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Zusammenfassung

Der thermische Freeze-out Effekt der dunklen Materie im frühen Universum gehört
zu einer der am weitverbreitetsten Mechanismen, die darauf abzielen, eine natürliche
Begründung für die experimentell beobachtete Reliktdichte der dunklen Materie zu
geben. Diese Arbeit widmet sich der theoretischen Studie zur chemischen Entkop-
plung schwerer nichtrelativistischer dunkler Materie und der anschließenden zeitlichen
Entwicklung in einem expandierenden thermischen Milieu, welches den dunklen Sektor
des Universums in seinen frühen Stadien abbildet. Insbesondere bedienen wir uns der
Methoden der effektiven Quantenfeldtheorien bei endlicher Temperatur, um die rele-
vanten thermischen Wechselwirkungsraten und die entsprechenden Raten im Vakuum
innerhalb bestimmter Hierarchien von Energieskalen zu identifizieren und zu berechnen.
Wir ermitteln die entsprechenden Observablen in verschiedenen Bezugssystemen in rig-
oroser Weise und heben die Genauigkeit der erhaltenen Ergebnisse hervor, welches von
größter Bedeutung für eine präzise Bestimmung der gegenwärtigen Energiedichte der
dunklen Materie ist. Diese Raten sind die Schlüsselkomponenten in den Evolutionsgle-
ichungen, die die chemische Entkopplung verursachen aber auch das numerische Ergebnis
der Ausbeute an dunkler Materie stark beeinflussen. Unser Ziel ist es daher, eine um-
fassende Forschung verschiedener Beiträge wie des Rückstoßeffekts des Massenschwer-
punkts oder des Debye-Masseneffekts zu liefern und jeden von ihnen entsprechend seiner
Bedeutsamkeit für die kosmische Reliktdichte miteinander zu vergleichen. Wir leiten die
Quanten-Mastergleichungen für den reduzierten Dichteoperator bezüglich Paaren von
dunkler Materie mit Hilfe der Konzepte offener Quantensysteme her und analysieren
den semiklassischen Grenzwert, der schließlich zu den phänomenologisch gut etablierten
Boltzmann-Gleichungen führt, und gewinnen auf diese Weise ein tieferes Verständnis der
zugrundeliegenden Näherungen und den darausfolgenden Verlust von gewissen Quanten-
effekten, die jenseits des Bereichs der semiklassischen Behandlung des dunkle-Materie-
Systems liegen.

Abstract

The thermal freeze-out effect of dark matter in the early universe is one of the most
prominent mechanisms that aims to come up with a natural answer for the experimen-
tally observed dark matter relic abundance. This thesis is devoted to the theoretical
study of the chemical decoupling of heavy non-relativistic dark matter states and its
subsequent time evolution within an expanding thermal environment modeling the dark
sector of the universe in its early stages. In particular, we scrutinize the methods of
effective quantum field theories at finite temperature in order to identify and compute
in a systematic manner the relevant thermal and in-vacuum interaction rates within spe-
cific hierarchies of energy scales. We calculate the corresponding observables in different
reference frames in a rigorous way and highlight the accuracy of the obtained results
that is of paramount importance for a precise determination of the present dark matter
energy density. Those rates are the key ingredients entering the evolution equations
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which induce the chemical freeze-out but also strongly affect the numerical outcome of
the dark matter yield. Our aim therefore is to provide a comprehensive study of various
contributions, like the center-of-mass recoil effect or the Debye-mass effect, and compare
for each of them the corresponding impact on the cosmic relic abundance. We derive
the quantum master equations for the reduced density operator of dark matter pairs
using the concepts of open quantum systems and analyze the semi-classical limit leading
ultimately to the phenomenologically well-established Boltzmann equations, in this way
gaining a deeper understanding of the underlying approximations and the consequent
disappearance of certain quantum effects, that are beyond the realm of a semi-classical
treatment of the dark matter system.
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Chapter 1

The fate of dark matter in the
early universe

In the field of cosmology and particle physics, the concept of dark matter (DM) stands
as one of the most intriguing and compelling mysteries. Despite its invisible nature,
the profound influence of dark matter on the large-scale structure and dynamics of the
universe is unmistakable: from experimental observations it turns out that about 80% of
the matter in the universe is unknown and hence can be characterized as DM affecting
ordinary matter from the Standard Model (SM) via gravitation. A significant effort
within theory and experiment is directed towards uncovering the identity and properties
of this elusive substance. Among the various hypotheses seeking to explain the nature
of dark matter [1–7], the notion of a thermal particle-like dark matter holds particular
prominence. Within a theoretical framework it is assumed that dark matter particles
were once in thermal equilibrium with the primordial plasma during the early stages
of the universe’s evolution. Due to the spatial expansion of the thermal plasma and
its subsequent cooling, the dark matter underwent a phase transition via the chemi-
cal decoupling from the thermal bath and therefore freezed out retaining a steady relic
abundance that ultimately shapes the cosmological landscape. The most accurate deter-
mination for the dark matter energy density at present day is provided by anisotropies in
the cosmic microwave background (CMB) and amounts to ΩDMh

2 = 0.1200± 0.0012 [8],
where h is the reduced Hubble constant.

The thermal freeze-out mechanism has been widely adopted to infer the present-
day relic abundance of a DM candidate, and many models have been developed that
introduce a new dark degree of freedom beyond the known particles of the SM, which
undergoes the freeze-out. We refer the reader to some extensive reviews, e.g. refs. [9,10].
The various models have usually the following paradigm in common: Assuming a dark
heavy particle X of large mass M , its chemical freeze-out, usually induced by dark mat-
ter annihilation processes, occurs once the temperature T of the thermal bath drops
below ≈M/25. Hence, since T ≪M at freeze-out and thereafter, the dark particle can
be considered to evolve non-relativistically, which calls for the exploitation of the effec-
tive field theory (EFT) formalism within the concept of quantum field theories (QFTs)

8



in particle physics. Non-relativistic and potential non-relativistic effective field theories,
dubbed as NREFTs and pNREFTs, respectively, can be adopted for a systematic de-
scription of the non-relativistic dark matter dynamics in the expanding thermal bath,
by isolating and emphasizing the relevant physical events at each temperature stage (i.e.
time period) in a consistent way [11]. Under the condition that the intrinsic and extrinsic
energy scales, or at least a few of them, can be hierarchically ordered, EFT techniques
allow one to effectively disentangle the contribution from each scale and highlight its
range of validity. The better the scale separation, the better the EFT predictions. As
mentioned above, in most of the models proposing the thermal DM freeze-out as a vi-
able explanation for the observed DM abundance, the scale arrangementM ≫ T follows
necessarily. If we consider more specific theories, where the dark particles interact via
long-range mediators (either with the SM bath or with themselves, [12–14]) with a weak
coupling α, then many more energy scales will appear due the combination of M or T
and α. But M and T can produce another scale as well, as we will see in the following.
Despite chemical equilibrium is lost at the freeze-out regime, kinetic equilibrium is usu-
ally assumed to be kept for longer since dark matter is yet embedded as an ingredient
in the hot thermal medium, which means that the momenta pX of the dark particles
follow a thermal distribution. This is quite often a key assumption within practical
phenomenological applications, in order to be able to write down integrated Boltzmann
equations (as particularly simplified evolution equations) for the DM number density.
They can be solved numerically and hence enable one to obtain a first theoretical es-
timate of the relic abundance associated to the underlying dark matter model [15–45];
allowing one to link the particle model parameters, such as couplings and the DM mass,
with the observed relic density, or possibly rule out the model under study. Under the
assumption of kinetic equilibrium, thermalized heavy particles have a kinetic energy of
the order of the bath temperature, hence the modulus of the particle momentum scales
as |pX | ∼

√
MT . Such a scale is much larger than the temperature around and after the

freeze-out,
√
MT = T

√
M/T ≫ T for M ≫ T , and at the same time it is much smaller

than M ,
√
MT =M

√
T/M ≪M for M ≫ T . The emergence of the scale

√
MT out of

an intrinsic hard scale M and a thermal scale T is a peculiar property for thermalized
dark matter. Typically in heavy quark or quarkonium physics, the heavy quarks or the
heavy quarkonium produced in a quark-gluon plasma (QGP) may be treated as external
probes, which are indeed not, or just partly, thermalized with the plasma constituents.
In such a scenario, the momentum can be taken to be of the order of the thermal scale
T , as opposed to

√
MT that is induced by kinetic equilibrium. In any case, we presume

that any physical model may have several emergent energy scales, perhaps hidden at first
sight, that need to be taken into consideration when exploiting the EFT framework.

The discussion so far shall give the reader a first glimpse of what this work will be
build on: After choosing a specific model of interest, the first step consists of identify-
ing the energy scales of the physical system and exploring if the scales do arrange in a
hierarchical order during the passing of time around and after the freeze-out. If so, we
will construct the (p)NREFTs to the associated model, that will effectively describe the
dynamics of the relevant degrees of freedom. We will determine the power counting of
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the effective interactions and compute the relevant thermal rates underlining the level of
accuracy. The ultimate goal is to analyze its effects on the dark matter relic abundance.
In particular, this work is divided into several parts: We begin with a more precise spec-
ification of the freeze-out mechanism that sets the present relic density of dark matter
(sec. 2). We consider as a particular example the dark U(1) model that features the
freeze-out effect, classify the internal and thermal scales and the associated hierarchical
ordering among them [46–49], construct the appropriate EFTs at finite temperature (sec.
3–4), and compute systematically the in-vacuum and thermal interaction rates (sec. 5–
6) that are the necessary ingredients for an accurate theoretical determination of the
relic abundance via semi-classical Boltzmann equations (sec. 7). We also inspect the
relative impact of the several processes and its contributions with respect to the present
dark matter energy density. In the sections 8–10, we reiterate the computation, however
in a purely dark SU(N) theory at finite temperature [50], in order to compare possible
differences in the results to the abelian analogue. The sections 11–13 are devoted to
an out-of-equilibrium study of the dark matter evolution in terms of a reduced density
operator within the framework of open quantum systems (OQS), in this way gaining a
more thorough theoretical picture of the dark quantum system and providing a better
understanding and control of the underlying assumptions that need to be taken into
account in order to justify the semi-classical treatment of the dark matter dynamics. In
the appendices A–F we provide diverse complementing material that is used throughout
the main body of this work. Finally, conclusions and outlook are in chapter VI.

This thesis is partly based on previously published articles in [51, 52], conference
proceedings [53,54], and recent work that is under preparation for publication [55].
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Chapter 2

Thermal freeze-out mechanism

The thermal freeze-out of dark matter, a conceptual phenomenon belonging to the in-
tersection field between cosmology, i.e. physics at the largest observable length scales,
and particle physics, i.e. physics at distances below the subatomic range, can be char-
acterized by a time phase where thermal dark matter, hypothesized to be particle-like,
decouples from the residual hot thermal bath that models the early stages of the pri-
mordial universe. Hence, it freezes out. The rest of the thermal bath, to which the
dark matter particles cease to interact, can be classified as the ordinary baryonic matter
built up by the fundamental degrees of freedom from the Standard Model, but it can
also constitute other, yet unknown, components such as dark radiation or other dark
particles, which have comparatively smaller masses than the dark matter particle that
decouples. In this sense we distinguish the dark matter, which undergoes the freeze-out
process, from the residual dark degrees of freedom by its much heavier mass M ; we call
it the heavy dark matter, the others the light dark particles of mass mi ≪M , where the
index i denotes the different species in case there are more than one.1

In order for the heavy dark matter subsystem to deviate from its thermal equilibrium
state, the underlying interactions with the thermal bath need to go out-of-equilibrium,
such that an initial detailed balance situation, among processes that change the dark
matter particle number, is lost. In the models that we scrutinize in this work, those
number-changing processes are the annihilation (creation) of heavy dark matter into
(from) the dark light constituents. Since the universe expands in space and time and
it consequently cools down, the initial symmetry between the reaction rates of the for-
ward (annihilation) process and reverse (creation) process breaks down. By thermal
freeze-out we thus understand the chemical freeze-out of dark matter, while it is still in
kinetic equilibrium with the bath, where the particle momenta are distributed according
to a time-independent phase space density function. All the other bath particles, both
from the Standard Model sector as well as the dark sector, stay in chemical and kinetic
equilibrium throughout the freeze-out period and for long times afterwards. The early

1In this work, we will encounter both situations where mi ̸= 0 and mi = 0. The latter will correspond
to dark radiation, for instance dark photons. As for the heavy DM particle, we will consider masses of
around M ∼ TeV.
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expanding universe drives the thermal heavy DM system into a non-equilibrium state,
reducing the interaction rate for the creation of the heavy DM particle below the expan-
sion rate. This happens to be the case as soon as the temperature of the universe drops
below the rest mass of the heavy dark matter, T ≲M , such that it cannot be produced
anymore, while the annihilations can still happen.2 Hence, the thermal freeze-out hap-
pens at some critical time, the freeze-out time tF, that can be related to the freeze-out
temperature TF, at which the creation process becomes ineffective.

Similarly as in the heavy ion collisions, where the temperature evolution of the
quark-gluon plasma is modeled as an expanding medium that progressively cools down,
for the thermal environment that models the early universe, the temperature evolution
is determined by the expansion rate of the universe, namely the Hubble rate. In the
Standard Model of cosmology, the Lambda-CDM model with a Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric, it is defined as H = ȧ(t)/a(t), where a is time-
dependent scale factor. The equation that relates time with temperature can be obtained
by combining the concepts of general relativity and thermodynamics. Assuming a flat
universe, where the curvature κ is put to zero in the FLRW metric, one finds [56]

dT

dt
= −
√
24π

MPl

s(T )

c(T )

√
ρ(T ) , (2.1)

where s(T ), ρ(T ) and c(T ) = T (ds/dT ) are the entropy density, energy density and heat
capacity, respectively, and MPl ≈ 1.22 × 1019 GeV is the Planck mass. It is convenient
to determine the speed of sound cs(T ) in order to derive a more compact form for the
time dependence of the temperature,

c2s(T ) =
∂p

∂ρ
=
s(T )

c(T )
. (2.2)

where p is the pressure in the bath, related to ρ and s via the thermodynamic equation
p = Ts−ρ.3 Since the freeze-out is certainly happening during the radiation dominated
epoch for large M ∼ TeV, it follows that c2s ≈ 1/3 for the thermal bath,4 and we can
write

dT

dt
= −T

√
8π

3

3c2s(T )

MPl

√
ρ ≈ −TH(T ) , (2.3)

2Since T ≲ M , at freeze-out and in the subsequent time evolution, the heavy dark particle is non-
relativistic, while all the other particles in the bath are relativistic as long as T ≫ mi or T ≫ mS.M.

i ,
where mS.M.

i denotes to the masses of the Standard Model degrees of freedom.
3Equation ρ = Ts− p comes from the fundamental thermodynamic relation for quasistatic processes,

E = TS − pV + µN , divided by the volume V and where the last term does not contribute since the
chemical potential µ for antiparticles comes with an opposite sign compared to the one for particles.
Hence in sum the µN -term cancels out for models with a dark matter-antimatter symmetry.

4The Friedmann equation in flat space is given by H2 = 8πGρ/3, where G = 1/M2
Pl is Newton’s

gravitational constant. In a radiation dominated universe, the energy density is ρ = geff(T )π
2T 4/(30), the

entropy density is s = heff(T )2π
2T 3/(45) and the heat capacity is c = ieff(T )2π

2T 3/(15), where geff, heff

are temperature-dependent functions accounting for the number of effective degrees of freedom in the
thermal bath that contribute to the energy and entropy, respectively, and ieff = heff+T (dheff/dT )/3 [57].
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where we inserted the Hubble rate

H(T ) =

√
8π

3

√
ρ

MPl
≃ 1.66

√
geff(T )

T 2

MPl
. (2.4)

Assuming that geff, heff and hence also cs = [(1/3)× [1 + (T/heff)(dheff/dT )/3]]
1/2 vary

slowly with T ,5 then as a solution to the differential equation (2.3), it follows that the
temperature changes with time as6

T =

√
T 2
0

1 + 2ξ(t− t0)T 2
0

, (2.5)

where ξ ≡ 1.66g
1/2
eff /MPl and t0, T0 the integration constants for time and temperature,

respectively. Choosing them to be the initial values, then from eq. (2.5) we can verify
that at at later times, i.e. t ≫ t0, the temperature decreases, i.e. T < T0. Hence, the
universe indeed cools down with the passing of time, and by (2.5) we have a one-to-one
correspondence between time and temperature. In the main body of this work we will
show some numerical results for the interaction rates of interest, plotted as functions of
M/T for fixed values ofM . These results can straightforwardly be related to as functions
over time upon using (2.5), in this way we can always visualize the interaction rates as
evolving in time. We remark that, since the temperature scales with time as T ∼ t−1/2

5Since we assume the dark sector to be in thermal equilibrium with the Standard Model sector (or
at least in the early stages of the universe evolution), in geff we need to take into account the relativistic
degrees of freedom from both sectors. In case the two sectors were not in thermal equilibrium, and
therefore do not necessarily share the same temperature, one would need to take into account only the
relativistic degrees of freedom from the dark sector to which the heavy dark matter is coupled. In case
of a dark abelian U(1) or non-abelian SU(N) gauge theory, which will be the models of interest in this
work, with nf charged dark light fermions, we have

g
U(1)
eff = 2 + 2× 2

7

8
nf ,

where the dark photon has two physical polarizations and the dark light Dirac fermions get a factor of
four accounting for the spin and antiparticle degrees of freedom, and

g
SU(N)
eff = 2× (N2 − 1) +N × 2× 2× 7

8
nf ,

where N2−1 counts the different dark color charges of the dark gauge field in the adjoint representation,
and N the dark color charges of the light dark fermions in the fundamental representation.

6We can compare the solution (2.5) with Bjorken’s result for the temperature evolution of a spatially
homogeneous and isotropic thermal medium that extends to infinity and where heavy nuclei collide only
centrally [58]:

T = T0

(
t0
t

)c2s
,

where at high T the speed of sound squared is c2s ≈ 1/3 in the deconfined plasma. It may give a first
qualitatively accurate estimation for the temperature behaviour of the quark-gluon plasma (QGP) with
evolving time, at least at zeroth order in the approximations. Since T ∼ t−1/3, we can justify that the
temperature evolution is quasi-static at late times [59].
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according to equation (2.5), with increasing time the temperature changes only slowly
and therefore, to a certain degree of accuracy, we may neglect the time dependence and
the evolution is then called to be quasistatic at large t; in agreement with the speed of
sound c2s ≈

√
1/3 < 1 being subluminal [58,60].

We turn back to the study of the freeze-out mechanism of the heavy dark particle,
where in this work we will consider it to be a Dirac fermion that is charged under an
internal gauge group. One can usually inspect the loss of detailed balance between dark
matter annihilation and creation processes, which in turn impacts the evolution of the
heavy dark matter particle number in the thermal bath, by a rate equation which takes
the form of a Boltzmann equation for the particle number density n [57, 61,62]:7

(∂t + 3H)n = −1

2
⟨σannvrel⟩(n2 − n2eq) , (2.6)

where vrel = |v1−v2| is the relative velocity of the annihilating pair in the center-of-mass
frame and neq is the number density in thermal, i.e. kinetic and chemical, equilibrium
and is given by

neq = 2gX

∫
d3p

(2π)3
e−EX/T =

gX
π2
TM2K2

(
M

T

)
≈ 2gX

(
MT

2π

)3/2

e−M/T , (2.7)

where the gX = 2 for the two spin configurations of the fermion. The result in the first
line of (2.7) in terms of the modified Bessel function of the second kind, K2, is for a
relativistic particle with energy EX . For a DM particle of mass M , from the numerical
solution of (2.6) and the phase at which n starts to deviate from neq, one can infer that
the chemical freeze-out occurs at a temperature TF ≈ M/25. Therefore, at freeze-out
the dark matter particles are non-relativistic.8 We can therefore expand the result in
the first line of (2.7) up to leading order in T ≪M , which gives the analytic expression
in the second line.9

It is convenient to recast the Boltzmann equation (2.6) in terms of the yield Y ≡ n/s,
where its time derivative can be written as

Ẏ =
ṅ

s
− n

s2
ṡ =

ṅ

s
+ 3H

n

s
, (2.8)

7The heavy dark matter number density n = 2nX is the sum of the particle and antiparticle densities
nX and nX̄ , respectively, where nX̄ = nX since we do not consider any initial asymmetry between the
number of particles and antiparticles. In the case of annihilation of identical particles, e.g. Majorana
fermions, the factor 1/2 on the right-hand side of eq. (2.6) should be replaced by 1.

8The freeze-out temperature can also be estimated by equating the expansion with the annihilation

cross sectionH ∼ neq⟨σannvrel⟩, namely T 2/MPl ∼
(
MT
2π

)3/2
e−M/Tα2/M2 where α is some fine structure

constant depending on the specific dark matter model.
9One can, alternatively, obtain the second line of equation (2.7) by expanding EX ≈ M + p2/(2M)

and performing the Gaussian integral over the particle momentum p.
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Center-of-mass frameLaboratory frame

v ≈
P2M

X
X̄

X
X̄

−
v ≈ −

P2M

Figure 2.1: Schematic representation of the laboratory frame (left) vs the center-of-mass
frame (right). The blue and orange shaded circular areas depict the heavy fermion-
antifermion pair and the thermal bath, respectively.

where in the second equality we used the fact that the total entropy per comoving volume
S = a3s is constant, which gives ṡ = −3Hs. Dividing eq. (2.6) by the entropy density
s, and substituting the time derivative by a derivative over z ≡M/T , we obtain [57]

dY

dz
=

1

6H

ds

dz
⟨σannvrel⟩(Y 2 − Y 2

eq) , (2.9)

where the yield at equilibrium is Yeq = neq/s = 45 gXz
2K2(z)/(4π

4heff). Equation (2.9)
can be solved numerically up to late times (in particular we solve it up to the smallest
temperature value considered in this work: T = M/105), and the numerical solution of
the present DM yield can eventually be related to the present-day relic density of dark
matter, ΩDM = Ms0Y0/ρcrit,0, where Y0, s0 and ρcrit,0 denote the present yield, entropy
density and critical energy density, respectively.10 The values for s0 and ρcrit,0 can be
taken from e.g. [63, 64], and one obtains ΩDMh

2 = (M/GeV)Y0/(3.645 × 10−9), where
h is the reduced Hubble constant.

It is crucial to calculate ⟨σannvrel⟩ accurately because the present-day DM energy
density ΩDMh

2, as predicted by a given model, depends on it through the solution of
eq. (2.9). The DM mass is in turn fixed as a function of the other model parameters to
reproduce ΩDMh

2. A solid prediction for DM mass benchmarks compatible with the relic
density is needed to establish the viability of models, guide the experimental searches
and put DM phenomenology on a sound theoretical ground. In chapters 7 and 10 we

10We can assume that the present DM relic abundance is the one of the heavy DM species only, if the
other dark degrees of freedom are considered to have negligible rest masses, i.e. mi ≪ M , which is the
case for the DM theory models considered in this work.
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will provide contour plots for the numerical solutions in the parameter space for the
exemplary gauge theories U(1)DM and SU(N)DM, respectively. However, determining
⟨σannvrel⟩ by including the full features of each model, and the thermal environment, is
not straightforward. In the particular models U(1)DM or SU(N)DM of the dark sector,
the charged heavy dark matter particle self-interacts via long-range dark gauge fields.
It leads to non-perturbative phenomena such as the Sommerfeld-effect [65, 66], or the
formation of heavy dark meta-stable bound states [15, 67], that in turn will impact
significantly the annihilation rate ⟨σannvrel⟩, extend the usual single evolution equation
(2.6) or (2.9) into a network of coupled Boltzmann equations (for more details, see
chapter 7), and therefore alter the present relic abundance [68]. By exploiting the
methods of effective field theories (EFTs) at finite temperature, we will be able to
account for these effects in a systematic manner.

As a final remark, we want to highlight that the rates, for instance the annihilation
cross section times relative velocity σannvrel and its thermally averaged version, that
enter in the evolution equations for the DM number density, but also the DM energy
density itself, are in general frame-dependent, and here written in the center-of-mass
frame of the annihilating pair. In a general reference frame, however, the expressions
change, e.g. vrel → vMøl, but more on it will come in the subsequent chapters. Hence, one
always needs to specify first the particular reference frame for the coordinates, on which
the outcomes for the rates or densities are then based. In this work, we will consider
two coordinate systems for the annihilating DM particle-antiparticle pair with respect to
the thermal environment. We call laboratory frame (lab) the reference frame where the
thermal bath is at rest. In this case, the center of mass of the fermion-antifermion pair
is moving with velocity v ≈ P /(2M). The laboratory frame is sometimes also called
cosmic comoving frame. In addition we are going to consider the aforementioned center-
of-mass frame of the heavy DM pair, where the thermal bath is moving with velocity
about −P /(2M). The center-of-mass and laboratory frame are shown in figure 2.1 for
the case of a dark matter fermion-antifermion pair moving in a thermal bath.
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Part II

Physical setup: scale hierarchies,
tower of EFTs

17



Chapter 3

U(1)DM: hierarchies of energy
scales

There exists a variety of models for the dark sector, that can be classified according
to the long-range interactions between bosonic or fermionic heavy dark particles.1 A
particularly simple renormalizable and hence UV-complete model is U(1)DM, i.e. where
the dark sector consists of a dark Dirac fermion X of large massM that is charged under
an abelian gauge group [74–78]. We denote the corresponding dark photon with γ. The
Lagrangian density reads

LU(1)DM
= X̄(i /D −M)X − 1

4
FµνF

µν +

nf∑
i=1

f̄i(i /D −mi)fi + Lportal , (3.1)

where the covariant derivative is Dµ = ∂µ + igAµ, with Aµ the dark photon field and
Fµν = ∂µAν − ∂νAµ; we define the fine structure constant as α ≡ g2/(4π). The term
Lportal comprises additional interactions coupling the dark photon with the SM degrees
of freedom, for example through a mixing with the neutral components of the SM gauge
fields, also called kinetic mixing [79–81]. Such interactions are responsible for the even-
tual decay of the dark photons, in this way avoiding that their number density dominates
the universe at later stages. For the purpose of this work, we do not consider the effect of
portal interactions when computing the cross sections and decay widths of dark matter
particles, however we still assume they are responsible for keeping the Standard Model
and dark sector at the same temperature.2 From now on we set Lportal = 0. Moreover,

1For instance in refs. [69,70] the authors consider different models involving either a scalar or a Dirac
fermion field as possible candidates for a heavy dark matter particle, that couples to a massive vector
mediator. For a coupling between a fermionic dark particle and a massless or massive scalar mediator,
see e.g. ref. [31, 71–73]. In these models the mass of a long-range mediator is usually considered to be
generated by the Higgs mechanism of a spontaneously broken gauge theory; otherwise the considered
models would be non-renormalizable at large energies.

2Since the dark photon acquires a non-vanishing coupling with the Standard Model fermions, the
dark and Standard Model sector are maintained in thermal equilibrium through the portal interaction
even for very small values of the mixing parameter, see e.g. [14]. In our work, we assume the dark
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additional fermionic degees of freedom are coupled to the dark photon. We consider nf
dark light Dirac fields fi with masses mi, which can be distinguished from each other
by the index i.3 In practice, when evaluating the self-energy of the dark photon, see
appendix D.2, we will put mi = 0 for all the light dark fermions.4 At temperatures
T ≪ M , they are responsible for quantum corrections to the dark photon propagator,
whose pole develops a real and an imaginary part [49,82,83].5 The real part introduces
a screening (Debye) mass mD of order gT for the temporal dark photon, whereas the
imaginary part of the pole originates from 2→ 2 scatterings (i.e. bath-particle scatter-
ings) with plasma constituents, also referred to as Landau damping [20, 22, 23, 27, 29].
There is an additional contribution to the imaginary part due to 1→ 3 and the reversed
3 → 1 processes, involving an off-shell dark-photon decay into a fi − f̄i pair and vice
versa. We will cope with these phenomena in the next chapter and in appendix D.2.

The Lagrangian (3.1) describes also processes involving two dark fermions close to
threshold, i.e. processes where the fermions are non-relativistic and move with an ab-
solute value of the relative velocity vrel ≪ 1. For vrel ∼ α, (ladder) photons exchanged
between the pair contribute with a relative factor of order α/vrel ∼ 1 and need to be
resummed. The resummation generates bound-state poles of order Mα2 at negative
energies and a continuous scattering spectrum at positive energies. The typical momen-
tum exchanged between the pair when vrel ∼ α is Mα, which is of the order of the
inverse Bohr radius of the bound state. The dynamically generated scalesMα andMα2

are the more separated the smaller α is: M ≫ Mα ≫ Mα2. We call them soft and
ultrasoft scales, respectively, to distinguish them from the hard scale associated with the
mass M . These energy scales affect significantly various processes in the near thresh-
old momentum region, like dark fermion pair annihilation, formation and transition via
emission or absorption of photons. The use of the full Lagrangian (3.1) to compute
near threshold observables is in general unpractical as all energy scales get entangled in
the amplitudes. It is more convenient, instead, to take advantage of the fact that the
energy scales are hierarchically ordered and replace systematically (3.1) with a hierarchy
of (non-relativistic) effective field theories along what has been done for near threshold
fermion pairs in QED and QCD [11,46,47].

Another relevant energy scale is the inverse correlation length characterizing the me-
dium made of the dark fermions, dark photons and SM particles. The bath medium is
thermalized and we identify the inverse of its correlation length with the temperature T .6

The relativistic dark photons and light fermions, that form the dark sector of the thermal

gauge coupling to be much larger than the mixing-induced coupling, hence we practically neglect portal
interactions when computing the cross sections and widths of dark matter particles.

3We could in principle add also some light dark scalars to the Lagrangian (3.1), which couple to the
gauge field Aµ as well. But we drop them in this work.

4In ref. [82] the the photon self-energy in QED for a finite electron mass is derived. For the purpose
of our work, it is not crucial to retain the light fermion masses in the calculation.

5The situation is somewhat different in the non-abelian case, where quantum corrections to the dark
gluon propagator may be induced also by dark gluon self interactions [48,50,84,85], cf. chapters 8–10.

6In the literature one sometimes finds the temperature scale with an additional π attached, i.e. πT .
By πT ∼ T we approximate the two scales to be of the same order and thus equivalent. We can drop π.
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bath, have thus energies and momenta of order T ; except the non-relativistic dark matter
particle X where, despite chemically decoupled from the bath after the the freeze-out, it
has kinetically equilibrated velocities following a Maxwell–Boltzmann distribution, from
which it follows that v ∼

√
T/M ≪ 1. Then there is the aforementioned dynamically

generated Debye mass scale, explicitly written in eq. (D.39), which vanishes if we remove
the light fermions from the dark sector by putting nf = 0 contrarily to mD in the
non-abelian model, cf. (9.31). We assume T ≫ mD, which leads to the requirement√
nfα ≪ 1. Hence, whenever we consider light fermions in the theory, we keep the

coupling as well as nf sufficiently small, with α ≲ 0.1 and nf ∈ {1, 2}. The smaller the
coupling, the better the approximation. Otherwise we can relax the upper boundary for
the coupling constant to somewhat larger values as long as α remains week, i.e. α ≲ 0.5
as has been considered in ref. [51], in return of ejecting the Landau damping phenomenon
from the theory.

The aim of the following sections is to compute near threshold observables affecting
the evolution of the dark matter density in the early universe, cf. eq. (2.6). In partic-
ular, we compute annihilation, dissociation and formation cross sections of dark matter
fermion-antifermion pairs. We compute these quantities by means of the tower of non-
relativistic effective field theories depicted in figure 3.1. While the scales M,Mα,Mα2

are inherently separated for non-relativistic dark matter, there is an ambiguity between
the order of some of these internal scales and the thermal scales T and mD when time
proceeds along the thermal freeze-out era.

3.1 Far-off from freeze-out: Mα ≳
√
MT ≫Mα2 ≳ T ≫ mD

If we assume that T is about the ultrasoft scale Mα2 or smaller, the typical momentum
of the thermalized dark fermions is then Mvrel ∼

√
MT ≲ Mα, which implies vrel ≲ α.

Then it also holds that
√
MT ≳ Mα2. These conditions qualify Mvrel as a soft scale

and Mv2rel ∼ T as an ultrasoft scale. Our ensemble of thermalized heavy dark fermions
and antifermions realizes, therefore, the following hierarchy of energy scales

M ≫Mα ≳
√
MT ≫Mα2 ≳ T ≫ mD . (3.2)

The hierarchy (3.2) is of phenomenological interest for the study of near threshold ef-
fects in the minimal dark matter model under consideration [15, 36]. Indeed, since the
decoupling from chemical equilibrium happens at around TF ≈ M/25 according to the
discussion in the preceding chapter, the condition (3.2) may be fulfilled for most of the
time after the decoupling.7 The case Mα2 ≳ T has been extensively studied in [51].

7If, more conservatively, we identify the absolute value of the ground state energy, Mα2/4, with the
ultrasoft scale, the condition Mα2/4 ≳ T is fulfilled for all times after decoupling if α ≳ 0.4. For such
large values, however, we spoil the assumption T ≫ mD, and the hierarchy arrangement in (3.2) now
instead would read as follows

M ≫Mα ≳
√
MT ≫Mα2 ≳ T ∼ mD .

In ref. [51] we considered the nf = 0 case, resulting in mD = 0 for the abelian case, hence the hierarchy
of energy scales was more simple, i.e. M ≫Mα ≳

√
MT ≫Mα2 ≳ T .
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QEDDM

NRQEDDM

pNRQEDDM

√
MT
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Mα2

Figure 3.1: Hierarchy of energy scales and effective field theories considered in this
chapter for the DM Lagrangian density defined in eq. (3.1). A similar tower of EFTs
applies for the non-abelian model given in eq. (8.1) and the corresponding hierarchies
of energy scales considered in section 8. The red bar denotes the energy range for the
thermal Debye mass scale mD ∼ gT .

Although interactions with light dark fermions were not considered there, for small T
their contributions to the rates near threshold are suppressed, as we are going to show in
the subsequent chapters. The information about the bath-particle scatterings also enters
in the running of the coupling constant, which was absent in ref. [51] for the U(1)DM

model because of nf = 0. As a solution to the renormalization group equation (8.3) at
one-loop order with the first coefficient of the beta function in U(1)DM, β0 = −4nf/3,
it reads

α(µ) =
α(2M)

1 + β0
2πα(2M) log

( µ
2M

) , (3.3)

where α(2M), renormalized at the hard scale 2M , is taken as a free parameter in the
abelian model (3.1), together with the DM mass M and number nf of light fermion
species. In the U(1)DM case in [51]: α = const, which can be immediately seen from
(3.3) upon setting nf to zero.

3.2 Close to freeze-out:
√
MT ≫Mα≫ T ≫Mα2 ∼ mD

At temperatures larger than the ultrasoft scaleMα2 but smaller than the soft scaleMα,
which in the early expanding universe corresponds to a time window prior to the one
considered in section 3.1, the thermal and internal energy scales arrange as follows

M ≫
√
MT ≫Mα≫ T ≫ mD,Mα2 . (3.4)

This hierarchy is realized to a good extent at the thermal freeze-out and shortly after.8

8The conditionMα≫ TF ≈M/25 requires for the values of the coupling to be larger than 0.04. Then
we can safely assume that the freeze-out of a bound dark fermion pair happens at a scale lower than its
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The two hierarchies in (3.2) and (3.4) enable us to integrate out from the parent
QEDDM model the energy scales starting from the highest scale, the hard scale M ,
where we obtain a non-relativistic effective field theory (NREFT) for the dark sec-
tor, here dubbed NRQEDDM, followed by a potential NREFT (pNREFT), denoted as
pNRQEDDM, upon integrating out the subsequent soft scale by means of a multipole
expansion. From now on, by ultrasoft scales we mean the energy scales below the soft
scale, to which the temperature belongs to according to the hierarchical arrangement
of the scales in (3.2) and in (3.4). Only modes of the order of the ultrasoft scale are
dynamical degrees of freedom in pNRQEDDM.9 Since T ≪ Mα, the matching can be
done as in vacuum, and the matching coefficients of the effective theory can be even-
tually written in terms of potentials. There is, however, a small caveat that one needs
to take into account for the case in (3.4). The second largest scale is not the soft but
the
√
MT scale, which may have an impact on the pNRQEDDM Lagrangian. We have

carefully inspected the contributions of the energy and momentum modes at the scale√
MT , and we found that they are either zero or exponentially suppressed for the dark

photon, heavy and light fermion propagators, as well as for the heavy fermion-dark pho-
ton vertex. Non-vanishing contributions will appear in the heavy fermion-antifermion
scatterings eventually giving thermal corrections to the potentials.10 In (3.4), we did
not specify further the order between the two lowest scales, which are yet entangled. It
comprises the two limiting cases mD ≫Mα2 and mD ≪Mα2. For an exemplary study
of (muonic) hydrogen atom in QED within an analogous EFT-framework as above, we
refer the reader to refs. [49,82]. As an application of NRQED to the computation of ra-
diative corrections for the hyperfine splitting of positronium or muonium, we recommend
refs. [86, 87].

soft Bohr-momentum scale. Instead for the case of smaller couplings than 0.04, the freeze-out certainly
happens at a temperature scale above Mα, and can not be captured within the hierarchies (3.2) and
(3.4). We will not consider such small parameter values for the coupling in this work. Together with
the constraint from T ≫ mD on α, we choose the following range on the allowed parameter values for
the coupling constant in the subsequent chapters for the dark abelian model: 0.05 ≲ α ≲ 0.1. Instead,
whenever we set nf = 0 or consider only annihilations (where mD effects are negligible), we enlarge the
benchmark values to 0.05 ≲ α ≲ 0.5.

9Only for very small couplings α ≲ 0.04, the freeze-out temperature TF ≈M/25 can not be ultrasoft
and hence the freeze-out not be described by pNRQEDDM as the multipole expansion would be spoiled.
Therefore pNRQEDDM would need to be discarded and instead NRQEDDM retained.

10More precisely, we expect the thermal corrections to the potentials, from the matching of four-
fermion Green functions with loop momenta of order

√
MT , to stem from the vacuum part of the

internal propagators in the loops, since the thermal part is exponentially suppressed because of the
distribution functions nB/F(

√
MT ) ≈ exp (−

√
M/T )≪ 1.
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Chapter 4

Effective field theories for the
dark sector

4.1 NRQEDDM

At energies much smaller than M , the effective degrees of freedom in the thermal bath
are non-relativistic heavy dark fermions and antifermions, low energy dark photons and
massless fermions, and the SM particles. The effective field theory that follows from
(3.1) by integrating out dark photons and fermions of energy or momentum of order M
has the form of NRQED [46]. It is organized as an expansion in 1/M and α and its
Lagrangian density up to O(1/M2) reads1

LNRQEDDM

= ψ†
(
iD0 −M +

D2

2M
+ cF

σ · gB
2M

+ cD
∇ · gE
8M2

+ icS
σ · (D× gE− gE×D

8M2

)
ψ

+ χ†
(
iD0 +M − D2

2M
− cF

σ · gB
2M

+ cD
∇ · gE
8M2

+ icS
σ · (D× gE− gE×D

8M2

)
χ

− 1

4
FµνFµν +

d2
M2

FµνD2Fµν +
ds
M2

ψ†χχ†ψ +
dv
M2

ψ† σ χ · χ† σ ψ +

nf∑
i=1

f̄ii /Dfi .

(4.1)
Here, ψ is the two-component Pauli spinor that annihilates a dark matter fermion, χ†

is the Pauli spinor that annihilates an antifermion, σi are the Pauli matrices, E is the
(dark) electric field, Ei = F i0, and B is the (dark) magnetic field, Bi = −ϵijkF jk/2. The
first two lines in eq. (4.1) describe how non-relativistic dark fermions and antifermions
propagate and interact with low-energy dark photons of energy smaller than M . The
third line describes the propagation and effective self interaction of the photons; it also

1At order 1/M2 also local four-fermion operators like (ψ†ψ + χ†χ)
nf∑
i=1

f̄ifi + h.c. appear which are

responsible for heavy-light DM scatterings. We do not write those terms explicitly in (4.1) as they do
not develop an imaginary part and hence do not account for annihilation processes.
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contains two four-fermion operators and the nf dark massless fermions fi with thermal
energies and momenta of order T ≪M .

To keep track of the thermalization of the physical fields, we do not redefine the
fermion and antifermion fields ψ and χ to reabsorb their mass terms, which we leave
explicit. In the matching, the thermal scales and any other energy scale below M can
be set to zero. Hence, upon our assumption M ≫ T , no finite temperature effect enters
the EFT Lagrangian (4.1).

The one-loop expressions of the matching coefficients cF, cD, cS and d2 in the MS
scheme can be found in ref. [88] taking the abelian limit. They are regularized in dimen-
sional regularization, and the µ dependence cancels against low-energy matrix elements
when computing observables in the EFTs. The coefficients of the kinetic operators are
fixed to be one at all orders in the coupling by reparametrization (Poincaré) invari-
ance [89,90]. As for the four-fermion dimension-six operators, the matching coefficients
ds, dv at order α

2 can be inferred from e.g. [91]. Its imaginary parts inherit the informa-
tion about the annihilation processes that are non-dynamical in NREFTs as they happen
at the hard scale 2M . More details will be provided in the next chapter. Here we only
comment that the four-fermion operators shown in eq. (4.1) encode the annihilation of
S-wave fermion-antifermion pairs, where the annihilation of the heavy pairs with non-
vanishing orbital angular momentum comes from the higher-dimensional four-fermion
operators. For instance, dimension-eight four-fermion operators encode the annihilation
of P-wave fermion-antifermion pairs but also the first relativistic correction to the S-wave
annihilations, cf. eq. (5.12).

4.2 pNRQEDDM

Consistently with the hierarchies of energy scales in (3.2) and (3.4), the next degrees
of freedom to integrate out to describe threshold phenomena at the ultrasoft scale are
dark photons of energy or momentum of order Mvrel, which encompasses the scales Mα
and
√
MT . At energies much smaller than Mvrel the dynamical degrees of freedom are

dark fermions and antifermions with energy of order Mv2rel, and ultrasoft dark photons
with energy and momentum of order Mv2rel, which encompasses the scales Mα2 and T .2

The Lagrangian term for the massless thermal fermions does not change since T ≪Mα.
The effective field theory is pNRQEDDM, i.e. the dark version of pNRQED [92,93]. We
integrate out the soft scale by setting to zero all lower energy scales. The matching
is done at weak coupling, i.e. order by order in α, although the EFT is suited to
accommodate a non-perturbative framework as well [11, 94].

Threshold phenomena affect the heavy fermion-antifermion pairs, hence it is con-
venient to project the EFT on the fermion-antifermion Hilbert space and express it in
terms of gauge singlet fermion-antifermion bilocal fields ϕ(t, r,R), where r ≡ r1 − r2

2We remark that for excited Coulombic states, further distinctions of scales due to the principal
quantum number may turn out to be necessary, asMα2/n2 ≤Mα2 and similarly for the Bohr momentum
Mα/n ≤ Mα. Nevertheless, to keep the analysis of the results simple, we refrain in this paper to put
stronger constraints on the excited Coulombic states.
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is the distance between a fermion located at r1 and an antifermion located at r2 and
R ≡ (r1 + r2)/2 is the center of mass coordinate.3 In order to ensure that the photons
are ultrasoft, photon fields are multipole expanded in r. Hence the pNRQEDDM La-
grangian density for the dark matter theory (3.1) is organized as an expansion in 1/M ,
inherited from NRQEDDM, r and α (at weak coupling). In the laboratory frame, up to
leading order in r and in the center-of-mass momentum P of the heavy pair, it reads

LpNRQEDDM
=

∫
d3r

{
ϕ†(t, r,R) [i∂0 −H(r,p,P ,S1,S2)]ϕ(t, r,R)

+ ϕ†(t, r,R)

[
r · gE(t,R) +

r

2
·
{

P

2M
× , gB(t,R)

}]
ϕ(t, r,R)

}
− 1

4
FµνF

µν +

nf∑
i=1

f̄ii /Dfi , (4.2)

where {. . . , . . . } stands for the anticommutator. The Hamiltonian reads

H(r,p,P ,S1,S2) = 2M +
p2

M
+

P 2

4M
+ V (r,p,P ,S1,S2) + . . . , (4.3)

where the dots stand for higher order relativistic corrections of the kinetic term. The
fermion-antifermion potential can be expanded as

V (r,p,P ,S1,S2) = V (0) +
V (1)

M
+
V (2)

M2
+ . . . , (4.4)

and S1 = σ1/2 and S2 = σ2/2 are the spin operators acting on the fermion and an-
tifermion, respectively. The static potential is the Coulomb potential:

V (0) = −α
r
. (4.5)

If T ∼ Mα2, cf. hierarchy (3.2), the potential does not get, by construction, thermal
contributions at any order. The power counting of the EFT goes as follows: the inverse
of the relative coordinate r scales like Mvrel, whereas the inverse of the center-of-mass
coordinate R can at most change by Mα2 or T , if the DM fermion-antifermion pair
recoils against ultrasoft dark photons. The fact that the variation in R is larger than
r guarantees the validity of the multipole expansion. Hence, pNRQEDDM is valid as
long as T ≪ Mα. The dots in eq. (4.4) stand for irrelevant operators of higher order

3The Hilbert space of a fermion-antifermion pair is spanned by the vector

|ϕ⟩ =
∑
ij

∫
d3r1 d

3r2 ϕij(r1, r2)ψ
i†(r1)χ

j(r2)|0⟩ ,

where ϕij is the spin-dependent heavy-pair wavefunction, to be distinguished from the heavy-pair field
operator ϕ in eq. (4.6), which is spectrally divided into a bound-state and scattering-state configuration
via the Fourier-decomposition.

25



Figure 4.1: Feynman diagrams for electric and magnetic-dipole transitions between
fermion-antifermion scattering states (double line) and bound states (single line). The
wavy lines stand for the photon external fields. The circle with a cross denotes
the electric-dipole vertex ir · gE and the square denotes the magnetic-dipole vertex
ir · {P× , gB} /(4M) due to the Röntgen term [90]. The momentum P is the sum of
the center-of-mass momentum of the incoming fermion-antifermion pair and the momen-
tum of the incoming photon. The vertices follow from the Lagrangian (4.2).

in the 1/M expansion. The relative momentum p = −i∇r and the center of mass mo-
mentum P = −i∇R are the conjugate variables of r and R, respectively.4 We refer
to appendix A for more details about the center-of-mass coordinates and its Lorentz
boost transformation relations among different reference frames. At order r, the term
proportional to the dark electric field is an electric-dipole interaction term; it provides
the leading ultrasoft interaction between fermion and dark photon fields in pNRQEDDM.
The term proportional to the dark magnetic field provides the leading ultrasoft inter-
action between DM fermion and photon fields in pNRQEDDM that is proportional to
the center-of-mass momentum P . It is sometimes also called Röntgen term [98]. The
Röntgen term originates form the Lorentz force F = v×gB5, and it shows up as a man-

4The potential (4.4) gets affected from the center-of-mass motion as well as the relative motion of
the heavy pair. For example at dimension six, we can write the center-of-mass-momentum dependent
corrections entering V (2) [90, 95–97]:

δV (2)(r,P ) = −1

8
P 2V (0)(r) +

1

8
(r · P )2

V (0)′(r)

r
− 1

8
(r × P ) · (σ1 − σ2)

V (0)′(r)

r
,

where V (0)′(r) is the derivative of the static potential, σ1 the Pauli matrix acting on the fermion and
σ2 the Pauli matrix acting on the antifermion. Of the same order is also the kinetic energy correction
−P 4/(64M3)− (p · P )2/(4M3)− p2P 2/(8M3).

5There is an additional magnetic interaction term proportional to the relative momentum and R,
which we drop since we are interested only at dipole interactions of order r. We get this term together
with the Röntgen term by computing the corresponding part in the Hamiltonian H ⊃ −(r1 ·F1+r2 ·F2),
where the Lorentz forces acting on the fermion and antifermion are F1 = v1 × gB(r1) and F2 =
v2 × (−g)B(r2), respectively. Then we switch to the center-of-mass coordinates, cf. (A.1) and (A.2),
from which it follows that v1/2 = ṙ1/2 = (V ±vrel/2), where V = Ṙ is the spatial center-of-mass velocity
of the pair. Next, we multipole expand the magnetic field to zeroth order,

B(t, r1/2) = B(t,R± r/2) = B(t,R)± (r ·∇R)B(t,R)/2 + · · · ≈ B(t,R) ≡ B .

Finally, putting everything together we obtain H ⊃ −g[r · (V ×B)+R · (vrel×B)], where the first term
corresponds to the Röntgen interaction. We symmetrize it in quantum theory according to the Weyl
ordering, which results in −gr · {V ×,B}/2, and V = P /2M at leading order in the non-relativistic
limit.
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ifestation of the Poincaré invariance of QED [90]. It is suppressed in the center-of-mass
velocity v compared to the electric-dipole term. The matching coefficient of the electric
dipole and Röntgen interaction has been taken equal to one.

At order r0 in the multipole expansion, cf. first line in (4.2), the equation of motion of
the fermion-antifermion pair is a Schrödinger equation with potential V (r,p,P ,S1,S2).
Hence the leading order fermion-antifermion propagator in pNRQEDDM automatically
accounts for bound-state effects and multiple Coulomb rescatterings, called the Sommer-
feld enhancement, in physical observables. This can be seen explicitly in (D.14), where
V enters through the Hamiltonian as a pole in the heavy-pair propagator.6 Fermion-
antifermion pairs above threshold form scattering states of positive energy and fermion-
antifermion pairs below threshold form bound states of negative energy. It may be
therefore convenient to decompose the bi-local field ϕ(t, r,R) into a scattering compo-
nent and a bound-state component [99],

ϕij(t, r,R) =

∫
d3P

(2π)3

[∑
n

e−iEnt+iP ·RΨn(r)Sij ϕn(P )

+
∑
spin

∫
d3p

(2π)3
e−iEpt+iP ·RΨp(r)Sij ϕp(P )

]
, (4.6)

where ϕ†n(P ) creates a Coulombic bound state, |n,P ⟩ = ϕ†n(P )|0⟩, with center of mass
momentum P , quantum numbers n,7 energy En and wavefunction Ψn(r)Sij , whereas

ϕ†p(P ) creates a scattering state, |p,P ⟩ = ϕ†p(P )|0⟩, with center of mass momentum
P , relative momentum p, energy Ep and wavefunction Ψp(r)Sij . The indices i, j are
spin indices. In particular, S-wave dark fermion-antifermion pairs may be either in a
spin-singlet state, in which case Sij = δij/

√
2, or in a spin-triplet state, in which case

Sij = (σ · ϵ)ij/
√
2, where σ are the Pauli matrices and ϵ is the polarization vector of

the spin-triplet pair. The sum over spin in the second line of eq. (4.6) is a sum over all
spin configurations; in the first line, this sum is included in the sum over the quantum
numbers n. If the dark fermion-antifermion pair is bound we may call it darkonium,
which, in the S-wave case, we may further distinguish into a spin-singlet paradarkonium
state, and a spin-triplet orthodarkonium state. Various transitions between scattering
and bound states are induced by the dipole vertices from the terms in the second line of
(4.2), which are shown in figure 4.1. We discuss these dipole interactions in chapter 6.
As a final remark, the spectrum of bound states below the mass threshold in the center-
of-mass frame is given at order α2 by

(En)cm = 2M + Ebn , (4.7)

6The expression of the potential V (r,p,P ,S1,S2) in the center of mass frame including V (0), V (1)

and V (2) can be found in ref. [47].
7With n we comprise the principal quantum number n, the orbital angular momentum quantum

number ℓ and the magnetic quantum number m. Then Ψn(r) = Rnℓ(r)Y
m
ℓ (r̂) where Rnℓ(r) is the radial

part of the bound-state wavefunction, cf. (C.3), and Y mℓ (r̂) the spherical harmonics.
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with binding energy Ebn = −Mα2/(4n2) = −(Ma20n
2)−1 and Bohr radius a0 = 2/(Mα).

