sensing technologies (e.g. radar, lidar)
and pattern recognition together with processing capabilities
of artificial intelligence enable autonomous vehicles (AVs) to

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. IET Intelligent Transport Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

detect the precise image of the surrounding environment and
react accordingly with the help of complex machine learning
algorithms. Meanwhile, pervasive communication technologies
allow AVs to exchange their driving status (i.e. speed, accel-
eration, position, and more) with other connected vehicles
(V2V), as well as infrastructure (V2I), which is labeled as con-
nected autonomous vehicles (CAVs) [5, 6]. In the remainder
of this article, where applicable, we use the term (Con-
nected) autonomous vehicles-(C)AVs to summarily describe
AVs+CAVs.

(C)AVs have the potential to largely change traffic safety,
mobility pattern, and transport network. It is expected that
(C)AVs could improve traffic safety as a large number of
accidents are associated with the drivers’ errors and unfitness
to drive (e.g. fatigue, alcohol, or drugs) [7–9]. (C)AVs open
more mobility freedom by removing driving barriers, such
as disability, driving license and old age [10, 11]. Meanwhile,
(C)AVs could potentially change travel behavior, reduce traf-
fic congestion [12], fuel consumption [13–15], and vehicle

IET Intell. Transp. Syst. 2023;17:1051–1071. wileyonlinelibrary.com/iet-its 1051
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emissions [14], however, their certain effects are quantitatively
not confirmed yet [4, 16]. Several corridor-wide trials of AVs
have been conducted to estimate the impacts, however, due to
large costs of AV fleets, as well as legal restrictions, large-scale
tests are currently impractical. Researchers conduct simulation-
based assessments to extrapolate the potential impacts of
(C)AVs on a large-scale using traffic models. Especially several
studies utilized microscopic traffic models (MTMs) to ana-
lyze and predict the impacts of (C)AVs on safety and traffic
efficiency [6, 17–19].

The driving behavior of (C)AVs might significantly dif-
fer from human-driven vehicles. In MTMs, these behaviors
are modelled with their longitudinal and lateral configura-
tions. Longitudinal and lateral dynamics of a vehicle are also
called car-following (CF) and lane-changing behaviors, respec-
tively. A CF model is comprised of a set of actions that a
driver decides on to follow the leading vehicle efficiently and
safely. Several mathematical CF models have been developed
to estimate driving behavior under various traffic conditions.
However, many studies criticized the limitations of these models
in capturing the diversity of driving behavior, as these models
are simplified and only contain a small number of param-
eters [5, 20, 21]. Hence, data-driven models have attracted
attention to replicate the complex driving behavior more
accurately.

While most of the mathematical, as well as data-driven mod-
els, are used for modeling human-driven vehicles, there is no
established CF model of the behavior of (C)AVs. Most of the
researchers adopt and modify the parameters of the existing
CF models to study the driving maneuvers of (C)AVs. Mean-
while, machine learning-based models are also developed based
on human-driven vehicles’ trajectories [due to limited (C)AVs
traffic data], and thus can not guarantee to fully approximate
the behavior of (C)AVs. However, the proposed methodologies
in these studies could be potentially used for (C)AVs modelling,
when field data of (C)AVs are available.

Numerous review articles have been published relevant to
(C)AVs modelling in MTMs (e.g. [5, 20, 22]). For instance, [5]
reviewed the summary of studies relevant to (C)AVs CF models
and their impact assessments, where [20] recently reviewed the
traditional CF models utilized for modelling (C)AVs including
simulation tools. However, in both studies, they do not dis-
cuss how largely the CF behavior of (C)AVs differs from the
human-driven vehicles. Mathematical CF models are comprised
of relations and parameters to capture the driving behavior of
vehicles. It is expected that the CF behavior through accel-
eration distributions, safety gaps, reaction time, and other CF
model-related parameters of the (C)AV under specific traffic
situation are different from human-driven vehicles. Researchers
assume that (C)AVs could drive very close to the leading vehicle,
and react very fast. However, the magnitude of these differ-
ences is subjective among researchers and have not addressed
in the above-mentioned review articles . In addition, existing
review papers cover the general impacts of (C)AVs on safety,
mobility and the environment in various scenarios. However,
key performance indicators (KPIs) used in simulation-based
studies involving (C)AVs are not specifically reported. Hence,

to fill these research gaps, a review reporting specific values
of the mathematical CF model parameters for capturing the
behavior of (C)AVs, as well as the identification of the KPIs for
(C)AVs related studies under different situations is a necessity.
It fosters a wide understanding of the potential driving behav-
ior of (C)AVs from a scientific perspective and also helps future
simulation-based impact assessments to select proper KPIs and
CF model parameters. In addition, the output of this review
will reveal interesting research gaps on (C)AVs modelling and
impact assessment.

On the other hand, [22] studied research works related to
the microscopic modelling of CAVs including traditional and
newly developed models. However, there have been many
recent studies utilizing machine learning techniques to model
CF behavior. Several studies have proposed new methods to
develop data-driven CF models. Since in existing review papers
these data-driven models are not reported, a more recent
review to cover the studies which have been recently pub-
lished is required. Therefore, considering the above limitations,
research gaps and the importance of the (C)AVs modelling and
simulation-based impact assessment, this paper aims to pro-
vide a comprehensive review of relevant studies in the field of
(C)AVs modelling, and impact assessments.

The collection of these articles follows a semi-structured
approach. The reviewed articles in this paper include journal
papers, conference papers, and technical reports. First, we gath-
ered studies from the Scopus search engine using 8 keywords
(autonomous vehicles, connected autonomous vehicles, self(-)driving cars, car

following models, simulation of autonomous vehicles, autonomous vehicles

modelling, data-driven car following models, autonomous vehicles impact

assessments) for the publication year range 1990 - June 2022. The
obtained papers were further screened according to their rele-
vance and topics. Additionally, we collected related articles from
the references of the screened papers. To have a general idea
about different CF models, some studies related to CF models
have been included.

The main contributions of this research work are as fol-
lows: (i) Overview of different CF models with their adopted
parameters for (C)AVs modelling. This leads to understand how
potentially the CF behavior of (CAVs) is different from human-
driven vehicles and which CF model parameters are more
crucial and sensitive in differentiating (C)AVs from human-
driven vehicles. (ii) Summary of the lately published data-driven
models for (C)AVs CF behavior, and (iii) Identification of set
of KPIs used for impact assessments and the revealed impacts.
This section reports the importance of KPIs in impact assess-
ment studies, and reveals an outlook for future studies on
usage of a certain KPI for a specific study area and under
different conditions.

The remainder of this paper is structured as follows: In the
following section, we review the recent literature on mathe-
matical CF models for (C)AVs and adopted parameters. In
Section 3, we introduce a summary of data-driven models mim-
icking (C)AVs CF behavior. Identification of KPIs utilized in
impact assessments and the revealed reports are presented in
Section 4. Finally, a conclusion in Section 5 explains the overall
contribution of this article alongside further research directions.
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2 MATHEMATICAL CAR FOLLOWING
MODELS

Driving behavior is the key element in microscopic traffic mod-
elling and simulation. (C)AVs have significantly different driving
behaviors in comparison to human-driven vehicles. These dif-
ferences are due to sensing and communication technologies
integrated in (C)AVs. AVs for instance have the ability to
sense necessary information from the leading vehicles, whereas
for CAVs, a stream of data (such as position, speed, accel-
eration etc.) are exchanged among CAVs as well as between
CAVs and infrastructure (thanks to V2V and V2I communica-
tions). In case of human-driven vehicles, it is the driver who
is responsible to capture the environment and act accordingly.
Therefore, the driving behavior parameters, especially parame-
ters for CF behavior such as acceleration, deceleration, desired
speed, minimum gap etc. for human-driven vehicles, AVs and
CAVs are different.

For human-driven vehicles, there are many established math-
ematical models to mimic their CF behavior. Most of these
models focus on a driver’s physical actions such as desired
speed, acceleration, deceleration (i.e. Gazis-Herman-Rothery
(GHR) model [23], Gipps model [24], intelligent driver model
(IDM) [25], optimal velocity model (OVM) [26]), however, some
also consider the psychological inputs of the drivers (i.e. Wiede-
mann model [27]). For (C)AVs simulation, however, there are
no established models. A recent review of literature shows that
a considerable amount of studies utilizing conventional math-
ematical models (i.e. IDM [25] and modified versions, MIXIC
[28], Wiedemann [27], Krauss [29] etc.) to approximate the
CF behavior of (C)AVs in a microsimulation framework [18,
30–33]. In many studies, the modelling of Adaptive Cruise Con-
trol (ACC) and Cooperative Adaptive Cruise Control (CACC)
are refereed to AVs and CAVs modelling, respectively [18,
34–36].

2.1 Intelligent driving model (IDM)

IDM and its modified versions are broadly used CF mod-
els for (C)AVs microsimulation studies [19, 37–44]. IDM first
developed by [25] is one of the simplest and accident-free
model which uses both the desired speed and space headway
to generate realistic acceleration profile. The model ignores
the reaction time, therefore, it and its modified versions can
replicate the characteristics of AVs and CAVs, respectively.
The basic form of IDM acceleration function is expressed
as:

an(t ) = a
(n)
max

⎡⎢⎢⎣1 −

(
Vn(t )

V0
(n)(t )

)𝛿

−

(
Sn
∗(t )

Sn

)2⎤⎥⎥⎦, (1)

where amax is the maximum acceleration/deceleration of the
vehicle n, Vn is the speed of the following vehicle, V0

(n) is the
desired speed of the following vehicle, Sn is the gap distance

between two vehicles, Sn
∗ is the desired spacing between two

vehicles (see Figure 1), and 𝛿 is the model parameter.
The model is comprised of three terms. When the distance

between the leading and following vehicles is relatively high, the
third term becomes negligible, and thus the model acts as a free-
flow model, where the desired speed of the driver controls the
acceleration of the vehicle. On the other hand, for closer space
headway between vehicles, the following vehicle will apply the
CF strategy and reduce the free-flow acceleration by the magni-
tude of third term in Equation (1). Thus, one single equation can
mimic both free-flow and CF regimes depending on different
situations. Meanwhile, the desired space headway between two
vehicles Sn

∗ is a function of the following vehicle speed Vn, and
the speed difference between the leading and following vehicles
ΔVn, which can be calculated using Equation (2):

Sn
∗(t ) = S0

(n) +Vn(t )Tn(t ) +
Vn(t )ΔVn(t )

2
√

a
(n)
maxb(n)

, (2)

where S0
(n) is the minimum spacing at standstill situation, Tn

is the desired (safe) time headway, and b(n) is the desired
(comfortable) deceleration. The maximum acceleration and a
comfortable deceleration rate ensure that the model does not
produce unrealistic high acceleration/deceleration.

IDM was later extended by [45] to replicate the driving
style adaptation effect to the surrounding traffic using a mem-
ory function. The IDM with memory (called IDMM) assumes
that after experiencing congested traffic for while, most drivers
adapt their driving behavior, for instance by increasing their
desired time gap to the leading vehicle. According to [45], a
single internal dynamic impacts the desired time gap decision.
Thus, the new desired time gap Tn(t ) in Equation (2) is replaced
by Tn(𝜆), which is approximated as follows:

Tn(𝜆) = Tn

[
𝛽T + 𝜆n(1 − 𝛽T )], (3)

where 𝛽T = Tjam∕Tn is an adaptation factor, 𝜆n is the subjective
level of service which takes values between 0 (standstill traffic)
and 1 (free-flow traffic).

There exist many revised versions of IDM, each with differ-
ent objectives [17, 19, 37, 38, 46–48]. For instance, [46] intro-
duced some multiplication factors to ensure smooth driving
behavior in different traffic situations (i.e. free-flow, upstream
front, congested traffic, bottleneck, downstream front). It is
assumed that the maximum acceleration of a vehicle is increased
when leaving congestion, and the comfortable deceleration is
decreased when an upstream-front is detected. Depending on

0

FIGURE 1 Illustration of IDM CF model parameters.
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1054 SADID AND ANTONIOU

TABLE 1 Multiplication factors of IDM Model [46].

Traffic situation 𝝀a 𝝀b 𝝀c Driving style

Free flow 1 1 1 Comfort driving

Upstream front 1 1 0.7 Safe driving

Congestion 1 1 1 Comfort driving

Bottleneck 0.7 1.5 1 Breakdown prevention

Downstream front 0.5 2 1 High dynamic capacity

the which state is noticeable in next time step, the following
factors are multiplied by the main IDM model parameters:

a(s) = 𝜆a
(s)
⋅ a, b(s) = 𝜆b

(s)
⋅ b, T (s) = 𝜆T

(s)
⋅ T ,

where the superscript (s) indicates the traffic situation, a, b and T
are maximum acceleration, comfort deceleration, and time gap,
respectively. The values of the multipliers are listed in Table 1.

IDM model generates unrealistic deceleration rates when
the gap is significantly lower than the desired gap. To avoid
this, [19] combined the IDM with the Constant Acceleration
Heuristics (CAH). The CAH is developed based on three main
assumptions: (i) the acceleration of the following and leading
vehicles will not change in the near future (in a few seconds), (ii)
safe time headway or minimum distance is not required at any
moment, and (iii) reaction time is neglected (drivers react with-
out delay). To calculate the maximum acceleration of a vehicle
while keeping the situation crash-free, two possible conditions
(zero or nonzero velocity of the leading vehicle) at the time
where the minimum gap is reached are distinguished. Hence,
the maximum acceleration aCAH given actual values of the gap
s, velocity of the following vehicle v f , velocity and acceleration
of the leading vehicle vl , al is expressed as:

aCAH =

⎧⎪⎨⎪⎩
v f

2⋅āl

vl
2−2s⋅āl

if vl

(
v f − vl

)
≤ −2s ⋅ āl

āl −
(
v f −vl

)2
Θ
(
v f −vl

)
2s

otherwise
,

(4)

where āl = min(al , a f ) is the effective acceleration, which avoids
the artifacts that may cause by a leading vehicle with higher
acceleration capabilities. The Heaviside step function Θ is used
to eliminate negative approaching rates. [19] proposed an ACC
model by combining the acceleration from the IDM and CAH.
Depending on the CF situation, the decisive acceleration of the
ACC vehicle is controlled by a comparison of the IDM and
CAH acceleration profiles as follows:

aACC =

⎧⎪⎨⎪⎩
aIDM if aIDM ≥ aCAH

(1 − c ) ⋅ aIDM + c ⋅ [aCAH

+b ⋅ tanh(
aIDM−aCAH

b
)] otherwise

, (5)

where the coolness factor c is an additional parameter compared
to the original IDM model, which is assumed 0.99 in [19].

TABLE 2 IDM parameters for AVs modelling [18, 19].

Model parameters Values

Desired speed (V0) 120 km/h

Model parameter (𝛿) 4

Maximum acceleration (amax) 1.4 m/s2

Desired deceleration (b) 2 m/s2

Minimum gap distance at standstill (S0) 2 m

Desired headway (T ) 0.6 s

Maximum deceleration 2.8 m/s2

In addition, [47] attempted to improve the safety of IDM
model by modifying the desired gap equation (Equation 2) by

adding a new term (cn
v2
n

bn

). The new term indicates that with

higher velocities, the desired minimum gap increases, and con-
sequently the driver safety is improved. In addition, [37] added a
reaction time variable in the original IDM acceleration equation.
This study assumes that the reaction time variable can reason-
ably distinguish AVs from human-driven vehicles. The model
parameters are adopted from literature with few adjustments.
For instance, the time headway and reaction time for AVs are
assumed 1 s and 0 s respectively. On the other hand, [38] pro-
posed an improved IDM model to consider multi-front and rear
vehicles. The model generates the acceleration profile of the fol-
lowing vehicle by employing information of multiple front and
rear vehicles. Weight factors are added to each vehicle’s infor-
mation depending on their locations. The model parameters are
based on assumptions by the authors.

The basic IDM model has been widely used to approximate
the driving behavior of AVs in several studies. However, the
main difficulty of the model is the observation of desired mea-
sures such as desired spacing, desired time headway, and desired
speed for AVs. Thus, several studies used the IDM parame-
ters from the literature which are either based on assumptions
or limited field experiments. The parameters of AVs behavior
utilized in many simulation studies are presented in Table 2.

Recent studies such as [17, 33], and [41] utilized IDM and its
modified versions to conduct (C)AVs impact assessments. [17]
studied the safety and mobility effects of AVs, CAVs, and con-
nected vehicles (CVs) in a major freeway in Orlando, Florida.
This study utilized the basic IDM to model the driving behavior
of AVs, and a modified IDM based on [48] for CAVs modelling.
In this study, a set of parameters of the IDM is adopted from
[18, 19] both for AVs and CAVs modelling (see Table 2).

Similarly, [33] investigated the impacts of commercially avail-
able ACC vehicles on traffic stability and throughput. In this
study, IDM is used to capture the CF behavior of human-driven,
theoretical ACC and commercially available ACC vehicles. The
parameters for both human-driven and theoretical ACC vehi-
cles are take from [44, 46], where for commercially available
ACC, set of calibrated parameters from the field experiment are
deployed in the simulation platform. [41] utilized a revised ver-
sion of IDM to study the effect of CAVs on freeway capacity.
The revised IDM is based on [18] and [47] to ensure realistic
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SADID AND ANTONIOU 1055

behavior, and to improve the driving safety of CAVs. This study
also uses the values of IDM parameters from the previous stud-
ies as depicted in Table 2. Similarly, [42] used IDM to model
the behavior of ACC vehicles. In this study, several parameter
settings of the IDM model are implied. In the base scenario,
the parameters of the model are taken from [18, 19, 44], where
other parameter settings are considered based on the commer-
cially available ACC vehicles behavior and are taken from [18,
36].

2.2 MIXIC model

MICroscopic Model for Simulation of Intelligent Cruise Con-
trol (MIXIC) first developed by [28] to model ACC and later
revised by the author in 2006 to incorporate CACC charac-
teristics [49]. The model assumes that the following vehicle
attempts to keep the relative speed to the leading vehicle
at zero and the space gap at the desired speed. Thanks to
the V2V communication, where certain driving information
such as position, speed, acceleration etc. of both following
and leading vehicles are exchanged. MIXIC model approxi-
mates the acceleration profile with two distinct components:
(i) the controlling component, which delivers reference values,
(ii) the vehicle model component, which converts the refer-
ence values into realized values. The reference acceleration
can be calculated based on the speed difference of the fol-
lowing vehicle (intended speed and current speed) denoted as
(are f ,Δv) or the gap and speed differences between the following
and leading vehicles symbolized as (are f ,d ). Minimum of both
acceleration references (are f = min(are f ,Δv , are f ,d )) is the final
acceleration reference value which is the input for the vehicle
control. Meanwhile, the model considers the comfort driving
behavior, and thus are f is limited to maximum acceleration of
2 m∕s2 and comfort deceleration of −3 m∕s2. The estimation
of the reference acceleration based on speed difference is as
follows:

are f ,Δv = k ⋅ (vint − v), (6)

where vint , and v are intended and current speed, respectively,
and k is the speed error factor constant.

The reference acceleration based on the speed and gap differ-
ences between the following and leading vehicles is calculated
as:

are f ,d = ka ⋅ ap + kv ⋅
(
vp − v

)
+ kd ⋅

(
r − rre f

)
, (7)

where ap and vp are the leading vehicle’s acceleration and speed,
respectively, r and rre f are the current and reference gap to
the leading vehicle as depicted in Figure 2, ka, kv , and kd

are the constant factors. The reference gap (rre f ) is defined
as: rre f = max(rsa fe, rsystem, rmin), where rsa fe, rsystem , rmin are the
safe following distance, following distance based on the sys-
tem time setting, and minimum following distance (set to 2 m),
respectively. The safe following distance is a function of the

FIGURE 2 MIXIC CF model.

deceleration capabilities of the following vehicle (d ) and the
leading vehicle (dp) and is expressed as:

rsa fe =
v2

2
⋅

(
1
dp
−

1
d

)
. (8)

Similarly, the following distance according to the system time
setting (time gap) is computed as: (rsystem = tsystem ⋅ v). If the lead-
ing vehicle is equipped with CACC, tsystem is set to 0.5 s, and
1.4 s otherwise.

[6] further developed a CAV model based on the MIXIC
model. The proposed model also considers the sensor detec-
tion ranges of CAVs; however, the model parameters remain
the same as the MIXIC model. According to [49], the model
parameters are chosen as: k = 1.0, ka = 1.0, kv = 0.58, and
kd = 0.1.

Several studies utilized MIXIC and developed models based
on MIXIC to conduct impact assessments of CAVs [6, 49–54].
For instance, [49] used MIXIC model to evaluate the influ-
ence of CACC on traffic flow characteristics. [39, 53] utilized
the enhanced MIXIC model based on [6] to mimic the driving
behavior of CAVs. This study approximates the driving behav-
iors of CAVs using CACC vehicles while cruising. Similarly,
[51] recently used MIXIC model with default parameters val-
ues to replicate the driving behavior of (C)AVs and conduct
impact assessments.

2.3 ACC and CACC models

[54] developed a control algorithm similar to MIXIC to esti-
mate the speed of an ACC-equipped vehicle in the next time
steps. The proposed control method consists of two modes: (i)
speed control mode, and (ii) gap control mode. The speed con-
trol mode aims to keep the speed of the following vehicle close
to the speed limit, whereas in the gap control mode the goal is to
maintain the desired gap between the two vehicles. According to
this approach, the acceleration of a vehicle under the following
conditions is controlled both by speed and gap and calculated
as:

a = kg(s − sd ) + ks (vd − v), (9)

where kg and ks are the gap and speed control constants, s is the
current space gap, (sd = td ⋅ v) is the desired distance between
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1056 SADID AND ANTONIOU

TABLE 3 ACC-CACC model parameters.

Model parameters Values

Desired time gap (td ) 1.5 s (ACC), 0.7 s (CACC)*

Max. acceleration (a) 2 m/s2

Max. deceleration (b) −2 m/s2

Constants (kg, ks ) −0.4, 0.25

*The average time gap of field test vehicles.

two vehicles, td is the desired time headway, and vd is the desired
speed. On the other hand, the acceleration of a vehicle under
free-flow situations is only controlled by the speed and it is
described as:

a f = max (min (ks (vd − v), a), b), (10)

where a and b are the maximum acceleration and deceleration,
respectively. The minimum of the CF acceleration and free-flow
acceleration is the decisive acceleration which is the input for
estimation of the vehicle’s speed in the next time step.

vt+Δt = vt + min{a, a f } ⋅ Δt . (11)

Utilizing the above model, [54] investigated the effects of
CACC system on freeway traffic flow with different market pen-
etration rates. In this study, certain parameters of the control
algorithm are based on set of assumptions, where the desired
time gap for ACC and CACC were extracted from the field
test (see Table 3). The ACC-CACC model by [54] was used in
[39, 53] to model the driving behavior of AVs and to study the
impact of (C)AVs on traffic flow and CO2 emissions. In [39],
the parameters of the model are adjusted as follows: td = 1.6 s,
a = 2 m/s2, and b = −3 m/s2.

[18] further improved the ACC model based on experimental
results. In this study, the maximum acceleration and deceleration
were limited to 1 and 2.8 m/s2, respectively. On the other hand,
[36] developed the ACC and CACC models utilizing experimen-
tal data from a field test of production vehicles. The model
consists of a gap regulation and gap closing controllers. The
simplified version of this model is applied in [18]. The gap error
and its derivative are used to estimate the vehicle speed on each
control cycle. The gap error of the n-th consecutive vehicle (en)
is expressed as:

en = xn−1 − xn − tw ⋅ vn, (12)

where xn−1 is the current position of the leading vehicle, xn and
vn are the current position and speed of the following vehicle,
respectively, and tw is the time gap. The goal of the gap reg-
ulation controller is to minimize the gap error by a constant
time-gap following policy. The speed of the following vehicle
is therefore estimated as:

vn = vnprev + kp ⋅ en + kd ⋅ ėn, (13)

FIGURE 3 Description of the Krauss CF model parameters.

where vnprev is the speed of the following vehicle in the previous
iteration, kp and kd are the coefficients adjusting the time-gap
error and its derivative (kp = 0.45, and kd = 0.25).

Several simulation-based impact assessment studies used the
ACC and CACC models to approximate the behavior of (C)AVs.
For instance, [55] used the ACC-CACC model of [54] to repre-
sent the ACC vehicle longitudinal behavior and to investigate
the effects of AVs on traffic safety and efficiency . In this study,
the maximum acceleration and deceleration were selected 2 and
−3 m/s2, respectively.

2.4 Krauss model

The Krauss CF model developed by Stephan Krauss in 1997 is a
space-continuous model [29]. Krauss model estimates the speed
of the vehicle without deriving it from the acceleration profile of
the vehicle. In Krauss model, the safe velocity of the following
vehicle is calculated as follows:

vsa fe (t ) = vl (t ) +
g(t ) − vl ⋅ tr

vl (t )+v f (t )

2b
+ tr

, (14)

where vl , v f are the speed of leading and following vehicles at
time t , respectively (see Figure 3), tr is the reaction time of the
driver, b is the maximum comfort deceleration of the vehicle,
and g(t ) is the gap between the following and leading vehi-
cles, which is computed as: g(t ) = xl (t ) − x f (t ) − L , (xl , x f

are the position of the leading and following vehicles, and L is
average length of a vehicle). Meanwhile, to estimate the desired
speed which is a decisive variable for determining the speed of
the vehicle in next time step, the model takes the minimum of
safe velocity, the road speed limit, and the vehicle’s maximum
capable speed to generate the desired speed of the vehicles,
expressed as:

vdes (t ) = min[vmax, v(t ) + a ⋅ Δt , vsa fe (t )]. (15)

Finally, the velocity and location of the vehicle at the next time
step are computed as follows:

v(t + Δt ) = max[0, vdes (t ) − 𝜂],

x f (t + Δt ) = x f (t ) + v(t + Δt ) ⋅ Δt
, (16)

where 𝜂 is the random perturbation (to capture the driving
imperfection) and Δt is the simulation time step. According
to [56], the 𝜂 value is assumed to be 0.5 for human-driven
vehicles and 0 for CAVs. In addition, several studies assumed
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SADID AND ANTONIOU 1057

TABLE 4 Krauss model’s parameters for different levels of automation
[57].

Automation

level

Mingap

(m)

Accel

(m/s2)

Decel

(m/s2) Sigma Tau (s)

Level 0 2.5 2.6 4.5 0.5 1

Level 1 2 3.05 4.5 0.4 0.95

Level 2 1.5 3.5 4.5 0.3 0.9

Level 3 1.25 3.6 4.5 0.2 0.8

Level 4 0.75 3.7 4.5 0 0.7

Level 5 0.5 3.8 4.5 0 0.6

sigma = driving imperfection factor, Tau = reaction time.

Krauss model’s parameters for (C)AVs [57]. These assumptions
are often done based on the level of automation as presented in
Table 4.

The findings of literature review depict that attempts have
been made to study the impacts of (C)AVs using Krauss model
[57–59]. [59] studied the effects of CAVs on traffic flow using
the Krauss model. This research distinguishes the human-driven
vehicles and CAVs by the reaction time and driving imperfection
factor (sigma). The reaction time and sigma for human-driven
vehicles are set to 1 s and 0.5, where for CAVs, 0.5 s and 0,
respectively. Similarly, [58] investigated the impact of CAVs on
signalized and unsignalized intersections safety. In this study,
Krauss model is used to replicate the driving behavior of CAVs,
assuming that CAVs have perfect driving behavior (sigma = 0)
and can drive very close to the leading vehicle (mingap= 0.5 m),
where sigma and mingap for human-driven vehicles are set to
0.5 and 1.5 m, respectively.

2.5 Wiedemann model

The Wiedemann CF model originally formulated by Reiner
Wiedemann in 1974 (also called Wiedemann 74 model) is one
of the most widely used CF models. The model is the default
CF model in PTV Vissim microsimulation tool. In this model,
the term “perceptual threshold” is used to define threshold
values for actions, that a driver perceives and responds to it.
The perceptual threshold is a function of space headway and
speed difference between the leading and following vehicles.
The threshold values differentiate the driving regime into four
parts: (i) free-flow, (ii) approaching slower vehicle, (iii) car fol-
lowing, and (iv) emergency braking regimes. The distribution of
these thresholds is shown in Figure 4, and they are defined as:

∙ AX: The desired spacing between the front sides of two
vehicles in standstill.

∙ BX: The desired minimum following distance, which is a
function of AX, the safety distance, and the speed of the
vehicle.

∙ SDV: It is the action point, where a driver consciously
notices that he/she is approaching a slower leading vehicle;
SDV increases with increasing speed difference between the
leading and following vehicles.

FIGURE 4 Wiedemann CF model [27].

∙ CLDV: It stands for closing delta velocity. Its an additional
threshold that considers additional deceleration by applying
the brakes.

∙ OPDV: The action point where a driver observes that
the leading vehicle is driving fast, and thus he/she starts
acceleration.

∙ SDX: The maximum distance when following a vehicle,
which is approximately 1.5–2.5 times BX.

The model assumes that the driver acts differently in each
regime, and therefore, the acceleration is estimated in each
regime separately. According to the Figure 4, when a faster
vehicle approaches relatively a slower vehicle, the relative dis-
tance between vehicles reduces until the deceleration perceptual
threshold (SDV) is passed (point A in Figure 4). The driver will
start deceleration to match the leading vehicle’s speed. How-
ever, the driver also attempts to increase the space until the
acceleration perceptual threshold (OPDV) is reached at point
B. Then, the driver begins again the acceleration to reach the
leading vehicle’s speed. This process continuous in the uncon-
scious reaction zone until it crosses the SDX line and reaches
back to no reaction zone.

Besides Wiedemann 74 model, Rainer Wiedemann proposed
the Wiedemann 99 CF model. Wiedemann 99 model was ini-
tially developed for replicating driving behavior on freeways,
however, its application is not limited and several recent studies
utilized it for urban traffic. Wiedemann 99 model is often used
to represent the driving behavior of (C)AVs. In Wiedemann 99
model, besides the physical signs of driving, psychological reac-
tions (such as observed width of the leading vehicle, visual angle
change etc.) are also considered. The parameters of this model
have been already extracted within the CoEXist project to cap-
ture the driving behavior of (C)AVs, however, the calibration of
these parameters is based on a few AVs trajectories. The Wiede-
mann 99 model comprises 10 parameters, which are defined in
Table 5.

[60] utilized trajectories of three test AVs (collected
within CoEXist project), where two of them were driven
autonomously on public roads and under normal traffic con-
ditions to calibrate the parameters of the Wiedemann 99 model
(see Table 6). Two longitudinal control communications such
as CACC (which communicates with the leading vehicle) and
degraded CACC referred as dCACC (without communication
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1058 SADID AND ANTONIOU

TABLE 5 Wiedemann 99 CF model parameters.

Parameters Description

Default

value

CC0 Standstill distance: desired minimum distance
between leading and following vehicles [m].

1.50

CC1 Time gap: desired headway time between leading
and following vehicles [s].

0.90

CC2 Following distance variation: additional distance
over the desired safety distance, where at this
point following vehicle recognizes a slower
leading vehicle [m]

4.00

CC3 Threshold for entering the deceleration zone: The
time before a vehicle begins decelerating to the
safety distance [s].

−8.00

CC4 Negative following threshold: negative speed
variation between following and leading
vehicles (the lower the value, the more sensitive
the following vehicle’s driver)

−0.35

CC5 Positive following threshold: a positive speed
variation between the following and leading
vehicles (the positive value of CC4).

0.35

CC6 Speed dependency of oscillation: influence of
distance of speed variation (the larger the value,
the higher the speed oscillation with increasing
distance).

11.44

CC7 Oscillation acceleration: minimum variation of
acceleration or deceleration while following.

0.25

CC8 Standstill acceleration: desired acceleration when
starting from standstill [m/s2].

3.50

CC9 Acceleration at 80 km/h [m/s2] 1.50

TABLE 6 Wiedemann 99 CF model parameters for AVs modelling
[60–62].

