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Abstract—Forecasting the motion of others in shared spaces is
a key for intelligent agents to operate safely and smoothly. We
present an approach for probabilistic prediction of pedestrian
motion incorporating various context cues. Our approach is
based on goal-oriented prediction, yielding interpretable results
for the predicted pedestrian intention, even without the prior
knowledge of goal positions. By using Markov chains, the
resulting probability distribution is deterministic—a beneficial
property for motion planning or risk assessment in automated
and assisted driving. Our approach outperforms a physics-
based approach and improves over state-of-the-art approaches by
reducing standard deviations of prediction errors and improving
robustness against realistic, noisy measurements.

Index Terms—Markov processes, motion planning, probabilis-
tic model, road safety, pedestrian motion prediction.

I. INTRODUCTION

PREDICTING the motion of traffic participants is a core
issue for intelligent transportation systems designed to

enhance road safety. Safety cannot be assured unless the
safety of all road users, including vulnerable road users, such
as pedestrians, is considered. In addition, intelligent vehicles
should operate with a comfortable, natural, and smooth driving
style. To this end, a long-term prediction horizon is required
to enable driving with foresight. However, predicting the
motion of pedestrians is challenging, as they have less inertia
than larger agents, such as road vehicles. Moreover, their
behavior can be influenced by various factors, such as their
own intended destination, the road layout (including static
obstacles), and their interaction with other road users. All
these factors can result in a high degree of motion uncertainty.
Some components of pedestrian movement behavior, such as
group behavior and interactions among pedestrians in close
proximity to each other [1]–[6], are not considered. They have
arguably secondary effects from the perspective of autonomous
vehicles and are used, e.g., for predictions of crowd dynamics
in evacuation situations [7], which are not a focus of this work.

One possibility for computing the multimodal distribution of
future trajectories is first identifying goals (a set of target posi-
tions on the map) and then predicting the motion conditioned
on each goal. Many previous works [8]–[12] assume every
position cell in a grid world to be a potential goal, whereas a
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small set of goals is used in [13]–[15]. To generate represen-
tative goals in unknown environments, one can use rules, such
as allocating goals on sidewalks [13], or heuristic approaches
[14]. However, those procedures of generating goals may lead
to ambiguity, e.g., “Why is this location regarded as a target
position instead of another location nearby?” and “Should the
amount of generated goals on each topological space, such as
sidewalks, be kept the same?” (we address this in Sec. III-C2).

The probability distribution over goals to an agent given its
past trajectory can be estimated directly through the forward
pass in artificial neural networks [10]–[12] or using Bayes’
rule with dynamic models [8], [9], [13]–[15]. The inference
of a large number of goals can still be efficient by means of the
utility values of the states in a Markov decision process as in
[8], [9], where the time complexity of computing those utility
values is made independent of the number of goals by using
deterministic state transition dynamics. However, this time
complexity significantly increases when time is included in the
state space [16, Chap. 4.7]. This makes it difficult to realize
real-time applications that consider the cues from dynamic
scenes both when predicting motion conditioned on goals and
inferencing goals through utility values. Alternatively, one
can augment a time-invariant planning-based predictor with
spatiotemporal variations [13]–[15].

A. Related Work

Pedestrian motion prediction is still an active research area
and its application domains include, e.g., automated driving,
service robots, and surveillance [17], [18]. Following [7], [17],
the prediction approaches can be categorized into physics-
based, pattern-based, planning-based, and hybrid approaches.

a) Physics-based approaches: Approaches under this
category use explicitly defined dynamic equations [19], [20].
Many microscopic models [2]–[4] are based on the prominent
social force model introduced by Helbing and Molnar [1].
They originally aim at simulating realistic trajectories, e.g., for
crowd simulations and evacuation dynamics in different types
of infrastructures [7]. Recently, microscopic models have been
applied to urban scenarios like signalized intersections [21],
and for the prediction of jaywalking behavior [22]. Further-
more, Kooij et al. [23] incorporated various context cues in a
dynamic Bayesian network to govern the switching between
motion types. Batkovic et al. [24] used a closed-loop regulator
to predict pedestrian trajectories and state covariances along a
graph of connected edges representing pedestrianized areas.
Koschi et al. [25] present a set-based prediction approach
which includes all possible future states of pedestrians while
considering formalized traffic rules. In general, physics-based
approaches possess good explainability. However, their model
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capacity is often limited and they can not benefit from large
amounts of data [7].

b) Pattern-based approaches: Learning typical behavior
patterns in known environments [26], [27], such as recognizing
pedestrian crossing intention [28], [29], showed promising
results. With the rapid advancement in deep learning, diverse
approaches are proposed to learn social interactions between
pedestrians [5], [6], [30], [31] and more complex spatiotem-
poral behavior patterns [32]–[34]. In contrast to predicting
pedestrian trajectories from the first-person perspective [35],
[36], many approaches use the rasterized bird-eye images of
the agent’s environment and encode the road context with
convolutional neural networks [37]–[39]. Recent development
adopts a vectorized representation of high-definition maps
and agent trajectories, combined with graph neural networks,
where the computational cost for context encoding can be
reduced by a large margin compared to using convolutional
neural networks [40], [41]. Often, recurrent neural networks,
such as long short-term memory networks [42], are adopted to
encode sequential observations and decode future trajectories
[43]–[45]. Yao et al. [46] developed a bidirectional decoder
to reduce accumulated long-term prediction errors by incor-
porating the endpoint of trajectories. More recent work [47]–
[49] uses transformer networks [50] through a self-attention
mechanism to better explore spatiotemporal dependency of
features. Li et al. [51] used multi-scale graph-based spatial
transformers taking the scene segmentation map and observed
trajectories as inputs, with a memory graph to improve the
smoothness of predictions. Bae and Jeon [52] constructed
weighted multi-relational pedestrian graphs to account for
social interactions.

Capturing the multimodal nature of motion prediction in the
decoder part of neural networks can be achieved through, e.g.,
(i) learning a mixture of Gaussians [52], [53], (ii) sampling
latent variables based on conditional variational autoencoders
[12], [43], [45] or generative adversarial networks [6], [34]
with multiple generators [54], (iii) employing a maneuver-
based multi-task learning framework [55], (iv) adapting the
particle filtering on top of recurrent models [56], and (v) using
non-parametric approaches [37], [38]. Among them, deep
generative models often suffer from the mode collapse [57]
and the use of implicit latent variables prevents the interpreta-
tion of intermediate prediction results. To eliminate the mode
collapse problem and make multimodal trajectory prediction
more robust and explainable [58], many approaches condition
the prediction on goals (or anchors, endpoints, etc., having
similar concepts) [41], [48], [59], [60]. Still, sampling at
runtime leads to non-deterministic prediction results, which
negatively affects the evaluation of collision risk in assisted
and automated driving. In [49], Gu et al. present a new
framework for sampling pedestrian trajectories by progressive
denoising from a noise distribution, where the reverse diffusion
process [61], [62] is learned via a parameterized Markov
chain. However, the computational effort of this approach is
expensive due to the required multiple steps in the reverse
diffusion process.