In the center-of-mass frame, the continuum spectrum of scattering states above the mass
threshold is given at leading order in the relative momentum by

(Ep)cm = 2M +
p2

M
. (4.8)

In the laboratory frame, the spectrum and wavefunctions get corrections that depend
on the center-of-mass momentum P . The leading-order correction to the spectrum is
the center-of-mass kinetic energy P 2/(4M), which is of the same order as Ebn or p2/M
if P ∼ p ∼

√
MT and Mα2 ∼ T . Higher order corrections are computed in appendix B.
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Part III

Interactions: cross sections and
widths, Boltzmann equations
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Chapter 5

Annihilations in EFTs

5.1 Free annihilations in NRQEDDM

We are interested in describing the annihilation processes of heavy dark matter pairs.
Annihilations happen at the hard scale 2M and the corresponding energy modes are
integrated out in the non-relativistic EFT, here NRQEDDM.1 The local four-fermion
operators of dimension six, listed in the third line of the Lagrangian (4.1), encode the
annihilation of S-wave fermion-antifermion pairs. The leading order contribution to the
imaginary part of these irrelevant operators comes from the two-photon and two-fermion
annihilation processes XX̄ → γγ and XX̄ → fif̄i, respectively for a spin-singlet and
spin-triplet configuration, see figure 5.1. The four-fermion matching coefficients ds and
dv at leading order (LO) read

Im[ds]LO = πα2 , Im[dv]LO =
nf
3
πα2 , (5.1)

where they are obtained by cutting the loop diagrams along the internal photon or light
fermion propagators [100,101]. The matching procedure can be systematically performed
at higher order in the coupling. The four-fermion Wilson coefficients are known up to
next-to-next-to leading order (NNLO), see refs. [91,102] and the review [103]. At NLO,

1EFTs, suitable to describe a physical system effectively at scales µ ≪ M , where µ denotes the
energy scale at which only the light degrees of freedom (l.d.o.f.) are dynamical, have the following
general structure of the Lagrangian density:

LEFT(l.d.o.f.) = L(l.d.o.f.) +
∑
i

ci
Mdi−4

Oi ,

where L(l.d.o.f.) denotes the subset of the parent renormalizable relativistic theory, L, comprising only
the dynamical l.d.o.f., whereas the irrelevant operators Oi are generated due to the non-relativistic
expansion in µ/M . The dimensionless Wilson coefficients ci encode the physics at the large scale M and
the radiative corrections at that scale.
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Figure 5.1: Annihilation processes for a heavy dark fermion-antifermion pair (thick lines)
into a light dark fermion-antifermion pair (thin lines), cf. left diagram, or into two dark
photons (wavy lines), cf. middle and right diagram, at leading order in α. Radiative
corrections to these processes, but also annihilations with more products in the final
state, for instance three outgoing photons, happen at least at O(α3).

the expressions in (5.1) are modified due to the radiative corrections as follows:

Im[ds]NLO = πα2

[
1 +

α

π

(
π2

4
− 5

)]
, (5.2)

Im[dv]NLO =
nf
3
πα2

[
1 +

α

π

(
4

3

π2 − 9

nf
− 4

)]
. (5.3)

From the optical theorem, it follows that the spin-averaged annihilation cross section,
σann, can be written in full generality as2 [57, 63]

σannvMøl =
Im[MNR(ψχ→ ψχ)]

2
, (5.4)

where MNR(ψχ → ψχ) is the 2 → 2 scattering amplitude with initial and final states
normalized non-relativistically,3 and vMøl is the so-called Møller velocity, which is the
flux of incoming particles divided by the energies of the two colliding particles carrying
four-momenta pi = (Ei,pi),

vMøl =

√
(p1 · p2)2 −M4

E1E2
. (5.5)

The Møller velocity has a simple expression in terms of the particle velocities vi ≡ pi/Ei:

v2Møl = v2rel − (v1 × v2)
2 , (5.6)

where vrel ≡ |v1 − v2| is the relative velocity of the colliding particles. Note that in
the non-relativistic limit, the relative velocity is of order 1/M , whereas |v1 × v2| is of

2Cross sections are computed by summing over the final state polarizations and averaging over the
initial state ones. In the case of annihilation cross sections and bound state formation cross sections
(cf. sec. 6.1), the initial state polarizations are the 4 = 2× 2 spin orientations of the incoming fermion-
antifermion pair. In the case of ionization cross sections (sec. 6.2), the initial state polarizations are the
4 = 2 × 2 spin orientations of the incoming fermion-antifermion pair and the two polarizations of the
incoming photon (or 2× (N2 − 1) polarizations in case of non-abelian gauge fields, cf. section 9.2).

3The relation between a relativistically normalized state, |R⟩, and a non-relativistically normalized
one, |NR⟩, is |R⟩ =

√
2E |NR⟩, E being the energy of the state.
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Figure 5.2: Matching between annihilation diagrams in the relativistic theory at one loop
(upper three diagrams) and the corresponding four-fermion interactions in NRQEDDM

(lower two diagrams). The associated imaginary parts of the matching coefficients ds
and dv at order α2 are given in (5.1). They correspond to S-wave spin-singlet and
spin-triplet annihilations, respectively. The thick solid lines denote the incoming and
outgoing heavy DM particle and antiparticle, whereas wavy lines stand for the dark
photon and thin solid lines for light dark fermions. The imaginary part of the matching
coefficients encode the annihilation processes depicted in figure 5.1.

order 1/M2. We can write p1 = p + P /2 and p2 = −p + P /2, where p is the relative
and P the center-of-mass momentum, cf. section A.1. From this it follows that in
the center-of-mass frame (cm) of the dark fermion-antifermion pair, where Pcm = 0,
(p1)cm = −(p2)cm = pcm and (E1)cm = (E2)cm =

√
p2
cm +M2, it holds that

(v1)cm = −(v2)cm =
pcm√

p2
cm +M2

, (5.7)

and from relation (5.6) in the center-of-mass frame, where (v1)cm×(v2)cm = 0, it follows

(vMøl)cm = (vrel)cm = 2|(v1)cm| = 2
|pcm|
M

[
1− p2

cm

2M2
+O

(
p4
cm

M4

)]
. (5.8)

We see that (v
(0)
rel )cm ≡ 2|pcm|/M is the relative velocity at leading order in the non-

relativistic expansion. In the center-of-mass frame of the fermion-antifermion pair, the
thermal bath is moving with velocity about −P /(2M), where P is the center-of-mass
momentum in the thermal bath frame, cf. fig. 2.1.

We turn back to the computation of the spin-averaged annihilation cross section.
Accounting only for the lowest-order dimension-six four-fermion operators written ex-
plicitly in (4.1), that are momentum independent, from the optical theorem (5.4) we
obtain for the S-wave annihilation cross section at zeroth order in the momenta in the
center-of-mass frame (in fact, it is the same in any reference):

σNR
annvrel =

Im[ds] + 3Im[dv]

M2
, (5.9)
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where vrel ≡ (v
(0)
rel )cm is the relative velocity used in the literature for heavy composite

systems. Computing next-to-leading order (NLO) annihilation cross sections has been
for long pursued in a variety of models, e.g. [104–111]. The expression at NLO in α of
the S-wave annihilation cross section in the abelian dark matter model (3.1) reads

(σNR
annvrel)NLO =

πα2

M2

[
1 + nf +

α

π

(
19

12
π2 − 17− 4nf

)]
. (5.10)

At leading order, one recovers the well known result (cf. ref. [112] for the specific case
nf = 0, i.e. the free annihilation of a fermion and an antifermion into two photons)

(σNR
annvrel)LO = (1 + nf )

πα2

M2
. (5.11)

Whether or not we set nf = 0 in (3.1), the NLO corrections are negative and make the
cross section smaller. Taking α = 0.4, the NLO cross section is reduced by about 17%
with respect to the LO cross section (even larger couplings have been considered in the
literature, see e.g. [15]). If we keep one light fermion in the model (nf = 1), then the
NLO cross section decreases by about 34% with respect to the LO cross section, for
the same value of the coupling; by about 40% for nf = 2 and by more than a half if
we would add more than ten light fermions. We see that radiative corrections can have
a significant impact on the observable, and it is therefore crucial to state the order of
accuracy by the power counting whenever a result is provided.

We can increase the order of precision not only by considering loop corrections to
the matching coefficients, like it was done for Im[ds] and Im[dv] up to NLO in α in eqs.
(5.2) and (5.3), but also by adding irrelevant four-fermion operators of dimension higher
than six to the Lagrangian (4.1), in this way accounting for the velocity corrections of
S-wave annihilations at higher order. Higher dimensional four-fermion operators also
account for the annihilation of fermion-antifermion pairs with higher orbital angular
momentum, i.e. P-waves, D-waves and so on. Effective field theories provide a straight-
forward framework to compute higher-order corrections to the annihilation cross section,
either in terms of the aforementioned α corrections to the matching coefficients of the
four-fermion operators, or by including higher dimensional four-fermion operators to the
NRQEDDM Lagrangian, and eventually provide the relativistic and radiative corrections
to the associated interaction rate, here the annihilation cross section, in terms of veloci-
ties and the coupling, respectively.4. The irrelevant four-fermion operators of dimension
eight are5 [115,116]

4In this respect, we refer the interested reader to the following refs. [113, 114], where EFT-methods
were exploited for dark matter models involving neutralino fields in the context of the Minimal Super-
symmetric Standard Model (MSSM), or ref. [100] for the case of heavy quarkonium in QCD.

5Four-fermion operators of dimensionality seven are forbidden because of parity conservation. At
dimension eight there are two additional four-fermion operators that couple to a soft dark magnetic field
(at dimension nine they couple to a soft dark electric field), and one of them develops an imaginary part
in the associated matching coefficient at O(α2) [115]. We do not consider such interactions in this work,
as for instance XX̄ + γsoft → fif̄i.
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δLdim.8
NRQEDDM

=
g(1S0)

2M4

[
ψ†
(
− i
2

←→∇
)2

χχ†ψ + h.c.

]
+
g(3S1)

2M4

[
ψ†
(
− i
2

←→∇
)2

σχ · χ†σψ + h.c.

]

+
g(3S1,

3D1)

2M4

[
ψ†σiχχ†σj

(
− i
2

)2←→∇ (i←→∇ j)ψ + h.c.

]
+
ga cm
M4
∇i(ψ†σjχ)∇i(χ†σjψ) +

gb cm

M4
∇ · (ψ†σχ)∇ · (χ†σψ) +

gc cm
M4

∇(ψ†χ) ·∇(χ†ψ)

+
f(1P1)

M4
ψ†
(
− i
2

←→∇
)
χ · χ†

(
− i
2

←→∇
)
ψ +

f(3P0)

3M4
ψ†
(
− i
2

←→∇ · σ
)
χχ†

(
− i
2

←→∇ · σ
)
ψ

+
f(3P1)

2M4
ψ†
(
− i
2

←→∇ × σ

)
χ · χ†

(
− i
2

←→∇ × σ

)
ψ

+
f(3P2)

M4
ψ†
(
− i
2

←→∇ (iσj)
)
χχ†

(
− i
2

←→∇ (iσj)
)
ψ ,

(5.12)
and encode the first correction to the S-wave annihilation in the relative velocity (second
and third line) and in the center-of-mass velocity (fourth line), but also the first non-
vanishing contribution to the P-wave annihilation (last three lines). In eq. (5.12) the

gradient
←→∇ acts on both directions,

←→∇ ≡ −→∇ − ←−∇ with
−→∇ = ∇, and we use the

conventional notation T (ij) ≡ (T ij+T ji)/2−T kkδij/3. The terms in (5.12) are obtained
from more general operators, where the gradient ∇ is replaced by the spatial covariant
derivative D. We characterize the fermion-antifermion pair as in atomic spectroscopy by
2S+1LJ , i.e. by its total spin S = (0, 1), total orbital angular momentum L = (0, 1, . . . )
and the total angular momentum quantum number J = S+L. One can then compute the
annihilation cross section upon using the optical theorem (5.4) in any reference frame,
and from the operators in (5.12) one would obtain the leading relative and center-of-mass
momentum-dependent corrections to the S-wave annihilation in (5.9), and in addition
a non-vanishing contribution from the P-wave annihilation. The imaginary parts of the
matching coefficients in (5.12) at order α2 are given by [115,117,118]

Im
[
g(1S0)

]
= −4

3
πα2 , Im

[
g(3S1)

]
= −4

9
nfπα

2 , Im
[
g(3S1,

3D1))
]
= −nf

3
πα2, (5.13)

Im
[
f(1P1)

]
= Im

[
f(3P1)

]
= 0 , Im

[
f(3P0)

]
= 3πα2 , Im

[
f(3P2)

]
=

4

5
πα2 , (5.14)

Im [ga cm] = −
1

4
Im [dv] , Im [gb cm] = 0 , Im [gc cm] = −

1

4
Im [ds] , (5.15)

where we dropped the subscript LO since we will not go to higher order in α for the
annihilations of order 1/M4. Those matching coefficients in (5.13)–(5.15), that depend
on nf , incorporate the annihilation into two massless fermions, the others are generated
from the annihilations into two photons. The matching coefficients in (5.13) and (5.15)
account for spin-singlet and spin-triplet S-wave annihilations, the ones in (5.14) for spin-
singlet and spin-triplet P-wave annihilations. The relations in (5.15) are exact, i.e. valid
at all orders, and follow from (reparametrization) Poincaré invariance of QED.
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If we consider only the dimension-eight four-fermion operators listed in the fourth
row of eq. (5.12), then we get the spin-averaged S-wave annihilation cross section in the
laboratory frame at order P 2/M2 in the center-of-mass momentum and at zeroth order
in the relative momentum:

(σannvMøl)lab (P ) =
Im[ds] + 3Im[dv]

M2

(
1− P 2

4M2

)
= σNR

annvrel

(
1− P 2

4M2

)
, (5.16)

which does not depend on the relative momentum, since the other operators in (5.12)
are dropped. The result in eq. (5.16) could also have been derived by Lorentz-boosting
σannvMøl from the center-of-mass frame to the laboratory frame. In particle physics, the
cross section is defined in such a way to be Lorentz invariant, cf. equation (F.1) where dσ
is expressed in terms of Lorentz-invariant factors, hence boosting σannvMøl just means
boosting vMøl. According to its definition (5.5), the Møller velocity transforms under
a Lorentz transformation as the inverse of an energy square since the flux is Lorentz
invariant. In particular, transforming from the center-of-mass to the laboratory frame
we get

(vMøl)lab =

√
(p1 · p2)2 −M4

γ(
√

p2 +M2 − p · v) γ(
√

p2 +M2 + p · v)
=

(vMøl)cm
γ2 (1− (p · v)2/(p2 +M2))

= (vMøl)cm

(
1− P 2

4M2
+ . . .

)
, (5.17)

where γ = 1/
√
1− v2 is the Lorentz factor, v is the center-of-mass velocity, p the

relative momentum in the center-of-mass frame, P the center-of-mass momentum in
the laboratory frame and the dots stand for higher-order terms in the 1/M expansion.
Therefore, Lorentz-boosting eq. (5.9) to the laboratory frame leads precisely to eq. (5.16).

5.2 pNRQEDDM: Sommerfeld-enhanced annihilations and
decays

Concerning the annihilation of dark fermions and antifermions, we accounted only for ve-
locity suppressed operators and radiative corrections in α(2M) to the annihilation cross
section so far, but not for the multiple soft photon rescatterings, which is important near
threshold. Multiple soft dark photon exchanges between the annihilating dark fermion-
antifermion pair modify the fermion-antifermion wavefunction near threshold and lead
to a significant change in the annihilation cross section. These soft photon exchanges
are already encoded in pNRQEDDM in the potential (4.4). The fermion-antifermion
wavefunction in pNRQEDDM, which at leading order in the multipole expansion is the
solution of the Schrödinger equation with the potential (4.4), accounts by construction
for the effect of multiple soft photon rescattering. The four-fermion operators responsible
for annihilation in NRQEDDM give rise to contact potentials in pNRQEDDM,

LpNRQEDDM
⊃ −

∫
d3r ϕ†(t, r,R) δV ann ϕ(t, r,R) , (5.18)
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and the annihilation process of S- and P-wave fermion-antifermion pairs is described by
the imaginary local potential [116]

Im [δV ann] = −δ
3(r)

M2

[
2Im [ds]− S2 (Im [ds]− Im [dv])

]
+
T ijSJ
M4

∇i
r

[
δ3(r)∇j

r Im
[
f(2S+1PJ)

]]
+

ΩijSJ
2M4

{
∇i

r∇j
r , δ

3(r)
}
Im
[
g(2S+1PJ)

]
+
δ3(r)

M4
∇iR∇jR

[
2 Im [gc cm] δij − S2 (Im [gc cm]− Im [ga cm]) δij + SiSj Im [gb cm]

]
,

(5.19)
where an implicit summation over the total spin S and total angular momentum J index
is understood, and the operators T ijSJ , Ω

ij
SJ are written in terms of the spin as [116,119]

Ωij00 = δij(2− S2) , Ωij11 = δijS2 , Ωij11(
3S1,

3D1) = SiSj − δij

3
S2 ,

T ij01 = δij(2− S2) , T ij10 =
1

3
SiSj , T ij11 =

1

2
ϵkiaϵkja

′
SaSa

′
, TS ≡

1

3
ΩiiSS ,

T ij12 =

[
1

2
(δikSa + δiaSk)− 1

3
δkaSi

] [
1

2
(δjkSa + δjaSk)− 1

3
δkaSj

]
=

1

2
δijS2 +

1

6
SiSj .

(5.20)
In equation (5.19), the expression in the first line encodes the S-wave annihilation at
leading order, the second expression in the second row its correction at first order in
the relative momentum and the expressions in the third line its correction at first order
in the center-of-mass momentum. The first expression in the second line describes the
P-wave annihilation at leading order.

5.2.1 Radiative vs. velocity corrections

The resummation of multiple soft photon exchanges within the dark fermion-antifermion
pair leads to a modification of the pair wavefunction close to threshold from free to either
a bound-state wavefunction or a scattering wavefunction. This modification ultimately
alters the annihilation cross section and decay width. The spin averaged annihilation
cross section may be computed from the optical theorem analogously to eq. (5.4):

σannvMøl =
Im[MNR(ϕ→ ϕ)]

2
, (5.21)

where the amplitudeMNR(ϕ→ ϕ) describes the propagation of the fermion-antifermion
field ϕ projected on scattering states. The amplitude is given by the expectation value of
−Im [δV ann] on the fermion-antifermion wavefunction for scattering states.6 Considering

6To be more explicit:

Im[MNR(ϕ→ ϕ)] = −
∑
S=0,1

∑
mS=0,±1

∫
d3r ⟨p,P , S,mS |ϕ†(r,R, t) Im [δV ann]ϕ(r,R, t)|p,P , S,mS⟩ .
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all terms listed in (5.19), we obtain for the spin-averaged annihilation cross section at
leading order in α(2M) in the laboratory frame7

(σannvMøl)lab (p,P ) =
Im[ds]LO + 3 Im[dv]LO

M2

(
|Ψp(0)|2

)
lab

+
Im[f(3P0)] + 5 Im[f(3P2)]

3M4

∫
d3rlab δ

3(rlab)
[
∇rΨ

∗
p(r)

]
lab
· [∇rΨp(r)]lab

− Im[g(1S0)] + 3 Im[g(3S1)]

2M4

∫
d3rlab δ

3(rlab)
[[
∆rΨ

∗
p(r)

]
lab

(Ψp(r))lab

+
(
Ψ∗

p(r)
)
lab

[∆rΨp(r)]lab

]
− Im [gc cm] + 3 Im [ga cm]

M4

∫
d3rlab δ

3(rlab)
(
Ψ∗

p,P (r,R, t)
)
lab

[∆RΨp,P (r,R, t)]lab

(5.22)
where we drop the subscript LO in the matching coefficients of the associated dimension-
eight operators, and show only terms with non-vanishing Wilson coefficients at O(α2), cf.
eqs. (5.13)–(5.15). Terms involving the imaginary matching coefficient Im

[
g(3S1,

3D1))
]

cancel out once we evaluate the spin operators projected on the scattering state, cf.
footnote 6. We compute the integrals over the relative distance rlab,

8 and the spin-
averaged S-wave annihilation cross section in the laboratory frame at leading order in
α and at order p2

lab/M
2 and P 2/M2 in the relative and center-of-mass momentum,

respectively, reads therefore,9

7The full spatial scattering-state wavefunction in the laboratory frame, cf. (4.6), is Ψp,P (r,R, t) =
e−iEpt+iP ·R Ψp(r). Hence it follows that Ψ∗

p,P (r,R, t) [∆RΨp,P (r,R, t)] = (−P 2) |Ψp(r)|2.
8In order to evaluate the integrals in the second line, we can perform the partial-wave decomposition

of the wavefunction and use the vector spherical harmonics Ψ⃗mℓ (r̂) = r∇rY
m
ℓ (r̂), together with the

completeness relations∫
dΩΨ⃗mℓ (r̂) ·

(
Ψ⃗m

′

ℓ′ (r̂)
)∗

= ℓ(ℓ+ 1)δℓ,ℓ′δm,m′ ,

ℓ∑
m=ℓ

Ψ⃗mℓ (r̂) ·
(
Ψ⃗mℓ (r̂)

)∗
=

2ℓ+ 1

4π
.

As for the integrals in the third and fourth line of (5.22), we can use the Schrödinger equation with
respect to the relative motion at leading order in the potential and in the energy of the scattering state,
and substitute ∆rΨp(r) = (−p2 −Mα/r)Ψp(r). The integration of the first term is straightforward,
however the second term involving the Coulomb potential is infrared divergent. If we regularize the
three-dimensional integral in dimensional regularization, then we can show that it vanishes:∫

d3r δ3(r)|Ψp(r)|2
1

r
=

∫
d3r δ3(r)|Ψp(r)|2

∫
d3k eik·r

4π

k2
= |Ψp(0)|2

∫
d3k

4π

k2
= 0 ,

because the integral in k is scaleless. Dimensional regularization is the correct choice, since the matching
between the EFTs is done in this particular scheme.

9Since the terms in eq. (5.22) involving the integrals in rlab are already of order 1/M4, we can approx-
imate those integrals by the ones in the center-of-mass frame, since corrections due to this substitution
would be of higher order than O(p2

lab/M
2,P 2/M2). It simplifies the computation, because we can use

the analytic expression (C.4) for the wavefunction of the scattering state in the center-of-mass frame.
More information about Lorentz-boost transformations of heavy-pair wavefunctions between different
reference frames is given in sec. A.2.
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(σannvMøl)lab (p,P )

= (1 + nf )
πα2

M2

(
|Ψp0(0)|2

)
lab

(P )

(
1− P 2

4M2

)
+(1 + nf )

πα2

M2

(
|Ψp0(0)|2

)
cm

[
−4p2

cm

3M2
+

7p2
cm

3M2

(
1 + (a0|pcm|)−2

1 + nf

)]
, (5.23)

where the index 0 in the squared wavefunctions denotes that only the partial wave with
ℓ = 0 contributes at the origin r = 0 (note that the information about the P-wave
annihilation is encoded in the term involving the prefactor (1+ (a0|pcm|)−2). According

to eq. (A.32), we can replace
(
|Ψp0(0)|2

)
lab

(P ) with the corresponding quantity in

the center-of-mass frame,
(
|Ψp0(0)|2

)
cm
≡ Sann(ζ), where Sann(ζ) is called Sommerfeld

factor [65] and reads (see e.g. [120,121])

Sann(ζ) =
2πζ

1− e−2πζ
, ζ ≡ α(µs)

vrel
=

1

a0|pcm|
. (5.24)

where α(µs) is evaluated at the soft scale µs ∼ Mα, and we remind that α = α(2M).
Hence, the spin-averaged S-wave annihilation cross section in the laboratory frame at
leading order in α and at order P 2/M2, p2/M2 can be written as

(σannvMøl)lab (p,P ) = (σNR
annvrel)LO Sann(ζ)

×
[
1− P 2

4M2
− 4p2

cm

3M2
+

7p2
cm

3M2

(
1 + (a0|pcm|)−2

1 + nf

)]
,

(5.25)

where pcm ≡ |pcm| and (σNR
annvrel)LO has been defined in eq. (5.11). In the above expres-

sion, the center-of-mass relative momentum pcm in the Sommerfeld factor is expressed
in terms of the relative momentum in the laboratory frame through eq. (A.17), while
the pcm in the square brackets in (5.25) can be substituted directly by the relative
momentum in the laboratory frame.

In the center-of-mass frame, instead, the spin averaged annihilation cross section at
O(α2, v2rel) becomes (note that the subscript cm and lab on the left-hand side of (5.26)
and (5.25), respectively, means that the momenta are taken in that specific reference
frame)10

(σannvrel)cm(p) = (σNR
annvrel)LO

[(
1− 5

24
v2rel

)
Sann(ζ) +

7

12

v2rel
1 + nf

Sℓ=1
ann (ζ)

]
, (5.26)

where Sℓ=1
ann (ζ) = (1+ζ2)Sann(ζ) is the Sommerfeld enhancement for a scattering state in

a P-wave [120,121]. We observe that even at leading order in the non-relativistic velocity

10Note that in order to obtain the result (5.26) from the previous eq. (5.25) (upon switching to the
center-of-mass frame, i.e. P = 0 → plab = pcm , (vMøl)lab = (vMøl)cm), one has to insert (5.8) for
the Møller velocity in the center-of-mass frame, expand the whole equation up to order (pcm/M)2, and
finally rewrite pcm =Mvrel/2 in terms of the relative velocity in the center-of-mass frame.
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expansion (upon neglecting the local potentials of higher order in pNRQEDDM (second
and third row in (5.19)) that arise from the associated dimension-eight four-fermion op-
erators in NRQEDDM) where only S-waves do annihilate, the corresponding annihilation
cross section is p-dependent due to the Sommerfeld factor being still persistent, i.e.

(σNR
annvrel)cm(p) = (σNR

annvrel)Sann(ζ) , (5.27)

where we consider the momentum-independent free S-wave annihilation cross section
(σNR

annvrel), defined (5.9), to encompass also radiative corrections of order α3. Equa-
tion (5.27) shows manifestly the factorization of the different energy scales: the hard dy-
namics is contained in the NRQEDDM matching coefficients Im(ds) and Im(dv), whereas
the soft dynamics is contained in the wavefunction squared |Ψp0(0)|2. For vrel ≲ α, the
annihilation cross section is significantly enhanced by the Sommerfeld factor and the
prediction from the Boltzmann equation (2.6) on the DM particle density n changes
accordingly.11

Our aim in the following is to examine the relative importance of NLO radiative
corrections to the hard matching coefficients Im[ds] and Im[dv], which are corrections
of order α3, with respect to the leading relativistic corrections in the relative and total
velocity of the dark fermion-antifermion pair.12 In the center-of-mass frame, it means
that we compare the annihilation cross section (5.26), which is of order α2 and v2rel and
hence comprises S- and P-wave annihilations at leading order in the coupling, with the
S-wave annihilation cross section (5.26) of order α3 and v0rel. In the left panel of fig. 5.3,
we plot the annihilation cross section in the center-of-mass frame at different orders of
accuracy as a function over M/T from regions around the freeze-out (here T = M/10)
up to late times, where T = M/105. The coupling is fixed at the hard scale, α =
α(2M) = 0.1, and runs at one loop. The cross section is thermally averaged according to
(B.15), because the thermal motion of the bath can be neglected at the hard annihilation
scale, and normalized by πα2/M2, which corresponds to the free annihilation cross
section into two photons at LO in α and zeroth order in the velocity in the center-of-
mass frame. As expected, the NLO correction to the matching coefficients decreases
the annihilation cross section (dashed lines are below the dotted lines), while velocity
corrections increase it (solid lines are above the dotted lines). The cross sections grow
monotonically with decreasing temperature due to the Sommerfeld enhancement, and
increasing the number nf of light fermions in the model increases the cross section due
to the additional annihilation channels (black lines above orange lines). Then on the

11A derivation of the Sommerfeld enhancement for S-wave pair annihilation that includes the regime of
very small momenta (velocities) for the unbound pair has been presented in [66,122,123]. The main result
is a saturation of the Sommerfeld factor and a regular behaviour for vrel → 0. Diagrammatically this
amounts to resum the annihilation term, namely the local four-fermion interactions shown in figure 5.1
(right). In this work, we assume to be away from such regime for unbound states. For bound states this
resummation is never needed because the momentum of the particle in the pair is constrained to be of
order Mα. Finally, it is worth noticing that the thermally averaged cross section (B.15) removes the
singularity at vanishing vrel.

12Relativistic corrections also affect the dark fermion-antifermion pair wavefunctions. We do not
consider these corrections here.
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Figure 5.3: (Left) Thermally averaged annihilation cross section in the center-of-mass
frame, normalized by πα2/M2, at different orders in the radiative α-expansion and
relativistic vrel-expansion; plotted as a function of M/T and the coupling runs at one
loop with starting value α = α(2M) = 0.1. Orange lines are for nf = 1, black lines for
nf = 2. (Right) Ratios of the present relic densities, showing either radiative corrections
(black lines) or velocity corrections (orange lines); as a function of α = α(2M). Dashed
lines are for nf = 1, solid lines for nf = 2.

right panel of fig. 5.3, we visualize the numerical impact of the α- and vrel-corrections
on the present DM energy density ΩDMh

2. We therefore plot the ratio RΩDM
of ΩDMh

2,
as obtained from the S-wave annihilation cross section with matching coefficients at
O(α3), over the present energy density when the matching coefficients are of order α2

(black lines). We do the same for the velocity corrections and matching coefficients at
LO (orange lines), and plot the ratios over the coupling α = α(2M). In order to get
the present relic density, we solve the Boltzmann equation (2.9) up to T =M/105, and
relate the numerical result for the yield Y0 to the present relic abundance ΩDMh

2 ∼ Y0.
As already elaborated before, the NLO corrections to the matching coefficients make
the cross section smaller, and hence a more abundant dark matter population is found
for each value of α; with the largest increase by almost a factor of two for α = 0.5 and
nf = 2 (black solid line). Accordingly, we find RΩDM

> 1, as shown in the plot. As for
the velocity corrections, the trend is different. The corrections to the cross section make
it larger for each α, and accordingly we find a smaller DM energy density that results in
RΩDM

< 1. The P-wave contribution overcomes the negative correction of the velocity
dependent S-wave correction, especially at large values of α; the largest decrease is by
about 10% for α = 0.5 and nf = 1. Hence, we conclude that the radiative corrections
to the annihilation process have a stronger impact on the present relic abundance than
the relativistic velocity corrections. In the weak-coupling regime up to α(2M) ≲ 0.1,
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however, the individual corrections on the present relic density are of the more or less
of same order and do barely depend on the number nf of the light fermions. The α-
corrections increase ΩDMh

2 up to 7–10%, while the vrel-corrections decrease it by about
5%. Hence it seems that at the level of the present relic abundance the radiative and
relativistic velocity corrections partly balance each other as long as the couplings are
sufficiently small. We checked that the results have a rather mild dependence on the
specific value of the DM mass, and for the right plot in fig. 5.3 it is set to the specific
value M = 1 TeV.

As a final remark, if we discard the resummation of the soft scale, i.e. neglect
the Coulomb rescattering effects from multiple soft photon exchanges by setting ζ to
zero, from which it follows that Sann(0) = Sℓ=1

ann (0) = 1, we recover the result (F.3)
in appendix F.1, which corresponds to the annihilation cross section one would obtain
in NRQEDDM from the dimension-six and dimension-eight four-fermion operators, cf.
(5.12), by applying the optical theorem (5.4) in the center-of-mass frame. Appendix
F is devoted to an alternative study of the annihilation processes without the usage of
the EFT-formalism, especially in sec. F.2 we follow the Bethe–Salpeter approach to
incorporate the Sommerfeld effect at the diagrammatic level, while in pNRQEDDM, cf.
eq. (4.2), it is already built-in due to the emergence of the potential and Coulombic
wavefunctions.

5.2.2 Lorentz-boost behaviour among reference frames

At the order of P 2/M2 and p2/M2 in the non-relativistic velocity expansion, and by
comparing the annihilation cross section in the laboratory frame, eq. (5.25), with the
annihilation cross section in the center-of-mass frame, cf. eq. (5.26), we observe that

(σannvMøl)lab (p,P ) = (σannvMøl)cm (p)

(
1− P 2

4M2

)
, (5.28)

which represents again the Lorentz transformation property of the Møller velocity with
respect to boosts from the center-of-mass to the laboratory frame, cf. equation (5.17).
Hence Lorentz-boost invariance of the annihilation cross section σann is not violated by
the soft-photon resummation and therefore by the Sommerfeld effect, and the Lorentz-
boost relation (5.28) between the two reference frames equals the relation (5.16) in
NRQEDDM.

Apart from annihilation processes of scattering states, in pNRQEDDM heavy dark
fermion-antifermion bound pairs can annihilate as well. At leading order in α, spin-
singlet bound states, paradarkonia, decay via annihilation into two dark photons, while
spin-triplet bound states, orthodarkonia, decay into two light dark fermions. The decay
width can be computed from

Γann = 2 Im[MNR(ϕ→ ϕ)] , (5.29)

which is analogous to eq. (5.21), but now we do not average over the spin of the initial
states as we project ϕ onto the specific bound state that is decaying. Proceeding like
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in the case of the annihilation cross section, it follows that the paradarkonium S-wave
annihilation width in the laboratory frame at order P 2/M2, α(2M)2 and α(µs)

2 (the
latter coming from the 1/M4 local potentials with respect to the relative motion) is
given by

(Γn,paraann )lab (P ) =
4Im [ds]LO

M2

(
|Ψn00(0)|2

)
lab

(P )

(
1− P 2

4M2

)
+
4Im [ds]LO

M2

(
|Ψn00(0)|2

)
cm

1

3

(
α(µs)

2n

)2

, (5.30)

where the term in the second line comes from the local potential involving the imaginary
matching coefficient Im

[
g(1S0)

]
, that has been rewritten as −4 Im [ds]LO/3 according to

eq. (5.13). In a similar way we obtain for the orthodarkonium S- and P-wave annihilation
width(

Γn,orthoann

)
lab

(P ) =
4Im [dv]LO

M2

(
|Ψn00(0)|2

)
lab

(P )

(
1− P 2

4M2

)
+
4Im [dv]LO

M2

(
|Ψn00(0)|2

)
cm

1

3

(
α(µs)

2n

)2 [
1 + 7

n2 − 1

nf

]
, (5.31)

where in the second line the first term in the square brackets comes from the local poten-
tial involving the imaginary matching coefficient Im

[
g(3S1)

]
rewritten to −4 Im [dv]LO/3

according to eq. (5.13), and the second term in the square brackets accounts for the
spin-triplet P-wave annihilations (that vanishes for the ground state, where n = 1). Us-

ing eq. (A.31), we can replace
(
|Ψn00(0)|2

)
lab

(P ) with γ
(
|Ψn00(0)|2

)
cm
≈ (1 + v2/2)(

|Ψn00(0)|2
)
cm

= (1 +P 2/(8M2))
(
|Ψn00(0)|2

)
cm

. We then get for the paradarkonium

S-wave annihilation width in the laboratory frame at leading order in α(2M) and at
order P 2/M2 and α(µs)

2 (terms proportional to α(µs)
2 × (P 2/M2) are of higher order)

(Γn,paraann )lab (P ) =
4Im [ds]LO

M2

(
|Ψn00(0)|2

)
cm

[
1− P 2

8M2
+

1

3

(
α(µs)

2n

)2
]
, (5.32)

and similarly for the orthodarkonium decay width:13(
Γn,orthoann

)
lab

(P ) =
4Im [dv]LO

M2

(
|Ψn00(0)|2

)
cm

×
[
1− P 2

8M2
+

1

3

(
α(µs)

2n

)2(
1 + 7

n2 − 1

nf

)]
, (5.33)

13We notice that there is a profound connection between the vrel-corrections to the annihilation cross
section, cf. eq. (5.25), and the α(µs)-corrections to the decay widths (5.32) and (5.33). One can relate
at leading order in quantum mechanics the relative momentum of a scattering state with the Bohr

momentum of a bound state through the correspondence pcm ↔ i
Mα(µs)

2n
, i.e. vrel ↔ i α(µs)/n.
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which is now expressed in terms of the square of the bound-state wavefunction in the

center-of-mass frame at the origin,
(
|Ψn00(0)|2

)
cm

= |Rn0(0)|2 /(4π).14

Since
4πα2

M2

(
|Ψn00(0)|2

)
cm

[
1 +

1

3
(α(µs)/(2n))

2

]
is the paradarkonium annihilation

width in the center-of-mass frame, (Γn,paraann )cm, eq. (5.32) simply states the expected
Lorentz dilation of time intervals (upon neglecting O[α(µs)2 × (P 2/M2)] terms):

(Γn,paraann )lab (P ) =
(Γn,paraann )cm

γ
≈ (Γn,paraann )cm

(
1− P 2

8M2

)
. (5.34)

The same relation also holds for the orthodarkonium decay width. We remark that
the results for the decay widths (5.32) and (5.33) are valid only for bound states with
quantum numbers n, ℓ = (0, 1), m = (0,±1), i.e. only for S- and P-waves. D-wave
annihilations are generated from four-fermion operators of higher dimensionality than
eight.

In computing annihilation cross sections and widths we have neglected the thermal
distribution of the photons in the final state. This is justified by the fact that the energy
of the final state photons is of order M . Therefore, according to the two hierarchies
(3.2) and (3.4) considered in this work, the corresponding Bose–Einstein distribution is
exponentially suppressed: nB(M) ≈ e−M/T .

14For the ground state it holds |R10(0)|2 = 4/a30 = (Mα)3/2, which leads to
(
Γ1,para
ann

)
lab

(P ) =

Mα(2M)2α(µs)
3

2

(
1− P 2

8M2
+ α(µs)

2/6

)
, where Mα(2M)2α(µs)

3/2 is the 1S paradarkonium annihila-

tion width at LO in the center-of-mass frame.
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Chapter 6

Dipole transitions at finite
temperature

In the laboratory frame, i.e. in the reference frame where the thermal bath is at rest and
the center of mass of the dark fermion-antifermion pair is moving, near-threshold pro-
cesses such as the formation of bound states or their dissociation into scattering states
are due at order r in pNRQEDDM to the two dipole interaction operators in the second
line of eq. (4.2). The corresponding vertices are shown in figure 4.1. The photons emit-
ted or absorbed in the bound-state formation (bsf ) and bound-state dissociation (bsd)
processes respectively are below the soft scale, i.e. they carry energy and momentum of
order smaller than Mα, which justifies the multipole expansion for a system that fulfills
the hierarchy of energy scales for temperatures close to the freeze-out, cf. eq. (3.4), and
for lower temperatures, cf. eq. (3.2).

Under the two hierarchies (3.2) and (3.4), the electric-dipole operator is the leading
operator responsible for bound-state formation and bound-state dissociation. Together
with kinetic energy corrections to the electric-dipole vertex, the magnetic-dipole vertex
accounts for the leading correction to bound-state formation and bound-state dissocia-
tion due to the center-of-mass motion of the dark fermion-antifermion pair relative to
the thermal bath. Its effect is suppressed by P/M ∼ v ∼

√
T/M (if P ∼

√
MT ) with

respect to the effect of the electric-dipole vertex. The dipole vertices induce bound-state
to bound-state and scattering-state to scattering-state transitions as well, which amount
to (de-)excitation processes and thermal (emission) absorption processes, respectively.
Transitions among continuous scattering states of unbound pairs count as elastic pro-
cesses, and thermal emissions are known under the name of bremsstrahlung processes.

The laboratory frame may be a convenient frame where to compute recoil effects,
because thermal distributions have there a particularly simple form. For instance, the
thermal distribution of photons in a thermal bath at rest is the Bose–Einstein distribu-
tion

nB(E) =
1

eE/T − 1
. (6.1)

The Bose–Einstein distribution for a moving thermal bath is given in eq. (6.65) and
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requires the introduction of a velocity-dependent effective temperature. We will discuss
the treatment of dipole transitions in the center-of-mass frame in more detail in section
6.1.2.2 for the bsf process, and in section 6.2.2 for the bsd process. We will mention it
briefly also in case of (de-)excitation processes in sec. 6.3.

All these dipole processes among bound and scattering states happen at energy
scales below the soft scale, and hence can be summarized to as near-threshold or close-
to-threshold processes, where the threshold can be understood as the energy barrier
separating unbound scattering states from bound states with negative binding energy.
We will compute the associated interaction rates to these dipole processes at finite tem-
perature, which involves propagators in the real-time formalism. The explicit expression
of the photon propagator in Coulomb gauge at leading order is written in (D.4)–(D.5)
and can be found in ref. [124], whereas the expression of the dark fermion-antifermion
pair propagator, cf. (D.14), can be found in [51]. The light-fermion propagator is given
in (D.15).1

6.1 Formation of bound states

We begin with the study of the bound-state formation process due to the dipole transi-
tions in a dark thermal bath. In sec. 6.1.1 we will neglect the recoil effect by discarding
the Röntgen term from the Lagrangian (4.2). In this way the formation of a bound
state can only happen via the electric-dipole operator. In the subsequent sec. 6.1.2 we
will reinstate it again, which allows additionally for the bound-state formation via the
magnetic-dipole operator.

6.1.1 Cross section in the laboratory frame without recoil

We derive the bound-state formation cross section in the laboratory frame where the
medium is at rest. This choice made, the cross section depends on the center of mass
momentum P . The center of mass momentum in the thermal average of the cross
section times vrel scales like

√
MT , which is the momentum scale in the Boltzmann

distribution. Since
√
MT ≪ M , we may systematically expand the rates in the center

of mass momentum P /M , and if we retain the leading order term, this amounts to set
P = 0 in the cross section,2 which is our choice in the following sections (6.1.1.1) and
(6.1.1.2).

1In real-time formalism, propagators are 2×2 matrices. However, the fermion-antifermion propagator
gets a particularly simple form in the heavy-fermion limit, as thermal corrections are exponentially
suppressed and the 12-component vanishes [48]. The interaction rates can be computed either from the
imaginary part of the 11-component or from the 21-component of the associated self energy. In case of
bound-state formation, the corresponding self-energy is depicted in fig. 6.1.

2We come to the same conclusion if we choose the reference frame of the center of mass of the dark
fermion-antifermion pair. In this case, the velocity of the medium is about

√
T/M , which is much

smaller than one, the velocity of light. Expanding in it, the thermal distribution of the dark photons
reduces at leading order to the thermal distribution of the medium at rest, i.e. eq. (6.1) [125].
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p0 − q0

. . .+=

Figure 6.1: Self-energy diagram of the scattering state at dipole order r2 and at zeroth
order in velocity expansion (left-hand side). The diagram on the left-hand side involves
a resummed dark electric-electric correlator (grey shaded loop), which can be expanded
in the weakly coupled abelian model, here up to next-to-leading order in α, where the
first diagram on the right-hand side is of order α and the second diagram is of order
α2. The external double solid lines represent the unbound pair, the internal single solid
lines represent a bound state. The wavy lines denote the dark photon, the nf light
dark fermions in the loop are represented by single arrowed lines. These diagrams are
generated by the electric-dipole interaction only, cf. left vertex in fig. 4.1.

6.1.1.1 Heavy-pair self-energy up to next-to-leading order

The bound-state formation cross section in the laboratory frame at leading order in r and
at zeroth order in P can be determined from the self-energy diagram of the scattering
state in figure 6.1.3 From the optical theorem it follows that

(σbsf vMøl)lab(p) = −2⟨p|Im[Σ11(p0)]|p ⟩lab = ⟨p|[−iΣ21(p0)]|p ⟩lab , (6.2)

where in the second equality we used the cutting rules at finite T , cf. ref. [126], in
order to relate the imaginary part of the time-ordered self-energy to the 21-component
of the self-energy Σ21

s . 4 We refer the reader to appendix D for more details about the
Schwinger-Keldysh contour and the associated CTP indices {1, 2}, which lead to the
four combinations {ΣT ,Σ>,Σ<,ΣT̄ = (ΣT )∗} of the self-energy (and similarly for the
propagators).

Since in this section we consider the incoming scattering state with vanishing total
momentum, P = 0, its energy (p0)lab and relative momentum (p)lab equal the expres-
sions in the center-of-mass frame, and (vMøl)lab = vrel. We will drop the subscript lab
from now on. Hence p0 = Ep = 2M + p2/M at leading order, and in the laboratory
frame where the thermal bath is static, we can freely choose the center-of-mass coordi-
nate to be at the origin R = 0. In dimensional regularization D = 4− 2ϵ, the physical

3In case of dissociations and bound-to-bound transitions, one has just to invert the double- and
single-line heavy pair propagators in figure 6.1, or consider only single-line propagators, respectively.
The photonic part and the vertices remain unchanged. For scattering-to-scattering transitions, only
double-solid lines need to be considered.

4More explicitly, employing the cutting rules we get

Im[Σ11] = − 1

2i
(Σ> +Σ<) ≈ i

2
Σ> ,

where the 12-component Σ< is exponentially suppressed due to the off-diagonal structure of the DM
pair propagator, cf. (D.14).
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11-component of the self-energy reads

Σ11(p0) = −ig2
∫ ∞

0
dt rieit(p0−H)rj⟨Ei(t,R)Ej(0,R′)⟩11

=
−ig2
D − 1

∫ ∞

0
dt rieit(p0−H)ri⟨E(t, 0)E(0, 0)⟩11

=
−ig2
D − 1

∫ ∞

0
dt rieit(p0−H)µ4−D

∫
dDq

(2π)D
e−iq0tri⟨EE⟩11(q)

= −ig2 µ
4−D

D − 1

∫
dDq

(2π)D
ri

i

p0 − q0 −H + iϵ
ri⟨EE⟩11(q) , (6.3)

where in the second equality we used the rotational symmetry in case of vanishing
center-of-mass momentum of the heavy pair, and in the third equality we transformed
the electric-electric correlator into momentum space. The time-ordered DM propagator
enters as i[p0−q0−H+iϵ]−1 in the last line of (6.3), and the dark electric field correlator
can be written in terms of the dark photon two-point function

⟨Ei(x)Ei(0)⟩ = (−∂0gµi + ∂igµ0)(∂0gνi − ∂igν0)⟨Aµ(x)Aν(0)⟩
= −∂20Dii(x)−∇2D00(x) ,

(6.4)

or equivalently in the momentum space

⟨EiEi⟩(q) = (iq0gµi − iqigµ0)(−iq0gνi + iqigν0)⟨AµAν⟩(q)
= q20Dii(q) + q2D00(q) .

(6.5)

Projecting the imaginary part of equation (6.3) onto a scattering state |p⟩ and inserting
a complete set of bound states with quantum numbers n in between the DM propagator
and one of the quantum-mechanical relative position operators ri, one can determine
the bound-state formation cross section:

(σbsf vrel)(p) = −2g2
µ4−D

D − 1

∑
n

|⟨n|r|p⟩|2
∫

dDq

(2π)D
Im

[ ⟨EE⟩11(q0, q)
p0 − q0 − En + iϵ

]
, (6.6)

where H|n⟩ = En|n⟩, En = 2M − Mα(µs)
2/(4n2) is the eigenenergy of the bound

state n, and the energy scale µs is of order of the Bohr momentum. Alternatively,
according to equation (6.2), it may be equivalently extracted from the 21-component of
the scattering-state self-energy, eventually leading to

(σbsf vrel)(p) = g2
µ4−D

D − 1

∑
n

|⟨n|r|p⟩|2
∫

dD−1q

(2π)D−1
⟨EE⟩>(∆Epn, q) . (6.7)

The bound-state formation cross section depends on the quantum-mechanical electric
dipole matrix element ⟨n|r|p⟩, whose general expression can be inferred from appendix
C.1, and on the D − 1 dimensional integral of the 21-component of the dark electric-
electric correlator with fixed energy ∆Epn ≡ Ep − En = p2/M +Mα(µs)

2/(4n2) ≥ 0.
The latter quantity is the key subject to be studied in the following.
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If we stay at leading order in the coupling α, hence neglect the two-loop self-energy
diagram in fig. 6.1, we insert the free dark photon propagator in Coulomb gauge, cf.
eqs. (D.4) and (D.5), into (6.5), and obtain

⟨EE⟩>LO(∆E
p
n, q) = (∆Epn)

2D>,LO

ii (∆Epn, q) + q2D>,LO

00 (∆Epn, q)

= 4π (∆Epn)
2 δ[(∆Epn)

2 − q2] [1 + nB(∆E
p
n)] ,

(6.8)

which upon plugging in into (6.7) and integrating over the three-momentum q gives

(σbsf vrel)
LO(p) =

∑
n

(σnbsf vrel)
LO(p) =

4

3
α
∑
n

|⟨n|r|p⟩|2 (∆Epn)3 [1 + nB(∆E
p
n)] , (6.9)

where α = g2/(4π). The bound-state formation cross section at leading order in the
coupling is already known since a while [15]. It corresponds to the electric-dipole process

(XX̄)p → γ + (XX̄)n , (6.10)

where a bound state (XX̄)n is formed from a scattering state (XX̄)p via the emission
of an ultrasoft dark photon. As a specific example of the above expression, we con-
sider the formation of the lowest-lying 1S bound state, whose wavefunction is ⟨r|1S⟩ =
R10(r)/(4π). In this case, only scattering states in the partial wave ℓ = 1 contribute,
whose wavefunction is ⟨r|p1 ⟩ = Ψp1(r). The bound-state formation cross section reads

(σ1Sbsfvrel)
LO(p) =

g2

3π
[1 + nB(∆E

p
1)] |⟨1S|r|p1⟩|2(∆Ep1)3

=
α7π2 210

3M2 v5rel

(
1 + α2

v2rel

)2 e−4 α
vrel

arccot α
vrel

1− e−2π α
vrel

[1 + nB(∆E
p
1)] , (6.11)

with p = Mvrel/2 and ∆Ep1 =
Mv2rel

4

(
1 + α2

v2rel

)
. The squared dipole matrix element is

written in eq. (C.19). By rewriting the result in (6.11) in terms of ζ = α/vrel, we
recover in the zero temperature limit, i.e. by setting the Bose–Einstein distribution to
zero, the expression derived in refs. [15,127], and also the abelian limit of the non-abelian
version given in eq. (9.21) [50]. We also agree with the finite temperature expression
presented in ref. [29]. The formation cross section for the first excited bound state 2S,
with quantum numbers n = 2 and ℓ = m = 0, is given by

(σ2Sbsfvrel)
LO(p) =

g2

3π
[1 + nB(∆E

p
2)] |⟨2S|r|p1⟩|2(∆Ep2)3

=
27π2α7

3M2v5rel

(
1 + α2

v2rel

)
(
1 + 1

4
α2

v2rel

)3 e−4 α
vrel

arccot
(

1
2

α
vrel

)
1− e−2π α

vrel

[1 + nB(∆E
p
2)] , (6.12)

where the squared dipole matrix element is written in eq. (C.21), and for the 2P state,
with n = 2, ℓ = 1 and with a summation over the orbital magnetic quantum number
m = (0,±1), it reads
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(σ2Pbsfvrel)
LO(p) =

m=1∑
m=−1

(σ2Pmbsf vrel)
LO(p)

=
25π2α9

33

(√
1 + α2

4v2rel
− 4
√

1 + α2

v2rel

)2
+ 2

(√
1 + α2

4v2rel
+ 2
√
1 + α2

v2rel

)2
M2v7rel

(
1 + α2

4v2rel

)4
× e

−4 α
vrel

arccot
(

α
2vrel

)
1− e−2π α

vrel

[1 + nB(∆E
p
2)] . (6.13)

where the squared dipole matrix elements for m = (0,±1) are written in eq.(C.23) and
(C.25). Since at O(α2) the binding energies depend only on the principal quantum
number n, the states 2S and 2Pm=0,±1 have the same binding energy Eb2 = −Mα2/16.
The formation cross section of a 3S bound state, that has quantum numbers n = 3,
ℓ = m = 0, and binding energy Eb3 = −Mα2/(4 · 32), reads

(σ3Sbsfvrel)
LO(p) =

210π2

34

α7
(
1 + α2

v2rel

)
M2v5rel

(
1 + 7α2

33v2rel

)2
(
1 + α2

32v2rel

)5 e−4 α
vrel

arccot
(

α
3vrel

)
1− e−2π α

vrel

[1 + nB(∆E
p
3)] .

(6.14)
Our results agree with the ones in ref. [17]. In figure 6.2 left, we plot the bound-state
formation cross section normalized by πα2/M2 for the 1S (orange solid line), 2S (brown
dotted line), 2P (purple dashed line) and 3S (red dash-dotted line) state, thermally
averaged according to (B.15), for α = 0.1.5 As a reference, we plot also the thermally
averaged Sommerfeld enhancement factor (5.24), presented by the black solid line, where
we see that only the 1S-bsf is larger than Sann (by a factor of two to three for the whole
temperature range 10 ≤ M/T ≤ 105), while the 2P-bsf (summed over m = 0,±1) is
of the same order and the 2S-, 3S-bsf cross sections are suppressed. We can therefore
truncate the summation in n in (6.9) up to the first few excited states, where the forma-
tion of the ground state dominates over all the other bound states. We remark that in
the dipole limit, if we select the spin of the final state, the bound-state formation cross
section for paradarkonium in general is given by σ1S,parabsf = σ1Sbsf/4 and for orthodarko-

nium it is σ1S,orthobsf = 3σ1Sbsf/4. Despite that the near-threshold processes are spin-blind
at order r2, we will need to split them into its spin-singlet and spin-triplet parts when
plugging them into the coupled Boltzmann equations that we will show in sec. 7.2.

In the derivation of the bound-state formation cross section we have implicitly as-
sumed that the dark pair propagator and electric-field correlator are the ones in kinetic
equilibrium, and σLO

bsf encompasses therefore the Bose-enhancement factor [1 + nB] in
(6.9) due to the emitted photon. The result does not apply if the thermal bath is out
of kinetic equilibrium. However, as argued in chapter 2, at freeze-out the thermal envi-
ronment evolves rather slowly and hence can be assumed to be quasistatic to a certain

5Note that we thermally average in the laboratory frame where the bath is at rest. But since we omit
the center-of-mass motion in this section, the relative velocity in the laboratory frame coincides with the
one in the center-of-mass frame.
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Figure 6.2: (Left) Ratios of the thermally averaged formation cross sections of the first
few excited bound states at leading order, cf. eq. (6.9), over πα2/M2, as functions of
M/T . As a comparison, we plot also the thermally averaged Sommerfeld factor. (Right)
Ratios of the 1S, 2S, 2P and 3S dissociation widths and 1S↔ 2P (de-)excitation widths
over Mα5/2 at leading order in the coupling. The vertical lines mark the position where
T =Mα2, i.e. the regime where the temperature is of order of the ultrasoft scale.

degree of accuracy. Hence we can rely on the Maxwell–Boltzmann- and Bose-statistics of
the fermion-antifermion meson and the dark photons, respectively, and therefore use the
corresponding thermal propagator expressions (here (D.14), (D.4) and (D.5) at leading
order). Even though detailed balance is lost with respect to annihilation and creation
processes, it is maintained between bound-state formation and bound-state dissociation
as long as the bath is hot enough, called the ionization-equilibrium regime [23], and for
instance for the ground state it holds that

1

16
⟨σ1Sbsfvrel⟩n2eq = Γ1S

bsdn
para
1S,eq and

3

16
⟨σ1Sbsfvrel⟩n2eq = Γ1S

bsd n
ortho
1S,eq . (6.15)

We can compute the dissociation width from the detailed balance conditions in (6.15),
for the first three excited states and plot the results in the right panel of fig. 6.2. We
will show the analytic results for the widths in the next chapter, where they will be
derived in a direct way. There is also a detailed balance relation between excitation and
de-excitation processes, which for two discrete bound states n and n′, with n > n′, reads

nB(En) Γ
n→n′
de-ex. = nB(En′) Γn

′→n
ex. , (6.16)

and for the particular example of n = 2P and n′ = 1S, we add the corresponding bound-
state to bound-state widths in the right panel of fig. 6.2. Bound-to-bound transitions
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will be treated in more detail in sec. 6.3. Hence, from now on kinetic equilibrium is
always presupposed.