Model

parameters

AV with

CACC

AV with

dCACC

AV

cautious

AV

normal

AV

aggressive

CC0 4 6 1.5 1.5 1

CC1 0.3, 0.6, 1.0 1.0 1.5 0.9 0.6

CC2 0 0 0 0 0

CC3 −40 −40 −10 −8 −6

CC4 0 0 −0.1 −0.1 −0.1

CC5 0 0 0.1 0.1 0.1

CC6 0 0 0 0 0

CC7 0.25 0.25 0.1 0.1 0.1

CC8 3.5 3.5 3 3.5 4

CC9 1.5 1.5 1.2 1.5 2

with the leading vehicle) were installed on AVs in this pilot
project. Meanwhile, the CoEXist project proposed modified
parameters of AVs in the Wiedemann 99 model to capture dif-
ferent potential driving styles of AVs namely: AV cautious, AV
normal, and AV aggressive as presented in Table 6.

Many articles utilized the Wiedemann 99 model with the
proposed parameters by PTV Vissim to study the impacts of

(C)AVs [1, 31, 32, 63–65]. Worth-mentioning that two extra
driving behavior parameters are introduced within PTV Vis-
sim simulation tool namely: the maximum look-ahead distance,
and number of interaction vehicles. First, maximum look-ahead
distance is the maximum area around the vehicle that can be
detected by the radar and ultrasonic sensors of the AV. This
parameter is usually assumed to be between 200 and 300 m.
Second, the number of interaction vehicles refers to the num-
ber of preceding vehicles that the vehicle perceives downstream
or adjacent to it on the same link to interact with them.

CF models for (C)AVs are not limited to established mod-
els such as IDM, MIXIC etc., several attempts have been
made to propose new models, especially for ACC and CACC
equipped vehicles. These proposed CF models are designed
in such a way as to achieve certain objectives. Depending
on various objectives, these models generate the velocity or
acceleration profile of a vehicle to optimize specific pol-
icy targets including efficiency, safety, string stability, energy
consumption, comfort and more [52, 66–75]. For instance,
in a recent study, [66] developed a novel ACC algorithm
based on model predictive control (MPC) and active dis-
turbance rejection control (ADRC). This study considered
driving safety, tracking capability, fuel economy, and com-
fort as the main policy targets for the optimization module.
Similarly, [52] proposed a predictive cruise control approach
to improve driving safety and comfort. In this study, the pro-
posed model generates the acceleration profile of the following
vehicle using the finite horizon constrained optimal control
problem. In addition, [69] developed an ACC algorithm based
on MPC and constraints softening. The aims is to optimize
the CF requirements, safety, comfort, and economy. A detailed
review of these microscopic models for CAVs is conducted by
[22]. Since these methods are not integrated in microscopic sim-
ulation tools and require high computational resources, they are
not widely used for impact assessment studies. Hence, a revisit is
not the scope of this paper. In Table 7, the summary of reviewed
simulation-based studies is presented, which describes specific
information on the used CF model, vehicle type, and descrip-
tion of the model parameters. The table is sorted based on the
publication date of the citations, which are displayed in reverse
chronological order (newest to oldest).

To summarize, in most (C)AVs related studies, IDM, MIXIC
and their modified versions are frequently used for modelling
of (C)AVs. The Wiedemann 99 and Krauss models are also
used for (C)AVs impact assessments. Depending on differ-
ent CF model, researchers differentiate the driving behavior
of (C)AVs from human-driven vehicles for time gap, reaction
time, headway, and driving imperfection factor. Among these
parameters, time gap is the most sensitive and crucial parameter
which distinguishes (C)AVs from human-driven vehicles. When
using IDM, it is assumed that (C)AVs could drive closer to the
leading vehicle by around 50% less than the human-driven vehi-
cles. The time headway is set 0.6 s in majority of studies for
(C)AVs where this value is more than 1 s for human-driven vehi-
cles. Considering other parameters of IDM model, researchers
expected the same driving capabilities as in human-driven vehi-
cles. Hence, maximum acceleration and comfort deceleration
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SADID AND ANTONIOU 1059

TABLE 7 Summary of reviewed simulation-based studies: CF model, vehicle types, and description of the adapted parameters.

References Year CF model Vehicle type Description

[58] 2022 Krauss, IDM and
CACC

CAV Minimum headway, minimum gap, and acceleration values for all models are taken
from [61], where deceleration value for CAVs is taken from [76].

[17] 2021 IDM CAV The parameters of the model are taken from literature as in Table 2.

[33] 2021 IDM ACC vehicles The parameters for both human-driven and theoretical ACC are take from [44, 46],
where for commercially available ACC, set of calibrated parameters from the field
experiment are deployed in the simulation platform.

[50] 2021 CACC AV & CAV The parameters of the model are adopted from [49].

[37] 2021 Modified IDM AV A reaction time variable is added in the original IDM model to distinguish AVs from
human-driven vehicles. The parameters are adopted from literature where the time
headway is assumed 1s for AVs.

[59, 77] 2021 Krauss AV Adjustments of the reaction time (𝜏 = 0.5) to mimic AVs.

[51] 2021 MIXIC AV & CAV The default model parameters based on [49] are used.

[78] 2021 Krauss, IDM and ACC AV Trajectories of human-driven vehicles were used to estimate the parameters of the
models and use it for AVs.

[38] 2021 Improved IDM CAV The model considers multiple front and rear vehicles information to generate the
following vehicle’s acceleration. The model parameters are set based on
assumptions.

[41] 2020 Modified IDM AV The parameters of the model are set as in Table 2, where the time headway between a
CAV and human-driven vehicles is assumed 0.9s.

[30] 2020 IDM CAV The parameters’ values of the model are selected from Table 2.

[76] 2020 Krauss CAV The emergency deceleration value was set based on a study by [79], where the values
of minimum gap, maximum acceleration, and time headway are taken from [61].

[39, 53] 2020, 2018 ACC-CACC and
enhanced MIXIC

AV & CAV The parameters of ACC-CACC model are adopted from [54], where for enhanced
MIXIC model the parameters are taken from [6].

[64] 2019 Wiedemann 99 CAV The parameters of the Wiedemann 99 model are set as in Table 6, where the time
headway is assumed 0.6s.

[60] 2019 Wiedemann 99 AV The parameters of the Wiedemann 99 model are derived from empirical data (see
Table 5, AV with CACC and AV with dCACC).

[32] 2018 Wiedemann 99 AV The parameters are adopted from [1], where some modifications to the values of the
parameters are set based on the assumptions.

[55] 2018 ACC-CACC and
MIXIC

AV & CAV ACC-CACC model based on [54] with default parameters, and enhanced MIXIC
model of [6] are utilized.

[31] 2018 Wiedemann 99 AV Modifications of the parameters of the model based on [61] to capture cautious and
aggressive behaviors of AVs.

[57] 2018 Krauss AV The values of the model parameters are set based on assumptions.

[80] 2018 CACC CACC The parameters of CACC model are adopted from [18, 36].

[48] 2018 IDM CAV The default parameter values are modified from [19].

[42] 2017 IDM ACC The parameters the model are taken from [18, 19, 44, see Table 2].

[43] 2017 Modified IDM AV The enhanced IDM model includes multiplication factors for different traffic
situations. The parameters are modified from [46, 81].

[6] 2016 IDM and enhanced
MIXIC

AV & CAV The model parameters are chosen based on recommendations of [49].

[1] 2016 Wiedemann 99 AV The parameters of the model are adopted from [61], where the time headway (cc1) of
the model is assumed (0.3s) for AVs.

[54] 2012 ACC-CACC ACC & CACC Parameters of the model are used from Table 3

[19] 2010 IDM with constant
acceleration
heuristic (CAH)

ACC The coolness factor of the CAH is set to 0.99, where the parameters of IDM are
taken from Table 2.

[46] 2007 Modified IDM ACC The modified IDM considers different driving situations using some multiplication
factors (see Table 1), the other parameters remain as in Table 2.

[49] 2006 MIXIC CACC The model parameters are set as k = 1.0, ka = 1.0, kv = 0.58, and kd = 0.1.
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1060 SADID AND ANTONIOU

are identical for both (C)AVs and human-driven vehicles. Sim-
ilarly, for MIXIC model, it is assumed that CAVs could drive
with lower time gaps than human-driven vehicles. When a CAV
follows another CAV, the time gap could be around three times
lower than the condition when a CAV follows a human-driven
vehicle. In ACC-CACC models, AVs are differentiated from
CAVs by the time gap parameter. It is expected that due to
the communication capabilities of CAVs and faster analysis of
the surrounding environment, they could drive twice closer
to the leading vehicle than the AVs.

Regarding the Krauss model, (C)AVs are differentiated from
human-driven vehicles by two main parameters namely: reaction
time and driving imperfection factor (sigma). Considering the
reaction time, it is assumed that in comparison to human-driven
vehicles where there is delay between the perception and reac-
tion to a driving task, (C)AVs do not require extra time to react.
The reaction time of (C)AVs is set to zero, where for human-
driven vehicles it is more than 1 s. Meanwhile, it is expected
that (C)AVs have perfect driving behavior (sigma= 0) and never
make mistakes, whereas for human-driven vehicles this parame-
ter is set to 0.5. Finally, Wiedemann model, the driving behavior
of AVs is expected to be diverse, and three different driving
styles are proposed (cautious, normal and aggressive). Differ-
ent driving styles are categorized mainly based on the standstill
distance and time gap. It is assumed that AV with aggressive
driving style might have smaller distance to the leading vehicle
and lower time gap. Although, many studies have the simi-
lar assumptions for potential driving behavior of (C)AVs, still
there is not a concrete practical basis for the exact values of
the assumed parameters. Thus, (C)AVs might behave differently
than what are expected.

3 DATA-DRIVEN MODELS

With the recent advancement in collecting high-fidelity traffic
data, more accurate characteristics of driving could be achieved.
Data-driven models provide the opportunity to approximate the
CF behavior of human-driven vehicles as well as (C)AVs from
field data. In contrast to mathematical models which are sim-
plified and contain a small number of parameters, data-driven
models have the flexibility to incorporate additional parameters
that impact the driving behavior. Data-driven models require
mass field data for verification and to ensure accuracy. Previ-
ous studies utilized human-driven vehicles’ field data to verify
data-driven models. Since the field data for (C)AVs are limited,
there are explicitly few studies related to data-driven models
for (C)AVs. Therefore, in this section, the aim is to review the
proposed methodologies. Of course, these proposed methods
could also be used for (C)AVs, when field data for (C)AVs are
available. Studies relevant to the data-driven CF models can be
divided into four main types: nonparametric models, artificial
neural network, reinforcement learning, and deep reinforce-
ment learning. However, many approaches have been proposed
to combine mathematical models with data-driven models.

Nonparametric regression models are capable of fitting a
large number of functional forms with no or weak assumptions.

Attempts have been made to approximate the CF behavior
using nonparametric methods [82, 83]. [82] developed a sim-
ple nonparametric CF model using the k-nearest neighbor
approach. The k-nearest neighbor (kNN) is one of the simplest
nonparametric method, which assumes the similarity between
historical data/cases. In [82] the proposed model generates the
average of the most similar driving cases. Similarly, [83] intro-
duced a nonparametric CF model utilizing the locally weighted
regression method, the Loess (locally estimated scatterplot
smoothing) model. Similarly, [84] developed a nonparametric
CF model to generate acceleration sequence in the next time
step using a combination of the hidden Markov model (HMM)
and Gaussian mixture regression (GMR). HMM is a stochastic
model which is used to represent randomly changing systems.
Since CF behavior has stochastic characteristics, [84] used the
HMM to estimate the dependencies between the driving situa-
tion and the vehicle’s acceleration. GMR on the other hand is
utilized to classify different driving situation and vehicle’s accel-
eration based on the probability distribution. Meanwhile, [85]
proposed a CF model based on support vector regression to
investigate the acceleration and deceleration asymmetry of driv-
ing behavior in traffic congestion environments. The model was
used to obtain the equilibrium state of the vehicle during the
CF process.

Several articles proposed CF models using artificial neural
networks (ANNs) [86–92]. For instance, [88] introduced a CF
model based on an ANN with one hidden layer. The pro-
posed ANN takes speed, speed difference, and gap distance as
inputs and generates the acceleration profile in the output layer.
[89] further improved the model by considering the instanta-
neous reaction time delay as an extra input. In contrast to these
conventional neural network-based models, recent studies pro-
posed models considering several other influential inputs as well
as the temporal variation of the data to accurately approximate
driving behavior.

[93] and [94] proposed CF models using deep determinis-
tic policy gradient (DDPG) algorithm. DDPG is a model-free
method for learning continuous actions. In DDPG, two sepa-
rate actor and critic networks are used. In [93] both networks
are comprised of three layers: an input layer, one hidden layer,
and an output layer. In the actor network, the input layer takes a
state containing the speed of the following vehicle, the spacing
between the following and leading vehicles, and the speed differ-
ence as inputs, where the following vehicle’s acceleration is the
output as a continuous action. In the critic network, the input
layer includes both the state (same as the actor network) and the
action (acceleration of the following vehicle), where the output
layer is a generated scalar value. Different loss functions were
considered in this study to maximize the output of the critic
network by changing the action space of the actor network.

Similarly, [95] used real-world driving data gathered in the
Next Generation Simulation (NGSIM) project to evaluate
the performance of DDPG based CF model. [96] developed
an encoder-decoder architecture-based CF model with trans-
former block to predict a long-sequence CF trajectories. The
encoder uses multi-head self-attention to generate a mixed rep-
resentation of past driving context utilizing historical speed
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SADID AND ANTONIOU 1061

and spacing data as inputs. The decoder takes the future lead-
ing vehicle speed as input and outputs the predicted future
following vehicle speed profile in a generative way.

Since CF behavior of a vehicle follows a sequential pattern,
several studies developed CF models based on Recurrent neural
network (RNN) architecture [97–103]. [97] proposed a RNN
model with the input layer containing the gap, speed differ-
ence, and the following vehicle’s speed in different time steps
(as a sequence), where the output is the predicted acceleration
of the following vehicle in the next time step. [98] on the other
hand, applied Gated Recurrent Unit (GRU) neutral networks.
GRU is a temporal block that captures the temporal variation
of data and predicts the output using inputs of several past time
intervals. In the proposed model of [98], the input layer con-
tains speed, the speed difference, and position differences in
few last time intervals, where the output is the estimated speed
in the next time interval. [99] proposed a CF model considering
asymmetric driving behavior using Long Short-term Memory
(LSTM) neural network. In comparison to GRU, LSTM consid-
ers longer sequential data and has more parameters than GRU,
however, both methods are used to mimic the temporal varia-
tion of data. In [99], the input layer in different time intervals
contains information such as the speed of the following vehicle,
the speed difference to the leading vehicle, and the gap between
vehicles in the current time step, whereas the output layer pre-
dicts the speed of the following vehicle in the next time step.
On the other hand, [103] further enhanced the LSTM-based
CF model by considering traffic oscillation in a platoon level.
According to [103] the direct application of IDM/LSTM based
models to predict the driving behavior in next time step in a
platoon will induce an accuracy problem so-called error propa-
gation. The prediction error propagates and accumulates both
in temporal and spatial dimensions. Hence, in this study, an
interconnected LSTM-based CF model is proposed.

[101] proposed a velocity control framework to address the
phantom traffic jam using a DDPG equipped with a LSTM
temporal block and attention mechanisms. In this framework,
the spatial-temporal graph extracts information such as veloc-
ity and gap of multiple vehicles ahead in several time intervals,
where the attention mechanism characterizes the interaction
of the vehicle, and finally, the LSTM structure captures the
driving behavior through time. This framework is specifically
designed for CAVs, where a CAV can obtain driving informa-
tion of multiple vehicles ahead through V2V communication.
In addition, [102] further utilized LSTM architecture with a
quantile-regression method. In this proposed framework, the
output of the LSTM is not only a single output but a series
of outputs as the different quantile of actions. For a given traf-
fic state, the model predict set of actions, where kernal density
estimation (KDE) is used to to estimate the continuous action
distribution. The main advantage of this model is that it can
obtain the driving behavior stochasticity.

[104] used generative adversarial imitation learning (GAIL)
together with a temporal block-GRU to capture the CF behav-
ior. The model consists of generator and discriminator parts.
The generator scheme includes an actor critic structure (simi-
lar to DDPG) and extracts set of state-action pairs considering

the temporal variation of the input states. The discriminator
part compares the real state-action pairs with the generated one
and updates the reward of the CF environment in an iterative
way until the maximum reward is achieved. A similar method is
used by [105] to develop a CF model which also considers the
influence of driving time on driving behavior.

The findings of literature review show that several stud-
ies developed models by combining the mathematical models
with the data-driven approaches. For instance, [106] proposed
a novel CF model by combining a mathematical-based model
(Gipps model) with a machine learning-based model (Back-
propagation NN). This study assumes that the proposed model
addresses both the lower accuracy of mathematical model and
the shortcomings of machine learning-based models for the
control of AVs. In the proposed method, the prediction values
of machine learning-based and mathematical-based models are
combined by weight values and the aim is to find the optimal
combination weight value increasing the accuracy of the model.
Moreover, [107] developed a family of CF models by integrat-
ing the parameters of mathematical CF models into a neural
network. The aim is to take the advantage of mathematical mod-
els (data-efficient) and the data-driven model (generalizable).
The loss function of the NN was designed in such a way to
contain both the deviation from the data and the mathemati-
cal model [i.e. IDM, OVM (optimal velocity model)]. Similarly,
[108] proposed a fusion modelling method, which combines the
data-driven LSTM model with IDM. The adaptive Kalman fil-
ter algorithm is adopted to achieve an optimal estimation of
the state of the system (CF behavior) based on both LSTM
and IDM. The findings of this study proved that the combined
LSTM-IDM model outperforms the accuracy of the IDM and
LSTM models.

In summary, data-driven models could accurately replicate
the CF behavior of (C)AVs. There are different methods pro-
posed in the literature. However, we found that the recent
deep-learning based models such as DDPG, RNN, GRU,
LSTM, DDPG equipped with a LSTM, and GAIL with GRU
outperform mathematical CF models, nonparametric models,
and conventional neural network-based models and could be
potentially used for modelling CF behavior of (C)AVs. How-
ever, most of these proposed models are not integrated into
a simulation tool and hence they are not used in impact
assessment studies. Table 8 presents the summary of reviewed
data-driven models, which describes specific information on the
developed CF model, model input and output, utilized dataset,
and description of the model.

4 SIMULATION-BASED IMPACT
ASSESSMENT AND KPIs

A large spectrum of simulation-based studies focus on the
identification of potential impacts of (C)AVs on the trans-
portation system. Review of previous studies shows that an
enormous amount of researches conduct impact assessments
of AVs and CAVs for safety, mobility, and environmental effects
(e.g. energy consumption and emissions). Key performance
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1062 SADID AND ANTONIOU

TABLE 8 Summary of reviewed data-driven models: CF model, input, output, dataset, and description of the model*.

References Year Model Input Output Dataset Description

[82] 2015 kNN s,△v, v v NGSIM In this study, k-nearest neighbor (KNN) generates the average of the most
similar driving cases. The speed prediction in the next time step is based on
the similar historical cases.

[83] 2015 Loess s, v v Naples The proposed method captures the releshionship between the speed of the
following and leading vehicles, distance between them with the speed of
the following vehicle in next time step (reaction time). Depending on the
value of reaction time, the speed of the following vehicle is predicted.

[84] 2016 HMM +
GMR

s, v a Driving trajectories A combination of the hidden Markov model (HMM) and Gaussian mixture
regression (GMR) to generate a sequence of acceleration in the next time
step. HMM mimic the pattern between the driving situation and the
vehicle’s acceleration, where GMR generates the probability distribution of
the acceleration to capture the stochasticity of driving behavior.

[85] 2013 SVR s, v,△v v NGSIM The support vector regression (SVR) performs a linear regression by applying
structural risk minimization (SRM) principle, to minimize the empirical risk
and model complexity.

[86] 2003 ANN s,△v, vd , v a Driving trajectories This study utilized a simple ANN model with two hidden layers. The model
inputs contains the following vehicle’s desired and current speeds, the
distance between leading and following vehicles, as well as their speed
difference, where the output is the following vehicle’s acceleration.

[87] 2007 ANN s, v v Driving trajectories The proposed one hidden-layer ANN model in this study predicts the speed
of a vehicle and classifies the driving conditions into five categories namely:
free driving, approaching, following I, following II, and danger. The results
are compared with the Gipps CF model.

[88] 2011 ANN v, s,△v a NTDS Similar to [87], this study proposed an ANN-based model to predict the
acceleration of the vehicle in the next time step. The results are compared
with the Gazis-Herman-Rothery (GHR) CF model.

[89] 2012 ANN v,△v, s, 𝜏 a NGSIM The proposed model considers the instantaneous reaction delay of the driver
as an extra input to predict the acceleration of the following vehicle.

[90] 2013 ANN s, v,△v v NGSIM The model is similar to [89], but predicts the speed of the following vehicle in
next time step. The next time step depends on the reaction delay which is
estimated by another neural network model.

[91] 2014 ANN s, v v NGSIM This study used a local neuro-fuzzy model to predict the speed of a following
vehicle at time t based on the input information at time (t − 𝜏), where 𝜏
indicates the reaction time of a vehicle. In this study, the CF behavior of
heavy vehicles is considered.

[92] 2014 ANN s,△v a Trajectory data This study utilized a feed-forward ANN similar to [89], with one hidden layer.
However, the input information contains the speed difference, and distance
to the leading vehicle for the last three time intervals. The output of the
model is the acceleration of the following vehicle in the next time step.

[93] 2018 DDPG s, v,△v Q Trajectory data In DDPG, two separate actor and critic networks are used. Both networks
contain an input, one hidden, and an output layer. The actor-network
generates the action (acceleration of the following vehicle), whereas the
critic network exports a scalar reward value. The aim is to adjust the action
in such a way as to maximize the reward.

[94] 2019 DDPG v, P v Simulation data In this study, DDPG same as in [93] is utilized to generate the time-optimal
velocity of a vehicle.

[95] 2020 DDPG s, v,△v Q NGSIM In this research, the reward function of the DDPG contains various features
including safety, efficiency, and comfort. The model adjusts the output of
the actor network (acceleration) aiming to maximize the reward function.

[96] 2022 Encoder-
decoder

s, v v SH-NDS In this framework, the encoder uses multi-head self-attention to generate a
mixed representation of past driving context, where the decoder takes the
future leading vehicle speed as input and predicts the future following
vehicle’s speed.

[97] 2017 RNN s,△v, v a NGSIM The RNN model utilized in this study takes the sequence of the input
information in different time steps and predicts the acceleration in the next
time step.

(Continues)
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SADID AND ANTONIOU 1063

TABLE 8 (Continued)

References Year Model Input Output Dataset Description

[98] 2018 GRU s,△v, v v NGSIM The GRU temporal block is used to include the temporal variation of the
input information in predicting the future speed profile.

[99] 2018 LSTM s,△v, v v NGSIM This study utilized LSTM to capture the temporal variation of the input
information. In comparison to GRU, LSTM considers longer sequential
data.

[100] 2020 LSTM s,△v, a a Waymo The model contains an encoder-decoder structure to learn the information
hidden in the input features. This study uses the AV trajectories for training
and validation of the model.

[101] 2021 LADDPG s,△v a NGSIM In this study, a DDPG equiped with LSTM and attention mechanisms is
proposed. In this framework, the spatial-temporal graph extracts
information such as velocity and gap of multiple vehicles ahead in several
time intervals, where the attention mechanism characterizes the interaction
of the vehicle, and finally, the LSTM structure captures the driving behavior
through time.

[102] 2021 QRLSTM s,△v, v a NDD This study utilized LSTM architecture with a quantile-regression method. The
output of the model is not only a single output but a series of values as the
different quantiles.

[103] 2020 Int-LSTM x, v, a a NGSIM The interconnected-LSTM is used to solve the error propagation problem of
a basic LSTM model.

[104] 2020 GAIL s,△v, v a NGSIM The proposed model consists of generator and discriminator parts. The
generator scheme includes an actor-critic structure (similar to DDPG) and
extracts a set of state-action pairs considering the temporal variation of the
input states. The discriminator part compares the real state-action pairs
with the generated one and updates the reward of the CF environment in
an iterative way until the maximum reward is achieved.

[105] 2020 GAN s,△v, v, a x, v, a Didi The proposed model is similar to [104], however, it also includes the influence
of driving time on driving behavior. The model contains the driver’s
reaction time model and the CF algorithm.

[106] 2019 Gipps +
ANN

s,△v, v, a x, , v, a NGSIM In this research, a novel CF model by combining a mathematical-based model
(Gipps model) with a machine learning-based model (Backpropagation
ANN) is proposed. This study assumes that the proposed model addresses
both the lower accuracy of mathematical model and the shortcomings of
machine learning-based models for the control of AVs.

[107] 2021 IDM, OVM
+ANN

s,△v, v a NGSIM This study developed a family of CF models by integrating the parameters of
mathematical CF models into a neural network. The aim is to take the
advantage of mathematical models (data-efficient) and the data-driven
model (generalizable). The loss function of the NN was designed in such a
way to contain both the deviation from the data and the mathematical
model [i.e. IDM, OVM (Optimal velocity model)].

[108] 2019 IDM +
LSTM

s,△v, v a Trajectory data This study proposed a fusion modelling method, which combines the
data-driven LSTM model with IDM. The adaptive Kalman filter algorithm
is adopted to achieve an optimal estimation of the state of the system (CF
behavior) based on both LSTM and IDM.

x, s, v, a are the position, spacing, velocity, and acceleration of a vehicle, respectively. △v is the velocity difference between the following and leading vehicles, and 𝜏 is the reaction time.
*The studies are presented based on their categories from nonparametric models, artificial neural network, reinforcement learning, deep reinforcement learning and combined mathematical
and deep learning models.

indicators (KPIs) used in these studies vary depending on the
scope of the study. However, the identification of the most
used KPIs and impact areas are very important for future
studies in this field. Table 9 presents a brief description of
all studies reviewed in this section, which explains specific
information on the impact area, assessment criteria, KPIs, and
findings. The table is sorted based on the publication date of
the citations, which are displayed in reverse chronological order
(newest to oldest). In the following paragraphs, we present

a detailed explanation of selected articles, considering various
impact areas together with the utilized KPIs in simulation-based
studies.

4.1 Mobility

Mobility impact assessments in the context of microsimulation-
based studies refers to the traffic flow efficiency. The scope
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1064 SADID AND ANTONIOU

TABLE 9 Summary of reviewed simulation-based studies including their assessment criteria, KPIs, network type and results.

References Year Assessment criteria KPIs Network Results

[58] 2022 Traffic safety Number of conflicts Intersection The higher the PRs of CAV, the safer the intersections. A 100% PR
of CAV could totally ignore the number of crossing conflicts in
both signalized and unsignalized intersections.

[50] 2021 Traffic efficiency Capacity, queue length,
total travel time

Urban road A network with 100% PRs of CACC vehicle, increases the capacity,
reduces the queue length in congested sections, and decreases the
total travel time.

[37] 2021 Efficiency, throughput Travel time, flow Link Higher PRs of AVs, reduce the travel time and increase the
throughput. With 100% PR, the travel time reduces by 50%.

[17] 2021 Traffic safety and
efficiency

TTC, number of
conflicts, travel time

Freeway AVs and CAVs improves travel time, however, CAVs outperform
AVs, and at least 20% PR of CAVs and 40% PRs of AVs are
required to reduce travel time. A system with both AVs and CAVs
could also significantly improve safety. With high PRs of AVs and
CAVs, number of conflicts reduced.

[33] 2021 Throughput and
stability

Traffic flow, density Freeway The performance of commercially available ACC vehicles is
different than theoretical ACC vehicles. Commercially ACC
vehicles reduces the bottleneck capacity and string stability.

[78] 2021 Traffic efficiency Mean speed, travel
time

City center With a 50% PR of AVs under different driving styles, mean speed of
the network drops and travel time increases.

[51] 2021 Throughput Speed, and traffic flow Freeway Under current traffic demand, a fully human-driven traffic shows
better throughput, however, with a double demand, CAVs show
the best performance.

[77] 2021 Flow analysis Traffic flow, travel time City Traffic throughput improves by around 22% in a situation with
automated vehicles in comparison to non-automated condition.
Travel time reduces by 13.5% and 16.4% in partially and fully
automated conditions, respectively.

[41] 2020 Capacity analysis String stability, lane
capacity

Freeway Lower PRs of CAVs have negative impacts on the capacity, where
100% PR increases the capacity around 70–100% depending of
the freeway speed limits.

[30] 2020 Traffic efficiency Travel time Freeway With higher PRs of CAVs, average travel time decreases. This
reduction is more obvious when PRs of CAVs increases under
heavy traffic flows.

[76] 2020 Capacity analysis Flow, density and
speed

Urban road Higher PRs of AVs increases the capacity. With a 100% PRs of AVs,
the maximum capacity increases by 16–23%. Lower PRs of AVs
does not show significant improvements, thus at least 40% PR is
required.

[39] 2020 Traffic flow and
emissions

Throughput and CO2
per kilometer

Highway A 100% PR of AVs reduce the average speed and flow, and generate
the highest emission per kilometer. Whereas, CAVs improve the
capacity of the network. However, in network wide, the total
emission produced by AVs, and CAVs are not significantly
different than human-driven vehicles.

[64] 2019 Safety analysis Number of conflicts Motorway With a 100% PR of CAVs, more than 90% reduction in total
number of conflicts is achieved.

[32] 2018 Safety Number of conflicts Roundabout The higher the PRs of AVs results in increased number of conflicts.
Negative safety impacts of AVs on roundabout does not change
even with different design of roundabouts.

[80] 2018 Capacity analysis Flow, string stability Freeway There is a quadratic relationship between the freeway capacity and
PRs of CACC vehicles. At 100% PR, the freeway capacity is
around 90% higher than a 0% PR.

[55] 2018 Throughput and
emissions

Average harmonic
speed, density, CO2
and NOx per
kilometer

Ring road With high PRs of AVs, the average speed of the network decreases
and the density increases, where emissions also increases. In low
PRs, CAVs have small negative impacts on average speed, density
and emissions, where for high PRs, CAVs improves the situation.
The best performance of CAVs is achieved with high demand
scenarios.

[53] 2018 Throughput Harmonic average
speed

Ring road In comparison to human-driven vehicles and with the constant
demand, any PRs of AVs do not improve the traffic flow
efficiency, however CAVs enhance the condition. In low traffic
demands, human-driven vehicles always outperform CAVs.

(Continues)
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SADID AND ANTONIOU 1065

TABLE 9 (Continued)

References Year Assessment criteria KPIs Network Results

[31] 2018 Safety analysis Number of conflicts Signalized
intersection
and
roundabout

Higher PRs of AVs with both driving styles (cautious and
aggressive) could reduce the number of conflicts around 65% in
signalized intersection and roundabout.

[42] 2017 Safety analysis TET, TIT Freeway Driving behavior of ACC is a decisive factor for the safety impacts.
Larger time headway and increased emergency deceleration
capability results in improved safety.

[109] 2017 Traffic efficiency Travel time, fuel
consumption

On-ramp With a 100% CAV PR, fuel consumption reduces by an average of
35% with different traffic flows. With high traffic flow, total travel
time reduces drastically in comparison to 0% PR of CAVs.
However, for low traffic volumes, no change in total travel time is
achieved.

[43] 2017 Traffic efficiency,
safety, string stability

Flow stability, travel
time, speed
dispersion

Freeway With 0% AVs PR, irregular merging behavior of human-driven
vehicles results in negative effect on string stability. However,
only a 5% PR of AVs can improve string stability. Higher PRs of
AVs leads to lower level of speed dispersion and results in
enhanced safety. For average travel time, any PRs of AVs only
slightly change is achieved. More reduction in travel time is
achieved in congested sections of the freeway.

[6] 2016 Flow stability and
throughput

Platoon size, flow and
density

Ring road AVs could prevent shockwave formation and propagation. Both
AVs and CAVs can improve throughput and string stability,
however AVs show better performance in terms of throughput
than CAVs.

[1] 2016 Traffic efficiency Average density, speed
and travel time

Autobahn A 100% PR of AVs improves the travel time by 9%, where average
density enhances by around 8%.

[54] 2012 Capacity analysis Lane capacity Freeway The higher the PRs of CACC vehicles, the better the freeway lane
capacity could be achieved.