In general, pattern-based approaches with high performance
can predict more accurate trajectories than physics-based ap-

proaches when a sufficient amount of suitable training data
are available, but at the cost of low interpretability [7], [17].
The lack of interpretability makes it difficult to validate these
approaches in safety-critical applications [63]. Moreover, their
ability to generate physically consistent results as well as their
generalizability and robustness against unseen situations and
noisy inputs are questionable [7], [17].

c) Planning-based approaches: According to [16,
Chap. 8.1], the term planning can refer to “any computa-
tional process that takes a model as input and produces or
improves a policy for interacting with the modeled environ-
ment”. Planning-based approaches emphasize the reasoning
about the intention of rational agents and possible paths to
goals [17]. In contrast to those forward planning approaches
by using a predefined reward function [13], [14], inverse
planning approaches aim to recover the reward function from
demonstrated behavior by using feature matching techniques.
Early works [8], [9] focus on the interaction between agents
and static environments and learn the weights of designed local
scene features. Furthermore, Kretzschmar et al. [64] jointly
predicted the trajectories of interacting agents by introducing
discrete navigation decision features to represent, e.g., cultural
preferences of passing on a specific side. Instead of handcraft-
ing features, Wulfmeier et al. [65] exploited deep neural net-
works as the reward function approximator to learn complex
features. Moreover, it is not uncommon for planning-based
methods to be combined with other methods. For instance,
Ma et al. [66] forecasted multiple pedestrian trajectories by
utilizing motion planning and fictitious play [67] from game
theory. In [10], the destination prediction and the planning-
based motion prediction are cascaded within a monolithic
neural network. Deo and Trivedi [11] utilized inverse rein-
forcement learning to predict the policy conditioned on the
jointly inferred goals and applied an attention-based trajectory
generator. More recently, the vehicle-pedestrian interaction is
modeled as a multi-agent deep reinforcement learning problem
in [68], where the pedestrian agent can learn an intelligent
crossing behavior and a low collision rate is achieved under
a high measurement noise level in a simulation. Essentially,
planning-based approaches perform well in structured envi-
ronments given well-defined goals, and they tend to yield
more accurate long-term predictions compared to physics-
based approaches and generalize better in unknown environ-
ments compared to pattern-based approaches [17]. However,
the computational effort when using classical methods (such
as value iterations) increases exponentially with the number
of continuous state variables [17, Sec. 8.2], [16, Chap. 4.7].

d) Hybrid approaches: Hybrid approaches combining
physics-based approaches and deep learning algorithms have
gained momentum in recent years [7]. Hossain et al. [69]
modeled each module of an extended social force model by
neural networks for predicting a single trajectory. Yue et al.
[70] proposed a neural differentiable equation model consist-
ing of goal attraction, inter-agent repulsion, and environment
repulsion parts. The uncertainty in the motion dynamics and
observations is considered via a variational autoencoder and
the goal positions are sampled from a goal sampling network.
Our work is related to this category with its core component
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using planning.

B. Contributions

This work significantly differs from our previous work
in [14], [71]. First, we improved the interaction between
pedestrians and their environment by replacing heuristics with
policies systematically obtained from machine learning. In
particular, we model pedestrian interaction with the road
layout using inverse reinforcement learning. Furthermore, we
can now directly utilize empirical data regarding the temporal
aspect of pedestrian behavior through a novel input transition
model, which also further modularizes our approach. Second,
we developed a novel generation of goal regions to completely
eliminate the ambiguity of the goal generation in [14]. Third,
the collision probability computation can now consider mul-
tiple other traffic participants appropriately; before, only the
most important other traffic participant was considered. Fourth,
we evaluated our approach for the first time on large-scale
datasets and compared it with state-of-the-art methods. Fifth,
the effectiveness of each module of our approach is examined
in our ablation study. In summary, the core contributions of
this paper are as follows:
• We incorporate various techniques in Markov chains (as

the basis for our approach) for multimodal motion pre-
diction. This integration of various context cues is novel,
and it shows promising results compared to state-of-the-
art approaches while offering superior interpretability to
many end-to-end approaches. Our approach does not rely
on sampling, and the prediction results are deterministic.

• An approach for constructing goal regions is proposed
to address the challenge of generating goals in unknown
environments. The impact of the number of goal regions
on prediction performance is investigated. By means of
these goal regions, our approach does not suffer from
mode collapse, which can affect deep generative models.

• Unlike end-to-end approaches, we demonstrate that each
module of our approach can be efficiently trained in a
separate manner, which allows us to first validate each
module before adding others and helps system inspection.

• We investigate the prediction performance under realistic,
noisy position measurements. Our work shows that our
approach is more robust than baseline physics-based and
pattern-based approaches.

C. Organization

The remainder of this paper is structured as follows. Sec. II
presents a holistic view of our approach and explains the
motivation behind our framework. In Sec. III, we introduce our
goal-oriented pedestrian motion model. Additionally, Sec. IV
models the interaction between pedestrians and road vehicles.
Our evaluation on large-scale datasets is found in Sec. V.
Finally, Sec. VI concludes the paper.

II. OVERVIEW

We use controlled Markov chains (as a special case of
Markov decision processes) for probabilistic motion predic-
tion. Although there are systematic errors from the required

discretization of the state and input space, no probabilistic
errors are introduced because no random sampling is applied.
Hence, the resulting probability distribution is deterministic
[72]—a beneficial property for motion planning or risk as-
sessment in automated and assisted driving. Our approach
involves both physics-based and learning-based models. Since
the human body movement (change of position) based on
decision making (move in a certain direction with a certain
velocity) can be well modeled, we propagate the position
following a kinematic model. In contrast, the underlying
cognitive processes of pedestrians are complex. Hence, we
learn the input transition probabilities from data.

We consider for pedestrian decision making the typical con-
text cues in urban traffic scenarios—the road layout (static en-
vironments) and road vehicles (dynamic obstacles), as shown
in the left part of Fig. 1. Unlike end-to-end pipelines, we
separately encode the road layout and road vehicles into our
controlled Markov chains for the following reasons:
• This avoids solving planning problems with dynamic ob-

stacles (which are in general computationally expensive)
and makes real-time applications more tractable. Yet, we
augment our time-invariant planning-based predictor with
spatiotemporal variations (cf. Sec. III-D2).

• The separate modeling of interaction with road vehicles
is conditioned on their future trajectories (cf. Sec. IV-A),
which facilitates trajectory planning for intelligent vehi-
cles, such as, “How would the pedestrian behave if the
system maintains the intended speed and stays on the
desired path?”

• We are able to first train the pedestrian interaction model
with the road layout (cf. Sec. III-D2) and then optimize
the interaction model with road vehicles (cf. Sec. IV-C).
This method not only copes with the intrinsic bias of most
datasets towards uncritical situations by emphasizing rel-
evant interactions, but also facilitates divide-and-conquer
strategies for validation.

Specifically, we apply goal-oriented prediction and learn the
reward function (cf. Sec. III-C3) due to the following critical
advantages compared to pattern-based methods:
• Planning-based methods tend to generalize better in un-

known environments, as the reward function encapsulates
human activities in terms of local scene features instead
of physical locations [9].

• Instead of learning the policy for a specific task, the
reward-function-based approaches can be easily applied
to different tasks (goals) by deriving the corresponding
policy [65].

• The reasoning about goals provides a better explainability
of the agent’s intent, such as towards a target region
across the road (cf. Sec. III-C2 and Sec. III-E).

III. MODELING OF PEDESTRIAN MOTION

We model pedestrian motion in urban traffic environments
as Markov decision processes. For the mentioned reasons in
Sec. II, we divide our prediction model into submodels: the
state transitions are abstracted from a kinematic model and
the learned input transitions represent the underlying cognitive
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c© Full Transition Model

Physics-based State Transition
Probabilities, cf. (2)

Stochastic Policies
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Velocity Transition
Probabilities

0

Motion Prediction
Conditioned on
Goals, cf. (6)

Learned Input Transition
Probabilities, cf. (3)
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Road Layout
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b© Priority Values, cf. Sec. IV

Reward Maps

a© Goal Regions, cf. Sec. III-C2

t

d© Occupancy Probabilities,
cf. (1)

G1 Gz

e© Probabilities of Goal
Regions, cf. Algorithm 1

Fig. 1. Flowchart of our motion prediction.

processes of pedestrians. First, we introduce the notation and
formulate the prediction objective (Fig. 1 d©) by means of
the intended destination of pedestrians as latent variables.
Then, we formulate our Markov decision processes, where
we discuss the difficulty of assigning target positions on the
map and propose a method for automatically generating goal
regions (Fig. 1 a©). Later, we present our full transition model
(Fig. 1 c©) considering additional context cues (Fig. 1 b©). Last,
we present an algorithm to infer the intended destination of
pedestrians as intermediate prediction results based on online
observations (Fig. 1 e©).