At next-to-leading order in the coupling, one needs to take into account the two-loop
self-energy displayed in figure 6.1, hence we need to compute the next-to-leading order
correction to the 21-component of the electric-field correlator (6.8):

δ⟨EE⟩>NLO(q) = q20D
>,NLO

ii (q) + q2D>,NLO

00 (q)

= 2[1 + nB(q0)] Im
[
q20D

R,LO
iλ (q)ΠλρR (q)DR,LO

ρi (q) + q2DR,LO
0λ (q)ΠλρR (q)DR,LO

ρ0 (q)
]

≡ δ⟨EE⟩>,nF=0
NLO (q) + δ⟨EE⟩>,nF ̸=0

NLO (q) ,
(6.17)

where q0 = ∆Epn and in the last line we separated the electric correlator into two terms
according to the splitting of the retarded polarization tensor into a vacuum (nF(q0) = 0)
and a thermal (nF(q0) ̸= 0) part as in (D.17).6

We insert the retarded photon propagator at LO, cf. eqs. (D.8) and (D.9), and the
vacuum part of the retarded polarization tensor (D.18), renormalized in the MS scheme,
and we obtain for the nF(q0) = 0 part of the 21-correlator

δ⟨EE⟩>,nF=0
NLO (q)

= 2[1 + nB(q0)]Im
[
q20D

R,LO
iλ (q)Πλρ,T=0

R,MS
(q)DR,LO

ρi (q) + q2DR,LO
0λ (q)Πλρ,T=0

R,MS
(q)DR,LO

ρ0 (q)
]

= [1 + nB(q0)]
nfg

2

6π2
Im

[
q2(q2 − 3q20)

((q0 + iϵ)2 − q2)2

[
ln

(
(q0 + iϵ)2 − q2

−µ2
)
− 5

3

]]
.

(6.18)
Inserting this expression into (6.7) and integrating over q using the residue theorem,
we obtain the next-to-leading order correction to the bsf cross section coming from the
nF(q0) = 0 part ,

δ(σbsf vrel)
NLO
nF=0(p) =

∑
n

(σnbsf vrel)
LO(p)

nf
3π
α

[
ln

(
4(∆Epn)2

µ2

)
− 10

3

]
, (6.19)

where (σnbsf vrel)
LO can be read off from eq. (6.9). At first sight the bsf cross section (6.19)

seems to depend on the renormalization scale µ. However, from the one-loop running of
the coupling in (3.3) we deduce that7

α(µ) =
α(µus)

1− β0
4πα(µus) ln

(
µ2us
µ2

) ≈ α(µus) [1− nf
3π
α(µus) ln

(
µ2us
µ2

)]
, (6.20)

6In order to make the notation more transparent, note that while we distinguish contributions to the
21-electric correlator coming from either a vanishing or non-vanishing Fermi–Dirac distribution in ΠλρR (q),

the Bose–Einstein distribution nB(q0) is included in δ⟨EE⟩>,nF=0
NLO (q) as well as in δ⟨EE⟩>,nF ̸=0

NLO (q).
7We can expand the expression in (6.20) because the coupling is weak at the ultrasoft scale µs, and

the electric-field correlator (6.18) has been computed in dimensional regularization at a scale µ of the
order of µs.
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where µus is chosen to be at the ultrasoft scale at which the bsf process happens, µus ≈
Mα2. Substituting the coupling in (6.9) by the expression (6.20), then it follows that
the sum of the bsf cross section at LO, (6.9), and the NLO correction term (6.19) gives

(σbsf vrel)
LO+NLO

nF=0 (p) ≡ (σbsf vrel)
LO(p) + δ(σbsf vrel)

NLO
nF=0(p)

=
∑
n

(σbsf vrel)
LO
n (p)

{
1 +

nf
3π
α(µus)

[
ln

(
4(∆Epn)2

µ2us

)
− 10

3

]}
,

(6.21)
that now is scale independent and the NLO correction is suppressed if nfα(µus) ≪ 1.
We notice that this condition is certainly fulfilled for the considered hierarchies (3.2)
and (3.4), where T ≫ mD implies

√
nfα(T )≪ 1.8

Next, we compute the nF(q0) ̸= 0 part in (6.17), that depends on the thermal retarded
polarization tensor given in (D.21), and obtain

δ⟨EE⟩>,nF ̸=0
NLO (q)

= 2[1 + nB(q0)]Im
[
2q20∆

R
LO(q)Π

R,T ̸=0
trans (q)∆R

LO(q) + q2DR,LO
00 (q)ΠR,T ̸=0

00 (q)DR,LO
00 (q)

]
= nfg

2[1 + nB(q0)]

∫
d3k

(2π)3
nF(|k|)
|k||k + q| Im

 ∑
σ1,2=±1

σ2T00/q
2|k0=σ1|k|

q0 + σ1|k|+ σ2|k + q|+ iϵ

+
1

((q0 + iϵ)2 − q2)2

 ∑
σ1,2=±1

σ22q
2
0Ttrans|k0=σ1|k|

q0 + σ1|k|+ σ2|k + q|+ iϵ

 ,
(6.22)

where ∆R
LO(q), Π

R,T ̸=0
00 (q), ΠR,T ̸=0

trans (q), T00/trans are given in eqs. (D.9), (D.24), (D.25) and
(D.23), respectively. We insert (6.22) into (6.7) and first integrate over the momentum
q using the residue theorem9, then add up the individual terms and integrate over the
angular coordinate θ = ∢(q,k), and end up with a single integral expression in |k| that

8The coupling, that enters in the Debye mass expression (D.39), is evaluated at the energy scale of
the order of the temperature. As discussed in sec. 3, if we require that T ≫ mD, i.e.

√
nfα(T ) ≪ 1,

then for non-vanishing nf = 1 or nf = 2 we consider sufficiently small couplings α(2M) ≲ 0.1. Since in
the U(1) model the coupling decreases with decreasing energy scale, it holds that nfα(µs)≪

√
nfα(T ).

9Equation (6.22) has two single poles at |q|± = −|k| cos θ±
√

k2 cosΘ2 + q20 + 2σ1q0|k|, which would
physically correspond to putting the light dark fermions on-shell and hence belongs to the process of bsf
via bath-particle scattering as well as the off-shell decay of the intermediate dark photon into a light
dark particle and antiparticle. Moreover equation (6.22) has a double pole at |q| = q0 and corresponds
to putting the dark photon on-shell, which corresponds to bsf via on-shell photo-emission.
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is finite and numerically solvable10,

δ(σbsf vrel)
NLO
nF ̸=0(p) =

∑
n

(σnbsf vrel)
LO(p)

nfα

π(∆Epn)3

∫ ∞

0
d|k| 2nF(|k|)

[
− 2|k|∆Epn

+ 2|k|∆Epn ln
∣∣∣∣k2 − (∆Epn)2

(∆Epn)2

∣∣∣∣+ [2|k|2 + (∆Epn)
2] ln

∣∣∣∣ |k|+∆Epn
|k| −∆Epn

∣∣∣∣] .
(6.23)

The complete bsf cross section up to NLO in the coupling is given by the sum of (6.21)
and (6.23), and can be written as

(σbsf vrel)
LO+NLO(p) = (σbsf vrel)

LO+NLO

nF=0 (p) + δ(σbsf vrel)
NLO
nF ̸=0(p)

=
∑
n

(σbsf vrel)
LO
n (p)

{
1 +

nf
π
α(µus) [Xvac(∆E

p
n, µus) + Xth(∆E

p
n/T )]

}
,

(6.24)
where Xvac can be read off from (6.21) and Xth is written as an integral over a dimen-
sionless variable t ≡ |k|/T , and reads [29,128]

Xth(x) =
2

x3

∫ ∞

0

dt

et + 1

[
(2t2 + x2) ln

∣∣∣∣ t+ x

t− x

∣∣∣∣+ 2tx ln

∣∣∣∣ t2 − x2x2

∣∣∣∣− 2xt

]
, (6.25)

which can be integrated numerically. The bound-state formation at NLO may proceed
via different mechanisms in addition to the thermal photo-dissociation in (6.10). For
nf ̸= 0, the scattering state can collide inelastically with the constituents from the
thermal bath that turns it into a bound state. Or the emitted photon can decay into a
light fermion-antifermion pair. These additional processes can be inferred from cutting
the two-loop diagram in fig. 6.1 through the light-fermion loop and we can relate it to the
Landau damping phenomenon in a QED plasma, that is known for the reverse process
of bound-state dissociation through these bath-particle scattering processes. While the
in-vacuum loop corrections in (6.21) are suppressed for small couplings, the thermal loop
corrections nfαX2/π may become large if the temperature exceeds the typical ultrasoft
energy scale ∆Epn. Hence for the hierarchy of energy scales shown in (3.4), the thermal
loop corrections need to be resummed, which is displayed by the grey shaded loop in
figure 6.1. It is the topic in the next section.

6.1.1.2 Thermal Debye-mass resummation

At temperatures close to the thermal freeze-out regime, where it holds that T ≫ ∆Epn
for weak coupling α ≪ 0.4, we can calculate the 11-component of the self-energy in
eq. (6.3) by splitting the loop integral into various energy regions according to the
hierarchies among them, given in (3.4). We start with the largest dynamical scale in the
pNRQEDDM model, namely the temperature, and integrate over energy and momentum

10Following the arguments in [29, 128], potential collinear divergences from the individual terms
in (6.23) cancel each other when summing them up.
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modes in the loop of the order of T , i.e. {q0, |q|} ∼ T , by expanding the heavy DM pair
propagator in the energy difference operator ∆E ≡ p0−H ≪ q0 ∼ T up to zeroth order,

i

p0 −H − q0 + iϵ
=

i

−q0 + iϵ

[
1 +O

(
p0 −H
q0

)]
. (6.26)

We insert it into (6.3), that now reads

Σ11
(T )(p0) = −ig2

µ4−D

D − 1
r2
∫

dDq

(2π)D
i

−q0 + iϵ
[q20D

11
ii (q) + q2D11

00(q)] . (6.27)

The subscript (T ) for the self-energy denotes the corresponding energy region. If we
insert the leading order expression for the dark photon propagator in Coulomb gauge
given in (D.4)–(D.5) into eq. (6.27), we obtain a vanishing integral.11 Instead, if we
insert the next-to-leading order expression for the dark photon propagator into (6.27),
which we can expand since q ∼ T ≫ mD, we obtain12

Σ11
(T )(p0) = −ig2

µ4−D

D − 1
r2
∫

dDq

(2π)D
πδ(q0) q

2D11,NLO
00 (q) , (6.28)

and hence the imaginary part reads

Im
[
Σ11
(T )

]
= −g2 µ

4−D

D − 1
r2
∫

dDq

(2π)D
πδ(q0) q

2 Re
[
D11,NLO

00 (q)
]

= −g
2

2

µ4−D

D − 1
r2
∫

dDq

(2π)D
πδ(q0) q

2−iΠS00(q)
q4

,

(6.29)

where in the second line we split the dark photon propagator according to (D.7) into its
real symmetric and imaginary antisymmetric parts. Since (6.29) is non-zero for q0 = 0,
it follows that |q| ∼ T ≫ q0, and we use the appropriate symmetric polarization tensor
in eq. (D.34) to obtain

Im
[
Σ11
(T )

]
= −4g4nfTr2

µ4−D

D − 1

∫
dD−1q

(2π)D
1

|q|3
∫ ∞

|q/2
d|k||k|nF(|k|)

=
α

6
r2Tm2

D

[
1

ϵ
+ γE +

2

3
− 4 ln 2− 2

ζ ′(2)

ζ(2)
− ln

(
T 2

πµ2

)]
,

(6.30)

where ζ(2) = π2/6 is Riemann’s zeta function. The quantity in eq. (6.30) is infrared
divergent and scale dependent. However, at this stage, this is not a concern. It is in

11In fact the vacuum part of the free dark photon propagator results in a scaleless integral for all
terms in the expansion in (6.26). As for the thermal part, contributions up to the third order in the
expansion of the heavy pair propagator can be shown to either vanish in dimensional regularization or be
real and hence they do not contribute to the bsf cross section in (6.2). Further terms of higher order in
∆E/T in (6.26) can be omitted, since the potentially non-vanishing contributions to the scattering-state
self-energy scale less than αr2(∆E)3 and hence below our accuracy of interest [129].

12Since the electric-electric correlator is even in q0, only the even part of the zeroth order expression
of the DM pair propagator contributes.
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fact the manifestation, or an artifact, of the separation of energy scales and indicates
that the result in (6.30) is not valid in the energy region much below the temperature
scale. As soon as we add the contribution from the lower scales, the divergence and the
renormalization scale µ will, and must, cancel out.

Higher order corrections, coming from the contributions to the heavy pair propagator
beyond the zeroth order expansion (comprised in the O(. . . )-term in the expanded prop-
agator (6.26)), are suppressed by a factor αr2m2

DT × (∆E/T )2 ≪ αr2m2
DT . Similarly,

corrections to the dark photon propagator are suppressed by αr2m2
DT × (mD/T )

2 ≪
αr2m2

DT and hence beyond the accuracy of this work. In a similar manner, one could
calculate the real part of the self-energy, which gives thermal corrections to the potential
of the heavy DM pair, see for instance ref. [130] in case of heavy quarkonium in a QGP
or refs. [49, 82] for hydrogen and muonic atoms.

In the next step, we need to look at the lower energy region, where the energy and
momentum modes in the loop are the order of the Debye mass or the ultrasoft energy
difference, i.e. {q0, |q|} ∼ mD ∼ ∆E. Since we consider contributions from the modes
simultaneously of the order of mD and ∆E, we cannot expand the DM pair propagator
as in (6.26) and must therefore keep both the transversal and longitudinal parts of
electric-field correlator. Moreover, the resummation of the loop corrections to the dark
photon propagator is essential, since q ∼ mD. Instead of computing Im[Σ11], we choose
to evaluate the 21-component of the scattering-state self-energy,

Σ>(mD∼∆E)(p0) = ig2
µ4−D

D − 1
ri
∫

dDq

(2π)D
2πδ(∆E − q0)[q2D>

00(q) + q20D
>
ii (q)]r

i

= Σ>, long(mD∼∆E)(p0) + Σ>, trans(mD∼∆E)(p0) .

(6.31)

First, we compute the longitudinal part. We abbreviate the resummed longitudinal
retarded/advanced dark photon propagator in (D.50) as

D
R/A
00 (q) =

i

q2 + l(q)± il′(q) , (6.32)

where l(q) ≡ Re
[
Π
R/A,T ̸=0
00 (q)

]
, cf. (D.35), and ±l′(q) ≡ Im

[
Π
R/A,T ̸=0
00 (q)

]
, cf. (D.36).

Then it follows for the resummed longitudinal 21-propagator that

D>
00(q) = [1 + nB(q0)]

[
DR

00(q)−DA
00(q)

]
≈ πT

|q|
m2

DΘ(−q2)
[q2 + l(q)]2 + l′(q)2

, (6.33)

and the corresponding longitudinal part of Σ> reads

Σ>, long(mD∼∆E)(p0) = ig2
µ4−D

D − 1
ri
∫

dDq

(2π)D
2πδ(∆E − q0)q2D>

00(q)r
i

= ig2
µ4−D

D − 1
ri
∫

dDq

(2π)D
2πδ(∆E − q0)q2

πT

|q|
m2

DΘ(−q2)
[q2 + l(q)]2 + l′(q)2

ri .

(6.34)
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The above expression is ultraviolet divergent, which signals that its validity is spoiled at
energy regions much larger than mD or ∆E. However, as mentioned before, it cancels

the IR-divergence in Σ>(T ) = −2i Im
[
Σ11
(T )

]
, cf. (6.30). In order to see the cancellation

explicitly, we extract the divergent part out of (6.34) by writing

Σ>, long(mD∼∆E)(p0) = ig2
µ4−D

D − 1
ri
∫

dDq

(2π)D
2πδ(∆E − q0)

πT

|q|3m
2
DΘ(−q2)

×
[
1 +

1− [1 + l(q)/q2]2 − [l′(q)/q2]2

[1 + l(q)/q2]2 + [l′(q)/q2]2

]
ri

= Σ>, long,div(mD∼∆E) (p0) + Σ>, long, fin(mD∼∆E)(p0) .

(6.35)

The integration of the first term in the square bracket in the second line of (6.35), which
contains the UV-divergence, gives

Σ>, long, div(mD∼∆E) (∆E) = 2iπ2g2 T m2
D

µ4−D

D − 1

2
√
π
D−1

(2π)D Γ
(
D−1
2

) ri ∫ ∞

∆E
d|q| |q|D−5ri

= i
α

3
Tm2

D r
i

[
1

ϵ
− γE +

8

3
− ln

(
(∆E)2

πµ2

)]
ri .

(6.36)

The integration of the second term in the square bracket is finite and can be done
numerically. We write the expression as

Σ>, long, fin(mD∼∆E)(∆E) = i
2

3
αTm2

D r
i Y long

th

(
∆E

mD

)
ri , (6.37)

where we define the dimensionless finite integral

Y long
th (x) ≡

∫ ∞

1

dt

t

(xt)4 − [(xt)2 + l̃(t)]2 − l̃′(t)2
[(xt)2 + l̃(t)]2 + l̃′(t)2

, (6.38)

with the dimensionless integration variable t ≡ |q|/∆E and the functions

l̃(x) ≡ 1 +
1

2x
ln

∣∣∣∣1− x1 + x

∣∣∣∣ , l̃′(x) ≡ π

2x
. (6.39)

Hence, summing (6.36) and (6.37), the longitudinal part of the scattering-state self-
energy reads

Σ>, long(mD∼∆E)(∆E) = i
α

3
Tm2

Dr
i

[
1

ϵ
− γE +

8

3
− ln

(
(∆E)2

πµ2

)
+ 2Y long

th

(
∆E

mD

)]
ri

= −2i Im
[
Σ11, long, div
(mD∼∆E) (∆E)

]
.

(6.40)

Note that in the limit ∆E/mD → ∞, where the function Y long
th vanishes, eq. (6.40)

agrees with the abelian version of the result in ref. [84]. Hence the correction term 2Y long
th
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accounts for the less strict relation ∆E ∼ mD compared to the hierarchy ∆E ≫ mD

considered in that reference.
Now we consider the finite transversal part in (6.31),

Σ>, trans(mD∼∆E)(p0) = i
g2

3
ri
∫

d4q

(2π)4
2πδ(∆E − q0)q20D>

ii (q)r
i . (6.41)

Starting from the 21-component of the dark photon propagator

D>
ii (q) = [1 + nB(q0)]

[
DR
ii (q)−DA

ii (q)
]
, (6.42)

and using the resummed retarded/advanced propagators in (D.51), we obtain

Σ>, trans(mD∼∆E)(∆E) = i
2

3
g2Tri∆E

∫
d3q

(2π)3

[
i

(∆E)2 − q2 + t(∆E, q) + it′(∆E, q) + iϵ

− i

(∆E)2 − q2 + t(∆E, q)− it′(∆E, q)− iϵ

]
ri ,

(6.43)

where we define t(q) ≡ Re
[
ΠR,T ̸=0

trans (q)
]
, cf. (D.37), and ±t′(q) ≡ Im

[
ΠR,T ̸=0

trans (q)
]
,

cf. (D.38). Equation (6.43) can be written as

Σ>, trans(mD∼∆E)(∆E) = i
2

3
αTm2

Dr
iYtrans

th

(
∆E

mD

)
ri

= −2i Im
[
Σ11, trans
(mD∼∆E)(∆E)

]
,

(6.44)

where we define the dimensionless finite integral

Ytrans
th (x)

≡ 2

π
x4
∫ ∞

0
dt t2

[
i

(1− t2)x2 − t̃(t) + it̃′(t) + iϵ
− i

(1− t2)x2 − t̃(t)− it̃′(t)− iϵ

]
=

2

π
x4
[∫ 1

0
dt t22πδ[(1− t2)x2 − t̃(t)] +

∫ ∞

1
dt t2

2t̃′(t)

[(1− t2)x2 − t̃(t)]2 + t̃′(t)2

]
,

(6.45)
with the dimensionless integration variable t ≡ |q|/∆E and the functions

t̃(x) ≡ 1

2x2

[
1− 1

2x
(1− x2) ln

∣∣∣∣1 + x

1− x

∣∣∣∣] , t̃′(x) ≡ π

4x3
(x2 − 1)Θ(x2 − 1) . (6.46)

In the last equality in eq. (6.45), the integral is split into two integration regions, that
can be associated with distinct physical processes that contribute to heavy-pair transi-
tions. For example, by considering bound-state formation, the first term in eq. (6.45)
contributes to the radiative formation via the emission of an on-shell timelike dark pho-
ton with momentum |q| < ∆E, namely (XX̄)p → (XX̄)n + γ∗; it is timelike because
the photon is corrected with a light-fermion loop, which slows it down below the speed
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of light. The second term in eq. (6.45) contributes to the 2→ 2 scattering process with
light dark fermions from the plasma, the process being (XX̄)p + fi → (XX̄)n + fi (and
similarly with antifermions f̄i). In this case, the interaction is mediated by an off-shell
spacelike dark photon with momentum |q| > ∆E. The 1→ 3 process, where an interme-
diate off-shell timelike dark photon decays into a massless dark fermion-antifermion pair,
is not captured here, since k̂(x) ̸= 0 only for x > 1. This is a more general statement
for T ≫ ∆E, irrespective of the relative size between the Debye mass scale and ∆E.
One may see this by expanding the Heaviside functions in eqs. (D.27) and (D.29) for
large temperatures T ≫ ∆E, at all orders, it always leads to Θ(−q2), cf. eqs. (D.36)
and (D.38). Therefore, in the large temperature regime, the 1→ 3 process involving an
intermediate off-shell photon with timelike momentum, q2 > 0, cannot occur.

Similar arguments apply to the reversed 3 → 1 process in the situation of a bound-
state dissociation. However, at temperatures T ∼ ∆E, the 1 → 3 interaction channel
can give a finite contribution to the bsf process. But at this temperature regime the
1 → 3 off-shell photo-decay as well as the 2 → 2 Landau damping process appear as
small next-to-leading order effects and are therefore suppressed compared to the leading
order bound-state formation via an on-shell dark photon emission, as will be seen in
fig. 6.3 upon plotting the thermally averaged cross section as a function of the inverse
temperature, M/T .

Summarizing the result for the total self-energy, the sum of eqs. (6.40) and (6.44)
leads to

Σ>(mD∼∆E)(∆E)

= i
α

3
Tm2

D r
i

[
1

ϵ
− γE +

8

3
− ln

(
(∆E)2

πµ2

)
+ 2Y long

th

(
∆E

mD

)
+ 2Ytrans

th

(
∆E

mD

)]
ri

= −2i Im
[
Σ11
(mD∼∆E)(∆E)

]
,

(6.47)
and adding the contribution in (6.30) coming from the scale T , we eventually end up
with

Im
[
Σ11(∆E)

]
= Im

[
Σ11
(T )

]
+ Im

[
Σ11
(mD∼∆E)(∆E)

]
=
α

3
Tm2

D r
i

[
γE − 1− ζ ′(2)

ζ(2)
+ ln

(
∆E

4T

)
− Y long

th

(
∆E

mD

)
− Ytrans

th

(
∆E

mD

)]
ri .

(6.48)

We compute the bound-state formation cross section from the optical theorem, cf.
eq. (5.21), taking into account the resummation of the Debye-mass scale in (6.48), and
neglect the in-vacuum correction at NLO, cf. Xvac in (6.24), since nfα(µs)≪

√
nfα(T )

for the considered parametric values of nf and α(2M) in this work (we refer to the
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Figure 6.3: (Left) Ratios of the thermally averaged formation cross sections of the first
few excited bound states at leading order, cf. eq. (6.9), over πα2/M2, as functions of
M/T . As a comparison, we plot also the thermally averaged Sommerfeld factor. (Right)
Ratios of the 1S, 2S, 2P and 3S dissociation widths and 1S↔ 2P (de-)excitation widths
over Mα5/2 at leading order in the coupling. The vertical lines mark the position where
T =Mα2, i.e. the regime where the temperature is of order of the ultrasoft scale.

discussion in footnote 8 in the previous subsection). It reads

(σbsf vrel)resum.(p) =
∑
n

(σnbsf vrel)
LO(p)

∣∣∣∣
T≫∆Epn

×
(

mD

2∆Epn

)2 [
2− 2γE + 2

ζ ′(2)

ζ(2)
− ln

(
(∆Epn)2

16T 2

)
+ 2Y long

th

(
∆Epn
mD

)
+ 2Ytrans

th

(
∆Epn
mD

)]
,

(6.49)
where (σnbsf vrel)

LO(p)
∣∣
T≫∆Epn

≈ (4α/3)|⟨n|r|p⟩|2T (∆Epn)2 is the bsf cross section at lead-

ing order for a given bound state |n⟩ with specific quantum numbers n, cf. eq. (6.9), in
the limit of large temperatures T ≫ ∆Epn. We are now able to compare quantitatively
the corrections from the mD-scale to the result obtained at leading order, cf. (6.9),
but also to the result truncated at NLO, cf. (6.24). We integrate the expressions in
(6.38) and (6.45) numerically and, similarly as in the left plot of fig. 6.2, we show the
thermally averaged bsf cross sections for the ground state at LO (dashed line for nf = 1
and nf = 2), up to NLO (dotted lines) and with resummation effects (solid lines) on the
left panel of fig. 6.3. Orange lines are for nf = 1, black lines for nf = 2, and we choose
again α = 0.1 at the hard scale 2M , and run the coupling at one loop. The solid and
dotted lines approach the dashed line with decreasing temperature. This indeed meets
the expectations, since at small T the dominant bsf process is via on-shell emission of
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a thermal dark photon. However, for large temperatures, where the thermal scale mD

becomes important and eventually needs to be resummed, we observe a corresponding
smaller cross section (solid line) with respect to the cross section at fixed NLO (dotted
curve). In order to see more closely the amount of discrepancy between the naive trun-
cation of the loop corrections at NLO, and the resummation of the scale mD, we plot the
ratio between the two cross sections for the ground state (black lines) as well as the first
excited states 2S and 2P (orange lines) in the right panel of figure 6.3. Since the excited
states 2S and 2P have the same binding energy, the ratio does not change. We observe an
overestimation of the bsf cross section at NLO compared to the resummed cross section
by a factor up to 4-7 in the large temperature region, depending on the number nf of
light fermions. The more fermions species the larger the NLO- and resummation effects
due to the screening of the photon in the thermal bath. The screening effect, however,
disappears in the small-T limit, independently of the value of nf . But, as will be shown
in the follow-up chapter, the discrepancy will have an impact when studying the dark
matter density evolution in the early universe.

6.1.2 Center-of-mass recoil effects

In this section, we compute the bound-state formation cross section in pNRQEDDM,
within the hierarchy of energy scales (3.2), at leading order in the coupling expansion
and first order in the temperature and recoil energy over M ratio. It generalizes the
process in (6.10), i.e. (XX̄)p → γ + (XX̄)n, where the thermal motion of the center-
of-mass of the incoming scattering state (XX̄)p is now reinstated. It is the dominating
process in the ultrasoft temperature regime (3.2). We make use of the optical theorem
(5.21) and express the rate in terms of self-energy diagrams whose vertices are shown in
figure 4.1. It follows that the self-energy of the scattering state at leading order in α,
corresponding to the first diagram in fig. 6.1 and , is now extended to four self-energies
depicted in fig. 6.4. We will check explicitly that the cross section obtained in the
laboratory frame agrees with the one derived by boosting the cross section obtained in
the center-of-mass frame.

6.1.2.1 Bound-state formation in the laboratory frame

The self-energy diagrams shown in fig. 6.4 depend on four correlators:
the electric-electric correlator

⟨Ei(t,R)Ej(0,R
′)⟩ =

∫
d4k

(2π)4
e−ik

0t+ik·(R−R′)
[
k20Dij(k) + kikjD00(k)

]
, (6.50)

the magnetic-magnetic correlator

⟨Bi(t,R)Bj(0,R
′)⟩ = ϵilmϵjnr

∫
d4k

(2π)4
e−ik

0t+ik·(R−R′)klknDmr(k) , (6.51)

the electric-magnetic correlator

⟨Bi(t,R)Ej(0,R
′)⟩ = −ϵilm

∫
d4k

(2π)4
e−ik

0t+ik·(R−R′)klk0Dmj(k) , (6.52)
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a) b)

c) d)

Figure 6.4: Self-energy diagrams in pNRQEDDM with an initial scattering state (solid
double line) and an intermediate bound state (solid line) contributing up to relative
order T/M in the laboratory frame. The electric electric diagram on the upper left
contains the leading-order diagram, cf. one-loop diagram in fig. 6.1. The other diagrams
are suppressed by T/M or ∆Epn/M . Since the dark photon in the loop carries a spatial
momentum k, the bound fermion-antifermion pair recoils by a spatial momentum P −k.
Electric and magnetic couplings are as in figure 4.1.

and the magnetic-electric correlator

⟨Ei(t,R)Bj(0,R
′)⟩ = −ϵjlm

∫
d4k

(2π)4
e−ik

0t+ik·(R−R′)klk0Dim(k) , (6.53)

where Dµν is the dark photon propagator at leading order in the real-time formalism;
we use the expressions (D.4)–(D.5) in Coulomb gauge and drop the superscript LO.13

The correlators are gauge invariant and therefore may be evaluated in any gauge. The
bound-state formation cross section can be computed from the imaginary part of the 11-
componentd of the four self-energies, which is the approach that we follow in this section.
In the laboratory frame, the dark fermion-antifermion pair moves with momentum P .
After emitting a dark photon of spatial momentum k, the fermion-antifermion pair
recoils by a spatial momentum P−k. Therefore, the propagator of the recoiling fermion-
antifermion pair is in pNRQEDDM

i

Ep + P 2/(4M)− (En + (P − k)2/(4M))− k0 + iϵ

=
i

∆Epn + (2P · k − k2)/(4M)− k0 + iϵ
,

(6.54)
where we have defined14

∆Epn ≡ (∆Epn)lab ≡ (Ep)lab − (En)lab > 0 (6.55)

13We remark that at large temperatures close to the freeze-out, where bath-particle scattering effects
need to be taken into account, the Debye-mass resummation alters the dark photon propagator signifi-
cantly from its expression at leading order. The computation of recoil effects within the hierarchy (3.4)
may be of interest in future works.

14In the energy difference (∆Epn)lab one needs to add the center-of-mass correction terms to the
potential and kinetic energy, given in footnote 4 in sec. 4.2, since these corrections may contribute
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the energy difference between the scattering state and the bound state in the laboratory
frame. The time-ordered 11-component of the electric-electric self-energy diagram (up-
per left diagram in fig. 6.4), projected onto a scattering state with relative momentum
p ≡ plab and center-of-mass momentum P , reads

(
−iΣ11

ee

)
(p,P ) = −g2

∑
n

∫
d4k

(2π)4
i

∆Epn +
2P ·k−k2

4M − k0 + iϵ

×
[
|⟨n|r|p⟩|2k20 − ⟨n|r · k|p⟩|2

] [ i

k2 + iϵ
+ 2πδ(k2)nB(|k0|)

]
,

(6.56)

where we have summed over all intermediate bound states. The time-ordered 11-
component of the magnetic-magnetic self-energy diagram (upper right diagram in fig.
6.4) reads

(
−iΣ11

mm

)
(p,P ) = − g2

4M2
ϵijkϵlmnϵkrsϵntu

∑
n

∫
d4k

(2π)4
i

∆Epn +
2P ·k−k2

4M − k0 + iϵ

×
(
Pi −

ki
2

)(
Pl −

kl
2

)
⟨p|rj |n⟩⟨n|rm|p⟩krkt

(
δsu −

ksku
k2

)[
i

k2 + iϵ
+ 2πδ(k2)nB(|k0|)

]
.

(6.57)
The time-ordered 11-component of the electric-magnetic self-energy diagram (lower left
diagram in fig. 6.4) is given by

(
−iΣ11

em

)
(p,P ) =

g2

2M
ϵijkϵklm

∑
n

∫
d4k

(2π)4

(
Pi −

ki
2

)
i

∆Epn +
2P ·k−k2

4M − k0 + iϵ

× ⟨p|rj |n⟩⟨n|rs|p⟩klk0
(
δsm −

kskm
k2

)[
i

k2 + iϵ
+ 2πδ(k2)nB(|k0|)

]
,

(6.58)
and the time-ordered 11-component of the magnetic-electric self-energy diagram (lower
right diagram in fig. 6.4) reads

(
−iΣ11

me

)
(p,P ) =

g2

2M
ϵijkϵklm

∑
n

∫
d4k

(2π)4
i

∆Epn +
2P ·k−k2

4M − k0 + iϵ

(
Pi −

ki
2

)
× ⟨p|rs|n⟩⟨n|rj |p⟩klk0

(
δsm −

kskm
k2

)[
i

k2 + iϵ
+ 2πδ(k2)nB(|k0|)

]
.

(6.59)
The term (2P · k− k2)/(4M), that enters the heavy-pair propagator in each of the eqs.
(6.56)–(6.59), is a recoil correction to the kinetic energy. It is indeed a correction, since
the term P · k/(2M) is suppressed by

√
T/M and the term −k2/(4M) by T/M with

at order T/M and ∆Epn/M through the electric-electric self-energy diagram in the upper left corner
of fig. 6.4, and the insertions into the other diagrams lead to corrections of higher order. As for the
electric-electric diagram, the leading recoil correction due to δV (r,P ) is proportional to the energy shift
⟨p|δV (r,P )|p⟩ − ⟨n|δV (r,P − k)|n⟩. Terms that do not depend on k are absorbed into ∆Epn, terms
linear in k give rise to odd integrands in k, while terms proportional to k2 give rise to corrections of order
(∆Epn/M)2, which are beyond our accuracy. A similar reasoning holds for the kinetic energy correction.
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respect to ∆Epn and T . Hence, the expansion of the propagator (6.54) up to terms of
relative order T/M reads

i

∆Epn + (2P · k − k2)/(4M)− k0 + iϵ
=

i

∆Epn − k0 + iϵ

+
i

(∆Epn − k0 + iϵ)2

(
−2P · k − k2

4M

)
+

i

(∆Epn − k0 + iϵ)3

(
P · k
2M

)2

+ . . . ,

(6.60)
where the dots stand for higher-order terms. We expand the heavy-pair propagators in
(6.56)–(6.59) according to (6.60), and integrate over the four-momentum k. The sum
of the imaginary parts of the four self-energies, upon using the optical theorem (5.21),
gives the bound-state formation cross section

(σbsf vMøl)lab(p,P ) =
∑
n

(σnbsf vMøl)lab(p,P )

= −2 Im
[(
Σ11
ee

)
(p,P ) +

(
Σ11
mm

)
(p,P ) +

(
Σ11
em

)
(p,P ) +

(
Σ11
me

)
(p,P )

]
.

(6.61)

Including all corrections of relative order P 2/M2 ∼ T/M and ∆Epn/M , the bound-state
formation cross section in the laboratory frame reads

(σbsf vMøl)lab(p,P ) =
4

3
α
∑
n

(∆Epn)
3 (1 + nB(∆E

p
n))

×
(
|⟨n|r|p⟩lab|2Fn1 (p, P ) +

∣∣∣∣⟨n|r · P

2M
|p⟩lab

∣∣∣∣2 Fn2 (p, P )
)
,

(6.62)

with

Fn1 (p, P ) = 1− 3

4

∆Epn
M

+
P 2

4M2
+ nB(∆E

p
n)

∆Epn
4M

∆Epn
T

− nB(∆Epn)
P 2

4M2

∆Epn
T

[
1− ∆Epn

5T
− 2

5
nB(∆E

p
n)

∆Epn
T

]
,

(6.63)

and

Fn2 (p, P ) = 1− 1

10
nB(∆E

p
n)

(∆Epn)2

T 2
(1 + 2nB(∆E

p
n)) . (6.64)

Note that ∆Epn/T may be of order one according to our hierarchy of energy scales (3.2).
The statistical factor 1+ nB(∆E

p
n) in (6.62) reflects the fact the dark photon is emitted

into the thermal bath. From the recoil factors (6.63) and (6.64) we deduce that the recoil
corrections can be split into in-vacuum and thermal contributions, and that even in the
zero-total-momentum-limit a residual recoil correction remains, since Fn1 (p, P = 0) ̸= 1.
Contrarily to the result in eq. (6.9), due to the appearance of the quantum-mechanical
matrix element involving the scalar product r · P /(2M), cf. second term in the second
line of eq. (6.62), rotational invariance is broken because of the aligned center-of-mass
momentum vector.
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Figure 6.5: (Left) Ratios of thermally averaged cross sections in the laboratory frame
with recoil corrections and the corresponding thermally averaged cross sections without
recoil corrections plotted as a function of M/T for coupling α = 0.1. The black dash-
dotted line follows from the annihilation cross section (5.28), and the brown solid and
red dashed lines from the bound-state formation cross section (6.62) for the 1S and
2S state, respectively. (Right) Thermally averaged bsf cross sections for the 1S (black
lines), 2S (orange lines) and 2P state (purple lines), normalized by πα2/M2. Dashed
lines are for the results at LO, cf. (6.9), solid lines as obtained from (6.49). The coupling
α = α(2M) = 0.1 runs at one loop and nf = 1. The vertical lines mark the position
where T =Mα2.

In order to quantify the effect of the recoil corrections due to the center-of-mass
motion on the bsf cross section, we compare the result (6.62) with the corresponding
leading-order expression without recoil corrections in (6.9). In the left plot of fig. 6.5
we show the ratio Rσ of the the thermally averaged bsf cross sections (6.62) and (6.9),
for the 1S and 2S state (denoted by the brown solid and red dashed line, respectively).
The thermal average in the laboratory frame has been defined in appendix B. Similarly,
for dark matter fermion pair annihilation (black dash-dotted line), we take the ratio of
the thermal average of (5.28) in the laboratory frame and the corresponding thermally
averaged annihilation cross section without center-of-mass momentum dependence in
(5.27). For the coupling α = 0.1, the effect of the center-of-mass recoil corrections to
the bound-state formation cross section is up to 3% at temperatures such that M/T ≳
1/α2 = 100. The recoil corrections increase for larger couplings, for instance for α = 0.5
they are around 20-25% around the thermal freeze-out.15 We checked that for the whole
range of considered couplings up to α = 0.5, recoil corrections are larger for bound-state

15We remind that for such large coupling, the condition Mα2 ≳ T is fulfilled even at freeze-out
temperature.
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formation cross sections than for annihilation. The reason is that processes happening at
the hard scale, like annihilations, depend weakly on the thermal medium.16 In general,
it holds that the ratio is Rσ < 1, since the annihilation and bound-state formation cross
sections are both Lorentz contracted in the laboratory frame, although to a different
degree.

In order to have a direct comparison between the recoil corrections due to the center-
of-mass motion and the corrections coming from the resummation of the Debye-mass
scale, we show in the right panel of figure 6.5 the 1S-, 2S- and 2P-bsf cross sections at LO
(dotted lines), cf. eq. (6.9), and the resummed expressions (solid lines), cf. eq. (6.49),
for nf = 1. We can see two main differences. While the recoil effect seems independent
of the specific internal quantum numbers n of the outgoing bound state (the brown solid
and red dashed lines overlap), themD-resummation increases the formation cross section
of the higher excited states more than the ground state at large temperatures, and hence
the scale mD has a strong influence on the internal motion of the heavy pair. The second
difference lies in the size of the corrections, where we see that the resummation increases
the rate by orders of magnitude with increasing T , while the recoil corrections are only
of the order of percentage.17 In chapter 7, we are going to contrast again the recoil with
resummation effects, but then on the level of the DM relic abundance.

6.1.2.2 Bound-state formation in the center-of-mass frame

In the following, we consider the dark-matter pair at rest, while the thermal bath moves
with constant velocity −v; see fig. 2.1 for a pictorial illustration.18 We provide the
bound-state formation cross section in the center-of-mass frame of the dark-matter
fermion-antifermion pair. In the following, the relative momentum, p, and distance,
r, in quantities marked with the subscript cm are to be understood as measured in the
center-of-mass frame. The Bose–Einstein distribution for thermal dark photons in the

16For the Coulombic bound states considered in this work, the leading thermal correction to the
annihilation cross section or width comes from a loop diagram with two electric dipole vertices and the
insertion of an imaginary contact potential (5.19). This is suppressed by at least α(a0T )

2 ≲ αT/M with
respect to the leading width.

17We have to remark, however, that the recoil effect has been considered only for the bsf process given
in (6.10), which is fine as long as the temperature is at most ultrasoft, i.e. if for the hierarchy 3.2. It
remains to check how large the recoil corrections become if we go to larger T , cf. hierarchy 3.4, where
the thermal motion of the heavy particles become faster in the bath, and where the Landau-damping
phenomenon becomes important.

18A general formula for the center-of-mass velocity of the heavy pair with respect to the moving
thermal medium as seen from a generic laboratory frame is given by [131]

v =
−P 0w + P ·w

w2 w +
(
P − P ·w

w2 w
)√

1−w2

P 0 − P ·w ,

where P 0 and P are the total energy and center-of-mass momentum of the dark-matter pair with respect
to the laboratory frame, respectively, and w is the velocity of the thermal medium with respect to the
laboratory frame. If the laboratory frame coincides with the center-of-mass frame of the pair, then
P = 0 and v = −w. Instead, if the laboratory frame coincides with the frame where the medium is at
rest, then w = 0 and v = P /P 0.
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moving bath reads [125,132]

nB(|kµuµ|) =
1

e|k
µuµ|/T − 1

, (6.65)

where uµ = (1,−v) γ, and, as in the rest of the paper, γ = 1/
√
1− v2 is the Lorentz

factor. In the laboratory frame, where the bath is at rest (v = 0), we have kµuµ = k0,
and the distribution (6.65) reduces to (6.1). For on-shell thermal dark photons from the
bath, we can write

kµuµ
T

=
k0 − |v||k| cos θ
T
√
1− v2

=
|k|
T

1− |v| cos θ√
1− v2

≡ |k|
Teff

, (6.66)

where θ is the angle between the medium velocity −v and the dark photon momentum
k. The effective temperature, Teff, is defined as [133]

Teff(|v|, θ) =
T
√
1− v2

1− |v| cos θ . (6.67)

It may be understood as the temperature experienced by an observer at rest; it is different
from T because of the Doppler effect.19 Expanding the distribution function (6.65) for
small medium velocities |v| ≪ 1 up to order v2, we get20

nB(|kµuµ|) = nB(|k|)
[
1 + (1 + nB(|k|))

(
−v · k

T
− |k|

T

v2

2
+

(k · v)2
2T 2

(2nB(|k|) + 1)

)]
.

(6.68)
In the center-of-mass frame, the dark fermion-antifermion pair recoils by a spatial mo-
mentum −k when emitting a photon of spatial momentum k. The resulting propagator,
when the incoming pair is in a scattering state and the outcoming one in a bound state,
can be expanded in the center-of-mass kinetic energy k2/(4M), which is suppressed by
T/M with respect to ∆Epn and T , leading to

i

(∆Epn)cm − k2/(4M)− k0 + iϵ
=

i

(∆Epn)cm − k0 + iϵ
+

i

((∆Epn)cm − k0 + iϵ)2
k2

4M
+ . . . .

(6.69)
Higher-order terms are beyond our accuracy. The bound-state formation cross section
in the center-of-mass frame up to relative order v2, which in our case is about T/M and

19Depending on the angle θ, i.e. whether the medium moves towards the observer (0 ≤ θ < π/2) or
away from the observer (π/2 < θ ≤ π), the temperature measured by the observer is larger or smaller
than T , T being the temperature of the thermal bath in the medium rest frame. The maximum and
minimum temperature is for θ = 0 and θ = π, respectively,

Tmax = T

√
1 + |v|
1− |v| , Tmin = T

√
1− |v|
1 + |v| .

20Because of the hierarchy (3.2), we consider here only the case of a thermal bath moving at small
velocity. For the case of a thermal bath of photons moving at high velocity, see ref. [125].
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∆Epn/M , can be again computed by cutting the four self-energy diagrams in fig. 6.4,
and reads

(σbsf vMøl)cm(p,v) = −2 Im
[(
Σ11
ee

)
(p,v) +

(
Σ11
mm

)
(p,v) +

(
Σ11
em

)
(p,v) +

(
Σ11
me

)
(p,v)

]
=

4

3
α
∑
n

(∆Epn)
3
cm (1 + nB((∆E

p
n)cm))

(
|⟨n|r|p⟩cm|2F̃n1 (p, v) + |⟨n|r · v|p⟩cm|2F̃n2 (p, v)

)
,

(6.70)
with

F̃n1 (p, v) = 1− 3

4

(∆Epn)cm
M

+ nB((∆E
p
n)cm)

(∆Epn)cm
4M

(∆Epn)cm
T

− nB((∆Epn)cm)v2 (∆E
p
n)cm
T

[
1

2
− (∆Epn)cm

5T
− 2

5
nB((∆E

p
n)cm)

(∆Epn)cm
T

]
,

(6.71)
and

F̃n2 (p, v) = −
1

10
nB((∆E

p
n)cm)

(∆Epn)2cm
T 2

(1 + 2nB((∆E
p
n)cm)) , (6.72)

where we have made explicit in which reference frame the matrix elements and the energy
difference are computed, and we have neglected relative corrections smaller than v2 and
∆Epn/M .

6.1.2.3 Boost-invariance of the cross section at finite T

So far we have computed the bound-state formation cross section in the laboratory
frame as well as in the center-of-mass frame directly from the imaginary part of the four
self-energy diagrams in fig. 6.4 by means of the optical theorem. We can show that
the two results for the bsf cross section can be related to each other by transforming
the matrix elements and the energy difference from the center-of-mass frame to the
laboratory frame:

|⟨n|r|p⟩cm|2 = |⟨n|r|p⟩lab|2
(
1 +

v2

2

)
+ |⟨n|r · v|p⟩lab|2 ,

|⟨n|r · v|p⟩cm|2 = |⟨n|r · v|p⟩lab|2 ,

(∆Epn)cm = γ(∆Epn)lab = (∆Epn)lab

(
1 +

v2

2

)
,

(6.73)

which follow from eqs. (A.23) and (A.34) upon expanding up to order v2. We insert
them into eq. (6.70), set v = P /(2M) and keep only terms up to order P 2/M2. Then
the relation between the bound-state formation cross section in the laboratory frame
(6.62) and the bound-state formation cross section in the center-of-mass frame (6.70) is

(σbsf vMøl)lab(p,P ) = (σbsf vMøl)cm(p,P /(2M))

(
1− P 2

4M2

)
, (6.74)

This relation is consistent with the discussion in section 5.2.2: the cross section is Lorentz
invariant and the transformation (6.74) just reflects the Lorentz transformation (5.17)
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of the Møller velocity. Hence, Lorentz-boost invariance of the cross section is not broken
by the thermal medium. We remind that the relative momentum in (σbsf vMøl)lab(p,P )
is measured in the laboratory frame, the one in (σbsf vMøl)cm(p,P /(2M)) is measured
in the center-of-mass frame and the center-of-mass momentum P is measured in the
laboratory frame.

6.2 Dissociation of bound states

6.2.1 Results at LO, NLO and with Debye-mass resummation in a
static medium without recoil

In the previous section we introduced briefly the dissociation of bound states as the
reversed process to the bound-state formation, and that the interplay between both
processes keeps the heavy pairs in ionization equilibrium at large T . Moreover, from
the detailed balance relations (6.15) we have shown how the corresponding dissociation
width may be related from the bsf cross section, and have plotted the result in the right
panel of fig. 6.2. One can verify the detailed balance condition (6.15) by computing the
width directly within pNRQEDDM at finite T , as was done for the bsf cross section. If
we neglect the center-of-mass motion of the heavy pair and exchange the double solid
lines with the single solid lines in fig. (6.1), then from the optical theorem we can relate
the bsd width of an incoming bound state with quantum numbers n and energy En to
the imaginary part of the self-energy via

Γnbsd = −2 ⟨n|Im[Σ11(En)]|n⟩ = ⟨n|[−iΣ21(En)]|n⟩ . (6.75)

At leading order in the coupling α and projecting on intermediate unbound fermion-
antifermion pairs of relative momentum p, which selects the part of Im[Σ11(En)] or
Σ21(En) with negative ∆E = En − Ep = −∆Epn, we get

Γn,LO

bsd =
g2

3π

∫
d3p

(2π)3
nB(∆E

p
n) |⟨n|r|p⟩|2 (∆Epn)3 , (6.76)

corresponding to the photo-dissociation process through the reaction

γ + (XX̄)n → (XX̄)p . (6.77)

It is a purely thermal width, because it depends on the Bose–Einstein distribution
nB(∆E

p
n) that vanishes in the T = 0 limit, which reflects the fact that the decay of

a bound state into an unbound pair is kinematically forbidden in vacuum. Hence, as
the plasma temperature decreases, fewer darkonium states can be ionized. The thermal
width can be also understood in general as an integral over a temperature-dependent
bound-state dissociation cross section, σnbsd, or as a convolution of the in-vacuum ion-
ization (ion) cross section of the bound-state, which we denote σnion, with the thermal
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distribution of the incoming photon, here at LO:

Γn,LObsd = 2

∫
d3p

(2π)3
σn,LObsd (p) = 2

∫
d3p

(2π)3
nB(∆E

p
n)σ

n,LO
bsd (p)

= 2

∫
|k|≥|Ebn|

d3k

(2π)3
nB(|k|)σn,LOion (k) , (6.78)

where 2 is the number of final state photon polarizations and the relative velocity between
the darkonium and the photon from the bath has been set equal to one. The bound-state
formation and ionization cross sections are related via the temperature-dependent Milne
relation [51]

σnion(p)

σnbsf(p)
=

M2v2rel
8(∆Epn)2

1

1 + nB(∆E
p
n)
, (6.79)

which reduces to the in-vacuum Milne relation in ref. [15] in the T = 0 limit at fixed
relative velocity vrel.

We provide some explicit expressions for the dissociation widths for the ground state
and the first few excited states. For photo-dissociation of the lowest-lying darkonium,
eq. (6.76) can be equivalently written as an integral over the momentum k of the absorbed
dark photon:21

Γ1S,LO
bsd =

∫
|k|≥|Eb1|

d3k

(2π)3
nB(|k|)

4

3
α
M

3
2

2
|k|
√
|k|+ Eb1 |⟨1S|r|p1⟩|2

∣∣∣∣
|p|=
√
M(|k|+Eb1)

,

(6.80)

where Ebn ≡ En−2M ; in particular, Eb1 = −Mα2/4 is the binding energy of the 1S state.
Note that the photon needs to have a threshold momentum to trigger the breaking of the
bound state. The result agrees in the abelian limit with the gluo-dissociation width of a
color singlet quark-antiquark bound state in the temperature regime T ∼Mα2

s [50,134],
which we will reproduce in sec. 9.2, cf. eq. (9.23). The gluo-dissociation width of a
heavy quarkonium in the static limit was obtained in ref. [48] and for a hydrogen atom in
QED in ref. [49]. Comparing the above equation with eq. (6.80) and using the expression
of the dipole matrix element in the center-of-mass frame given in appendix C, we obtain

σ1S,LOion (|k|) = α
29π2

3

|Eb1|3
M |k|4

e
− 4
w1(|k|)

arctan(w1(|k|))

1− e−
2π

w1(|k|)
, (6.81)

with w1(|k|) ≡
√
|k|/|Eb1| − 1. The result in eq. (6.81) agrees with the ionization cross

section given in ref. [15], where it was obtained through the Milne relation.22 Here, we
did not rely on an explicit use of the Milne relation, but on thermal field theory alone.

21Due to the selection rule of the electric dipole matrix element, only a transition into a scattering
state with orbital angular momentum quantum number ℓ = 1 is possible.

22One has to express eq. (6.80) in terms of the momentum of the scattering state, |p| =Mvrel/2, i.e.
|k| =M(v2rel + α2)/4 = ∆Ep1 and w1(|k|) = vrel/α.
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Thermal field theory provides, by construction, the dissociation width with the correct
temperature dependence. For the excited states 2S, 2P and 3S, with binding energies
Eb2 = −Mα2/16 and Eb3 = −Mα2/36, respectively, the widths are

Γ2S,LO
bsd =

∫
|k|≥|Eb2|

d3k

(2π)3
nB(|k|)

4

3
α
M

3
2

2
|k|
√
|k|+ Eb2 | ⟨2S|r|p1⟩ |2
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|p|=
√
M(|k|+Eb2)

,

(6.82)

Γ2P,LO
bsd =
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∫
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4
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√
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, (6.83)

Γ3S,LO
bsd =

∫
|k|≥|Eb3|

d3k

(2π)3
nB(|k|)
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α
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|k|
√
|k|+ Eb3 |⟨3S|r|p1⟩|2
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|p|=
√
M(|k|+Eb3)

,

(6.84)

where we averaged the thermal dissociation width of the 2P state overm. The associated
ionization widths are

σ2S,LOion (|k|) = α
212π2

3

(
4 + w2(|k|)2

) |Eb2|4
M |k|5

e
− 8
w2(|k|)

arctan(w2(|k|))

1− e−
4π

w2(|k|)
, (6.85)

σ2Pm=0
ion,LO (|k|) = α

212π2

33
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)2 |Eb2|5
M |k|6

e
− 8
w2(|k|)

arctan(w2(|k|))

1− e−
4π

w2(|k|)
,

(6.86)

σ
2Pm=±1

ion,LO (|k|) = α
212π2

33
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w2(|k|)2 + 1 + 2

√
w2(|k|)2 + 4

)2 |Eb2|5
M |k|6

e
− 8
w2(|k|)

arctan(w2(|k|))

1− e−
4π

w2(|k|)
,

(6.87)

σ3S,LOion (|k|) = α29π232(32 + w3(|k|)2)
(
7

3
+ w3(|k|)2

)2 |Eb3|6
M |k|7

e
− 12
w3(|k|)

arctan(w3(|k|))

1− e−
6π

w3(|k|)
,

(6.88)

where we define w2(|k|) ≡
√
|k|/|Eb2| − 1 and w3(|k|) ≡

√
k|/|Eb3| − 1. One can check

explicitly that each of the expressions in (6.80) and (6.82)–(6.84), once numerically
integrated over k, satisfies the detailed balance relation in (6.15) upon plugging in the
thermally averaged bsf cross sections, written explicitly in eqs. (6.11)–(6.14). The same
applies to the ionization widths in (6.81) and (6.85)–(6.88), which satisfy the Milne
relation (6.79).