[49] 2006 Flow analysis, string
stability

Traffic flow, number of
shock waves,
average speed

Freeway Lower PRs of CACC (< 40%) does not improve the throughput.
Higher PRs of CACC results in improved string stability and
throughput. Also, higher PRs of CACC lead to higher average
speed and high reduction in number of shock waves.

of the studies in this area varies from intersections to links,
highways, and networks. Most researchers exploited KPIs, such
as traffic flow (e.g. traffic volume, density), average travel time,
string stability, average velocity, and more in their studies. For
instance, [50] studied the impact of CACC-equipped vehicles on
traffic efficiency in urban roads with congested sections. This
study selects traffic capacity, waiting time, queue length, and
total travel time as the main KPIs. The findings of this study
indicate that in comparison to conventional vehicles, CACC-
equipped vehicles with a penetration rate (PR) of 100% can
increase the traffic capacity by more than 2.6 times. The study
claims that by increasing the PR of CACC-equipped vehicles,
the waiting time on congested roads decreases. In addition, with
a 100% PR, the queue length and total travel time significantly
decrease on congested roads. In [37] a research is conducted to
investigate the utilization of road capacity in mixed traffic (AVs
and human-driven vehicles). The study showed that in an ideal-
ized environment with a 100% PR of AVs, capacity utilization in
terms of travel time and throughput is improved. However, in a
mixed traffic situation, capacity utilization degrades fastly with
the higher PR of human-driven vehicles. On the other hand, [17]
investigated the traffic efficiency and safety impacts of (C)AVs
in a major freeway in Orlando, Florida. The results of their study

depict that travel time is significantly reduced with the penetra-
tion of (C)AVs. The study also implies that CAVs substantially
outperform AVs with the same PR both in terms of travel time
reduction, and number of conflicts. The findings also suggest
that at least 20% PR of CAVs and 40% PR of AVs are required
to achieve reduced travel time in the network.

Furthermore, [33] investigated the impacts of commercially
available ACC vehicles on traffic stability and throughput. The
simulation results show that in comparison to theoretical ACC
vehicles, the commercially available ACC equipped vehicles
decreases the bottleneck capacity at higher PRs. The study also
claims that traffic flow is string unstable when simulating the
commercially available ACC vehicles. On the network level,
[78] studied the impact of AVs with different driving styles in
Munich city network. The findings depict that with 50% PR of
AVs under different driving styles, mean speed of the network
drops and travel time increases. [41] conducted a simulation-
based study on the effect of CAVs on freeway capacity. The
study claims that there is a negative impact on freeway capacity
with small PRs of CAVs, where with higher PRs, the capac-
ity increases. Meanwhile, speed limit is also indicated as an
important variable in freeway capacity, where higher speed lim-
its leads to improvement of capacity. Another interesting finding
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1066 SADID AND ANTONIOU

based on demand fluctuation is reported in [51]. This study eval-
uated the impacts of (C)AVs on throughput in a Freeway seg-
ment. It is claimed that under current traffic demand scenario,
a 100% human-driven vehicles show better throughput, where
with a double traffic demand, CAVs show the best performance.
Since CAVs strictly obey the speed limits, their performance is
not significantly noticeable with the current demand. However,
with increased demand a smooth flow of traffic is achieved and
consequently leads to a better throughput and speed.

AVs will likely have more cautious behavior than human-
driven vehicles, and thus findings of a study by [53] indicate
that AV alone will not probably improve the traffic flow. This
article studied the effects of (C)AVs on traffic flow in a free-
way, and showed that with the constant demand, CAVs with the
V2V communication will significantly enhance network capac-
ity and reduce traffic congestion. This study also claims that
AVs with any PRs will show negative performance than human-
driven vehicles. In case of CAVs, low PRs will worsen the traffic
flow (as they act like AVs), where higher PRs increases the traffic
flow efficiency. On the demand side, human-driven vehicles out-
perform CAVs on low traffic demands with any PRs of CAVs.
Unlike [6, 53] claimed that AVs are more effective in prevent-
ing shockwave formation and propagation. The findings of this
study revealed that under the utilized model’s assumptions, both
AVs and CAVs can improve throughput and string stability. It
is also shown that AVs result in higher throughput than CAVs
with same PRs. Meanwhile, utilizing different CF models with
various parameters lead to distinct conclusions. [1] studied a
situation where all vehicles in the system are AVs. This study
assumes that AVs can drive very close to the leading vehicle.
The outcome of this study showed that AVs have positive effect
in traffic flow efficiency in higher traffic demands. The study
claims that in a fully AV driving environment, average density
improves by around 8%, where travel time reduces by 9%. [54]
investigated the impacts of CACC-equipped vehicles on freeway
traffic flow. The results revealed that there is a linear relationship
among PRs of CACC vehicles and the freeway lane capacity.
The study also mentioned that capacity improvement could be
enhanced if the leading non-CACC vehicles share information
with CACC vehicles.

4.2 Safety

Simulation-based studies utilize surrogate safety measure (SSM)
to evaluate the impact of (C)AVs on traffic safety. Time-to-
collision (TTC), Post-encroachment time (PET), number of
conflicts (using certain TTC and PET thresholds) are the most
used KPIs for safety assessment in the literature [17, 31, 32,
42, 47, 58, 63, 64]. [58] investigated the effects of CAVs on the
safety of signalized and unsignalized intersections. The results of
this study revealed that CAVs can significantly reduce the num-
ber of conflicts on both intersections. In addition, it is claimed
that a 100% PR of CAVs could ignore any crossing conflicts
between vehicles. [17] used the number of conflicts, time-to-
collision (TTC), and time exposed time-to-collision (TET) to

quantify the safety impacts of (C)AVs under mixed traffic sce-
narios. The results implied that any mixture of AVs and CAV
PRs into the existing transport system could improve safety.
Meanwhile, higher PRs of (C)AVs result in reduced number of
conflicts. Considering the demand fluctuation, [64] studied the
impact of CAV PRs on safety with different demands (peak and
off-peak traffic) in a motorway segment. The results show that
PRs of CAVs substantially reduce the number of conflicts. This
effect is more noticeable in higher traffic demands even at low
PRs of CAVs.

Similarly, [31] studied the safety effects of AVs with dif-
ferent driving styles (cautious and aggressive) on a signalized
intersection and a roundabout. This study used the number of
conflicts as a KPI to quantify the safety impacts. The results sug-
gested that high PRs of AVs with both cautious and aggressive
behaviors could significantly reduce the number of conflicts.
With a 100% PR of AVs, the number of conflicts reduces by
around 65% in both intersections and roundabouts. Unlike [31,
32] highlighted the negative impacts of AVs on roundabout
safety. The findings of this study showed that with increased
PRs of AVs, the potential number of conflicts at roundabout
also increased. It is also mentioned that even redesign of the
roundabouts can not neglect this negative safety effect of AVs.
This study suggested that utilization of SSM might be not a
suitable tool to quantify the safety in roundabouts and thus
new models are needed. In addition, [42] investigated the safety
impact of ACC vehicles in congested conditions on a freeway.
In this study, several potential behaviors of ACC vehicles such
as time headway, maximum deceleration and more were tested.
The findings of this study showed that the safety impacts of
ACC are largely affected by their driving behavior. The study
implied that with larger time headway, and increased emergency
deceleration capability, the safety has improved. In this research,
time exposed time-to-collision (TET) and time-integrated time-
to-collision (TIT) were used as KPIs. Both TET and TIT are
aggregated indexes from TTC.

4.3 Environment

Accurate approximation of environmental impacts of (C)AVs
requires consideration of many decisive variables including
vehicle technology, travel demand, new modes of transport
etc. However, researchers attempted to quantify the effect of
(C)AVs assuming the same energy consumption and emission
factors as for existing human-driven vehicles. For instance, [39]
investigated the impact of (C)AVs on traffic flow and emissions
on a highway network. The study estimated emissions using
both the average-speed EMEP/EEA fuel consumption factors
and the generic version of the European Commission’s CO2
MPAS model. The results revealed that a transport network
with 100% AVs has the highest CO2 emissions (g/km), where
CAVs also generate more emissions in peak hour traffic (due
to high utilization of network capacity). The study implied that
the overall effect on the network is statistically not significant.
The study claims that usage of the various CF models and their
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SADID AND ANTONIOU 1067

limitations lead to distinct driving profiles and thus generate dif-
ferent emissions. Moreover, a 20% increase in demand does not
significantly change the emissions. Similarly, [55] conducted a
simulation-based study to investigate the impact of (C)AVs on
throughput and emissions in a ring road. In this study, various
demand scenarios and PRs of (C)AVs, and different desired time
gaps for the model settings are considered. CO2 and NOx emis-
sions per kilometer are selected for environmental impacts. The
findings of this study showed that in free-flow traffic, where
vehicles are not bounded to speed limits, human-driven vehicles
have the highest emissions. On the other hand, any PRs of CAVs
could result in low emissions. According to the study, AVs drive
with low speeds and thus force the engine to work less efficient.
Hence, in comparison to CAVs, AVs increase emissions.

To conclude, used KPIs for impact assessment in MTMs dif-
fer depending on the assessment criteria and study area (i.e.
intersection, link, freeway, city network). First, in mobility anal-
ysis, we noticed that most studies select flow, density, string
stability, lane capacity and throughput when conducting capac-
ity and flow analysis in freeways, highways and ring roads. Travel
time and speed are frequently selected for traffic efficiency anal-
ysis both on link level and city-wide. Second, for safety analysis,
the number of conflicts is the most used KPI in all type of study
areas, where in freeway analysis, some studies also used TTC,
TET and TIT. Finally, the studies related to emission analysis
depict that CO2 and NOX per kilometer are used KPIs for
impact assessment.

Although, this section clearly reveals the relation between the
used KPIs and the study area in different studies, a standard-
ized guideline to indicate which KPIs to be used for a specific
study area, demand scale, and other influencing factors is miss-
ing. A KPI (e.g. travel time) might be useful for traffic efficiency
analysis under different PRs of (C)AVs in a city-wide network
but for moderate and low demands, where for high demands
(congested network), this KPI might not represent the impact
of (C)AVs.

5 CONCLUSION AND RESEARCH
GAPS

Simulation-based studies are widely conducted to analyze and
predict the impacts of on traffic efficiency and safety. In MTMs,
accurate quantification of the potential impacts depends on
the true configuration of AVs and CAVs driving behaviors.
These behaviors are modelled with CF and lane-changing mod-
els. In this paper, we review and summarize the recent AVs
and CAVs simulation-based studies including their utilized CF
model, adopted parameters, the reported impacts and the used
KPIs for impact assessments. Moreover, a review of recent
data-driven CF models with their methodologies is presented.
The present review is crucial both in understanding the CF
models parameters used for AVs and CAVs modelling in sim-
ulation tools, as well as identification of the set of KPIs for
impacts analysis.

Regarding the mathematical CF models for (C)AVs mod-
elling, we found that the most frequently adopted CF models

are IDM and MIXIC and their modified versions. Wiedemann
99 and Krauss models are also utilized in MTMs for impact
assessments. For IDM, many studies adopt the parameters of
the model based on research done by [19, 44, 46]. Similarly for
MIXIC model, the parameters’ values are taken from [6, 49].
ACC and CACC models developed similar to MIXIC model
have been also utilized for ACC and CACC vehicles modelling.
Certain parameters of these models are based on assumptions
and some are gathered from test vehicles [18, 54]. For Wiede-
mann 99 model, the parameters’ values are extracted using
trajectories of test AVs within the CoEXist project. On the
other hand, in the Krauss model researchers often differentiate
the driving behaviors of human-driven vehicles, AVs, and CAVs
by headway gap, reaction time, and driving imperfection factor.
For instance, it is assumed that CAVs could drive very close to
the leading vehicle and could have perfect driving behavior.

Furthermore, there were attempts to develop data-driven
models using human-driven vehicles trajectories and assume it
for (C)AVs CF behavior, but they cannot guarantee the true
behavior of future (C)AVs. However, the methods proposed
in these studies could be potentially used for (C)AVs CF mod-
els, when field data are available. The findings of the literature
review show that reinforcement learning and deep reinforce-
ment learning algorithms, such as DDPG, RNN, GRU, LSTM,
DDPG equipped with a LSTM, and GAIL with GRU are the
most recent methods used for replicating CF behavior.

The findings of literature review reveal that large amount of
studies conduct the impact assessment of (C)AVs for safety,
mobility, and environmental effects. Most authors exploited
KPIs, such as traffic flow (e.g. traffic volume, density, through-
put etc.), average travel time, string stability, average velocity and
more to assess the mobility impacts of (C)AVs. For safety anal-
ysis, time-to-collision (TTC), post-encroachment time (PET),
and number of conflicts are the most used KPIs in the literature.
Finally, the amount of CO2, and NOX emissions per kilometers
(g/km) are used for emissions’ evaluation. One important note
is that most studies assume the same energy consumption and
emissions factors used for existing human-driven vehicles and
for (C)AVs. However, future vehicles will likely have different
consumption technology and thus quantification of emissions
is not accurate. On the other hand, several studies use various
CF models with their own assumption for models’ parameters.
This may lead to inconsistent conclusions to (C)AVs impacts.
Despite their results inconsistency, most studies revealed that
AVs and CAVs with sensing and connectivity could considerably
increase the road capacity. More optimistic views are for CAVs
in comparison to AVs due to communication capabilities of ear-
lier. A general finding of most studies depicts that higher PRs
of AVs and/or CAVs could highly change the existing transport
network both in terms of efficiency and safety. In addition, it
is reported that demand is a sensitive factor in impact assess-
ments. Increased demand scenarios leads to significant changes
in the network especially for CAVs. Some studies assume that
AVs will have more cautious behavior with larger headway gaps,
where in some other researches, an aggressive behavior of AVs
is assumed. This has resulted in opposing findings especially in
terms of number of conflicts and consequently safety.
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1068 SADID AND ANTONIOU

Although numerous attempts have been made to model the
CF behavior of (C)AVs, a considerable number of research
gaps still exist. First, the true driving behaviors of (C)AVs are
still under investigation, which leads to strong assumptions
in most studies. A model to capture the driving behavior of
(C)AVs with calibrated parameters using real data is needed.
This model could consider the sensing and communication
technologies of AVs and CAVs, respectively, to accurately mimic
their driving behaviors under various situations. The parame-
ter calibration could also be done for established CF models,
such as IDM, MIXIC, and Krauss. These models are integrated
within simulation tools and hence could widely be used for
impact assessments. Second, data-driven models could accu-
rately capture the driving behavior of (C)AVs, however, they still
need a mass field (C)AVs data for training, testing and valida-
tion. A data-driven model based on deep reinforcement learning
which could capture the spatial and temporal variation of the
driving behavior with field test data of (C)AVs is a worth pur-
suing research. In this research, different potential driving styles
of (C)AVs (cautious, normal, aggressive) under various traffic
situations could be considered. Meanwhile, it is very crucial to
integrate data-driven models into the existing widely used sim-
ulation tools in a computationally efficient method. This will
help to conduct large-scale impact assessments with more accu-
rate outputs. Third, in most studies, KPIs are assigned by the
authors for impact assessments studies, however, there should
be a differentiation by which KPIs to be used for different
study areas, demand scales and more. Hence, a study to ana-
lyze the sensitivity of each KPI in varying scenarios both in
terms of supply and demand is needed. This study could cre-
ate a standardized guideline for impact assessments studies and
could thus guide future researchers to use most reasonable KPIs
for their specific studies. Finally, in this review paper we dis-
cussed the CF behaviors of C(AVs), however, a comprehensive
review of lane-changing models of (C)AVs and studies relevant
to impact assessment of (C)AVs lane-changing polices is a highly
significant research need.
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ABSTRACT Microscopic traffic models (MTMs) are widely used to evaluate the potential impacts of
autonomous vehicles (AVs) deployment scenarios in our transportation network. Car-following (CF) and
lane-changing (LC) models are the backbones of MTMs. Several studies attempt to accurately replicate
these behaviors (especially CF behavior) using state-of-the-art modeling methods. A CF model consists
of a set of relations and modifiable parameters that are calibrated by mass field driving data. Since mass
field driving data of AVs are not available, researchers often assume these parameters and conduct impact
assessments, leading to different conclusions on the potential effects of AVs. Meanwhile, AVs are agents
and unlike human-driven vehicles, their behaviors are controllable and trainable. AVs might have safe and
efficient driving behavior throughout a trip, therefore, we can train them to reach a destination optimally
in a simulation environment. In this research, we develop an optimization framework that finds a set of
optimized driving parameters for AVs under various scenarios, aiming to improve certain optimization
targets (e.g., reducing travel time, number of conflicts) using a well-defined simulation-based objective
function. The methodological framework consists of an optimization module and a simulation environment.
The differential evolution (DE) method is employed within the optimization module to identify the
optimized values of the CF parameters. The simulation environment is a SUMO-based platform where
several simulation replications are conducted under certain scenario conditions. An experimental setup is
designed to implement the proposed framework under different scenarios of mixed traffic and demand cases
for the IDM (intelligent driving model), Krauss, and ACC (adaptive cruise control) models. The findings
of this research reveal that safety could potentially be improved by optimized values of the CF model.
For each policy where a higher weight is allocated to safety, generated optimized parameters significantly
enhance safety as well as efficiency. In addition, the results show that minimum gap and desired time
headway are the most sensitive parameters in regards to the policy targets, and their optimized values
could replicate the potential CF behavior of AVs.

INDEX TERMS Autonomous vehicles (AVs); microscopic traffic modelling; simulation; optimization
framework; policy analysis

I. Introduction

AUTONOMOUS vehicles (AVs) are one of the most
disruptive innovations in the automotive industry. The

current developments in advanced driving assistance systems
(ADAS), such as adaptive cruise control, cooperative adap-
tive driving control, lane-keeping assistance, and emergency
brake assistance, as well as existing autonomous driving
features (e.g., autopilot, highway chauffeur) and trials of
AV prototypes, will potentially pave the way for the mass
deployment of AVs in our transportation system [1]. AVs
might enhance traffic safety, given that a large number of

accidents are linked with drivers’ errors and unfitness to
drive (e.g., fatigue, alcohol, or drugs) [2]–[4]. In addition,
AVs offer additional mobility freedom by eliminating driving
barriers, such as disabilities, driving licenses, and old age [5],
[6]. Meanwhile, AVs could influence travel behavior, reduce
traffic congestion [7], fuel consumption [8], [9], and vehicle
emissions [10].

The recent advancement in sensing technologies (e.g.,
radar, lidar) and pattern recognition, with the processing
capabilities of artificial intelligence, empower AVs to pre-
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cisely detect the image of the surrounding environment and
respond accordingly with the help of complicated algorithms
in the decision processing unit (DPU) of the vehicle. Mean-
while, pervasive communication technologies facilitate the
exchange of driving information (i.e., speed, acceleration,
position, and more) of AVs with other connected vehicles
(V2V), as well as infrastructure (V2I), which are labeled as
connected autonomous vehicles (CAVs) [11].

Generally, any AV has four distinct design elements:
sensing technology, the client system, the action system,
and the human-machine interface (HMI) [12]. AVs create
an internal map of the vehicle’s surroundings using a wide
range of sensor data in its client system. Initially, the raw
sensor data is processed, and the relevant information is sent
to the DPU of the vehicle for the decision-making task. The
vehicle’s DPU plots the vehicle’s navigation path and deliv-
ers instructions to the vehicle’s physical parts for necessary
actions (i.e., acceleration, deceleration). Finally, the HMI
is responsible for providing necessary driving information
for the users. The DPU of AVs is comprised of pre-trained
complex deep learning algorithms, which theoretically react
to any sophisticated traffic conditions while maintaining safe
and efficient driving maneuvers. The training of the DPU
requires a significant amount of historical trajectory data
of AVs to accurately capture driving conditions and safely
respond to them. However, a question remains on whether
the historical trajectories ensure that the optimal driving
actions (safe and efficient) are taken not only in a specific
situation but throughout the trip by the vehicle.

To train an AV to react optimally in all traffic condi-
tions, we require a mass field trajectories of AVs. Several
corridor-wide trials have been carried out to generate tra-
jectories of AVs; however, the high cost of AV fleets and
legal restrictions make large-scale tests currently impractical.
Meanwhile, the available AV-related data are limited to
specific locations and driving behaviors and, therefore, are
not generalizable. Some researchers even assume that AVs
might have similar driving behavior to human-driven vehi-
cles and, therefore, utilize human-driven vehicle trajectories
to approximate the driving actions of AVs [13], [14].

On the other hand, the impact assessment of AVs de-
ployment on our transportation system is a crucial topic
for researchers and policymakers. Although it is expected
that AVs have the potential to significantly impact traffic
safety, mobility patterns, and transport networks [15], their
specific impacts are not confirmed yet. Therefore, researchers
conduct simulation-based impact assessments to quantify the
potential effects of AVs on a large scale using traffic models.
Several studies used microscopic traffic models (MTMs) to
analyze and predict the effects of AVs on safety and traffic
efficiency [16]–[20]. However, the methods utilized in many
studies to reflect AVs’ driving behavior are deemed weak
and thus always questionable.

The driving behavior of AVs might vary considerably from
that of human-driven vehicles. In MTMs, these behaviors are
modelled with their longitudinal (car-following) and lateral
(lane-changing) configurations. A car-following (CF) model
consists of a series of actions that a driver decides on to
efficiently and safely follow the leading vehicle. Depending
on different CF model, researchers distinguish the driving
behavior of AVs from human-driven vehicles for time gap,
reaction time, headway, and driving imperfection factor [15].
Since the mass field data of AVs are not available to quantify
their potential driving behavior and hence calibrate the CF
parameters, researchers often assume AVs’ driving capa-
bilities. This practice often results in varying conclusions
regarding the potential effects of AVs.

Since AVs are agents and in contrast to human-driven
vehicles, where their behaviors are naturally stochastic and
uncontrollable, AVs are controllable, and their automated
driving behavior could be trained in such a way to behave
in the best possible manner [21]. For instance, we can train
AVs to drive safely from point A to B, considering the travel
time to be efficient. This could be conducted in a simulation
environment, where we regulate the AVs to generate optimal
trajectories throughout their trips. The extracted CF driving
behavior for AVs in a calibrated simulation model could
approximate the planned optimal CF behavior of AVs and,
thus, could be utilized in simulation-based impact assessment
studies. Hence, in this research, we develop a framework that
finds a set of optimized driving parameters of AVs, aiming to
enhance certain optimization targets through a well-defined
simulation-based objective function. The policy targets could
include e.g., enhancing traffic efficiency (i.e., travel time),
improving safety (i.e., number of conflicts), etc.

The main contributions of this research work are as
follows: (i) Development and integration of an optimization
framework into a traffic simulation platform to find opti-
mized driving behavior of AVs. This framework could be
utilized in any network and demand pattern. (ii) Generation
of the optimized set of parameters for widely used CF
models to replicate the driving behavior of AVs. These
parameters could be potentially utilized in simulation-based
impact assessment studies of AVs. (iii) Sensitivity analysis of
different CF model parameters to identify the most sensitive
parameters in changing policy targets of AVs.

The rest of this paper is organized as follows. The sub-
sequent section reviews the recent literature on AVs and
CAVs’ CF models and key performance indicators utilized
for impact assessment. Section III introduces our proposed
optimization framework, integrated with a microsimulation
platform, along with a scenario generation tool for testing
several demand scenarios and penetration rates of AVs.
Section IV explains CF models employed in mimicking
human-driven vehicles and AVs in our experimental setup.
In Section V, we design an experimental setup to test the
proposed framework in a city scale network with calibrated
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and validated features and with various scenarios. The results
of this research and set of optimized driving parameters
for different AV scenarios are presented and discussed in
Section VI. Finally, Section VII concludes the article by
explaining its overall contribution and suggesting further
research directions.

II. Related Studies
CF behavior is the key element in MTMs and simulation
tools. Replication of vehicular CF behavior has been always
a research topic in the field of traffic modelling and sim-
ulation. There have been many attempts to develop models
and methods to replicate the CF driving behavior of vehicles
in literature. These models are categorized into mathematical
and data-driven models. Mathematical models are comprised
of set of modifiable parameters that mimic the driving
behavior of vehicles under different traffic conditions. The
modifiable parameters of these models are often calibrated
with mass field driving data of vehicles. On the other
hand, data-driven models employ different algorithms and
trajectory datasets to create the relationship between the
following vehicle’s driving decisions and influencing inputs
(e.g., leading vehicle’s speed, gap, etc.). Although data-
driven models outperform many mathematical models in
replicating CF behavior of vehicles, they are not extensively
utilized in impact assessment studies.

In simulation-based impact assessment studies, selecting
a CF model depends first on whether a model can replicate
the actual driving behavior and second on whether it is well-
integrated in a widely used simulation tool. Considering
the complexity of traffic flow elements, as well as high
computational resources required for microsimulation tools,
simpler and established mathematical models are integrated
in microsimulation tools. These models, which are widely
used in simulation-based impact assessment studies, com-
prise of models focusing on a driver’s physical actions,
such as desired speed, acceleration, deceleration, i.e. Gazis-
Herman-Rothery (GHR) model [22], Gipps model [23],
intelligent driver model (IDM) [24], optimal velocity model
(OVM) [25]; however, some also consider the psychological
inputs of the drivers, such as the Wiedemann model [26].
Worth-mentioning that these models are utilized to mimic the
driving behavior of human-driven vehicles, for AVs there are
no established mathematical models and researchers often
employ widely used mathematical models to approximate
the CF behavior of AVs by assuming the parameters of
these models. In this section, we conduct a comprehen-
sive literature review on AVs simulation-based studies to
determine which mathematical models are widely used for
approximating the CF behavior of AVs.

IDM and its modified versions are widely utilized CF
models in microsimulation studies focused on AVs [20],
[27]–[34]. Recent researches, such as [17], [35], and [31],
employed IDM and its revised versions to evaluate the
impacts of AVs. For instance, [17] investigated the safety

and mobility impacts of AVs, CAVs and connected vehicles
(CVs) on a freeway. In this research, the basic IDM is used to
approximate the driving behavior of AVs, whereas a modified
IDM according to [36] is utilized for CAVs simulation. This
study adopts IDM parameters from [19], [20] for both AVs
and CAVs modelling.

Additionally, [35] examined how commercially available
ACC vehicles influence traffic stability and throughput. The
study utilized IDM to model the CF behavior of human-
driven, theoretical ACC, and commercially available ACC
vehicles. The model parameters for human-driven and theo-
retical ACC vehicles were derived from [34], [37], while
calibrated parameters from a field experiment were used
for commercially available ACC vehicles. Meanwhile, [31]
employed a modified version of IDM to examine the impacts
of CAVs on freeway capacity. The revised IDM, based on
[19] and [38], ensures realistic behavior and enhances the
safety of CAVs. This research incorporated the values of
IDM parameters from the previous studies [19], [20].

In addition to IDM, some studies employed MIXIC (MI-
Croscopic model for Simulation of Intelligent Cruise control)
model to simulate CAVs [18], [39]–[42]. The model was
originally developed by [43] to replicate ACC and later
modified by [42] to include the CACC characteristics. For a
more comprehensive description, readers are referred to [15].
[44] investigated the impacts of ACC and CACC-equipped
vehicles on traffic efficiency and energy consumption in
an ideal expressway using MIXIC model. Meanwhile, [41]
studied the effect of CAVs on traffic congestion and network
capacity. This research approximated the driving behaviors
of CAVs employing CACC vehicles while cruising. Ad-
ditionally, [39] developed a control algorithm similar to
MIXIC to estimate the speed of an ACC-equipped vehicle
in upcoming time steps. Using this model, [39] explored the
effects of varying CACC vehicles deployment scenarios on
freeway traffic flow. This study developed control algorithms
for ACC and CACC vehicles, where the performance of
those control algorithms are based on set of assumptions.
Furthermore, [30] and [41] both utilized the ACC model to
mimic the driving behavior of AVs and to examine the effect
of AVs on traffic flow and CO2 emissions.

Meanwhile, various studies employed the Wiedemann CF
model to approximate the driving behavior of AVs and
CAVs [1], [45]–[49]. The Wiedemann model exists in two
versions: Wiedemann 74 (2-parameters model) and Wiede-
mann 99 (10-parameters model), with the latter being more
frequently utilized in the literature. Within the Wiedemann
model, considerations of the driving actions extend beyond
physical signs of driving to psychological reactions, such
as the perceived width of the leading vehicle and changes
in visual angle. The parameters of the model, previously
derived within the CoEXist project, aim to mimic the driving
behavior of AVs and CAVs. However, the calibration of these
parameters relies on a limited number of AV trajectories.
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In a related study, [45] evaluated the safety impacts of
AVs using the Wiedemann 99 model, adapting the values
of parameters from [50]. Moreover, efforts have been made
to investigate the effects of AVs and CAVs using Krauss
model [51]–[54]. Exploiting the communication capability of
CAVs, several studies proposed novel methods for modelling
the CF behavior of CACC, CAVs, and associated technolo-
gies [55]–[63]. However, these methods often require the
development of extensive case-specific modeling facilities
in MTMs and, therefore, are generally not integrated into
microscopic simulation tools, limiting their widespread use
in impact assessment studies.

In summary, IDM, MIXIC, and their revised versions are
commonly utilized for modelling of AVs in most studies.
The Wiedemann 99, and Krauss models are also prevalent
in AVs impact assessment studies. In this paper, we use
IDM, ACC, and Krauss models to replicate the CF behavior
of AVs and further extract the optimized values of these
models’ parameters. Meanwhile, the Wiedemann 99 model
is utilized to mimic the CF behavior of human-driven ve-
hicles. In Section IV, we present these models in detail.
In addition, a significant amount of literature conducts the
impact evaluation of AVs and CAVs for safety, mobility,
and environmental impacts (e.g., energy consumption and
emissions). Key performance indicators (KPIs), including
traffic flow (e.g., traffic volume, density, throughput), average
travel time, string stability, average velocity, and more,
are commonly exploited to evaluate the mobility impacts
of AVs. For safety analysis, time-to-collision (TTC), post-
encroachment time (PET), and number of conflicts are fre-
quently utilized KPIs. Finally, the amount of CO2 and NOX

emissions per kilometer (g/km) are employed for emissions’
assessment [15]. Table 1 provides a summary of reviewed
papers related to simulation-based impact assessment of
AVs, offering specific details on the employed CF model,
assessment criteria, and used KPIs. The table is organized
in reverse chronological order, presenting the studies based
on their publication dates from newest to oldest.

III. Methodological Framework
A. Overall Approach
The proposed methodology of this paper is an extended
version of our previous work in [21]. This research involves
conducting experiments on various CF models under dif-
ferent scenarios to extract the optimized CF behavior of
AVs. We introduce an optimization framework designed to
find optimal sets of AVs driving behavior against assigned
policy targets. The framework in this research consists of
an optimization module and a simulation environment. The
optimization module takes in predefined scenario variables
and a set the initial parameters of the AVs CF model for
optimization. Within this module, the objective function is
assessed by inputting the possible solution sets, along with
the scenario settings, into the simulation environment to
evaluate the resulting policy targets. The simulation environ-

ment conducts multiple simulation runs under the specified
conditions and outputs the selected policy targets. These
policy targets are normalized and serve as the primary
inputs for the objective function within the optimization
module. The optimization module iteratively sends various
combinations of AVs CF model parameter into the simulation
environment, obtaining updated values of the policy target
until convergence is achieved and no further improvement is
feasible. A schematic diagram illustrating the main method-
ology of this research is shown in Figure 1.

B. Optimization Module
Simulation-based optimization is an established field that
integrates optimization algorithms with simulation models
[70]–[73]. The primary goal of simulation-based optimiza-
tion is to identify a set of input variables that result in an
optimal or near-optimal simulated output. Given the intricate
and non-linear relationships among input variables and sim-
ulated results, iterative methods are employed to determine
the model’s optimum. One such method is Differential
Evolution (DE), a stochastic population-based optimization
technique designed for global optimization problems. DE is
used in scenarios where gradient information is not avail-
able, making it particularly effective for simulation-based
non-linear optimization problems [74]. The DE algorithm
systematically explores the design space, refining a candidate
solution based on predefined policy targets. The candidate
solution moves around the design space to assess whether
improvements to the objective function are achievable. If a
new candidate solution surpasses its parent, it replaces the
parent; otherwise, it is discarded. This research evaluates the
objective function, primarily the simulated results (such as
travel time and number of conflicts), with the input variables
representing the CF model parameters. DE attempts to adjust
the parameters of the CF model within boundary conditions
(i.e., realistic driving behavior, acceleration and deceleration
capability, comfort driving, etc.), aiming to identify the
optimal solution for the policy targets.