A. Notation

We use grid cells to discretize the state space S ⊂ R2 and
input space U ⊂ R2, cf. Fig. 2. The state s = [sx, sy]T is
defined as the position in x and y direction. The input u =
[ψ, v]T consists of the orientation ψ ∈ R and velocity v ∈
R≥0. We denote the state cells by Si with Latin indices and
input cells by Uα with Greek indices. In addition, the indices
α and α are used to distinguish between an orientation interval
Aα ⊂ R and a velocity interval Vα ⊂ R≥0. Each combination
of α and α determines a unique index of input cell α, and
vice versa.

In addition, the latent variables g ∈ R2 are introduced to
represent the goal position which the pedestrian aims to reach.
Each goal region is denoted by Gz ⊂ R2 and their union is
denoted by G.

For notational simplicity, we use a shorthand notation for
events, such as si := (s ∈ Si), uα := (u ∈ Uα), ψα := (ψ ∈
Aα), vα := (v ∈ Vα), and gz := (g ∈ Gz).

B. Prediction Objective

We aim to predict pedestrian motion based on the obser-
vations from time tm to t0, where tm < t0. The observed
position, orientation, and velocity of a pedestrian is denoted
by y := [sx, sy, ψ, v]T . We abbreviate the according event
by yαi := (y ∈ Si × Uα). Let the sequence of observed

sx

sy

S1 S2 . . .

...

v..
.

ψ

U1
U2

...

Fig. 2. State (left) and input cells (right).

events be Y (tm:0) := (yαi (tm), . . . , yα
′

i′ (t0)). Given obser-
vations Y (tm:0), one can predict the occupancy probabilities
P (si(tk)|Y (tm:0)) at time tk > t0 by marginalizing out inputs
and goals [73, (1.10)]:

P (si(tk)|Y (tm:0)) =

|G|∑
z=1

P (gz|Y (tm:0))

|U|∑
α=1

P (si(tk), uα(tk)|Y (tm:0), gz).
(1)

The first term on the right side of the equation above refers
to the posterior probabilities of goals. We do not change the
goal probabilities over prediction steps, which is a common
assumption as used, e.g., in [74]. The second term refers to the
predictions conditioned on goals. We detail their computation
in subsequent subsections.

C. Markov Decision Processes

The decision making in humans can be understood as a
learning process that “is supervised through the use of reward
signals in response to the observed outcomes of actions” [75].
Hence, we formulate that decision making as Markov decision
processes (MDPs) aiming to find the policy mapping from
the state space (where the agent arrives) to the action space
(in which direction the agent moves). In order to reduce the
computational effort for solving MDPs, we not only derive
stationary policies by considering static environments, but
also exclude the velocity from the action space of MDPs. In



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5
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G3
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G4
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G3
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G4
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(a) (b)

Fig. 3. A pedestrian in two different maps with different sizes: Where should
the possible goal regions Gi be placed?

other words, we consider only the spatial aspect of possible
trajectories in this subproblem.

1) Formulation of Markov decision processes: The
used MDP in this work is described by the tuple
(S,A, P (si|sj , ψα), R(si, ψα)), where the state space is S , the
action space is A, the state transition dynamics P (si|sj , ψα)
specifies the probability that an agent arrives in the cell Si
after moving one step in direction ψ ∈ Aα from an adjacent
cell Sj , and the reward function R(si, ψα) → R≤0 maps the
pair of events to a real value.

2) Goal regions: We solve multiple MDPs, each with a
different set of terminal states. The set of terminal states is
used in the MDP not only because it makes the total amount
of expected reward finite, but also because it can be interpreted
as the intended destination of pedestrians, i.e., a goal region
Gz .

In some environments, meaningful locations can be regarded
as goals, such as the entrances and exits of buildings. In urban
environments, however, it might be challenging to predefine
goals (i.e., their location and prior probability). Previous
works [13], [14] generate goals, e.g., on the sidewalk or on
the boundary of a considered region. A drawback of these
attempts is the difficulty of assigning the prior probability
of generated goals appropriately. An example is illustrated in
Fig. 3: the possibilities of the goal regions G1, G2, and G5

are assumed to have similar values to a pedestrian based on
their past trajectory. When the prior probability distribution
over goals is uniform, the estimated crossing probability (the
sum of probabilities of those goals across the street) to the
pedestrian in Fig. 3(a) can differ much from that in Fig. 3(b).
Then, a question may arise: “Should the amount of those
generated goals in each sidewalk area be considered in their
prior probability distribution?” To put it simply, the amount of
generated goals as well as their location and prior probability
distribution have a strong influence on the prediction results
not only in terms of the final occupancy probabilities, but also
in terms of intermediate results, such as how likely it is that
the pedestrian will cross the road.

In order to avoid the above-mentioned problems, for each
pedestrian we first consider an individual square region cen-
tered around their current position, cf. Fig. 4(e). Under the
assumption that their real destination is outside the circle that
fits in this individual region, we refer to the outside part as
the union of goal regions G. Further, we split G into several
regions Gi by beams from the center with equalized central

G1G2

G3

G4 G5
G6

G7

G8

Individual Region

Goal Regions

G1G2

G3

G4 G5 G6

G7

G8

(a) (b) (c)

(d)
(e)

(f)

(g) (h) (i)

Fig. 4. Split the goal regions (e) for a pedestrian with |G| = 8 as an example.
Expected state visitation frequencies from the initial state towards each goal
region under stochastic policies (a-d, f-i), where the terminal state cells of
each MDP are shown in unfilled cyan squares.

angles. By doing this, we construct |G| possible goal regions.
3) Learning the reward, maximum entropy policies: Since

there is a sense that the agent is “programmable” through the
provided reward function [75], we learn the reward function
R(si, ψα) modeled as a convolutional neural network [76],
[77] from demonstrated trajectories. To this end, we adopt the
popular maximum entropy inverse reinforcement learning ap-
proach in [78] aiming to find stochastic policies for prediction,
which are the least biased estimation on the given information
while being as uncertain as possible [79].

The scheme of maximum entropy inverse reinforcement
learning is illustrated in Fig. 5. Here, since we focus on
the spatial aspect of trajectories, each demonstrated tra-
jectory is converted to a sequence of event pairs ζ :=
((si′ , ψα′), . . . , (si′′ , ψα′′)). Our convolutional neural network
(cf. Appendix A for details) takes as input the (static) map
information, which can be presented in channels representing
surface types in case of semantic maps (as shown in Fig. 5) or
color components in case of RGB satellite images. As output,
different kinds of reward maps R(si, ·) are generated (e.g., one
for the orientations towards directly adjacent state cells, and
the other one for the orientations towards diagonally adjacent
state cells). For each demonstrated trajectory, we solve a MDP
with the rewards produced by the neural network on the current
training iteration, where the terminal state set is defined as the
ending position cell of the demonstrated trajectory (as common
in [9], [65]). After finding the stochastic policies π(ψα|si) by
solving the MDP, cf. [81, Theorem 6.8], one can compute the
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Demonstrated
Trajectory on Map

Terminal State Set

Starting Position of Demonstrated Trajectory

Cha
nn

els

Map

Convolutional Layers
Reward Maps

Gradient
Backpropagation

Solve MDP

Stochastic
Policies
π(ψα|si)

Expected State
Visitation Frequencies

+ −

Fig. 5. Scheme of maximum entropy inverse reinforcement learning for
training a convolutional neural network as the reward function (scheme
inspired by [65], [80]). Reward maps and state visitation frequencies with
lighter colors mean larger values. A demonstrated trajectory “—” is plotted
on the semantic map with “�” sidewalk, “�” road, “�” zebra island, “�”
traffic island, “�” restricted area, “�” building, “�” bicycle path, and “�”
undefined area.

expected action visitation frequencies (the expected number of
times that an action in a state is executed, cf. [81, Algorithm
9.3]) from the starting position cell of each demonstrated
trajectory and following stochastic policies. Then, the expected
action visitation frequencies are compared with the empirical
ones from demonstrated trajectories. Their differences are used
to compute the gradient for updating weights, cf. [65, (6)].