In the right panel of figure 6.2, we have plotted the corresponding photo-dissociation
widths. At very small temperatures the thermal width for the 1S state (orange solid line)
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vanishes faster than the one for the 2S state (brown dotted line), 2P state (purple dashed
line) and 3S state (red dot-dashed line), whereas at higher temperatures the 1S thermal
width is larger than the ones of the excited states. Hence, at large T the dissociation
of the 1S state is dominating over all excited states by at least a factor of four, and at
small T the widths are all negligible due to the exponentially suppressed Bose–Einstein
distribution function. It is therefore sufficient to take only the dissociation of ground
state and the first few excited states into consideration, when studying the dynamics of
meta-stable darkonium in a thermal bath.

The bsd width at higher order in the coupling, corresponding to at least the two-loop
self-energy displayed in figure 6.1 but with double solid and single solid lines exchanged,
can be computed in an analogous way as for the bsf cross section in the preceding
section, and the modification compared to the result at LO, cf. (6.76) is through the
more involved electric-field correlator, i.e.

Γnbsd = g2
µ4−D

D − 1

∫
d3p

(2π)3
|⟨n|r|p⟩|2

∫
dD−1q

(2π)D−1
⟨EE⟩>(−∆Epn, q) . (6.89)

which reduces to (6.76) upon plugging in the simple leading order expression (6.8), where
1+ nB(−∆Epn) = −nB(∆Epn). Up to next-to-leading order, the dissociation width reads

Γn,LO+NLO

bsd = 2

∫
d3p

(2π)3
σn,LObsd (p)

{
1 +

nf
π
α(µus) [Xvac(∆E

p
n, µus) + Xth(∆E

p
n/T )]

}
,

(6.90)
where the dimensionless functions Xvac,Xth can be inferred from (6.21) and (6.25), re-
spectively.23 The bsd cross section at LO, σn,LObsd , has been defined in the first line
of eq. (6.78). As in the bsf case, the vacuum contribution Xvac is suppressed, since
nfα(µus) ≪ 1 in this work, and hence can be neglected, while the thermal part Xth

becomes large if T ≫ ∆Epn, such that mD ∼ ∆Epn. Perturbation theory breaks down for
loop momenta of the order of the Debye mass scale, and the series needs to be resummed.
Similarly as in the case of bound-state formation, cf. eq. (6.49), the mD-resummed bsd
width is

(Γnbsd)resum.
= 2

∫
d3p

(2π)3
σn,LObsd (p)

∣∣∣∣
T≫∆Epn

×
(

mD

2∆Epn

)2 [
2− 2γE + 2

ζ ′(2)

ζ(2)
− ln

(
(∆Epn)2

16T 2

)
+ 2Y long

th

(
∆Epn
mD

)
+ 2Ytrans

th

(
∆Epn
mD

)]
,

(6.91)
where σn,LObsd (p)

∣∣
T≫∆Epn

≈ (4α/3)|⟨n|r|p⟩|2T (∆Epn)2/2 is the spin-averaged and tempera-
ture dependent bound-state dissociation cross section at leading order, which can be read
off from the integrand in (6.76), in the limit of large temperatures T ≫ ∆Epn. The di-

mensionless functions Y long
th and Ytrans

th are defined in eqs. (6.38) and (6.45), respectively.

23The functions Xvac(x) and Xth(x) are symmetric upon the change of the argument x → −x that
occurs when switching from bound-state formation to bound-state dissociation.
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Figure 6.6: (Left) Ratios of the thermally averaged formation cross sections of the first
few excited bound states at leading order, cf. eq. (6.9), over πα2/M2, as functions of
M/T . As a comparison, we plot also the thermally averaged Sommerfeld factor. (Right)
Ratios of the 1S, 2S, 2P and 3S dissociation widths and 1S↔ 2P (de-)excitation widths
over Mα5/2 at leading order in the coupling. The vertical lines mark the position where
T =Mα2, i.e. the regime where the temperature is of order of the ultrasoft scale.

In the left panel of fig. 6.6, we plot the bsd width, normalized by Mα5/2, for the
ground state at leading order (black dashed line for nf = {1, 2}), including next-to-
leading order corrections at fixed order (orange and black dotted lines for nf = 1 and
nf = 2, respectively) and with Debye mass resummation (orange and black solid lines for
nf = 1 and nf = 2, respectively). We choose again α(2M) = 0.1 for the running coupling
at one loop. At low temperatures, of the order of the ultrasoft scale or smaller, the curves
approach each other and are exponentially suppressed. The dominant process is via
photo-dissociation. At larger T , the bath-particle scattering starts becoming relevant,
eventually being the dominant process enhancing the width by at least two orders of
magnitudes for the largest temperatures that we consider, T = M/10. However, as
in the case of the bsf process, see figure 6.3 left, the width at fixed NLO leads to an
overestimation by a factor up to five compared to the Debye-mass resummed width. In
figure 6.6 right, we add the widths of the first excited states 2S (orange lines) and 2P
(purple lines) for nf = 1, where we have averaged the 2P-bsd width over the magnetic
quantum number m = {0,±1} of the incoming bound state. Dotted lines are for the
width at LO, only accounting for the photo-dissociation process, solid lines are when
incorporating the Debye mass resummation. At low T , the widths of the excited states
are larger than the one of the ground state because it is more likely to dissociate a bound
pair with a smaller (closer to threshold) binding energy. However, at larger temperatures,
the widths of the excited states still are larger compared to the 1S width, contrary to the
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results at LO. The resummation of the Debye mass has a greater impact on the excited
states than on the ground state, as we already observed in the bound-state formation
process, see the right plot in fig. 6.5.

6.2.2 Width in different reference frames: recoil correction, Lorentz
contraction

For the particular hierarchical arrangement of the energy scales according to (3.2),
bound-state dissociation happens most likely when a bound state (XX̄)n absorbs a ther-
mal dark photon from the bath and dissociates into a scattering state (XX̄)p through
the reaction γ + (XX̄)n → (XX̄)p, cf. (6.77). The bound-state dissociation width with
recoil corrections can be determined from the imaginary parts of the self-energy diagrams
shown in figure 6.4 with the propagators of the scattering states (double line) and bound
states (single line) exchanged, because now the incoming and outgoing pair is bound,
while the pair in the loop is unbound. We project the self energies onto bound states
with quantum numbers n and center-of-mass momentum P in the laboratory frame, and
label them accordingly. The dissociation width can then be computed in the laboratory
frame, up to corrections of relative order T/M and ∆Epn/M , as

(Γnbsd)lab(P ) = −2 Im
[(
Σ11
ee

)
(n,P ) +

(
Σ11
mm

)
(n,P ) +

(
Σ11
em

)
(n,P ) +

(
Σ11
me

)
(n,P )

]
.

(6.92)
The propagator of the recoiling unbound fermion-antifermion pair in the loop reads

i

En + P 2/(4M)− (Ep + (P − k)2/(4M))− k0 + iϵ

=
i

−∆Epn + (2P · k − k2)/(4M)− k0 + iϵ
,

(6.93)

where we notice the sign difference in front of ∆Epn with respect to eq. (6.54). The
recoil term, (2P · k − k2)/(4M) ≪ ∆Epn, is the same as in the bound-state formation
process, and we can the propagator in the recoil correction to the kinetic energy as in sec.
6.1.2.1. Including all corrections of order P 2/M2 ∼ T/M and ∆Epn/M , the bound-state
dissociation width in the laboratory frame reads

(Γnbsd)lab(P )

=
4

3
α

∫
d3p

(2π)3
(∆Epn)

3nB(∆E
p
n)

(
|⟨n|r|p⟩lab|2Dn

1 (p, P ) +

∣∣∣∣⟨n|r · P

2M
|p⟩lab

∣∣∣∣2Dn
2 (p, P )

)
,

(6.94)
with

Dn
1 (p, P ) = 1 +

3

4

∆Epn
M

+
P 2

4M2
− (1 + nB(∆E

p
n))

∆Epn
4M

∆Epn
T

− (1 + nB(∆E
p
n))

P 2

4M2

∆Epn
T

[
1 +

∆Epn
5T
− 2

5
(1 + nB(∆E

p
n))

∆Epn
T

]
,

(6.95)
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and

Dn
2 (p, P ) = 1− 1

10
(1 + nB(∆E

p
n))

(∆Epn)2

T 2
(1 + 2nB(∆E

p
n)) . (6.96)

The statistical factor nB(∆E
p
n) in (6.94) reflects the fact the dark photon is absorbed

from the thermal bath. As elaborated in the previous sections, the dissociation width
does not contain a vacuum part because bound-state dissociation is kinematically for-
bidden in vacuum. Hence, the bound-state dissociation width is a purely thermal width
also when including the recoil effect.

We can compute the bsd width in the center-of-mass frame, following similar steps
as in sec. 6.1.2.2 for the bsf cross section, where we set P = 0 and the thermal bath is
moving with velocity −v. At relative order v2 and ∆Epn/M , we get

(Γnbsd)cm(v)

=
4

3
α

∫
d3p

(2π)3
(∆Epn)

3
cm nB((∆E

p
n)cm)

(
|⟨n|r|p⟩cm|2D̃n

1 (p, v) + |⟨n|r · v|p⟩cm|2D̃n
2 (p, v)

)
,

(6.97)
with

D̃n
1 (p, v) = 1 +

3

4

(∆Epn)cm
M

− (1 + nB((∆E
p
n)cm))

(∆Epn)cm
4M

(∆Epn)cm
T

− (1 + nB((∆E
p
n)cm))v

2 (∆E
p
n)cm
T

[
1

2
+

(∆Epn)cm
5T

− 2

5
(1 + nB((∆E

p
n)cm))

(∆Epn)cm
T

]
,

(6.98)
and

D̃n
2 (p, v) = −

1

10
(1 + nB((∆E

p
n)cm))

(∆Epn)2cm
T 2

(1 + 2nB((∆E
p
n)cm)) , (6.99)

where we have made explicit in which reference frame the matrix elements and the
energy difference are computed. The momentum integral in (6.97) is over the relative
momentum in the center-of-mass frame.

The relation between the bound-state dissociation width in the laboratory frame
(6.94) and the bound-state dissociation width in the center-of-mass frame (6.97) is

(Γnbsd)lab(P ) =
(Γnbsd)cm(v)

γ
≈ (Γnbsd)cm(P /(2M))

(
1− P 2

8M2

)
, (6.100)

if we transform the matrix elements and the energy difference according to (6.73), the
momentum-space volume as d3pcm = d3plab/γ (see eq. (A.21)), set v = P /(2M) and
keep only terms up to order P 2/M2. Equation (6.100) expresses the Lorentz dilation of
time intervals, and is independent of the presence of the thermal bath (cf. the Lorentz
contraction of the in-vacuum decay width for paradarkonium in (5.34)). In order to grasp
the impact of the recoil on the dissociation width, we plot in figure 6.7 the ratios of the
1S- and 2S-bsd widths to be inferred from (6.94), thermally averaged in the laboratory
frame according to (B.9), and the associated widths at LO, cf. eqs. (6.80) and (6.82),
as functions of M/T with α = 0.1. We also plot the ratios RΓ of the thermally averaged
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Figure 6.7: Ratios of thermally averaged widths in the laboratory frame with recoil
corrections and the corresponding thermally averaged widths without recoil corrections
plotted as a function of M/T for coupling α = 0.1. The black dash-dotted line denotes
the ratio when taking the thermal average of (5.34), the brown solid and red dashed
lines when taking the thermal average of (6.94) for the 1S and 2S state, respectively, the
orange solid line when taking the thermal average of (6.103) for the transition 2P→ 1S,
and the green dashed line when taking the thermal average of (6.104) for the transition
1S → 2P. The vertical line marks the position where T =Mα2.

1S and 2S paradarkonium decay widths in the laboratory frame with recoil corrections,
cf. (5.34), and the corresponding ones without recoil corrections. We observe that the
recoil effect is independent of the discrete quantum number n of the bound states (brown
solid and red dashed lines overlap for the 1S and 2S bsd) as in the bsf case, and that
the recoil corrections are slightly larger for the dissociation than the annihilation (black
dot-dashed line for the 1S and 2S state), with values up to 10% at the largest considered
temperature. Again RΓ < 1 because of the Lorentz contraction of the widths when going
from the center-of-mass to the laboratory frame, inducing the known time dilatation
effect for time intervals.

6.3 Bound-state to bound-state transitions:
(de-)excitations

In this section, we derive the transition rates between two dark matter bound states.
Bound-state to bound-state transitions include de-excitations of excited bound states
into bound states of lower energy by emission of a dark photon, (XX̄)n → γ + (XX̄)n′ ,
and excitations of bound states into bound states of higher energy due to the absorption
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of a dark photon from the bath, γ + (XX̄)n → (XX̄)n′ .24 At higher order in the
coupling, thermal interactions with the bath particles may induce (de-)excitations as
well, and for large temperatures, such that the hierarchy (3.4) is fulfilled, those bath-
particle scattering processes need to be resummed. Since these processes are mediated
by the dipole operator, the angular momentum of the bound state must change by one
unit, |∆ℓ| = 1, whereas the spin is left unchanged. In pNRQEDDM, both excitation
and de-excitation processes can be described by cutting the same self-energy diagrams
as for scattering-state to bound-state transitions shown in figures 6.1 and 6.4, except
that the matter states inside and outside the loop are bound states (i.e. we replace the
external double solid with a single solid line). The computation of the de-excitation
transition width goes like the computation of the bound-state formation cross section
done in section 6.1, whereas the computation of the excitation transition width goes like
the computation of the bound-state dissociation width done in section 6.2. The results
may be read directly from the results listed in those sections by replacing the scattering
state |p⟩ with the bound state |n⟩ in the case of the de-excitation transition width and
with the bound state |n′⟩ in the case of the excitation transition width.25

At large temperatures and omitting the recoil corrections due to the center-of-mass

motion, the result for the de-excitation width Γnde-ex. ≡
∑
n′<n

Γn→n′
de-ex. up to fixed NLO and

with Debye mass resummation equals the expressions for the bsf cross section at fixed
NLO, eq. (6.24), and with Debye mass resummation, eq. (6.49), respectively, but with
the energy difference ∆Epn and (σbsf vrel)

LO
n (p) replaced by ∆Enn′ and26

Γn,LOde-ex. =
4

3
α

∑
n′,En′<En

(∆Enn′)
3 (1 + nB (∆Enn′))

∣∣⟨n′|r|n⟩∣∣2 , (6.101)

respectively, where we have specified the quantum numbers, n = (n, ℓ,m), of the decay-
ing bound state and the quantum numbers, n′ = (n′, ℓ′,m′), of the final bound state. A
similar treatment can be done for the excitation process, where we can take the result
for the bsd width at fixed NLO, eq. (6.90), and the one with Debye mass resummation,

eq. (6.91), and replacing ∆Epn and
∫ d3p

(2π)3
σn,LObsd (p) by ∆Enn′ , Γ

n,LO
ex. and

Γn,LOex. =
4

3
α

∑
n′,En′>En

(∆En
′

n )3 nB(∆E
n′
n )
∣∣⟨n′|r|n⟩∣∣2 , (6.102)

24The energy of the incoming photon is not large enough to break the bound state into an unbound
DM pair, thus the excitation process can be distinguished from the thermal break-up process by requiring
the energy Eγ + En to be negative.

25Since de-excitation transitions resemble the bound-state formation process, they may happen both
in vacuum and in the thermal medium, although in the thermal medium they are enhanced by the
stimulated emission. On the other hand, excitation transitions resemble the bound-state dissociation
process, and hence the can happen only in a thermal bath.

26The dark photon carries an energy ∆Enn′ = En − En′ = (Mα2/4)
(
1/n′2 − 1/n2

)
at leading order

in the coupling and at zeroth order in the non-relativistic expansion of the total velocity, which is the
energy difference (∆Enn′)cm in the center-of-mass frame.
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respectively, where Γn,LOex. is the leading-order result of the excitation width Γnde-ex. ≡∑
n′>n

Γn→n′
de-ex.. Note that in eqs. (6.101) and (6.102) we have summed over the two polar-

izations of the dark photon either if the photon is emitted into or absorbed from the
medium.

Instead for lower temperatures of the order of the ultrasoft scale or smaller, the NLO
corrections are suppressed and the de-excitation width can be well approximated to be
simply the leading order result (6.101). If we consider the motion of the center of mass
P of the incoming bound state, then for the hierarchy (3.2) the total de-excitation width
in the laboratory frame reads up to relative order T/M and ∆Epn/M

(Γnde-ex.)lab(P ) =
∑

n′,En′<En

(Γn→n′
de-ex.)lab(P )

=
4

3
α

∑
n′,En′<En

(∆Enn′)3 (1 + nB(∆E
n
n′)) (6.103)

×
(
|⟨n′|r|n⟩lab|2Fn

′
1 (n, P ) +

∣∣∣∣⟨n′|r · P

2M
|p⟩lab

∣∣∣∣2 Fn′
2 (n, P )

)
,

where the form factors Fn
′

1 (n, P ) and Fn
′

2 (n, P ) are defined as in eqs. (6.63) and (6.64),
respectively, but with the energy difference ∆Epn replaced by ∆Enn′ . The total excitation
width in the laboratory frame reads up to relative order T/M and ∆Epn/M

(Γnex.)lab(P ) =
∑

n′,En′>En

(Γn→n′
ex. )lab(P )

=
4

3
α

∑
n′,En′>En

(∆En
′

n )3 nB(∆E
n′
n ) (6.104)

×
(
|⟨n′|r|n⟩lab|2Dn

1 (n
′, P ) +

∣∣∣∣⟨n′|r · P

2M
|n⟩lab

∣∣∣∣2Dn
2 (n

′, P )

)
,

where the form factors Dn
1 (n

′, P ) and Dn
2 (n

′, P ) are defined as in eqs. (6.95) and (6.96),
respectively, but with the energy difference ∆Epn replaced by ∆En

′
n . In the center-

of-mass frame, where the bath is moving with velocity −v, the de-excitation width,
(Γnde-ex.)cm(v), has the same expression as (6.103), but with P /(2M) replaced by v and
form factors F̃n

′
1 (n, v) and F̃n

′
2 (n, v) defined as in eqs. (6.71) and (6.72), respectively,

but in terms of (∆Enn′)cm. The excitation width, (Γnex.)cm(v), has the same expression
as (6.104), but with P /(2M) replaced by v and form factors D̃n′

1 (n, v) and D̃n′
2 (n, v)

defined as in eqs. (6.98) and (6.99), respectively, but in terms of (∆En
′

n )cm.

Upon using the Lorentz-transformation relation (A.23) and (A.33) for the energy
difference between two bound states and the bound-state to bound-state matrix element,
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respectively, which up to first order in v2 are∣∣⟨n|r|n′⟩cm∣∣2 ≈ ∣∣⟨n|r|n′⟩lab∣∣2 + ∣∣⟨n|r · v|n′⟩lab∣∣2 ,∣∣⟨n|r · v|n′⟩cm∣∣2 ≈ ∣∣⟨n|r · v|n′⟩lab∣∣2 ,
(∆En

′
n )cm = γ(∆En

′
n )lab ≈ (∆En

′
n )lab

(
1 +

v2

2

)
,

(6.105)

we can check that the behaviour of the (de-)excitation width under Lorentz boosts is the
same as for the in-vacuum annihilation width, cf. (5.34), and for the thermal dissociation,
cf. (6.100). We can visualize the recoil corrections for the bound-to-bound transitions
between the ground state and the 2P state, by plotting in fig. 6.7 the ratios RΓ of the
(de-)excitation widths with recoil, thermally averaged according to (B.9), and the ones
at leading order and without recoil, which can be computed from (6.101) and (6.102)
and are27

Γ1S→2P
ex.,LO =

27

37
Mα5

e
3Mα2

16T − 1
, (6.106)

Γ2P→1S
de-ex.,LO =

27

38
Mα5

1− e− 3Mα2

16T

. (6.107)

Comparing with the decay and bsd widths, we observe that the most significant recoil
corrections are for the 1S ↔ 2P transition widths at large temperatures (orange solid
and dark green dashed lines), with a correction of about 25% for T = M/10. Hence,
especially for bound-state to bound-state transitions the contribution from the motion of
the center of mass should be taken into account whenever doing precision computations.

As for the NLO or resummation corrections, in figure 6.8, left, we plot the excitation
width for the 1S → 2P process at leading order (black dashed line for nf = {1, 2}),
including next-to-leading order corrections (orange and black dotted lines for nf = 1
and nf = 2, respectively) and with Debye mass resummation (orange and black solid
lines for nf = 1 and nf = 2, respectively). In the right panel, we plot the results for the
de-excitation process 2P→ 1S. We normalize byMα5/2, and choose α(2M) = 0.1 which
runs at one loop. The results are comparable to the ones for the bound-state dissociation
in figure 6.6 left, i.e. at large temperatures we again observe an overestimation of the
fixed NLO widths by a factor up to five as compared to the widths accounting for the
resummation of the Debye mass scale.

6.4 Scattering-state to scattering-state transitions:
bremsstrahlung, thermal absorption

Similarly to what happens for bound-state to bound-state transitions, scattering states
can undergo processes of thermal emission, called bremsstrahlung, and thermal absorp-

27The widths in (6.106) and (6.107) have already been shown in fig. 6.2 right by the black solid and
dashed lines, respectively, and can be checked to satisfy the detailed balance relation in (6.16). While
in the limit T → 0 the ground state cannot be excited, the 2P state can still deexcite.
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Figure 6.8: Excitation (left plot) and de-excitation (right plot) widths for the 1S ↔ 2P
process, at leading order (dashed lines), up to next-to-leading order (dotted lines) and
with Debye mass resummation (solid lines), for nf = 1 (orange lines), nf = 2 (black
lines), running coupling with α ≡ α(2M) = 0.1, normalized by Mα5/2. The vertical
dashed lines mark the position where T =Mα2.

tion of an ultrasoft thermal photon. At large T , the Landau damping needs to be taken
into account as well. The corresponding diagrams encompassing these scattering-to-
scattering processes can be taken from figure 6.1, by just replacing the single solid lines
in the loop with double solid lines. The recoil effect can be computed from the self-
energy diagrams in fig. 6.4, again replacing the single with a double solid line. In the
center-of-mass frame and at leading order in perturbation theory, the thermal absorption
and emissions correspond to transitions from a scattering state of relative momentum p
to a scattering state of relative momentum p′ mediated by an electric-dipole vertex. For
the differential cross section of the bremsstrahlung process, we obtain for |p′| < |p|

d(σemivrel)(p,p
′)

d3p′
=

g2

24π4
(Ep − Ep′)3

[
1 + nB(Ep − Ep′)

]
|⟨p′|r|p⟩|2, (6.108)

On the other hand, for the differential cross section of the thermal absorption process,
we obtain for |p′| > |p|

d(σabsvrel)(p,p
′)

d3p′
=

1

2

g2

24π4
|Ep − Ep′ |3nB(|Ep − Ep′ |)|⟨p′|r|p⟩|2, (6.109)

where we have averaged over the polarizations of the incoming dark photon. The emis-
sion width follows from integrating (σemivrel)(p,p

′) over the momenta p and p′. The
absorption width follows from integrating (σabsvrel)(p,p

′) over the momenta p and p′,
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and summing over the two photon polarizations. Notice that the absorption process
cannot happen in vacuum. In particular, for an incoming S-wave we get

(σemivrel)ℓ=0(p) =
4

3
α

∫
p′<p

dp′ (p′)2(p+ p′)3(p− p′)3
[
1 + nB

(
∆Epp′

)]
|⟨p′1|r|p0⟩|2 ,

(6.110)

(σabsvrel)ℓ=0(p) =
4

3
α

∫
p′>p

dp′ (p′)2(p+ p′)3(p− p′)3 nB
(
∆Epp′

)
|⟨p′1|r|p0⟩|2 ,

(6.111)

which in principle can be integrated upon inserting the continuum dipole matrix ele-
ment in eq. (C.32). The matrix element contains, however, a few divergences. They
come from p′ → 0 (IR singularity) which is cured by the polynomial factors inside the
integral in (6.110), from p′ → ∞ (UV singularity) which however vanishes due to the
Bose–Einstein distribution function in (6.111), and p′ → p (collinear singularity) which
may pose a problem. We refer the reader to appendix C.3, which is devoted to the study
of the collinear divergence, that can be extracted from the matrix element and is written
in eqs. (C.57) and (C.58). One could introduce a cutoff δ ≡ p − p′, and split the inte-
grals in (6.110) and (6.111) into momentum regions close to the singularity, and regions
far away. Performing the integrals numerically, the divergences between those two mo-
mentum regions should cancel out and the numerical results, that would depend on the
cutoff parameter δ, should converge in the limit δ → 0. We expect the bremsstrahlung
and thermal absorption processes, which count as elastic processes since the unbound
heavy pairs remain in the scattering-state configuration throughout the reactions, to be
responsible for keeping the dark fermion-antifermion pairs in kinetic equilibrium with
the thermal bath. Hence the rates in (6.110)–(6.111) should dominate over the thermal
rates that have been considered so far in the previous sections, which correspond to the
bound-state formation and dissociation processes as well as the bound-to-bound transi-
tions. However, since elastic collisions do not change the dark particle number n, they
will not enter in the integrated coupled Boltzmann equations, which will be shown in
the following chapter.
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Chapter 7

Consequences for the dark matter
energy density

In this chapter, we collect the numerical results obtained so far for the in-vacuum and
thermal rates that enter in the evolution equations for the heavy dark matter and study
their impact on the present DM relic abundance. Since the dark particles are assumed
to be kinetically equilibrated during the thermal freeze-out, the evolution equations can
be reduced to a network of coupled Boltzmann equations for the bound state number
densities npara

n and northo
n , where the subscript n comprises the internal quantum numbers

of a specific bound state, and the sum of the dark matter particle and antiparticle number
densities n = nX + nX̄ = 2nX above threshold. The standard rate equation (2.6) for
the single dark matter particle that is dictated by particle-antiparticle annihilations
only, generalizes to a tower of semi-classical equations because of the near-threshold
phenomena that allow for the formation of bound states before the particles annihilate.
In the following, we are going to present the rate equations and study them from a
phenomenological perspective, whereas in the subsequent chapters we aim to provide
a derivation of these equations starting from the open quantum systems formalism,
showing the several approximations that need to be done along the derivation and the
corresponding limitations that are induced by them.

Although for Coulombic systems the maximum number of bound states is not limited
as opposed to the spectrum of bound states for theories with massive-mediator interac-
tions, the formation and dissociation rates are suppressed for higher excited states as
we have shown in the previous chapter, see the numerical results in figure 6.2.1 Hence
for practical purposes we will consider only bound states up to n = 2.2 If we include
the Sommerfeld-enhanced annihilations and decays, as well as the thermal bound-state

1This is not quite true for the Debye-mass resummed rates at large temperatures, cf. the right plots
in figure 6.5 for the bound-state formation cross section and figure 6.6 for the dissociation width, where
the rates are larger for the excited states than the 1S. However, for most of the times after thermal
freeze-out, where T ≲Mα2, the contribution from the ground state dominates, cf. fig. 6.2.

2We remark that also the decay widths in eqs. (5.32) and (5.33) for the nS and nP discrete states
are suppressed for large principal quantum number n, since Ψn(r) ∼ n−3/2.
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formation and bound-state dissociation rates and also the (de-)excitations among the
bound states, then the evolution equations read3

(∂t + 3H)n = −1

2
⟨σann vMøl⟩(n2 − n2eq)

−1

2

∑
n=1,2

⟨σnbsfvMøl⟩n2 + 2
∑
n=1,2

⟨Γnbsd⟩(nparan + northon ) , (7.1)

(∂t + 3H)nparan = −⟨Γn,paraann ⟩(nparan − nparan,eq)− ⟨Γnbsd⟩nparan +
1

16
⟨σnbsfvMøl⟩n2

−
(∑
n′<n

⟨Γn→n′
de-ex.⟩+

∑
n′>n

⟨Γn→n′
ex. ⟩

)
nparan +

(∑
n′>n

⟨Γn′→n
de-ex.⟩+

∑
n′<n

⟨Γn′→n
ex. ⟩

)
nparan′ , (7.2)

(∂t + 3H)northon = −⟨Γn,orthoann ⟩(northon − northon,eq )− ⟨Γnbsd⟩northon +
3

16
⟨σnbsfvMøl⟩n2 ,

−
(∑
n′<n

⟨Γn→n′
de-ex.⟩+

∑
n′>n

⟨Γn→n′
ex. ⟩

)
northon +

(∑
n′>n

⟨Γn′→n
de-ex.⟩+

∑
n′<n

⟨Γn′→n
ex. ⟩

)
northon′ , (7.3)

where eqs. (7.2) and (7.3) are for each bound state, i.e. (n, n′) ∈ {1S, 2S, 2P}. Since
the Boltzmann equations (7.1)–(7.3) are frame-dependent, one needs to choose from
beginning on a specific reference frame when computing the individual rates and their
thermal averages, and solve the equations with respect to that reference frame. One
typically considers the cosmic comoving frame where the thermal bath is at rest. Note
that Γ1S↔2S = Γ2S↔2P = 0 at the dipole order and that Γ2P

ann = 0 if we neglect the velocity
corrections. Since we have already studied the impact of the relative velocity corrections
to the Sommerfeld-enhanced annihilations and the present relic density, see fig. 5.3, we
decide to drop from now on the corresponding four-fermion operators of dimension eight
and keep only the dimension-six terms and the dimension-eight operators associated to
the center-of-mass motion, corresponding to the terms in the fourth line of eq. (5.12).

We may use an approximation, first introduced in ref. [68] and commonly adopted
in the literature, that is based on an effective treatment of dark matter bound states.
In a typical cosmological setting, the annihilation and dissociation rate of bound states
is pretty efficient, i.e. Γann,Γbsd ≫ H, so that they quickly adjust to their equilibrium
number densities. Using the detailed balance conditions at equilibrium between bound-
state formation and dissociation as well as excitations and de-excitations, cf. eqs. (6.15)
and (6.16), respectively, one obtains a single Boltzmann equation that depends only on
the density n of scattering states, and is governed by an effective cross section σeff. The
latter comprises the effects of dark matter annihilation via unbound pairs and bound
states, but also bound-state formation cross sections, dissociation widths and bound-to-
bound transition widths [41,135]. The single effective rate equation reads

(∂t + 3H)n = −1

2
⟨σeff vMøl⟩(n2 − n2eq) , (7.4)

3The dark matter number densities in thermal equilibrium for the para- and orthodarkonium are
npara
n,eq = (2ℓ + 1)(MT/π)3/2e−En/T and northo

n,eq = 3npara
n,eq, respectively, and neq has been written in eq.

(2.7).
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where

⟨σeff vMøl⟩ = ⟨σannvMøl⟩+
∑
n

(
1

4
⟨σnbsf vMøl⟩Rpara

n +
3

4
⟨σnbsf vMøl⟩Rortho

n

)

≈ ⟨σannvMøl⟩+
∑
n

(
1

4
⟨σnbsf vMøl⟩

⟨Γn,paraann ⟩
⟨Γn,paraann ⟩+ ⟨Γnbsd⟩

+
3

4
⟨σnbsf vMøl⟩

⟨Γn,orthoann ⟩
⟨Γn,orthoann ⟩+ ⟨Γnbsd⟩

)
,

(7.5)
where the result in the second line is valid if the bound-state to bound-state transitions
are much smaller than Γnann and Γnbsd, also referred to as the no-transition limit [41].
The result in the first line of eq. (7.5) is, however, more general as it includes the
information of the (de-)excitations, which, as was shown in ref. [51], strongly affect the
numerical result of the Boltzmann equations and hence the DM relic abundance. From
the right plot in figure 6.2 it can also be seen that at sufficiently small temperatures, the
bound-state to bound-state transitions become as large as or larger than the dissociation
widths. We will, therefore, not neglect the transitions among the 1S and 2P state when
truncating the number of bound states at n = 2 as in (7.1)–(7.3). The general expression
of Rn can be found in refs. [41, 135], which in our particular case reduces to

Rpara
1S = 1−

⟨Γ1S
bsd⟩ −

∑
m=0,±1

⟨Γ1S→2Pm
ex. ⟩⟨Γ2Pm

bsd ⟩/⟨Γ2Pm
para⟩

⟨Γ1S
para⟩ −

∑
m=0,±1

⟨Γ1S→2Pm
ex. ⟩⟨Γ2Pm→1S

de-ex. ⟩/⟨Γ2Pm
para⟩

, (7.6)

Rpara
2S =

1

1 + ⟨Γ2S
bsd⟩/⟨Γ

2S,para
ann ⟩

=
⟨Γ2S,para

ann ⟩
⟨Γ2S,para

ann ⟩+ ⟨Γ2S
bsd⟩

, (7.7)

Rpara
2P0

= 1 +
⟨Γ2P0→1S

de-ex. ⟩
⟨Γ2P0

para⟩
(
1−Rpara

1S

)
− ⟨Γ

2P0
bsd ⟩

⟨Γ2P0
para⟩

, (7.8)

Rpara
2P±1

= 1 +
⟨Γ2P±1→1S

de-ex. ⟩
⟨Γ2P±1

para ⟩
(
1−Rpara

1S

)
− ⟨Γ

2P±1

bsd ⟩
⟨Γ2P±1

para ⟩
, (7.9)

and similarly for Rortho
n . In the eqs. (7.6)–(7.9) we have defined the total width of a

bound state,

Γnpara/ortho ≡ Γn,para/orthoann + Γnbsd +
∑
n′

Γn→n′
. (7.10)

We remark that at late times in the evolution of the universe, i.e. at temperatures
such that the heavy dark particles are very diluted, DM particle interactions become
negligible with respect to the universe expansion rate H that dominates the evolution
equation (7.4). The effective Boltzmann equation (7.4) can be recast in terms of the
yield Y = n/s as in (2.9), and then be solved numerically.

The main advantage of the EFT framework is to allow for a rigorous derivation and
a systematic inclusion of corrections to the relevant observables entering the thermally
averaged effective cross section in (7.5). We refer to the scheme in figure 7.1 to pictori-
ally illustrate the different corrections. As for the scattering states, which are integrated
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Figure 7.1: Schematic representation of the different corrections to the cross sections
and widths considered in this work. The left plot is for scattering states, whereas the
right plot is for bound states.

over all momenta, we can improve cross sections and widths by adding relativistic cor-
rections. This amounts at including higher-dimensional operators in both NRQEDDM

and pNRQEDDM. Furthermore, we can add radiative corrections to the matching co-
efficients of the effective field theories, as was done in chapter 5, but also to the dipole
diagrams, cf. figure 6.1, which need to be resummed in the large temperature regime. As
for the bound states, the situation is similar. Higher-dimensional operators account for
higher-order relativistic corrections, which at the same time may open new decay chan-
nels through annihilations of heavy pairs of higher orbital quantum number. Radiative
corrections at the hard scale improve the matching coefficients and at the ultrasoft scale
they improve the near-threshold thermal rates. Moreover, we add a fourth dimension to
the scheme that accounts for the number of bound states to be included in the analyses
consistently with the other corrections. The inclusion of excited states can be seen as
a further improvement towards an accurate description of the actual physical system,
and hence a correction to the simplest possible situation, when only the ground state
is considered. As explained above, in this work we include the first excited 2S and 2P
states. In the following sections, we aim to assess the relative importance of the recoil
and Debye-mass corrections on the effective cross section and eventually on the DM relic
abundance.

7.1 Numerical results for the effective cross section

We would like to quantify the impact of the resummation of the Debye mass scale
on the thermally averaged effective cross section, at zeroth order in the center-of-mass
momentum. In figure 7.2 left, we plot the the effective cross section (7.5), thermally
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Figure 7.2: (Left) Thermally averaged annihilation (black dashed line), 1S bsf at LO
(red dashed line) and mD-resummed 1S bsf (red solid line) cross sections, as well as
the effective cross sections at LO (orange dotted line) and resummed (orange solid line)
for the 1S state. The thermally averaged effective cross section for up to 2P states at
LO and resummed is shown by the black dotted and black solid line, respectively. We
normalize by πα2/M2 and α runs at one loop with α(2M) = 0.1 and nf = 1. (Right)
Ratios of the thermally averaged effective cross sections up to NLO (dashed lines) or
with mD-resummation (solid lines), over the expression at LO. We consider both the
nf = 1 and nf = 2 case.

averaged according to (B.15), for the ground state where the individual rates are either
at leading order in the coupling or mD-resummed, and as a reference we plot also the
1S bound-state formation cross section (at LO and resummed), divided by πα2/(2M),
and the Sommerfeld annihilation factor, where α runs at one loop with one light fermion
flavour and starting value α(2M) = 0.1. In the next step, we include excited states
up to 2P into the effective cross section. We observe that, although the resummation
drastically increases the bsf cross section at T ≫ Mα2, the effective cross sections are
not enhanced but close to the annihilation cross section at large temperatures. In order
to extract quantitatively the corrections due to the resummation effect on the effective
cross section, we plot in the right panel of fig. 7.2 the ratio of the resummed σeff over the
expression obtained from the rates at LO (solid lines). As a comparison, we plot also
the ratio when radiative corrections are not resummed but truncated at NLO (dashed
lines). We see that for temperatures close to the freeze-out and far away, the ratios
are close to one, reflecting the fact that in the T → 0 limit the radiative corrections are
suppressed, and that at large T one reaches the ionization-equilibrium regime, where the
dipole processes, despite being large, balance each other, such that the net effect on the
annihilations is small. The peak values for the deviations from the leading order effective
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Figure 7.3: Ratios of thermally averaged effective cross section in the laboratory frame
with recoil corrections, cf. (7.5), and the corresponding thermally averaged effective cross
section without recoil corrections plotted as a function of M/T for couplings α = 0.1
(black solid line) and α = 0.5 (orange dashed line).

cross section are from about 5% to 20% at T ≈M/200−M/100 for the resummed case,
depending on nf and the number of excited bound states in σeff. As a comparison, for the
NLO case the correction is up to around 38% for nf = 2 and excited states up to 2P. The
treatment of thermal effects at fixed next-to-leading order results in an overestimation
of the effective cross section, which originates from a systematic overestimation of the
individual rates. At small temperatures, the solid and dashed lines eventually approach
each other and stay constant at a value close to one. Here, the processes that involve a
thermal incoming/outgoing dark photon are dominant and are fully accounted for by the
individual rates at leading order. We summarize that, despite at large temperatures the
Landau damping phenomenon leads to an enhancement of about two orders of magnitude
for the bound-state formation cross section, the bound-state dissociation width and the
(de-)excitation widths, at the level of the effective cross section we observe just a small
enhancement due to the Debye-mass resummation that ranges only from 5% to 20%.

Next, we would like to make a comparison with the recoil corrections due to the
thermal motion of the center of mass of the interacting heavy pairs in the thermal bath.
In figure 7.3, we plot the ratio of (7.5), thermally averaged in the laboratory frame,
with recoil corrections taken into account in the individual rates, and the corresponding
effective cross section without recoil correction, which is thermally averaged according
to (B.15). The ratio decreases with increasing temperature, and for large T there is a
reduction in the thermally averaged effective cross section due to the recoil corrections
by about 15-25% for both choices of coupling that we display. Hence, the contribution
of the recoil corrections to the effective cross section, and, therefore, the Boltzmann
equations, is significant for increasing T even for small couplings.
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7.2 Boltzmann equations with recoil or Debye-mass effects

Finally, we quantify the recoil effect but also the corrections coming from the additional
thermal processes, that are captured by the fixed NLO rates and the corresponding ones
with a Debye mass resummation, to the dark matter relic density. We begin with the
latter, i.e. analyze first the effect of the radiative corrections to ΩDMh

2, while neglecting
the center-of-mass motion of the heavy pairs.

In the left panel of figure 7.4, we show the energy density contours for ΩDMh
2 =

0.1200 in the model parameter space (M,α), where α = α(2M), and when considering
bound states up to 2P. The orange lines correspond to an abelian model with only one
light fermion, whilst the black lines are for nf = 2 light fermion species. The black
lines are systematically below the orange curves because of the additional annihilation
channel into the second light fermionic particle. The dashed lines are always above the
solid and dotted lines within each color, because the NLO corrections (dotted lines) or
the mD-resummation corrections (solid lines) make the effective cross section in eq. (7.5)
larger, so that the same energy density is reproduced for smaller α, and the dotted lines
are below the solid lines due to the naive overestimation when truncating the radiative
corrections two-loop order, cf. fig. 6.1 (see also the right plot in fig. 7.2, where the
dashed lines are always above the solid lines for each color). The radiative corrections
can be visualized more quantitatively if we plot the ratio of the DM energy densities
at NLO or from mD-resummation, over ΩDMh

2 as obtained from considering the near-
threshold processes only at leading order. The corresponding plot, as a function of the
coupling α at the hard scale 2M and for fixed dark matter mass M = 1 TeV, is shown
on the right panel of figure 7.4. As we can see, if we vary the coupling from smaller to
larger values up to 0.12, the ratio due to the resummation of the Debye mass scale (solid
lines) decreases up to about 6.8% (8.7%) for nf = 1 (nf = 1) when adding bound states
up to 2P, represented by the purple (black) solid line. If we consider only scattering
states and the ground state 1S, then the corrections are up to 3.5% for nf = 1 (orange
solid line) or 4.7% for nf = 2 (red solid line). If we, therefore, include more bound states
to the network of coupled Boltzmann equations, then the radiative corrections deplete
the present relic abundance to lower values for fixed coupling and DM mass,4 which has
a more drastic effect if we do not resum the thermal radiative contributions but stay at
next-to-leading order (dotted lines). For instance, as can be seen in the right plot in fig.
7.4 for nf = 2 and α(2M) = 0.12, the correction increases from 8.7% to around 15%
upon adding the 2S and 2P states to the ground state. Hence, a model with more light
fermions which gives rise to the Landau damping phenomenon, together with inclusion
of more excited states, allows even smaller values of α or larger values of the DM mass
M to reproduce the observed energy density because of the additional channels for DM
annihilations.

We now consider the recoil corrections with respect to the DM energy density. We
remove the light fermions from the model, since they do not affect the study of the

4We checked explicitly, that in fact the corrections on the relic abundance stay almost constant when
varying the dark matter mass from 0.1 TeV to 10 TeV. Here we choose M = 1 TeV.
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Figure 7.4: (Left) Contours in the parameter space (M,α) that correspond to the ob-
served DM energy density obtained from different approximations of the effective cross
section, when including bound states up to 2P. Orange lines are for nf = 1, black lines
for nf = 2. (Right) Ratio of the present relic density with mD-resummed effective cross
section (solid lines) or with σeff incl. radiative corrections at NLO (dashed lines), over
ΩDMh

2 as obtained from the near-threshold processes at leading order; plotted as a
function of α ≡ α(2M) that runs at one loop, and for fixed DM mass M = 1 TeV.

recoil for the hierarchy (3.2), where the Landau damping phenomenon is suppressed.
Then we enlarge the range of parameter values for α(2M) up to 0.5, cf. footnote 8 in
section 3.2 for more details. In the two panels of figure 7.5, we show the ratio of the
present dark matter energy density, RΩDM

, obtained with center-of-mass recoil effects in
the laboratory frame and the one obtained without recoil effects plotted as a function
of α (left panel) and M (right panel). The left plot shows the ratio for a fixed dark
matter mass of 1 TeV. For a wide range of couplings from 0.05 to 0.5, we observe that
when considering the evolution of dark matter unbound pairs and only the ground state
1S, the ratio RΩDM

(orange solid line) is larger than one, reflecting the fact that the
dark matter relic abundance is less depleted in the laboratory frame due to the inclusion
of center-of-mass recoil effects. For values of the coupling up to α = 0.2, the recoil
correction stays constant around 2.5%. For stronger couplings the recoil correction starts
increasing, eventually reaching the maximal value of about 4.5% for α = 0.5. Including
the contribution from the first excited state 2S in the effective cross section (7.5), the
ratio RΩDM

, now represented by the green dashed line, is nearly the same as the ratio
obtained from only the 1S state. Finally, we add the excited state 2P and allow for
transitions between 1S and 2P, represented by the black dash-dotted line in the left
plot of fig. 7.5. The recoil correction amounts to an effect between 2.5% and 4.5%.
The dark matter energy abundance is monotonically increasing with increasing α, since
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Figure 7.5: (Left) Ratio of the present dark matter relic abundance in U(1)DM, where
we put nf to zero, as seen from the laboratory frame including center-of-mass recoil
corrections and the relic abundance computed without recoil corrections plotted as a
function of the coupling α for fixed dark matter mass M = 1 TeV. The orange solid line
is for the ratio obtained by only considering the 1S bound state, the green dashed line
by including the 2S state, the black dash-dotted line by including 2P states beyond the
no-transition approximation. (Right) Ratio of the present dark matter relic abundance
as a function of the dark matter mass for two benchmark values of the coupling α. Black
solid and orange solid lines are for α = 0.1 and α = 0.5, respectively, and obtained by
considering only the 1S state. Black dashed and orange dashed lines are for α = 0.1 and
α = 0.5, respectively, and obtained by including the excited states 2S and 2P beyond
the no-transition approximation.

the effective cross section (7.5) is a decreasing function with increasing coupling, see
figure 7.3. Moreover, the recoil correction on the dark matter relic abundance seems to
be independent of whether considering only the ground state or adding higher excited
states and also transitions among them for the whole range of considered values for α.
Hence, one can quantify the recoil correction on the relic energy density, to a good degree
of precision, already including only the ground state in the evolution equations.

The right plot in figure 7.5 shows RΩDM
for a wide range of dark matter masses from

0.1 TeV to 10 TeV. In the considered range, the recoil effect on the energy density is
almost independent of the dark matter mass M . The black solid and orange solid lines
include only the ground state contribution to the evolution equations for the specific
values α = 0.1 and α = 0.5, respectively. The black dashed and orange dashed lines also
include bound-state effects from the 2S and 2P states.

We conclude that the correction due to the motion of the center of mass of the heavy
dark matter pairs is above the 1% accuracy of the present measurement of the dark

89



matter energy density, with values ranging between 2.5% and 4.5% for the considered
values of α from 0.05 to 0.5. In the laboratory frame, the recoil leads to less depletion
of the energy density due to a decreased effective cross section, and is independent of
the particular value of the dark matter mass and the inclusion of bound-state effects
from higher excited states. We obtain similar results for the recoil corrections to the
dark matter relic abundance in the dark non-abelian model, which we are going to study
in the next chapter. In the unbroken non-abelian gauge theories SU(2) and SU(3), for
coupling α(2M) = 0.03 and at one-loop running, we get a small correction to the relic
density coming from recoil corrections of about 2%.

Finally we remind that, when T approachesMα, the multipole expansion for thermal
dark photons breaks down and one has to treat them at the level of NRQEDDM. However,
for all the couplings considered in this work to compute the DM energy density, it
holds that T ≪ Mα after freeze-out. The numerical results for the DM energy density
presented in this section are based on the single effective Boltzmann equation (7.4). If
instead we solve the coupled Boltzmann equations (7.1)–(7.2) numerically, we get results
that differ at most by 1% from the ones presented here, and so are within the uncertainty
of the measured DM relic abundance.
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Part IV

Weakly-coupled non-abelian dark
sector
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Chapter 8

pNREFTDM, thermal scale
hierarchies

The preceding sections were dedicated to a comprehensive dark matter study for the
exemplary case of a heavy dark fermion species of mass M coupled to a dark abelian
gauge field Aµ, where, in addition to the Lagrangian model studied in previous works [51,
52], also nf light (practically massless) dark fermions of same charge where included
into the model. The underlying theory of the dark sector was an abelian gauge theory,
U(1)DM, as an equivalent version to the familiar QED. In this chapter, we work out
the same step-by-step construction as for the abelian theory, however for a heavy DM
fermion of mass M together with nf massless dark fermions to be in the fundamental
representation of a non-abelian dark SU(N) gauge group, SU(N)DM, with N ≥ 2.1

We compute the cross sections and widths for particle-antiparticle heavy-pair annihi-
lations in section 9.1, and discuss the dipole-transition processes for specific hierarchies
of energy scales in section 9.2. Finally, in the follow-up chapter 10, we provide some
numerical results from solving the Boltzmann equations, which aim to show the impact
of bound-state effects as well as corrections due to the recoil on the DM energy density.

First of all, we begin by writing the dark-sector Lagrangian for a heavy Dirac fermion
X = Xa

α (α = 1, . . . , 4 Dirac spinor index; a = 1, . . . , N color index in fundamental
representation) and nf light Dirac fermions fi coupled to SU(N) gauge fields Aµ = TAAAµ
in adjoint representation, where A = 1, . . . , N2 − 1:

LSU(N)DM
= X̄(i /D −M)X − 1

4
GAµνG

Aµν +

nf∑
i=1

f̄i(i /D −mi)fi + Lportal , (8.1)

where Dµ = ∂µ + igAAµT
A, TA are the group generators in the adjoint representation,

GAµν = ∂µA
A
ν − ∂νA

A
µ + gfABCABµA

C
ν the field strength tensor and fABC the totally

antisymmetric fine structure constants of the underlying algebra; α ≡ g2/(4π) is the
dark fine structure constant, g the dark non-abelian gauge coupling. Moreover it holds

1Throughout this work, the notation SU(N) is meant to be the same as SU(N)DM, and denotes the
dark non-abelian sector.
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that GAµνG
Aµν = 2 Tr [GµνG

µν ], with Gµν = (i/g) [Dµ, Dν ]. As in the abelian case in
the previous sections, we set Lportal = 0.2

Contrarily to the U(1) model, additional loop corrections due to gauge-field self-
interactions (and couplings to the ghost fields in the path-integral formalism), lead to a
significantly different running of the coupling compared to the abelian equivalent in eq.
(3.3), where the first coefficient of the beta function at leading order now reads

β0 =
11

3
N − 4

3
TFnf , (8.2)

where TF = 1/2 is the Dynkin index (TF = 1 in U(1)). Since β0 is positive for all different
kinds of numerical combinations betweenN = {2, 3, 4} and nf = {1, 2} used in this work,
asymptotic freedom is approached at high energies or temperatures, like in the QCD
gauge theory, whereas perturbation theory is spoiled in the low-energy/temperature limit
due to antiscreening effects of the gauge fields. The non-perturbative scale, at which the
weak-coupling expansion in α breaks down, is denoted by Λ and can be computed by
solving the renormalization equation for α,

dα

d logµ
= αβ(α) = −α

2

2π
β0 +O(α3) , (8.3)

which at one-loop accuracy and for the boundary condition α(Λ) =∞ reads

Λ = exp

[
− 2π

β0α(µ)

]
µ . (8.4)

While in QCD, which corresponds to the SU(3) case and is relevant to describe the effects
of a moving quark-gluon plasma on quarkonium formation and dissociation in heavy-ion
collisions [131, 140], the scale Λ is about 200 MeV and hence of the order of the pion
masses, in our dark non-abelian SU(N)DM model we would like to keep the value for
the coupling sufficiently small in order not to endanger the weak-coupling expansion
in the lowest temperature region, T ≈ 10−5M , that is considered in this work. This
temperature regime sets the magnitude of the ultrasoft scale. Hence, if we require that
the coupling at the ultrasoft scale is weak, then we need to require that, in particular,
α(10−5M) < 1. This condition is fulfilled for the SU(4) theory at one-loop running if
we choose α(2M) ≲ 0.03 at the hard scale of non-relativistic heavy-pair annihilations,
2M , and by somewhat larger values of α(2M) for smaller gauge groups: α(2M) ≲ 0.04
for the SU(3) theory and α(2M) ≲ 0.06 for the SU(2) theory.3 For these values of the

2We remark that, at variance with the abelian model, for SU(N)DM a portal interaction via kinetic
mixing with the Standard Model is not viable because of gauge invariance. A possible workaround can
be achieved by including non-renormalizable operators [136–138], a Higgs portal [139], or introducing
vector-like fermions [137]. We assume these portal interactions to keep the dark sector at the same
temperature as the Standard Model and, at the same time, the portal couplings to be much weaker than
the dark gauge coupling g, such that effects from Lportal can be practically ignored with respect to the
freeze-out process within the dark sector.

3These benchmark values for α(2M) represent only approximate upper numbers, since the coupling
depends also on the number nf of massless fermions that run in the loop.
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gauge couplings, the absolute value of the binding energy of the dark fermion-antifermion
bound states, |Eb1|, is smaller than the freeze-out temperature TF ∼ M/25. Hence, it is
not possible to satisfy Λ < M/105 and TF ≲ |Eb1| at the same time; the latter condition
would require stronger couplings α(2M) ∼ 0.1 that we, however, avoid.4

We are interested in very similar temperature regimes as the ones discussed in chapter
3, but now extended by the additional non-perturbative scale Λ taken to be the lowest
energy scale, and we consider again two different arrangements for the temperature T :
The hierarchy corresponding to later times in the universe expansion,

M ≫Mα ≳
√
MT ≫Mα2 ≳ T ≫ mD ≫ Λ , (8.5)

and the hierarchy related at earlier times close to the thermal freeze-out of the dark
matter,

M ≫
√
MT ≫Mα≫ T ≫ mD,Mα2 ≫ Λ . (8.6)

The Debye mass, mD ∼ gT ≪ T is not only generated by the massless dark fermions
running in the loop, but also by the self-interactions of the gauge fields. More details will
be shown in section 9.2. Both of these two choices of hierarchies for the energy scales in
eqs. (8.5) and (8.6) allow us, like in the abelian case, to integrate out modes associated
with the hard and soft scale by setting to zero the temperature characterizing the thermal
distribution of the dark gauge fields. Moreover, computations at the hard, soft and
ultrasoft energy scale may be done in weak-coupling perturbation theory, since we choose
the coupling at the hard scale to be sufficiently small, α(2M) < 0.05. The ultimate
effective field theory is a pNRQCD-like EFT [92, 94] for DM fermion-antifermion bi-
local fields and an SU(N) dark gauge group.5 We dub it pNREFTDM.6 The Lagrangian

4In the abelian case, where numerical values up to α(2M) = 0.5 have been considered, for such large
values it turns out that the freeze-out temperature is below the ultrasoft scale. Physics at thermal
freeze-out can therefore be described fully within pNRQED, cf. sections 3.1–3.2. On the other hand,
for the non-abelian theory it may be, in dependence of the coupling and the particular model, that also
the soft scale becomes smaller than or of the same order as the freeze-out temperature, which signals
the break down of the multipole expansion for thermal gauge fields at freeze out. This happens for the
SU(2), SU(3) and SU(4) theories considered here at α(2M) ≲ 0.03, where the freeze-out temperature
M/25 is slightly larger than the soft scale Mα. We will not account for this issue in this work, where
we assume that the multipole expansion holds also at freeze-out.