C. Policy Targets
In this research, our main focus is on enhancing traffic
efficiency and safety; therefore, they are used as policy
targets. We evaluate efficiency by analyzing travel data,
particularly the average network travel time. For safety
assessment, we employ the Surrogate Safety Measure (SSM)
to capture conflicting situations. The chosen KPIs are the
average network travel time for efficiency and the total
number of conflicts for safety. For an individual vehicle, we
estimate travel time by calculating the difference between
departure and arrival times. Consequently, the average of
the compiled travel times for all vehicles in the network
represents the overall mean network travel time. Similarly,
to estimate the total number of conflicts in the network,
each vehicle is equipped with an SSM device that records
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TABLE 1: Summary of reviewed simulation-based studies on AVs and CAVs

References Year CF model Assessment criteria KPIs

[64] 2023 Gipps Traffic safety Number of conflicts

[44] 2023 MIXIC Traffic efficiency and energy con-
sumption

Average travel time, capacity, average electric energy
consumption

[65] 2022 Gipps Capacity analysis Network capacity

[53] 2022 Krauss, IDM and
CACC

Safety of intersections Number of conflicts

[17] 2021 IDM Traffic safety and efficiency TTC, number of conflicts, travel time

[35] 2021 IDM Throughput and stability Traffic flow, density

[40] 2021 CACC Traffic flow Traffic flow, density, critical speed

[51] 2021 Krauss Traffic efficiency Average travel time

[30] 2020 ACC, CACC, and
enhanced MIXIC

Traffic flow, and emissions Throughput, average harmonic speed, and CO2 per kilo-
meter

[31] 2020 IDM Capacity analysis String stability, lane capacity

[54] 2020 Kraus Traffic efficiency Average speed

[66] 2020 IDM Traffic efficiency Travel time

[67] 2020 Krauss Capacity analysis Speed, flow, density

[48] 2019 Wiedemann 99 Traffic safety Number of conflicts

[41] 2018 CACC Throughput Harmonic average speed

[68] 2018 ACC, CACC, and
MIXIC

Throughput, and emissions Average harmonic speed, density, CO2 and NOX per
kilometer

[45] 2018 Wiedemann 99 Traffic safety Number of conflicts

[52] 2018 Krauss Capacity analysis Flow, density

[69] 2018 CACC Throughput Capacity, mean speed

[18] 2016 IDM and CACC Flow stability and throughput Platoon size, flow, density

[1] 2016 Wiedemann 99 Traffic efficiency Average density, travel time, and speed

FIGURE 1: The methodological framework in this study
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interactions or conflicts with other vehicles. This research
uses time-to-collision for the analysis of traffic conflicts.
TTC represents the time for a collision to occur between
two vehicles in follow-lead as well as approaching scenarios.
Depending on the situations (as depicted in Figure 2), TTC
calculation is defined as:

TTC =





xl−xf−Ll

vf−vl
, if vf > vl

d2

v2
, if d1

v1
< d2

v2
< d1+L1+w1

v1
d1

v1
, if d2

v2
< d1

v1
< d2+L2+w2

v2

(1)

� = 0

(a)

(b)

FIGURE 2: Illustration of TTC under (a) follow-lead, and
(b) approaching conflicts scenarios

A conflict is identified when the TTC value falls below the
specified threshold. In this research, the TTC threshold is set
at 1.5 seconds. The cumulative count of conflicts observed
throughout the simulation period reflects the total number of
conflicts within the network.

The objective function examines diverse combinations of
the KPIs by assigning varying importance to each KPI. The
aim is to identify the optimized AV CF model parameters
for various policies. To account for the differing scales of
both KPIs, before using them as the value of the objective
function, they are normalized. Depending on the outputs
of the simulation and the values of both KPIs, they are
normalized to the specified ranges (0 < T ≤ 6, and
0 < C ≤ 12). These ranges are chosen according to
the maximum values observed in the simulation to ensure
the data is effectively normalized, allowing for meaningful
comparisons. The KPI for the total number of conflicts,
which can reach up to 12,000, is normalized to a range of 0

to 12 by dividing by 1,000. Similarly, the KPI for average
network travel time, with a maximum value of 600 seconds,
is normalized to a range of 0 to 6 by dividing by 100. The
KPIs are further weighted by utilizing the weight factor to
each normalized KPI as follows:

w · T + (1− w) · C (2)

where 0 ≤ w ≤ 1 represents the weight of the KPI, T is
the normalized mean network travel time, and C denotes the
normalized total number of conflicts.

IV. Modelling Car Following Behavior
As mentioned above, in this paper we use IDM, ACC, and
Krauss models to replicate the CF behavior of AVs. These
models are comprised of set of parameters, where each pa-
rameter has some range of values. The proposed framework
in this paper, therefore, attempts to find the optimal values of
these parameters within the parameters range. Hence, in this
section we present each model including their parameters and
range of their values in details. Meanwhile, for capturing the
CF behavior of human-driven vehicles in our study area, we
employ the Wiedemann 99 model. The description of this
model is presented in the following section.

A. IDM model
IDM, initially developed by [24], is one of the simplest and
accident-free models. Utilizing both desired speed and space
headway, the model generates a realistic acceleration profile.
IDM excludes reaction time, allowing it to effectively capture
the driving behavior of AVs. The basic form of the IDM
acceleration function is defined as:

an (t) = a(n)max


1−

(
Vn (t)

V0
(n) (t)

)δ

−
(
Sn

∗ (t)
Sn

)2

 (3)

where amax represents the maximum acceleration or deceler-
ation of the vehicle n, Vn indicates the speed of the following
vehicle, V0

(n) is the desired speed of the following vehicle,
Sn denotes the gap distance between two vehicles, Sn

∗ is the
desired distance between two vehicles, and δ is the model
parameter. The desired space headway between two vehicles
Sn

∗, is determined by the function involving the speed of the
following vehicle Vn and the difference of speeds between
the leading and following vehicles ∆Vn, as follows:

Sn
∗ (t) = S0

(n) + Vn (t)Tn (t) +
Vn (t)∆Vn (t)

2

√
a
(n)
maxb(n)

(4)

where S0
(n) represents the minimum spacing at a standstill

condition, Tn denotes the desired (safe) time headway, and
b(n) is the desired (comfortable) deceleration, which does
not exceed the maximum allowable deceleration.

The basic IDM model is commonly utilized to replicate
the driving behavior of AVs in numerous studies. However,
the values of the parameters of the model for AVs are not
defined and thus several studies employ the IDM parameters
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from the literature. Table 2 provides an overview of the AVs
behavior parameters employed in various simulation studies.

TABLE 2: IDM parameters for AVs modelling [19], [20]

Model parameters Unit Values

Desired speed (V0) [km/h] 120

Model parameter (δ) [-] 4

Maximum acceleration (amax) [m/s2] 1.4

Desired deceleration (b) [m/s2] 2

Minimum gap distance at standstill (S0) [m] 2

Desired headway (T ) [s] 0.6

Maximum deceleration [m/s2] 2.8

B. ACC Model
ACC model was first developed by [39] and later revised
by [62]. The model aims to estimate the speed of an ACC-
equipped vehicle in the next step. Since the model utilizes the
information gathered by the vehicle’s sensors, it is used for
AVs modelling in MTMs. The original ACC model consists
of two controlling mode namely: (i) speed control mode and,
(ii) gap control mode, where the (iii) gap closing control
mode was later introduced by [62]. In addition, a fourth
control mode (iv) collision avoidance mode is added to avoid
rear-end collisions when critical safety conditions occur [75].

First, the speed control mode intends to keep the speed of
the following vehicle close to the speed limit. This mode
remains active, where there is no leading vehicle in the
range of sensors coverage area or where there is leading
vehicle in a distance of larger than 120 m. In this mode, the
acceleration of the vehicle is controlled by the difference of
following vehicle’s speed and the speed limit (desired speed)
as follows:

a = k1 (vd − v) (5)

where k1 is the speed control constant, v is the current speed,
and vd is the desired speed of the vehicle.

Second, the aim of the gap control mode is to keep the
desired gap between the two vehicles in a certain range. The
acceleration of the following vehicle is controlled by the
speed and gap as follows:

a = k2 (s− sd) + k3 (vd − v) (6)

where k2 and k3 represent the gap and speed control
constants, respectively, s denotes the current space gap,
(sd = td · v) indicates the desired distance between two
vehicles, td is the desired time headway, and vd is the desired
speed. In this mode the desired speed is referred to the
leading vehicle’s speed.

Meanwhile, the gap-closing control mode aims to ensure
a smooth transition from the speed control model to the

gap control mode. This mode activates when the spacing
between the following and leading vehicles is less than
100 m. The gap-closing control mode has mathematically
the same relation as in gap control mode, however, the
coefficients have different values in both modes as shown in
Table 3. Finally, the collision avoidance control mode aims
to prevent vehicles from rear-end collisions when the critical
safety conditions occur. The activation of this mode depends
on two conditions: (i) when the spacing to the leading vehicle
is less than 100 m, (ii) when the gap deviation is negative.

The modifiable parameters of ACC model to reflect the
behavior of AVs are presented in Table 3. The default
values indicates the assumed parameters in the literature for
approximating the ACC-equipped vehicles. We utilize the
range of each parameter (see Table 6) as a search space of
the optimization module to reflect the driving behavior of
AVs.

TABLE 3: ACC model parameters [19], [62], [75]

Parameters Symbol Values

Desired time headway td (tau) 1.0

Speed control gain k1 0.4**

Gap control gain space k2 0.23

Gap control gain speed k3 0.07

Gap-closing control gain space k∗2 0.04

Gap-closing control gain speed k∗3 0.8

Collision avoidance gain space k4 0.8

Collision avoidance gain speed k5 0.23

(** = in SUMO this parameter has a negative sign)

C. Krauss Model
The Krauss CF model, introduced by Stephan Krauss in
1997, is a space-continuous model [76]. This model is
designed to estimate the safe speed of the vehicle without
extracting it from the vehicle’s acceleration. In the Krauss
model, the safe speed of the following vehicle is expressed
as:

vsafe (t) = vl (t) +
g (t)− vl · tr
vl(t)+vf (t)

2b + tr
(7)

where vl, vf denote the speed of leading and following
vehicles at time t respectively (see Figure 3), tr is the
reaction time of the driver, b is the maximum comfort decel-
eration of the vehicle, and g(t) represents the gap between
the following and leading vehicles, which is expressed as:
g (t) = xl (t) − xf (t) − L , (xl, xf denote the position of
the leading and following vehicles, and L is average length
of a vehicle).

Furthermore, to compute the desired speed, which is a
decisive variable for estimating the speed of the vehicle in
the upcoming time step, the model considers the minimum of
safe speed, the road speed limit, and the vehicle’s maximum
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FIGURE 3: Description of the Krauss CF model parameters

capable speed to generate the desired velocity of the vehicles,
determined as:

vdes (t) = min[vmax, v (t) + a ·∆t, vsafe(t)] (8)

Finally, the velocity and location of the vehicle at the next
time step are calculated as follows:

v (t+∆t) = max[0, vdes (t)− η],
xf (t+∆t) = xf (t) + v (t+∆t) ·∆t

(9)

where η is the random perturbation (to mimic the driving
imperfection) and ∆t is the simulation time step. Based on
[77], the η value is assumed to be 0.5 for human-driven
vehicles and 0 for CAVs. The assumed parameters’ values
of Krauss model for reflecting AVs behavior based on [52]
are shown in Table 4. The range of values of each parameter
is used as the search space of the optimization module.

TABLE 4: Krauss model’s parameters [52].

Paramters Unit Assumed values

Mingap [m] 0.5

Accel [m/s2] 3.8

Decel [m/s2] 4.5

Sigma [-] 0

Tau [s] 0.6

(sigma = driving imperfection factor, Tau = desired time headway)

D. Wiedemann 99 Model
The Wiedemann 99 model, initially designed for capturing
driving behavior on freeways, has seen widespread applica-
tion, extending to urban traffic scenario in recent studies [78].
The Wiedemann 99 model consists of 10 parameters, as
detailed in Table 5. In this research, we utilize the calibrated
values of Wiedemann model parameters to capture the CF
behavior of human-driven vehicles in the study areas. These
parameters are calibrated in another research using the same
network and demand characteristics [79]. The calibrated
values indicate the mean parameter values. To account for
variability in human driving behavior, a normal distribution
is applied to these calibrated values within the simulation
tool. This approach ensures that the driving behavior of hu-
man drivers is not uniform, contributing to the robustness and
realism of the simulation results. Worth-mentioning that the
base model’s demand and traffic assignments are calibrated
using Principle Component Analysis (PCA) by [70]. In
addition, the behavioral calibration is achieved using Finite

Difference Stochastic Approximation (FDSA), a gradient-
free stochastic approximation algorithm using several edges
travel time data.

V. Experimental Setup
In this research, we develop a SUMO-based simulation plat-
form to systematically simulate and analyze mixed traffic,
considering varying deployment scenarios of AVs, since
the current resources of CAVs modelling are limited in
microscopic simulators. SUMO is selected for its open-
accessibility and its widespread use in AV impact assessment
studies. Like all traffic models, SUMO has its limitations;
however, it provides the capability to simulate large-scale
networks while incorporating detailed vehicular behaviors,
including CF, and LC configurations [80].

The architecture of the simulation platform consists of
three components: (i) Scenario execution, (ii) SUMO en-
vironment, and (iii) Output module. For each scenario, a
set of inputs, such as demand scale, penetration rate, and
OD matrix, are fed into the scenario execution tool. The
scenario execution tool assigns trips in the traffic network
based on the provided information and runs the SUMO
microscopic resolution model. The CF behaviors of AVs and
human-driven vehicles serve as the inputs for the SUMO
environment to guide the simulation tool on how vehicles
should move and interact with each other in the network.
Considering the stochasticity in microscopic simulations,
we aggregate the outputs (i.e., evaluation indicators) over
multiple simulation replications. The study area covers the
traffic network of Maxvorstadt, a district in Munich city
center (see Figure 4). The network comprises urban road
types with morning peak-hour traffic demand. The OD pairs
of trips are allocated employing a trip-based stochastic user
route choice assignment [21].

A. Human-driven vehicles CF model settings
Since the Wiedemann psychological CF model is a widely
used model for replicating driving behavior of human-driven
vehicles, in this research we also leverage Wiedemann 99
model to mimic this behavior in our simulation platform.
The calibrated parameters of this model are shown in Table
5. We utilize these parameters settings for capturing human-
driven vehicles in each simulation scenario.

B. AVs CF model settings
As discussed in section IV, the CF behavior of AVs is mod-
elled using IDM, ACC and Krauss models. The proposed
framework uses the initial values of these models’ parameters
in the simulation platform and searches for the optimized
values. The definition of the ranges of each parameter in
each model is necessary for the search space of the proposed
framework. The ranges for each parameter (see Figure 5 and
Table 6) are assumed in a way to capture realistic driving
behavior and to include the vehicles capabilities in terms of
acceleration and deceleration as well as the comfort driving
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TABLE 5: Wiedemann 99 CF model parameters

Parameters Description Default value Calibrated value

CC0 Standstill distance: desired minimum distance between leading and following vehicles [m]. 1.50 1.50

CC1 Time gap: desired headway time between leading and following vehicles [s]. 0.90 1.50

CC2 Following distance fluctuation: additional distance over the desired safety distance, where
at this point following vehicle recognizes a slower leading vehicle [m]

4.00 4.00

CC3 Threshold for entering the deceleration zone: The time before a vehicle starts decelerating
to the safety distance [s].

-8.00 -8.00

CC4 Negative following threshold: negative speed variation between following and leading
vehicles (the lower the value, the more sensitive the following vehicle’s driver)

-0.35 -0.40

CC5 Positive following threshold: a positive speed fluctuation between the following and leading
vehicles (the positive value of CC4).

0.35 0.35

CC6 Speed dependency of oscillation: influence of distance of speed variation ( the larger the
value, the bigger the speed oscillation with increasing distance).

11.44 11.44

CC7 Oscillation acceleration: minimum variation of acceleration or deceleration while following. 0.25 0.25

CC8 Standstill acceleration: desired acceleration when beginning from standstill [m/s2]. 3.50 4.0

CC9 Acceleration at 80 km/h [m/s2] 1.50 1.50

Munich city center

FIGURE 4: Road network of Maxvorstadt district in Munich city center

characteristics. Therefore, this research generates policy-
dependent optimized parameters values of IDM, ACC, and
Krauss models rather than assumed values. These values
could be utilized in future researches to mimic the behavior
of AVs instead of assuming them.

C. Study scenarios and simulation settings
In this research, we test the proposed optimization frame-
work under different scenarios with varying demand cases,
PRs, and combinations of KPIs. The framework generates
a profile of optimized model parameters for capturing AVs
CF behavior under each mix traffic conditions and policy set-
tings. We examine the simulation platform with two distinct
demand scales: 30% below peak hour traffic and peak hour
(morning peak) traffic demand. For each model and demand
scale, we analyze scenarios from 0 to 100% PRs with 33%
increments. Additionally, the weight coefficient w to weight

TABLE 6: Range of values for ACC model parameters

Parameters Symbol Range of values

Desired time headway tau 0.0 - 1.0

Speed control gain k1 0.2 - 0.6

Gap control gain space k2 0.2 - 0.3

Gap control gain speed k3 0.01 - 0.1

Gap-closing control gain space k2∗ 0.01 - 0.06

Gap-closing control gain speed k3∗ 0.5 - 1.0

Collision avoidance gain space k4 0.5 - 1.0

Collision avoidance gain speed k5 0.2 - 0.3

the policy targets varies from 0 to 1, incremented by 0.33.
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FIGURE 5: Range of IDM and Krauss models’ parameters
as a search space for DE

The chart below illustrates the overall scenarios space, gen-
erating a total of 24 scenarios for AVs under each model. In

Demand scales PRs Policy targets

30% below

base demand

33%

67%

100%

C

0.33T+0.67C

T

0.67T+0.33C

Models

IDM

Krauss

ACC

FIGURE 6: Various scenarios for models, demand cases, PRs
and policy targets (C: number of conflicts, T: mean network
travel time)

each optimization iteration, the evaluation function invokes
the simulation module to retrieve the values of the KPIs.
Within each call, 12 simulation runs are executed to account
for the stochastic nature of the microscopic simulations. The
resulting KPIs values represent the average of all simulation
runs. A 15 min warm-up time is implemented, during which
no data were gathered. Also, it is worth mentioning that
based on the DE settings (population size = 10, maximum
function evaluation = 1000, mutation = (0.5, 1), etc.), the
number of function evaluations for convergence is at least
150 for each AV scenario. Thus, each scenario is simulated
more than 150 ∗ 12 = 1800 times, which is more than
24 ∗ 1800 = 43200 simulation runs for all AV scenarios
and for each model. In total for three models, we run more
than 3 ∗ 43200 = 129600 simulation runs.

D. Parameters sensitivity analysis
To find the most sensitive parameter in each CF model in
regards to the policy target, we conduct a sensitivity analysis
on the parameters of each model. This study employs one-at-
a-time (OAT) sensitivity analysis technique to find the effect
of each parameter on the value of the policy targets. The
OAT technique analyze the impact of one parameter on the
output at a time, keeping other parameters fixed. In this case,
we change the values of each parameter within their range
(see Figure 5 and Table 6) and the increments of 0.01 to 0.25
(depending on the range of values of each parameter) under
different demand scenarios and a full AV environment. The
reason for choosing a 100% PRs of AVs is to neglect the
effects of human-driven vehicles on the output. Hence, in a
100% PRs of AVs, a change in the value of output could be
directly associated with the change of a certain parameter
value.

VI. Results and Discussion
The findings and discussion section of this research are struc-
tured into four parts. The initial part presents the sensitivity
of various policy targets on objective function convergence.
Subsequently, the results in the second part illustrate the
fluctuation of the optimized values of objective function
under different PRs and demand cases. The third part pro-
vides a summary of the optimized CF model parameters of
AVs across various scenarios. Finally, a parameter sensitivity
analysis on the values of each parameter under a 100% PRs
of AVs is presented.

A. Convergence analysis
The preliminary findings of this research reveal that in each
scenario, the objective function successfully converges and
identifies the optimized solution. However, the speed of
converges and the objective function fluctuation differ based
on the selected policy and CF model. Given that the error
term of the objective function corresponds to a policy, a high
fluctuation in the values of the objective function shows the
influence of the CF model parameters with respect to the
policy. Hence, the main aim of this section is to illustrate
how a specific policy target is influenced by varying driving
behavior (represented by different set of parameters” values)
and the selected CF model. Additionally, we investigate the
stability of the generated optimized CF parameter values in
relation to a policy target.

When assigning the mean network travel time as the
objective function, the optimization process terminates after
around 250 function evaluations (except for 33% PR) for
both IDM and Krauss models. Figure 7(a) and 8(a) show
from left to right the convergence plots with different PRs
for IDM and Krauss models, respectively. In both models, the
objective function variates drastically from function evalua-
tion 1 to 75, where from function evaluation 75 onward, the
objective function approaches the optimized value. However,
the speed of convergence and objective function fluctuation
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for the ACC model is slow compared to the IDM and Krauss
models. As depicted in Figure 9(a), when selecting average
travel time as the policy target, the optimization process
terminates after 300 function evaluations, and there is no
significant change in the value of the objective function under
all AV penetration scenarios. Meanwhile, in all models,
lower PRs present a smaller search space for the objective
function, leading to a faster termination of the optimization
process. The reason is that in lower PRs, the average network
travel time is more influenced by human-driven vehicles.

In contrast, for the total number of conflicts as a policy,
the optimization process converges after about 300 function
evaluations for IDM and Krauss models. As shown in Figure
7(b) and 8(b), the values of the objective function drastically
vary with different parameters’ sets. The optimized sets of
parameters of IDM and Krauss models significantly enhance
safety in the network. This improvement is more vital with
high demand scales. As displayed in Figure 7(b), in a
full AV scenario, the total number of conflicts decreases
by approximately 80% from the first iteration until the
optimal condition is reached. This high fluctuation of the
objective function also demonstrates the high sensitivity of
different values of IDM and Krauss model parameters in
the safety of the network. Hence, the optimized values of
the parameters extracted in this study are stable and ensure
the safe CF behavior of AVs under various scenarios. It is
worth mentioning that in comparison to the average network
travel time, the reduction in the total number of conflicts is
significantly high. In addition, the fluctuation of the objective
function in higher PRs is larger than in lower PRs, as
shown in Figure 7(b) and Figure 8(b), due to larger search
space/influence of optimization for higher PRs.

Meanwhile, the ACC model reveals different results when
assigning the total number of conflicts as the policy target.
In contrast to IDM and Krauss models, the parameters’
combination of the ACC model is less sensitive in regards
to the change in the total number of conflicts. As shown
in Figure 9(b), in a full AV scenario (100% PRs of AVs),
the total number of conflicts reduces only around 2% from
the first function evaluation until the optimized condition is
reached. This is due to the decision-making method of the
ACC model, which comprises of four controlling modes.
Unlike the IDM and Krauss models, where decisions are
based on fewer parameters and rely on simpler formulations
to determine the vehicle’s acceleration in next step, the
ACC model employs multiple decision regimes to estimate
a vehicle’s acceleration. These controlling modes enable the
ACC model to generate a smoother driving profile compared
to the IDM and Krauss models. This indicates that the ACC
model could well replicate the CF behavior of AVs and
optimized values of parameters could be a good candidate
to be used in simulation-based impact assessment studies to
replicate the CF behavior of AVs.

Furthermore, in Figure 10, we show how the minimization
of one policy target (e.g., average network travel time)
impacts other KPI (e.g., total number of conflicts in the
network) and vice versa. This figure illustrates a detailed
view of the function evaluations ranging from 75 to 250,
derived from Figures 7-9, under base demand and 100%
PR of AVs. The findings reveal that when assigning average
network travel time as the policy target, the number conflicts
increases significantly as the optimization process converges.
This is true for both IDM and Krauss models as shown in
Figure 10(a), whereas for ACC model the change on the
number of conflicts is not significant. On the other hand,
when the number of conflicts is set as a policy target,
the average network travel time does not worsen when the
optimization process converges as displayed in Figure 10(b).

Similarly when choosing both KPIs as the error term
of the objective function in all models, the results of the
optimization module highlight increased fluctuations in the
objective function when safety is prioritized. This reveals
that driving behavior parameters are more sensitive to safety
compared to efficiency.

B. Traffic efficiency and safety analysis
Analyzing the optimized values of the objective function
under different PRs and policy targets and their compari-
son with a fully human-driven vehicles scenario reveals a
significant reduction in the total number of conflicts when
choosing traffic safety as a policy. Compared to a fully
human-driven vehicles environment, the optimized behavior
of AVs could potentially reduce the total number of conflicts
by approximately 16% in IDM and Krauss models, where
the change is not significant in the ACC model as shown in
Figure 11. However, when the policy is chosen to enhance
traffic efficiency, the situation does not exhibit improvement
compared to a fully human-driven vehicles environment in
all CF models. The rationale behind this outcome could
be that the driving behavior parameters do not exert a
significant influence on reducing travel time. The analysis of
the convergence plots also shows that the objective function
values fluctuate very low when the mean network travel time
is selected as a policy. In contrast, the variation in total
number of conflicts is considerably high (Figure 7, 8, and
9).

C. Policy-dependent optimized CF model parameters
The results of this study show that the extracted optimized
CF model parameters under a full AV scenario could poten-
tially reflect the best parameters values, since the driving be-
havior of AVs are not influenced by human-driven vehicles,
and also the optimization module has a larger search space.
Especially, when the total number of conflicts is chosen as a
policy target. To have a clear understanding of the parameters
change in regards to different policy targets, we show the
optimized parameters values of IDM model for all policy
targets as depicted in Table 7, whereas for Krauss and ACC
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FIGURE 7: Convergence plots for 33%, 67%, and 100% PRs of AVs under (a) average network travel time, and (b) total
number of conflicts as a policy target for IDM model.

models, only the optimized values for two policy targets
(average network travel time, and total number of conflicts)
are shown in Table 8 and 9. The arrows in all tables compare
the values of parameters of each scenario with the full AV
scenario (100% PR).

For the IDM model, when the total number of conflicts
is selected as the policy under all demand cases and PRs,
the optimization framework derives the optimized values of
the CF model parameters. In different scenarios, the values
of most of the parameters remain unchanged, as illustrated
in Table 7(b). However, when choosing mean network travel
time as a policy, generalizing a set of parameters for all PRs
becomes challenging. As depicted in Table 7(a), there is a
notable fluctuation in mingap for various PRs and demand
cases. Additionally, when employing the combined KPIs as
a policy, a higher weight assigned to traffic efficiency corre-
sponds to increased variability in the optimized parameters’
values across different cases as shown in Table 7(c) and (d).

Similarly, for Krauss model, the most stable set of param-
eters is extracted when total number of conflicts is chosen
as the policy target. As shown in Table 8(b), there are less
variations in the optimized parameters values in comparison

to Table 8(a), where the average network travel time is
assigned as a policy target.

On the other hands, the optimized values of the ACC
model parameters for both policy targets do not change sig-
nificantly in almost all scenarios. Among other parameters,
tau, and k1 have comparatively higher variations as shown
in Table 9. Still, for total number of conflicts as the policy
target, we can generalize a set of parameters (potentially
100% demand scale, and 100% AV PRs) to be used for all
AV PRs. Meanwhile, for a full AV scenario, the optimized
values of parameters for both demand scales show almost
the same values as depicted in Table 9(b).

To summarize, the optimized parameters’ values of all CF
models under a full AV scenario and 100% demand scale
could be potentially used in impact assessment studies to
approximate the AVs CF behavior.

D. Parameter sensitivity analysis
The results of OAT sensitivity analysis show that for IDM
and Krauss models, mingap, and tau are the most sensitive
parameters in changing the total number of conflicts in the
network (see Figure 12, and 13). For ACC model, however,
the parameters of the model except the parameter tau are not
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FIGURE 8: Convergence plots for 33%, 67%, and 100% PRs of AVs under (a) average network travel time, and (b) total
number of conflicts as a policy target for Krauss model.

TABLE 7: The comparison of the optimized AVs IDM model parameters for different policies and under various scenarios

(a) Policy 1: Reduce average network travel time

Demand PRs mingap accel decel tau

100%
100% 0.8 2.3 3.1 0.6
67% 0.6 ↓ 2.2 ↓ 2.9 ↓ 0.5 ↓
33% 1.1 ↑ 2.1 ↓ 2.8 ↓ 0.6

30% below
100% 1.9 2.3 2.6 0.5
67% 0.9 ↓ 2.3 3.0 ↑ 0.6 ↑
33% 0.5 ↓ 2.3 2.6 0.5

(b) Policy 2: Reduce total number of conflicts

Demand PRs mingap accel decel tau

100%
100% 1.9 2.0 2.4 1.0
67% 1.9 2.0 2.4 1.0
33% 1.7 ↓ 2.3 ↑ 2.4 1.0

30% below
100% 1.4 1.9 2.3 1.0
67% 2.0 ↑ 1.8 ↓ 2.4 ↑ 1.0
33% 1.8 ↑ 1.6 ↓ 2.4 ↑ 1.0

(c) Policy 3: Minimize sum of average network travel time and total number
of conflict (33% priority for T and 67% for C)

Demand PRs mingap accel decel tau

100%
100% 1.7 2.1 2.3 1.0
67% 1.7 2.1 2.4 ↑ 1.0
33% 1.6 ↓ 2.2 ↑ 2.5 ↑ 1.0

30% below
100% 1.7 2.0 2.4 1.0
67% 1.6 ↓ 2.1 ↑ 2.5 ↑ 1.0
33% 1.6 ↓ 2.1 ↑ 2.6 ↑ 1.0

(d) Policy 4: Minimize sum of average network travel time and number of
conflict (67% priority for T and 33% for C)

Demand PRs mingap accel decel tau

100%
100% 1.6 2.2 2.5 1.0
67% 0.9 ↓ 2.1 ↓ 2.3 ↓ 1.0
33% 1.9 ↑ 2.0 ↓ 2.2 ↓ 1.0

30% below
100% 1.7 2.3 2.5 1.0
67% 1.4 ↑ 2.2 ↓ 2.9 ↑ 0.8
33% 1.1 ↓ 2.2 ↓ 2.7 ↑ 0.9

Note: For each demand scale, the arrows compare the optimized values of parameters of each scenario with the full AV scenario (100 % PR).

very sensitive in comparison to other models as displayed in
Figure 14.

For IDM model, the lower values of mingap and tau
significantly increase the total number of conflicts in the
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FIGURE 9: Convergence plots for 33%, 67%, and 100% PRs of AVs under (a) average network travel time, and (b) total
number of conflicts as a policy target for ACC model.

TABLE 8: The comparison of the optimized AVs Krauss
model parameters for (a) average network travel time, and (b)
total number of conflicts as policy targets and under various
AV PRs.

(a) Policy 1: Reduce average network travel time

Demand PRs mingap accel decel tau sigma

100%
100% 0.3 4.0 3.2 0.2 0.0
67% 1.1 ↑ 3.7 ↓ 3.8 ↑ 0.2 0.0
33% 0.3 3.9 ↓ 3.3 ↑ 0.9 ↑ 0.2 ↑

30% below
100% 0.6 3.7 4.3 0.1 0.0
67% 1.4 ↑ 3.6 ↓ 4.3 0.7 ↑ 0.0
33% 0.8 ↑ 3.2 ↓ 3.3 ↓ 1.0 ↑ 0.1 ↑

(b) Policy 2: Reduce total number of conflicts

Demand PRs mingap accel decel tau sigma

100%
100% 1.3 2.5 3.6 1.0 0.5
67% 1.1 ↓ 3.4 ↑ 3.2 ↓ 1.0 0.1 ↓
33% 1.5 ↑ 2.7 ↑ 3.7 ↑ 0.8 ↓ 0.4 ↓

30% below
100% 1.3 2.8 3.0 0.9 0.1
67% 1.0 ↓ 2.6 ↓ 3.2 ↑ 0.9 0.0 ↓
33% 1.3 3.2 ↑ 4.4 ↑ 1.0 ↑ 0.2 ↑

Note: For each demand scale, the arrows compare the optimal values of
parameters of each scenario with the full AV scenario (100 % PR).

network. For instance, under a 100% demand scale, when
changing the mingap from 0.5 to 2.0, the total number of
conflicts in the network reduces around 80%, where for
changing the tau from 0.5 to 1.0, the total number of conflicts
decrease around 85% as displayed in Figure 12. Similarly,
the total number of conflicts shows higher values with lower
values of mingap and tau in Krauss model as shown in
Figure 13(a). By changing the mingap from 0.25 to 1.5 under
100% demand scale, the total number of conflicts reduces
around 82%, where by changing tau from 0.25 to 1.0, the
total number of conflicts reduces around 84%. In both IDM
and Krauss models, mingap and tau are equally sensitive
in regards to the total number of conflicts in the network.
Meanwhile, for ACC model, the parameter tau follows the
same sensitivity as in IDM and Krauss models in changing
the total number of conflicts in the network. However, only a
slight change in total number of conflicts is achieved for gap-
closing control gap space and gap-closing control gap speed
parameters as illustrated in Figure 14. For other parameters,
the changes, are not significant.