During model inference (cf. Fig. 5, the steps marked black),
each goal region Gz is related to a MDP and regarded as the
terminal state set, cf. Fig. 4(a-d, f-i). The obtained stochastic
policies are embedded in our full transition model for motion
prediction, which is detailed in the next subsection.

D. Decomposition of Transition Model

In this subsection, we present our controlled Markov chains
based on [82] as a special case of Markov decision processes.
We decompose our full transition model into a physics-based
state transition model and a learned input transition model.
Specifically, we augment the stochastic policies (obtained by
solving MDPs, cf. Sec. III-C) with spatiotemporal variations.
This full transition model is then used to recursively compute
the motion conditioned on goals in (1).

1) Abstraction of kinematic model: We abstract the kine-
matic model ṡx = v cosψ, ṡy = v sinψ to a Markov chain.
Given an input event uα(tk) at time tk, the state transition
probabilities

Φαij := P (si(tk+1)|sj(tk), uα(tk)) (2)

for a time step increment can be computed offline by Monte
Carlo simulations [82, (4.16)]. We store the values Φαij in the
state transition matrices Φα ∈ R|S|×|S|, where each matrix
Φα is subject to a certain input cell Uα and Φαij denotes the
element in the ith row and jth column of Φα.

2) Input transition probability: We learn the transitions for
inputs from data. Let Γi,z(tk) ∈ R|U|×|U| be the time-varying
input transition matrix subject to state cell Si and goal region
Gz . The element in the αth row and βth column of Γi,z(tk)
represents the input transition probability

Γαβi,z (tk) := P (uα(tk)′|uβ(tk), si(tk), gz) , (3)

where the instantly changed input probability distribution at
points in time is indicated by a prime [82, (4.22)]. We
further decompose each matrix Γi,z(tk) into a time-invariant
goal-dependent matrix Ψi,z ∈ R|U|×|U| and a time-varying
goal-independent priority vector λi(tk) ∈ R|U| (both are
conditioned on state cell Si). Accordingly, Ψαβ

i,z and λαi (tk)
represent elements in Ψi,z and λi(tk), respectively. While
the transition probabilities Ψαβ

i,z describe the evolution of the
pedestrian’s orientation and velocity during interaction with
static environments, the priority values λαi (tk) ≥ 0 capture
the cues from dynamic environments. In this way, the input
transition probabilities Γαβi,z (tk) are computed as [82, (5.4)]

Γαβi,z (tk) = norm
(

Γ̂αβi,z (tk)
)

:=
Γ̂αβi,z (tk)∑
α Γ̂αβi,z (tk)

,

Γ̂αβi,z (tk) = λαi (tk)Ψαβ
i,z

(4)

with the normalization operator norm(). The motivation of this
decomposition is as follows: First, we assume that pedestrians
rarely change their destination intention regardless whether a
vehicle is approaching or not. Second, pedestrians tend to
avoid colliding with other moving traffic participants [18].
A small priority value can be assigned to the actions that
lead to a dangerous situation, producing higher probabilities of
other actions, such as slowing down. Hence, the multiplication
of λαi (tk) and Ψαβ

i,z ensures a collision-aware prediction of
pedestrian behavior while taking into account their route
preference.

Under the assumption that the orientation and velocity are
stochastically independent because pedestrian walking speeds
are unlikely affected by their goal intention [13], the time-
invariant input transition probabilities Ψαβ

i,z subject to Gz in
(4) can be computed as

Ψαβ
i,z ∝ πz

(
ψα

∣∣∣si)︸ ︷︷ ︸
stochastic policies

P
(
vα

∣∣∣vβ)︸ ︷︷ ︸
statistics from data

. (5)

The stochastic policies πz(ψα|si) := P (ψα|si, gz) are the so-
lution to a MDP with a goal region Gz as the terminal state set,
cf. Sec. III-C3. The velocity transition probabilities P (vα|vβ)
can be extracted from empirical data. This is achieved through
counting the frequencies of the pedestrian’s velocity at the
successive points in time tk and tk+1 falling into the velocity
interval corresponding to the indices β and α, respectively. The
computation of priority values λαi (tk) in (4) will be detailed
in Sec. IV.
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Algorithm 1: Estimate posterior probabilities of states and inputs, and that of goals (adapted from [13, Algorithm 1]).

1 Given observation ∃j, β : yβj (tm), initialize prior probabilities ∀i, α : P (si(tm), uα(tm)|yβj (tm), gz), ∀z : P (gz|yβj (tm))

2 for k = m+ 1, . . . , 0 do
3 for z = 1, . . . , |G| do
4 Predict states and inputs conditioned on goals, cf. (6):

∀i, α : P (si(tk), uα(tk)|Y (tm:k−1), gz) =

|S|∑
j=1

Φαij

|U|∑
β=1

Γαβj,z(tk−1)P (sj(tk−1), uβ(tk−1)|Y (tm:k−1), gz)

(A1.1)
5 Given observation ∃j, β : yβj (tk), update probabilities of states and inputs using Bayes’ rule [73, (12.7)]:

∀i, α : P (si(tk), uα(tk)|Y (tm:k), gz) ∝ P (yβj (tk)|si(tk), uα(tk), gz)︸ ︷︷ ︸
observation likelihood

P (si(tk), uα(tk)|Y (tm:k−1), gz) (A1.2)

6 Compute marginal likelihood of goals [73, (12.6)]:

P (yβj (tk)|Y (tm:k−1), gz) =

|S|∑
i=1

|U|∑
α=1

P (yβj (tk)|si(tk), uα(tk), gz)︸ ︷︷ ︸
observation likelihood

P (si(tk), uα(tk)|Y (tm:k−1), gz) (A1.3)

7 Update probability distribution over goals [73, (12.4, 12.5)]:

P (gz|Y (tm:k)) ∝ P (yβj (tk)|Y (tm:k−1), gz)P (gz|Y (tm:k−1)) (A1.4)

3) Propagation of states and inputs conditioned on goals:
The state and input cells can be jointly propagated, where
the input probability distribution changes instantly at points in
time, while the state probability distribution is updated for a
time step increment. By virtue of the Markov property, one
can recursively compute the joint probabilities of states and
inputs in (1) with the state and input transition probabilities
in (2) and (3), respectively [82, (4.25)]:

P (si(tk+1), uα(tk+1)|Y (tm:0), gz) =

|S|∑
j=1

Φαij

|U|∑
β=1

Γαβj,z(tk)P (sj(tk), uβ(tk)|Y (tm:0), gz).
(6)

E. Bayesian Filtering
We use a Bayesian filter to estimate the posterior probability

distribution over goals P (gz|Y (tm:0)) in (1), i.e., how likely
each of the goal regions {G1,G2, . . .} is in the light of online
observations, as described in Algorithm 1. The joint probabili-
ties of states and inputs are initialized based on the earliest ob-
servation. Furthermore, we assume a uniform prior probability
distribution over goals. At each time step, the states and inputs
are jointly predicted conditioning on each goal, cf. (A1.1).
By using Bayes’ rule, one obtains the posterior probabilities
of states and inputs P (si(tk), uα(tk)|Y (tm:k), gz) from the
product of the observation likelihood and the predicted states
and inputs, cf. (A1.2). By marginalizing out the states and
inputs from that product, one obtains the marginal likelihood
of goals P (yβj (tk)|Y (tm:k−1), gz), cf. (A1.3). Finally, one
uses the marginal likelihood of goals to recursively update
their probability P (gz|Y (tm:k)), cf. (A1.4).