5One can make a one-to-one correspondence between the pNREFTDM model, that will be scrutinized
in the following sections, and pNRQCD. In pNRQCD, the non-relativistic degrees of freedom of mass M
are the heavy quarks and antiquarks like the bottom or the top, and a fermion-antifermion bound-state
of heavy quarks of the same flavor is called quarkonium in analogy to positronium [141–143]. Those
bosonic states, that are frequently observed in collider experiments, are charmonium (charm-anticharm
pair) and bottomonium (bottom-antibottom pair). The latter is known as the Y(1S)-meson, if it is in
the lowest energy configuration with a mass of around 2Mb ≈ 9.5 GeV [144]. Its Bohr momentum is
about Mvrel ≈ 1.5 GeV and the ultrasoft scale about Mv2rel ≈ 0.5 GeV, that is the typical splitting
between the binding energies of the two lowest bound states. Hence the relative velocity of the bottom-
antibottom meson, v2rel ≈ 0.1, can be safely considered to be non-relativistic, while for charmionium with
v2rel ≈ 1/3, a non-relativistic expansion in the velocities may be less secure [101]. The coupling in QCD,
with α(Mb) ≈ 0.2, is by an order of magnitude larger than the values for the dark coupling constant
that we consider in this work.

6The reason for not calling the non-relativistic EFT, emerging from the SU(N)DM model considered
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at order r in the multipole expansion reads7

LpNREFTDM
=

∫
d3r

{
Tr
[
S† (i∂0 −Hs) S + O† (iD0 −Ho)O

]
+Tr

[
VA(r)g(S

†r ·EO+O†r ·ES) +
VB(r)

2
g(O†r ·EO+O†Or ·E)

]}

− 1

4
GAµνG

Aµν +

nf∑
i=1

f̄ii /Dfi ,

(8.7)
where the trace is over color indices. The field S = S 1N×N/

√
N is an SU(N) singlet

field made of a dark fermion and antifermion and O = OaT a/
√
TF is the corresponding

SU(N) adjoint field; they depend on time t, the relative coordinate r and the center
of mass coordinate R. The non-abelian electric field Ei = TAEAi = ∂iA0 − ∂0Ai +
gfABCTAABi A

C
0 depends only on t and R. The temporal covariant derivative acting

on the adjoint field is D0O = ∂0O + ig[A0,O]. The Hamiltonians, Hs and Ho, can be
written as in (4.3) and (4.4) with the leading order potentials given respectively by8

V (0)
s = −CF

α

r
, V (0)

o =
α

2Nr
. (8.8)

The Casimir of the fundamental representation is CF = (N2 − 1)/(2N). The adjoint
field O is a color octet field for N = 3, which is the QCD case. The Lagrangian term
for the nf massless dark fermions remains unchanged.

The electric dipole terms in the second line of eq. (8.7), with the associated matching
coefficients VA(r) = VB(r) = 1 at leading order, allow for transitions between an unbound
adjoint dark fermion-antifermion pair and a bound or unbound singlet pair. Such tran-
sitions are responsible for bound-state formation and dissociation. Moreover, they allow
for scattering-state to scattering-state transitions among dark fermion-antifermion pairs
in the SU(N) adjoint representation. A crucial difference with respect to the abelian
model is that color-singlet transitions in SU(N), either involving bound states or scat-
tering states, cannot happen in this model because of the SU(N) charge conservation.
The electric-dipole vertex between a color-singlet bound state and an color-adjoint state
resembles the abelian electric-dipole vertex, cf. figure 4.1 left, except that an additional
factor

√
TF /Nδ

AB needs to be taken into account, where the indices A and B connect
the vertex with the electric correlator and color-adjoint propagator, respectively. The

in this chapter, simply pNRQCDDM, is because we do not restrict to only N = 3, like in QCD, but keep
N variable in this work.

7Like in the abelian case, additional interactions involving the Röntgen terms appear at leading order
in r and in the center-of-mass momentum P , which we do not write explicitly in (8.7). They are of the
same form as the electric-dipole terms in the second line, one just needs to replace the operator r ·E by
r/(4M) · {P×,B}, involving the dark non-abelian magnetic field Bi = TABAi = −ϵijkGjk/2, in every
single term.

8Notice that, due to the positive sign of the potential V
(0)
o and hence its repulsive nature, color-adjoint

bound states cannot exist.
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Figure 8.1: The first two vertices are exclusive in non-abelian theories: The vertex on
the left connects a color-singlet heavy pair (solid line) with a color-adjoint heavy pair
(double solid line), the vertex in the middle of the figure connects two heavy adjoint
pairs. The vertex on the right comes from the covariant derivative D0 that acts only on
the adjoint field O(t,R). Dashed (wavy) lines represent the longitudinal (transversal)
gauge fields, whereas the latin capital letters denote the color indices. More vertices can
be found in ref. [141].

constant factor comes from taking the color trace of the generators in (8.7). There is an
additional electric-dipole vertex connecting two color-adjoint propagators, with a factor
gdABC/2, but also three more vertices that are depicted in figure 8.1.9 From left to
right, they read ig2

√
TF /Nf

ABCr, ig2dABCfCDEr/2 and −igfabc.10 When including
interactions at leading order in the center-of-mass momentum P , then there are more
vertices compared to the one shown on the right in fig. 4.1 in the abelian case, that
come from the self-interacting term in the dark non-abelian magnetic field within the
Röntgen dipole interaction. Diagrams involving such interaction vertices of order g2

are disregarded in this work, because we stay at leading order in the coupling when
computing the leading recoil corrections to the dipole processes in section 9.2.

We can replace the temporal covariant derivative D0 by the partial time derivative
∂0 in the pNREFTDM Lagrangian (8.7), if we make the following substitutions for the
adjoint field,

Õ(r,R, t) =W[(R,t),(R,t0)] O(r,R, t)W[(R,t0),(R,t)] , (8.9)

and for the dark electric field,

Ẽi(R, t) =W[(R,t),(R,t0)] E
i(R, t)W[(R,t0),(R,t)] , (8.10)

where now the new fields are dressed by the temporal Wilson line

W[(R,t),(R,t0)] = P
[
e
ig

∫ t
t0
dt′ A0(R,t′)

]
, (8.11)

where P denotes path-ordering, which for fixed R can be replaced by the time ordering
operator T . The initial time t0 can be chosen arbitrarily, since it cancels out in concrete

9The first two vertices stem from the self-interacting term in the non-abelian electric field, whereas
the vertex on the right in fig. 8.1 comes from the covariant derivative D0.

10The totally symmetric tensor dABC is defined by the anticommutator {TA, TB} = δAB/N+dABCTC .
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calculations. The Lagrangian in terms of these new fields now reads11

LpNREFTDM
⊃
∫
d3r

{
Tr
[
S† (i∂0 −Hs) S + Õ

†
(i∂0 −Ho) Õ

]
+ gTr

[
(S†r · ẼÕ + h.c.) +

1

2
(Õ

†
r · ẼÕ + Õ

†
Õr · Ẽ)

]}
,

(8.12)

which implies that the interaction term in the covariant derivative D0 has now been
resummed. The Lagrangians (8.7) and (8.12) will generate the same diagrams in per-
turbation theory, once we expand the exponential in (8.11) up to the desired order in
the coupling.

Due to the running of the coupling constant, cf. equation (8.3), α will certainly
approach different numerical values when computing processes occurring at the hard,
soft and ultrasoft scale. We typically renormalize the gauge coupling at the hard scale
2M in annihilation processes, at a soft scale of order Mα in the wavefunction and at
a scale of order Mα2 or T when considering gauge bosons at the ultrasoft scale. A
further scale, |p| = Mvrel/2, can be associated to the coupling of gauge bosons with
non-relativistic scattering states.12 Because of asymptotic freedom, it follows for the
coupling constant that α(2M) ≪ α(Mα), α(Mvrel) ≪ α(Mα2). Finally, we briefly
remark that the scale

√
MT , generated by the thermal motion of the heavy dark matter

particles, may give possible non-vanishing thermal contributions to the color-singlet and
color-adjoint potentials if

√
MT ≫ Mα, which is the case for the particular hierarchy

written in eq. (8.6). Like in the abelian case, we do not address those specific thermal
corrections in this work.

11The equality between (8.7) and (8.12) can be straightforwardly verified by inserting (8.9) and (8.10)
into eq. (8.12), then using the Leibniz integral rule whenever ∂0 acts on the Wilson line, and the cyclicity
property of the trace.

12The coupling constant α in the potentials (8.8) as well as in the color-singlet and color-adjoint
wavefunctions typically runs at a soft scale of the order of the inverse Bohr radius 1/a0.
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Chapter 9

Thermal rates in SU(N)DM

9.1 Color-singlet and color-adjoint pair annihilations

Similarly to U(1), also in SU(N) the heavy DM particles can annihilate into the dark light
degrees of freedom, i.e. the gauge fields and the massless fermions. In the non-abelian
theory, however, there are two more four-fermion dimension six operators contributing
to fermion-antifermion annihilations than in the abelian case due to the SU(N) ad-
joint configurations, such that the four contact-interaction terms responsible for S-wave
annihilations read

δLNREFTDM
=
f[1](

1S0))

M2
ψ†χχ†ψ +

f[1](
3S1))

M2
ψ†σχ · χ†σψ

+
f[adj](

1S0))

M2
ψ†T aχχ†T aψ +

f[adj](
3S1))

M2
ψ†T aσχ · χ†T aσψ .

(9.1)

The dimension eight operators, that will depend on the heavy-particle momenta and
incorporate the P-wave as well as the first relativistic corrections to the S-wave anni-
hilations, can be viewed in refs. [141, 145]. Then for the effective field theory at lower
energies, the four-fermion dimension six operators in (9.1) are inherited in the local
potentials in the pNREFTDM Lagrangian, where its imaginary parts capture the anni-
hilation processes of heavy fermion-antifermion pairs [116]:

δLannpNREFTDM
=

i

M2

∫
d3rTr

{
S†δ3(r)N

[
2Im

[
f[1](

1S0)
]
− S2

(
Im
[
f[1](

1S0)
]
− Im

[
f[1](

3S1)
])]

S

+ O†δ3(r)TF
[
2Im

[
f[adj](

1S0)
]
− S2

(
Im
[
f[adj](

1S0)
]
− Im

[
f[adj](

3S1)
])]

O

}
.

(9.2)
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At order α3, the imaginary parts of the singlet matching coefficients read [100,102]:1

Im
[
f[1](

1S0)
]
=

N2 − 1

4N2
π α(2M)2

×
{
1 +

α

π

[
1

2N

(
5− π2

4

)
+N

(
77

9
− 5

12
π2
)
− 8

9
nf

]}
, (9.3)

Im
[
f[1](

3S1)
]
=

2

9
(π2 − 9)

(N2 − 1)(N2 − 4)

8N3
α3 + nfπ α(2M)2

(
1− α

π
CF

13

4

)
, (9.4)

and the imaginary parts of the SU(N) adjoint matching coefficients are [100,102,146]:2

Im
[
f[adj](

1S0)
]
=

N2 − 4

4N
π α(2M)2

×
{
1 +

α

π

[
1

2N

(
5− π2

4

)
+N

(
199

18
− 7

12
π2
)
− 8

9
nf

]}
, (9.5)

Im
[
f[adj](

3S1)
]
=

nf
6
π α(2M)2

{
1 +

α

π

[
13

8N

+N

(
415

72
+

2

3
log 2− π2

4

)
− 5

9
nf +

(
−73

4
+

67

36
π2
)

5

nf

]}
. (9.6)

At order α2, taking the matching coefficients from eqs. (9.3) and (9.4), and the
SU(N) equivalent of eq. (5.25), it follows that the Sommerfeld-enhanced SU(N)-singlet
annihilation cross section, at leading order in the coupling, reads

(σNR
annvrel)

[1]
LO(p) = (σNR

annvrel)
[1]
LO |Ψ[1]

p (0)|2 , (9.7)

with the free annihilation cross section at leading order in the gauge coupling given by

(σNR
annvrel)

[1]
LO =

(
CF
2

+ 3Nnf

)
πα(2M)2

M2
. (9.8)

The Sommerfeld factor for the color-singlet scattering-state wavefunction at leading
order is

|Ψ[1]
p (0)|2 = 2πCF ζ

1− e−2πCF ζ
, ζ =

α(µs)

vrel
. (9.9)

Similarly, for the annihilation cross section of a pair in the adjoint representation we
find

(σNR
annvrel)

[adj]
LO (p) = (σNR

annvrel)
[adj]
LO |Ψ[adj]

p (0)|2 , (9.10)

1The matching coefficients Im(f[1](
3S1)) reported in [100] and [102] agree for N = 3, however they

do not for N ̸= 3, as the factor 1/54 in [100] reads 1/(18N) in [102]. Equation (9.4) is the one that can
be found in [102].

2Contrarily to the SU(N) model considered in refs. [51, 52], the matching coefficient Im(f[adj](
3S1))

does not vanish at order α2 because now the gauge bosons in (8.1) couple to the dark light fermions.
At order α3, the expression in (9.6) is the one reported in ref. [146], while the expression in ref. [102] is
three times larger.
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where

(σNR
annvrel)

[adj]
LO =

(
N2 − 4

8N
+
nf
4

)
πα(2M)2

M2
, (9.11)

and we have averaged over the N2 − 1 configurations of the incoming dark fermion-
antifermion pair in the adjoint representation of SU(N). The Sommerfeld factor is3

|Ψ[adj]
p (0)|2 = πζ/N

eπζ/N − 1
, (9.12)

with ζ defined as in (9.9). The total Sommerfeld-corrected cross section reads

(σNR
annvrel)LO(p) =

(σNR
annvrel)

[1]
LO(p) + (N2 − 1)(σNR

annvrel)
[adj]
LO (p)

N2
, (9.13)

whereas the free total annihilation cross section, at order α2, is

(σNR
annvrel)LO =

(σNR
annvrel)

[1]
LO + (N2 − 1)(σNR

annvrel)
[adj]
LO

N2

=

[
3nf
N

+
CF
4N2

(N2 − 2 + 2Nnf )

]
πα(2M)2

M2
. (9.14)

The Sommerfeld factor has a different impact on the cross sections. For the attractive
singlet channel, the Sommerfeld factor (9.9) is larger than one and increases the cross
section, whereas for the adjoint repulsive channel, the Sommerfeld factor (9.12) is smaller
than one and consequently decreases the cross section. At O(α2) our results in eqs. (9.8)
and (9.11) agree with those in ref. [147], once the cross sections in ref. [147] are expanded
in vrel.

Bound states are sustained only by the SU(N)-singlet configuration. The annihilation
width of a spin- and SU(N)-singlet pair in an nS wave reads at LO in Im(f[1](

1S0))

ΓnS,paraann,LO = C4
F

Mα(µs)
3α(2M)2

4n3
, (9.15)

where we distinguish between the coupling coming from the four-fermion matching co-
efficient, which is renormalized at the scale 2M , and the coupling coming from the
wavefunction, which is renormalized at a scale µs of the order of the soft scale. The
decay width (9.15) neither includes relativistic corrections to the bound-state wavefunc-
tion nor radiative corrections to the matching coefficients, where the former corrections,
as we have remarked, may be as much important as or more important than the O(α3)

3The expressions (9.9) and (9.12) for the Sommerfeld factors do not include relativistic corrections
to the wavefunctions. It is important to realize that in a non-abelian theory these corrections may
eventually turn out to be more important than considering corrections at next-to-leading order in α
to the free annihilation cross section, as the first ones are governed by the coupling at the soft scale,
whereas the latter ones are governed by the coupling at the hard scale 2M .
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corrections to the four-fermion matching coefficient.4 At leading order, the decay width
of a spin-triplet SU(N)-singlet pair in an nS wave reads

ΓnS,orthoann,LO =
Nnf
2n3

C3
FMα(µs)

3α(2M)2 , (9.16)

which vanishes for all nS bound states upon removing the dark light fermions from the
model, i.e. nf = 0. We considered such a theory without thermal light Dirac particles
in refs. [51,52], and computed the annihilation cross sections of color-singlet and adjoint
unbound pairs, as well as the para- and orthodarkonium decay widths up to next-to-
leading order in the matching coefficients.

The results for the annihilation rates, that we obtained so far in this section, are
valid in both the laboratory and in the center-of-mass frame of the annihilating pair,
because we neglected the center-of-mass momentum-dependent dimension eight contact
terms in (9.1) as well as in (9.2). Once we include them, we can compute the spin- and
color-averaged annihilation cross section in the laboratory frame up to second order in
the center-of-mass momentum of the annihilating pair, which is given by

(σNR
ann vMøl)lab(p,P ) =

1

N2

[
(σNR

annv
(0)
rel )

[1]
(
|Ψ[1]

p (0)|2
)
lab

(P )

+ (N2 − 1)(σNR
annv

(0)
rel )

[adj]
(
|Ψ[adj]

p (0)|2
)
lab

(P )
](

1− P 2

4M2

)
= (σNR

ann vMøl)cm(p)

(
1− P 2

4M2

)
, (9.17)

where we remind the reader that on the left hand side of eq. (9.17) the Møeller velocity
appears instead of the relative velocity. In the last line of (9.17) we have replaced
the squared SU(N)-singlet and SU(N)-adjoint scattering wavefunctions at the origin
in the laboratory frame with the ones in the center-of-mass frame using the Lorentz
transformations derived in appendix A.2 in analogy to the abelian case. Eq. (9.17)
holds also at higher order in the radiative corrections. Furthermore, the decay widths
for para- and orthodarkonia in the laboratory frame can be inferred from the annihilation
widths in the center-of-mass frame using the Lorentz contraction formula (5.34), which
is independent of the underlying gauge symmetry, here U(1) or SU(N).

9.2 Dipole transitions in SU(N)DM

In this section, we compute the formation and dissociation of bound states at leading
order in the multipole expansion, i.e. in the dipole limit, where the vertices are depicted
in fig. 4.1, but now augmented with appropriate color factors. In addition, there are
two new vertices, the left and right one in fig. 8.1, that would need to be taken into

4A simple analytic expression, that approximates the NLO correction to the bound-state wavefunc-
tion, can be found in ref. [148]. In ref. [51], we provide an analytic result for the paradarkonium
decay width up to order α3 in the matching coefficients, with nf = 0, and the wavefunction correction
from [148].
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Figure 9.1: Self-energy diagram of the bound state at dipole order r2 and at zeroth
order in velocity expansion (left-hand side). In the weakly coupled SU(N) theory, it is
expanded up to NLO in the coupling, where the first diagram in the second line is of order
α and the rest of the depicted diagrams is of order α2. The external solid lines represent
the color-singlet bound state, the double solid lines the color-adjoint state. The wavy
(dashed) lines denote transversal (longitudinal) gauge fields, whereas the curly lines the
full (transverse + longitudinal) gauge field propagator.

account; the left vertex, however, is of higher order in the coupling. Similarly as in the
abelian case, we first neglect the center-of-mass motion of the interacting heavy DM
pair, and draw the diagrams at order r2 and up to NLO in α. In figure 9.1, we show the
sum of the self-energy diagrams of the bound state up to the desired accuracy, where its
imaginary part comprises all kind of processes that lead to the dissociation of that heavy
singlet bound pair into a color-adjoint unbound state. One can draw similar diagrams
for the self-energy of the adjoint pair, whose imaginary part contains the reverse process,
namely the formation of a singlet bound state.5

At leading order in perturbation theory, we have to compute only the first electric-
dipole diagram in the second line in fig. 9.1. Switching the single solid with the double
solid line and using the optical theorem as in the abelian case, we obtain for the cross
section accounting for bound-state formation via on-shell gauge-field emission

(σbsfvrel)
[adj]
LO (p) =

2

3N
α(µus)

∑
n,ℓ,m

[1 + nB(∆E
p
n)]
∣∣∣⟨nℓm|r|p⟩[adj]∣∣∣2 (∆Epn)3 , (9.18)

where |nℓm⟩ is the eigenstate of the Hamiltonian Hs describing a bound state with
quantum numbers n, ℓ and m, |p⟩[adj] is the eigenstate of the Hamiltonian Ho labeled

5Hereby one just needs to switch the solid with the double solid lines, and keep in mind that the
dashed lines cannot connect with the single solid lines representing the bound state.
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by the relative momentum p = Mvrel/2 of the unbound dark fermion-antifermion pair,
and we have averaged over the N2 − 1 configurations of the incoming dark fermion-
antifermion pair in the adjoint representation of SU(N). Although the result is at LO
in α, we have made explicit in eq. (9.18) that the natural renormalization scale of the
electric-dipole coupling in such a process is a scale µus of the order of the ultrasoft
scale. The formation of a bound state out of an unbound singlet state by emission
of a gauge boson is not possible in a non-abelian theory due to the SU(N) charge
conservation, i.e. (σbsfvrel)

[1](p) = 0. The total bound-state formation cross section
(σbsfvrel)(p) =

∑
n
(σnbsfvrel)(p), defined similarly to eq. (9.13), is then just (N2 − 1)/N2

times (σbsfvrel)
[adj](p). It is the total bound-state formation cross section that can be

found in the literature [21,41].
For the reverse process, namely bound-state dissociation via absorption of an incom-

ing thermal gauge field, the thermal dissociation width of a bound pair with quantum
numbers n = (n, ℓ,m) is given by

Γn,LObsd = 2(N2 − 1)

∫
d3p

(2π)3
σn,LObsd (p)

= 2(N2 − 1)

∫
|k|≥|Ebn|

d3k

(2π)3
nB(|k|)σn,LOion (k) , (9.19)

where σn,LObsd (p) is the temperature-dependent dissociation cross section defined similarly
as in eq. (6.78) for the abelian case, Ebn = −M(CFα)

2/(4n2) is the binding energy and
the in-vacuum ionization cross section is

σn,LOion (k) =
1

3N
α(µus)

M
3
2

2
|k|
√
|k|+ Ebn

∣∣∣⟨nℓm|r|p⟩[adj]∣∣∣2 ∣∣∣∣
|p|=
√
M(|k|+Ebn)

. (9.20)

In the ionization cross section we have averaged over the N2 − 1 degrees of freedom of
the incoming dark gauge field.

As for the abelian model, the remaining computational effort is in the electric dipole
matrix element, where we can take the general analytic result in the center-of-mass frame
given in appendix C.2. For the particular case of the ground state, the electric dipole
matrix element is given in (C.42), which we insert into (9.18) and (9.19) to compute the
formation of the ground state and its dissociation into an unbound SU(N) adjoint pair.

The total bsf cross section for the ground state, at leading order in the electric dipole
coupling α(µus), is

(σ1S
bsfvrel)

LO(p) =
4CF
3N2

α(µus) [1 + nB(∆E
p
1)]
∣∣∣⟨1S|r|p⟩[adj]∣∣∣2 (∆Ep1)3

= α(µus)
27π2α6

3M2 v5rel

C4
F

N3
(2CF +N)2

1 +
(

α
2Nvrel

)2
[
1 +

(
CFα
vrel

)2]3 e
2α

Nvrel
arccot

CF α

vrel

e
π
N

α
vrel − 1

[1 + nB(∆E
p
1)] ,

(9.21)
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with p =Mvrel/2 the incoming relative momentum of the adjoint pair, and

∆Ep1 =
Mv2rel
4

[
1 +

(
CFα

vrel

)2
]
. (9.22)

Our result agrees with the outcome of ref. [21].6

Like in the abelian case, we thermally average the bsf cross section over the incoming
momenta of the adjoint pair following the Maxwell–Boltzmann distribution (B.15). In
the left panel of figure 9.2, we plot the thermally averaged leading-order annihilation
and bsf cross section for the particular case of N = 2 (i.e. dark SU(2) gauge theory),
normalized by the thermally averaged free annihilation cross section at LO of an unbound
pair, cf. equation (9.14), as a function of M/T . We show the behaviour of the cross
sections with running coupling at one loop with one massless dark fermion (dashed lines)
and two massless fermions (solid lines). The benchmark value α(2M) = 0.03 is taken at
the hard scale, and it runs down to the smaller soft and ultrasoft scales, where one finds
α(2M) < α(µs) < α(µus) for typical non-relativistic velocities. We take µs = Mvrel/2
and µus = Mv2rel/4. We plot the annihilation of the singlet pair (orange lines), adjoint
pair (red lines) and the total annihilation cross section (brown lines). Comparing with
the abelian case in figure 6.2 left, we see that the annihilation processes for the pair in a
color singlet show a similar behaviour, namely a Sommerfeld enhancement that increases
for smaller temperatures. However, the contribution for the adjoint pair annihilations
is suppressed by a Sommerfeld factor smaller than unity. This is due to the repulsive
potential experienced by the adjoint pair, which becomes more relevant for smaller T , and
thus lower velocities. The Sommerfeld effect, however, leads to an overall increase of the
total annihilation cross section (brown lines). The effect of a repulsive potential appears
also clearly in the bsf process (black lines). At variance with the abelian case, the rising
of the bsf cross section is saturated by the repulsive potential at small temperatures, and
the bsf process becomes progressively less likely. This is signaled by the fact that for
small vrel, whereas the right-hand side of eq. (6.11) goes like 1/vrel, the right-hand side of
eq. (9.21) is exponentially suppressed. The running coupling with nf = 2 light fermions
decreases the bsf cross section by a factor two with respect to a running with only one
light fermion for the full range ofM/T shown in the plot. Instead for annihilations there
is almost no effect of whether α is running with only one or two fermions, because the
dependence of α on nf becomes more significant only at lower energies than the soft
scale, at which the Sommerfeld factors (9.9) and (9.12) are evaluated. We obtain similar
results for SU(N) with N > 2.

The dissociation width of an SU(N)-singlet ground state into an unbound adjoint
state is

Γ1S,LO
bsd = 2(N2 − 1)

∫
|k|≥|Eb1|

d3k

(2π)3
nB(|k|)σ1S,LO

ion (|k|) , (9.23)

6In ref. [21], the authors distinguish between the coupling coming from the bound-state wavefunction,
renormalized at a soft scale of orderMα, and the coupling coming from the scattering-state wavefunction,
renormalized at a soft scale of orderMvrel. In this work, however, we do not make a distinction between
these two soft scales at the level of the running of α, but we keep track of the ultrasoft scale in the
electric dipole coupling.
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Figure 9.2: (Left) Ratios of the thermally averaged cross sections at leading order over
the free LO annihilation cross section (9.14) in the dark non-abelian model SU(2). The
orange (red) lines denote the ratio for the color-singlet (-adjoint) annihilation, the brown
lines for the total annihilation and the black lines for the 1S bsf. (Right) Thermal
dissociation widths over the 1S paradarkonium decay width at LO in the dark SU(2)
(black lines), SU(3) (orange lines) and SU(4) (brown lines) theory. Solid lines depict the
ratios for running coupling α, starting from α(2M) = 0.03, with nf = 2; dashed lines
for nf = 1.

where the ionization cross section, averaged over the incoming SU(N) gauge fields, is

σ1S,LO

ion (|k|) = α(µus)
23π2

3

|Eb1|4
M |k|5

(2CF +N)2

N4C5
F

[
1 + (2NCFw1(|k|))2

] e 2 arctan(w1(|k|))
NCFw1(|k|)

e
π

NCFw1(|k|) − 1
,

(9.24)

with w1(|k|) ≡
√
|k|/|Eb1| − 1. The expression is in agreement with the result of

ref. [50]. The right panel of figure 9.2 shows the behaviour of the dissociation width,
normalized to the paradarkonium decay width at LO for the ground state, Γ1S,para

ann =
C4
FMα(µs)

3α(2M)2/4 with µs = Mα/2 and µus = Mα2/4, as a function of M/T for
different non-abelian models. Compared to the temperature-independent decay width,
the thermal bsd width falls off exponentially with decreasing T due to the dependence on
the Bose–Einstein distribution in eq. (9.23). Contrarily to the bsf cross section, varying
the flavor number nf has a negligible impact on the bsd width.

At next-to-leading order in the electric dipole coupling, we would need to compute the
self-energy diagrams at two loops, which corresponds to calculating all the subsequent
diagrams in figure 9.1. We do not show the derivation in this work, but refer the reader
to the ref. [149], where the authors computed all diagrams contributing to the non-
abelian electric-electric correlator up to NLO in the real-time formalism. In the abelian

105



model only one diagram shows up at next-to-leading order, corresponding to the second
diagram on the right-hand side in fig. 6.1, whose imaginary part captures the on-shell
dark photon emission, the bath-particle scattering and the one-to-three off-shell decay
process that has been extensively scrutinized in the sections 6.1.1.1 and 6.1.1.2. In
SU(N), this diagram, which matches with the second diagram in the second row in fig.
9.1, gets augmented by the other two diagrams on the right. Hence from now on, by
a bath particle we understand the nf light fermions together with the dark gauge fields
that can self-interact. In this work, we disregard the diagrams depicted in the third,
fourth and fifth row in fig. 9.1. We compute the imaginary part of the diagrams in the
second row with single solid and double solid lines interchanged, following closely the
computational steps done for the abelian case in sec. 6.1.1.1. Then from the optical
theorem we obtain for the total bound-state formation cross section

(σbsf vrel)
LO+NLO∗

(p) =
N2 − 1

N2

∑
n

(σnbsfvrel)
[adj]
LO+NLO∗(p)

=
∑
n

(σnbsf vrel)
LO(p)

{
1− β0

4π
α(µus) log

(
4(∆Epn)2

µ2us

)
+
α(µus)

π

[(
149

36
+
π2

3

)
N − 5

9
nf

]
+
α(µus)

π

[
nfX fth

(
∆Epn
T

)
+NX bth

(
∆Epn
T

)]}
, (9.25)

where the α-suppressed terms in the second line survive at T = 0, and the terms in the
third line correspond the thermal contributions. The function X fth, that stems from the
massless thermal fermions in the loop, equals the Xth-function derived in the abelian
case, cf. eq. (6.25). The term X bth, that does not appear in the dark U(1) model,
originates from the contributions of the gauge bosons in the loop, i.e. the last two
diagrams in the first line in fig. 9.1, with single solid and double solid lines exchanged.
It can be written, similarly as X fth, as an integral over a dimensionless variable t ≡ |k|/T ,
and reads

X bth(x) =
2

x3

∫ ∞

0

dt

et − 1

[
(t2 + x2) log

∣∣∣∣ t+ x

t− x

∣∣∣∣+ tx log

∣∣∣∣ t2 − x2x2

∣∣∣∣− 2xt

]
. (9.26)

By the subscript NLO∗ we recall that the result in (9.25) does not contain the complete
next-to-leading order corrections in α, since the two-loop diagrams in the third to fifth
row in fig. 9.1 have been discarded. Hence, the index NLO∗ means that we consider
only a subset of the NLO self-energy diagrams, which encapsulates the Landau damping
phenomenon and the on-shell gauge field emission process.

The bound-state dissociation width at NLO∗ can be computed in a very similar way,
and the result is

Γn,LO+NLO∗

bsd = 2(N2 − 1)

∫
d3p

(2π)3
σn,LObsd (p)

{
1− β0

4π
α(µus) log

(
4(∆Epn)2

µ2us

)
+
α(µus)

π

[(
149

36
+
π2

3

)
N − 5

9
nf

]
+
α(µus)

π

[
nfX fth

(
∆Epn
T

)
+NX bth

(
∆Epn
T

)]}
.(9.27)
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Like in the abelian theory, we observe that the higher-order terms in eqs. (9.25) and
(9.27) remain suppressed for the particular hierarchy of energy scales given in eq. (8.5),
where T ≲ Mα2. However, despite the fact that the vacuum correction term is always
suppressed by a factor of α irrespective of the value of the temperature, the thermal
corrections increase with increasing T , and as soon as the scale hierarchy (8.6) is realized,
perturbation theory breaks down signaling that the thermal parts of the diagrams in the
second row of fig. 9.1 need to be resummed, as it was done in the U(1) model. The
contribution from the scale T to the self-energy of the heavy pair can be inferred from
refs. [129,130,150]. Hence, the imaginary part of the heavy-pair self-energy reads

Im
[
Σ11
(T )

]
= CF

α

6
r2Tm2

D

[
1

ϵ
+ γE +

2

3
− 2

ζ ′(2)

ζ(2)
− log

(
(4T )2

πµ2

)
+

2N log 2

N + TFnf

]
, (9.28)

which shares the same infrared divergence with the abelian analogue in (6.30). Eq. (9.28)
contains a constant, given by the last term in the square bracket, that appears only in
non-abelian theories and is zero in the U(1) model. In order to get the contributions
from the scales mD ∼ ∆E, we follow closely the analysis done in section 6.1.1.2 for the
abelian case, and obtain

Im
[
Σ11
(mD∼∆E)(∆E)

]
= −CF

α

6
Tm2

Dr
i

×
[
1

ϵ
− γE +

8

3
− log

(
(∆E)2

πµ2

)
+ 2Y long

th

(
∆E

mD

)
+ 2Ytrans

th

(
∆E

mD

)]
ri ,(9.29)

where the closed expressions for the dimensionless functions Y long
th and Ytrans

th can be
taken from eqs. (6.38) and (6.45), respectively. Eq. (9.30) is ultraviolet divergence. It
cancels the IR divergence in (9.28) once we sum up the results (9.28) and (9.30), i.e.

Im
[
Σ11(∆E)

]
= CF

α

3
Tm2

Dr
i

×
[
γE − 1− ζ ′(2)

ζ(2)
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(
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N log 2

N + TFnf
− Y long

th

(
∆E

mD

)
− Ytrans

th

(
∆E

mD

)]
ri .(9.30)

The Debye mass, that enters in (9.30), is not the same as the one in the abelian model,
cf. eq. (D.39). Because of the gauge boson self-interactions, in SU(N) now reads

mD =

√
4π

3
(N + TFnf )α T . (9.31)

For the hierarchy given in (8.6), employing the optical theorem we eventually extract
the Debye-mass resummed bound-state formation cross section

(σbsf vrel)resum.(p) =
∑
n

(σnbsf vrel)
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(9.32)
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and the Debye-mass resummed bound-state dissociation width

(Γnbsd)resum.
= 2(N2 − 1)
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(9.33)
where the thermal factors [1 + nB(∆E

p
n)] and nB(∆E

p
n), that enter in the expressions

(σnbsf vrel)LO(p)
∣∣
T≫∆Epn

and σn,LObsd (p)
∣∣
T≫∆Epn

, respectively, are approximated to leading

order in (∆Epn)/T , which is T/(∆Epn) in both cases.

We neglect the suppressed T -independent corrections, do the dimensionless inte-
grations in X fth, X bth, Y

long
th and Ytrans

th numerically, and plot the total 1S bound-state
formation cross sections for the exemplary SU(2) model, thermally averaged according
to (B.15), at LO (dashed lines), up to NLO∗ (dotted lines) and with Debye-mass re-
summation (solid lines) in the left panel of figure 9.3. The observables are normalized
by the free annihilation cross section at leading order, cf. eq. (9.14). Orange lines are
for the particular case of one massless dark fermion in the model, black lines for two
massless fermions. The coupling runs at one loop, with α(2M) = 0.03. On the right
panel we show the results for the dissociation widths of the ground state, normalized by
the 1S paradarkonium decay width at LO in eq. (9.15), with the same line properties
and colors as in the left panel. The rates share the same behaviour as the ones in the
abelian theory, cf. figures 6.3 and 6.6: At low temperatures of the order of the ultrasoft
energy scale, the lines approach each other, because the bath-particle scatterings become
insignificant compared to the on-shell thermal gauge-boson dissociation/absorption pro-
cesses. The bsf cross sections decrease due to the repulsive potential taking its effect
at low particle momenta. The bsd widths fall off due to the exponential decrease of
the Bose–Einstein distribution for T ≪ ∆Epn. At earlier times close to the freeze-out,
however, the bath-particle scatterings become the dominating process, which increases
both the bsf cross section and bsd width by several orders of magnitude compared to
the processes induced via on-shell light-like gauge boson emissions or absorptions. As
in U(1)DM, if we treat the Landau screening processes only up to fixed NLO∗ instead of
resumming them properly, we notably overestimate the rates. Moreover, including more
massless dark fermions to the model leads to a decrease in the ratios of the observables
depicted in fig. 9.3 over the full temperature range down to 10−5M , in our case going
from one to two fermion species corresponds to a reduction by a factor between 1.5
and 2. We obtain very similar results in the non-abelian gauge models SU(3)DM, which
resembles the QCD subgroup of the Standard Model in the weakly-coupled regime at
sufficiently large temperatures T ≲ 500 MeV of the QGP, and SU(4)DM.

We remind the reader, that we did not consider the two-loop diagrams in the third
to fifth row in fig. 9.1, which seem to have a particularly different structurial form
compared to the diagrams in the first row due to the additional vertex interactions
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Figure 9.3: (Left) Thermally averaged total bound-state formation cross sections for the
1S state at LO (dashed lines, cf. (9.21)), up to NLO≡NLO∗ (dotted lines, cf. (9.25))
and with Debye mass resummation (solid lines, cf. (9.32)), plotted over M/T for nf = 1
(orange lines) and nf = 2 (black lines) and running coupling with starting value α ≡
α(2M) = 0.03; normalized by the free LO annihilation cross section (9.14). (Right)
1S bound-state dissociation widths, normalized by the leading-order 1S paradarkonium
decay width (9.15). Both panels depict the rates for the particular SU(2) theory.

shown in figure 8.1. Despite the fact that the computation of the remaining diagrams
has been completed in ref. [149] and thus we could in principle add the contributions to
the thermal rates in eqs. (9.25) and (9.27) and in this way write down the results up
to full next-to-leading order, we did not study so far if any of these terms may become
large for large T in a similar way as the three two-loop diagrams in the second row in
fig. 9.1. Hence, it remains to check if any of these diagrams needs to be resummed as
well, and if it shares any similarities with the familiar physical understanding behind
the Debye mass resummation.

We have neglected the non-relativistic motion of the center of mass of the heavy pair
so far. We would like to study quantitatively impact of the leading recoil corrections on
the bsf cross section (9.21) and bsd width (9.23) for the ground state. At leading order
in perturbation theory, the total bound-state formation cross section in the laboratory
frame from dark heavy fermion-antifermion pairs charged under an SU(N) gauge group
is given up to relative order P 2/M2 ∼ T/M and ∆Epn/M by

(σbsf vMøl)
LO
lab(p,P ) =

4CF
3N2

α(µus)
∑
n

(∆Epn)
3 (1 + nB(∆E

p
n))

×
(∣∣∣⟨n|r|p⟩[adj]lab

∣∣∣2 Fn1 (p, P ) + ∣∣∣∣⟨n|r · P

2M
|p⟩[adj]lab

∣∣∣∣2 Fn2 (p, P )
)
. (9.34)
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Figure 9.4: (Left) Ratios of thermally averaged cross sections in the laboratory frame
with recoil corrections and the corresponding thermally averaged cross sections without
recoil corrections plotted as a function of M/T for the non-abelian model (8.1). The
orange solid and green dashed lines denote the ratios when taking the thermal average
of (9.13) in SU(2) and SU(3), respectively, the brown solid and red dashed lines when
taking the thermal average of (9.34) for the 1S state in SU(2) and SU(3), respectively.
(Right) Ratios of thermally averaged widths in the laboratory frame with recoil correc-
tions and the corresponding thermally averaged widths without recoil corrections plotted
as a function of M/T for the non-abelian model (8.1). The black dash-dotted line is
for the para- and orthodarkonium decay width, which is valid in any SU(N) model, the
brown solid and red dashed lines are for taking the thermal average of (9.35) for the 1S
state in SU(2) and SU(3), respectively. The coupling runs at one loop, starting from
α(2M) = 0.03. The vertical lines mark the positions where T =M(CFα)

2.

The functions Fn1 (p, P ) and F
n
2 (p, P ) are defined in (6.63) and (6.64), respectively.

Similarly, the thermal bound-state dissociation width in the laboratory frame is given
up to relative order P 2/M2 ∼ T/M and ∆Epn/M by

(Γnbsd)
LO
lab(P ) =

4

3
CFα(µus)

∫
d3p

(2π)3
(∆Epn)

3 nB(∆E
p
n)

×
(∣∣∣⟨n|r|p⟩[adj]lab

∣∣∣2Dn
1 (p, P ) +

∣∣∣∣⟨n|r · P

2M
|p⟩[adj]lab

∣∣∣∣2Dn
2 (p, P )

)
. (9.35)

The functions Dn
1 (p, P ), D

n
2 (p, P ) are defined in (6.95) and (6.96), respectively. Now

in order to quantify the effect of the recoil corrections on the annihilation cross section
and bound-state formation cross section as well as on the decay width and bound-state
dissociation width, we follow the same procedure as in the abelian case and divide
those observables obtained in the laboratory frame with c.m. momentum dependence
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(thermally averaged according to (B.1) or (B.9)), for instance (9.17) or (9.34), by the
corresponding ones that have been obtained at leading order in the coupling without
center-of-mass motion (thermally averaged according to (B.15)), e.g. (9.13) or (9.21).
As for the cross sections, we show the ratios in the left panel of figure 9.4, and the ratios
for the bound-state annihilation and dissociation width in the right panel of figure 9.4.
The coupling is taken to be α = 0.03 at the hard scale 2M and runs down to the lower
energy scales at one loop, and we choose nf = 1. We observe that the size of the
recoil corrections does not change much from SU(2) to SU(3). At high temperatures,
the relative effect of the recoil corrections is largest for the bound-state formation cross
section. Nevertheless, we observe that the radiative corrections, generating the Landau
damping effect at large T , have a much bigger impact on each of the thermal dipole
rates than the center-of-mass recoil corrections.

We have completed the study of the color-singlet bound-state to color-adjoint tran-
sitions at the dipole order in SU(N)DM. As for color-adjoint to color-adjoint as well as
color-singlet scattering-state to color-adjoint transitions, that generate the continuum
dipole processes such as thermal emissions and absorptions, the corresponding cross
sections resemble those written in (6.108)–(6.111) in the abelian model. The only differ-
ences lie in the different color prefactors and in the different quantum-mechanical dipole
matrix elements, where the analytic expressions are collected in appendix C.
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Chapter 10

Bound-state effects on the dark
matter relic density

In the following, we aim to solve the coupled Boltzmann equations for the dark SU(N)
theory. Differently from the abelian case, the number density of scattering states com-
prises now the unbound pairs in both the SU(N) singlet and adjoint configurations. We
consider the simple case where we include the ground state only. The coupled equa-
tions can be traded with a single effective Boltzmann equation in the form of eq. (7.4)
for unbound pairs. Since bound-state to bound-state transitions are zero in the SU(N)
models under study, the thermally averaged effective cross section (7.5) does not get
modified by them. We work in the laboratory frame, where the thermal medium is at
rest, but do not account for the thermal motion of the center of mass of the heavy pairs,
because we checked that, as in the abelian case, the corrections on the dark matter relic
density due to the recoil are small, i.e. at the level of a few percent. At variance with
the relic-density study in ref. [51],1 we consider annihilations and decays at order α2 in
the coupling. We use for the annihilation cross section the thermal average of eq. (9.13)
and for the bsf cross section the thermal average of eq. (9.21) if we stay at LO, eq. (9.25)
if we work up to NLO∗ or eq. (9.32) if we do the resummation of the Debye mass scale
mD. We do it likewise for the dissociation widths at LO, cf. (9.23), up to NLO∗, cf.
(9.27), or with resummed mD-scale, cf. (9.33).2 For the annihilation widths we take
eqs. (9.15) and (9.16). We recall that the widths do not depend on any momentum, and
therefore they do not need to be thermally averaged.

In figure 10.1, we plot the thermally averaged, Debye-mass resummed effective cross
section normalized to (9.14) for the SU(2) (black solid line), SU(3) (orange solid line)

1In ref. [51], we did not add light dark fermions to the model, but instead we analyzed the contribution
from the spin-triplet annihilation channel on the DM relic abundance by considering the annihilation
matching coefficients at O(α3), such that the orthodarkonia can still annihilate, although with an α-
suppressed rate compared to the spin-singlet bound states.

2In the special case of N = 3, eq. (9.33) can be associated with the dissociation width for heavy
quarkonium in pNRQCD, and in each of the two limits mD ≫ ∆E and ∆E ≫ mD it agrees with the
analytic expressions for the inelastic-parton scattering processes obtained in refs. [129,150]. On the other
hand, eq. (9.23) matches with the gluo-dissociation width in ref. [151].
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Figure 10.1: Thermally averaged effective cross sections over (9.14) in the SU(2), SU(3)
and SU(4) theory (black, orange and brown solid lines, respectively). The coupling, with
α ≡ α(2M) = 0.03, runs at one loop. Dashed lines represent the Sommerfeld-enhanced
annihilations in the three gauge models. The left panel is for nf = 1, the right panel for
nf = 2 massless fermions.

and SU(4) (brown solid line) theory. Dashed lines correspond to the thermally averaged,
Sommerfeld-enhanced annihilation cross section (9.13) divided by (9.14). The coupling
runs at one loop, with α(2M) = 0.03. The left panel shows the ratios for nf = 1,
the right panel for nf = 2. The bell shape originates from the bound-state formation
and decay contribution, ⟨σ1Sbsf vrel⟩Γ1S

ann/(Γ
1S
ann + Γ1S

bsd), being dominant with respect to
the annihilation term, ⟨σannvrel⟩, for some N -dependent temperature regions. The solid
lines approach the dashed lines in the low-T limit, because of the repulsive interaction
between the color-charged heavy DM fermion and antifermion that starts to dominate
at very small velocities, hence avoiding the heavy pair to form a bound state. Note
that the curves for nf = 1 (left panel) are above the curves for nf = 2 (right panel)
in the temperature region around the bell shape, i.e. increasing the number of light
fermions in the model decreases the ratio of the thermally averaged effective cross section
over the free annihilation cross section. The decrease in ⟨σeffvrel⟩/⟨σannvrel⟩ is, however,
significantly smaller than for the individual bsf and bsd rates, cf. the orange and black
lines in the left and right plots in fig. 9.3. We do not show the plots for the effective
cross section at leading order or up to NLO∗, because they barely deviate from the
Debye-mass resummed curves in fig. 10.1. We checked that, like in the abelian case, the
correction on the dark matter relic density coming from the Landau damping processes
indeed turns out to be only of order of a few percent, despite the fact that these processes
increase the dipole rates by several orders of magnitude at high temperatures, cf. fig.
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Figure 10.2: Ratio of the DM energy density obtained from the effective cross section incl.
the ground state 1S, cf. eq. (7.5), over the density obtained from only the Sommerfeld-
enhanced annihilations, cf. eq. (9.13); in SU(2) (black lines), SU(3) (orange lines) and in
SU(4) (brown lines). RΩDM

is plotted as a function over α ≡ α(2M) for fixed DM mass
M = 1 TeV and nf = 1 (solid lines) or nf = 2 (dashed lines) massless DM fermions.

9.3. The reason is that at large T the dipole rates are in ionization equilibrium. Hence,
the net effect on the relic density is quite small, with corrections of order of a few percent,
i.e. of similar magnitude as the corrections coming from the center-of-mass recoil effect.
Therefore, from now on, we approximate the bound-state formation cross section and
bound-state dissociation width for the 1S state by the analytic expressions at LO, i.e.
(9.13) and (9.23), respectively.

We would like to quantify the numerical impact on the DM energy density ΩDMh
2

when including bound-state effects from the 1S state, compared to the energy density as
a result of considering only the Sommerfeld-enhanced annihilation cross section (9.13)
in the effective Boltzmann equation (7.4). In figure 10.2, we plot the ratio of the present
energy density with bound-state formation and dissociation processes for the ground
state over the the one where only annihilations are taken into consideration. We plot
the ratio RΩDM

as a function of α ≡ α(2M) for fixed DM mass M = 1 TeV in SU(2)
(black lines), SU(3) (orange lines) and in SU(4) (brown lines).3 We observe that the
bound-state effects are more significant in SU(N) models with increasing N , and that
RΩDM

decreases approximately linear with increasing α(2M). For the largest considered
value α(2M) = 0.05 and only one dark massless fermion species included in the theory,
the present DM energy density is reduced, due to the presence of the ground state 1S,
down to about 27% with respect to the value it would have if the 1S would have been

3We checked numerically, that the ratio stays almost constant when varying the DM mass for fixed
coupling and N = (2, 3, 4).
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Figure 10.3: Contours in the parameter space (M,α), with α = α(2M), that correspond
to the observed DM energy density obtained from Sommerfeld-enhanced annihilations
only (dotted lines), or upon including the bound-state formation effect of the 1S ground
state (dashed lines). The left panel is for nf = 1, the right panel for nf = 2. The black,
orange and brown lines are for the SU(2), SU(3) and SU(4) model, respectively.

removed entirely from the effective Boltzmann equation.4 As a comparison, in SU(2)
and SU(3) the value of ΩDMh

2 is scaled down to about 81% and 52%, respectively. Since,
by comparing the solid lines on the left panel in fig. 10.1 with the curves (with same
color) on the right panel, the ratio ⟨σeffvrel⟩/⟨σannvrel⟩ decreases with increasing number
of dark massless fermion flavors in the temperature region around 10−2M − 10−4M . As
a consequence, the present relic-abundance ratio RΩDM

increases, which can be seen in
fig. 10.2, where the dashed lines for nf = 2 are always above the corresponding solid
lines (nf = 1). For α(2M) = 0.05, the increase is about 5–10% depending on N .

Despite the fact that RΩDM
increases with increasing nf , the present energy density

does not. On the contrary: if we increase the number nf of light fermions, the heavy
DM particles will annihilate more likely because of the additional annihilation channels
into these light particles, which can be seen the two plots in fig. 10.3. We perform an
entire parameter scan for α and M , see the left panel in fig. 10.3 for nf = 1 and the
right panel for nf = 2, for which the numerical value of ΩDMh

2, obtained from solving
the Boltzmann equations up to the present time, equals 0.12, namely the measured relic
abundance. Upon increasing the number of light dark particle species, from fig. 10.3
we deduce, by comparing the contour lines on the left panel (nf = 1) with the ones on

4As a cross check for the validity of the numerical results obtained by solving the single effective
Boltzmann equation, we numerically evaluate also the coupled evolution equations. We observe a ≲ 1%
difference to the obtained energy density in the SU(2), SU(3) and SU(4) model, which is within the
uncertainty of the measured relic density.
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the right panel (nf = 2), that for a fixed value of the coupling, let us pick for instance
α(2M) = 0.05, one needs a larger DM mass in order to secure that ΩDMh

2 = 0.12,
e.g. M = 5 TeV instead of M = 4 TeV in SU(3). In the opposite parametric case we
come to the following conclusion: For fixed DM mass, one needs a smaller value for the
coupling in order to maintain ΩDMh

2 = 0.12 constant.5. We therefore understand that
increasing the particle number nf increases (decreases) the effective cross section (the
ratio ⟨σeffvrel⟩/⟨σannvrel⟩, cf. fig. 10.1) and hence decreases (increases) the present relic
density ΩDMh

2 (the ratio RΩDM
, cf. fig. 10.2).6

5As an example: For M = 5 TeV, one requires α(2M) ≈ 0.048 for nf = 1 and α(2M) ≈ 0.044 for
nf = 2 in the SU(4) theory.

6The reason why the observable σeff, and hence ΩDMh
2, behaves oppositely to the corresponding

ratio ⟨σeffvrel⟩/⟨σannvrel⟩, and hence RΩDM , with increasing nf , is because the (Sommerfeld-enhanced)
annihilation cross section in ((9.13)) (9.14) increases more strongly than the bound-state formation
cross section with growing number of light fermions, such that in overall the ratio ⟨σeffvrel⟩/⟨σannvrel⟩
decreases. If we would decide to normalize the effective cross section by πα2/M2, as in the abelian case,
then the ratio would increase instead.
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Part V

Open quantum system approach
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Chapter 11

Dark matter viewed as a reduced
open system

In this chapter, we discuss the interpretation of the heavy DM particles, in particular
the fermion-antifermion pairs, in a thermal bath as an open quantum system (OQS).
Our aim is to pursue a time-dependent out-of-equilibrium treatment to describe the
dynamics of the dark bound and scattering states during the freeze-out in the early
universe. As we have shown in the preceding chapters, many reactions near threshold
induce a quite complicated dynamics. On the one hand darkonium can dissociate via
interactions with the thermal medium, due to on-shell photo-absorption or due to bath-
particle scatterings, on the other hand the bound state may form e.g. through emission
of a dark gauge field at leading order in α. De-excitations of excited bound states can
also populate the lower-lying states, and together with the reverse process, i.e. the
thermally induced excitations, these transitions redistribute the relative abundance of
bound states within the thermal bath. All of these close-to-threshold transitions give
rise to a network of rate equations that are coupled, cf. eqs. (7.1)–(7.3). The dipole
reactions conserve the number of heavy particles, as can be seen upon summing up
the eqs. (7.1)–(7.3). Conversely at the hard scale, heavy-pair annihilations into highly
energetic light degrees of freedom effectively deplete the dark matter particles.

We stress that, so far, the numerical analysis of bound-state effects, center-of-mass
recoil and Debye-mass resummation corrections on the DM energy density in the chapters
7 and 10 for the dark U(1) and SU(N) model, respectively, relied on the semi-classical
Boltzmann equations stated in eqs. (7.1)–(7.3), where kinetic equilibrium was taken for
granted and bound states were implemented from beginning on as on-shell degrees of
freedom. One may, however, question if these assumptions are reliable because bound
states do not exist as probes “injected” in the medium. It may take some time for the
dark fermions and antifermions to form a bound state configuration and, hence, inserting
bound states as on-shell degrees of freedom in a network of Boltzmann equations can
lead to an inaccurate description. We stress that the results based on spectral function
calculations and classical kinetic approaches leading to Boltzmann equations put the
emphasis on static and stationary aspects. Also, extracting the spectral functions from
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equilibrium correlators and using them for late-time out-of-equilibrium annihilations can
be questionable [23].