To summarize, the extracted optimized values in this
study contradicts the assumptions made in the literature. For
instance, it is assumed in many studies that AVs might drive
closer to the leading vehicles [52], [53], where the findings
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FIGURE 10: Illustration of the impacts of one KPI on the other KPI for each CF model under (a) policy 1: reduce average
network travel time, and (b) policy 2: reduce total number of conflicts in the network for 100% PR of AVs and base demand
scenario.

TABLE 9: The comparison of the optimized AVs ACC model parameters for (a) average network travel time, and (b) total
number of conflicts as policy targets and under various AV PRs.

(a) Policy 1: Reduce average network travel time

Demand PRs tau k1 k2 k3 k∗2 k∗3 k4 k5

100%
100% 0.5 0.5 0.3 0.08 0.06 0.5 0.7 0.2
67% 0.4 ↓ 0.6 ↑ 0.3 0.06 ↓ 0.05↓ 0.5 0.7 0.2
33% 0.7 ↑ 0.2 ↓ 0.3 0.08 0.05↓ 0.5 0.6 ↓ 0.3 ↑

30% below
100% 0.8 0.3 0.3 0.10 0.06 0.6 0.8 0.3
67% 0.5 ↓ 0.3 0.2 ↓ 0.06 ↓ 0.05 ↓ 0.6 0.9 ↑ 0.2 ↓
33% 0.7 ↓ 0.6 ↑ 0.2 ↓ 0.08 ↓ 0.05 ↓ 0.6 0.8 0.2 ↓

(b) Policy 2: Reduce total number of conflicts

Demand PRs tau k1 k2 k3 k∗2 k∗3 k4 k5

100%
100% 1.0 0.3 0.3 0.09 0.02 0.9 0.9 0.3
67% 1.0 0.5 ↑ 0.3 0.06 ↓ 0.04 ↑ 0.9 0.9 0.3
33% 0.8 ↓ 0.3 0.3 0.06 ↓ 0.02 0.8 ↓ 0.9 0.3

30% below
100% 1.0 0.3 0.3 0.08 0.01 0.8 0.8 0.3
67% 1.0 0.6 ↑ 0.2 ↓ 0.09 ↑ 0.01 0.8 0.8 0.3
33% 1.0 0.4 ↑ 0.2 ↓ 0.07 ↓ 0.04 ↑ 0.9 ↑ 0.9 ↑ 0.3

Note: For each demand scale, the arrows compare the optimized values of parameters of each scenario with the full AV scenario (100 % PR).
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FIGURE 11: The optimum values of the objective function for different policy targets and CF models under two demand
scales.

of this study show that the lower mingap results in higher
number of conflicts in the network, and the optimized value
of mingap is 1.9 for IDM model and 1.25 for Krauss model.
Similarly, tau is assumed 0.5 in the literature [19], [20] to
replicate the headway of AVs, where our findings show the
optimized value around 1.0 for all three models.

VII. Conclusion
AVs are expected to exhibit safe and efficient driving behav-
ior not only in certain traffic conditions but also through-
out the entire trip. This research develops an optimization
framework to identify the best sets of CF model parameters
that generate an optimal driving profile for AVs across
various scenarios. The optimization framework utilizes the

DE global search algorithm to find the optimal parameter
values by sending possible solution sets into the simulation
environment. We conducted experiments with different CF
models (IDM, Krauss, and ACC), demand scales (peak hour
and off-peak hour), PRs (0%, 33%, 67%, and 100%), and
policy targets (efficiency, safety, and combinations of both)
was conducted to validate the proposed framework.

The convergence analysis of the objective function reveals
that, when choosing the total number of conflicts as a policy,
the objective function shows significant variability until
the optimized (minimal) solution is reached. This indicates
that an optimized set of CF parameters could considerably
enhance the safety (minimum number of conflicts in the
network). However, the convergence speed and fluctuation
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differ by CF model; IDM and Krauss show high sensitivity
to the total number of conflict, while the ACC model is
more stable (less fluctuation). Higher PRs also lead to
greater fluctuations, likely due to a larger search space or
increased optimization impact on the KPIs. In comparison,
when the mean network travel time is set as a policy, the
objective function variation is smoother. Meanwhile, the
findings reveal that when assigning the average network
travel time as the policy target, the number of conflicts
increases significantly as the optimization process converges.
This is true for both IDM and Krauss models; however, for
the ACC model, the change is not huge. Similarly, when the
number of conflicts is chosen as a policy target, the average
network travel time does not worsen in all CF models while
the optimization process terminates.

The analysis of the optimized values of the objective
function (policy target) reveals that choosing the total num-
ber of conflicts as the policy target leads to a significant
reduction in the number of conflicts as the PRs of AVs
increase. In contrast, when the average network travel time
is considered as the policy, no significant improvements
are achieved compared to a fully human-driven vehicles
scenario. In addition, the investigation of the parameter
values determines that choosing the number of conflicts as
a policy generates generalized parameter values that could
be used for all demand scales and PRs in all CF models.
Finally, the findings of sensitivity analysis show that the
minimum gap (mingap) is the most sensitive parameter for
IDM and Krauss models, where time headway (tau) is the
most sensitive parameter for all three models in changing the
total number of conflicts in the network. Other parameters

do not have a magnificent influence on changing the policy
targets.

The proposed optimization framework finds the optimal
set of AVs’ CF model parameters that could be potentially
utilized in impact assessment studies instead of using as-
sumed parameter values. However, one of the limitations of
this study was to test the framework in one study area. While
the experimental findings of this research could be applicable
to similar case studies and demand patterns, further work
will be needed to generalize these findings. This involves
testing the proposed framework in different study areas,
demand patterns, and unpredictable traffic situations, and
extracting correspondingly optimized CF model parameters.
Second, in this research, we utilized the Wiedemann model
to replicate human-driven vehicles. However, it is interesting
to model both human-driven vehicles and AVs using the
same CF model and extract the optimal AV CF parameters.
This will lead to a more accurate investigation of the impacts
of different PRs of AVs on the network. In addition, a
comprehensive impact assessment of AVs PRs on a network
level using the extracted optimized CF parameters of this
study will be part of our future work. Meanwhile, in this
research we extracted the AV CF parameters, where the
following vehicle communicates only with the leading ve-
hicle through its sensors. A study using our methodological
framework is needed to investigate and generate the optimal
CF parameters for CAVs. This could be done using a CF
model integrated into a simulation model, e.g., modified
IDM model as in [28], which considers various vehicles into
account for following the leading vehicle. Finally, a research
to generate the optimal driving parameters considering both
CF and LC models would be also part of our future work.
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[67] Q. Lu, T. Tettamanti, D. Hörcher, and I. Varga, “The impact of au-
tonomous vehicles on urban traffic network capacity: An experimental
analysis by microscopic traffic simulation,” Transportation Letters,
vol. 12, pp. 540–549, Sept. 2020.

[68] K. Mattas, M. Makridis, P. Hallac, M. A. Raposo, C. Thiel, T. Toledo,
and B. Ciuffo, “Simulating deployment of connectivity and automation
on the Antwerp ring road,” IET Intelligent Transport Systems, vol. 12,
pp. 1036–1044, Nov. 2018.

[69] H. Liu, X. D. Kan, S. E. Shladover, X.-Y. Lu, and R. E. Ferlis,
“Modeling impacts of Cooperative Adaptive Cruise Control on mixed
traffic flow in multi-lane freeway facilities,” Transportation Research
Part C: Emerging Technologies, vol. 95, pp. 261–279, Oct. 2018.

[70] M. Qurashi, Q.-L. Lu, G. Cantelmo, and C. Antoniou, “Dynamic
demand estimation on large scale networks using Principal Component
Analysis: The case of non-existent or irrelevant historical estimates,”
Transportation Research Part C: Emerging Technologies, vol. 136,
p. 103504, Mar. 2022.

[71] G. Deng, Simulation-Based Optimization. PhD thesis, University of
Wisconsin - Madison, 2007.

[72] April, Glover, Kelly, and Laguna, “Practical introduction to simulation
optimization,” in Proceedings of the 2003 Winter Simulation Confer-
ence, 2003., vol. 1, pp. 71–78 Vol.1, Dec. 2003.

[73] A.-T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-
based optimization methods applied to building performance analysis,”
Applied Energy, vol. 113, pp. 1043–1058, Jan. 2014.

[74] M. Georgioudakis and V. Plevris, “A Comparative Study of Differential
Evolution Variants in Constrained Structural Optimization,” Frontiers
in Built Environment, vol. 6, p. 102, July 2020.

[75] K. N. Porfyri, E. Mintsis, and E. Mitsakis, “Assessment of ACC
and CACC systems using SUMO,” in SUMO 2018- Simulating Au-
tonomous and Intermodal Transport Systems, pp. 82–69, 2018.

[76] S. Krauss, “Microscopic modeling of traffic flow: investigation of
collision free vehicle dynamics,” Apr 1998.

[77] L. Lücken, E. Mintsis, K. Porfyri, R. Alms, Y.-P. Flötteröd, and
D. Koutras, “From Automated to Manual - Modeling Control Tran-
sitions with SUMO,” in SUMO User Conference 2019, pp. 124–102,
2019.

[78] H. U. Ahmed, Y. Huang, and P. Lu, “A Review of Car-Following
Models and Modeling Tools for Human and Autonomous-Ready
Driving Behaviors in Micro-Simulation,” Smart Cities, vol. 4, pp. 314–
335, Mar. 2021.

[79] Q.-L. Lu, M. Qurashi, D. Varesanovic, J. Sodnik, and C. Antoniou,
“Exploring the influence of automated driving styles on network
efficiency,” Transportation Research Procedia, vol. 52, pp. 380–387,
2021.

[80] H. Sadid and C. Antoniou, “A simulation-based impact assessment
of autonomous vehicles in urban networks,” IET Intelligent Transport
Systems, vol. 18, no. 9, pp. 1677–1696, 2024.

Hashmatullah Sadid received the bachelor’s
degree in civil engineering from Kabul Univer-
sity, Afghanistan, and the M.Sc. degree in trans-
portation systems from the Technical University
of Munich (TUM), Germany, in 2018. He is a
research associate and a Ph.D. candidate at TUM
since October 2020. His research interests include
modelling and simulation of autonomous vehicles,
data analytics, machine learning and deep learn-
ing, intelligent transportation systems, and driving
behavior.

Constantinos Antoniou is a full professor in
the Chair of Transportation Systems Engineering
at the Technical University of Munich (TUM),
Germany. He holds a Diploma in Civil Engineering
from NTUA (1995), a MS in Transportation (1997)
and a PhD in Transportation Systems (2004), both
from MIT. His research focuses on transport pol-
icy, modelling and optimization of transportation
models, data analytics and statistical learning for
transportation, and human factors for future mo-
bility.

20 VOLUME ,





C Sadid and Antoniou (2024). Dynamic
Spatio-temporal Graph Neural Network
for Surrounding-aware Trajectory
Prediction of Autonomous Vehicles

103



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 1

Dynamic Spatio-temporal Graph Neural Network
for Surrounding-aware Trajectory Prediction of

Autonomous Vehicles
Hashmatullah Sadid1, and Constantinos Antoniou1

Abstract—Trajectory prediction is a critical aspect of under-
standing and estimating the motion of dynamic systems, including
robotics and autonomous vehicles (AVs). For safe and efficient
driving behavior, an AV should predict its own motion and the
motions of surrounding vehicles in the upcoming time steps.
To achieve this, understanding the interaction among vehicles
is crucial for accurate trajectory prediction. In this research,
we implement a dynamic Spatio-temporal graph convolutional
network to predict the trajectory distribution of vehicles in
a traffic scene. We perform the graph convolutional network
(GCN) operation on directed graphs to capture the spatial
dependencies among vehicles in each traffic scene. To accurately
replicate the interaction among vehicles, we propose a novel
weighted adjacency matrix derived by the strategic positions
of vehicles (angular encoding) and the reciprocal of distances
among vehicles in a traffic scene. Additionally, we employ the
temporal convolution network (TCN) to learn the temporal
dependencies of a trajectory sequence and decode the future
driving status using historic trajectories. We test the model with a
naturalistic trajectory dataset (HighD) and conduct performance
evaluation. The findings reveal that the proposed model could
significantly improve accuracy compared to existing state-of-
the-art models. Meanwhile, we conduct transfer learning to
test the generalizability of our model on low data availability
scenario using NGSIM (US-101) dataset. The results show that
the relearned model perform comparability well and depicts
competing performance in comparison to the state-of-the-art
methods.

Index Terms—Trajectory prediction, dynamic Spatio-temporal
graph neural network, autonomous vehicles

I. INTRODUCTION

Trajectory prediction with its wide applications in au-
tonomous driving [1]–[3], robot navigation [4], [5], and
surveillance systems [6]–[8], has attracted significant atten-
tions in recent years. In the field of autonomous driving, an
autonomous vehicle (AV) should predict the possible future
motion and trajectory of the surrounding vehicles for its own
safe and efficient driving actions in the next time steps. This
is possible for AVs, since they have the ability to detect
the surrounding environment using their advanced sensing
technologies (e.g., Lidar, Radar). The more advanced version
of AVs, so-called connected AVs (CAVs), are capable of
exchanging driving information (i.e., speed, acceleration, posi-
tion, and more) not only with nearby connected vehicles (V2V)
but also with connected vehicles in their communication range,

1Hashmatullah Sadid is corresponding author, Chair of Transporta-
tion Systems Engineering, Technical University of Munich (TUM),
hashmat.sadid@tum.de

Manuscript received May 23, 2024

as well as infrastructure (V2I) [9]. Trajectory prediction is not
important only for the motion prediction of AVs, but also for
capturing their driving behaviors in terms of car-following and
lane-changing. An accurate trajectory prediction model could
be potentially integrated with a simulation tool to replicate
the driving behavior of AVs and conduct a simulation-based
impact assessment of AVs deployment scenarios in a traffic
network [9].

In a traffic scene, a vehicle continuously tries to act in such
a way to have safe and efficient movement. The movement of
a vehicle is related to its own past actions as well as its nearby
vehicles’ motions. Understanding other drivers’ intentions is
essential to predicting a vehicle’s future positions and actions.
The availability of the open source trajectory datasets such as
HighD [10], NGSIM [11], pNEUMA [12], Waymo [13], and
nuScenes [14], and the success of deep learning algorithms
make it possible to accurately replicate the interaction among
vehicles in a traffic scene and predict their movements in the
next time steps.

There are two aspects in mimicking the trajectory of vehi-
cles, namely, the temporal dependency of a vehicle’s actions
and the spatial dependency of a vehicle’s actions with respect
to its interaction with neighboring vehicles and map informa-
tion (e.g., road geometry, speed limits, traffic lights). There are
many attempts to capture the temporal dependency using re-
current neural networks (RNN) [15], Long short-term memory
(LSTM) networks [16]–[18], and temporal Convolution neural
network (CNN) [19], [20]. Among them, LSTM networks
have shown significant success in capturing complex temporal
dependencies. Some works also coupled LSTM-based methods
together with pooling mechanisms to capture both tempo-
ral and interaction dependencies by aggregating a vehicle’s
neighbors past trajectories as an additional input to predict a
target vehicle’s trajectory [21]–[23]. In addition, attempts have
been made to model the spatial dependencies among moving
vehicles and capture the dynamic spatial interactions using
LSTM-based methods [24], [25]. However, a key limitation of
the LSTM-based methods is that they assume a grid structure
for a traffic scene to capture the spatial dependency. Since the
spatial relation of vehicles are non-Euclidean, this makes it
a challenging task for LSTM-based methods to interpret and
explain the model decisions.

Graph-based methods where vehicles are represented as
nodes of a graph and the interaction among them are shown
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as edges of the graph could accurately and meaningfully
replicate a traffic scene and predict a vehicle’s future trajectory.
Researchers utilize a graph neural network (GCN) to capture
the spatial dependencies among vehicles, where temporal
extractors such as GRU (Gated recurrent unit), LSTM, and
temporal CNN are used to mimic the temporal dependencies.
A combination of GCN with a temporal module is also called a
spatio-temporal graph convolution network(STGCN). Several
researchers utilized STGCN methods to predict the trajectory
of vehicles as well as pedestrians [26]–[33]. In these methods,
the interaction among vehicles are captured using weighted
adjacency matrices.

In graph-based trajectory prediction studies, constructing
an adjacency matrix and the defining the effects of nearby
vehicles on the target vehicle play an important role. In
many studies, when learning the spatial dependencies among
vehicles, researchers only consider the direct distance among
vehicles as a weight factor to construct the adjacency matrix
[27], [31]–[33]. Using the weighted adjacency matrix, the aim
is to distinguish the respective effects of the neighboring vehi-
cles on the target vehicle. However, this approach contradicts
real-world driving behavior. The driving actions of a vehicle is
more influenced by the leading vehicle than a vehicle on the
back. Assuming the same distance between a target vehicle
and the vehicle on the front and back, the target vehicle might
highly consider the front vehicle for safe and efficient driving.
Similarly, the right-lane vehicles might have less influence on
the driving behavior of a vehicle that, for instance, drives in
the middle lane of a three-lane highway. Considering equal
importance for all vehicles around the target vehicle does not
match with the real driving behavior and introduces noises.
Therefore, to accurately distinguish the true effects of the
surrounding vehicles on the target vehicle, consideration of
the driving position (e.g., leading, following, right-lane, left-
lane, etc.) we call it strategic position in addition to direct
distance is crucial.

The second challenge is that the adjacency matrix among
vehicles in a scene is not symmetric and follows a directed
graph structure. A leading vehicle highly impacts the actions
of the following vehicle, whereas the following vehicle might
also have lower effects on the actions of the leading vehicle.
Third, the strategic position of the nearby vehicles might
change in each scene. For instance, a vehicle on the back of
the target vehicle might speed up, change its lane, and become
the left lane alongside for the target vehicle. Similarly, nearby
vehicles may loss their strategic positions by either existing the
road, or new vehicles might take their positions. This brings
a dynamic variation on the adjacency matrix not only in the
positioning of the nearby vehicles but also creation of new
interactions with new vehicles under different frames.

To address the above-mentioned limitations, this research
implements a dynamic STGCN to simultaneously predict the
motion and trajectory of all surrounding vehicles considering
their strategic positions in a driving scene. We implement
GCN to learn the spatial dependencies among vehicles in each
scene considering the dynamic behavior of the graph structure.

For constructing the adjacency matrix for embedding into the
spatial GCN, we propose a two-step process which considers
both the strategic position and location of nearby vehicles. For
capturing the temporal correlation of the driving status, we
employ the temporal convolution network (TCN) to decode
the future driving status using the historic trajectories.

The main contributions of this research work are as fol-
lows: (i) We introduce a novel approach that incorporates
the strategic positions of vehicles into the dynamic STGCN
model. Unlike traditional methods that rely solely on distance-
based adjacency matrices, our approach considers the relative
positions and strategic orientations of vehicles to capture their
spatial relationships more accurately. (ii) The implementation
of a dynamic STGCN model on a directed graph structure,
to predict simultaneously the trajectories of all vehicles in a
traffic scene. By leveraging the directed graph topology, our
approach captures the intricate interdependencies among ve-
hicles, allowing for comprehensive trajectory predictions that
consider the evolving dynamics of the entire traffic scenario.

The remainder of this paper is structured as follows: In the
following section, we review the related work on trajectory
prediction methods. In section III, we formulate the trajectory
prediction problem description. Section IV describes the over-
all model architecture of the dynamic STGCN model including
the proposed weighted adjacency matrix generation method. In
section V, we conduct experiment and present the results of
this research. Finally, a conclusion in Section VI explains the
overall contribution of this article alongside further research
directions.

II. RELATED WORKS

Over the past years, there have been many methods de-
veloped for trajectory prediction. According to [34], these
methods are categorized into physics-based models, learning-
based techniques, and planning-based methods. Physics-based
models such as kinematic models [35], Kalman filtering [36],
and Monto-Carlo methods are computationally efficient for
trajectory prediction. These models can provide relatively
better short-term predictions compared to long-term, when
the vehicle’s dynamics are well-understood and predictable.
However, they struggle in rapidly changing traffic scenarios,
where the dynamics of other vehicles are difficult to predict,
and hence they are unreliable for long-term predictions [37].

Learning-based methods often driven by machine learn-
ing and deep learning techniques, leverage historical data
to predict vehicle trajectories. These methods often employ
techniques such as RNN [15], CNN [19], [20], LSTM [16]–
[18] methods, Transformer models [38]–[41], and graph-based
deep learning methods [27], [32], to capture the complex
dependencies in vehicle’s trajectory in a wide driving sce-
narios. Meanwhile, the planning-based methods aim to find
optimal trajectories through algorithm solutions and optimiza-
tions. These methods are efficient in long-term prediction
by explicitly optimizing vehicle trajectories, however, they
could be computationally intensive [42], [43]. The current
sate-of-the-art shows that learning-based models have been
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successful in trajectory prediction problem. These models are
computationally efficient and benefit from the availability of
open source trajectory datasets.

The trajectory prediction problem could be divided into two
sub-tasks: (i) how a vehicle’s past actions influence its future
movement and (ii) how the interaction of a target vehicle
with its neighbors affects its own future movements. Thus,
trajectory prediction requires capturing both the temporal
and spatial (interaction) dependencies. With the success of
the LSTM-based methods in capturing the sequential data,
researchers widely utilized LSTM to predict vehicles’ and
pedestrians’ trajectories. We can categorize LSTM methods
based on whether they account for vehicle interactions or not.
Early works such as [17], [18], [44] utilized a single-layer
LSTM by using the past trajectories of each vehicle in a traffic
scene to predict their future trajectories without considering
the interaction among vehicles. To address this limitation,
some works introduced pooling mechanisms to capture the
influence of other vehicles’ on a target vehicle [21]–[23].
For instance, [23] proposed a single-layer LSTM that takes
the past trajectories of the nearby vehicles as an additional
input to mimic the trajectory of the target vehicle. However,
the pooling mechanism in these studies only aggregates the
trajectory information of all vehicles but does not distinguish
the different impacts of nearby vehicles on the target vehicle.
To further improve LSTM-based methods and capture spatio-
temporal dependencies, recent methodological works consider
the trajectories of surrounding vehicles when predicting the
target vehicle’s trajectory using a multi-layer LSTM. For in-
stance [25] proposed a two-layer LSTM to learn the interaction
among vehicles in a traffic scene by sharing the states of
vehicles with each other. Although the latter method improved
the accuracy of trajectory prediction, it is still challenging to
interpret and explain model decisions.

Meanwhile, the Transformer model, originally developed
for natural language processing (NLP) tasks [45], has been
widely applied to various tasks, including object detection
[46], image classification [47], posture estimation [48], and
trajectory prediction [38]–[40], [49]. The attention mechanism
allows Transformer models to capture both long-range and
short-range dependencies simultaneously. In addition, a Trans-
former model’s ability to process sequence data in parallel
rather than sequentially accelerates both training and inference.
Several studies utilized Transformer models for the trajectory
prediction task. Some consider only the temporal dependency
of a vehicle’s driving actions [41], [50], whereas others also
consider the interaction among vehicles in a traffic scene
[38]–[40]. For instance, [41] utilized a Transformer model for
pedestrian trajectory prediction, considering the past trajecto-
ries of pedestrians without modelling the interaction among
them. Similarly, [50] used the modification of a standard
Transformer, incorporating past trajectories as input features
extracted from aerial view photo datasets. In contrast, [40]
applied stacked transformers with a focus on defining dynamic
variations in social behavior and representing interactions be-
tween vehicles using a graph attention module. [39] proposed
a novel framework for multi-agent motion prediction using a

hierarchical vector Transformer to mimic both the interaction
among agents and the long-term dependencies of their driving
actions. Although Transformer models have shown potential
improvements in trajectory prediction tasks, they require sub-
stantial computational resources, and interpretability can be
challenging due to the complex interactions learned by the
self-attention mechanism [51].

The successful implementation of LSTM-based methods
in trajectory prediction, and the interpretability challenge in
Transformer models paved the road for researchers to further
explore the trajectory prediction problem, emphasizing the
spatial interaction of vehicles in a traffic scene. Hence, graph-
based models, especially GCN-based models, have attracted
attention for trajectory prediction problem, as they could
accurately capture the spatial dependencies of vehicles in a
traffic scene using a graph structure (i.e., vehicles as nodes of
the graph and connection among them as edges of the graph)
[30], [52], [53].

GCN is the most popular graph neural network (GNN) type
extracted from the idea of the normal convolutional network.
GCN can handle the cyclic mutual dependencies architec-
turally using a pre-defined number of layers with different
weights in each layer. There are two types of GCN proposed
in the literature, namely spectral-based and spatial-based GCN.
The first spectral-based method was proposed by [54]. In this
approach, graph convolution is defined by introducing filters
from the view of graph signal processing. The information
propagation in spectral GCN could be similar to signal prop-
agation along the nodes. In spectral GCN, the convolution
operation is defined in the Fourier domain by calculating the
Eigen-decomposition of graph Laplacian matrix (for in-depth
details, the reader is referred to [55]). On the other hand,
spatial-based approaches consider the information propagation
by operating on spatially close neighbors to define graph
convolution. In the method proposed by [56], a symmetric-
normalized aggregation with self-loop update operation is
employed.

In vehicle trajectory prediction, GCN aggregates the fea-
tures of the neighboring vehicles in a traffic scene using the
adjacency matrix to predict the target vehicle’s trajectory. GCN
can well mimic the spatial dependencies among vehicles in
traffic scenes; however, to capture the temporal dependencies
and predict the future trajectories, temporal extractors such as
GRU, LSTM, or TCN are combined with the GCN model,
which is called the STGCN model.

The implementation of a STGCN model for trajectory
prediction requires (i) the representation of a traffic scene as
a graph, (ii) the construction of the adjacency matrix, and (iii)
the selection of a temporal extractor. The graph structure is
dynamic since the position and interaction of vehicles vary
over time in traffic scenes. Second, the adjacency matrix
is constructed in such a way as to distinguish the effects
of vehicles on each other. Third, the temporal extractor is
mainly used to capture the temporal dependency of a vehicle’s
movements in the past time horizon and use the knowledge
to predict the trajectories in the future. The selection of a
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temporal extractor depends on its computational efficiency as
well as whether it can predict the trajectories of all vehicles
in a traffic scene at the same time. Recent works on vehicle
trajectory prediction show that researchers used TCN to extract
temporal dependencies in a STGCN architecture [27], [32],
[33]. The reason is that TCN could predict the trajectories of
all vehicles in a traffic scene simultaneously, whereas most
LSTM-based methods predict the trajectory of each vehicle at
a time. In real-time decision-making by AVs, it is necessary
to predict the future trajectories of all nearby vehicles at the
same time.

Several studies utilized a STGCN architecture for trajectory
prediction. For instance, [27] developed the Social-STGCN
model to predict the pedestrians’ trajectory. This research used
distance among pedestrians to create the weighted adjacency
matrix and provide prior knowledge about the social relations
between pedestrians. In this study, time-extrapolate CNN
(TXP-CNN) is considered for temporal dependency extraction
and future trajectory prediction. Similarly, [32] used STGCN
to predict the vehicle trajectory. In their research, the recip-
rocal of direct distance among vehicles is used to construct
the adjacency matrix and conduct convolution operation. In
addition, the TCN model is utilized to extract the temporal
dependency. Moreover, [33] utilized a STGCN framework to
predict pedestrians’ trajectory. This study is based on the
Social-STGCN by modifying the model hyper-parameters and
conducting more experiments. It is worth mentioning that
some works also used gated attention networks (GAT) to
capture the spatial dependency among vehicles. GAT utilizes
the attention mechanism to allocate different weights to dif-
ferent nodes. For instance, [30] utilized a GAT model together
with a TCN for pedestrian trajectory prediction. Inspired by
the successful results of the STGCN model, in this research,
we utilize the STGCN model similar to [27] for predicting
vehicles’ trajectory by constructing the weighted adjacency
matrix based on vehicles’ strategic position and their distances.

III. PROBLEM DESCRIPTION
Trajectory prediction is the core task of the decision-making

unit of AVs. The aim of the trajectory prediction is to predict
the future motion of all nearby vehicles of a target AV in
order to decide for its own future actions. This could be
achieved using the past trajectories of all vehicles available
in a traffic scene. The interaction among vehicles vary in
each traffic scene, depending on the motion features of each
vehicle. As shown in Figure 1, the relation between the target
vehicle (the black colored vehicle) and nearby vehicles, both
in terms of their strategic position and distance, change over
time. This makes the trajectory prediction problem dynamic
both in temporal and spatial dimensions. To formulate the
trajectory prediction problem, we define N as the number of
vehicles observed in a traffic scene with tobs steps, where the
attribute of a single vehicle i ∈ {1, . . . , N} at the time step
t ∈ {1, ..., tobs} is denoted as:

Xi
t =

[
(xt

i, y
t
i), (v

t
xi, v

t
yi), (a

t
xi, a

t
yi), . . .

]

Given the observed attributes of the vehicle Xi as X1:tobs
i =

[X1
i , X

2
i , . . . , X

tobs
i ], the aim is to simultaneously predict the

future attributes of all vehicles denoted as Y t
i for a prediction

horizon, where t ∈ {tobs, tobs+1, . . . tpred}.

IV. DYNAMIC STGCN MODEL

In this research, the proposed model consists of two main
components: the Spatio-temporal Graph Convolution Network
(STGCN) and Temporal Convolution Network (TCN) mod-
ules. The STGCN module performs Spatio-temporal convo-
lution operations on the graph representation of the vehicles
trajectories to embed the driving features. These features are
a compact embeddings of the historical vehicle trajectory
observations. TCN module extracts the temporal dependency
of vehicles trajectories and extrapolate the future trajectories
of all vehicles simultaneously using these historical trajectory
observations. An illustration of the overall framework is shown
in Figure 2.

A. Spatio-Temporal Graph Representation

Considering the main elements of a graph (node and edge),
the interaction among vehicles could be represented as a graph.
Since the structure and the features of the vehicle trajectory
graph changes over time, we name it dynamic Spatio-temporal
graph. A dynamic Spatio-temporal graph could be defined as
set of spatial graph Gt, where t ∈ {1, ..., tobs} representing
the spatial dependencies of vehicles at time t. Considering
N vehicles in a traffic scene, a spatial graph is defined as
Gt = (Vt, Et), where Vt = {vti | ∀i ∈ {1, . . . , N}} is the set
of vertices (nodes) of the graph Gt. Each node vti represents
a vehicle in a frame with the relevant features {xt

i, y
t
i}. Et

is the set of edges (connectors) within the graph Gt, which
is defined as Et =

{
etij
∣∣∀i, j ∈ {1, . . . , N}

}
. In case of a

connection between node i and j at time t, etij = 1, otherwise
etij = 0.

The information whether two nodes are connected to each
other does not reveal how strongly a node affects another
node. Hence, to capture the magnitude of interaction between
two vehicles, we attach weights to edges of the graph at each
time t. These weights are organized into the weighted adja-
cency matrix At. In this research work, we define two types
of adjacency matrix: the Euclidean distance-based adjacency
matrix, and positional angular encoding adjacency matrix. The
combination of both adjacency matrix types result in the final
adjacency matrix which is used for the training of the model.