Note that the interaction with moving agents is considered in
estimating the probability distribution of goal regions (during

the observation period). Although we do not change the goal
probability distribution for tk > t0, cf. (1), the interaction with
moving agents further affects the prediction results conditioned
on each goal region.

IV. INTERACTION WITH ROAD VEHICLES

In addition, the presence of other traffic participants in-
fluences pedestrian behaviors. In this section, we present
an algorithm which constantly adapts the predicted velocity
and orientation of pedestrians by evaluating their collision
probabilities with respect to road vehicles. The purpose of this
section is to compute the time-varying priority values λαi (tk)
in (4) for dynamic scenes.

A. Risk Measure Caused by Road Vehicles

Firstly, we predict the motion of road vehicles. Then, we
weight the future driving corridor of vehicles. Based on that,
we introduce a risk measure.

1) Vehicle motion prediction: Due to the relative difference
in the inertia of vehicles compared to that of pedestrians, we
can faithfully predict vehicles’ future trajectories by using a
physics-based model, e.g., the constant velocity model. Note
that the planned trajectory of the ego vehicle can also be
employed, which enables a direct assessment of planning with
the conditioned pedestrian motion prediction results.

2) Weighted driving corridor: There is a certain distribution
of the minimum time gap when pedestrians traverse the driving
corridor of approaching vehicles [45], which is known as
pedestrian gap acceptance [83]. Hence, we weight the future
driving corridor of vehicles by the estimated time of arrival,
cf. Fig. 6: the shorter the time gap, the more likely it will be
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ρ(tk)

Sl

∆ρ(l, b)

Vehicle b
vb(tk)

Sj

0 Gap [s]

Percentage
Rejecting Gap

100 %

Fig. 6. Weights on the future driving corridor of a vehicle based on pedestrian
gap acceptance [83]. A pedestrian with reference point in Sj intersects with a
vehicle with reference point in Sl by considering its body geometry (dashed
box).

rejected by pedestrians. Let wbl (tk) ∈ R≥0 denote the weight
of state cell Sl caused by a vehicle b ∈ B at time tk, where B
is the set of vehicles. We place a curvilinear coordinate system
at the center of gravity of each vehicle b at time tk. The axis
ρ, in its simplest form, is along the vehicle moving direction
at tk (ρ can also be defined as the planned trajectory of the
ego vehicle, or the predicted trajectory of other vehicles). We
introduce the set Sbcorridor(tk) ⊂ R2 which contains the state
cells lying on the axis ρ(tk) of vehicle b. The distance between
a state cell Sl and a vehicle b is denoted by ∆ρ(l, b) ∈ R≥0.
The weights for state cells can be computed based on a logistic
function in [83] with the parameters ϑ1, ϑ2 ∈ R≥0 as

wbl (tk) =


1

1+exp

(
−ϑ1+ϑ2

∆ρ(l,b)

vb(tk)

) , if Sl ⊂ Sbcorridor(tk)

0, otherwise,
(7)

where vb(tk) is the predicted velocity of vehicle b. We omit in
the notation wbl (tk) the dependence on the parameters ϑ1, ϑ2

for notational simplicity.
3) Risk measure: We consider the weighted driving corri-

dors of multiple vehicles and their body geometry. We first
introduce an indicator function 1b(j, l) which returns 1 if a
pedestrian with reference point in Sj intersects with a vehicle
b with reference point in Sl, and 0 otherwise (cf. Fig. 6). Then,
the risk measure prisk

j (tk) of being at a place s(tk) ∈ Sj for
the pedestrian can be computed as

prisk
j (tk) = max

b∈B,Sl⊂Sbcorridor(tk)
wbl (tk)1b(j, l). (8)

When multiple vehicles occur, the risk measure of being at
each place is computed via the maximization over b ∈ B,
i.e., the vehicle with the least estimated time of arrival at that
place (which causes the highest risk measure) is considered,
such that 0 ≤ prisk

j (tk) ≤ 1. The maximization over Sl ⊂
Sbcorridor(tk) implies that the driving corridor in terms of the
reference point of a vehicle is extended by considering its body
geometry via the indicator function 1b(j, l).

B. Time-Varying Priority Values

We relate the state-dependent and input-dependent priority
value λαi with the state-dependent risk measure prisk

j . To this
end, the priority value for each event pair (si(tk), uα(tk)) is
evaluated by the risk measure under the effect of the event

pair at the subsequent points in time tk+1, . . . , tk+Ncheck
with

Ncheck ∈ N as user-defined collision checking steps. With a
larger value of Ncheck, the pedestrian is assumed to behave
more conservatively, such as they would already adapt their
behavior even if they are far away from road vehicles. The
priority values at time tk can be computed as [14, (20)]

λαi (tk) =1− max
κ∈{1,...,Ncheck}

|S|∑
j=1

prisk
j (tk+κ)P (sj(tk+κ)|si(tk), uα(tk))

(9)

with P (sj(tk+κ)|si(tk), uα(tk)) as the element in the jth
row and ith column of the κth power of the state transition
matrix, i.e., (Φα)κ ∈ R|S|×|S|. Here, the use of the summation
operator takes into account the state transition uncertainty from
a state cell Si by taking an input cell Uα for κ time steps.
The use of the max operator is equivalent to picking the
maximal risk measure over a period [84, (19)]. For notational
simplicity, we omit in the notation λαi (tk) the dependence
on the parameter Ncheck as well as on the parameters ϑ1, ϑ2

implicitly via prisk
j in (8).

The working principles of the interaction-aware capacities
of our approach are illustrated in Fig. 7. The priority values are
visualized for all input cells and the state cell Si in which the
pedestrian is at time tk. At the collision checking step κ = 1,
the risk measure for moving at high speed towards the road is
higher than moving at normal walking speed or slowing down.
Although moving at high speed towards the road can probably
avoid colliding with the car coming from the left side at the
collision checking step κ = 2, it can lead to a dangerous
situation at κ = 3 regarding another car coming from the
right side. Note that multiple road vehicles are dealt with in
(8) and the risk measures can be applied to other predicted
pedestrians, which makes the computation of priority values
easy to scale up. The resulting priority values (cf. Fig. 7 left,
with Ncheck = 3) control the input transition probabilities for
the state cell Si as in (4). Such a process repeats for each state
cell and each prediction time step.

C. Optimization

Incorporating collision probabilities in the interaction model
with road vehicles does not assure that pedestrians will never
enter the driving corridor of approaching vehicles. Apart from
the risk measure, other factors can affect the crossing decision
of pedestrians. For instance, in the same situation where
a vehicle is approaching, it is more likely that pedestrians
will traverse the road in front of that vehicle if they are
currently walking at a relatively higher speed [85]. Hence,
the interaction model with road vehicles, i.e., the parameters
ϑ1, ϑ2 in (7) and Ncheck in (9), need to be calibrated using
empirical trajectories by taking into account the learned tran-
sition probabilities Ψαβ

i,z in (4).
We optimize the interaction model with road vehicles us-

ing the selected scenarios where, e.g., a pedestrian is near
the curb and a vehicle is approaching. This accelerates the
optimization process while emphasizing relevant interactions.
The optimization is performed using genetic algorithms [86],
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Curb

tk

Priority Values ∀α : λαi (tk)
vmax

= 1−max

Si

tk+1

Risk measures at tk+κ of taking input cells Uα for κ time steps from the position cell Si considering motion uncertainty
vmax

Si

tk+2

vmax

Si

tk+3

vmax

Fig. 7. Illustration of computing priority values in (9), where a pedestrian approaches two road vehicles. The input space (cf. Fig. 2) relates to the state
cell Si in which the pedestrian is at time tk . The darker gray colors in the most left drawing of the input space mean higher priority values, whereas they
represent higher risk measures in other drawings of the input space.