In general terms, an open system can be understood as a quantum system that is
coupled to another quantum system much larger in size, the latter representing the ther-
mal bath. Hence, the open quantum system is just a subsystem of the combined total
system (which most of the time is assumed to be closed and hence it follows a Hamil-
tonian unitary dynamics). The state or density operator of the open quantum system
evolves due to its internal dynamics as well as the interactions with the surroundings;
the latter may lead to certain system-environment correlations so that the corresponding
changes in time of the open system cannot be represented, in general, with a unitary
dynamics. Sometimes the open system is referred to as the reduced system, or simply
system as in the following sections. It is one of the main aims of the OQS theory to
derive the evolution equation for the density operator of the reduced system, denoted as
the reduced density operator, which is then called a quantum master equation. Once the
density of states of the system is known, one is able to extract all observables of interest
that indeed refer to the system only. It is then said that the environment has been
traced out and its initial correlation effects are encoded in the non-unitary evolution of
the system, that manifests through decoherence effects and dissipation.

We shall build on recent developments in heavy-ion phenomenology, where the time
evolution for the heavy-quarkonium number density has been recast in an OQS frame-
work [99,152,153]. Here the system is made of heavy quark-antiquark pairs, either in a
color-singlet or color-octet configuration, and the quark-gluon plasma represents the en-
vironment. We follow, in particular, the derivation in pNRQCD given in refs. [152,153],
and adapt it to the dark abelian model (3.1).1 For the problem at hand in this work,
the early universe plasma plays the role of the environment, whereas the DM pairs cor-
respond to the reduced system. A critical aspect will however be treated differently in
the present case. We have to consider the dark fermion-antifermion annihilations, at
variance with the evolution of quark-antiquark pairs in the QGP. Since the hot QCD
medium lives for typical time scales smaller than the inverse annihilation rate, it follows
that heavy-quarkonium annihilations are practically irrelevant for the number density
evolution.2 In the dark SU(N) model, however, annihilation processes need to be taken
into account since the primordial thermal universe is sustained at much longer time
scales. But the analysis that we are going to develop in the following sections for the
U(1)DM model, can be straightforwardly generalized to the weakly-coupled dark non-
abelian theory (8.1).3

1As for the weakly-coupled SU(N)DM model (8.1) and its EFTs developed in chapter 8, one can
directly adopt the results from refs. [99, 152,153].

2The typical life-time of the thermal medium established in heavy-ion collisions is about 10-20 fm−1,
which is much shorter than the typical time scale set by heavy quark-antiquark annihilations, e.g. by at
least a factor of 100 for the Y(1S)-meson.

3One has to be more cautious here, since this statement is only true if we consider in SU(N)DM

only the subset of diagrams at next-to-leading order associated to the bath-particle scatterings, which
correspond to the two-loop diagrams in the second row in fig. 9.1. If, however, we study the dynamics
at lower temperatures such that the hierarchy (3.2) is realized, then the statement is correct to a good
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Of primary importance are the time scales that characterize the environment, the
system and the system-environment correlations. Such scales and their relative size are
at the base of the approximations that lead to tractable quantum master equations. We
recall from the chapters 1–3, that the temperature scale T (or πT , see the discussion in
chapter 3, footnote 6) characterizes the thermal medium, whereas the binding and kinetic
energiesMα2 andMv2X , respectively, define the energy scale of the dark matter system.4

The intrinsic time scales of the system and environment are accordingly estimated as
τS ∼ {1/(Mv2), 1/(Mα2)} and τE ∼ 1/T , respectively. Finally, the relaxation time τR
defines the time-scale of the system evolution under the influence of the environment.
In analogy with the heavy-quarkonium case, the relaxation time is proportional to the
inverse self-energy of a heavy fermion-antifermion pair, that is driven by the electric-
dipole transitions as the dominant force in the dipole limit. Hence for T ≲ Mα2 (cf.
hierarchy in (3.2)), which is realized for most of the time after the thermal freeze-out,

we can estimate it by τdipR ∼ 1/(αa20T
3), where a0 is the Bohr radius.5 In addition,

bound state annihilations proceed with τann,bR ∼ 1/Γann ∼M2a30/α
2 (see also sec. 5.2.2,

footnote 14). We typically find τann,bR ≫ τdipR , meaning that bound-state formation and
dissociation processes happen much faster than heavy-pair annihilations.6

In the following, we are going to consider the dynamics of the dark heavy-pair system
at temperatures of the order of or smaller than the ultrasoft scale, such that the hierarchy
of energy scales written in (3.2) is certainly fulfilled,7 and we will include annihilations
and the thermal motion of the center of mass, in this way extending the analysis done
in ref. [152,153].

11.1 Warm-up: Lindblad equation for annihilations exclu-
sively

Let us focus for the moment only on the dark fermion-antifermion annihilation reactions
and exclude the dipole transitions such as the formation of bound states. According
to the refs. [154, 155], non-relativistic annihilation processes can be incorporated into a
quantum master equation for the reduced density operator ρ of the annihilating dark
matter, that takes the form of a Lindblad equation [156,157],

dρ

dt
= −i[Heff, ρ] +

∑
n

(
CnρC

†
n −

1

2

{
C†
nCn, ρ

})
, (11.1)

degree of accuracy.
4If the dark matter system is in kinetic equilibrium with the thermal bath, which we always assumed

in this work so far, then the kinetic energy Mv2X of the heavy dark fermion is of order T .
5We can infer the estimate of τdipR from the bsf cross section at LO in (6.9), where the squared dipole

matrix element is of order a20 and ∆Epn ∼ T for the hierarchy of energy scales given in (3.2).
6At late times the situation changes for the dissociations, which are then exponentially suppressed

and hence Γnbsd ≪ Γnann, see the right plot in fig. 6.2.
7Since for the hierarchy (3.2) the interesting dynamics for the dark particles occurs when they are

non-relativistic, their abundance can be assumed to be diluted in the thermal plasma due to e−M/T ≪ 1.
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where Heff is a hermitian operator,8 and the collapse operators Cn, also referred to
as the Lindblad operators, are responsible for the non-unitary evolution of the open
system.9 Eq. (11.1), where the right-hand side is called the Lindblad superoperator that
is only valid for an evolution in positive-time direction, is a linear Markovian differential
equation in ρ and fulfills the fundamental properties of a density operator: hermiticity
(ρ = ρ†), conserved probability (Tr[ρ̇] = 0) and positivity (⟨ϕ|ρ|ϕ⟩ ≥ 0 ∀ϕ ∈ H, where H
denotes the Hilbert space of the reduced system).

The Lindblad equation has been applied to a single heavy-particle decay, for instance
an unstable muon, but also to deeply inelastic processes in ultracold atom systems [158].
In the latter example, the corresponding Lindblad equation reads [155]

i
d

dt
ρψ = [Heff, ρψ]− i

Γ

2

∫
d3x

[
ψ†2(x)ψ2(x)ρψ + ρψψ

†2(x)ψ2(x)− 2ψ2(x)ρψψ
†2(x)

]
,

(11.2)
where the field ψ annihilates a non-relativistic atom in the specific hyperfine state |ψ⟩.
Equation (11.2) describes the evolution for the reduced density operator ρψ of the heavy
cold atoms that trap to form a molecule, and the highly energetic degrees of freedom
ϕ produced in the process, which escape the system after the deep-inelastic collision
ψψ → ϕϕ, have been integrated out.10

From the Lindblad equation (11.2) we can derive the rate of change of the probability
Pn(t) for finding n cold atoms ψ in the system,

Pn(t) ≡
∑
λn

⟨λn|ρψ(t)|λn⟩ , (11.3)

that equals the partial trace of ρψ over the multiparticle states |λn⟩, where λn comprises
the quantum numbers, for the n heavy atoms. We do the same for the terms on the
right-hand side of eq. (11.2), for instance one of the anticommutator terms becomes∫

d3x ⟨λn|ρψ ψ†(x)ψ†(x)ψ(x)ψ(x)|λn⟩ =
√
n(n− 1)

V

∫
d3x ⟨λn|ρψ ψ†(x)ψ†(x)|λn−2⟩

=
n(n− 1)

V 2

∫
d3x ⟨λn|ρψ|λn⟩ =

n(n− 1)

V
⟨λn|ρψ|λn⟩ , (11.4)

where in the first and second equality we used the properties of the creation and an-
nihilation operators. We get the same result for the other anticommutator term. The
Lindblad term becomes∫

d3x ⟨λn|ψ2(x)ρψψ
†2(x)|λn⟩ =

(n+ 1)(n+ 2)

V
⟨λn+2|ρψ|λn+2⟩ , (11.5)

8The effective Hamiltonian Heff usually consists of the internal Hamiltonian H of the reduced system,
augmented by an induced mass shift from the thermal medium.

9As can be seen, for Cn ≪ Heff, the Lindblad equation reduces to ρ̇ ≈ −i[Heff, ρ] and hence describes
an effective unitary evolution of the open quantum system, see also footnote 1 in appendix D.

10Note that the dimension of the continuous Lindblad operator C(x) ≡ ψ(x)2 is three, hence the
width Γ has to scale as 1/M2 accordingly, which has the dimension of a cross section, i.e. indeed the
pair-annihilation cross section.
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where again one factor of volume survives. The commutator term vanishes. The rate
equation for Pn(t) therefore is

d

dt
Pn(t) = −

Γ

V
[n(n− 1)Pn(t)− (n+ 1)(n+ 2)Pn+2(t)] . (11.6)

We define the number operator

N̂ψ =

∫
d3xψ†(x)ψ(x) , (11.7)

and the normal ordered squared number operator

: N̂2
ψ : =

∫
d3x

∫
d3y ψ†(x)ψ†(y)ψ(y)ψ(x) . (11.8)

The number of cold atoms Nψ can be written in terms of the probability as

Nψ = Tr
[
N̂ψ ρψ

]
=

∑
n

∑
λn

⟨λn|
∫
d3xψ†(x)ψ(x) ρψ |λn⟩

=
∑
n

n
∑
λn

⟨λn|ρψ |λn⟩ =
∑
n

nPn(t) , (11.9)

and hence the rate equation for Nψ reads

d

dt
Nψ =

∑
n

n
d

dt
Pn(t) = −

Γ

V

∞∑
n=0

n [n(n− 1)Pn(t)− (n+ 1)(n+ 2)Pn+2(t)]

= − Γ

V

[ ∞∑
n=0

n2(n− 1)Pn(t)−
∞∑
n=2

(n− 2)(n− 1)nPn(t)

]

= − Γ

V

[ ∞∑
n=0

n2(n− 1)Pn(t)−
∞∑
n=0

(n− 2)(n− 1)nPn(t)

]

= −2Γ

V

∑
n

n(n− 1)Pn(t) , (11.10)

where in the first line we inserted eq. (11.6), and in the second line we shifted the sum
of the second term. On the other hand, for the number squared N2

ψ we obtain

N2
ψ = Tr

[
: N̂2

ψ : ρψ

]
=

∑
n

∑
λn

⟨λn|
∫
d3x

∫
d3y ψ†(x)ψ†(y)ψ(y)ψ(x) ρψ |λn⟩

=
∑
n

n(n− 1)
∑
λn

⟨λn|ρψ|λn⟩ =
∑
n

n(n− 1)Pn(t) . (11.11)

Combining eqs. (11.10) and (11.11) we end up with

d

dt
Nψ = −2 Γ

V
N2
ψ , (11.12)
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or in terms of the number density, nψ = Nψ/V , eq. (11.12) becomes

d

dt
nψ = −2Γn2ψ . (11.13)

Defining the total number density n = 2nψ of two atoms that are lost in the process, we
finally get11

d

dt
n = −Γn2 , (11.14)

which resembles the standard Boltzmann equation (2.6) for particle-antiparticle annihi-
lation, since Γ is related to the annihilation cross section due to a dimensional analysis,
cf. footnote 10 in this section.12

We now consider the case of heavy dark fermion-antifermion free annihilation pro-
cesses in NRQEDDM, and apply similar methods we learned so far from the study of
inelastic collisions of ultracold atoms. If we neglect the dark light fermions, then an-
nihilations proceed via ψχ → γγ at leading order in the coupling. Hence the imag-
inary part of the matching coefficient ds of the dimension-six four-fermion operator
in (4.1) provides the anti-hermitian part of the Lagrangian, that will be connected to
the Lindblad operators as we shall see in a moment. At variance with the previous
situation, we now have a system with two types of states: the particle ψ and the an-
tiparticle χ. Accordingly, we have two subsystems for the heavy dark matter species,
namely Sψ for the ψ-sector and Sχ for the χ-sector. To be more precise, we define the
tensor-product state vector |XnYm⟩ =

∑
ψ,χ

λψλχ|ψn χm⟩ =
∑
ψ

λψ|ψn⟩ ⊗
∑
χ
λχ|χm⟩ of the

tensor-product space H = Hψ ⊗ Hχ of the two independent subsystems Sψ and Sχ,
where {|ψn⟩} and {|χn⟩} form an orthonormalbasis for Hψ and Hχ, respectively, and
⟨ψ′

n′ χ′
m′ |ψn χm⟩ = δn,n′δm,m′δ(ψ′−ψ)δ(χ′−χ), where the eigenvalues ψ, χ shall comprise

the continuous as well as discrete quantum numbers like the momentum and the spin,
respectively, and n (m) denotes the number of (anti-)fermions in the state |ψn⟩ (|χm⟩).
The Lindblad evolution equation for the density operator of the composite system can
be written in a matrix form,

i
d

dt

(
ρψψ ρψχ
ρχψ ρχχ

)
=

(
[Hψ, ρψψ] 0

0 [Hχ, ρχχ]

)
− i

2
Γ

(
0 {Kψχ, ρψχ}

{Kχψ, ρχψ} 0

)
+ iΓ

(
0

∫
x χ

†ψ ρψχ ψ
†χ∫

x χ
†ψ ρχψ ψ

†χ 0

)
, (11.15)

where Hψ and Hχ are the effective Hamiltonians, comprising the bilinear terms from
the first and second line of (4.1), respectively, Γ ∼ Im[ds]LO/M

2 and the anti-hermitian

11We remark that in an annihilation process the particle number can change only if the two annihilating
particles approach the same location point in space, thus the rate of change is proportional to the squared
of the number density, n2, instead of a single nψ in the case of a decaying particle.

12The Boltzmann equation (2.6) contains the recombination term on the right-hand side, which is
absent in eq. (11.14) because heavy-pair creation processes have been excluded and hence do not appear
in the Lindblad equation (11.2).
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term reads

Kψχ =

∫
x
ψ†χχ†ψ , (11.16)

where we abbreviate
∫
x ≡

∫
d3x. We notice the following differences to the pair-

annihilation process of two cold atoms ψψ → ϕϕ considered in the previous case taken
from refs. [155, 158]. First, we find four different combinations for the relevant heavy-
particle sector

⟨XnYm|ρψψ|XnYm⟩ , ⟨XnYm|ρψχ|XnYm⟩ , (11.17)

⟨XnYm|ρχψ|XnYm⟩ , ⟨XnYm|ρχχ|XnYm⟩ , (11.18)

where the state |XnYm⟩ contains n particles and m antiparticles. Then, because in
U(1)DM there is no operator, and hence an associated process, that allows for particle-
particle or antiparticle-antiparticle annihilations, the corresponding entries in eq. (11.15)
are zero. It means that ρψψ and ρχχ evolve in time according to the unitary evolution,
where the number of heavy species does not deplete through processes that annihilate
two particles (or two-antiparticles) at the same time. Instead, the number of the heavy
species changes because of particle-antiparticle annihilations. One particle is removed
only if one antiparticle is also removed at the same time, and hence the process is
incorporated through the off-diagonal elements in eq. (11.15).

We now proceed with the evaluation of the terms in the evolution equation for ρψχ in
(11.15). Recalling that χ† is the field operator that annihilates an antiparticle, namely
χ†|XnYm⟩ =

√
m
V |XnYm−1⟩, we obtain

Γ⟨XnYm|{Kψχ, ρψχ}|XnYm⟩ = 2
Γ

V
nm⟨XnYm|ρψχ|XnYm⟩ , (11.19)

whereas from the Lindblad term one finds

Γ⟨XnYm|
∫
x
χ†ψ ρψχ ψ

†χ|XnYm⟩ =
Γ

V
(n+ 1)(m+ 1)⟨Xn+1Yn+1|ρψχ|Xn+1Yn+1⟩ .

(11.20)
We define the joint probability to find n fermions and m antifermions similarly as in eq.
(11.3),

Pn,m(t) =
∑
Xn

∑
Ym

⟨XnYm|ρψχ|XnYm⟩ . (11.21)

Then from the 12-matrix element of the Lindblad equation (11.15) it follows that

d

dt
Pn,m(t) = −

Γ

V
[nmPn,m − (n+ 1)(m+ 1)Pn+1,m+1] . (11.22)

We define the normal ordered number operator for a particle-antiparticle pair similarly
as in eq. (11.8). Then for the number of heavy fermion-antifermion pairs we get

Nψχ = Tr
[
: N̂ψχ : ρψχ

]
=

∑
n,m

∑
Xn,Ym

⟨XnYm|
∫
x

∫
y
ψ†(x)χ(y)χ†(y)ψ(x)ρψχ|XnYm⟩

=
∑
n,m

nmPn,m(t) . (11.23)
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In the next step, we compute the number of fermions Nψ and of antifermions Nχ in a
similar way. For the particle sector we obtain

Nψ = Tr
[
N̂ψ ρψχ

]
=

∑
n,m

∑
Xn,Ym

⟨XnYm|
∫
x
ψ†(x)ψ(x)ρψχ|XnYm⟩

=
∑
n

∑
Xn

⟨Xn|
∫
x
ψ†(x)ψ(x)ρψ|Xn⟩

=
∑
n

n
∑
Xn

⟨Xn|ρψ|Xn⟩ =
∑
n

nPn(t) , (11.24)

where in the second line we recognize the partial trace

ρψ =
∑
m

∑
Ym

⟨Ym|ρψχ|Ym⟩ , (11.25)

and in the last line the particle probability

Pn(t) =
∑
Xn

⟨Xn|ρψ|Xn⟩ . (11.26)

For the antiparticle sector we obtain analogously

Nχ = Tr
[
N̂χ ρψχ

]
=

∑
n,m

∑
Xn,Ym

⟨XnYm|
∫
x
χ(x)χ†(x)ρψχ|XnYm⟩

=
∑
m

∑
Ym

⟨Ym|
∫
x
χ(x)χ†(x)ρχ|Ym⟩

=
∑
m

m
∑
Ym

⟨Ym|ρχ|Ym⟩ =
∑
m

mPm(t) , (11.27)

where the partial trace over the particles gives

ρχ =
∑
n

∑
Xn

⟨Xn|ρψχ|Xn⟩ , (11.28)

and the antiparticle probability is

Pm(t) =
∑
Ym

⟨Ym|ρχ|Ym⟩ . (11.29)

We remark that the definitions above are consistent with the general notion of marginal
probabilities Pn =

∑
m
Pn,m and Pm =

∑
n
Pn,m, since∑

m

Pn,m =
∑
m

∑
Xn

∑
Ym

⟨XnYm|ρψχ|XnYm⟩ =
∑
Xn

⟨Xn|ρψ|Xn⟩ = Pn , (11.30)

∑
n

Pn,m =
∑
n

∑
Xn

∑
Ym

⟨XnYm|ρψχ|XnYm⟩ =
∑
Ym

⟨Ym|ρχ|Ym⟩ = Pm , (11.31)
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where we used eqs. (11.21), (11.25) and (11.28). Then from the rate equation (11.22)
for the joint probability, upon summing over m and using relation (11.30), it follows

∑
m

d

dt
Pn,m =

d

dt
Pn = − Γ

V

∑
m

[nmPn,m − (n+ 1)(m+ 1)Pn+1,m+1] , (11.32)

and if we multiply by
∑
n
n, we then have

d

dt

∑
n

nPn = − Γ

V

∑
n,m

[
n2mPn,m − n(n+ 1)(m+ 1)Pn+1,m+1

]
= − Γ

V

∑
n,m

nmPn,m , (11.33)

where we have shifted the indices n andm in order to obtain the expression in the second
line. Plugging eqs. (11.23) and (11.24) into (11.33), we eventually get the rate equation
for the fermion particle number Nψ,

d

dt
Nψ = − Γ

V
Nψχ . (11.34)

We obtain the evolution equation for the antiparticles in a similar way, by summing eq.
(11.22) over n and using (11.31),

∑
n

d

dt
Pn,m =

d

dt
Pm = − Γ

V

∑
n

[nmPn,m − (n+ 1)(m+ 1)Pn+1,m+1] , (11.35)

and multiplying by
∑
m
m, which gives

d

dt

∑
m

mPm = − Γ

V

∑
n,m

[
nm2 Pn,m − (n+ 1)m(m+ 1)Pn+1,m+1

]
= − Γ

V

∑
n,m

nmPn,m . (11.36)

If we insert (11.23) and (11.27) into (11.36), we finally get

d

dt
Nχ = − Γ

V
Nψχ . (11.37)

We conclude with the following observation. As we already anticipated, the number of
particles Nψ (antiparticles Nχ) can change only by pair-annihilation with antiparticles
(particles). Hence, as we can read-off from eqs. (11.34) and (11.37), the rate of change
for Nψ and Nχ depends on the fermion-antifermion number Nψχ. The abundance for
the particles (antiparticles) depends on the number of particle-antiparticle pairs Nψχ.
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Summing eqs. (11.34) and (11.37) and dividing by the volume, we eventually obtain the
rate equation for the fermion-antifermion number density n = (Nψ +Nχ)/V ,

d

dt
n = −2 Γ

V 2
Nψχ = −2Γnψnχ = −1

2
Γn2 , (11.38)

where in the second equality we factorized Nψχ = NψNχ, since we consider the fermion
and antifermion as free scatters and hence independent from each other prior to their
annihilation. In the last step we assumed an absence of asymmetry between the particles
and antiparticles, thus nψ = nχ = n/2. The rate equation (11.38) can be compared with
the Boltzmann equation in (2.6).

The study so far applies to free S-wave heavy-pair annihilations at leading order
within NRQEDDM. It can be straightforwardly extended to annihilations of higher or-
der in the coupling, but also in the non-relativistic expansion by including four-fermion
operators of higher order than six. We did not consider soft Coulombic photon exchanges
that, as explained in the previous chapters, are of paramount importance when study-
ing the dark matter dynamics precisely at and after the thermal freeze-out. Instead of
implementing the analysis we gained so far within the pNRQEDDM theory, which then
accounts for the Sommerfeld enhancement effect, we rather pursue a different method
via a diagrammatic reformulation of the annihilations, together with the dipole pro-
cesses, within the real-time formalism in the next chapter. We aim to derive the comple
quantum master equations for the dark matter density operator, that encompass the
in-vacuum annihilations but also all the near-threshold processes at finite temperature
at one time.
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Chapter 12

Diagrammatic derivation of the
master equations

In this chapter, we aim to establish a diagrammatic out-of-equilibrium derivation of the
quantum master equations for the dark matter dynamics at times after the DM thermal
freeze-out according to the hierarchy given in (3.2), extending the formalism developed
in ref. [153] by accounting for the leading recoil effect in the laboratory frame, but also
by including the heavy-pair annihilation process.

The central object for the practical calculation is the reduced density operator of the
dark matter fermion-antifermion pairs, that can be either in a continuous scattering-state
or discrete bound-state configuration. It can be defined in terms of the corresponding
fields of pNRQEDDM, cf. eq. (4.2), in the real-time formalism. The doubling of the
degrees of freedom, giving rise to quantum fields of type-two on the lower time branch,
cf. appendix D for more details on the closed-time-path contour, is essential to build
the relevant correlator representing the reduced density matrix, which for a single dark
heavy pair is given by [152,153]

⟨ϕ1(t′, r′,R′)ϕ†2(t, r,R)⟩ ≡ ⟨r′,R′|ρ(t′; t)|r,R⟩ , (12.1)

where we do not consider mixed terms of bound and scattering states of the form ϕ†bϕs,
but only diagonal ones in eq. (12.1). In eq. (12.1), the density operator ρ has been
projected into position space in terms of center-of-mass coordinates, but one can also
project ρ on any state of interest, for instance on momentum states, where the correlator
on the left-hand side would then be with respect to the momentum space.

The main advantage of the present approach is to allow for a diagrammatic derivation
of the relevant in-vacuum and thermal processes: annihilations and decays, bound-state
formation and dissociation, excitations and deexcitations of bound heavy pairs as well
as thermal emissions and absorptions of unbound DM pairs. The diagrams can be
organized over exploiting the power counting of the operators in pNRQEDDM, namely
as an expansion in 1/M , multipole expansion in r and in the coupling constant α. In
particular for the evolution of the bound-state density operator ρb(t

′; t), in the dipole
limit and at leading order in the center-of-mass momentum P and coupling α, the
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Figure 12.1: Diagrammatic expression of the evolution equation for the reduced bound-
state density operator ρb in the real-time formalism, that corresponds to the propagator
⟨ϕb1(t′, r′,R′)ϕb,†2 (t, r,R)⟩ in position space. It is expanded up to O(r2,P 2/M2), and
consists of the diagrams on the right-hand side with electric-electric, magnetic-magnetic,
electric-magnetic and magnetic-electric correlators at leading order in α. Single solid
lines represent the bound-state propagator, double solid lines the scattering-state prop-
agator. The local vertex coming from the dimension-six four-fermion operators, denoted
by a cross in the last two diagrams of the first line, has an imaginary part that encom-
passes the decay of the bound pair into the dark light degrees of freedom. The black-dot
vertices in the self-energy diagrams in the second and third line denote one of the two
dipole vertices in fig. 4.1. The numbers 1 or 2 near the vertices stand for insertions of
fields from the upper or lower branches of the closed-time path, respectively.

relevant diagrams are shown in figure 12.1. We will consider only the dominant S-wave
annihilations and hence exclude the four-fermion operators of higher dimension than
six. We will take the imaginary parts of the matching coefficients ds and dv at leading
order in α, cf. eqs. (5.1), which are represented by the local cross vertex in the last two
diagrams of the first line in fig. 12.1. The bound-state dissociation process and bound-
state to bound-state transitions are inherited in the self-energy diagrams in the second
and third row, respectively, where the black-dot vertex comprises the electric-dipole and
Röntgen vertex, cf. fig. 4.1. As for the evolution equation for the scattering-state density
operator ρs, one obtains the very similar structure of diagrams, by just replacing the
single solid lines by double solid lines in fig. 12.1.

At order 1/M0 and r0, the only relevant diagram is the tree-level diagram

2 1
= e−iH(t−t0)ρb(t0; t0)e

iH(t−t0) , (12.2)

and similarly for ρs, whereH = 2M+p2/M+P 2/(4M) is the Hamiltonian of the reduced
dark matter system at leading order in the laboratory frame, cf. eq. (4.3). The expression
in (12.2) indeed defines the reduced density matrix ρb(t, t) = e−iH(t−t0)ρb(t0; t0)e

iH(t−t0)

at leading order in the OQS formalism.1 Our ultimate goal is to obtain a quantum

1Whenever there is no need for distinguishing two different time arguments, we will abbreviate
ρ(t, t) ≡ ρ(t) for any time t.
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master equation for the system of the form2

∂ρ(t)

∂t
= −i[Heff, ρ(t)] + F(t, ρ(t)) , (12.3)

where the first term on the right-hand side describes the usual unitary evolution, whereas
the non-unitary dynamics is comprised in the second term. The density matrix ρ contains
both bound and scattering states, and we take it in a diagonal form ρ = diag(ρb, ρs).
The effective Hamiltonian Heff is in general different from H due to interactions with the
thermal environment. We shall obtain in the next sections the explicit form of Heff and
F(t, ρ(t)), by including the effects of bound- and scattering-state annihilations and the
dipole transitions. In order to have a more simple and transparent overview, we treat
the reaction processes once at a time according to the power counting in pNRQEDDM,
and combine them into the quantum master equation (12.3) comprising all interactions
at the end of this chapter.

12.1 Annihilations in a diluted system

As elaborated in chapter 2, the freeze-out dynamics is induced by the interplay between
the universe expansion rate and the pair-annihilation rate. The DM particles are in
equilibrium at high temperatures T ≫M at some initial stage of the universe evolution.
Then, the expanding universe cools down and the heavy dark particles depart from
equilibrium once T ≲ M/25.3 The Sommerfeld- and bound-state effects enlarge the
annihilation rate with decreasing T and hence smaller DM velocities, but eventually at
late times all reactions fall out of equilibrium with respect to the expanding medium
and, although annihilations may still occur, they are almost inefficient.

In the diagrammatic framework, the annihilation of heavy pairs is implemented via
the last two diagrams in the first row of fig. 12.1 for bound states, and similarly for scat-
tering states (by replacing single solid with double solid lines). We sum the contributions
from ρb and ρs into ρ = diag(ρb, ρs). The 211-type diagram reads∫ t

t0

dt1 e
−iH(t−t1) (−iδV ann) e−iH(t1−t0)ρ(t0)e

iH(t−t0) , (12.4)

whereas the 221-type diagram is the complex conjugate, i.e.∫ t

t0

dt1 e
−iH(t−t0)ρ(t0)e

iH(t1−t0) (−iδV ann)† eiH(t−t1) , (12.5)

2Notice that if no interactions with the thermal environment are present, the master equation (12.3)
for the reduced system reduces to the von-Neumann equation for a standard closed quantum system, cf.
footnote 1 in appendix D.

3We can compare again the situation with heavy quarkonium in a quark-gluon plasma. Bottomonium
states in heavy-ion collisions will never experience a thermal freeze-out due to the short lifetime of the
QGP. Indeed, if we approximate the hadronization temperature of the hot QCD medium and the bottom
quark mass by Tc ≈ 200 MeV and Mb ≈ 5 GeV, respectively, then the smallest temperature-over-mass
ratio is Tc/Mb ≈ 1/25, and hence Tc is of the same order as the freeze-out temperature TF ≈ M/25.
However, the thermal QGP itself ceases to exists at this point.
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where the imaginary part of the local potential δV ann can be read-off from eq. (5.19). If

we inspect only S-wave annihilations at order 1/M2, δV ann = − δ3(r)
M2

[
2ds − S2 (ds − dv)

]
.

Taking into account the free diagram (12.2) and taking the time derivative according to
the Leibniz integral rule, we find

dρ(t)

dt
= −i [H, ρ(t)]

+ (−iδV ann) e−iH(t−t0)ρ(t0)e
iH(t−t0) + e−iH(t−t0)ρ(t0)e

iH(t−t0) (−iδV ann)† . (12.6)

If we make the replacement e−iH(t−t0)ρ(t0; t0)e
iH(t−t0) → ρ(t; t) as in ref. [153],4 and

split the local potential into its real and imaginary part, we obtain

dρ(t)

dt
= −i [H +Re[δV ann], ρ(t)] + {Im[δV ann], ρ(t)} , (12.7)

which can already be compared with the Lindblad equation written in (11.1). Some
comments are in order. First, the Hamiltonian H gets augmented by the real part of the
local potential, giving rise to an effective Hamiltonian Heff as already anticipated in the
previous chapter. Hence Re[δV ann] contributes only to the unitary evolution of the re-
duced system. Second, the anticommutator term in (12.7), which can be compared with
the anticommutator term in the Lindblad equation (11.1), implements the annihilation
of the heavy pairs and induces a non-hermitian evolution as opposed to the commutator
term. We will see in the subsequent chapter 13 that it indeed will correspond to the loss
term of DM heavy-pair states. The anticommutator term {Im[δV ann], ρ(t)} contributes
to F(t, ρ(t)) in eq. (12.3). There is, however, a caveat in (12.7), because the right-hand
side violates the conservation of probability of the single heavy-pair state, i.e. Tr[ρ̇] = 0 is
not consistent with eq. (12.7). A proper quantum master equation should be compatible
with the basic properties of the density operator and its probabilistic interpretation.

In order to circumvent this issue, we consider multi-pair density operators. In this
way one can follow the probability flow between sectors with different number of dark
matter pairs. In the context of NREFTs, a similar discussion can be found in refs.
[155, 158]. In this work, we give a diagrammatic interpretation to multi-particle states
and the associated density operator within pNRQEDDM. The key observation is that
the annihilation vertex in (5.18), as applied to a two-pair state, still generates one-
pair states.5 We consider a composite density matrix ρI+II made of two one-pair density
matrices ρI and ρII, each of them of the form ρI(II) = diag(ρb,I(b,II), ρs,I(s,II)) in the reduced
one-particle systems I and II respectively. Generalizing the definition in eq. (12.1), we
write for the density of a two-pair state ρI+II = ρI ⊗ ρII

⟨ϕI,1(t′1, r′1,R′
1)ϕII,1(t

′
2, r

′
2,R

′
2)ϕ

†
I,2(t1, r1,R1)ϕ

†
II,2(t2, r2,R2)⟩

≡ ⟨r′1,R′
1; r

′
2,R

′
2|ρI+II(t

′, t)|r1,R1; r2,R2⟩ ,
(12.8)

4We can approximate e−iH(t−t0)ρ(t0; t0)e
iH(t−t0) ≈ ρ(t; t), since corrections are of higher order than

1/M2.
5The simultaneous annihilation of two heavy pairs would be an effect of order 1/M4 that we do not

consider in this work.
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Figure 12.2: Diagrams at order r0 in the multiple expansion and O(1/M2) in the local
potential, contributing to the two-pair density operator ρI+II = ρI ⊗ ρII .

where in the last line we define t1 = t2 ≡ t and t′1 = t′2 ≡ t′. Diagrammatically, we have
two disconnected graphs which are shown in fig. 12.2 at order r0 and 1/M2. We have
considered just one insertion at a time for the annihilation vertex, because two insertions
would give a suppressed correction of order 1/M4. Moreover, we work at order r0 and
do not include dipole diagrams in this section, since dipole transitions will be treated in
the subsequent section. The resulting evolution equation, that generalizes the one given
in eq. (12.6) to a two-pair state, reads

d

dt
ρI+II(t) =

{
−i [HI, ρI(t)] + (−iδV ann

I ) ρI(t) + ρI(t) (−iδV ann
I )†

}
⊗ ρII(t)

+ ρI(t)⊗
{
−i [HII, ρII(t)] + (−iδV ann

II ) ρII(t) + ρII(t) (−iδV ann
II )†

}
. (12.9)

Our goal is to arrive at an evolution equation for a one-pair density matrix. We take the
system I as the dark matter heavy-pair system of interest, but clearly the treatment at
this stage is symmetric with respect to system II. We perform the trace of equation (12.9)
over system II and get

dρI(t)

dt
= −i [HI +Re[δV ann

I ], ρI(t)]+ {Im[δV ann
I ], ρI(t)}+ ρI(t)TrII [{Im[δV ann

II ], ρII(t)}] ,
(12.10)

where TrII [ρII(t)] = 1, and the commutator vanishes under the trace. Tracing instead
(12.9) over system I, which leads to a quite similar evolution equation for ρII, solving
for the anticommutator {Im[δV ann

II ], ρII(t)} and substituting it in (12.10), leads to

dρI(t)

dt
= −i [HI +Re[δV ann

I ], ρI(t)] + {Im[δV ann
I ], ρI(t)} − 2ρI(t) TrI [Im[δV ann

I ] ρI(t)] ,

(12.11)
and the equation for system I is now uncoupled from system II. The physical meaning of
the last term in eq. (12.11) can be understood as a feed down of the composite two-pair
state into the one-pair sector due to the annihilation of a single heavy pair at order
1/M2. In other words, it injects a probability flow from a higher multi-pair state to a
state with lower DM pairs. The trace in (12.11) implies that one has to sum over all
possible annihilations of a one-pair system, namely for both bound and scattering states.
As a crucial consistency check, we can perform the trace over system I of the right-hand
side of eq. (12.11), and observe that it vanishes (at variance with eq. (12.7)). The
evolution equation (12.11) is, therefore, consistent with the probabilistic interpretation
of the one-pair density matrix. There is, however, an essential difference between (12.11)
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and the Lindblad equation in (11.1), the latter being a linear differential equation in ρ.
The third term on the right-hand side of eq. (12.11) is indeed quadratic in the one-pair
density matrix. The master equation (12.11) does not acquire a Lindblad form, and,
hence, is not linear in the density operator.

There is a fundamental physical reasoning behind the difference between the evo-
lution equations (12.11) and (11.1). First of all, the single closed Lindblad equation
accounts for the evolution of a general reduced density operator of the full multi-pair
state in the reduced heavy dark matter system, which in principle consists of an ensemble
of N dark heavy pairs. Instead, if we want to extract the time evolution of the one-pair
density operator, whose knowledge may be sufficient in order to calculate certain observ-
ables like the number density (that in turn is related to the DM relic abundance) or the
pressure of the heavy pairs in the thermal bath, by marginalizing/integrating over the
N−1 heavy pairs, one would encounter a network of coupled equations: the evolution of
the one-pair density is given by a self-term plus a sum over two-pair terms, the evolution
of the two-pair density is given by a self-term plus a sum over three-pair terms, and so on,
which in classical kinetic theory is known as the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy [159–162].6

Second, in this work we have truncated the number of heavy pairs to only two, and
assumed the two-pair density operator ρI+II to be decomposable into a direct product
of two one-pair densities ρI and ρII, which we expect to be adequate for diluted dark
matter.7 Our procedure is closely related to the molecular chaos approximation in
kinetic theory,8 but built in from the start at the diagrammatic level, cf. fig. 12.2, by
the separation of the two mutually non-interacting systems I and II, where the reduced
Hilbert space of the composite system I+II is a tensor product space HI+II = HI ⊗HII,
such that for a pure state we can indeed write ρ = |ϕIϕII⟩⟨ϕIϕII| = |ϕI⟩⟨ϕI| ⊗ |ϕII⟩⟨ϕII| =
ρI ⊗ ρII.

Since the quantum master equation (12.11) is a closed evolution equation for a single
annihilating heavy dark matter pair, we will drop from now on the index I for the ease
of notation.

6We remark that the BBGKY hierarchy for the one-body, two-body, ..., distribution functions, that
one recovers by marginalizing the Liouville equation for the multiparticle joint phase-space distribution
function, is usually done for a closed system. In our case, the starting point would not be the von-
Neumann equation, but instead the Lindblad equation since the thermal environment has already been
traced out. But we expect there to be a, yet to be checked, consistency between the hierarchy obtained
in a closed quantum system and in an open quantum system.

7We assume a diluted system for the heavy dark matter pair evolution around freeze-out, and hence
expect the individual non-relativistic pairs to be localized at regions sufficiently far apart from each
other, such that their mutual wavefunctions do not overlap and hence any exchange density vanishes.
There is, therefore, no need to symmetrize the spatial wavefunctions and the bosonic quantum nature of
the fermion-antifermion pairs becomes irrelevant. The systems I and II, each representing a heavy DM
pair, are then distinguishable and obey a classical statistical behaviour.

8The assumption ofmolecular chaos is based on the hypothesis that the incoming velocities of colliding
particles are uncorrelated, and eventually allows to reduce the open network of linear evolution equations,
i.e. the BBGKY hiearchy, to a closed set of non-linear Boltzmann equations, in turns of loosing the time-
reversibility of the evolving system.
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12.2 Contributions from the dipole transitions

We focus now on the dipole interactions shown in the second and third row of fig. 12.1,
that are generated by the dipole vertices depicted in fig. 4.1, and we recall that they
give rise to several reactions, that conserve the number of heavy pairs, and govern the
dynamics of the transitions between scattering and bound states. In other words, they
determine the relative populations of above- and below-threshold states. The self-energy
diagrams, that will contribute to the dissociation of the bound pairs within the bound-
state density evolution, are shown in figure 12.3. As for bound-state to bound-state
transitions, we take into account the same diagrams upon replacing the double solid
lines in the loops by single solid lines. We do not display explicitly the one-loop self-
energy diagrams inheriting the bound-state formation as well as the continuum dipole
transitions that enter the evolution equation for ρs, since they can be straightforwardly
obtained by replacing single with double solid lines in each of the self-energy diagrams
for the density ρb.

In close analogy with the analysis carried out in refs. [152,153], the full set of one-loop
dipole diagrams implement the following near-threshold observables that are dominant
for the hierarchy of energy scales in (3.2): (i) a thermal decay width of bound states
into scattering states by photo-dissociation; (ii) a correction to the mass of the bound
as well as scattering states; (iii) the generation of bound states through the emission
of dark photons from an above threshold scattering state. In addition, we include the
bound-to-bound transitions and the analogue process for the scattering states as well
as the recoil effect due to the relative motion of the center of mass of the heavy pairs
with respect to the thermal bath. Our derivation of the evolution equations follows
closely the steps given in ref. [153]. However, some differences hold that need to be
clarified. In ref. [153], the dynamics via electric-dipole transitions involves color-singlet
and colored-octet quarkonia, that are described by different potentials, written in (8.8)
at leading order, and hence different Hamiltonians. In the abelian case that is considered
in this chapter, there is no such distinction since bound and scattering states are both
included in the spectrum of the very same Hamiltonian. Only when projecting the
operators onto the Hilbert space of interest, i.e. either on bound or scattering states,
the corresponding self-energies, which are formally the same, acquire a clear meaning
for each of the two distinct parts of the heavy-pair energy spectrum. The projection of
the density operators on the Hilbert states of the dark matter pairs will be the subject
of the subsequent chapter 13.

In the following, we shall label the self-energy diagrams in such a way that one can
still appreciate at this stage the processes for the bound- and scattering-state configu-
rations of a single heavy dark matter pair. Moreover, if we include a second heavy-pair
system II in analogy to the preceding section, we observe that it will not play a role for
the dipole transitions, i.e. the system II decouples entirely once we integrate it out, as
opposed to the annihilation processes. We will elaborate on this important point at the
end of this section. In the case of the dipole transitions, bound and scattering states can
turn into each other. For this reason we find it more convenient to directly start with
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Figure 12.3: One-loop self-energy diagrams contributing at order r2 and P 2/M2 to the
reduced bound-state density operator ρb. In addition, there is a second set of diagrams
involving only single solid lines, that inherit the transitions among bound states, which
we do not display explicitily though. The tree-level diagrams have been already included
in fig. 12.2.

two separate equations for the corresponding reduced density operators, and we give the
result for the evolution equations for ρb and ρs as follows:

9

dρb(t)

dt
= −i [H, ρb(t)]

+ (−iΣbs − iΣbb)ρb(t) + ρb(t)(−iΣbs − iΣbb)† + Ξbs(ρs(t), t) + Ξbb(ρb(t), t) ,

(12.12)

for the bound-state density evolution, and

dρs(t)

dt
= −i [H, ρs(t)]

+ (−iΣsb − iΣss)ρs(t) + ρs(t)(−iΣsb − iΣss)† + Ξsb(ρb(t), t) + Ξss(ρs(t), t) ,

(12.13)

for the scattering-state density evolution, where each of the self-energies Σbs, Σbb, Σsb,
Σss and Ξbs, Ξbb, Ξsb, Ξss comprises several diagrams, namely10

Σ = Σee +Σmm +Σem +Σme , (12.14)

9We remark that the leading order term, i.e. the first diagram on the right-hand side of fig. 12.1, has
been already included in the preceding section when dealing with the annihilations. We add it also to
the eqs. (12.12) and (12.13) to make the unitary commutator term noticeable. Later on, when summing
up the contributions from annihilations and dipole transitions, we take it into account only once.

10We remind that the four Σ’s are all equal before we project on either bound or scattering states;
similarly for the Ξ’s.
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Ξ = Ξee + Ξmm + Ξem + Ξme , (12.15)

where we use the index notation in analogy to the self-energy expressions written in
section 6.1.2, cf. eqs. (6.56)–(6.59). The self-energies read11

−iΣee(t) = (ig)2
∫ t

t0

dt2 r
iEi(t,R)e−iH(t−t2)rjEj(t2,R

′)eiH(t−t2) , (12.16)

−iΣmm(t) = (ig)2

(4M)2

∫ t

t0

dt2 r · {P×,B(t,R)}e−iH(t−t2)r · {P×,B(t2,R
′)}eiH(t−t2) ,

(12.17)

−iΣem(t) = (ig)2

4M

∫ t

t0

dt2 r · {P×,B(t,R)}e−iH(t−t2)r ·E(t2,R
′)eiH(t−t2) , (12.18)

−iΣme(t) = (ig)2

4M

∫ t

t0

dt2 r ·E(t,R)e−iH(t−t2)r · {P×,B(t2,R
′)}eiH(t−t2) , (12.19)

Ξee(t) = ig(−ig)
∫ t

t0

dt2

[
riEi(t2,R

′)ρ(t)e−iH(t−t2)rjEj(t,R)eiH(t−t2) + h.c.
]
, (12.20)

Ξmm(t) =
ig(−ig)
(4M)2

∫ t

t0

dt2

[
r · {P×,B(t2,R

′)}ρ(t)e−iH(t−t2)r · {P×,B(t,R)}eiH(t−t2)

+h.c.] , (12.21)

Ξem(t) =
ig(−ig)
4M

∫ t

t0

dt2

[
r · {P×,B(t2,R

′)}ρ(t)e−iH(t−t2)r ·E(t,R)eiH(t−t2) + h.c.
]
,

(12.22)

Ξme(t) =
ig(−ig)
4M

∫ t

t0

dt2

[
r ·E(t2,R

′)ρ(t)e−iH(t−t2)r · {P×,B(t,R)}eiH(t−t2) + h.c.
]
.

(12.23)

The physical interpretation of the expressions above, its real and imaginary parts re-
spectively, is a thermal mass shift to the heavy pair mass on the one hand, a thermal
width and a thermal cross section on the other hand. When considering the self-energy
diagrams that involve both bound and scattering states, the imaginary parts implement
the photo-dissociation of a bound state into an unbound pair, whereas the loss of a scat-
tering state can be interpreted as a bound state forming together with the emission of
a dark photon. Excitations and de-excitations together with bremsstrahlung processes
correspond to Σbb and Σss respectively. For example, Ξbs implements the reverse process
of the one induced by the imaginary part of Σbs, namely the formation of a bound-state
and a dark photon from a “decaying” scattering state. An explicit one-to-one corre-
spondence between the operators (12.16)–(12.23) appearing in the evolution equations
(12.12)–(12.13) and the thermal dipole rates will be shown in the next chapter.

Owing to the conservation of the probability for the sum of bound and scattering
states (in this section we exclude processes that annihilate away the heavy pairs), one

11In order to obtain the evolution eqs. (12.12) and (12.13), we have used the Leibniz integral rule,
followed by the replacement e−iH(t−t0)ρ(t0; t0)e

iH(t−t0) ≈ ρ(t; t) as in ref. [153].
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can find two relations among the various Σ’s and Ξ’s. Summing up eqs. (12.12) and
(12.13), and taking the trace we obtain

Tr
[
ρb(−iΣbs + (−iΣbs)† − iΣbb + (−iΣbb)†)

]
= Tr {Ξsb(ρb(t, t), t) + Ξbb(ρb(t, t), t)} ,

(12.24)

Tr
[
ρs(−iΣsb + (−iΣsb)† − iΣss + (−iΣss)†)

]
= Tr {Ξbs(ρs(t, t), t) + Ξss(ρs(t, t), t)} .

(12.25)
Such conditions reflect the optical theorem, which will manifest once we project them
onto either bound or scattering states in the subsequent chapter.

Since we invoked a second system II to derive a consistent master equation when
treating diagrammatically the annihilation process in the previous section, it comes
natural to ask whether the inclusion of the second system alters the derivation of the
evolution equation from the dipole diagrams. In fact, one finds that this is not the case.
Since we are working at order r2, there are two different sets of diagrams to be discussed.
The first set involves the dark photon to be always attached on either the heavy pair
in system I or the one in system II. Hence, the systems I and II are diagrammatically
disconnected. The second set corresponds to diagrams where the dark photon connects
the heavy pair in system I with the one in system II. For the first set of diagrams it
can be straightforwardly shown that, when tracing over the system II and reducing the
evolution equation for the composite density operator ρI+II to ρI for a single heavy-pair
state, one finds exactly the relations in eq. (12.24) and (12.25) for the system II. This
guarantees the first set of disjoint self-energy diagrams to vanish. As for the second set
of diagramms, where a dark photon connects the two single heavy-pair states, which
we call the dipole exchange diagrams (cf. fig. E.1 where we display only the electric-
transition exchange diagrams between the systems I and II), we also find them to vanish
when tracing over the system II, see the detailed derivation in appendix E. A more
intuitive argument is that this latter set of diagrams does not introduce any imaginary
part, and therefore does not induce a contribution to the non-unitary evolution of the
density operators.

12.3 Summary: quantum master equations

So far we have treated separately the processes that govern the evolution of the heavy
dark matter pairs at order r0, i.e. the annihilations, and at order r2, i.e. the dipole
transitions, in section 12.1 and 12.2, respectively. We combine now the individual results
into the overall evolution equations for the scattering- and bound-state density operators
ρs and ρb, respectively. They read in a compact form as follows:

dρb(t)

dt
= −i [Hb,eff, ρb(t)] + Fb(ρb(t), ρs(t)) , (12.26)

dρs(t)

dt
= −i [Hs,eff, ρs(t)] + Fs(ρb(t), ρs(t)) , (12.27)
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where the effective Hamiltonians are

Hb,eff = Hb +Re[δV ann
b ] + Re[Σbs] + Re[Σbb] , (12.28)

Hs,eff = Hs +Re[δV ann
s ] + Re[Σsb] + Re[Σss] , (12.29)

and the non-unitary evolution is dictated by Fb ≡ Fann
b + Fdip

b , with

Fann
b (ρb(t), ρs(t)) = {Im[δV ann

b ], ρb(t)} − 2ρb(t) Tr [Im[δV ann] ρ(t)] , (12.30)

Fdip
b (ρb(t), ρs(t)) = {Im[Σbs], ρb}+ {Im[Σbb], ρb}+ Ξbs(ρs) + Ξbb(ρb) , (12.31)

for the bound-state density operator, and similar expressions hold for the scattering-state
density operator as well, with Fs ≡ Fann

s + Fdip
s ,

Fann
s (ρb(t), ρs(t)) = {Im[δV ann

s ], ρs(t)} − 2ρs(t) Tr [Im[δV ann] ρ(t)] , (12.32)

Fdip
s (ρb(t), ρs(t)) = {Im[Σsb], ρs}+ {Im[Σss], ρs}+ Ξsb(ρb) + Ξss(ρs) . (12.33)

The quantum master equations (12.26) and (12.27) do not look like a Lindblad equation,
cf. eq. (11.1). However, following the derivation in ref. [152], it can be shown that in
the limit T ≫Mα2 the terms implementing the dipole transitions may be brought into
a Lindblad form, by extracting explicitly the expressions of the collapse operators from
the Σ’s and Ξ’s. In this chapter we consider, however, the hierarchy (3.2), where the
temperature is ultrasoft and supposed to be related to most of the times after the DM
freeze-out. We neither pursue to match the master equations to a Lindbladian form nor
we aim to solve them directly in this work. Instead we want to determine the coupled rate
equations in the Boltzmann limit out of the equations of motion in (12.26) and (12.27)
for the reduced density operators ρb and ρs, respectively, in this way justifying the raison
d’être of the Boltzmann equations that have been used in the previous chapters in order
to calculate the dark matter relic abundance.
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Chapter 13

Semi-classical limit: reduction to
Boltzmann-like equations

We would like to understand how the rate equations (7.1)–(7.3) together with the various
thermally averaged observables in the laboratory frame that have been computed in
this work, such as the bound-state formation cross section in (6.62), the bound-state
dissociation width (6.94), the transitions between different bound states (cf. (6.103) and
(6.104)), but also the annihilation cross section (5.28) and decay widths (5.30)–(5.31)
emerge from the quantum master equations (12.26) and (12.27). In particular, we shall
highlight under which approximations the semi-classical limit in terms of the Boltzmann
transport equations can be approached.

A similar derivation has been put forward for heavy quarkonia in a hot QCD medium,
see e.g. refs. [99, 163–165]. We shall derive the evolution equations for the Wigner-
Weyl transform of the density matrix, known as the Wigner distribution function [166].1

This is an object that generalizes the classical Boltzmann distribution function to the
quantum realm. The Wigner function is often dubbed a quasi-probability distribution,
most notably by the fact that it can take negative or even complex values due to the
uncertainty principle [171, 172],2 however only on compact regions of size ℏ in phase
space. It is entirely positive semi-definite in the classical limit ℏ → 0, or at regions in
phase space much larger than ℏ (i.e. the semi-classical limit, where the phase space is
coarsered). We Wigner-transform the quantum master equations (12.26) and (12.27)
between a bra and a ket with the same discrete quantum numbers. Whenever it is

1The mapping between density operators and semi-classical distribution functions, which allows to
present the quantum nature of the system as a statistical theory on a classical phase space, is not unique
[167]. In fact, besides the Wigner distribution, common choices for the quasi-probability distribution,
arising because of different possibilities of operator orderings, involve the Glauber–Sudarshan (cf. refs.
[168,169]) or Husimi functions (cf. ref. [170]) frequently used e.g. in the field of quantum optics. These
functions are related to each other in terms of Weierstrass transforms.