Euclidean Distance-based Edges

The first step for construction of the weighted adjacency
matrix is to calculate the Euclidean distance between any two
connected nodes. The closer the distance indicate the stronger
interaction among vehicles. We use the equation (1) to measure
the distance function (reciprocal of the distance) between two
nodes and to give higher weight for closer vehicles as follows:

d(pti, p
t
j) =

1√
(ptix − ptjx)

2 + (ptiy − ptjy)
2

(1)
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Fig. 1: The illustration of the interaction among vehicles over time; both the strategic position and distance of vehicles in
respect to the target vehicle changes over time.
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Temporal Convolution Network
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Fig. 2: The overall architecture of the proposed dynamic STGCN architecture. In each traffic scene, GCN takes the trajectories
of vehicles as input and learns the spatial dependencies among them. This is done for all traffic scenes, and the results are
mapped on the features maps. The TCN module then operates on the features maps to extract the temporal dependencies and
predict the future trajectories.

where pti = (xt
i, y

t
i) and ptj = (xt

j , y
t
j) are the coordinates of

the vehicles i and j at the time t. The Euclidean distance-based
weighted adjacency matrix is presented as:

A′
ij

t =

{
d(pti, p

t
j), if edge etij = 1

0, otherwise
(2)

Positional Angular Encoding-based Edges
The Euclidean distance-based adjacency matrix only pro-

vides information on how close two vehicles are. However,
it does not reveal the strategic position of the vehicle with
respect to the target vehicle. Therefore, we construct the
angular positional encoding of the nearby vehicles with respect
to the target vehicle to capture the strategic position of the
surrounding vehicles. For this, the cosine function is used
to distinguish the preceding vehicles (front, right, left) from
the following vehicles (back, right, left) of the target vehicle.
Consider a traffic scene, where the upper left corner represents
the origin of the coordinate system as illustrated in Figure
3. The x-axis depicts the longitudinal direction of the travel
of vehicles and increases to the right, and y-axis indicates
the lateral movement of vehicles, which grows downwards.

In case of a curvature, the x-axis remains horizontal, whereas
the deviation in the value of y-axis could capture the curvature
of the road and thus the curved trajectory of a vehicle. The
strategic position of a vehicle with respect to other vehicles
is estimated based on the coordinates of the vehicles, which
are taken from the upper left corner of their bounding boxes.
For instance, in Figure 3, the blue-colored vehicle is located
in the preceding left position of the brown-colored vehicle,
indicating that the blue-colored vehicle has a positive strategic
position with respect to the brown-colored vehicle. Thus, the
angle between two vehicles i and j can be derived as follows:

θtij = θ(pti, p
t
j) = arctan

(
ptiy − ptjy
ptix − ptjx

)
(3)

where pti = (xt
i, y

t
i), and ptj = (xt

j , y
t
j) are the coordinates

of the vehicles at the time t. The weighted adjacency matrix
based on the the angular position of the nearby vehicles in
respect to the target vehicle is defined as:

A′′
ij

t =

{
cos(θtij), if edge etij = 1

0, otherwise
(4)
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Fig. 3: The illustration of the angle calculation between two
vehicles in a traffic scene. The upper left corner of the traffic
scene corresponds to the origin of the coordinate system, and
the upper left corner of the vehicles’ bounding box represents
the coordinates of vehicles with respect to the origin.

The elements of the angular position-based adjacency ma-
trix takes values between [−1,+1], where positive values
indicate that the vehicle locates in the preceding positions of
the target vehicle, and negative values shows its location in
the following positions of the target vehicle. A value of +1
means that the vehicle is in front of the target vehicle, where
−1 depicts that the vehicle is in the back of the target vehicle.
Since the elements of an adjacency matrix can not have a
negative value, we re-scale it to [0,+1] by multiplying the
original cosine range by 0.5 and adding it by +0.5. In this
context, the edge value of 0 indicates that a vehicle is on the
back of the target vehicle.

The element-wise sum of both reciprocal distance adjacency
matrix and angualr positional encoding adjacency matrix is the
final weighted adjacency matrix.

At
ij = A′

ij
t+A′′

ij
t =

{
d(pti, p

t
j) + cos(θtij), if edge etij = 1

0, otherwise
(5)

B. Graph Convolution Network

The graph representation of the vehicle trajectory contains
the spatial and temporal information of the vehicles’ motions.
In the spatial dimension, a vehicle’s future state is highly
related to its own state and its nearby vehicles’ states. To
capture the spatial dependencies among vehicles in each time
step, we implement the GCN method proposed by [56]. GCN
is a powerful method to aggregate and map the hidden repre-
sentation of each node with its neighbors. The convolution
operation to extract the features of nodes in each layer is
expressed as:

H(l+1) = σ(D̂t
−1/2

ÂtD̂t
−1/2

H(l)W(l)) (6)

where H(l) is the feature matrix of nodes in layer l,
σ denotes the activation function, Ât = At + I is the
adjacency matrix with I as identity matrix, D̂t is the di-
agonal node degree matrix of Ât, and the W(l) represents
the trainable parameters matrix in layer l. According to

[56], the D̂t
−1/2

ÂtD̂t
−1/2

aims to normalized the symmetric
adjacency matrix and make the learning process of GCN
faster. Since, in our proposed approach, the adjacency matrix
is non-symmetric, therefore, we implement row-normalization
technique similar to [57] to normalize the adjacency matrix.
Thus, the term D̂t

−1/2
ÂtD̂t

−1/2
in equation (6) become

D̂t
−1

Ât.

In each layer, the GCN operation aggregates the features
of the neighboring nodes and adds it to the features of the
target vehicle. The updated features’ vector of the target node
is then passed to the next layer. This operation is conducted
to each node and the features vector of any node in the next
layer contains the aggregated information from the previous
layer.

C. Spatio-Temporal Graph Convolution Neural Network

In GCN, we capture the spatial dependencies among vehi-
cles in each scene (time step) and embed the features of each
node based on its own features and its nearby vehicles. The
output of the GCN operation is the set of features for each
node in each time step. The STGCN contains the set of all
graphs Gt, where the features and adjacency matrix changes
over time.

Since, a vehicle’s motion is highly dependent on its own
past actions, we need to define a method to capture tempo-
ral dependencies. Several existing works have implemented
LSTM to capture the temporal dependencies in STGCN.
However, due to computational deficiency of LSTM, CNN-
based temporal dependency extractor is used for trajectory
prediction. Building upon the approach introduced by [27], we
conduct both the temporal dependency extraction and future
motion prediction using the TCN module.

D. Temporal Convolution Network

Following the operation of the STGCN module, the result-
ing output is the spatio-temporal embedding of each node
from the input graph. As shown in Figure 2, the extracted
spatio-temporal features is a three-dimensional tensor H ∈
RC′×T×N , where C ′ is the vehicles’ features space, T is
the number of time steps, and N is the number of vehicles.
The TCN module operates on the temporal dimension of the
graph embedding to capture the temporal dependency as well
as to extent it for future trajectory prediction. TCN takes the
H ′ ∈ RT×C′×N , which is generated from H by transposing
dimensions, as input to learn the temporal dependency of a
vehicle’s past motions and the interaction with its neighbors.
TCN considers the past time dimension as feature channels.
In addition, TCN is constructed with a series of residual
connected CNNs, where the residual connections are used
to pass information through the layers. However, there is an
exception for the first layer, since it receives input from the
STGCN embedding output. The output of the TCN module
is a tensor with the dimension F × C ′ ×N . We conduct an
ablation analysis to determine the number of layers in TCN
for optimal performance of the model.
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E. Model Transferability

To further examine the generalization ability of the proposed
model with a different dataset characterized by variations in
collection date, data size, and study area, we use transfer
learning method. Transfer learning involves leveraging knowl-
edge gained from source domain to a target domain. While
trajectory datasets may share common feature sets and label
types, it’s crucial to note that the marginal distributions of
features and conditional probability distributions of labels
could differ significantly. For example, trajectory sequences
may vary notably between different locations, highlighting
the need for robust transferability to adapt to such variations.
Hence, in this research, we select the best-trained model on
the source data (large dataset) and directly apply it to the target
data (small dataset) using transductive transfer learning. This
implies that the parameters’ weights in the pre-trained model
serve as priors or initial values when transitioning to the target
task. Moreover, the model can seamlessly be applied to the
target task without necessitating any modifications, retraining,
or fine-tuning on a subset of the target data.

V. EXPERIMENT AND RESULTS

A. Dataset

In this research, we utilize HighD trajectory dataset to
evaluate the proposed model. The HighD dataset is a natu-
ralistic trajectory dataset recorded on German highway using
drone videography and with a frequency of 25 Hz. The
dataset contains 60 recordings of straight highway sections of
over 16.5 hours from six different locations and in various
traffic conditions. Most of the HighD dataset is collected
in the last season of the year 2017, and five out of 60
recordings are gathered in 2018. The dataset includes more
than 110,500 vehicles (81% cars and 19% trucks) with 44,500
driven kilometers. In HighD dataset, a vehicle’s trajectory
attributes include it’s type, width and length, coordinates,
lateral and longitudinal velocity and acceleration, as well
as other extracted information such as surrounding vehicles’
positions, time headway (THW) or time-to-collision (TTC)
and lane change maneuver.

In our experiment, we evaluate the model by splitting
the dataset into 80% for training, 10% for validation, and
10% for testing. In addition, we follow the widely used
setting for trajectory extraction using 8 seconds segment (3
seconds to observe trajectory, and 5 seconds to predict the
trajectory). Furthermore, for model transferability analysis, we
use portion of the US-101 in NGSIM dataset. The NGSIM
dataset contains video recordings of traffic scenes, typically
captured by cameras at strategic locations such as intersections
or highways. These recordings provide detailed information
about vehicle movements, including their trajectories, speeds,
accelerations, and lane changes with a frequency of 10 Hz in
real traffic scenarios. The dataset includes vehicle trajectories
recorded under mild, moderate, and heavy traffic conditions,
each spanning a duration of 45 minutes. Both datasets are
downsampled to 5 Hz frequency, ensuring consistency in
temporal resolution across our experimental setup.

B. Evaluation Module

In this research, we use the root mean square error (RMSE)
to evaluate the performance of the proposed model. RMSE
estimates the square root of the squared difference between
predicted and ground truth trajectories. We calculate RMSE
based on the average dispacement error (ADE) and the final
displacement error (FDE). ADE-based RMSE compute the
average square root error between the predicted trajectory
and the ground truth trajectory over a specified time horizon,
where FDE-based RMSE measures the error in the final
points. Mathematically, ADE-based and FDE-based RMSE are
defined in equations (7), and (8) as follows:

RMSEADE =
√

1
N ·tpred

∑
n∈N

∑
t∈tpred

(x̂n
t − xn

t )
2 + (ŷnt − ynt )

2

(7)

RMSEFDE =
√

1
N

∑
n∈N (x̂n

t − xn
t )

2 + (ŷnt − ynt )
2 (8)

where pnt = (xn
t , y

n
t ), and p̂nt = (x̂n

t , ŷ
n
t ) represents the

ground truth and predicted attributes of the vehicle n at time
t respectively. To consider the probability distributions of the
predicted trajectories rather than mean values, we follow the
work of [21] and [27], which 10 samples are generated based
on the predicted distribution. The closest sample to the ground
truth is then used to calculate the RMSE.

C. Model Implementation and Configuration Settings

We utilize PyTorch deep learning framework to implement
the proposed model. Given that the trajectory prediction model
generates the probability distribution of the trajectories, we
train the model by minimizing the negative log-likelihood loss,
defined as:

L = −
N∑

n=1

T+Tpred∑

t=1+T

logP(xn
t , y

t
t |µ̂n

t , σ̂
n
t , ρ̂

n
t ) (9)

where P(xn
t , y

t
t |µ̂n

t , σ̂
n
t , ρ̂

n
t ) represents the likelihood of the

ground truth position (xn
t , y

t
t) within the predicted probability

distribution, and µ̂n
t , σ̂n

t , and ρ̂nt are the estimated mean,
variance of the distribution, and correlation coefficient, respec-
tively.

Throughout the training process, we employ a batch size of
128 and conduct the training for 100 epochs using a Stochastic
Gradient Descent (SGD) optimizer. The initial learning rate
is set to 0.01 and is subsequently adjusted to 0.002 after 70
epochs to expedite the convergence process. Meanwhile, the
resulting output from each STGCN layer is passed through a
dropout layer with a dropout ratio of 0.3. In addition, based
on the findings of the ablation study, we select the appropriate
number of layers for both STGCN and TCN modules ensuring
the best performance of the model. It is worth-mentioning that
the development of our model involved modifications to the
original code created by [27].
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D. Ablation Analysis

In this research, we conduct several experiments to under-
stand the contribution of different components on the overall
performance of the model. The ablation study includes (i)
the impact of various combinations of the number of layers
for the STGCN and TCN modules, (ii) the investigation of
the effectiveness of different weighted adjacency matrices,
(iii) the effect of the connected AVs distinguished by their
communication ranges, and (iv) the performance of the model
with both ADE- and FDE-based RMSE evaluation matrices.

First, we assess our model with varying number of layers
for STGCN and TCN modules. The aims is to find the best
model configuration as well as to assess how the performance
of the model changes with varying the number of spatial and
temporal layers. As displayed in Table I, a model with one
layer of STGCN and five layers of TCN shows the lowest
FDE-based RMSE value for 5 seconds prediction horizon and
could be potentially used for further evaluations. Meanwhile,
the increase in the number of STGCN layer detriotes the
performance of the model under varying combinations with the
number of TCN layers, whereas, by increasing the number of
TCN layers (until 5), the model depict improved performance.

TABLE I: Comparison of the RMSE values for different
combinations of STGCN and TCN layers.

TCN layers

ST
G

C
N

la
ye

rs

1 3 5 7

1 1.08 0.61 0.55 0.70

3 1.48 0.70 0.93 0.78

5 1.88 2.80 0.81 1.01

Second, in graph-based trajectory models, the representation
of the adjacency matrix plays a vital role in capturing the
interactions among vehicles, which gives a prior knowledge to
the model about the importance of the surrounding vehicles
on the decision of the target vehicle. As discussed in section
IV-A, our approach considers the combination of the relative
angular position of the surrounding vehicles as well as their
reciprocal distance to the target vehicle. We conduct several
experiments to compare the performance of our approach
with other kernel functions (e.g., direct distance, reciprocal
of distance). The findings of this ablation study indicate that
the best performance is achieved through our approach as
shown in Table II. This indicates that the prior knowledge for
the model can significantly improve the performance of the
model. In comparison to the direct distance-based adjacency
matrix, our approach shows around 42% reduction in average
error. Similarly, our model depicts 30% and 31% reduction in
error compared to reciprocal of distance and angular position
encoding approaches respectively.

Third, we initially set the AVs detection range to 100
meters around the target vehicle. Since our data includes the
trajectories of vehicles on Motorway, we only consider the

TABLE II: The performance comparison of the model under
different weighted adjacency matrix.

Prediction
Horizon [s]

Direct dis-
tance

Reciprocal
of distance

Angular
position

Combined*

1 0.18 0.15 0.13 0.09
2 0.32 0.28 0.27 0.19
3 0.54 0.46 0.43 0.30
4 0.72 0.56 0.61 0.42
5 0.92 0.75 0.83 0.55

Mean 0.54 0.44 0.45 0.31

vehicles in the same direction of the target vehicle. Thus,
the target vehicle can detect the motion of the longitudinal
vehicles within the range of 100 meters, and all surrounding
lateral vehicles. Additionally, CAVs in practice could use
the V2V communication to observe the motion of vehicles
within the communication range of a CAV. Thus, we test
the performance of our model with different communication
ranges including 200, 300, and 400 meters. As illustrated in
Table III, the model performance detriotes when increasing the
detection range. This can attributed to the nature of the HighD
dataset, which predominantly comprises data from human-
driven vehicles. In such scenarios, driving decisions often rely
on interactions with nearby vehicles, leading to optimized
performance within limited detection ranges. However, it’s
important to note that these findings may vary significantly
with datasets involving CAVs. Given the distinct behavioral
patterns of CAVs, particularly in terms of communication and
interaction, the model’s performance under larger detection
ranges might yield contrasting results.

TABLE III: Comparison of the RMSE values for different
communication range and under various prediction horizons.

Detection Range [m]

Prediction Horizon [s] 100 200 300 400

1 0.09 0.11 0.12 0.13

2 0.19 0.21 0.25 0.27

3 0.30 0.34 0.42 0.45

4 0.42 0.49 0.61 0.66

5 0.55 0.64 0.80 0.86

Mean 0.31 0.36 0.44 0.47

Finally, we investigate the performance of our model with
both evaluation matrices (ADE- and FDE-based RMSE). As
shown in Table IV, the ADE-based RMSE shows lower values
compared to the FDE-based RMSE. The reason is that ADE-
based RMSE considers the past errors and generates the
average error, whereas for FDE-based RMSE, only the final
error of the last time step is reported.

E. Baselines

To verify the performance of the proposed model, we
compare the results of our model with the state-of-art methods
for HighD dataset. These state-of-the-art methods includes
prediction models proposed from 2016 to 2023. For a fair
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TABLE IV: The performance comparison of the model with
different evaluation matrices.

Prediction Horizon [s] ADE-based RMSE FDE-based RMSE

1 0.13 0.09

2 0.21 0.19

3 0.29 0.30

4 0.37 0.42

5 0.45 0.55

Mean 0.29 0.31

comparison, we report the FDE-based RMSE similar to ex-
isting methods. The baseline methods in this research are as
follows:

• Social-LSTM (S-LSTM) [21]: This model is designed
for predicting the future trajectories of multiple interacting
agents (pedestrians or vehicles) in a dynamic environment.
A LSTM is used for each trajectory and the resulting output
is shared among LSTMS (of all trajectories) using the fully
connected pooling layer.

• Social Generative Adversarial Networks (S-GAN) [64]:
This model employs adversarial learning, with a generator
and discriminator trained in opposition. The generator,
featuring an encoder-decoder structure, predicts future tra-
jectories from past trajectories and uses a social pooling
layer to account for agent interactions, ensuring socially
acceptable paths. The discriminator evaluates these trajec-
tories, promoting realistic and diverse predictions.

• Convolutional Social Pooling (CS-LSTM) [58]: This
LSTM-based model employs convolutional social pooling
layers to address spatial interactions. It focuses on pre-
dicting multi-modal trajectory distributions for the target
vehicle, with predictions informed by maneuver-based con-
siderations.

• Non-local Social Pooling (NLS-LSTM) [59]: The NLS-
LSTM model introduces non-local social pooling layer,
which integrates both local and non-local information.
The non-local multi-head attention mechanism captures the
significance of each vehicle in relation to the observed
vehicle.

• Dual Learning Model (DLM) [60]: The DLM utilizes
the lane occupancy and risk maps for accurate vehicle
trajectory prediction.

• Environment-Attention Network (EA-Net) [61]: This
model introduces a novel parallel structure, containing a
graph attention network and convolutional social pooling
with a squeeze-and-extraction mechanism. This innovative
architecture serves as the environmental feature extrac-
tion module and is embedded within the LSTM encoder-
decoder framework.

• Multi-head Attention Social Pooling (MHA-LSTM)
[63]: The model employs multi-head attention to extract
intricate features from both the target vehicle and its
surrounding vehicles using dot product attention.

• BRAM-ED [62]: This model considers the change of
driving behavior in trajectory prediction. This framework
consists of driving behavior recognition module, behav-
ior attention mechanism trajectory encoder, and behavior
adaptive future trajectory decoder.

• Spatial-temporal dynamic attention network (STDAN)
[65]: This model adopts a hierarchical structure for feature
extraction and fusion. It considers motion states, social
interactions, and temporal correlations between interactions
when predicting trajectories, benefiting from the utilization
of LSTM and attention mechanisms.

• Wave Superposition Inspired Pooling (WSiP) [66]: This
model uses a novel wave-pooling method by modeling
each vehicle as a wave characterized by amplitude and
phase. This wave representation allows for the dynamic
aggregation of interactions among vehicles, effectively
capturing high-order interactions by superimposing their
waves. Integrated into an encoder-decoder framework, the
model processes historical trajectory data and current ve-
hicle states to predict future movements.

• Dual Transformer-based Prediction (DTP) [67]: This
model employs two Transformers to capture the vehicles’
intentions and predict their trajectories. The intention pre-
diction module aims to extract the vehicles’ states and
outputs the intention probability vector. The trajectory
prediction Transformer uses the intention probability vector
as a prior knowledge to predict the future trajectories.

• Adaptive Multi-Modal Vehicle Trajectory Prediction
(DACR-AMTP) [68]: This model predicts vehicle trajec-
tories in complex traffic scenarios by learning drivers’
intentions and behaviors while considering dynamic rela-
tionships among vehicles. It consists of five modules: line
boundary constraints, dynamic drivable area determina-
tion, historical trajectory encoding, multi-headed attention
mechanism, and adaptive multimodal prediction. These
modules capture geographic, interaction, and intention con-
straints, enabling accurate trajectory prediction.

• Surrounding-aware STGCN (SA-STGCN): The model
proposed in this research.

F. Performance Analysis

The findings of the experiment reveal that our SA-STGCN
model outperforms the existing methods across all predic-
tion horizons. As shown in Table V, our model consistently
achieves the lowest average error over all prediction horizons.
For a prediction horizon of 5 seconds, our model reveals
a 34% reduction in error compared with strongest baseline
model, resulting in an error reduction to 0.55 m. Moreover,
when comparing the mean error over all prediction horizons,
our approach achieves a RMSE value of 0.31 m, representing
approximately 28% reduction compared to the best existing
model. This clearly indicates that the prior knowledge to the
model by means of the weighted adjacency matrix could play
a vital role in improving the trajectory prediction.
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TABLE V: The comparison of the RMSE value for different state-of-the-art methods with our model (HighD dataset).

Prediction
Horizon [s]

S-LSTM
[21]

S-GAN
[64]

CS-LSTM
[58]

NLS-LSTM
[59]

DLM
[60]

EA-Net
[61]

MHA-
LSTM [63]

BRAM-
ED [62]

STDAN
[65]

WSiP
[66]

DTP
[67]

DACR-
AMTP [68]

SA-
STGCN

1 0.22 0.30 0.22 0.20 0.22 0.15 0.19 0.10 0.19 0.20 0.41 0.10 0.09

2 0.62 0.78 0.61 0.57 0.61 0.26 0.55 0.25 0.27 0.60 0.79 0.17 0.19

3 1.27 1.46 1.24 1.14 1.16 0.43 1.10 0.43 0.48 1.21 1.11 0.31 0.30

4 2.15 2.34 2.10 1.90 1.80 0.78 1.84 0.56 0.91 2.07 1.40 0.54 0.42

5 3.41 3.41 3.27 2.91 2.80 1.32 2.78 1.01 1.66 3.14 - 1.01 0.55

Mean 1.53 1.66 1.49 1.34 1.32 0.59 1.29 0.43 0.70 1.55 0.93 0.42 0.31

G. Model Transferability

Table VI presents the analysis of model transferability
onto a target dataset. The size of the target dataset (US-101
NGSIM) is relatively low (<10%). When utilizing the target
data for training, the baseline model with the randomly initial-
ized parameters yields a RMSE of 2.73. However, unfreezing
the layers of the pre-trained model on the target data leads
to the best RMSE values across all prediction horizons, as
illustrated in the Table VI. This highlights the importance of
fine-tuning when transferring knowledge from the source to the
target domain. The necessity arises from the distinct temporal
patterns observed between the target and source datasets. Thus,
the model undergoes relearning of network patterns specific to
the target dataset.

TABLE VI: Performance comparison between training new
model and fine-tuning pre-trained model.

RMSE [m]

Prediction Horizon [s] Baseline model* Transfer model**

1 0.47 0.34

2 0.91 0.65

3 1.47 0.97

4 2.10 1.14

5 2.73 1.55

Mean 1.53 0.93

Weight initialization:*random, **pre-trained

Furthermore, comparing the performance of the transfer
learning model with the existing methods reveals that our
model competes with almost all methods as depicted in Table
VII. Despite the relatively small size of the target data used
for transfer learning, our relearned model exhibits comparable
performance to existing state-of-the-art models that are trained
and tested on much larger datasets. Hence, transfer learning is
prominent in scenarios with low data availability.

H. Inference Speed and Model Size

Computational efficiency is a crucial aspect of the real-time
application of a trajectory prediction model in automated driv-
ing. In this research, we analyze the deployability of our model
in autonomous vehicles based on its model size and inference
speed. We compare our model inference speed and parameter
counts with GRIP [73] and GSTCN [32] models. Both models
predict the trajectories of all vehicles simultaneously. The

findings reveal that our model has the least parameter size,
as shown in Table VIII. Regarding the inference time, our
model takes an average of 0.037 ms to predict one vehicle’s
trajectory. This is significantly faster than the GRIP model,
with a speed improvement of 8.7 times. When compared to
the GSTCN model, our model also performs better in terms of
inference speed. These improvements are associated with the
architecture of our model by employing the GCN and CNN,
which overcame the limitations of recurrent architecture and
aggregation mechanisms.

TABLE VIII: The comparison of the model sizes and infer-
ences speeds of different models.

Model Parameters count Inference time* (ms)

GRIP 496.3K (15×) 0.322 (8.7×)

GSTCN 48.9K (1.5×) 0.044

SA-STGCN (ours) 31.8K 0.037
*: mean inference time per vehicle

I. Qualitative Analysis

Figure 4 illustrates the visualization of several representative
predicted trajectories under no interacting, mild, moderate, and
congested traffic scenes. The model observes the 3 seconds
trajectories of vehicles in a traffic scene (shown as solid
blue line), and predicts the upcoming 5 seconds trajectories
(illustrated as red dashed line). The dash-dotted line (in green)
depicts the ground truth 5 seconds trajectories of vehicles.
Under all traffic conditions, the model demonstrates the ability
to predict vehicle trajectories closely aligned with the ground
truth, indicating the generalizability of our approach across
diverse traffic scenes.

VI. CONCLUSION AND RESEARCH GAPS

In this research, we implement a dynamic STGCN model to
simultaneously predict the motion and trajectories of vehicles
in a traffic scene. The model combines GCN operation to
capture the spatial (interaction) dependencies among vehicles
on a directed graph and a TCN module to extract the tem-
poral dependency in trajectory sequences, enabling accurate
predictions of future vehicle movements. Within the GCN op-
eration, we propose a novel method for building the weighted
adjacency matrix considering each vehicle’s strategic position
and distance to the target vehicle. The aim is to provide
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TABLE VII: The comparison of the RMSE value for different state-of-the-art methods with fine-turning our pre-trained model
(NGSIM US-101 dataset).

Prediction
Horizon [s]

CV [69] V-LSTM
[70]

C-VGMM
+VIM [71]

CS-LSTM
[58]

GSTCN
[32]

DAM
[72]

BRAM-
ED [62]

STDAN
[65]

WSiP
[66]

DACR-
AMTP [68]

Transfer
Model

1 0.73 0.66 0.66 1.03 0.42 0.50 0.36 0.42 0.56 0.57 0.34

2 1.78 1.62 1.56 1.13 0.81 1.11 0.82 1.01 1.23 1.07 0.65

3 3.13 2.94 2.75 1.61 1.29 1.78 0.94 1.69 2.05 1.68 0.97

4 4.78 4.63 4.24 2.31 1.97 2.69 1.19 2.56 3.08 2.53 1.14

5 6.68 6.63 5.99 3.21 2.95 3.93 1.28 3.67 4.34 3.40 1.55

Mean 3.42 3.30 3.04 1.86 1.49 2.00 0.92 1.87 0.56 1.85 0.93

prior knowledge to the model and to capture the impacts of
the nearby vehicles on a target vehicle. The combination of
angular encoding and the reciprocal of the distance of each
vehicle to target vehicles is used to construct the adjacency
matrix.

To evaluate the performance of the proposed model, we
conduct an experimental setup using the HighD dataset.
Additionally, we perform transfer learning to examine the
generalization ability of the proposed model using the NGSIM
(US-101) dataset. The findings of this research reveal that our
model outperforms the existing state-of-the-art methods under
different prediction horizons. For a prediction horizon of 5
seconds, the model shows a 34% reduction in error compared
with the strongest baseline model. Similarly, the results of
transfer learning depict that the relearned model performs
comparability well and depicts competing performance in
comparison to the existing methods.

This research also raises new lines of work to further
extend the implementation of the proposed model. First, in
this research, we utilized the HighD dataset to train the model,
given that the HighD dataset is gathered from the German
highways and includes only cars and trucks. However, the
model could be tested with different datasets, preferably in
urban areas that include multi-road users. Second, in our
research, we only considered the past trajectories involving
the coordinates of AVs; further exploration could consider
investigating the integration of additional data sources, such
as LiDAR or Radar with more features, to enhance the
model’s accuracy and robustness in diverse traffic scenarios.
Third, our proposed model could be potentially utilized in
lane-free traffic scenarios. We can assess the efficacy of our
model using a dataset that involves lane-free traffic, paving
the way for the potential development of a motion planning
algorithm grounded in our model’s predictions. Finally, there is
a potential to integrate the proposed model into a microscopic
simulation tool to replicate the driving behavior of AVs under
varying traffic conditions and conduct impact assessment. This
will generate plausible findings on the potential impacts of
AVs deployment scenarios.
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(a) No interacting traffic scene
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(b) Mild traffic scene
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(c) Moderate traffic scene
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(d) Congested traffic scene

Fig. 4: Illustration of predicted, target, and observed trajectories under no interacting, mild, moderate and congested traffic
scenes.
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Abstract

The behavioural differences between autonomous vehicles (AVs) and human-driven
vehicles (HDVs) can significantly impact traffic efficiency, safety, and emissions.
Simulation-based impact assessments using microscopic traffic models often modify car-
following (CF) and lane-changing (LC) configurations to differentiate AVs from HDVs.
Typically, researchers adjust CF model parameters to replicate AV driving behaviour, but
these assumptions can lead to varying conclusions on AV impacts. The scope of each study
(e.g., freeways, highways, urban links, intersections) also influences the outcomes. This
research conducts an impact assessment utilizing optimized AV driving behavior rather
than assumptions on a city network level (Munich) using a simulation-based platform.
The particle swarm optimization (PSO) algorithm is used to calibrate the base model and
run simulation experiments under various penetration rates (PRs) and demand scenarios.
Results show significant safety improvements throughout the network under higher PRs,
while lower PRs might lead to deteriorating safety. At 100% AV PR, the total number
of conflicts decreased by around 25% compared to a fully HDV environment. Consider-
ing AVs’ sensing capabilities, additional safety improvements are found in almost any AV
PR. However, AVs might not improve traffic efficiency; in some cases, they may slightly
increase average network travel time, though this change is minimal.

1 INTRODUCTION

Fully automated vehicles, also called autonomous or self-
driving vehicles, will gradually enter the market. There are
optimistic and pessimistic views about the mass deployment
of autonomous vehicles (AVs). From an optimistic perspec-
tive, predictions are toward significant impacts of AVs on traffic
safety improvement [1, 2], congestion reduction [3], fuel savings
[4–6], vehicle emissions reduction [5], and driving restrictions
[7, 8]. On the other hand, the pessimistic view challenges the
penetration of AVs on the market due to their potential tech-
nical failures [9, 10], social acceptance [11], costs [12], induced
traffic demand [13], years of testing, and regulatory approvals.
Since new technological innovations have rapidly entered the
market, it is expected that AVs might experience the same trend.
We will eventually witness a situation where AVs interact with
human-driven vehicles (HDVs), cyclists, and pedestrians [14].

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided
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From a transportation perspective, AVs might have dif-
ferent driving behaviour than HDVs. These differences are
due to AVs’ sensing and communication capabilities. AVs can
detect the precise picture of the surrounding environment using
advanced sensing technologies (e.g. radar and lidar) and react
accordingly with the help of a trained decision processing unit
(DPU). Meanwhile, AVs are capable of exchanging driving sta-
tus (i.e. speed, acceleration, position, and more) with other
connected vehicles and infrastructure (thanks to V2V and V2I),
which are labelled as connected autonomous vehicles (CAVs)
[15, 16].

AVs and CAVs are expected to bring significant changes
in mobility, safety, and emissions. Many researchers have con-
ducted simulation-based studies to quantify these potential
changes in transportation systems. Microscopic traffic models
(MTMs) are widely used to predict the impact of AVs and CAVs
on safety and efficiency. The general findings of most studies
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reveal that higher penetration rates (PRs) of AVs and/or CAVs
could have more considerable impacts on efficiency and safety
[17–23]. More optimistic views are for CAVs in comparison to
AVs [22, 24–26]. However, the magnitude of changes differs
among various studies. It is also reported that higher demands
for CAVs could lead to substantial changes in the network [25,
27]. In contrast, some studies reported different findings on
the impacts of AVs and CAVs. For instance, [26] reported that
compared to HDVs and with the constant demand, any PRs of
AVs do not improve the traffic flow efficiency; however, CAVs
enhance the condition. They also reported that in lower traffic
demands, HDVs always outperform CAVs.