[87] which are especially well suited for the problems where
derivative information is unavailable and certain variables are
integer-valued. We minimize the negative log likelihood of
occupancy given the ground truth positions

∀n, k, ∃i : s(n)
gt (tk) ∈ Si,

NLL = − 1

NoptNpred

Nopt∑
n=1

Npred∑
k=1

logP (s(n)(tk) ∈ Si)
(10)

as the objective function, where Nopt is the number of used
scenarios for optimization, Npred is the number of prediction
steps, and P (s(n)(tk) ∈ Si) is the occupancy probability of
the state cell Si to which the ground truth position s

(n)
gt (tk)

from the nth scenario at time tk belongs. More details on our
optimization settings can be found in Appendix B.

V. EXPERIMENTS

A. Datasets

We evaluate our approach on the Stanford drone dataset [88]
(SDD), the inD dataset [89], the Daimler dataset [23], and our
in-house dataset [45]. On the Stanford drone dataset, we follow
the common train-test split as in [59]. From the inD dataset,
we randomly select 6 out of 33 recordings for testing. Our
in-house dataset for urban traffic scenarios was recorded by a
test vehicle on three different routes varying between 2 and
4 kilometers in southern Germany. We use 5000 pedestrian
trajectories for training, while 500 diverse scenes are kept
for testing. The average trajectory length in our in-house
dataset is about 7.5 seconds. In addition, we use the Daimler
dataset to test model performance focusing on the pedestrian-
vehicle interaction scenarios. While we use the benchmarked
observation horizon of 3.2 seconds and prediction horizon of
4.8 seconds on the Stanford drone dataset, the observation
horizon and prediction horizon on the other used datasets are
set to 1 and 5 seconds, respectively.

B. Evaluation Metrics

1) Negative log likelihood of occupancy: To enable a com-
parison between prediction results with and without closed-
form expressions for the probability density function, we

compute the negative log likelihood of occupancy by returning
the predicted occupancy probability of the state cell to which
the ground truth position belongs. Given the ground truth
position s(n)

gt (tk) from the nth evaluation scenario, the negative
log likelihood of occupancy is evaluated by

∀n, k, ∃i : s(n)
gt (tk) ∈ Si,

NLL(n)(tk) = − logP (s(n)(tk) ∈ Si).
(11)

2) Minimum final displacement error from samples: Com-
pared to the negative log likelihood of occupancy, geomet-
ric metrics, such as the average displacement error, have a
straightforward physical interpretation. However, using geo-
metric metrics can be misleading when they are applied to
probabilistic prediction by averaging over the (multimodal)
distribution [17]. To encourage diversity in motion prediction,
geometric metrics can be adapted to measure the minimum
error between the ground truth position and K samples draw-
ing from occupancy probabilities [43]. For the nth evaluation
scenario at time tk, we denote the predicted position of the ith
sample by s(n,i)(tk). Given the ground truth position s(n)

gt (tk),
the minimum displacement error from K samples is computed
as

minFDE
(n)
K (tk) = min

i∈{1,...,K}

∥∥∥s(n,i)(tk)− s(n)
gt (tk)

∥∥∥
2
. (12)

3) Offroad rate: To evaluate how well a model interprets
the underlying semantic map, Deo and Trivedi [11] adopt the
metric offroad rate which is defined as the fraction of the
predicted position points that fall outside the path. We report
the offroad rate of our approach on the Stanford drone dataset.

4) Precision-recall curve: In pedestrian-vehicle interaction
scenarios, the crossing intention of a pedestrian can be inferred
from their probabilistic occupancy as in [71]. Thus, we com-
pute the pedestrian’s probability of staying on the sidewalk at
points in time and use the precision-recall curve [90] as an
evaluation metric.

5) Negative log likelihood of demonstrated trajectory under
predicted policy: To assess the quality of the learned reward
function, we compute the negative log likelihood of a demon-
strated trajectory ζ (spatial aspect, cf. Sec. III-C3) under the
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predicted orientation distribution π(ψα|si) in dependence on
reward maps:

NLL(ζ) = − 1

|ζ|
log

∏
(si,ψα)∈ζ

π(ψα|si), (13)

which measures the probability of drawing a demonstrated
trajectory from the predicted policy distribution and is nor-
malized by the trajectory length [9], [15], [65], [78]. The
policy is computed by utilizing the ending position cell of
the demonstrated trajectory as the terminal state.

C. Baseline Models

We compare our approach using controlled Markov chains
(CMC) against a physics-based approach—Kalman filter (KF)
using the constant velocity model [91]. We implement two
end-to-end baselines based on the mixture density network
(MDN) [92] and the conditional variational autoencoder
(CVAE) [93], respectively. For both end-to-end baselines, the
pedestrian’s past trajectory is concatenated with the extracted
features of the surrounding map including road vehicles by
a pretrained MobileNetV2 network [94], which are then fed
into a long short-term memory [42]. For the mixture density
network baseline, we use 12 Gaussian mixtures and apply
the Winner-Takes-All loss [95] to overcome mode collapse.
As the conditional variational autoencoder baseline yields
a non-parametric position distribution using Gaussian latent
variables, we adopt the Best-of-Many [96] L2 loss during
training as in [46]. In addition, an off-the-shelf kernel density
function is used during evaluation to approximate the prob-
ability distribution of position from the sampled results first
(as in [30]), based on which we then compute the probabilistic
occupancy (cf. Sec. V-B1) for a fair comparison. Moreover, we
compare our approach with the reported results of the state-of-
the-art approaches [11], [12], [48], [59], [70] on the Stanford
drone dataset.

D. Quantitative Evaluation

Table I reports the negative log likelihood of occupancy
and minimum final displacement error1 at different prediction
times in testing datasets. The standard deviations are reported
behind each mean value. On our in-house dataset, our ap-
proach outperforms the baselines, yielding not only the lowest
mean values, but also the lowest standard deviations. On
the inD dataset, the mixture density network baseline shows
the lowest mean values of both metrics. Although the mean
performance of our approach is slightly worse than the end-
to-end baselines, our approach yields relatively lower standard
deviations of both metrics and tends to provide more accurate
long-term motion predictions.

However, by analyzing the autocorrelation of trajectories
[72] based on the “oriented step-length” [97] in various

1 We do not consider the metric minimum average displacement error to
measure the prediction quality throughout the pedestrian’s journey, as it is
unusual to sample trajectories from probabilistic occupancies which propagate
at time steps, such as in [10]. By trying to do this, the sampled trajectories
can be jittery (we argue that this is at least due to the discretization of state
and input space).
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Fig. 8. Autocorrelation of trajectories in various datasets.

datasets (additionally the ETH dataset [2]), it turns out that
the inD dataset exhibits smoother tracking results than others,
cf. Fig. 8. This can be disproportionately advantageous for
the Kalman filter especially for a short prediction horizon
(cf. Table I). In order to investigate how models perform
with realistic, noisy measurements, we sample the positions
in x and y direction from a Gaussian distribution with the
original positions as the mean and with different noise levels
(with different standard deviations σnoise). The autocorrelation
values for the trajectories from the inD dataset after the above
modification are plotted in the dashed lines in Fig. 8, where
the dashed line with noise level σnoise = 0.15 m achieves the
same level of autocorrelation as in other datasets. Then, we test
the model performance by using those noisy measurements as
model input during prediction. The models are kept the same
as those trained by using original measurements. The purpose
of this experimental setting is to evaluate the generalization
ability. As presented in Table II, for a moderate noise level
with σnoise = 0.1 m our approach outperforms the baselines
in terms of negative log likelihood of occupancy, while the
performance gap in terms of minimum final displacement error
between both end-to-end baselines and our approach becomes
smaller. Under the realistic, noisy position measurements with
σnoise = 0.15 m, our approach outperforms the baselines
in terms of all metrics. Conspicuously, the mixture density
network baseline degenerates significantly in this case and its
performance in terms of negative log likelihood of occupancy
even drops below that of the Kalman filter. In contrast, the
mean performance of our approach decreases only slightly and
its standard deviations remain low, which shows the robustness
of our approach against noisy measurements.