2To be more rigorous in terms of the notion of pseudo-differential operators, the Wigner function
corresponds to the symbol of the density operator (similarly to as H(x,p) denotes the Weyl-symbol
of the Hamiltonian operator Ĥ(x̂, p̂) in ordinary quantum mechanics), while the classical phase space
distribution function is the principal symbol.
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possible, we adopt the abbreviation (n, ℓ,m) ≡ n and (S,mS) ≡ S. The quasi-probability
distribution function of a bound state with internal quantum numbers (n, S) is3,4

f bn,S(t,P ,R) ≡
∫
P ′
eiP

′·R⟨P + P ′/2;n;S|ρb|P − P ′/2;n;S⟩ , (13.1)

and similarly for a scattering state, i.e.

fsS(t,P ,R,p, r) ≡
∫
p′
eip

′·r
∫
P ′
eiP

′·R⟨P + P ′/2;p+ p′/2;S|ρs|P − P ′/2;p− p′/2;S⟩ .
(13.2)

In case the quantum numbers in the bra and ket are not the same, we will note them
in the subscript of the Wigner functions (e.g. f bnn′,SS′). Moreover, on the left-hand side
of eq. (13.1), the subscript n has to be understood comprising the orbital and magnetic
quantum numbers, and the index S includes the total spin quantum number S and
the magnetic spin quantum number mS of the heavy-pair system. Next, we define the
Wigner transformation of a generic operator as

Ô
∣∣∣
WT
≡
∫
P ′
eiP

′·R⟨P + P ′/2;n;S|Ô|P − P ′/2;n′;S′⟩ , (13.3)

(and analogously for a projection onto scattering states) that we will use in the follow-
ing. It is important to note that the state vectors used in the definition of the Wigner
transforms (13.1)–(13.2) represent time-independent eigenstates of the Hamiltonian H,
cf. eq. (4.3) at leading order. In the following calculations, we will project the energy
eigenstates into position space in order to create the wave functions of bound and scat-
tering states. For instance in the case of a para- or orthodarkonium, the projection gives
at leading order

⟨R, r|P ;n;S⟩ = eiP ·RΨn(r)|S⟩ , (13.4)

where the residual ket refers to the spin. Moreover, we will use the completeness relations
for the position eigenstates and the bound and scattering states:

1 =

∫
r

∫
R
|r;R⟩⟨r;R| , (13.5)

1 =
∑
S

∫
P

[∑
n

|P ;n;S⟩⟨P ;n;S|+
∫
p
|P ;p;S⟩⟨P ;p;S|

]
. (13.6)

3Note that the Wigner distribution functions are dimensionless. Since [ρb] = [ρs] = 0, [|P ;n;S⟩] =
−3/2, [|P ;p;S⟩] = −3, it follows that [fbn,S ] = [fsS ] = 0. Integrating the Wigner functions, then
nb(R, t) =

∑
n,S

nSn =
∑
n,S

∫
P
fbn,S corresponds to the bound-state number density, while ns(r,R, t) =∑

S

∫
p

∫
P
fsS is the scattering-state number density. Then Nb(t) =

∫
R
nb and Ns(t) =

∫
r

∫
R
ns count the

numbers of bound and unbound pairs, respectively.
4From now on we abbreviate

∫
x
≡
∫
d3x for position-space integrals and

∫
p
≡
∫

d3p
(2π)3

for integrals in
momentum space.
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We perform the Wigner transformations like in (13.1) and (13.2) on the equations of mo-
tion (12.26) and (12.27), respectively. The left-hand sides can be transformed straight-
forwardly, whereas

−i
∫
P ′
eiP

′·R⟨P +
P ′

2
;n;S| [Hb, ρb(t)] |P −

P ′

2
;n;S⟩

= −i
∫
P ′
eiP

′·R
(
EP+P ′/2
n − EP−P ′/2

n

)
⟨P +

P ′

2
;n;S|ρb(t)|P −

P ′

2
;n;S⟩

= −i P

2M
·
∫
P ′

P ′eiP
′·R⟨P +

P ′

2
;n;S|ρb(t)|P −

P ′

2
;n;S⟩

= −P ·∇R

2M

∫
P ′
eiP

′·R⟨P +
P ′

2
;n;S|ρb(t)|P −

P ′

2
;n;S⟩

= − P

2M
·∇R f

b
n,S(t,P ,R) , (13.7)

and similarly

−i
∫
p′
eip

′·r
∫
P ′
eiP

′·R⟨P +
P ′

2
;p+

p′

2
;S| [Hs, ρs(t)] |P −

P ′

2
;p− p′

2
;S⟩

= −
(

P

2M
·∇R + 2

p

M
·∇r

)
fsS(t,P ,R,p, r) . (13.8)

On the other hand, the commutator term −i [Re[δV ann], ρ] transforms in case of the
bound state with annihilation operators at order 1/M2 as follows:

−i
∫
P ′
eiP

′·R⟨P +
P ′

2
;n;S| [Re[δV ann

b ], ρb(t)] |P −
P ′

2
;n;S⟩

=
i

M2
[2Re[ds]− S(S + 1)(Re[ds]− Re[dv])]

×
∫
P ′
eiP

′·R⟨P +
P ′

2
;n;S|

(
δ3(r)ρb(t)− ρb(t)δ3(r)

)
|P − P ′

2
;n;S⟩

=
i

M2
[2Re[ds]− S(S + 1)(Re[ds]− Re[dv])]

×
∑
n1

∫
P ′
eiP

′·R
(
Ψ∗
n(0)Ψn1(0) ⟨P +

P ′

2
;n1;S|ρb(t)|P −

P ′

2
;n;S⟩

−Ψ∗
n1
(0)Ψn(0) ⟨P +

P ′

2
;n;S|ρb(t)|P −

P ′

2
;n1;S⟩

)
=

i

M2
[2Re[ds]− S(S + 1)(Re[ds]− Re[dv])]

×
∑
n1

(
Ψ∗
n(0)Ψn1(0)f

b
n1n,S(t,P ,R)− Ψ∗

n1
(0)Ψn(0)f

b
nn1,S(t,P ,R)

)
, (13.9)

where in the first equality we used S2|S⟩ = S(S+1)|S⟩, in the second equality we inserted
the complete sets (13.5) and (13.6), where ⟨p|ρb|n⟩ = 0, and subsequently applied the
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identity
∫
R e

iR·P = (2π)3δ3(P ), which then cancels the momentum integral from the
completeness relation.

We may understand the semi-classical limit to be approached at late times. Hence,
in order to grasp the connection with the semi-classical transport equations, we write

⟨P +
P ′

2
;n;S|ρb(t)|P −

P ′

2
;n′;S⟩

≃ ⟨P +
P ′

2
;n;S|e−iHtρb(0)eiHt|P −

P ′

2
;n′;S⟩

≃ e−i∆Et⟨P +
P ′

2
;n;S|ρb(0)|P −

P ′

2
;n′;S⟩ , (13.10)

where in the second line we used the approximation already discussed in the previous
chapter, cf. footnote 4, and in the last line we extracted the phase involving ∆E ≡
E
P+P ′/2
n − EP−P ′/2

n′ = Mα2

4

(
n′2 − n2

)
+ P ·P ′

2M at leading order. The exponential factor

can be understood of the form e−it/τS , where the time scale of the bound-state system
is indeed τS ∼ 1/(Mα2). If we follow the system evolution for times t ≫ τS , the
exponential phase oscillates very fast except for the case n′ = n and |P ′| ≪ |P |. This
is close in spirit to the rotating-wave approximation, and we call it the diagonal limit of
the density operator and evolution equation.5 Hence, in the diagonal limit, upon setting
n1 = n in (13.9), we observe that the Wigner transform of the commutator involving
Re[δV ann

b ] vanishes. In fact, the cancellation between the two terms in the commutator
happens also when including higher dimensional annihilation operators in 1/M as well
as for −i[Re[Σ], ρ]. As for scattering states, the diagonal limit implies |p′| ≪ |p| and
|P ′| ≪ |P |. Thus the master equations (12.26) and (12.27), upon applying the Wigner
transformations, reduce in the diagonal limit to(

∂

∂t
+

P

2M
·∇R

)
f bn,S(t,P ,R) = Fb(ρb, ρs)

∣∣∣
WT

, (13.11)

(
∂

∂t
+

P

2M
·∇R + 2

p

M
·∇r

)
fsS(t,P ,R,p, r) = Fs(ρb, ρs)

∣∣∣
WT

, (13.12)

where on the left-hand sides we recover the familiar free-streaming terms that implement
the unitary evolution part, manifesting as a total time derivative acting on the distri-
butions, and since we omit higher-order center-of-mass dependent terms in H except
the leading-order kinetic energy P 2/(4M), there is no diffusion term proportional to the
gradient ∇P .

We now focus on the non-unitary evolution part, and compute the right-hand side
of (13.11) that may be superficially understood as a kind of collision term. We consider
first the dipole transitions and Wigner-transform the dipole term (−iΣbs − iΣbb)ρb(t) +

5One may understand the diagonal limit by looking at the solution of the evolution equation,
⟨ρ̇(t)⟩ ∼ e−i∆Et⟨ρ(0)⟩, at late times: ⟨ρ(t→∞)⟩ ∼

∫ t→∞
0

dt e−i∆Et⟨ρ(0)⟩ = ⟨ρ(0)⟩
∫∞
−∞ dtΘ(t)e−i∆Et =

⟨ρ(0)⟩(πδ(∆E)− i/∆E), which has a non-vanishing real part only for ∆E = 0. Rotating-wave or secular
approximations are frequently used when solving Lindblad equations, see ref. [173] for a more pedagogical
introduction.
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ρb(t)(−iΣbs − iΣbb)† in (12.12), which for the electric-dipole self-energy (12.16), after
inserting the completeness relations (13.5)–(13.6) and performing some manipulations
together with the Markov approximation and the kinetic equilibrium assumption for the
dark photons, results in6,7

−g2
∫
P ′
eiP

′·R
∫

d4k

(2π)4

[
k20D

ij
11(k) + kikjD00

11(k)
]

×
{ ∑
n1,n2

(
i

∆En2
n1 + 2(P+P ′/2)·k−k2

4M − k0 + iϵ
⟨n|ri|n1⟩⟨n1|rj |n2⟩

× ⟨P +
P ′

2
;n2;S|ρb(t)|P −

P ′

2
;n;S⟩

− i

∆En2
n1 + 2(P−P ′/2)·k−k2

4M − k0 − iϵ
⟨n1|rj |n2⟩⟨n2|ri|n⟩

× ⟨P +
P ′

2
;n;S|ρb(t)|P −

P ′

2
;n1;S⟩

)
+

∫
p

∑
n1

(
i

∆En1
p + 2(P+P ′/2)·k−k2

4M − k0 + iϵ
⟨n|ri|p⟩⟨p|rj |n1⟩

× ⟨P +
P ′

2
;n1;S|ρb(t)|P −

P ′

2
;n;S⟩

− i

∆En1
p + 2(P−P ′/2)·k−k2

4M − k0 − iϵ
⟨n1|rj |p⟩⟨p|ri|n⟩

× ⟨P +
P ′

2
;n;S|ρb(t)|P −

P ′

2
;n1;S⟩

)}
.

(13.13)

The expression above simplifies further in the diagonal limit, where we set either n1 = n

6The Markov approximation has been implemented via the variable substitution s ≡ t− t2 in (12.16),
followed by the assumption that the time difference t − t0 is much larger than any other time scale,
such that

∫ t
t0
dt2f(t2) ≈

∫∞
0
dsf(t − s) [153]. Moreover, in chapter 2 we have clarified that, although

the expanding universe evolves in overall as an out-of-equilibrium system, the time dependency of the
temperature is rather mild at late times, and we can assume the thermal bath to be quasistatic to a
good degree of accuracy. Then we may approximate the time-ordered electric-field correlator as follows:

⟨Ei(R1, t)E
j(R2, t− s)⟩ ≈

∫
d4k

(2π)4
e−ik0seik·(R1−R2)

[
k20D

ij
11(k) + kikjD00

11(k)
]
.

7The heavy-pair propagators in (13.13) appear once we perform the integration over time, for instance∫ ∞

0

ds exp
[
−i
(
EP+P ′/2−k
n1

− EP+P ′/2
n2

+ k0
)
s
]

= lim
ϵ→0+

∫ ∞

0

ds exp
[
−i
(
EP+P ′/2−k
n1

− EP+P ′/2
n2

+ k0 − iϵ
)
s
]
=

i

E
P+P ′/2
n2 − EP+P ′/2−k

n1 − k0 + iϵ
.
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or n2 = n, such that the density matrices factorize, i.e.

−g2
∫
P ′
eiP

′·R⟨P +
P ′

2
;n;S|ρb(t)|P −

P ′

2
;n;S⟩

∫
d4k

(2π)4

[
k20D

ij
11(k) + kikjD00

11(k)
]

×
{∑

n′

⟨n|rj |n′⟩⟨n′|ri|n⟩

×
(

i

∆Enn′ +
2(P+P ′/2)·k−k2

4M − k0 + iϵ
− i

∆Enn′ +
2(P−P ′/2)·k−k2

4M − k0 − iϵ

)

+

∫
p
⟨n|rj |p⟩⟨p|ri|n⟩

×
(

i

∆Enp + 2(P+P ′/2)·k−k2

4M − k0 + iϵ
− i

∆Enp + 2(P−P ′/2)·k−k2

4M − k0 − iϵ

)}
,

(13.14)

and expand the heavy-pair propagators up to zeroth order in |P ′|/M , resulting in

−ig2f bn,S(t,P ,R)

∫
d4k

(2π)4

[
k20D

ij
11(k) + kikjD00

11(k)
]

×
{∑

n′

⟨n|rj |n′⟩⟨n′|ri|n⟩ 2i Im
[

1

∆Enn′ +
2P ·k−k2

4M − k0 + iϵ

]

+

∫
p
⟨n|rj |p⟩⟨p|ri|n⟩ 2i Im

[
1

∆Enp + 2P ·k−k2

4M − k0 + iϵ

]}
. (13.15)

Since in the diagonal limit the off-diagonal matrix elements of the density operator are
discarded, we loose the information of quantum superposition or quantum coherence of
the open dark matter system. At this stage, the Wigner distribution has been entirely
factorized out and we can compute the remaining terms in (13.15). Upon inserting
the time-ordered dark photon propagator at leading order, cf. eqs. (D.4)–(D.5), we
recognize the terms in eq. (13.15) to resemble the self-energy expressions we have al-
ready encountered in chapter 6, where we aimed to compute the individual thermal
dipole rates. We expand the recoil term in the propagators in eq. (13.15) according
to (6.60), and evaluate the integrals analytically up to order P 2/M2 and ∆Epn/M in
the recoil corrections as in chapter 6. The other self-energy expressions involving the
dark magnetic-magnetic, electric-magnetic and magnetic-electric correlators (cf. eqs.
(12.17)–(12.19), respectively) can be computed in the very same way. Summing up all
contributions, we eventually obtain[

(−iΣbs − iΣbb)ρb(t) + ρb(t)(−iΣbs − iΣbb)†
] ∣∣∣

WT

= − [(Γnbsd)lab(P ) + (Γnde-ex.)lab(P ) + (Γnex.)lab(P )] f bn,S(t,P ,R) ,
(13.16)
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where the bound-state dissociation width, de-excitation width and excitation width can
be read-off from the eqs. (6.94), (6.103) and (6.104), respectively. We can call the Σ’s
altogether as the depletion term as it leads to a loss of the bound state (n, S).

Next, we Wigner-transform Ξbs(ρs(t), t) in eq. (12.12), which for the electric-electric
part (cf. eq. (12.20)), upon applying the same approximations and manipulations as for
the Σ’s, reads

g2
∫
P ′
eiP

′·R
∫

d4k

(2π)4

∫
p1

∫
p2

{[
k20D

ij
11(k) + kikjD00

11(k)
]
⟨n|rj |p1⟩⟨p2|ri|n⟩

× i

∆Ep1n + 2(P+P ′/2)·k−k2

4M − k0 + iϵ
⟨P + k +

P ′

2
;p1;S|ρs(t)|P + k − P ′

2
;p2;S⟩+ h.c.

}

≈ g2
∫
r
e−i(p1−p2)·r

∫
d4k

(2π)4

∫
p1

∫
p2

{[
k20D

ij
11(k) + kikjD00

11(k)
]
⟨n|rj |p1⟩⟨p2|ri|n⟩

× i

∆Ep1n + 2P ·k−k2

4M − k0 + iϵ
fsS

(
t,P + k,R,

p1 + p2

2
, r

)
+ h.c.

}
, (13.17)

where we first expanded the heavy-pair propagator to zeroth order in |P ′|/M and then
used the following relation [163]:8∫
P ′
eiP

′·R⟨P +
P ′

2
;p1;S|ρs(t)|P −

P ′

2
;p2;S⟩ =

∫
r
e−i(p1−p2)·rfsS

(
t,P ,R,

p1 + p2

2
, r

)
.

(13.18)
In the next step, we expand the scattering-state Wigner function around r0 and in
|k| ≪ |P |, i.e.9

fsS

(
t,P + k,R,

p1 + p2

2
, r

)
≈ fsS

(
t,P ,R,

p1 + p2

2
, r0

)
+ (r − r0) ·∇r0f

s
S

(
t,P ,R,

p1 + p2

2
, r0

)
+ k ·∇kf

s
S

(
t,P ,R,

p1 + p2

2
, r0

)
+ . . . ,

(13.19)
and keep only the zeroth order term from now on. This simplifies the expression (13.17)
significantly, since

∫
r e

−i(p1−p2)·r = (2π)3δ3(p1−p2), hence p2 = p1 ≡ p, and eq. (13.17)

8The relation (13.18) can be straightforwardly proven by rewriting the Wigner function on the right-
hand side of (13.18) according to (13.2), integrating over r, which in turn generates a delta function
that puts a constraint on the integral over the relative momentum.

9Truncating the Taylor-expanded distribution function in (13.19), known as the gradient expansion,
works if fs varies slowly on distances of the order of the Bohr radius a0 of the heavy DM pair, i.e. if the
diffusion length

√
Dτ ≫ a0. On distances r much larger than the typical size of the fermion-antifermion

pair, the dipole matrix elements are quite suppressed due to a small overlap integral between bound-
and scattering-state wavefunctions. Moreover, we can expand in |k| ≪ |P | since recoil corrections are
small for non-relativistic dark matter.
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becomes

g2
∫

d4k

(2π)4

∫
p

[
k20D

ij
11(k) + kikjD00

11(k)
]
⟨n|rj |p⟩⟨p|ri|n⟩ fsS (t,P ,R,p, r0)

×
(

i

∆Epn +
2P ·k−k2

4M − k0 + iϵ
− i

∆Epn +
2P ·k−k2

4M − k0 − iϵ

)

= −2
∫
p
Im
[(
Σ11
ee

)
(p,P )

]
fsS (t,P ,R,p, r0) , (13.20)

and adding up the Wigner transforms of (12.21)–(12.23), we obtain

Ξbs(ρs(t), t)
∣∣∣
WT

= −2
∫
p

(
Im
[(
Σ11
ee

)
(p,P )

]
+ Im

[(
Σ11
mm

)
(p,P )

]
+Im

[(
Σ11
em

)
(p,P )

]
+ Im

[(
Σ11
me

)
(p,P )

])
fsS (t,P ,R,p, r0)

=

∫
p
(σbsf vMøl)lab(p,P )f sS (t,P ,R,p, r0) ,

(13.21)
where the bound-state formation cross section can be read-off from (6.62). An analogous
computation gives

Ξbb(ρb(t), t)
∣∣∣
WT

=

[∑
n′>n

(Γn
′→n

de-ex.)lab(P ) +
∑
n′<n

(Γn
′→n

ex. )lab(P )

]
f bn′,S(t,P ,R) . (13.22)

We can call the Ξ’s altogether as the recombination term, since it creates a bound state
(n, S) out of a scattering state or via (de-)excitation of another bound state (n′, S),
and we sum over all of them. We have worked out all contributions from the dipole
transitions, so that in total we get

Fdip
b (ρb(t), ρs(t))

∣∣∣
WT

= − [(Γnbsd)lab(P ) + (Γnde-ex.)lab(P ) + (Γnex.)lab(P )] f bn,S(t,P ,R)

+

∫
p
(σbsf vMøl)lab(p,P )fsS (t,P ,R,p, r0)

+

[∑
n′>n

(Γn
′→n

de-ex.)lab(P ) +
∑
n′<n

(Γn
′→n

ex. )lab(P )

]
f bn′,S(t,P ,R) .

(13.23)
Indeed, the non-unitary evolution of a specific bound state of interest, with quantum
numbers (n, S), is governed by all processes at order r2, and we have already calculated
all individual interaction rates in chapter 6. On the one hand, in the first line of eq.
(13.23) one sees the processes that deplete the bound state: photo-dissociation and exci-
tations or de-excitations. On the other hand, in the second and third line, the processes
responsible for the regeneration of the bound state are the bound-state formation from
a scattering state and excitations as well as de-excitations into the bound state of refer-
ence. The two classes of processes determine the loss and gain term in a Boltzmann-like
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semi-classical transport equation, respectively. We now consider the annihilation terms
in eq. (12.30). An important difference with respect to the dipole transitions is that an-
nihilation processes are sensitive to the total spin S of the heavy DM pair. We perform
the same steps as outlined so far for a generic spin state S, and the Wigner transform
of the anticommutator {Im[δV ann

b ], ρb(t)}, with

Im [δV ann] = −δ
3(r)

M2

[
2Im [ds]− S2 (Im [ds]− Im [dv])

]
+
δ3(r)

M4
∇iR∇jR

[
2 Im [gc cm] δij − S2 (Im [gc cm]− Im [ga cm]) δij + SiSj Im [gb cm]

]
= −δ

3(r)

M2

[
2Im [ds]− S2 (Im [ds]− Im [dv])

](
1 +

∆R

4M2

)
, (13.24)

where in the second equality we used the relations (5.15) from reparametrization invari-
ance, becomes

− 1

M2
[2Im[ds]− S(S + 1)(Im[ds]− Im[dv])]

×
∑
n1

∫
P ′
eiP

′·R

ψ∗
n(0)ψn1(0)

1−
(
P + P ′

2

)2
4M2

 ⟨P +
P ′

2
;n1;S|ρb(t)|P −

P ′

2
;n;S⟩

+ψ∗
n1
(0)ψn(0)

1−
(
P − P ′

2

)2
4M2

 ⟨P +
P ′

2
;n;S|ρb(t)|P −

P ′

2
;n1;S⟩

 .

(13.25)

In the diagonal limit, where we single out the bound state contribution with n1 = n and
expand the factors to zeroth order in P ′, the density matrix factorizes (and so does the
Wigner distribution function), and we obtain

{Im[δV ann
b ], ρb(t)}

∣∣∣
WT

= − 2

M2
[2Im[ds]− S(S + 1)(Im[ds]− Im[dv])]

×
(
1− P 2

4M2

)
|ψn(0)|2f bn,S(t,P ,R)

= −
(
Γn,Sann

)
lab

(P ) f bn,S(t,P ,R) ,

(13.26)

where the decay width corresponds either to the para- or orthodarkonium decay width
for S = 0 or S = 1, respectively (cf. first lines in (5.30) and (5.31), respectively). Hence,
the anticommutator term leads to a depletion of the bound state (n, S), in agreement
with the general behaviour of the anticommutator term in the Lindblad equation (11.1).

We finally Wigner-transform the trace term −2ρb(t) Tr [Im[δV ann] ρ(t)] in eq. (12.30),
where we recall that ρ(t) = diag(ρb(t), ρs(t)), and get

−2ρb(t) Tr [Im[δV ann] ρ(t)]
∣∣∣
WT

= −2f bn,S(t,P ,R) Tr [Im[δV ann] ρ(t)] . (13.27)
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Splitting the trace as Tr[O] = ∑
S

∫
P

(∑
n
⟨P ;n;S|O|P ;n;S⟩+

∫
p⟨P ;p;S|O|P ;p;S⟩

)
,

plugging in (13.24) and inserting complete sets (13.5)–(13.6), we obtain after some ma-
nipulations

−2ρb(t) Tr [Im[δV ann] ρ(t)]
∣∣∣
WT

= 2f bn,S(t,P ,R)

×
∑
S1

1

M2
[2Im[ds]− S1(S1 + 1)(Im[ds]− Im[dv])]

∫
P1

(
1− P 2

1

4M2

)

×
{ ∑
n1,n2

Ψ∗
n1
(0)Ψn2(0)⟨P1;n2;S1|ρb(t)|P1;n1;S1⟩

+

∫
p1

∫
p2

Ψ∗
p1
(0)Ψp2(0)⟨P1;p2;S1|ρs(t)|P1;p1;S1⟩

}
. (13.28)

In the next step, we insert, similarly as in ref. [99], the identity 1 =
∫
P ′(2π)

3δ3(P ′) =∫
P ′

∫
R′ e

iP ′·R′
into (13.28) and shift the ket and the bra by the momentum P ′/2, i.e.

|P1 − P ′/2⟩ and ⟨P1 + P ′/2| in order to make the density matrices appear as in the
definition of the Wigner distributions, cf. eqs. (13.1)–(13.2). Using the relation (13.18)
for the scattering-state density matrix, eq. (13.28) becomes

−2ρb(t) Tr [Im[δV ann] ρ(t)]
∣∣∣
WT

= 2f bn,S(t,P ,R)

×
∑
S1

1

M2
[2Im[ds]− S1(S1 + 1)(Im[ds]− Im[dv])]

∫
P1

(
1− P 2

1

4M2

)

×
{∫

P ′

∫
R′
eiP

′·R′ ∑
n1,n2

Ψ∗
n1
(0)Ψn2(0)⟨P1 +

P ′

2
;n2;S1|ρb(t)|P1 −

P ′

2
;n1;S1⟩

+

∫
R′

∫
p1

∫
p2

Ψ∗
p1
(0)Ψp2(0)

∫
r′
e−i(p2−p1)·r′

fsS1

(
t,P1,R

′,
p1 + p2

2
, r′
)}

.

(13.29)

We take the diagonal limit by setting n2 = n1 and perform the gradient expansion of the
Wigner distribution of the scattering state up to zeroth order in r′ around some value
r0 (cf. eq. (13.19)), which enables us to do the r′ integration straightforwardly, yielding
the constraint p2 = p1. Renaming R′ = R1, we end up with

−2ρb(t) Tr [Im[δV ann] ρ(t)]
∣∣∣
WT

= f bn,S(t,P ,R)

×
∑
S1

∫
P1

∫
R1

{∑
n1

(
Γn1,S1
ann

)
lab

(P1) f
b
n1,S1

(t,P1,R1)

+ 4

∫
p1

(σannvMøl)
S1
lab (p1,P1) f

s
S1

(t,P1,R1,p1, r0)

}
,

(13.30)
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where the superscript S1 in the spin-averaged annihilation cross section, cf. eq. (5.28),
denotes that we pick up only the S1 spin state. Together with the contribution from the
anticommutator in (13.26), the non-unitary collision operator, induced by dark fermion-
antifermion annihilations, reads

Fann
b (ρb(t), ρs(t))

∣∣∣
WT

= −
(
Γn,Sann

)
lab

(P ) f bn,S(t,P ,R)

+ f bn,S(t,P ,R)
∑
S1

∫
P1

∫
R1

{∑
n1

(
Γn1,S1
ann

)
lab

(P1) f
b
n1,S1

(t,P1,R1)

+ 4

∫
p1

(σannvMøl)
S1
lab (p1,P1) f

s
S1

(t,P1,R1,p1, r0)

}
.

(13.31)
As can be seen, the first line implements a depletion of the bound state (n, S), whereas
the second and third line correspond to the feed-down from the heavy two-pair states,
which come from both bound- and scattering-state configurations. Our initial assump-
tion for a composite density operator ρI+II of a two heavy-pair system to be decomposable
into a direct product ρI⊗ ρII, translates into factorized Wigner distribution functions in
eq. (13.31), i.e. f bn,Sf

b
n1,S1

and f bn,Sf
s
S1
. However, in case of a more general, entangled

density operator ρI+II ̸= ρI⊗ρII, we would expect an outcome involving a two heavy-pair
distribution function like f(t,P ,R,P1,R1) to appear, that is not separable in general.
It would make an attempt to solve the Boltzmann transport equations tremendously
difficult, since the coupled equations are not closed, i.e. we would need an additional
equation of motion for the two-pair distribution, which in turn depends on a three-pair
distribution, and so on. Instead, the outcomes in (13.23) and (13.31) result in a set
of coupled but closed Boltzmann equations, which, upon plugging them into (13.11),
eventually leads to the following bound-state evolution equation:(

∂

∂t
+

P

2M
·∇R

)
f bn,S(t,P ,R)

= −
[(
Γn,Sann

)
lab

(P ) + (Γnbsd)lab(P ) + (Γnde-ex.)lab(P ) + (Γnex.)lab(P )
]
f bn,S(t,P ,R)

+ f bn,S(t,P ,R)
∑
S1

∫
P1

∫
R1

{∑
n1

(
Γn1,S1
ann

)
lab

(P1) f
b
n1,S1

(t,P1,R1)

+ 4

∫
p1

(σannvMøl)
S1
lab (p1,P1) f

s
S1

(t,P1,R1,p1, r0)

}

+

∫
p
(σbsf vMøl)lab(p,P )f sS (t,P ,R,p, r0)

+

[∑
n′>n

(Γn
′→n

de-ex.)lab(P ) +
∑
n′<n

(Γn
′→n

ex. )lab(P )

]
f bn′,S(t,P ,R) ,

(13.32)
which is a partial integro-differential equation, and, hence, still difficult to solve in gen-
eral. Besides the dipole approximation, we recall the various approximations that have
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been made along the reduction from the full quantum master equation (12.26) to the
semi-classical transport equation (13.32): (i) In the dilute limit we truncate the system
to only two heavy dark matter pairs, i.e. systems I and II, and consider only diagrams
at leading order in the density operator, cf. fig. 12.1. (ii) We discard quantum entan-
glement by decomposing ρI+II = ρI⊗ ρII, known as molecular chaos approximation. (iii)
We implement the Markov approximation in order to pass from a two-times dependence
in the Σ’s and Ξ’s in eqs. (12.16)–(12.23) to a single time variable. (iv) In the rotating-
wave approximation, we omit the off-diagonal density-matrix elements, enabling us to
factorize the distribution function from the interaction rates in return of loosing the
quantum superposition property of the DM system. It is closely connected to the gradi-
ent expansion and to what we have called as the diagonal limit. In order to relate (13.32)
to the familiar integrated Boltzmann equation for the bound-state number density, cf.
eqs. (7.2)–(7.3), three additional assumptions are required: (v) Another molecular chaos
approximation, where fsS (t,P ,R,p, r0) = fX(t,p1, r1)fX̄(t,p2, r2). (vi) Isotropy of the
thermal bath, i.e. neglect the r, R dependence in the distribution. (vii) Assume the
dark matter pairs to be kinetically equilibrated with the thermal bath, such that

f bn,S(t,P ) =
f b,eqn,S (|P |)
nSn,eq

nSn(t) , fX(t,p1) =
f eqX (|p1|)
nX,eq

nX(t) , (13.33)

with n(t) = nX(t) + nX̄(t) = 2nX(t), and where the bound-state number densities in
equilibrium, nSn,eq, have been written chapter 7, footnote 3 (see also the definition of nSn
in footnote 3 at the beginning of this chapter), and the particle number density in equi-
librium, neq, can be read-off from eq. (2.7). Taking into account all those approximations
and the expansion rate of the universe, integrating the bound-state transport equation
(13.32) over the total momentum P and summing over the total spin S = {0, 1}, where
we recognize the thermal-average expressions of the observables in the laboratory frame,
we end up with

(∂t + 3H)nn(t)

= −⟨
[
(Γn,paraann )lab + (Γn,orthoann )lab + (Γnbsd)lab + (Γnde-ex.)lab + (Γnex.)lab

]
⟩lab nn(t)

+
1

4
⟨(σbsf vMøl)lab⟩lab n2(t) +

[∑
n′>n

⟨(Γn′→n
de-ex.)lab⟩lab +

∑
n′<n

⟨(Γn′→n
ex. )lab⟩lab

]
nn′(t) ,

(13.34)
where we have dropped the recombination term with respect to annihilations, since it
is quadratic in the distribution function and hence suppressed. We finally recover the
rate equation for the bound pair, upon summing eqs. (7.2) and (7.3), that we have
used throughout this work whenever we were interested in the computation of the dark
matter relic abundance.10

10In the familiar Boltzmann equations (7.2)–(7.3) there are additional terms ⟨Γn,Sann⟩nSn,eq, which do
not appear in eq. (13.34). The reason is that such a recombination term corresponds to the creation of
a heavy dark fermion-antifermion pair out of the light degrees of freedom, but those reversed processes
to the annihilations have not been included in the present treatment.
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So far we have derived explicitly and step-by-step the Boltzmann transport equation
for the Wigner distribution function of a dark matter bound state. We will not reiterate
the calculation, but in a very similar way and under the same approximations one
may compute the transport equation for the Wigner distribution of a scattering state,
to which eq. (13.34) is ultimately coupled. Hence, in the semi-classical limit one may
recover the Boltzmann equation (7.1) that has been extensively used in this work in order
to obtain a numerical solution for the present dark matter energy density. However, since
we identified and elaborated thoroughly all the underlying approximations, it would be
desirable to examine quantitatively the order of uncertainty on ΩDMh

2 induced by these
simplifications, in this way establishing a better control of the full accuracy from the
theoretical side on the precise value of the DM relic abundance.
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Part VI

Summary and conclusions
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Unveiling the dark matter identity from the hidden sector, which so far manifests
only through its gravitational effects on large scales such as galaxies or galaxy clusters,
has been one of the essential ambitions in astrophysics, cosmology and particle physics
since over several decades. Because the dark sector contributes to the total abundance
of the universe by a factor of five compared to the visible sector, it is indispensable to
uncover the fundamental DM properties in order to have a more profound understanding
of the cosmos. A viable and well motivated possibility consists of extending the Standard
Model of particle physics by additional novel particles that are not charged with respect
to the SM gauge group, which qualifies them as dark degrees of freedom, but imposing a
new dark gauge symmetry to which they couple. As prototypical dark matter models, we
have considered a QED-like dark sector made of dark Dirac fermions and dark photons,
dubbed as QEDDM or U(1)DM in this work, and the corresponding non-abelian version
featuring an SU(N)DM gauge group. We allow for several dark fermion flavors, where,
however, one of the species is assumed to be much heavier than the others. Hence it
accounts for most of the mass within the dark sector and dominates the present DM relic
abundance, which is set by the thermal freeze-out of the heavy particle during the early
expanding universe. Since U(1)DM or SU(N)DM resemble strongly the gauge symmetries
within the SM, there has been a considerable effort in transferring and extending known
techniques adopted in atomic and heavy-quarkonium physics to dark matter models in
the recent years, both at zero and finite temperature. Indeed, whenever the massive
dark particles experience self-interactions through a massless or light vector mediator,
the dark particle dynamics shares some similarities with the one of positronium in QED,
or even heavy quarkonium in a quark gluon plasma. In fact, the generation of bound
states of dark fermion-antifermion pairs, that we call darkonia to make a close connection
to e.g. positronia or bottomonia, turns out to have a strong impact on the DM relic
density evolution. It is therefore of paramount importance to determine the relevant
processes and the associated reaction rates at a precise level as well as to keep possible
theoretical uncertainties under systematic control.

In the context of the freeze-out mechanism, the relevant interactions, that determine
the non-equilibrium dynamics of the non-relativistic dark matter particles, and the rel-
ative strengths among them are mainly dictated according to the hierarchy of energy
scales, where we find two distinct scale arrangements given in (3.2) and (3.4). In par-
ticular, in U(1)DM and SU(N)DM the DM number-changing processes are induced by
particle-antiparticle annihilations and decays, augmented by the bound-state effects such
as the formation and dissociation of bound states, dubbed bsf and bsd, respectively, as
well as the transitions among the bound states; the latter only realized in U(1)DM. Since
the thermal and internal energy scales are hierarchically ordered for each arrangements
in (3.2) and (3.4), we can systematically replace the full relativistic theories U(1)DM and
SU(N)DM, with all the scales intertwined resulting in a pretty cumbersome computa-
tion of corresponding physical quantities, by a tower of simpler non-relativistic effective
field theories for the effective degrees of freedom that describe the physics of interest
at the Lagrangian level, where long- and short-range contributions are factorized for
any observable and hence the contribution from each scale becomes transparent. In
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this way one can systematically improve the accuracy of the physical observables by
including radiative corrections in the coupling and relativistic corrections in the particle
momenta, cf. fig. 7.1, guided by the power counting of the effective theory. In this
work, we have scrutinized the implementation of non-relativistic effective field theories
at finite temperature, i.e. abelian and non-abelian (p)NREFTsDM, cf. chapters 4 and
8, respectively, in order to address the dynamics of heavy dark matter in the thermal
environment provided by the dark sector of the early expanding universe. The main aim
has been to provide a detailed step-by-step computation of the aforementioned relevant
reactions. We refer to part III for the study of the abelian model, and to part IV for
the non-abelian case. We have emphasized the differences between the two theories, the
corresponding processes and results in the associated sections.

We have accounted for the multiple soft photon exchanges that lead to the Som-
merfeld enhancement affecting the soft dynamics prior to the annihilation process, and
calculated the corrections to the S-wave annihilation in the particle momenta at next-
to-leading order and, together with the annihilation of P-waves at LO, we contrasted
the momentum-corrections to the radiative corrections at NLO inherited in the Wilson
coefficients of the dimension-six four-fermion operators, cf. chapter 5. Moreover, we
have computed the leading recoil corrections and higher-order radiative effects to the
near-threshold processes induced by the dipole operators (the corresponding vertices are
depicted in fig. 4.1), cf. chapter 6. Since under certain circumstances the radiative cor-
rections may not be suppressed, they need to be resummed. We have correctly accounted
for the HTL resummation of the Debye mass scale mD in the temperature regime above
the ultrasoft scale, and studied its impact on the present relic abundance, cf. chapter 7
for the abelian case. Although the resummation effect has a strong dependence on the
individual thermal dipole rates, it reduces the DM energy density only by a few percent-
age, and it diminishes even more when taking into account the recoil effect due to the
relative motion between the thermal plasma and the center-of-mass of the dark matter
pairs. In addition, we have studied the recoil effect on the thermal rates with respect to
two different reference frames, where we have chosen the laboratory and the center-of-
mass frame of the heavy pair, and verified explicitly the Lorentz-boost transformation
behaviour of cross sections and widths up to first order in the non-relativistic expansion,
thereby proving that Lorentz-boost symmetry is not spoiled due to the presence of the
thermal bath.

Among the differences between abelian and non-abelian models, we remark that,
while in an abelian model a small value of the coupling at the hard scale is enough to
guarantee a weak-coupling treatment for threshold observables, in a non-abelian dark
matter model a weak-coupling treatment requires that the coupling remains small also
at the ultrasoft scale. If we take the ultrasoft scale to be of the order of the temperature,
then the smallest scale considered in this work is T ≈ 10−5M . At one-loop running,
α(2M) needs to be quite small to keep α(T ) < 1. For instance, in the SU(3) non-abelian
model the weak-coupling condition requires α(2M) ≲ 0.04. This should caution about
computing at weak coupling the bound-state formation cross section and dissociation
width entering the network of Boltzmann equations for the extraction of the DM en-
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ergy density, whenever dealing with QCD-like charged particles in coannihilation dark
matter scenarios. Nevertheless, the EFT framework holds also if the ultrasoft scale is
strongly coupled, which is a situation familiar to QCD [11,174], as long as the multipole
expansion is not spoiled, that is if the thermal wavelength ∼ 1/T of the gauge fields is
sufficiently larger than the typical size of the fermion-antifermion pair. Consequently,
at large temperatures, T ∼ Mα, the multipole expansion breaks down. Estimating
DM formation and dissociation in this situation requires computing thermal effects in
NREFTDM and matching to a version of pNREFTDM that does not contain thermal
gauge fields as dynamical degrees of freedom, but encodes them in a temperature depen-
dent potential. Similar situations have been examined in QED [49,82] and QCD [48,84].
A quantitative assessment of such scenarios may be needed in order to solve the Boltz-
mann equations over a range of couplings that include values making Mα smaller than
the freeze-out temperature, i.e. α ≲ 0.04. This range encompasses coupling values typi-
cal of the electroweak SM sector, which may be relevant for genuine WIMP dark matter
particles, with or without coannihilating partners, e.g. supersymmetric model realiza-
tions [16,113,122,175–177] and the inert doublet model [178–181].

Bound-state formation and dissociation rates are routinely used in the network of
Boltzmann equations in order to extract the dark matter energy density, where however
the thermal rates are just ingredients to be computed independently to fix the dynamics
of the rate equations. A more accurate treatment of the out-of-equilibrium evolution
for dark matter particles from non-relativistic effective field theories can be realized
within the framework of open quantum systems. As for similar systems in the SM or
the QCD theory, where Lindblad-like equations [99,152,153,155,182–184] were derived,
we aim to obtain the quantum master equations for the reduced dark density operator,
whose solution provides the present relic energy density of dark matter. The final part
V in this work has been devoted to the out-of-equilibrium treatment of the heavy dark
matter evolving as an open quantum system, where we present the quantum master
equations in the abelian case, which we eventually reduce to the set of coupled Boltz-
mann equations in the semi-classical limit, that have finally been solved numerically in
the preceding chapter 7. The results can be straightforwardly adopted to dark matter
charged under SU(N)DM. Along the Boltzmann reduction of the evolution equations,
several approximations have been made which are required in order to approach the
familiar coupled rate equations for the DM particle densities. A main drawback of the
semi-classical rate equations, though phenomenologically useful since numerically solv-
able and hence of practical purpose, is that several pure quantum physical phenomena
have been discarded due to the underlying approximations. It would be desirable to
examine possible consequences on the dark matter relic abundance due to the ignored
quantum effects such as the coherence and decoherence of states along the quantum
evolution. Moreover, the integrated Boltzmann equations inherit the notion of kinetic
equilibrium throughout the entire time evolution, but it may be interesting to study how
and when thermalization is approached, if at all possible.

A possible approach to track the full quantum evolution of the reduced dark matter
system, which requires solving the master equations directly, could consist for instance
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in using the quantum trajectories algorithm QTraj, which has been developed in recent
years in order to find a numerical solution to the Lindblad equations for heavy quarko-
nium in a hot thermal bath, cf. refs. [185–187]. The QTraj method enables one to evolve
a large set of independently sampled quantum evolutions of the heavy-pair wave func-
tion. The corresponding observables, like the dark matter particle density, may then be
computed along each sampled quantum trajectory, and upon averaging them over the
many quantum paths, one can eventually make predictions for the time evolution of the
particular observable [188].
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Appendix A

Lorentz boost transformations

A.1 Coordinates, momenta and internal energies

Let r1 and r2, p1 and p2, and E1 =
√
M2 + p2

1 and E2 =
√
M2 + p2

2 be the positions,
momenta and energies, respectively, of two particles 1 and 2 with equal mass M in a
reference frame S, and r′1 and r′2, p

′
1 and p′

2, and E
′
1 =

√
M2 + p′2

1 and E′
2 =

√
M2 + p′2

2

the positions, momenta and energies, respectively, of the two particles in a reference
frame S′ moving with respect to S with velocity v. We can define the center-of-mass
coordinates and momenta in the two reference frames. In the following, we consider
the special case where the reference frame S′ is the center-of-mass frame (cm) of the
two particles. We call then S the laboratory frame (lab), see figure A.1 for a pictorial
illustration. In general, the relative distances are defined as

r ≡ r1 − r2 , r′ ≡ r′1 − r′2 , (A.1)

whereas the position vectors of the center-of-mass in the reference frames S and S′ are

R ≡ r1 + r2
2

, R′ ≡ r′1 + r′2
2

. (A.2)

The relative momenta of the pairs in the two reference frames are defined as

p ≡ p1 − p2

2
, p′ ≡ p′

1 − p′
2

2
, (A.3)

and the total momenta as

P ≡ p1 + p2 , P ′ ≡ p′
1 + p′

2 . (A.4)

The Lorentz transformations relating momenta and energies in the two reference frames
are

p′
1 = p1 + (γ − 1)(p1 · v)

v

v2
− γE1v , (A.5)

p′
2 = p2 + (γ − 1)(p2 · v)

v

v2
− γE2v , (A.6)

E′
1 = γ(E1 − p1 · v) , (A.7)

E′
2 = γ(E2 − p2 · v) , (A.8)
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Figure A.1: Positions and momenta of two particles, dubbed 1 and 2, with respect to the
reference frames S and S′. S′ is moving with velocity v with respect to S. S′ coincides
with the center-of-mass frame, whereas S is the laboratory frame.

where γ = 1/
√
1− v2 is the Lorentz factor. Then from (A.3) and (A.4) it follows that

the Lorentz transformations relating the relative and center-of-mass momenta between
S and S′ read

p′ = p+ (γ − 1)(p · v) v
v2
− γ

2
(E1 − E2)v , (A.9)

and
P ′ = P + (γ − 1)(P · v) v

v2
− γ(E1 + E2)v . (A.10)

Now in our case, where S is the lab frame and S′ the cm frame, the total momentum in
S is

Plab = (p1)lab + (p2)lab , (A.11)

whereas in the center-of-mass frame it is, by definition,

Pcm = (p1)cm + (p2)cm = 0 . (A.12)

Using eq. (A.10) in (A.12), we get

0 = Pcm = Plab + (γ − 1)(Plab · v)
v

v2
− γ((E1)lab + (E2)lab)v . (A.13)

This equality fixes v as a function of the center-of-mass momentum and energy of the
pair in the laboratory frame. Its solution reads

v =
Plab

(E1)lab + (E2)lab
. (A.14)

If the two particles are non relativistic, which implies E1 ≈M and E2 ≈M , then we get
v ≈ Plab/(2M). This is the value of v used in the main body of the paper to compute
the leading relativistic corrections to the various observables.
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Furthermore, the condition (A.12) fixes the energies of the two particles in the center-
of-mass frame to be equal:

(E1)cm = (E2)cm. (A.15)

Using eqs. (A.7) and (A.8) in (A.15), we obtain a relation between the relative mo-
mentum in the laboratory frame, plab, the velocity v and the energy difference in the
laboratory frame (E1)lab − (E2)lab, i.e.

plab · v =
(E1)lab − (E2)lab

2
. (A.16)

Then, by trading (E1)lab − (E2)lab for 2plab · v, the Lorentz transformation (A.9) can
be rewritten as

pcm = plab +
1− γ
γ v2

(plab · v)v . (A.17)

Selecting the component of the relative momentum along the direction of v, eq. (A.17)
implies

plab · v = γ pcm · v , (A.18)

which shows that the relative momentum component parallel to v gets larger by a
factor γ in the laboratory frame with respect to the center-of-mass frame. Only the
momentum component along v gets modified. This can be made explicit by decomposing
the momentum p into a component parallel to v, p∥ ≡ (p · v)v/v2, and a component
orthogonal to it, p⊥ ≡ p− p∥, and rewriting eq. (A.17) accordingly:

pcm = (p⊥)lab +
(p∥)lab

γ
. (A.19)

The square of the relative momentum changes from one frame to the other as

|pcm|2 = |(p⊥)lab|2 +
|(p∥)lab|2

γ2
. (A.20)

From eq. (A.19) it follows that the momentum volume element gets also larger by a
factor γ in the laboratory frame with respect to the center-of-mass frame:

d3pcm =
d3plab
γ

. (A.21)

Next we derive the Lorentz boost relations for the total energy of the two particles,
Ecm ≡ (E1)cm + (E2)cm in the center-of-mass frame and Elab ≡ (E1)lab + (E2)lab in the
laboratory frame. From (A.7) and (A.8) it follows that

Ecm = γ(Elab − Plab · v) =
Elab

γ
, (A.22)
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where in the last equality we have used eq. (A.14), i.e. v = Plab/Elab, which implies
1/γ2 = 1 − (Plab/Elab)

2. While the center-of-mass energy increases by a factor γ in
the laboratory frame with respect to the center-of-mass frame, the opposite happens to
the energy difference of two two-particle states, ∆E, for a suitable choice of the center-
of-mass frame. The reason is that the Lorentz factor γ depends on the total energy of
the pair and therefore it changes by ∆γ = −γ3P 2

lab (∆E)lab/E
3
lab from one state to the

other. Fixing the center-of-mass frame to be just the center-of-mass frame of one chosen
state, and computing the relative velocity v and the Lorentz factor with respect to it,
we get

(∆E)cm = γ(∆E)lab . (A.23)

Since ∆E may be understood as a frequency, the above relation expresses the Lorentz
dilation of the time intervals measured from transition frequencies in the laboratory
frame with respect to the center-of-mass frame.

Similarly to the relative momentum, we may decompose the relative distance, r,
between the two particles into a component parallel to v, r∥ ≡ (r · v)v/v2, and a
component orthogonal to it, r⊥ ≡ r − r∥. The Lorentz transformation of r reads

rcm = rlab +
γ − 1

v2
(rlab · v)v = (r⊥)lab + γ(r∥)lab , (A.24)

where we understand rlab as determined from the coordinates of the two particles taken
at the same time in the laboratory frame.1 The square of the relative distance changes
from one frame to the other as

|rcm|2 = |(r⊥)lab|2 + γ2|(r∥)lab|2 . (A.25)

From eq. (A.24) it also follows that the volume element gets contracted by a factor 1/γ
in the laboratory frame with respect to the center-of-mass frame:

d3rcm = γ d3rlab . (A.26)

A.2 Wavefunctions and matrix elements

In quantum mechanics a Lorentz transformation may be represented by a unitary trans-
formation U(v), with U(v)† = U(v)−1. The explicit form of the transformation is not
relevant here, but its action on a generic discrete energy eigenstate |n⟩, scattering energy
eigenstate |p⟩, and on the relative distance operator r is

U †(v) |n⟩cm = |n⟩lab , (A.27)

U †(v) |p⟩cm = N(v) |p⟩lab , |N(v)|2 = γ , (A.28)

U †(v) rcm U(v) = rlab +
γ − 1

v2
(rlab · v)v . (A.29)

1The difference between this condition and eq. (A.15) is at the origin of the contraction of the
distance along the motion direction in the laboratory frame in eq. (A.24) and the dilation of the relative
momentum along the motion direction in the laboratory frame in eq. (A.19).
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Equation (A.27) follows from the invariance of the normalization of discrete states under
Lorentz transformations: ⟨n|m⟩lab = ⟨n|m⟩cm = δnm. In the following, the notation
⟨n|A|m⟩lab (⟨n|A|m⟩cm) means that the observable A as well as the bra and the ket are
in the laboratory (center-of-mass) frame; the same notation applies to scattering states.
Equation (A.28) follows from the fact that the non-relativistic normalization of scattering
states is not Lorentz invariant. The normalization factor N(v) is then necessary to keep
both |p⟩cm and |p⟩lab non-relativistically normalized: ⟨p|q⟩lab = δ3(plab − qlab) and
⟨p|q⟩cm = δ3(pcm − qcm). It can be computed from

|N(v)|2 ⟨p|q⟩lab = ⟨p|q⟩cm = δ3(pcm − qcm)

= δ3
(
plab − qlab +

1− γ
γ v2

((plab − qlab) · v)v
)

=
∞∑
n=0

1

n!

(
1− γ
γ v2

((plab − qlab) · v)(v ·∇plab
)

)n
δ3(plab − qlab)

=
∞∑
n=0

1

n!

(
1− γ
γ v2

)n
n! (v2)n (−1)n δ3(plab − qlab)

=
1

1− (γ − 1)/γ
δ3(plab − qlab) = γ δ3(plab − qlab) , (A.30)

where we used eq. (A.17) in the second line, performed the Taylor expansion of the Dirac
delta function in the third line and recognized the geometric series in the last line.2 From
eq. (A.30), it follows |N(v)|2 = γ. Equation (A.29) expresses at the operator level the
transformation (A.24).

The relevant quantum-mechanical matrix elements appearing in this work may be
boosted in the different reference frames using eqs. (A.27)–(A.29). Let us first consider
the bound-state wavefunction at the origin:

(
|Ψnℓm(0)|2

)
cm

= ⟨nℓm|δ3(r)|nℓm⟩cm = ⟨nℓm|U(v)U †(v)δ3(r)U(v)U †(v)|nℓm⟩cm
= ⟨nℓm|δ3

(
r + (γ − 1)(r · v)v/v2

)
|nℓm⟩lab

=

∫
d3rlab δ

3
(
rlab + (γ − 1)(rlab · v)v/v2

) (
|Ψnℓm(rlab)|2

)
lab

=

∫
d3rlab

1

γ
δ3 (rlab)

(
|Ψnℓm(rlab)|2

)
lab

=

(
|Ψnℓm(0)|2

)
lab

γ
, (A.31)

where we have specified the principal, orbital and magnetic quantum numbers. In the
last line, we have rewritten the delta function using an argument similar to the one in
(A.30). Instead, due to the different normalization, for the scattering state wavefunction

2In the fourth line, the property xnδ(n)(x) = (−1)nn! δ(x), which can straightforwardly be generalized
to higher dimensions, has been used to evaluate the gradients. δ(n)(x) denotes the nth derivative acting
on the delta function.
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at the origin, we obtain(
|Ψpℓ(0)|2

)
cm

= ⟨pℓ|δ3(r)|pℓ⟩cm = ⟨pℓ|U(v)U †(v)δ3(r)U(v)U †(v)|pℓ⟩cm
= |N(v)|2⟨pℓ|δ3

(
r + (γ − 1)(r · v)v/v2

)
|pℓ⟩lab

= γ

∫
d3rlab δ

3
(
rlab + (γ − 1)(rlab · v)v/v2

) (
|Ψpℓ(rlab)|2

)
lab

= γ

∫
d3rlab

1

γ
δ3 (rlab)

(
|Ψpℓ(rlab)|2

)
lab

=
(
|Ψpℓ(0)|2

)
lab

. (A.32)

Dipole matrix elements between generic bound states are related in the different reference
frames by

⟨n|r|m⟩cm = ⟨n|U(v)U †(v)rU(v)U †(v)|m⟩cm
= ⟨n|r + (γ − 1)(r · v)v/v2|m⟩lab
= ⟨n|r|m⟩lab +

γ − 1

v2
⟨n|(r · v)v|m⟩lab

≈ ⟨n|r|m⟩lab +
1

2
⟨n|(r · v)v|m⟩lab , (A.33)

where in the last line we have expanded the Lorentz boost factor up to quadratic order
in small v, i.e. γ ≈ 1 + v2/2. Finally, dipole matrix elements between a generic bound
and scattering state in different reference frames are related by

⟨n|r|p⟩cm = ⟨n|U(v)U †(v)rU(v)U †(v)|p⟩cm
= N(v)⟨n|r + (γ − 1)(r · v)v/v2|p⟩lab
= N(v)⟨n|r|p⟩lab +N(v)

γ − 1

v2
⟨n|(r · v)v|p⟩lab

≈
(
1 +

v2

4

)
⟨n|r|p⟩lab +

1

2
⟨n|(r · v)v|p⟩lab , (A.34)

where in the last line we have expanded in v up to order v2, withN(v) =
√
γ ≈ 1+v2/4.
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Appendix B

Thermal averages in different
reference frames

Along this work we dealt with different kinds of scattering processes like annihilations
or the formation of bound states, involving the computation of the corresponding cross
sections and widths in two particularly different frames, the lab and the cm frame.
However, for the sake of determining its impact on the dark matter relic abundance,
it is necessary to compute the thermally averaged versions of those observables that
eventually enter the coupled evolution equations, taking the statistical average over
the incoming momenta of the dark matter particles and antiparticles with respect to
the chosen reference frame. Hence let us consider a generic cross section involving the
scattering of two incoming particles with center-of-mass momentum Plab = (p1)lab +
(p2)lab and relative momentum plab = ((p1)lab − (p2)lab)/2 times Møller velocity in the
laboratory frame, (σ vMøl)lab(plab,Plab). The thermal average in the laboratory frame is
defined as

⟨(σ vMøl)lab⟩lab =

∫
d3(p1)lab
(2π)3

d3(p2)lab
(2π)3

e−
(E1)lab

T e−
(E2)lab

T (σ vMøl)lab(plab,Plab)∫
d3(p1)lab
(2π)3

d3(p2)lab
(2π)3

e−
(E1)lab

T e−
(E2)lab

T

, (B.1)

where e−(E1)lab/T and e−(E2)lab/T are the Maxwell–Boltzmann distributions of the in-
coming particles in the laboratory frame, i.e. the frame where the bath is at rest,
and ((E1)lab, (p1)lab), ((E2)lab, (p2)lab) are the four-momenta of the two incoming par-

ticles. For unbound particles of mass M on mass shell, (E1)lab =
√

(p1)2lab +M2 and

(E2)lab =
√
(p2)2lab +M2. We average over Maxwell–Boltzmann distributions because

we assume M/T ≫ 1, which is certainly fulfilled for all times at and after the thermal
DM freeze-out.