To design an experimental setup for evaluating the impacts
of AVs deployment scenarios, replicating the AVs’ driving
behaviour is crucial. In MTMs, the driving behaviour of vehicles
is modelled both in terms of their longitudinal (car-following)
and lateral (lane-changing) configurations. Several studies have
attempted to approximate the accurate characteristics of these
behaviours (especially CF behaviour) for AVs and CAVs in
MTMs [17, 22, 28–30]. Although there are many state-of-the-
art modelling methods for the CF behaviour of AVs and CAVs,
they require defining a certain set of parameters. The values of
these parameters are often based on assumptions or estimated
using limited trajectory data from field experiments involving
AVs and CAVs. The use of various CF models with researchers’
assumptions for model parameters leads to different findings
regarding the impacts of AV deployment scenarios. To address
this challenge, two possible solutions could be employed: first,
utilization of mass real-world AV data to calibrate a specific CF
model; second, use the optimal driving behaviour of AVs and
extract the optimized parameters of a CF model. By adopting
either of these approaches, researchers can ensure a more accu-
rate replication of AV driving behaviour in MTMs, leading to
more reliable evaluations of AV deployment scenarios.

The first approach, which involves the utilization of mass
real-world AV data to calibrate a CF model, faces significant
challenges due to the lack of extensive field data for AVs. The
available data are often limited to specific locations and driv-
ing behaviours, making them non-generalizable. Therefore, the
second approach, involving the optimization of AV driving
behaviour and extraction of optimized CF model parameters,
could be more feasible and effective in MTMs for mimicking
the driving behaviour of AVs.

It is expected that the DPU of the AVs contains pre-trained
complex deep learning algorithms that regulate the AV to react
in any traffic situation while keeping safe and efficient driving
manoeuvres [31]. In MTMs, we can regulate AVs to generate
optimal trajectories from origin to destination, considering all
driving constraints. A CF model that generates such an opti-
mal driving manoeuvre for AVs is referred to as optimized
CF behaviour. In our previous work in [31], we developed a
framework that finds a set of optimized driving parameters of
AVs under various PRs, demand scale, and optimization func-
tions. The extracted optimized CF behaviour could be used in
a simulation-based impact assessment study to give more real-
istic results on the potential impacts of AVs rather than weak
assumptions. Hence, the main aim of this research is to investi-

gate the impacts of AVs on mobility and safety using the optimal
driving behaviour of AVs. Furthermore, most AV impact assess-
ment studies focus on intersections [17, 32], urban links [18, 19,
33], and freeways [22, 27, 34–36], whereas limited studies are
conducted at the network level; therefore, our research focuses
on impact assessment in a traffic network.

The main contributions of this research are: (i) to assess
the potential impacts of AVs deployment scenarios in a traf-
fic network, and (ii) to study the influencing factors on the
potential impacts of AVs using generalized estimating equation
(GEE) and zero-truncated Poisson (ZTP) regression models.
This paper investigates how the behavioural difference of AVs
with optimized driving behaviour could bring changes on the
efficiency and safety of a network, where other factors, such as
infrastructure, speed limit, intersection controllers, and more,
play a vital role in the performance of traffic flow and safety.

The remainder of this paper is structured as follows. In the
following section, we review the recent literature on micro-
scopic simulation tools utilized for AVs impact assessment.
In Section 3, we introduce the methodology of this research,
including a calibration scheme, the modelling method for repli-
cating AVs’ longitudinal driving behaviour, the evaluation areas,
and the design of an experimental setup. The experimental setup
aims to run different AVs deployment scenarios in a city-scale
network with calibrated and validated features. The findings
of this research and the results of regression analysis (run on
achieved results) are presented in Section 4, which is followed
by a discussion in Section 5. Finally, a conclusion in Section 6
explains the overall contribution of this article alongside further
research directions.

2 LITERATURE REVIEW

A wide range of simulation-based studies focus on identifying
the potential impacts of AVs on the transportation system. In
a simulation-based study, three aspects are essential for setting
up an experiment and conducting impact assessment, namely (i)
the calibration of the base model, and the selection of an appro-
priate CF model, including the adopted parameters to replicate
the driving behaviour of AVs, (ii) defining the assessment areas
and key performance indicators (KPIs) to quantify the impacts,
and (iii) the choice of a powerful traffic simulation tool. In the
following subsections, we present each aspect in detail.

2.1 Modelling and calibration of the car
following behaviour

CF models play a crucial role in MTMs and simulation tools.
These models describe how individual vehicles behave while
following each other on roads, considering factors like speed,
distance, acceleration, and reaction to changes in the envi-
ronment. Replication of vehicular CF behaviour has been a
continuous research focus in the field of traffic modelling and
simulation. CF models are generally categorized into mathe-
matical and data-driven models. Mathematical models rely on
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fundamental principles of physics and mathematics to describe
how vehicles interact with each other on the road under dif-
ferent traffic situations. On the other hand, data-driven models
are developed directly from observed data on vehicle trajecto-
ries and behaviour collected from real-world traffic conditions.
These models use statistical techniques and machine learning
algorithms to analyse patterns in the data and develop math-
ematical representations of typical CF behaviour. Although
data-driven models outperform many mathematical models in
replicating the CF behaviour of vehicles, they are not widely
used in impact assessment studies.

Mathematical models are initially developed to replicate the
driving behaviour of HDVs and have been widely used in sim-
ulation tools. These models comprise methods focusing on a
driver’s physical actions, such as desired speed, acceleration,
deceleration, i.e. Gazis–Herman–Rothery (GHR) model [37],
Gipps model [38], intelligent driver model (IDM) [39], opti-
mal velocity model (OVM) [40]; however, some also consider
the psychological inputs of the drivers, such as the Wiedemann
model [41]. These models are comprised of modifiable param-
eters that mimic the driving behaviour and are often calibrated
with mass field driving data of vehicles. The behavioural cali-
bration of a CF model involves the fine-tuning of its modifiable
parameters to minimize the discrepancies between real-world
driving configurations and the simulated environment. Several
methods have been implemented to calibrate a CF model in
the literature. These methods include genetic algorithm (GA)
[42–47], particle swarm optimization (PSO) [48, 49], machine
learning-based methods [50], and combination of various opti-
mization techniques [51, 52]. For instance, [42] employed the
GA to calibrate the parameters of IDM, Gipps, Wiedemann,
GHR, and FVD (full velocity difference) [53] models. [49] used
the PSO algorithm to extract the calibrated parameters of a psy-
chophysical CF model in a microsimulation. Meanwhile, [50]
implemented an artificial neural network (ANN)-based model
to calibrate the parameters of the Wiedemann model. On the
other hand, [51] proposed the combination of the PSO and
machine learning-based approach to calibrate the default CF
model of the Transmodeler simulation tool. Given that this
research conducts impact assessment of AVs deployment sce-
narios in mixed traffic, we need to calibrate the base model
(fully HDVs environment) to accurately approximate the driv-
ing behaviour of HDVs in real-world traffic conditions. Hence,
in this research, we employ PSO for behavioural calibration.

Furthermore, for AVs, there are no established mathematical
models, and researchers often employ conventional mathemat-
ical models to mimic the CF behaviour of AVs. According to
[54], IDM, MIXIC, Wiedemann 99, and Krauss models are fre-
quently used CF models for mimicking the driving behaviour
of AVs in literature. The selection of a specific CF model for
replicating the driving behaviour of AVs in simulation-based
impact assessment studies depends first on whether the model
can replicate the potential driving behaviour of AVs and second
on whether it is well-integrated in a widely used simulation tool.
For instance, Wiedemann 99 is the default CF model of VIS-
SIM; therefore, many studies utilized Wiedemann 99 to mimic
the CF behaviour of AVs and conduct impact assessment using

VISSIM. An overview of the simulation tools and their CF
models is presented in Section 2.3.

Given the current impracticality of large-scale AV testing and
the limitations of available AV-related data, which are restricted
to specific locations and driving behaviours, accurately cali-
brating a CF model to replicate AV driving behaviour is not
feasible. Consequently, impact assessment studies often rely on
the assumed driving behaviours of AVs. Some studies assume
AVs will drive more cautiously with larger headway gaps, while
others assume a more aggressive driving style. These differing
assumptions lead to conflicting findings, particularly regard-
ing the number of conflicts and overall safety. In contrast,
this research employs the optimal driving behaviour of AVs to
conduct network-wide impact assessment [54].

2.2 Assessment areas and KPIs

In simulation-based impact assessment, the selection of assess-
ment areas and their relevant KPIs is important for constructing
an effective experimental setup. These choices ensure that the
simulation can comprehensively evaluate the potential impacts
of AVs across various dimensions. A review of previous studies
reveals that the majority of researchers conduct impact assess-
ments of AVs and CAVs for safety and traffic efficiency, where
some also evaluate the environmental effects (e.g. energy con-
sumption and emissions) [54]. For each assessment area, various
KPIs are chosen depending on the scope of the study. For effi-
ciency assessment, most researchers employed KPIs such as
traffic flow (e.g. traffic flow, density), average travel time, string
stability, average velocity, and more [22, 29, 30, 34]. For instance,
[18] studied the impact of CACC-equipped vehicles on traffic
efficiency in urban roads with congested sections. This study
selects traffic capacity, waiting time, queue length, and total
travel time as the main KPIs. The findings of this study indicate
that in comparison to conventional vehicles, CACC-equipped
vehicles with a PR of 100% can increase the traffic capacity by
more than 2.6 times. The study claims that by increasing the
PR of CACC-equipped vehicles, the waiting time on congested
roads decreases.

Similarly, for safety evaluation, researchers use the surrogate
safety measure (SSM) model to quantify the potential conflicting
situations and to assess the impact of AVs PRs on traffic safety.
Most studies used time-to-collision (TTC), post-encroachment
time (PET), and number of conflicts (using certain TTC and
PET thresholds) as KPIs for safety assessment in the literature
[17, 22, 28, 55]. A recent study by [28] explored the impacts
of CAVs on the safety of a motorway section. In this study,
the number of conflicts is used as a KPI. The results revealed
that higher PRs of CAVs reduce traffic conflicts. Similarly, [17]
investigated the effects of CAVs on the safety of signalized and
unsignalized intersections. The findings of this study showed
that CAVs can significantly reduce the number of conflicts at
both intersections. In addition, it is claimed that a 100% PR of
CAVs could eliminate any crossing conflicts between vehicles.

Finally, for emission assessment, the amount of CO2 and
NOx emissions per kilometres g/kg are used as KPIs [24, 25].
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4 SADID and ANTONIOU

One important note is that most studies assume the same energy
consumption and emissions factors used for existing HDVs and
for AVs. [25] conducted a simulation-based study to investigate
the impact of (C)AVs on throughput and emissions in a ring
road. CO2 and emissions per kilometre are selected as KPIs
for environmental impacts. The findings of this study high-
lighted that in free-flow traffic, where vehicles are not bound
to speed limits, human-driven vehicles exhibit the highest emis-
sions. Conversely, any PRs of CAVs could lead to low emissions.
The study also claimed that AVs drive at low speeds and thus
force the engine to work less efficiently. Hence, in comparison
to CAVs, AVs increase emissions.

2.3 Microscopic traffic simulators

Microscopic traffic simulators are highly detailed and complex
tools that capture the driving behaviour of a single vehicle,
including following behaviour, lane change behaviour, and its
interaction with other road users. Given the availability of
numerous traffic simulators in the market, each with its features
and functionalities, it is vital to have a comprehensive under-
standing of these characteristics. Generally, microscopic traffic
simulators are divided into commercial and open-source tools.
Commercial traffic simulators are generally user-friendly and
less complex products that offer a wide range of user support.
Open-source simulators, in comparison, are typically free to use,
open, and collaborative, while they have limited user support
and are complex for new users. Among many traffic simula-
tors (i.e. VISSIM, AIMSUN, PARAMICS, CORSIM, SUMO),
PTV VISSIM, and AIMSUN are the commonly used commer-
cial tools for modelling and simulation of AVs, where SUMO is
the open-sources simulator for this purpose.

PTV VISSIM is a multi-modal traffic simulator developed
by PTV Group in Karlsruhe, Germany [56]. This widely used
tool includes simulating individual vehicles, public transport,
bikes, and pedestrians based on the driving behaviour mod-
els, control devices, and road network characteristics. VISSIM
employs the Wiedemann psychological model [41] to mimic
the CF behaviour of vehicles. Modifying the model’s parame-
ters allows us to replicate AVs’ driving behaviour and conduct
impact assessment. The parameters of this model have already
been extracted within the CoEXist project to capture the driving
behaviour of AVs; however, the calibration of these parame-
ters is based on a few AVs trajectories [57]. VISSIM also gives
the option to override the default CF model and control the
driving behaviour of AVs externally through the COM inter-
face. The COM interface allows user-developed applications to
access network topology, signal control, path flows, and vehi-
cle behaviour. This enables VISSIM to model intricate control
logic and advanced transportation systems and components. In
addition, the output module of VISSIM enables users to gather
a wide range of simulation outputs, including link, node, and
network-level traffic data.

AIMSUN (advanced interactive microscopic simulator for
urban and non-urban networks), developed by AIMSUN Inc.,

is a powerful simulation tool allowing both microscopic and
mesoscopic simulation capabilities [58]. It offers various tools
for traffic demand modelling, network calibration, and perfor-
mance analysis. AIMSUN Next is well-known for modelling
traffic dynamic assignments, incident management, and other
ITS applications. AIMSUN Next has the flexibility to model the
detailed driving behaviour of vehicles in its microscopic model,
which makes it a good candidate for replicating the driving
behaviour of AVs. AIMSUN Next supports modelling various
modes, including private vehicles, public transport, pedestrian,
and bicycles. The default CF model of AIMSUN Next is based
on the Gipps’ safety distance model [38]. In addition, AIMSUN
Next can be further extended with Python scripts, allowing it
to automate the simulation with different scenarios, including
CF parameter adjustments. The external agent interface (EAI)
makes it possible to override the controlling logic of vehicles in
the simulation environment both for HDVs and AVs.

SUMO (simulation of urban mobility) developed by Ger-
man Aerospace (DLR), is an open-source and highly portable
microscopic traffic simulation tool [59]. It allows the design
and simulation of large-scale networks with detailed vehicular
behaviour, including CF, LC, and interactions with traffic con-
trollers and other vehicles. SUMO is widely used in academia
for its flexibility, extensibility, and availability of various traf-
fic demand scenario generation tools. In SUMO, each vehicle
is modelled explicitly with its own route and runs individ-
ually through the network. Several modules, each with its
unique function like NETEDIT, TraCi (traffic control inter-
face), SUMO-GUI, routing algorithms, visualization, network
import and emission calculation, and more, make SUMO a pow-
erful simulation tool. Regarding CF models, SUMO contains
most of the widely used mathematical CF models, including
Krauss [60], IDM [39], Gipps [38], and Wiedemann [41] mod-
els. SUMO also provides the possibility to model ACC (adaptive
cruise control) [61] and CACC (cooperative ACC) [62] equipped
vehicles. For the simulation of AVs, researchers either modify
the parameters of the available CF model or override any CF
logic externally using SUMO’s API. Additionally, a mesoscopic
simulation mode has been added to SUMO. This mode allows
running simulations with less detailed precision, i.e. potentially
sacrificing some modelling accuracy, but significantly speed-
ing up the process and reducing computational requirements.
This feature enables e.g. the option to initially run numerous
scenarios to find a rough optimal solution for a specific prob-
lem before utilizing the microscopic version for the final series
of runs.

Table 1 provides a summary of different characteristics of the
traffic simulators. All three tools simulate traffic in a continuous
manner and can replicate AVs driving behaviour by modify-
ing the parameters of the CF models. VISSIM and AIMSUN
are user-friendly tools with strong visualization capabilities, but
they are commercial, and therefore, their widespread usage in
academia is limited. In contrast, SUMO is relatively complex;
however, it has high flexibility in generating different scenarios.
In addition, since it is open-source, it is a suitable option for
various applications, particularly in AVs impact assessment.
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SADID and ANTONIOU 5

TABLE 1 The comparison of widely used traffic simulation tools for AVs modelling.

Criteria/Tool VISSIM AIMSUN SUMO

License Commercial Commercial Open-source

Developer PTV group Aimsun Inc. SUMO Community & DLR Institute

Simulation level Microscopic Micro/mesoscopic Micro/mesoscopic

Visualization 2D and 3D 2D and 3D 2D

Customization Highly customizable Customizable Extensible through plugins and scripting

Supported languages C++, Java, Python C++, Java, Python Python, any programming language for
XML config

GUI support High Moderate Moderate

Complexity Simple Moderate Complex

CF models Wiedemann (74 and 99) Gipps Krauss (default), IDM, Gipps, Wiedemann
(74 and 99), ACC, and CACC

Modelling of AVs Customizable to simulate AV behaviour Supports AV behaviour modelling Customizable to simulate AV behaviour

Meanwhile, the findings of the literature review show that all
three tools are widely used in AV impact assessment studies. The
scope of each study in these simulation tools differs from inter-
sections, links to part of a network, as well as freeways. Recent
researches, such as [26, 29, 32, 35, 55], utilized PTV VISSIM
to evaluate the potential impacts of AV deployment scenarios
on traffic efficiency and safety. For instance, [29] investigated
the impacts of ACC and CACC-equipped vehicles on traffic
efficiency and energy consumption in an ideal expressway. In
their research, the MIXIC (microscopic model for simulation of
intelligent cruise control) model was used to mimic the driving
behaviour of ACC and CACC vehicles in VISSIM. In addi-
tion, [35] studied the impacts of AV deployment scenarios on
the capacity of a freeway in VISSIM. They utilized the Krauss
model to mimic the driving behaviour of AVs by overriding the
default Wiedemann model using the COM interface. Similarly,
[55] studied the impact of CAV PRs on safety in a Motorway in
VISSIM using the default Wiedemann 99 model. Other studies,
including [22, 26, 28, 30] used AIMSUN for AVs impact assess-
ment. [28] and [30] used the default Gipps model in AIMSUN
to evaluate the safety and efficiency impacts of AVs, respectively.
Meanwhile, [22] and [26] used IDM and CACC models in AIM-
SUN, respectively, by overriding the default CF model to assess
the impacts of AV PRs. Finally, many studies also used SUMO
for AVs impact assessment [17, 21, 23, 33, 34, 63]. For exam-
ple, [17] used Krauss, IDM, and CACC models in SUMO to
investigate the effects of CAVs on the safety of signalized and
un-signalized intersections. [34] studied the impacts of commer-
cially available ACC vehicles on traffic stability and throughput
in SUMO. This study used IDM to capture the CF behaviour of
theoretical ACC and commercially available ACC vehicles.

In Table 2, the summary of reviewed simulation-based stud-
ies is presented, which explains specific information on the CF
model, assessment criteria, KPIs, network type, and simulation
tools. The table is sorted based on the publication date of the
citations, which are displayed in reverse chronological order
(newest to oldest).

3 METHODOLOGICAL FRAMEWORK

3.1 Approach

In this research, we develop a framework to systematically
model and simulate the CF behaviour of AVs under different
PRs and conduct a network-wide impact assessment under var-
ious demand scenarios. The framework is comprised of three
components, namely, a scenario generation module, a simulation
environment, and an output module. In the scenario genera-
tion module, the corresponding optimized CF parameters are
passed into the simulation environment for a certain PR of AVs.
There, AVs behave according to these optimized parameters’
settings. Since it is expected that AVs might have different driv-
ing behaviour than HDVs, the magnitude of these differences
might also vary depending on the PR. For instance, AVs might
behave similar to HDVs in lower PRs, whereas in higher PRs,
their behaviour may be significantly different. Therefore, our
framework models AVs with different CF parameter settings
depending on the PRs of AVs. The optimized CF parameters’
settings under various PRs are extracted using the proposed
optimization framework in [31]. Meanwhile, the simulation
environment runs multiple simulation replications under the
set conditions and outputs the predefined assessment criteria.
The output data are further analysed to investigate the potential
impacts of AVs. A schematic diagram of the main methodology
of this research is depicted in Figure 1. Additionally, for ease of
reference, a list of symbols used in the following subsections is
provided in Table 3.

3.2 Modelling CF behaviour of
human-driven vehicles

In this research, we choose IDM to replicate the CF behaviour
of HDVs since it has been widely used in the literature to accu-
rately replicate drivers’ driving behaviour. IDM, first developed
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6 SADID and ANTONIOU

TABLE 2 Summary of reviewed simulation-based studies on AVs including their CF model, assessment criteria, KPIs, network type, and traffic simulator.

Reference Year CF model Assessment criteria KPIs Network Simulator

[28] 2023 Gipps Traffic safety Number of conflicts Freeway AIMSUN

[29] 2023 MIXIC Traffic efficiency and energy
consumption

Average travel time, capacity,
average electric energy
consumption

Expressway VISSIM

[17] 2022 Krauss, IDM,
and CACC

Traffic safety Number of conflicts Intersection SUMO

[30] 2022 Gipps Capacity analysis Network capacity City AIMSUN

[22] 2021 IDM Traffic safety and efficiency Time-to-collision (TTC), number
of conflicts, travel time

Freeway AIMSUN

[34] 2021 IDM Throughput and stability Traffic flow, density Freeway SUMO

[18] 2021 CACC Traffic efficiency Traffic flow, density, critical speed Urban road Numerical
simulator

[21] 2021 Krauss Traffic efficiency Traffic flow, travel time City SUMO

[35] 2020 Krauss Capacity analysis String stability, lane capacity Freeway VISSIM

[23] 2020 IDM Traffic efficiency Travel time Freeway SUMO

[63] 2020 Krauss Capacity analysis Speed, flow, density Urban road SUMO

[55] 2019 Wiedemann 99 Safety analysis Number of conflicts Motorway VISSIM

[26] 2018 CACC Throughput Harmonic average speed Ring road AIMSUN

[64] 2018 Wiedemann 99 Traffic safety Number of conflicts Roundabout VISSIM

[32] 2018 Wiedemann 99 Safety analysis Number of conflicts Signalized intersection
and roundabout

VISSIM

[33] 2018 Krauss Capacity analysis Flow, density Grid network SUMO

[65] 2016 Wiedemann 99 Traffic efficiency Average density, travel time, and
speed

Autobahn VISSIM

FIGURE 1 The methodological framework in this study.
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SADID and ANTONIOU 7

TABLE 3 The list of symbols used in this research.

Category Symbol Description

IDM an (t ) Acceleration of vehicle n

amax Maximum acceleration/deceleration of
the vehicle

Vn , V
(n)

0 Speed, and desired speed of the following
vehicle

Sn The gap distance between two vehicles

S∗n Desired spacing between two vehicles

𝛿 Model parameter

ΔVn Speed difference between following and
leading vehicles

S
(n)
0 Minimum spacing at a standstill situation

Tn Desired (safe) time headway

b(n) Desired (comfortable) deceleration

Krauss vsafe Safe velocity of the following vehicle

vl Speed of the leading vehicle

vf Speed of the following vehicle

tr Reaction time of the driver

b Maximum comfort deceleration

g(t ) Gap between the leading and the
following vehicles

xl Position of the leading vehicle

xf Position of the following vehicle

L Average length of a vehicle

vdes Desired speed of the following vehicle

GEE K Number of clusters

ni Observations in cluster i

Yi j Response for j th observation in cluster i

Xi j Covariate vector for j th observation in
cluster i

𝜇i j Mean for j th observation in cluster i

𝛽 Regression coefficients

Ri (𝛼) Working correlation matrix for cluster i

𝛼 Correlation parameter

𝜙 Scale parameter

ZTP y Observed count in a time interval

𝜆 Mean parameter of the Poisson
distribution

E (y) Expected count

Var(y) Variance

g(𝜆) Link function in the ZTP regression
model

𝜆̂ Estimated mean parameter

X Design matrix

𝛽 Vector of regression coefficients

𝜖 Random error with a standard logistic
distribution

by [39], is one of the simplest and accident-free models, which
utilizes both the desired speed and space headway to gener-
ate a realistic acceleration profile. The basic form of the IDM
acceleration function is expressed as:

an(t ) = a
(n)
max

⎡⎢⎢⎣1 −

(
Vn(t )

V0
(n)(t )

)𝛿

−
(

Sn
∗(t )

Sn

)2⎤⎥⎥⎦ (1)

where amax represents the maximum acceleration or decelera-
tion of the vehicle n, Vn is the speed of the following vehicle,
V0

(n) is the desired speed of the following vehicle, Sn is the
gap distance between two vehicles, Sn

∗ is the desired spacing
between two vehicles, and 𝛿 denotes the model parameter. The
desired space headway between two vehicles Sn

∗ is a function of
the following vehicle speed Vn and the speed difference between
the leading and following vehicles ΔVn, which can be estimated
as follows:

Sn
∗(t ) = S0

(n) +Vn(t )Tn(t ) +
Vn(t )ΔVn(t )

2
√

a
(n)
maxb(n)

(2)

where S0
(n) is the minimum spacing at a standstill situation,

Tn is the desired (safe) time headway, and b(n) is the desired
(comfortable) deceleration.

The IDM model parameters are calibrated (behavioural cali-
bration) based on the real-field travel time data. Since we utilize
a dynamic traffic assignment-based simulation model in SUMO,
the route choice is already calibrated in another study employ-
ing the same demand and network characteristics [66]. Thus,
we only conduct behavioural calibration to match the simu-
lated travel times with the real-field travel times of links in
the network, keeping the traffic assignments unchanged. The
data include the peak-hour travel time information along sev-
eral major roads in Munich city center network. This research
uses the PSO algorithm to calibrate the IDM parameters. PSO
is a metaheuristic, stochastic, and population-based optimiza-
tion algorithm inspired by the behaviour of bird flocking or fish
schooling. It is used to find the global optimal solution by iter-
atively updating a population of candidate solutions (particles)
in a search space [67]. The algorithm iteratively searches for
the design space to improve a candidate solution with regard
to an objective function. Unlike gradient-based optimization
methods, PSO does not require the objective function to be
differentiable, divisible, and continuous. The choice of PSO
in this research is associated with its convergence speed and
computational efficiency [68, 69].

In PSO, each particle represents a candidate solution and
moves through the search space by adjusting its position based
on its own experience and the collective knowledge of the entire
population. The particles’ movements are influenced by two
key factors: their own best-known status (pbest) and the best-
known position of the whole population (known as gbest) [70].
By incorporating these references, particles are directed toward
regions of the search space that exhibit promising solutions,
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8 SADID and ANTONIOU

FIGURE 2 Illustration of PSO calibration method.

allowing for effective exploration and exploitation during opti-
mization. This paper uses the root mean square normalized
(RMSN) as an objective function to minimize the dispersion
between the simulated and true travel times, where the input
variables are the CF model parameters. PSO tries to change the
parameters of the CF model within their boundary conditions
(i.e. realistic driving behaviour, acceleration and deceleration
capability, comfort driving etc.), aiming to find the minimum
RMSN. The overall process of the PSO algorithm integrated
with SUMO traffic simulator is illustrated in Figure 2.

3.3 Modelling CF behaviour of AVs

In this research, we utilize the Krauss CF model to replicate
the longitudinal driving behaviour of AVs. This model is widely
used in modelling the CF behaviour of AVs in MTMs, and is the
default CF model in SUMO. The Krauss CF model developed
by Stephan Krauss in 1997 is a space-continuous model [60].

TABLE 4 Krauss model’s optimized AV parameters [31].

PRs

[%]

Mingap

[m]

Accel

[m∕s2]

Decel

[m∕s2]

Sigma

[-]

Tau

[s]

20 1.6 2.6 3.6 0.4 0.8

40 1.5 2.7 3.7 0.4 0.8

60 1.1 3.4 3.2 0.1 1.0

80 1.2 3.0 3.4 0.4 1.0

100 1.3 2.5 3.6 0.5 1.0

(Sigma = driving imperfection factor, Tau = desired time headway).

Krauss model estimates the safe speed of the vehicle without
deriving it from the acceleration profile of the vehicle. In Krauss
model, the safe velocity of the following vehicle is calculated as
follows:

vsafe(t ) = vl (t ) +
g(t ) − vl ⋅ tr
vl (t )+vf (t )

2b
+ tr

(3)

where vl, vf are the speed of leading and following vehicles at
time t respectively (see Figure 3), tr is the reaction time of the
driver, b is the maximum comfort deceleration of the vehicle,
and g(t ) is the gap between the following and leading vehi-
cles, which is computed as: g (t ) = xl (t ) − xf (t ) − L, (xl, xf are
the position of the leading and following vehicles, and L is the
average length of a vehicle).

Meanwhile, to estimate the desired speed, which is a decisive
variable for determining the speed of the vehicle in the next
time step, the model takes the minimum of safe velocity, the
road speed limit, and the vehicle’s maximum capable speed to
generate the desired speed of the vehicles, expressed as:

vdes(t ) = min[vmax, v(t ) + a ⋅ Δt , vsafe(t )] (4)

Finally, the velocity and location of the vehicle at the next time
step are computed as follows:

v(t + Δt ) = max[0, vdes(t ) − 𝜂],

x f (t + Δt ) = xf(t ) + v(t + Δt ) ⋅ Δt
(5)

where 𝜂 is the random perturbation (to capture the driving
imperfection) and Δt is the simulation time step. The optimized
parameter of the Krauss CF model was already extracted in [31]
as depicted in Table 4.

FIGURE 3 Description of the Krauss CF model parameters.
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SADID and ANTONIOU 9

3.4 Evaluation areas

In this research, we select traffic efficiency and safety as evalua-
tion areas to estimate the impacts of AVs deployment scenarios
on transport network performance. Traffic data, including edge-
related, intersection-level, and network-wide information, are
collected for the evaluation of efficiency. For safety assessment,
we utilize the surrogate safety measure (SSM).

3.4.1 Traffic efficiency assessment

Traffic data is collected from the simulation environment in
5-min intervals for each link, intersection, and overall net-
work. Depending on the assessment criteria, we utilize various
KPIs, such as travel time, flow, occupancy, speed, density, time
loss, and queue length, for traffic efficiency analysis. To make
sure the outputs of simulation runs under different AV scenar-
ios are significantly different, we employ a one-way ANOVA
(analysis of variance) statistical approach. Meanwhile, to inves-
tigate whether each pair of scenarios is different from the
other, we apply Tukey’s HSD (honestly significant difference)
test.

First, we investigate the traffic flow elements (average vol-
ume, speed, occupancy, density, average travel time) through
specific segments (edges) of the network under various sce-
narios. The data gathered from the loop detectors installed on
edges are further used to study the specific impacts of differ-
ent AVs scenarios on links. Second, to analyse the effects of
AV PRs on the traffic situation of signalized intersections, aver-
age passing speed, and average time loss are utilized as KPIs.
We collect this information using area detectors around each
signalized intersection. Finally, for analysis of the network per-
formance, the average network travel time is calculated under
different AV PRs using every vehicle’s travel time. For a single
vehicle, the travel time is estimated using the difference between
the departure and arrival times. Hence, the mean of aggregated
travel times of all vehicles in the network corresponds to the
average network travel time.

Furthermore, to investigate the relationship between the
potential impacts, PRs, and other relevant factors (e.g. flow,
speed etc.), we implement the generalized estimating equa-
tion (GEE) regression method. GEE is a statistical method
that is used for analysing data with correlated or clustered
observations. GEE is an extension of generalized linear mod-
els (GLMs), which is used in longitudinal studies (repeated
observations) and clustered data (data collected from different
clusters or groups) [71]. In our case, edge travel time is collected
in 5-min intervals during the simulation period. Thus, each edge
segment is considered as a cluster, and the repeated observation
is the travel time.