The minimum final displacement errors of the recent ap-
proaches [11], [12], [48], [59], [70] on the Stanford drone
dataset are reported in Table III. Although the approaches in
[48], [59], [70] achieve the lower displacement errors in pixels,
our approach shows better performance than the end-to-end
approach in [12] and the approach using planning in [11].
Furthermore, a comparatively low offroad rate of our approach
can be observed as the model P2T [11], which suggests that
our approach interprets the road layout well.

Beyond the overall system evaluation, we assessed the
quality of our learned reward function by using the metric
in (13). According to the mean and standard deviation of this
metric evaluated on our in-house testing dataset (where the
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TABLE I
MODEL PERFORMANCE ON OUR IN-HOUSE DATASET [45] AND IND DATASET [89].

Model NLL ↓ minFDE20 [m] ↓

1 s 2 s 3 s 4 s 5 s 5 s

(in-house dataset)

KF [91] 2.20±2.06 3.48±2.36 4.38±2.37 5.10±2.41 5.68±2.41 1.00±1.07

MDN [92] 2.15±1.63 3.38±1.67 4.27±1.82 4.89±1.86 5.37±1.77 0.91±0.83

CVAE [93] 2.97±9.72 3.60±5.31 4.30±3.74 4.85±2.84 5.36±2.54 0.89±0.92

CMC (ours) 2.09±1.34 3.23±1.40 4.02±1.43 4.66±1.51 5.21±1.62 0.81±0.81

(inD dataset, smoothed position measurements)

KF [91] 1.65±0.52 2.88±0.87 3.77±1.11 4.46±1.28 5.02±1.39 0.74±0.69

MDN [92] 1.10±2.29 2.20±2.19 3.09±2.38 3.75±2.41 4.24±2.28 0.51±0.64

CVAE [93] 2.47±11.6 2.74±9.01 3.32±7.28 3.91±7.13 4.41±7.13 0.51±0.70

CMC (ours) 1.76±0.63 2.79±0.91 3.48±1.10 4.02±1.23 4.46±1.32 0.59±0.60

The implementation details for comparison models can be found in Sec. V-C.

TABLE II
MODEL PERFORMANCE ON IND DATASET [89] UNDER REALISTIC, NOISY POSITION MEASUREMENTS.

Model NLL ↓ minFDE20 [m] ↓

1 s 2 s 3 s 4 s 5 s 5 s

(inD dataset, noisy position measurements, σnoise = 0.10m)

KF [91] 1.98±0.76 3.15±1.02 4.01±1.25 4.68±1.40 5.23±1.51 0.81±0.75

MDN [92] 2.04±3.28 3.01±2.67 3.86±2.75 4.48±2.71 4.91±2.50 0.64±0.69

CVAE [93] 4.26±14.7 3.58±8.86 3.95±7.48 4.42±6.86 4.86±6.83 0.60±0.76

CMC (ours) 2.02±0.81 3.00±1.00 3.66±1.17 4.17±1.28 4.60±1.37 0.63±0.65

(inD dataset, noisy position measurements, σnoise = 0.15m)

KF [91] 2.38±1.13 3.50±1.29 4.33±1.47 4.97±1.60 5.50±1.68 0.91±0.83

MDN [92] 3.07±4.42 3.79±3.33 4.58±3.38 5.15±3.30 5.51±3.01 0.78±0.76

CVAE [93] 6.65±19.0 4.81±11.6 4.75±8.51 5.03±7.66 5.37±7.32 0.72±0.87

CMC (ours) 2.35±1.09 3.26±1.17 3.89±1.30 4.38±1.40 4.79±1.47 0.69±0.71

The implementation details for comparison models can be found in Sec. V-C.

TABLE III
MODEL PERFORMANCE ON STANFORD DRONE DATASET [88].

Model minFDE5 [px] ↓ minFDE20 [px] ↓ Offroad
rate ↓

4.8 s 4.8 s

PECNet [12] 25.98 15.88 -
P2T [11] 23.95 14.08 0.06

Y-Net [59] 20.23 11.85 -
Goal-SAR [48] - 11.83 -
NSP-SFM [70] - 10.61 -

CMC (ours) 23.87 13.35 0.07

semantic maps are available), the performance of our proposed
module (with the learned reward maps) is improved from
1.48±1.36 to 1.09±0.83 compared to using the handcrafted
reward maps [14].

E. Ablation Study

An ablation study is performed to understand the contribu-
tion of each component of our approach (with |G| = 12) to
the overall performance, cf. Fig. 9. We remove the stochastic
policies (“w/o road layout”) in (5), the velocity transition
probabilities (“w/o velocity transition”) in (5), and the priority
values (“w/o road vehicles”) in (4), respectively. As one would

expect, the model without considering the road layout exhibits
a significant decrease of performance. Furthermore, a proper
velocity transition model contributes to an improvement of
performance. Since critical scenarios with interaction are rare
in most (large-scale) datasets just like in reality, the effect of
our interaction model with road vehicles appears low and is
hard to observe in the upper part of Fig. 9. Therefore, we addi-
tionally adopt the Daimler dataset [23] which contains critical
pedestrian-vehicle interaction scenarios. In light of its limited
amount of recordings, we directly test the model (trained on
our in-house dataset) on this dataset. As described in Sec. V-B,
the evaluation can be formulated as a classification problem—
whether the pedestrian will be on the sidewalk or on the
road. The precision-recall curves in the lower part of Fig. 9
emphasize the benefits of considering road vehicles via priority
values in our approach.

In addition, we investigated the impact of the number
of goal regions in our approach on the mean and standard
deviation of the negative log likelihood of occupancy. As
shown in Fig. 10, using a larger number of goal regions
improves the model performance. While the mean values of
evaluation metrics almost stagnate for |G| ≥ 8, their standard
deviations are further reduced for |G| = 12 compared to
|G| = 8. Hence, we set |G| = 12 as a compromise between
computational effort and the diversity of goal intention.
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Fig. 9. Ablation study for our controlled Markov chains. The top row shows
the mean values of the negative log likelihood of occupancy at different
prediction times. The bottom row shows the precision-recall curves for
classifying whether the pedestrian will be on the sidewalk.
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deviation of negative log likelihood of occupancy.

F. Qualitative Evaluation

The top row of Fig. 11 illustrates a scenario in the Daimler
dataset, where a pedestrian is walking on the sidewalk towards
an approaching vehicle. The predicted occupancies in 3 sec-
onds (last column) depict that the pedestrian will most likely
stop, whereas the ground truth position (red cross) indicates
a crossing behavior in front of the vehicle. The bottom row
of Fig. 11 contains the same trajectory recording with a later
starting frame, i.e., the prediction beginning t0 is shifted by

Prediction Time tk
t0 + 1 s t0 + 2 s t0 + 3 s

0.75

0.21

0.03

t′0 + 1 s t′0 + 2 s

0.78

0.20

0.02

Fig. 11. Prediction examples of our controlled Markov chains in the Daimler
dataset [23]. The semantic maps consist of the sidewalk (dark gray) and the
road (light gray). The pedestrian’s past trajectory and current position are
denoted by the magenta line and the white dot, respectively. The probabilities
of goal regions as intermediate results are shown in the first plot of each
row (values less than 0.01 are discarded to improve visualization). While the
magenta cross represents the ground truth positions of pedestrians at prediction
times, the ground truth positions of road vehicles are shown in cyan rectangles.
The predicted occupancies with lighter colors mean higher probabilities (we
discard those occupancies with lower probabilities for a better visualization).