Suppose the datasets (travel time) of repeated observa-
tions involving K clusters of edges. Each cluster i (where
i = 1, 2, … ,K ) is associated with ni observations denoted as
response vector Yi j (travel time) of the j th response ( j =
1, 2, … , ni ). Furthermore, let Xi j represent a p × 1 vector
of explanatory variables (covariates) corresponding to each

observation. We can define the response vector for the ith
cluster as Yi = (Yi1,Yi2, … ,Yi (ni ) ) and its mean vector as 𝜇i =
(𝜇i1, 𝜇i2, … , 𝜇i (ni ) ), where 𝜇i j denotes the mean value for the
j th response. The means 𝜇i j are related to the p dimensional
regression vector Xi j by the p × ni mean-link function g as
follows:

g(𝜇i j ) = X ⊤
i j ⋅ 𝛽 (6)

where 𝛽 is the unknown p × 1 vector of regression coefficient
with the true value 𝛽0. In addition, let the conditional variance
of Yi j given Xi j be:

Var(Yi j ∣ Xi j ) = v(𝜇i j )𝜙 (7)

where v is a known variance function of 𝜇i j , and 𝜙 is the scale
parameter. Both v and 𝜙 are associated with the distribution
of the responses. For instance, in case Yi j follows a Gaussian
distribution, 𝜇i j is specified as 1, and if it shows Poisson dis-
tribution, then 𝜇i j = 𝜇i j . Also, let the Ri (𝛼) be the working
correlation matrix (ni × ni ) or the pattern of measures within
a cluster which is described by the vector parameter 𝛼, then the
variance-covariance matrix for Yi is expressed as:

Vi = 𝜙A

1

2
i

Ri (𝛼)A
1

2
i

(8)

where A

1

2
i is a (ni × ni ) diagonal matrix with entries v(𝜇i j ) as the

j th diagonal element. The GEE for estimation of the (p × 1) 𝛽
is obtained by solving the following equation:

K∑
i=1

𝜕𝜇i
⊤

𝜕𝛽
V −1

i (Yi − 𝜇i (𝛽)) = 0 (9)

where
𝜕𝜇i

⊤

𝜕𝛽
is a (p × ni ) matrix of the partial derivative of the

mean in regard to the regression parameter of the ith cluster,
which is obtained as follows:

𝜕𝜇i
⊤

𝜕𝛽
=

⎡⎢⎢⎢⎢⎣

xi11

g′ (𝜇i1 )
⋯

xini1

g′ (𝜇ini )

⋮ ⋮

xi1p

g′ (𝜇i1 )
⋯

xinip

g′ (𝜇ini )

⎤⎥⎥⎥⎥⎦
(10)

[71] propose utilizing consistent moment estimates for both
parameters, 𝜙 and 𝛼. This results in an iterative process that
alternates between estimating 𝛽 for fixed values of 𝜙̂ and 𝛼̂, and
estimating 𝜙 and 𝛼 for fixed values of 𝛽. This approach results
in a consistent estimate for 𝛽. According to [71], this also holds
if the working correlation structure Ri (𝛼) is misspecified.

Meanwhile, there are many different structures for work-
ing correlation matrix, including independent, exchangeable,
k-dependent, autoregressive, Toeplitz, and unstructured; in
this paper, we select independent and exchangeable for GEE
analysis.
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10 SADID and ANTONIOU

FIGURE 4 Illustration of TTC under (a) follow–lead, and (b) approaching conflicts scenarios.

∙ Independent R: within a cluster, the observations are
independent.

Corr(Yi j ,Yik ) =
{

1 j = k

0 j ≠ k
, e.g.

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ (11)

∙ Exchangeable R: within a cluster, the observations hold a
constant correlation.

Corr(Yi j ,Yik ) =
{

1 j = k

𝛼 j ≠ k
, e.g.

⎛⎜⎜⎝
1 𝛼 𝛼

𝛼 1 𝛼

𝛼 𝛼 1

⎞⎟⎟⎠ (12)

3.4.2 Safety assessment

For safety evaluation, the SSM is used to approximate the
number of conflicts in the network. For this purpose, each vehi-

cle is equipped with an SSM device, which logs the conflicts
of the vehicle with other vehicles. In this research, time-to-
collision (TTC) is used for the traffic conflict analysis. TTC is
the time required to collide between two vehicles in follow–lead
as well as approaching situations. Depending on the scenarios
(as depicted in Figure 4), TTC calculation is expressed as:

TTC =

⎧⎪⎪⎨⎪⎪⎩

xl−xf−Lf

vf−vl
, if vl > vf

d2

v2
, if

d1

v1
<

d2

v2
<

d1+L1+w1

v1

d1

v1
, if

d2

v2
<

d1

v1
<

d2+L2+w2

v2

(13)

A conflict is considered when the TTC value is less than
the specified threshold. A TTC value of 1.5 s or less is con-
sidered as unsafe condition; hence, in this research, we set the
TTC threshold to 1.5 s. The sum of all conflicts noticed during
the simulation period indicates the total number of conflicts in
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SADID and ANTONIOU 11

the network. Similarly, we apply the one-way ANOVA statistical
approach to check whether the total number of conflicts among
scenarios are significantly different. In addition, to investigate
whether each pair of scenarios is different from each other, we
implement Tukey’s HSD test [72].

Meanwhile, since AVs sensing technologies could potentially
detect and respond to a conflicting situation much faster than
HDVs, the unsafe TTC threshold might be lower for AV-AV
and AV-HDV interactions. Hence, we conduct a sensitivity anal-
ysis to check how different PRs of AVs affect the total number
of conflicts under various TTC thresholds.

Furthermore, to model the relationship between traffic char-
acteristics, PRs, and the total number of conflicts in the network,
we utilize a zero truncated Poisson (ZTP) regression model.
The ZTP is a statistical approach used for analysing count
data, excluding zero values from the dataset [73, 74]. Since this
research employ the total number of conflict in the network
for analysis, the zero number of conflicts in the network is
not practical. The probability mass function (PMF) of the ZTP
distribution is expressed as follows:

P (y; 𝜆) = 𝜆y

y!(e−𝜆 − 1)
, y = 1, 2, 3, … (14)

where y is the observed count in a time interval, and 𝜆 is the
mean parameter of the Poisson distribution. In addition, the
expected counts and the variance for given 𝜆 can be expressed
as follows:

E (y) = 𝜆e𝜆

e𝜆 − 1
, Var(y) = 𝜆e𝜆

e𝜆 − 1

(
1 − 𝜆

e𝜆 − 1

)
(15)

Finally, the ZTP regression model (link function) is as
follows:

g(𝜆) = log(𝜆̂) = X𝛽 + 𝜖 (16)

where X is the design matrix, 𝛽 is the vector of regression
coefficients, and 𝜖 is the random error that has the standard
logistic distribution. In this model, we take different PRs of AVs,
the standard deviation of the average network speed, and the
average throughput in the network.

3.5 Experimental setup

In this research, we develop a SUMO-based simulation platform
to systematically simulate and analyse mixed traffic, consider-
ing varying deployment scenarios of AVs, since the current
resources of CAVs modelling are limited in microscopic sim-
ulators. The architecture of the simulation platform consists
of three components: (i) scenario generation, (ii) simulation
environment, and (iii) output module. For each scenario, the
scenario generation tool utilizes inputs such as demand scale,
PR, and OD matrix. This tool assigns trips in the traffic net-
work based on the provided information and runs the SUMO

FIGURE 5 Transport network of Munich city center.

TABLE 5 IDM model’s parameters range and calibrated values.

Parameters Unit Range of values Calibrated value

Mingap [m] 0.5–2.0 1.2

Accel [m∕s2] 1.5–2.5 2.3

Decel [m∕s2] 2.5–3.5 2.6

Tau [s] 0.5–1.5 1.0

microscopic resolution model. The CF behaviours of AVs and
HDVs serve as inputs to guide vehicles movement and inter-
actions within the SUMO environment. For LC configurations,
we maintain the default settings of SUMO for both AVs and
HDVs. Considering the stochasticity in microscopic simula-
tions, we aggregate the outputs (i.e. evaluation indicators) over
multiple simulation runs. The study area covers the traffic net-
work of Munich city center as shown in Figure 5, which includes
urban road types with morning peak-hour traffic demand. The
OD pairs are allocated using a trip-based stochastic user route
choice assignment.

Meanwhile, as discussed in Section 3.2, we use IDM to cal-
ibrate the base model. The definition of the range of each
parameter is necessary for the search space of the PSO. Hence,
the range of each parameter of the IDM is assumed to replicate
realistic driving behaviour and include the vehicle’s capabilities
in terms of acceleration and deceleration, as well as the com-
fort driving characteristics. The result of the calibration process,
considering 12 simulation runs for each PSO iteration and a
15-min warm-up time is depicted in Table 5.

Additionally, in this research, we conduct impact assessment
under different scenarios varying by demand fluctuations and
PRs. We examine the simulation platform with two demand
cases, namely, 30% below peak hour traffic and peak hour traffic
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12 SADID and ANTONIOU

demand. For each demand scale, we investigate scenarios with 0
to 100% PRs with 20% increments. Considering the overall sce-
nario space for each demand scale, a total of 5 scenarios for AVs
are generated. Meanwhile, to account for the inherent stochas-
tic nature of microscopic simulations, we execute each scenario
a total of 12 times. The resulting KPIs values are derived from
the mean of all 12 simulation runs. Additionally, a 15-min warm-
up period is implemented, during which no data are collected.
In total, 12 scenarios (including 0% PR of AV) are executed,
leading to a cumulative 144 simulation runs (12 runs for each of
the 12 scenarios).

4 RESULTS

The results section of this paper is structured into three seg-
ments. The first part describes the influences of AVs on traffic
efficiency. It discusses the specific mobility effects of different
AV PRs on links, intersections and overall network. The sec-
ond part reveals the findings of safety assessments conducted
across diverse scenarios within the Munich city network. Lastly,
we present the outcomes of statistical analysis of the travel time-
and conflicts-based regression models.

4.1 Traffic efficiency

To explore the effects of different AV deployment scenarios on
traffic efficiency, we employ a range of KPIs depending on the
assessment area. For assessing the impacts on the overall net-
work, we consider KPIs such as average network travel time,
average waiting time, number of stops per vehicle throughout
the trip, and mean time loss per vehicle. The average waiting
time per vehicle is defined as the duration when the speed of a
vehicle is less than 0.1 m/s, while the mean time loss per vehicle
represents the time during which a vehicle operates below the
ideal speed. Additionally, to investigate impacts on intersections,
we use average time loss per vehicle and average intersection
passing speed as indicators.

Analysing the mean network travel time in each AV scenario
and comparing it with a fully HDV environment reveals a slight
increase in average network time up to 40% AV PRs. Beyond
this point, there is a reduction in travel time, as illustrated in
Figure 6a. The results of the ANOVA test indicate that the F-
value (5.741) for all AV scenarios under base demand exceeds
the critical F-value (3.856) at a 95% confidence interval. This
holds true for 30% below demand, where the F-value (5.506)
for all AV scenarios, including 0% PR, surpasses the F-critical
value (3.856). While the one-way ANOVA test reports different
means among AV PRs for both demand scales, the Tukey HSD
test demonstrates statistically significant changes between a fully
HDV environment (0% PR) and (20%, 40%, and 60% PRs),
as well as among (20%, 40% PRs) and a fully AV environment
(100% PR) under the 30% below demand scale. With the base
demand, only (20% and 40% PRs) exhibit significant differences
from 0% PR and 100% PR.

As illustrated in Figure 6a, when the AV PRs range from
20% to 40%, the average network travel time experiences an
approximately 10% increase compared to a fully HDV environ-
ment under both demand scales. This rise is primarily attributed
to the behavioural changes of AVs in the network, leading
to additional delays throughout the system. However, as the
AV PR increases beyond 40% up to 100%, there is a sub-
sequent reduction in average travel time, approaching levels
comparable to a fully HDV scenario. This trend is consistent
across other KPIs, as depicted in Figure 6b–d. This sug-
gests that AVs do not substantially alter the overall network
performance, as various influencing factors such as infrastruc-
ture, speed limits, and intersection control impose limitations
on the effects of behavioural changes among vehicles in the
network.

Similarly, the results of AVs impacts on the state of inter-
sections reveal that the change in average time loss per vehicle
per intersection with different AV PRs is not significantly dif-
ferent when compared to a fully HDVs scenario, as depicted
in Figure 7. This outcome is attributed to the unchanged con-
trolling algorithms of the traffic signals within the study area.
In addition, the average passing speed per intersection remains
almost the same for all AV scenarios. Hence, the behavioural dif-
ference in AVs driving configuration may not lead to substantial
changes in both the mean time loss per vehicle and the average
passing speed per intersection.

4.2 Traffic safety

We use the total number of conflicts as the KPI to analyse the
potential safety implications of AV PRs in the study area. A
conflict is identified when the TTC value between two vehi-
cles is less than or equal to a specific threshold set at 1.5 s
in this study. Additionally, we vary the TTC threshold values
for conflicts involving AV-AV and HDV interactions to explore
the influence of AVs’ sensing capabilities on the overall num-
ber of conflicts. This approach provides insight into how safety
is affected by different AV PRs and the varying thresholds for
conflict detection.

The summary statistics for traffic conflicts at different PRs
of AVs are presented in Table 6, encompassing mean, mini-
mum, and maximum values, as well as standard deviation. Initial
findings indicate that, under both demand scales, increasing the
PR of AVs up to 40% results in a concurrent increase in the
total number of conflicts. This increase is directly linked to the
distinct driving behaviour of AVs. Although in small PRs, the
driving behaviour of AVs is influenced by HDVs, the change
in parameters of the CF model results in a higher number of
conflicts. This could also be expected in real-world scenarios
where a limited PR of AVs might impact the driving behaviour
of HDVs, prompting frequent adjustments in CF behaviour.
Similarly, by increasing the PRs of AVs from 40% onward,
there is a notable reduction in total number of conflicts. In a
fully AV scenario, the total number of conflicts is around 25%
lower than in a fully HDV environment. This indicates that
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SADID and ANTONIOU 13

FIGURE 6 The impacts of AV PRs on (a) average network travel time, (b) average waiting time per vehicle, (c) mean number of stops per vehicle, and (d)
average time loss per vehicle (the error bars show the variability of data around the mean).

FIGURE 7 Illustration of the potential impacts of AV PRs on (a) average time loss per vehicle per intersection, and (b) average intersection passing speed (the
error bars show the variability of data around the mean).
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14 SADID and ANTONIOU

TABLE 6 Summary statistics of traffic conflicts (TTC = 1.5 s) under
different PRs and demand scales.

Demand PRs Mean Minimum Maximum Std deviation

100 % 0% 16,455 15,575 16,517 302.38

20% 22,154 21,970 23,836 623.51

40% 27,661 26,422 28,689 664.93

60% 26,586 26,298 28,294 683.35

80% 17,985 17,410 18,660 384.31

100% 12,413 11,653 13,157 495.63

30% below 0% 8,894 8,576 9,331 250.06

20% 13,721 13,205 15,528 619.78

40% 17,596 16,271 18,190 521.31

60% 17,031 16,530 17,854 365.55

80% 10,927 9,832 11,663 485.29

100% 6,592 6,252 7,202 286.47

AVs’ CF behaviour could significantly change safety; however,
in higher PRs.

Moreover, the results of the one-way ANOVA test indicate
a significant variation in the total number of conflicts across all
AV deployment scenarios in both demand scales. The F-value
(9.974) for all AV scenarios under base demand exceeds the crit-
ical F-value (3.911) at a 95% confidence interval. Similarly, for
the 30% below demand scale, the F-value (4.493) for all AV sce-
narios, including 0% PR, surpasses the F-critical value (3.911).
Furthermore, the Tukey HSD test reveals a significant variation
between all pairs of AV PRs except for 40% and 60% PRs under
both demand scales.

Meanwhile, the sensing capabilities enable AVs to react faster
than HDVs in conflict situations. Therefore, it is arguable
that the TTC threshold for HDVs’ conflicts could be set to
1.5 s, where the HDV is the following (ego) agent either in an
HDV–HDV or HDV–AV situations. However, for AV–AV and
AV–HDV conflicts, we can set the TTC threshold to 1.25, 1.0,
and 0.75 s. In comparison to the initial scenario, where TTC
is set to 1.5 s for all conflict types (Figure 8a), the total num-
ber of conflicts is significantly lower for other TTC thresholds,
as depicted in Figure 8b–d. When setting the TTC threshold
to 1.25 s for AV-related conflicts, the total number of con-
flicts in 100% PR reduces around 61% in comparison to 0%

FIGURE 8 The comparison of the total number of conflicts under various TTC thresholds.
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SADID and ANTONIOU 15

TABLE 7 The contribution of vehicle types on conflicts generation under various TTC thresholds and scenarios.

(a) TTC threshold = 1.5 s (b) TTC threshold = 1.25 s

Demand PRs AV-AV AV-HDV HDV-HDV HDV-AV Sum Demand PRs AV-AV AV-HDV HDV-HDV HDV-AV Sum

100% 0% 0 0 16,455 0 16,455 100% 0% 0 0 16,455 0 16,455

40% 7,214 7,109 6,218 7,120 27,661 40% 1,721 2,305 6,218 7,120 17,364

80% 10,328 3,220 1,259 3178 17,985 80% 4,562 1,589 1,259 3,178 10,588

100% 12,413 0 0 0 12,413 100% 6,914 0 0 0 6,914

30%
below

0% 0 0 8,894 0 8,894 30%
below

0% 0 0 8,894 0 8,894

40% 4,683 4,429 4,003 4,481 17,596 40% 950 1,312 4,003 4,481 10,746

80% 6,169 2,022 846 1,890 10,927 80% 2,480 966 846 1,890 6,182

100% 6,592 0 0 0 6,592 100% 3,264 0 0 0 3,264

(c) TTC threshold = 1.0 s (d) TTC threshold = 0.75 s

Demand PRs AV-AV AV-HDV HDV-HDV HDV-AV Sum Demand PRs AV-AV AV-HDV HDV-HDV HDV-AV Sum

100% 0% 0 0 16,455 0 16,455 100% 0% 0 0 16,455 0 16,455

40% 1,508 1,986 6,218 7,120 16,832 40% 707 993 6,218 7,120 15,038

80% 3,787 1,376 1,259 3,178 9,600 80% 1,515 569 1,259 3,178 6,521

100% 5,704 0 0 0 5,704 100% 2,648 0 0 0 2,648

30%
below

0% 0 0 8,894 0 8,894 30%
below

0% 0 0 8,894 0 8,894

40% 782 1,109 4,003 4481 10,375 40% 408 577 4,003 4,481 9,469

80% 1,980 812 846 1,890 5,528 80% 816 424 846 1,890 3,976

100% 2,651 0 0 0 2,651 100% 1,126 0 0 0 1,126

PR under both demand scenarios, where for TTC threshold 1.0
and 0.75 s, these figures show approximately 67% and 85%,
respectively.

In addition, to gain a deeper understanding of the contri-
bution of vehicle types in generating conflicts in the network,
we distinguish AV and HDV-related conflicts under each TTC
threshold, AV PR, and demand scale scenarios. As shown in
Table 7, when setting the TTC threshold to 1.5 s, AV-related
conflicts (AV-AV and AV-HDV) are higher than HDV-related
conflicts under 40% PRs for both demand scenarios. The selec-
tion of a 40% PR allows us to assess the contribution of AV
conflicts in a scenario where the presence of HDVs in the net-
work is predominant. However, for lower TTC thresholds, the
contribution of HDV-related conflicts is higher under 40% PR
for both demand scale scenarios.

4.3 Regression analysis

To better investigate the potential benefits of AV PRs on traffic
efficiency and safety, we implement GEE and ZTP regression
models, respectively, to relate the impacts with the influencing
factors. For the GEE model, we use edge travel time per kilo-
metre as a dependent variable and AV PRs, flow, length of edge,
flows, and speed limit as independent variables. Whereas for the
ZTP regression model, the total number of conflicts is set to
the dependent variable, AV PRs, flow, and standard deviation of
speed as independent variables.

4.3.1 Travel time regression analysis

The results of the regression model with two correlation struc-
tures (independent and exchangeable) are shown in Table 8.
For comparison of model goodness of fit under different cor-
relation structures, we also use the AIC (Akaike Information
Criterion) parameter (the lower value of AIC indicates a better
model fit). As depicted in Table 8, the value of AIC is smaller
for the independent working correlation structure, making it a
better fit compared to the exchangeable correlation structure.
In addition, there are differences in the coefficient and standard
errors of the variables in both working correlation structures.
For instance, the variable AV60 (60% PR of AV) is significant
(p-value = 0.001) under the independent correlation structure,
whereas it is not statistically significant (p-value = 0.132) under
the exchangeable correlation structure. Meanwhile, the value of
the estimated correlation matrix in the exchangeable structure is
0.754.

The investigation of the coefficient estimates of AV PRs
reveals that under the independent structure, AV20, AV40, and
AV80 are significant in changing edge travel time per kilome-
tre, whereas under the exchangeable correlation structure, only
AV20 and AV40 are statistically significant. The positive sign
of the coefficients indicates that any AV PR increases the edge
travel time per kilometre compared to a fully HDV environ-
ment; however, the magnitude of this increase is different in
each AV PR. In a mixed environment, where AVs interact with
HDVs, there might be frequent driving behaviour adjustments
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16 SADID and ANTONIOU

TABLE 8 Regression-based edge travel time per kilometre analysis.

Independent Exchangeable

Variable Coeff. Std. Err. z value Pr(> |z|) Coeff. Std. Err. z value Pr(> |z|)

Intercept 18.004** 3.753 4.797 <0.001 12.263** 3.845 3.189 0.001

AV20 0.931** 0.250 3.717 <0.001 0.531** 0.224 3.265 0.001

AV40 1.178** 0.277 4.262 <0.001 0.633** 0.292 2.166 0.030

AV60 0.913** 0.268 3.410 0.001 0.367 0.244 1.507 0.132

AV80 0.455 0.257 1.772 0.076 0.036 0.218 0.167 0.867

AV100 0.086 0.237 0.362 0.717 −0.289 0.180 −1.609 0.108

Edge length 0.068** 0.001 58.005 <0.001 0.071** 0.002 41.448 <0.001

Flow 0.014** 0.003 5.078 <0.001 0.030** 0.006 4.872 <0.001

Speed limit −0.948** 0.274 −3.464 0.001 −0.765** 0.254 −3.016 0.003

AIC 500645.98 505287.27

**Significance at 0.05 level.

toward safe manoeuvres, and this may lead to increased edge
travel time per kilometre. In lower PRs, there is less driving
behaviour oscillation compared to a fair share of both AVs and
HDVs (e.g. 50%). Similarly, in higher PRs, the driving behaviour
is influenced by AVs, and therefore, the driving actions are
less disturbed for both AVs and HDVs compared with a 50%
PR. As depicted in Table 8, under the independent correlation
structure, the coefficient estimates of AV PR initially increase
from 0.931 (AV20) to 1.178 (AV40) and then reduces gradually
to 0.086 (AV100). Meanwhile, compared to the base scenario
(0% PR), the travel time value per kilometre is higher in a
fully AV environment (100% PR); however, the coefficient esti-
mate is not significant, and thus, the safe driving behaviour
of AVs could potentially improve safety without deteriorating
traffic efficiency.

Furthermore, traffic flow significantly affects edge travel time
per kilometre under both correlation structures. The higher flow
results in increased travel time per kilometre. Similarly, the coef-
ficient estimate of the speed limit is negative, which indicates
that the travel time per kilometre at an urban road with higher
speed limit is less compared to the same urban road with lower
speed limit.

4.3.2 Conflicts regression analysis

The findings of the conflicts-based regression model are pre-
sented in Table 9. Based on the estimated coefficients, AV PRs
(except AV80) are found to be significant in affecting the total
number of conflicts in the network. The signs of AV20, AV40,
and AV60 are positive, whereas AV80 and AV100 have nega-
tive signs. The differences in the driving behaviour of AVs and
HDVs result in increased conflicting situations. The higher the
interactions among AVs and HDVs, the higher is the total num-
ber of conflicts. In scenarios with both low and high AV PRs,
the total number of conflicts tends to be lower compared to
situations with an equal mix of AVs and HDVs (e.g. 50% AV
PR). In lower PRs, the number of conflicts tends to be like

TABLE 9 Regression-based conflicts analysis.

Variable Coeff. Std. Err. z value Pr(> |z|)

Intercept 2.484** 0.058 42.740 <0.001

AV20 0.044** 0.010 4.237 <0.001

AV40 0.124** 0.010 11.924 <0.001

AV60 0.074** 0.011 6.676 <0.001

AV80 −0.001 0.011 −0.077 0.939

AV100 −0.695** 0.022 −31.590 <0.001

Log (flow) 0.305** 0.005 60.739 <0.001

Speed Std 0.142** 0.003 43.078 <0.001

**Significance at 0.05 level.

the fully HDV scenario since the driving behaviour of AVs is
influenced by HDVs. Similarly, in higher PRs, the number of
conflicts is associated to AVs and tends toward a fully AV sce-
nario. By increasing the PR up to 50%, the total number of
conflicts increases, where with higher PRs (>50%), the change
in the total number of conflicts in comparison to a fully HDV
scenario reduces. When the PR reaches 80%, the change in the
total number of conflicts compared to the based scenario is
insignificant. However, in a 100% PR, the total number of con-
flicts reduces significantly. Therefore the coefficient estimates
increase from 0.044 (AV20) to 0.124 (AV40), and then reduces
to −0.008 (AV80) and finally to −0.695 (AV100).

Additionally, the standard deviation of speed is a signifi-
cant variable in changing the total number of conflicts in the
network. Higher fluctuation in this variable results in higher
conflicts. Meanwhile, the increased traffic flow (throughput) in
the network implies higher conflicts in the network.

5 DISCUSSION

The findings of the literature review revealed that most
simulation-based AV studies conduct the impact assessment on
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traffic efficiency [18, 21, 22, 30, 34, 35, 66], safety [17, 22, 28, 32,
55], and some also focus on environmental effects [24, 25, 75].
Regarding the mobility impacts, researchers reported that higher
PRs of AVs and CAVs reduce travel time and increase capac-
ity and throughput [17, 18, 21, 22, 33]. However, other studies
claimed that in a mixed driving environment where AVs inter-
act with HDVs, the capacity degrades [19, 34], and travel time
increases [66]. In addition, it is reported that in higher speed
limits, the impact of AVs on Freeway capacity is significant. In
contrast, in lower speed limits, the change is not considerable
[35]. Meanwhile, most studies reported that CAVs outperform
AVs in many aspects due to their communication capabilities.
For instance, [22] reported that at least 20% PR of CAVs is
required to significantly reduce travel time, whereas, for AVs,
at least 40% PR is required. On the other hand, the results of
our research show that a mixed environment of AVs and HDVs
increases the network travel time, vehicle time loss, and average
flow. Second, regarding safety impacts, most studies suggested
that by increasing the PR of AVs, the total number of conflicts
in the network reduces significantly [17, 22, 32, 55]. Some also
highlighted the negative impacts of AVs on roundabout safety
[64]. However, our research revealed that a comparable mix of
AVs and HDVs might result in an increased number of con-
flicts. Since different driving behaviours of AVs and CAVs may
lead to the frequent adjustment of driving actions, the num-
ber of conflicts increases. However, with higher PRs of AVs
(e.g. more than 80%), the total number of conflicts significantly
reduces in comparison to a fully HDV environment. With 100%
AV PR, the total number of conflicts decreases by around 25%.
The inconsistent conclusion on the impacts of AV PRs could be
associated with two main influencing factors: the assumption on
the potential CF parameters of AVs driving behaviour and the
scope of the study.

The driving behaviour of AVs might significantly differ from
HDVs. In MTMs, the driving behaviour of AVs is distinguished
from HDVs by modifying the parameters of the CF model.
However, the magnitude of these changes depends on the
researchers’ own assumptions (due to the lack of large real-
world data for AVs). Most studies, for instance, assume that AVs
might drive closer to the leading vehicles and could react rela-
tively faster. However, AVs may have more cautious behaviour
and strictly follow the traffic rules, especially the speed limits,
compared to HDVs. Therefore, in this research, we utilize AVs’
optimized and safe driving behaviour instead of assuming the
CF model parameters.

Another important aspect is the scope of the study. Most
studies conduct the impact assessment on freeways and high-
ways, where the fluctuation of traffic flow elements is not
huge. Thus, AV driving behaviour brings a significant change
in efficiency and safety. In contrast, in an urban network, many
other influencing factors such as the type of roads, number
of lanes, type and number of intersections, curvatures, control
devices, speed limits, and more could have direct impacts on
the driving performance and impress the potential effects of
driving behaviour itself. In other words, these influential factors
could diminish the effects of AV driving behaviour on traffic
efficiency. Therefore, in this research, the findings differ for effi-
ciency evaluation. A similar result is also reported by [66], where

the investigation is conducted at the network level. On the other
hand, regarding safety, driving behaviour significantly affects the
number of conflicts. Since a conflict occurs between two vehi-
cles (following and leading) in a short period and is unrelated to
the entire vehicle’s trip, the driving behaviour is responsible for
any possible conflict.

6 CONCLUSION

It is expected that AVs have a different driving behaviour than
HDVs. This behavioural difference might bring a significant
change in mobility, safety, and emissions. Identification of the
potential driving behaviour of AVs is a crucial aspect of impact
assessment studies. Since AVs might have safe and efficient
driving behaviour, a simulation-based impact assessment with
optimal driving behaviour of AVs might report more realistic
results on the potential impacts of AVs. Hence, in this research,
we conduct a comprehensive simulation-based impact assess-
ment under varying scenarios to evaluate the effects of AVs
on efficiency and safety in an urban network. An experimen-
tal setup is conducted to run the simulations in the Munich city
network. We utilize Krauss and IDM models to mimic the CF
behaviour of AVs and HDVs, respectively. The parameter of
the HDV CF model is calibrated using PSO algorithm, whereas
for the Krauss model, the optimized parameters are used from
another study.

The evaluation of impacts on traffic efficiency reveals that
any PR of AVs might increase the network travel time under
various demand scenarios. This increase is mainly due to the
behavioural changes of vehicles in mixed environments. With
20–40% PRs, the results show around 10% increase in travel
time, where this figure reduces gradually for PRs ranging from
40% to 100%. In a fully AV scenario, the network travel time is
almost the same as in the base scenario (0% PR). The same find-
ings are found for other KPIs, including the average number of
stops per vehicle, average time loss per vehicle, and average time
loss per vehicle per intersection. Hence, behavioural differences
in AV driving configurations could not bring huge changes on
traffic efficiency in urban networks. On the other hand, the anal-
ysis of traffic safety depicts that by increasing the PRs of AVs to
40%, the total number of conflicts (with TTC <1.5 s) increases
significantly; however, with higher PRs, the number of conflicts
reduces significantly. In addition, it is found that the total num-
ber of conflicts is around 25% less in a fully AV environment
in comparison to the base scenario. Meanwhile, if we consider
the sensing capabilities of AVs for their fast reaction in case of
a conflict situation, the total number of conflicts in the network
reduces significantly by increasing the PRs of AVs. Depending
on the TTC value for AV-related conflicts (AV to AV or AV to
HDV), the total number of conflicts reduces around 60 to 80%
in higher PRs (>80%).

The investigation of the potential impacts of AVs showed
that AVs might bring safety improvement not only by elimi-
nating the drivers’ errors but also by their behavioural changes;
however, their impacts on efficiency in a city network scale,
where additional infrastructure-related factors (e.g. speed limit,
type of roads, number of lanes, type of intersections, traffic
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control devices, and more) play a vital role is not huge. This
research also has limitations that could raise new lines of work
for further studies. First, for any PR of AVs, we fixed the driv-
ing behaviour of HDVs; however, the mass deployment of AVs
might also change the behaviour of HDVs and their interaction
with AVs. Thus, a research using a driving simulator experiment
of the field test is required to evaluate the potential change in
human drivers’ behaviour when interacting with AVs and uti-
lize these changes when conducting impact assessment. This
will lead to more accurate and reliable findings on AVs impact
assessment. Second, in an urban network, among other influ-
ential factors, speed limit could have a major contribution in
diminishing the real impacts caused by behavioural changes in
driving. Hence, a sensitivity analysis of different speed limit
policies could be valuable research work to investigate the rela-
tionship between speed limits and the potential impacts of AVs
on efficiency and safety. Third, in simulation-based studies, the
effects of AVs are influenced by factors such as the selection of
CF models and the scope of the study. Therefore, it is impor-
tant to perform a sensitivity analysis using varying modelling
techniques to find the interactions among a CF model and the
potential impacts and to analyse the relationship between the
scope of a study and the impacts of AVs deployment scenar-
ios. Fourth, in this research, we utilized the optimized driving
behaviour of AVs (extracted in a city network) to conduct
an impact assessment. However, it is interesting to study the
impacts of AVs on a freeway or highway by utilizing the AVs’
optimal driving behaviour. The aim would be to evaluate the
effects of optimal driving behaviour of AVs under high speed
and traffic flow. Finally, there is a potential to integrate a data-
driven model into a microscopic traffic simulator to replicate the
driving behaviour of AVs under varying traffic conditions and
conduct impact assessment. This will generate plausible findings
on the potential impacts of AVs in mixed traffic.
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