1 second compared to that in the top row. As shown by
those predicted occupancies in 2 seconds (bottom row, last
column), the probability of pedestrian crossing in front of the
vehicle becomes higher as the pedestrian gets closer to the
curb without slowing down. In such a dangerous situation, the
vehicle had to brake to avoid a potential collision.

The prediction examples of our approach in our in-house
dataset and the inD dataset are shown in Fig. 12. In the scene
(a) where the pedestrian is walking near the curb, our approach
predicts that the pedestrian will most likely keep walking
along this side of the street. The example (b) shows a scene
consisting of two zebra crossings. The predicted occupancies
indicate that there is a certain probability that the pedestrian
will choose the farther crosswalk later. In the scene (c), it is
predicted that the pedestrian will most likely cross the road
in front of an oncoming vehicle. Moreover, the ability of our
approach to incorporate the cues from dynamic environments
and the road layout2 in motion prediction is also depicted in
the examples (d) and (e). In the example (f), as a low walking
speed of the pedestrian is observed, the predicted occupancies
are located near the initial position of that pedestrian due to
the learned velocity transition probabilities.

In the bottom row of Fig. 13, we visualize the risk measures
on the road caused by multiple road vehicles considering their
body geometry (cf. Sec. IV-A3). They are used for computing
the time-varying priority values (cf. Sec. IV-B). Accordingly,

2Note that instead of using semantic maps, we directly use the provided
RGB images from the inD dataset and Stanford drone dataset (as input to our
convolutional neural networks) to compute reward values at each pixel.
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Fig. 12. Prediction examples of controlled Markov chains in our in-house dataset [45] (a)-(c) (the annotations of semantic maps see Fig. 5) and inD dataset
[89] (d)-(f). The pedestrian’s past trajectory and current position are denoted by the magenta line and the white dot, respectively. The probabilities of goal
regions as intermediate results are shown in the first plot of each row (values less than 0.01 are discarded to improve visualization). While the magenta cross
represents the ground truth positions of pedestrians at prediction times, the ground truth positions of road vehicles are shown in cyan rectangles. The predicted
occupancies with lighter colors mean higher probabilities (we discard those occupancies with lower probabilities for a better visualization).

our approach predicts that the pedestrian will most likely slow
down when approaching the curb.

More prediction examples of our approach on the Stanford
drone dataset are shown in Fig. 14. The examples (a) and (b)
illustrate that our approach interprets the semantic scenes well

and predicts that pedestrians avoid obstacles. In the scene (c),
a pedestrian has stepped into the green space. Our predictions
indicate that the pedestrian continues walking on that terrain.

As opposed to sampling-based approaches, the predicted
probabilistic occupancies from our approach are deterministic.
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Fig. 13. Prediction example of controlled Markov chains in the inD dataset [89]. The annotations of the observations, our prediction results, and the ground
truth information see Fig. 11 or Fig. 12. The second row visualizes the risk measures on the road caused by multiple road vehicles considering their body
geometry (lighter colors mean higher risk measures).
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Fig. 14. Prediction examples of controlled Markov chains in the Stanford drone dataset [88]. The annotations of the observations, our prediction results, and
the ground truth information see Fig. 11 or Fig. 12.

This benefits online risk assessment and motion planning
for ego vehicles without confronting the need to define, for
example, the necessary number of sampled trajectories from
the prediction model to ensure a reliable assessment.

VI. CONCLUSIONS

Incorporating context cues in Markov chains enables us to
forecast multimodal behavior of pedestrians without relying
on random sampling. This makes it possible to compute the
probabilities deterministically, which is important for certifi-
cation and reliability of the method. As opposed to black-
box deep learning, we present a more structured approach,
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TABLE IV
HYPERPARAMETERS.

Option Value Option Value

populationSize 30 numberGeneration 50
select “selTournament” tournamentSize 5
mate “cxOnePoint” mateProb 0.7
mutationProb 0.3 mutationIndProb 0.3
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Fig. 15. Convergence of objective value of candidate solutions.

which provides interpretable prediction as well as intermediate
results. This benefits not only further online assessment, but
also system inspection. Specifically, we address the difficulty
of obtaining prior knowledge of goal positions in unknown
environments for most planning-based approaches and propose
a technique without strong assumptions.

Evaluated on large-scale datasets, our approach yields more
accurate motion prediction results than a physics-based model
and achieves comparable mean performance as state-of-the-art
approaches, but with lower standard deviations of prediction
errors. In particular, we show the robustness of our approach
against realistic measurement noises, which is a common issue
in practical applications in the field of motion prediction.

Our approach has some limitations. Regarding the pedes-
trian interaction with other traffic participants, we considered
only road vehicles. We aim to extend the interaction module
and the application scenarios in future work by considering,
e.g., interactions among pedestrians and pedestrian group
behaviors. Although we focused on integrating various tech-
niques in the proposed prediction pipeline, different backbone
models (e.g., U-net [98]) can be investigated and used as
our reward function approximator for achieving better pre-
diction performance. Furthermore, the computational effort of
updating input and state probabilities based on our current
CPU-oriented implementation is about 150 milliseconds for
10 time steps for each goal region (measured on a machine
with an Intel i7-11850H 2.50 GHz processor). Implementing
these operations on a specific hardware can be a way to make
our approach deployable for real-time applications.

APPENDIX A
CONVOLUTIONAL NEURAL NETWORK IMPLEMENTATION

The architecture of our convolutional neural networks (one
takes the semantic maps as input, and the other one takes the
RGB satellite images as input) is as follows:

C32
3×3,1 → C16

5×5,2 → C16
5×5,2 → C16

3×3,2 → C16
3×3,2 → C2

3×3,1

All convolutional layers are denoted as Cnumber of filters
kernel size, dilation rate

with the rectified linear unit activation function. The negation

of output values are used as rewards. The architecture is cho-
sen based on a hyperparameter search involving the number
of layers, kernel size, and the number of filters by evaluating
the negative log likelihood of demonstrated trajectories.

During backpropagation (cf. Sec. III-C3), L1 regularization
is used in computing the gradient of the loss function, cf. [65,
(2)]. In addition, we augment the training data by rotating
and flipping the maps and demonstrated trajectories to reduce
overfitting.

APPENDIX B
GENETIC ALGORITHMS

For the optimization process described in Sec. IV-C, we use
the evolutionary computation framework DEAP [86] with the
hyperparameters listed in Table IV.

We initialize the candidate solutions by uniformly sampling
the parameters ϑ1 ∈ [0, 15], ϑ2 ∈ [0, 15], and Ncheck ∈
{1, . . . , 8}. The Gaussian addition mutation of the mean 0
and standard deviation of 1.0 is applied to both ϑ1 and ϑ2,
while Ncheck is drawn from the discrete uniform distribution
during mutation. The convergence of the objective value in
(10) of candidate solutions on our in-house dataset is shown
in Fig. 15.
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[53] O. Makansi, E. Ilg, Ö. Cicek, and T. Brox, “Overcoming limitations
of mixture density networks: A sampling and fitting framework for
multimodal future prediction,” in Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 7137–7146.

[54] P. Dendorfer, S. Elflein, and L. Leal-Taixé, “MG-GAN: A multi-
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