The numerator on the right-hand side of (B.1),∫
d3(p1)lab
(2π)3

d3(p2)lab
(2π)3

e−
(E1)lab

T e−
(E2)lab

T (σ vMøl)lab(plab,Plab) , (B.2)
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is Lorentz invariant [57], which is the reason for the use of the Møller velocity. For
each pair of momenta plab and Plab in the laboratory frame, we may identify a center-
of-mass frame such that with respect to it the particles move with relative momentum
pcm, center-of-mass momentum Pcm = 0, and the laboratory frame moves with relative
velocity −v. From eqs. (A.9) and (A.10), it follows that the two pairs of kinematical
variables are related by the Lorentz transformations

plab = pcm + (γ − 1)(pcm · v)
v

v2
,

Plab = γEcmv ,
(B.3)

where Ecm = ((E1)lab+(E2)lab)/γ = 2
√

p2
cm +M2 is the total energy of the two particles

in the center-of-mass frame. The Jacobian of the transformation from the kinematical
variables (p)lab and (P )lab to pcm and v is

γ6E3
cm

(
1− (pcm · v)2

(Ecm/2)2

)
. (B.4)

The factor γ2
(
1− (pcm · v)2

(Ecm/2)2

)
cancels against the transformation factor of the Møller

velocity, see eq. (5.17), so that the integral (B.2) can be eventually written in terms of
the center-of-mass kinematical variables pcm and v as

1

(2π)3

∫
|v|≤1

d3v
d3pcm
(2π)3

γ4E3
cm e

− γEcm
T (σ vMøl)cm(pcm,v) . (B.5)

The result agrees with an analogous expression that can be found in ref. [189]. Note
that e−γEcm/T may be also rewritten as e−|(p1)µcmuµ|/T e−|(p2)µcmuµ|/T , where e−|pµuµ|/T is
the small T limit of the particle distribution in the moving thermal bath defined in (6.65).

The thermal average in the center-of-mass frame is defined as

⟨(σ vMøl)cm⟩cm =

∫
|v|≤1

d3v
d3pcm
(2π)3

γ4E3
cm e

− γEcm
T (σ vMøl)cm(pcm,v)∫

|v|≤1
d3v

d3pcm
(2π)3

γ4E3
cm e

− γEcm
T

. (B.6)

While the numerators in the right-hand sides of eqs. (B.1) and (B.6) are Lorentz in-
variant, the denominators, which are up to a degeneracy factor the products of the
particle number densities at equilibrium, n1,eq and n2,eq, are not. Hence the conversion
factor from ⟨(σ vMøl)lab⟩lab to ⟨(σ vMøl)cm⟩cm is given by the ratio of the particle number
densities at equilibrium in the two frames. An explicit calculation gives

⟨(σ vMøl)lab⟩lab =
ncm1,eqn

cm
2,eq

nlab1,eqn
lab
2,eq

⟨(σ vMøl)cm⟩cm

=
1

2

(
1 +

K2
1 (M/T )

K2
2 (M/T )

)
⟨(σ vMøl)cm⟩cm , (B.7)
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where Ki are modified Bessel functions of the second kind. The above expression was
first derived in ref. [57].

As an application, we consider the thermal average of the annihilation cross section
derived in eq. (5.16). In the laboratory frame at order T/M , it reads

⟨(σannvMøl)lab⟩lab =

[
1− 8π3

(MT )3

∫
d3plab
(2π)3

d3Plab

(2π)3
e−

p2lab
MT e−

P 2
lab

4MT
P 2
lab

4M2

]
σNR
annv

(0)
rel

=

(
1− 3T

2M

)
σNR
annv

(0)
rel , (B.8)

where we have expanded (E1)lab + (E2)lab = 2M + p2
lab/M + P 2

lab/(4M) + . . . . The

result is consistent with eq. (B.7) in the limit M ≫ T , as a consequence of σNR
annv

(0)
rel

being independent of the momenta. Concerning the absolute accuracy of the thermal
average in (B.8) and the other thermal averages considered in this work, we remark that
corrections proportional to the center-of-mass momentum P due to the motion of the
dark fermion-antifermion pair in the laboratory frame, or equivalently corrections due
to the motion of the thermal bath in the center-of-mass reference frame, give corrections
to the thermal averages of relative order T/M at low temperatures. These are of the
same order as the corrections due to the relative momentum p that are of relative order
p2/M2, which have not been considered here.

Similarly, the thermal average of a bound-state decay width in the laboratory frame
is defined as

⟨(Γ)lab⟩lab =

∫
d3Plab

(2π)3
e−

(En)lab
T (Γ)lab(Plab)∫

d3Plab

(2π)3
e−

(En)lab
T

, (B.9)

and related to the thermal average of the decay width in the center-of-mass frame through

⟨(Γ)lab⟩lab =

∫
|v|≤1

d3v γ5 e−
γ(En)cm

T
(Γ)cm(v)

γ∫
|v|≤1

d3v γ5 e−
γ(En)cm

T

=

〈
(Γ)cm
γ

〉
cm

, (B.10)

where En is the energy of the bound state. In the center-of-mass frame, it is given in
eq. (4.7). In the laboratory frame, it may be computed either from γ(En)cm, which
amounts at boosting the energy from the center-of-mass frame, or directly from the
bound-state potentials and kinetic energy corrections listed in section 4.2, footnote 4.
The result is the same and reads

(En)lab = 2M − Mα2

4n2
+

P 2
lab

4M
+
Mα2

4n2
P 2
lab

8M2
− P 4

lab

64M3
. (B.11)

The first two terms drop out in the thermal average, as they do not depend on the
momentum; the last two terms are suppressed with respect to P 2

lab/(4M) by E/M or
T/M . The first equality in eq. (B.10) follows from the Lorentz transformation Plab =
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γ(En)cmv, whose Jacobian is γ5(En)
3
cm, from (En)lab = γ(En)cm and (Γ)lab(Plab) =

(Γ)cm(v)/γ. Note that (En)cm is a constant that does not depend on the integration
variables.

As an application, we consider the thermal average of the annihilation widths com-
puted in eq. (5.29) and following. If we neglect thermal corrections affecting the annihi-
lation width in the center-of-mass frame (cf. chapter 6, footnote 16), then (Γann)cm is v
independent and factorizes outside the integral, leading to

⟨(Γann)lab⟩lab =

∫
|v|≤1

d3v γ4 e−
γ(En)cm

T∫
|v|≤1

d3v γ5 e−
γ(En)cm

T

(Γann)cm =
K1((En)cm/T )

K2((En)cm/T )
(Γann)cm

≈
(
1− 3T

2(En)cm

)
(Γann)cm . (B.12)

Finally, we summarize the steps that we followed in this work to compute consistently
thermal averages in the laboratory frame at first order in the center-of-mass momentum.

(i) Thermal averages of cross sections and decay widths in the laboratory frame are
defined as in eqs. (B.1) and (B.9), respectively.

(ii) Since matrix elements are most easily computed in the center-of-mass frame, see
for instance ref. [51], they are first boosted in the center-of-mass frame according to the
transformation formulas derived in appendix A.2. Then the relative momentum in the
center-of-mass frame is re-expressed in terms of the momentum in the laboratory frame
by means of the Lorentz transformation (A.19), as this is our integration variable. We
may follow the same procedure with the energy differences, or compute them directly in
the laboratory frame.

(iii) All expressions inside the thermal average integrals are expanded in powers of
P in accordance with the power counting. In particular, the Maxwell–Boltzmann dis-
tributions for scattering states entering the cross section thermal averages are expanded
as

e−
(E1)lab

T e−
(E2)lab

T = e−
2M
T e−

p2lab
MT e−

P 2
lab

4MT

(
1 +

P 2
labp

2
lab

8M3T
+

P 4
lab

64M3T
+

(Plab · plab)
2

4M3T
+ . . .

)
,

(B.13)
and the Maxwell–Boltzmann distribution for bound states entering the decay width
thermal averages is expanded as

e−
(En)lab

T = e−
2M
T e

Mα2

4n2T e−
P 2
lab

4MT

(
1− Mα2

4n2
P 2
lab

8M2T
+

P 4
lab

64M3T
+ . . .

)
, (B.14)

where we display only the relevant terms, i.e. those that depend on the center-of-mass
momentum and contribute to the thermal average at order T/M or E/M according to
the power counting Plab ∼ plab ∼

√
MT . Constant factors, like e−2M/T and eMα2/(4n2T ),

drop out in the thermal averages. Also the number densities in the denominators of the
thermal averages are expanded in powers of T/M or E/M up to first order.
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The integrals in (B.1) and (B.9) simplify a lot if we neglect the center-of-mass momen-
tum P in the integrands, and similarly omit the velocity dependence v in the observables
in (B.6) and (B.10). Then the cross sections times Møller velocities and widths, together
with their corresponding thermal averages, become equal in the two reference frames,
since the laboratory frame coincides with the center-of-mass frame for P = 0 = v. In
this case there is no need to thermally average the widths, since they do not depend on
any momentum and thus can be pulled out of the integrals. The result of those integrals
cancels between the numerator and denominator in each of the eqs. (B.9) and (B.10).
If we neglect P in the laboratory frame, or equivalently v in the center-of-mass frame,
then it follows that (vMøl)lab = (vMøl)cm ≡ vrel ≈ 2|p|/M . Hence, in the thermal average
the integral over P factorizes and cancels against the normalization. We are left with

⟨σvrel⟩ = 8
( π

MT

) 3
2

∫
d3p

(2π)3
e−

p2

MT σvrel(p)

=

√
2

π

(
M

2T

) 3
2
∫ ∞

0
dvrel v

2
rel e

−M
4T
v2rel σvrel(vrel) , (B.15)

where the last line applies only to rotationally invariant cross sections.
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Appendix C

General dipole matrix elements

C.1 General expressions in U(1)DM

The analytic expression for the dipole matrix element ⟨n|r|p⟩ in a (non-)abelian model
derived in ref. [51] in the center-of-mass frame holds for a coordinate system in which the
relative momentum p of the dark matter unbound pair is chosen along the z-direction.
In this work, we put the center-of-mass momentum P in the laboratory frame (or equiv-
alently the thermal bath velocity v in the center-of-mass frame) along the z-direction,
P = Pez. The relative distance and momentum in spherical coordinates are given
by r = (cosϕ sin θ, sinϕ sin θ, cos θ)r and p = (cosϕp sin θp, sinϕp sin θp, cos θp)p, respec-

tively. Moreover p =Mv
(0)
rel /2 and a0 = 2/(Mα), such that α/v

(0)
rel = (a0p)

−1.
The Coulomb wavefunction for a dark matter bound state |n⟩ ≡ |nℓm⟩ in U(1)DM,

with quantum numbers n, ℓ and m, reads

Ψnℓm(r) = ⟨r|nℓm⟩ = Rnℓ(r)Y
m
ℓ (Ωr) , (C.1)

with Y m
ℓ (Ωr) being the spherical harmonics

Y m
ℓ (θ, ϕ) = (−1)m

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pmℓ (cos θ)eimϕ , (C.2)

Pmℓ (x) = (1−x2)m/2 dm

dxmPℓ(x) the associated Legendre polynomials and the radial func-
tions given by

Rnℓ(r) =
1

(2ℓ+ 1)!

√(
2

na0

)3 (n+ ℓ)!

2n(n− ℓ− 1)!

×
(

2r

na0

)ℓ
e
− r
na0 1F1

(
ℓ+ 1− n, 2ℓ+ 2,

2r

na0

)
. (C.3)

The scattering wavefunction for a dark matter unbound state |p⟩ in U(1)DM, where p
points into an arbitrary direction, can be expanded into partial waves Ψpℓ(r) = ⟨r|pℓ⟩
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as

Ψp(r) =
∞∑
ℓ=0

Ψpℓ(r) =

√
2π/(a0p)

1− e−2π/(a0p)

∞∑
ℓ=0

iℓ
(2pr)ℓ

(2ℓ)!
Pℓ(er · ep)eipr

× 1F1

(
ℓ+ 1− i

a0p
, 2ℓ+ 2,−2ipr

) ℓ∏
κ=1

√
κ2 + (a0p)−2 , (C.4)

where er = r̂ = r/r and ep = p̂ = p/p are the radial unit vectors in spherical coordi-
nates, 1F1 (a, b, c) is the confluent hypergeometric function and Pℓ(x) are the Legendre
polynomials. It holds that

Pℓ(er · ep) =
4π

2ℓ+ 1

ℓ∑
m=−ℓ

Y m
ℓ (er)Y

m,∗
ℓ (ep)

= Pℓ(cos θ)Pℓ(cos θp) + 2

ℓ∑
m=1

(ℓ−m)!

(ℓ+m)!
Pmℓ (cos θ)Pmℓ (cos θp) cos (m(ϕ− ϕp)) . (C.5)

The computation of the electric dipole matrix element ⟨nℓm|r|p⟩ in the center-of-mass
frame, based on previous works in refs. [190,191], results in

⟨nℓm|r|p⟩ =
∑

ℓ′=ℓ±1,ℓ′≥0

∫
d3r rΨ∗

nℓm(r)Ψpℓ′(r)

= Nnℓm(p)X
1
nℓ(p)G

1
nℓ(p)

×
{
(ℓ+ 1)Pℓ+1(cos θp)

[
ℓ

(
δm,1 −

δm,−1

ℓ(ℓ+ 1)

)
ex − iℓ

(
δm,1 +

δm,−1

ℓ(ℓ+ 1)

)
ey + 2δm,0ez

]

+
ℓ+1∑
m′=1

(ℓ−m′ + 1)Pm
′

ℓ+1(cos θp)
[
(ℓ−m′)(Cxℓmm′ex − iCyℓmm′ey) + 2Czℓmm′ez

]
−

ℓ+1∑
m′=1

Pm
′

ℓ+1(cos θp)
[
C̃xℓmm′ex + iC̃yℓmm′ey

]}

+Nnℓm(p)X
2
nℓ(p)G

2
nℓ(p)×

{
ℓPℓ−1(cos θp)

×
[
−(ℓ+ 1)

(
δm,1 −

δm,−1

ℓ(ℓ+ 1)

)
ex + i(ℓ+ 1)

(
δm,1 +

δm,−1

ℓ(ℓ+ 1)

)
ey + 2δm,0ez

]
+

ℓ−1∑
m′=1

(ℓ+m′)Pm
′

ℓ−1(cos θp)
[
(ℓ+m′ + 1)(−Cxℓmm′ex + iCyℓmm′ey) + 2Czℓmm′ez

]
+

ℓ−1∑
m′=1

Pm
′

ℓ−1(cos θp)
[
C̃xℓmm′ex + iC̃yℓmm′ey

]}
, (C.6)

where ex, ey and ez are the unit vectors in Cartesian coordinates. Due to the selection
rule for electric-dipole transitions, only the partial waves ℓ′ = ℓ± 1 give a non-vanishing
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contribution. In (C.6), we have defined the following prefactors

Nnℓm(p) =
iℓ+32ℓ(−1)n−ℓ+m

(2ℓ+ 1)!

√(
2

na0

)3 (n+ ℓ)!

2n(n− ℓ− 1)!

(
2

na0

)ℓ√ 2π/(a0p)

1− e−2π/(a0p)

×
√

π

2ℓ+ 1

(ℓ−m)!

(ℓ+m)!

e
− 2
a0p

(1+i(ℓ+1−n)a0p) arctan (na0p)

pℓ (1 + (na0p)−2)ℓ
, (C.7)

X1
nℓ(p) =

ie−2i arctan (na0p)

p4 (1 + (na0p)−2)2

ℓ+1∏
κ=1

√
κ2 + (a0p)−2 , (C.8)

X2
nℓ(p) =

a0nℓ(2ℓ+ 1)

2p3 (1 + (na0p)−2)

ℓ−1∏
κ=1

√
κ2 + (a0p)−2 , (C.9)

whereas G1
nℓ(p) and G

2
nℓ(p) are combinations of hypergeometric functions, 2F1 (a, b, c, d),

G1
nℓ(p) = 2F1

(
ℓ+ 2− i

a0p
, ℓ+ 1− n, 2ℓ+ 2,

4ina0p

(1 + ina0p)
2

)
− e4i arctan (na0p)

2F1

(
ℓ− i

a0p
, ℓ+ 1− n, 2ℓ+ 2,

4ina0p

(1 + ina0p)
2

)
, (C.10)

G2
nℓ(p) = 2F1

(
ℓ− i

a0p
, ℓ+ 1− n, 2ℓ, 4ina0p

(1 + ina0p)
2

)
− e4i arctan (na0p)

2F1

(
ℓ− i

a0p
, ℓ− 1− n, 2ℓ, 4ina0p

(1 + ina0p)
2

)
. (C.11)

The constants C
x/y/z
ℓmm′ , C̃

x/y
ℓmm′ in (C.6) are defined as:

Cxℓmm′ = e−im
′ϕpδm′,m−1 + eim

′ϕpδm′,−(m+1)(−1)m
′+1 (ℓ−m′ − 1)!

(ℓ+m′ + 1)!
, (C.12)

Cyℓmm′ = e−im
′ϕpδm′,m−1 − eim

′ϕpδm′,−(m+1)(−1)m
′+1 (ℓ−m′ − 1)!

(ℓ+m′ + 1)!
, (C.13)

Czℓmm′ = e−im
′ϕpδm′,m + eim

′ϕpδm′,−m(−1)m
′ (ℓ−m′)!

(ℓ+m′)!
, (C.14)

C̃xℓmm′ = e−im
′ϕpδm′,m+1 + eim

′ϕpδm′,−(m−1)(−1)m
′−1 (ℓ−m′ + 1)!

(ℓ+m′ − 1)!
, (C.15)

C̃yℓmm′ = e−im
′ϕpδm′,m+1 − eim

′ϕpδm′,−(m−1)(−1)m
′−1 (ℓ−m′ + 1)!

(ℓ+m′ − 1)!
. (C.16)

Equation (C.6) reduces to the expression given in ref. [51] for polar angle θp = 0, which
corresponds to putting the relative momentum along the z-direction. Moreover, for the
particular case of nS-states, for which ℓ = m = 0, the squared matrix elements are

|⟨nS|r|p⟩|2 = |⟨nS|r|p = pez⟩|2 ,
|⟨nS|z|p⟩|2 = |⟨nS|r|p⟩|2 cos2 (θp) .

(C.17)
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For excited states with non-vanishing orbital angular momentum, it holds that

ℓ∑
m=−ℓ

|⟨nℓm|r|p⟩|2 =
ℓ∑

m=−ℓ
|⟨nℓm|r|p = pez⟩|2 . (C.18)

We provide some analytic expressions for the squared matrix elements in the center-of-
mass frame for the particular bound states 1S, 2S and 2P used in this work:

|⟨1S|r|p⟩|2 =
29π2a40

p(1 + (a0p)2)5
e
− 4
a0p

arctan(a0p)

1− e−
2π
a0p

, (C.19)

|⟨1S|z|p⟩|2 =
29π2a40

p(1 + (a0p)2)5
e
− 4
a0p

arctan(a0p)

1− e−
2π
a0p

cos2 (θp) , (C.20)

|⟨2S|r|p⟩|2 =
218π2a40

(
1 + (a0p)

2
)

p (1 + (2a0p)2)
6

e
− 4
a0p

arctan (2a0p)

1− e−
2π
a0p

, (C.21)

|⟨2S|z|p⟩|2 =
218π2a40

(
1 + (a0p)

2
)

p (1 + (2a0p)2)
6

e
− 4
a0p

arctan (2a0p)

1− e−
2π
a0p

cos2 (θp) , (C.22)

|⟨2Pm=0|r|p⟩|2 =
[
4(1 + (a0p)

−2)(3 cos2 (θp) + 1) + 1 + (2a0p)
−2

−4
√
1 + (a0p)−2

√
1 + (2a0p)−2(3 cos2 (θp)− 1)

]
× 24π2e

− 4
a0p

arctan (2a0p)

32a80p
13(1 + (2a0p)−2)7

(
1− e−

2π
a0p

) , (C.23)

|⟨2Pm=0|z|p⟩|2 =
(√

1 + (2a0p)−2 − 2
√
1 + (a0p)−2(3 cos2 (θp)− 1)

)2
× 24π2e

− 4
a0p

arctan (2a0p)

32a80p
13(1 + (2a0p)−2)7

(
1− e−

2π
a0p

) , (C.24)

|⟨2Pm=±1|r|p⟩|2 =

[
1

2
(1 + (a0p)

−2)(20− 12 cos2 (θp)) + 1 + (2a0p)
−2

−2
√
1 + (a0p)−2

√
1 + (2a0p)−2(1− 3 cos2 (θp))

]
× 24π2e

− 4
a0p

arctan (2a0p)

32a80p
13(1 + (2a0p)−2)7

(
1− e−

2π
a0p

) , (C.25)

|⟨2Pm=±1|z|p⟩|2 = 18 cos2 (θp) sin
2 (θp)

(
1 + (a0p)

−2
)

× 24π2e
− 4
a0p

arctan (2a0p)

32a80p
13(1 + (2a0p)−2)7

(
1− e−

2π
a0p

) . (C.26)

Next we consider the quantum-mechanical matrix element ⟨nℓm|r|n′ℓ′m′⟩ between two
bound states with quantum numbers n and n′. Its solution in the center-of-mass frame
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reads [51]

⟨nℓm|r|n′ℓ′m′⟩ =
∫
d3r rΨ∗

nℓm(r)Ψn′ℓ′m′(r)

= N
{
− δℓ,ℓ′−1

√
(n′ + ℓ+ 1)!

(n′ − ℓ− 2)!

√
1

4π(2ℓ+ 3)

×
[√

(ℓ+m)!

(ℓ−m+ 2)!
(ℓ−m+ 1)(ℓ−m+ 2)δm,m′+1(−ex + iey)

+

√
(ℓ+m+ 2)!

(ℓ−m)!
δm,m′−1(ex + iey) + 2

√
(ℓ+m+ 1)!

(ℓ−m+ 1)!
(ℓ−m+ 1)δm,m′ez

]
G1

+ δℓ,ℓ′+1nn
′

√
(n′ + ℓ− 1)!

(n′ − ℓ)!

√
2ℓ− 1

4π

(2ℓ+ 1)ℓ

2(2ℓ− 1)

×
[√

(ℓ+m− 2)!

(ℓ−m)!
(ℓ+m− 1)(ℓ+m)δm,m′+1(ex − iey)

+

√
(ℓ+m)!

(ℓ−m− 2)!
δm,m′−1(−ex − iey) + 2

√
(ℓ+m− 1)!

(ℓ−m− 1)!
(ℓ+m)δm,m′ez

]
G2
}
,

(C.27)
where

N =
(−1)n′−ℓ

Mα

22ℓ+4π

2ℓ+ 1

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!

(
n− n′
n+ n′

)n+n′

×
√

(n+ ℓ)!

(n− ℓ− 1)!

1

(2ℓ+ 1)!

nℓn′ℓ

(n− n′)2ℓ+2
, (C.28)

G1 = n2n′2

2F1

(
ℓ+ 2− n′, ℓ+ 1− n, 2ℓ+ 2,− 4n′n

(n′−n)2

)
(n− n′)2

−
2F1

(
ℓ− n′, ℓ+ 1− n, 2ℓ+ 2,− 4n′n

(n′−n)2

)
(n+ n′)2

 , (C.29)

G2 =

[
2F1

(
ℓ+ 1− n, ℓ− n′, 2ℓ,− 4n′n

(n′ − n)2
)

−
(
n− n′
n+ n′

)2

2F1

(
ℓ− 1− n, ℓ− n′, 2ℓ,− 4n′n

(n′ − n)2
)]

. (C.30)

As a special example, the transition matrix element squared between the ground state
and the excited 2P state, which is used in this work, is

|⟨1S|r|2Pm=0⟩|2 = |⟨1S|r|2Pm=±1⟩|2 =
217

310
1

M2α2
. (C.31)
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We finally provide an analytical formula for the electric dipole matrix element between
an incoming and outgoing scattering state entering the elastic scattering processes among
unbound DM pairs. We rotate the coordinate system such that the relative momentum

p =Mv
(0)
rel /2 of the incoming scattering state is oriented along the z-direction. Then the

outcoming relative momentum p′ of the unbound pair in the final state can be written as

p′ = (cos (ϕp′) sin (θp′), sin (ϕp′) sin (θp′), cos (θp′))Mv
′(0)
rel /2. The matrix element ⟨p|r|p′⟩

reads1

⟨p|r|p′⟩ =
∫
d3r rΨ∗

p(r)Ψp′(r)

=M
∞∑
ℓ=0

Aℓ
{
ℓ+ 1

2ℓ+ 1

√
(ℓ+ 1)2 + (α/v′rel)

2

×
[
Pℓ+1(cos (θp′))ez +

P 1
ℓ+1(cos (θp′))

ℓ+ 1

[
cos (ϕp′)ex + sin (ϕp′)ey

]]( 2

v′rel + vrel

)2

X1

− 2ℓ2

v′relvrel
√
ℓ2 + (α/v′rel)

2

×
[
Pℓ−1(cos (θp′))ez +

1

ℓ
P 1
ℓ−1(cos (θp′))

[
cos (ϕp′)ex + sin (ϕp′)ey

]]
X2

}
,

(C.32)
with

M =

√
2πα/vrel

1− e−2πα/vrel

√
2πα/v′rel

1− e−2πα/v′rel
e
−π

2
α

(
1
v′
rel

+ 1
vrel

)

×e
π
2
α

∣∣∣∣ 1
v′
rel

− 1
vrel

∣∣∣∣ ∣∣∣∣v′rel + vrel
v′rel − vrel

∣∣∣∣iα
(

1
v′
rel

− 1
vrel

)
, (C.33)

Aℓ =
22ℓ+4π

M4(2ℓ)!

v′ℓrelv
ℓ
rel

(v′rel + vrel)2ℓ+2

ℓ∏
κ=1

√
κ2 + (α/vrel)2

ℓ∏
κ′=1

√
κ′2 + (α/v′rel)

2 , (C.34)

and

X1 = 2F1

(
ℓ+ 2− i α

v′rel
, ℓ+ 1 + i

α

vrel
, 2ℓ+ 2,

4v′relvrel
(v′rel + vrel)2

)
−
(
v′rel + vrel
v′rel − vrel

)2

2F1

(
ℓ− i α

v′rel
, ℓ+ 1 + i

α

vrel
, 2ℓ+ 2,

4v′relvrel
(v′rel + vrel)2

)
,

(C.35)

X2 = 2F1

(
ℓ+ 1 + i

α

vrel
, ℓ− i α

v′rel
, 2ℓ,

4v′relvrel
(v′rel + vrel)2

)
−
(
v′rel + vrel
v′rel − vrel

)2

2F1

(
ℓ− 1 + i

α

vrel
, ℓ− i α

v′rel
, 2ℓ,

4v′relvrel
(v′rel + vrel)2

)
.

(C.36)

1We abbreviate v
(0)
rel ≡ vrel and v

′(0)
rel ≡ v

′
rel in order to simplify the notation in the final result.
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C.2 General expressions in SU(N)DM

The dipole matrix element in a non-abelian SU(N) model in the center-of-mass frame,
⟨nℓm|r|p⟩[adj], where |nℓm⟩ is the bound state of a color-singlet dark matter pair,2 and

|p⟩[adj] is the color-adjoint state with arbitrary relative momentum vector p =Mv
(0)
rel /2,

has the same analytic structure as the abelian equivalent in (C.6); they only differ in
the factors Nnℓm(p), X

1,2
nℓ (p) and G

1,2
nℓ (p), which now read

N
SU(N)

nℓm (p) =
iℓ+32ℓ(−1)n−ℓ+m

(2ℓ+ 1)!

√(
2

na0

)3 (n+ ℓ)!

2n(n− ℓ− 1)!

√
2π/((N2 − 1)a0p)

e
2π

(N2−1)a0p − 1

×
(

2

na0

)ℓ√ π

2ℓ+ 1

(ℓ−m)!

(ℓ+m)!

e
2

(N2−1)a0p
[1−i(ℓ+1−n)(N2−1)a0p] arctan (na0p)

pℓ (1 + (na0p)−2)ℓ
, (C.37)

X
1,SU(N)

nℓ (p) =
ie−2i arctan (na0p)

p4 (1 + (na0p)−2)2

ℓ+1∏
κ=1

√
κ2 + ((N2 − 1)a0p)−2 , (C.38)

X
2,SU(N)

nℓ (p) =
a0nℓ(2ℓ+ 1)

2p3 (1 + (na0p)−2)

ℓ−1∏
κ=1

√
κ2 + ((N2 − 1)a0p)−2 , (C.39)

and

G
1,SU(N)

nℓ (p)

=

(
1 +

iN

2CFa0p

)
2F1

(
ℓ+ 2 +

i

(N2 − 1)a0p
, ℓ+ 1− n, 2ℓ+ 2,

4ina0p

(1 + ina0p)
2

)
− iN

CFa0p
e2i arctan (na0p)

2F1

(
ℓ+ 1 +

i

(N2 − 1)a0p
, ℓ+ 1− n, 2ℓ+ 2,

4ina0p

(1 + ina0p)
2

)
−
(
1− iN

2CFa0p

)
e4i arctan (na0p)

× 2F1

(
ℓ+

i

(N2 − 1)a0p
, ℓ+ 1− n, 2ℓ+ 2,

4ina0p

(1 + ina0p)
2

)
,

(C.40)

G
2,SU(N)

nℓ (p)

=

(
1− Nn

2CF

)
2F1

(
ℓ+

i

(N2 − 1)a0p
, ℓ+ 1− n, 2ℓ, 4ina0p

(1 + ina0p)
2

)
+N

n

CF
e2i arctan (na0p)

2F1

(
ℓ+

i

(N2 − 1)a0p
, ℓ− n, 2ℓ, 4ina0p

(1 + ina0p)
2

)
−
(
1 +

Nn

2CF

)
e4i arctan (na0p)

2F1

(
ℓ+

i

(N2 − 1)a0p
, ℓ− 1− n, 2ℓ, 4ina0p

(1 + ina0p)
2

)
,

(C.41)

2The color-singlet bound-state wavefunction in SU(N) has exactly the same analytic expression as
the abelian analogue in (C.1)–(C.3), except the replacement α→ CFα.
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with a0 = 2/(CFMα). As a special case, in ref. [51] we provide an analytic expression
for the dipole matrix element that holds for a coordinate system in which the relative
momentum p of the dark matter pair in a color-adjoint state is chosen along the z-
direction. The squared matrix element for the ground state is

|⟨1S|r|p⟩[adj]|2 = π2

M5

211C3
Fα

6

Nv11rel

(2CF +N)2[
1 +

(
CFα
vrel

)2]6
[
1 +

(
1

2N

α

vrel

)2
]
e

2α
Nvrel

arccot
(
CF α

vrel

)
e
π
N

α
vrel − 1

,

(C.42)
which is in agreement with the result in ref. [50].

We complete the list by providing the analytic results for the scattering-state to
scattering-state transitions corresponding to thermal absorption and bremsstrahlung
processes, which in non-abelian theories are twofold. Those processes can happen be-
tween color-singlet, |p⟩[1], and color-adjoint scattering states,3 but in addition there
are also transitions among color-adjoint configurations only. For color-adjoint to color-
adjoint transitions, the dipole matrix element [adj]⟨p|r|p′⟩[adj] in the center-of-mass
frame, where p points along the z-direction, is simply eq. (C.32) with α → −α/(2N),
whereas for the color-singlet to color-adjoint transitions it is

[adj]⟨p|r|p′⟩[1] =
∫
d3r rΨ

∗[adj]
p (r)Ψ

[1]
p′ (r)

=MSU(N)

∞∑
ℓ=0

ASU(N)

ℓ

{
ℓ+ 1

2ℓ+ 1

√
(ℓ+ 1)2 + (CFα/v′rel)

2

×
[
Pℓ+1(cos (θp′))ez +

P 1
ℓ+1(cos (θp′))

ℓ+ 1

[
cos (ϕp′)ex + sin (ϕp′)ey

]]( 2

v′rel + vrel

)2

X SU(N)
1

− 2ℓ2

v′relvrel
√
ℓ2 + (CFα/v′rel)

2

×
[
Pℓ−1(cos (θp′))ez +

1

ℓ
P 1
ℓ−1(cos (θp′))

[
cos (ϕp′)ex + sin (ϕp′)ey

]]
X SU(N)
2

}
,

(C.43)

3The color-singlet scattering-state wavefunction in SU(N) equals the abelian version in (C.4), except
the replacement α→ CFα. The color-adjoint wavefunction can be inferred from (C.4) by replacing the
coupling α→ −α/(2N), and reads

Ψ[adj]
p (r) =

∞∑
ℓ=0

Ψ
[adj]
pℓ (r) =

√
πα/(Nvrel)

eπα/(Nvrel) − 1

∞∑
ℓ=0

iℓ
(2pr)ℓ

(2ℓ)!
Pℓ(er · ep)eipr

× 1F1

(
ℓ+ 1 + i

α

2Nvrel
, 2ℓ+ 2,−2ipr

) ℓ∏
κ=1

√
κ2 +

(
α

2Nvrel

)2

.
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with

MSU(N) =

√
2πCFα/v′rel
1− e−2πα/v′rel

√
πα/(Nvrel)

eπα/(Nvrel) − 1
e
−π

2
α

(
CF
v′
rel

− 1
2Nvrel

)

×e
−π

2
α

(
CF
v′
rel

+ 1
2Nvrel

)
sign (v′rel−vrel)

∣∣∣∣v′rel + vrel
v′rel − vrel

∣∣∣∣iα
(
CF
v′
rel

+ 1
2Nvrel

)
, (C.44)

ASU(N)

ℓ =
22ℓ+4π

M4(2ℓ)!

v′ℓrelv
ℓ
rel

(v′rel + vrel)2ℓ+2

ℓ∏
s=1

√
s2 + (α/(2Nvrel))2

ℓ∏
s′=1

√
s′2 + (CFα/v′rel)

2 ,

(C.45)
and

X SU(N)
1

=

(
1− i Nα

2v′rel

)
2F1

(
ℓ+ 2− iCFα

v′rel
, ℓ+ 1− i α

2Nvrel
, 2ℓ+ 2,

4v′relvrel
(v′rel + vrel)2

)
−iNα

v′rel

v′rel + vrel
v′rel − vrel

2F1

(
ℓ+ 1− iCFα

v′rel
, ℓ+ 1− i α

2Nvrel
, 2ℓ+ 2,

4v′relvrel
(v′rel + vrel)2

)
−
(
1 + i

Nα

2v′rel

)(
v′rel + vrel
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)2

× 2F1

(
ℓ− iCFα

v′rel
, ℓ+ 1− i α

2Nvrel
, 2ℓ+ 2,

4v′relvrel
(v′rel + vrel)2

)
, (C.46)

X SU(N)
2

=

(
1− i Nα

2vrel

)
2F1

(
ℓ+ 1− i α

2Nvrel
, ℓ− iCFα

v′rel
, 2ℓ,

4v′relvrel
(v′rel + vrel)2

)
+i
Nα

vrel

v′rel + vrel
v′rel − vrel

2F1

(
ℓ− i α

2Nvrel
, ℓ− iCFα

v′rel
, 2ℓ,

4v′relvrel
(v′rel + vrel)2

)
−
(
1 + i

Nα

2vrel

)(
v′rel + vrel
v′rel − vrel

)2

× 2F1

(
ℓ− 1− i α

2Nvrel
, ℓ− iCFα

v′rel
, 2ℓ,

4v′relvrel
(v′rel + vrel)2

)
. (C.47)

We recall that bound-state to bound-state and scattering-state to scattering-state transi-
tions among color-singlet configurations cannot happen due to the non-abelian nature of
the gauge fields. Moreover, we remind that in the abelian and non-abelian bound-state
and scattering-state wavefunctions as well as in all the dipole matrix elements listed in
this section and in section C.1, the natural renormalization scale of the coupling α is µs,
which is of the order of the soft scale.
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C.3 Continuum dipole matrix element: collinear diver-
gence

The resulting abelian scattering-state to scattering-state transition matrix element in
(C.32) turns out to behave singular in the limit of vanishing incoming or outgoing relative
velocity vrel, v

′
rel → 0, the infrared divergences, but also if the absolute values of the

relative velocities approach each other, i.e. v′rel → vrel, called collinear divergence (also
referred to as the diagonal singularity [192–196]). The infrared singularity for vanishing
v′rel does not pose a problem, since it cancels out once the squared matrix element
multiplies the rest of the integrand in the cross sections (6.110) and (6.111). Also the
other infrared divergence, vrel → 0, is cured once we thermally average the cross sections,
since only those quantities enter in the evolution equations, cf. (7.1)–(7.3).4

The collinear singularity, however, still persists and on the first sight it is not clear
how it can be removed. In fact, this peculiar divergence in the continuum dipole matrix
element seems to be an artifact coming from the multipole expansion of the gauge fields in
the center-of-mass frame of the heavy DM pair and, according to ref. [197], even exists in
all higher mulipole matrix elements.5 We build our analysis of this particular singularity
on refs. [192, 193], and extract the divergence using proper analytical regularization
techniques.

We reconsider the first line in eq. (C.32), which contains an integral over the scat-

tering state wavefunctions Ψp(r) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓRp,ℓ(r)Y
m
ℓ (r̂)Y m

ℓ (p̂), with the real radial

partial wavefunction Rp,ℓ(r) that can be inferred from (C.4).6 Once the angular inte-

4Notice that possible contributions coming from taking the limits vrel, v
′
rel →∞, though not physically

of interest since the underlying (p)NREFTs developed in this work are inherently valid only for non-
relativistic DM particles, are always exponentially suppressed due to the statistical distribution functions.

5To be more precise, in [197] the authors claim that after multipole expanding the gauge fields A(R)
in powers of small relative distances over large wavelengths, r/R ≪ 1, the collinear divergence arises
once the center-of-mass position dependence R of the gauge fields is put to zero, i.e. A(0). Hence it
would be desirable to check quantitatively if the diagonal divergence is absent in a general reference
frame, where R ̸= 0.

6Rp,ℓ ⊃ eipr 1F1

(
ℓ+ 1− i

a0p
, 2ℓ+ 2,−2ipr

)
, omitting the real prefactor, can be shown to be real by

using the Cauchy product

(
∞∑
n=0

αnx
n

)(
∞∑
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βnx
n

)
=

∞∑
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(

n∑
k=0
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)
, with x = −2ipr:
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i
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)
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∞∑
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(n) (2ipr)n

(2ℓ+ 2)(n)n!

= eipr
(

∞∑
n=0

(−2ipr)n

n!
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∞∑
n=0
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(−2ipr)n

)

= eipr
∞∑
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n∑
k=0

(ℓ+ 1 + i/(a0p))
(k) (−1)k

(2ℓ+ 2)(k)k! (n− k)!

)
= eipr

∞∑
n=0

(−2ipr)n (2ℓ+ 1)! (ℓ+ n− i/(a0p))!
(ℓ− i/(a0p))! n! (2ℓ+ n+ 1)!

= eipr 1F1

(
ℓ+ 1− i

a0p
, 2ℓ+ 2,−2ipr

)
.
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gration has been done, it can be written as follows:

⟨p|r|p′⟩ =
∫
d3r rΨ∗

p(r)Ψp′(r)

= 2π2i

∞∑
ℓ=0

{
(ℓ+ 1)

×
[
Pℓ+1(cos (θp′))ez +

P 1
ℓ+1(cos (θp′))

ℓ+ 1

[
cos (ϕp′)ex + sin (ϕp′)ey

]]
M

ℓ,(+)
p,p′

+ ℓ

[
Pℓ−1(cos (θp′))ez +

1

ℓ
P 1
ℓ−1(cos (θp′))

[
cos (ϕp′)ex + sin (ϕp′)ey

]]
M

ℓ,(−)
p,p′

}
,

(C.48)
where the radial integrals are comprised in

M
ℓ,(+)
p,p′ = CℓpCℓ+1

p′ lim
ϵ→0+

∫ ∞

0
dr e−ϵrr2ℓ+4eir(p+p

′)
1F1

(
ℓ+ 1− i

a0p
, 2ℓ+ 2,−2ipr

)
× 1F1

(
ℓ+ 2− i

a0p′
, 2ℓ+ 4,−2ip′r

)
, (C.49)

M
ℓ,(−)
p,p′ = CℓpCℓ−1

p′ lim
ϵ→0+

∫ ∞

0
dr e−ϵrr2ℓ+2eir(p+p

′)
1F1

(
ℓ+ 1− i

a0p
, 2ℓ+ 2,−2ipr

)
× 1F1

(
ℓ− i

a0p′
, 2ℓ,−2ip′r

)
, (C.50)

where we introduced a dimensionfull regulator ϵ and7

Cℓp =
2ℓ+1

(2ℓ+ 1)!

pℓ(a0p)
−1/2√

1− e−2π/(a0p)

ℓ∏
s=1

√
s2 + (a0p)−2 . (C.51)

In the following, we focus on (C.49), which can be written as8

M
ℓ,(+)
p,p′ =

∣∣∣∣ℓ+ 1 +
i

a0p

∣∣∣∣ (2π)3p3
δ(p− p′)

+
(2ℓ+ 2)(2ℓ+ 3)

(2ip′)2
CℓpCℓ+1

p′ lim
ϵ→0+

∫ ∞

0
dr e−ϵrr2ℓ+2eir(p+p

′)
1F1

(
ℓ+ 1− i

a0p
, 2ℓ+ 2,−2ipr

)
×
[
1F1

(
ℓ+ 2− i

a0p′
, 2ℓ+ 2,−2ip′r

)
+ 1F1

(
ℓ− i

a0p′
, 2ℓ+ 2,−2ip′r

)]
. (C.52)

7Notice that Cℓ+1
p = Cℓp

2p
√

(ℓ+1)2+(a0p)−2

(2ℓ+2)(2ℓ+3)
and Cℓ−1

p = Cℓp 2ℓ(2ℓ+1)

2p
√
ℓ2+(a0p)−2

.

8Hereby we use two-times the recurrence relation 1F1 (a, b+ 1, z) = b
z
[1F1 (a, b, z) − 1F1 (a− 1, b, z)]

and the orthogonality relation
∞∫
0

dr r2Rp,ℓ(r)Rp′,ℓ(r) =
(2π)3

p2
δ(p− p′).
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Following the notation in ref. [193], we define [198]

Iϵ(s, a, a′) ≡
∫ ∞

0
dr e−ϵrr2ℓ+1e−sr 1F1 (a, 2ℓ+ 2,−2ipr) 1F1

(
a′, 2ℓ+ 2,−2ip′r

)
=

Γ(2ℓ+ 2)(ϵ+ s)a+a
′−(2ℓ+2)

(ϵ+ s+ 2ip)−a(ϵ+ s+ 2ip′)−a′
2F1

(
a, a′, 2ℓ+ 2,

−4pp′
(ϵ+ s+ 2ip)(ϵ+ s+ 2ip′)

)
, (C.53)

where s ≡ −i(p + p′) and the result of the integral in the second line can be found for
example in [199]. Then

Jϵ(s, a, a′) ≡
∫ ∞

0
dr e−ϵrr2ℓ+2e−sr 1F1 (a, 2ℓ+ 2,−2ipr) 1F1

(
a′, 2ℓ+ 2,−2ip′r

)
= − ∂

∂s
Iϵ(s, a, a′) =

1

ϵ+ s

(
2ℓ+ 2− 2iap

ϵ+ s+ 2ip
− 2ia′p′

ϵ+ s+ 2ip′

)
Iϵ(s, a, a′) . (C.54)

In the collinear limit of the incoming and outgoing momenta, p′ → p, we expand the
Gaussian hypergeometric function and obtain9

Jϵ
(
−i(p+ p′), ℓ+ 1− i

a0p
, ℓ+ 2− i

a0p′

)

=
(ϵ+ i(p′ − p))−2− i

a0
( 1
p
− 1
p′ )(ϵ− i(p+ p′))

1− i
a0

( 1
p
+ 1
p′ )

(4pp′)ℓ+1−i/(a0p)

Γ
(
1− i

a0

(
1
p′ − 1

p

))
Γ(2ℓ+ 2)2

Γ
(
ℓ+ 2− i

a0p′

)
Γ
(
ℓ+ 1 + i

a0p

)
+
(ϵ+ i(p− p′))1+

i
a0

( 1
p
− 1
p′ )(ϵ− i(p+ p′))

1− i
a0

( 1
p
+ 1
p′ )

(4pp′)ℓ+2−i/(a0p′)(ϵ+ i(p′ − p))
Γ
(
−1− i

a0

(
1
p − 1

p′

))
Γ(2ℓ+ 2)2

Γ
(
ℓ+ 1− i

a0p

)
Γ
(
ℓ+ i

a0p′

) ,

(C.55)

and

Jϵ
(
−i(p+ p′), ℓ+ 1− i

a0p
, ℓ− i

a0p′

)

=
(ϵ− i(p′ − p))−2+ i

a0
( 1
p
− 1
p′ )(ϵ− i(p+ p′))

−1− i
a0

( 1
p
+ 1
p′ )

(4pp′)ℓ−i/(a0p′)

Γ
(
1 + i

a0

(
1
p′ − 1

p

))
Γ(2ℓ+ 2)2

Γ
(
ℓ+ 1− i

a0p

)
Γ
(
ℓ+ 2 + i

a0p′

)
+
(ϵ+ i(p′ − p))1−

i
a0

( 1
p
− 1
p′ )(ϵ− i(p+ p′))

−1− i
a0

( 1
p
+ 1
p′ )

(4pp′)ℓ+1−i/(a0p)(ϵ− i(p′ − p))
Γ
(
−1 + i

a0

(
1
p − 1

p′

))
Γ(2ℓ+ 2)2

Γ
(
ℓ+ 1 + i

a0p

)
Γ
(
ℓ− i

a0p′

) .

(C.56)

9In the limit z →∞ it holds that

2F1

(
a, a′, 2ℓ+ 2, z

)
→ 1

(−z)a
Γ(a′ − a)Γ(2ℓ+ 2)

Γ(a′)Γ(2ℓ+ 2− a) +
1

(−z)a′
Γ(a− a′)Γ(2ℓ+ 2)

Γ(a)Γ(2ℓ+ 2− a′) .
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Finally, taking the limit ϵ→ 0, we can extract the collinear singularity from eq. (C.52),
which reads

M
ℓ,(+)
p,p′

∣∣∣∣
p′→p

=

∣∣∣∣ℓ+ 1 +
i

a0p

∣∣∣∣ (2π)3p3
δ(p′ − p) + lim

ϵ→0+

(2ℓ+ 2)(2ℓ+ 3)

(2ip′)2
CℓpCℓ+1

p′

×
[
Jϵ
(
−i(p+ p′), ℓ+ 1− i

a0p
, ℓ+ 2− i

a0p′

)
+ Jϵ

(
−i(p+ p′), ℓ+ 1− i

a0p
, ℓ− i

a0p′

)]∣∣∣∣
p′→p

=

∣∣∣∣ℓ+ 1 +
i

a0p

∣∣∣∣ (2π)3p3
δ(p′ − p)

+

{
(2π)2

p2

ℓ+ 1 + i
a0p∣∣∣ℓ+ 1 + i
a0p

∣∣∣ i

(ϵ+ i(p′ − p))2
[
1− i

a0p2
(p′ − p) log

(
ϵ̃+ i(v′rel − vrel)

)
+
p′ − p
p

[
i

a0p
log (2vrel)−

i

a0p
γE −

3

2

− i

2a0p

(
Ψ0

(
ℓ+ 1− i

a0p

)
+Ψ0

(
ℓ+ 1 +

i

a0p

)
+2(ℓ+ 1)

∣∣∣∣ℓ+ 1 +
i

a0p

∣∣∣∣−2)]]
+ c.c.

}

−
{
π2a0
p2

i

ϵ+ i(p′ − p)

(
ℓ+

i

a0p

) ∣∣∣∣ℓ+ 1 +
i

a0p

∣∣∣∣+ c.c.

}
, (C.57)

where ϵ ≡Mϵ̃/2 and, as a reminder, p =Mvrel/2 and p′ =Mv′rel/2. One can factor out
the collinear singularity from (C.50) in a similar way, and we obtain

M
ℓ,(−)
p,p′

∣∣∣∣
p′→p

=

∣∣∣∣ℓ+ i

a0p

∣∣∣∣ (2π)3p3
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−
{
(2π)2

p2

ℓ− i
a0p∣∣∣ℓ− i
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∣∣∣ i

(ϵ+ i(p′ − p))2
[
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a0p2
(p′ − p) log

(
ϵ̃+ i(v′rel − vrel)

)
+
p′ − p
p

[
i

a0p
log (2vrel)−

i

a0p
γE −

1

2

− i

2a0p

(
Ψ0

(
ℓ− i

a0p

)
+Ψ0

(
ℓ+

i

a0p

))]]
+ c.c.

}

+

{
π2a0
p2

i

ϵ+ i(p′ − p)

(
ℓ− 1− i

a0p

) ∣∣∣∣ℓ+ i

a0p

∣∣∣∣+ c.c.

}
. (C.58)

First of all, we notice that the divergence appears in a distributional sense in terms of a
delta function and its derivative, since

1

(ϵ+ i(p′ − p))2 = − 1

((p′ − p)− iϵ)2 = −P
[

1

(p′ − p)2
]
+ iπδ′(p′ − p) . (C.59)
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Second, we observe a deviation of the results (C.57) and (C.58) compared to those found
in ref. [193], namely a mismatch in the constant terms −3/2 (−1/2) in the fifth (third)
line of (C.57) ((C.58)) compared to the analogous expressions in [193], but also the
terms in the last line of each (C.57) and (C.58) are missing in [193]. Hence it remains to
be checked, by how much those missing terms contribute to the overall integral result.
Third, the results derived so far can be also directly used for color-adjoint to color-adjoint
transitions in non-abelian gauge theories, cf. section C.2, by replacing α→ −α/(2N) in
the Bohr radius a0 = 2/(Mα), that enters at several places in (C.57) and (C.58). Finally,
we do not write explicitly the result for the collinear singularity in the color-singlet to
color-adjoint continuum dipole matrix element, cf. eq. (C.43), since it shares a similar
structure as (C.57) and (C.58) with the same kind of divergence in terms of the Dirac
delta function and its first derivative.
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Appendix D

Thermal field theory: real-time
formalism

This section is devoted to the cataloguing of the various two-point functions of the
bosonic DM heavy pair and gauge fields as well as the fermionic fields of the dark light
particles and, in addition, the computation of the radiative self-energy corrections of the
dark photon propagator at zero and finite temperature for different hierarchies of energy
scales, that are the basic ingredients used for the calculation of the interaction rates
throughout this work. For a general introduction to quantum field theories (QFTs) at
finite temperature, especially an extensive treatment of the fundamentals of the imag-
inary time formalism (also referred to as the Matsubara formalism) and the real-time
formalism, we direct the reader to appropriate literature such as the following review
papers [56,200], or well-established textbooks (e.g. [201,202]). The basic idea is to make
a close connection between the principles of statistical mechanics and QFTs, due to the
interpretation of the Boltzmann factor e−H/T , where H is the Hamiltonian operator of
the whole quantum system in a canonical ensemble, as a time evolution operator e−iHt,
i.e. by relating temperature with imaginary time, t = −i/T .1 This work is based on the
real-time formalism, where the expectation value of an observable A,

⟨A⟩ = Tr
[
Ae−H/T

]
Tr
[
e−H/T

] , (D.1)

is evaluated on the complex Schwinger-Keldysh contour [203,204], cf. figure D.1, starting
from an initial time ti along the path C1 to tf , then along C2 back to ti − iϵ, where it
finally evolves on an imaginary time axis to the final time ti− iT , because of the product
of A and e−H/T within the trace in (D.1).2

1The Boltzmann factor equals the density operator of the full system in a canonical ensemble, ρ =
e−H/T , that solves the von-Neumann equation ∂

∂t
ρ = −i [H, ρ] with the solution ρ(t) = e−iHtρ(0)eiHt.

2In general, evaluating matrix elements ⟨Ψ|A|Ψ⟩ in QFTs, like in eq. (D.1), with the same state |Ψ⟩
at equal times on the left and on the right of an operator A, goes under the name of the in-in formalism
suited for thermal out-of-equilibrium processes, as opposed to the in-out (S-matrix) formalism used for
in-vacuum scattering processes in QFTs at zero T .
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Figure D.1: Schwinger-Keldysh contour in the complex time-plane in the real-time for-
malism. According to the contour ordering ti → tf → ti− i/T , time points on the lower
branch C2 are always after those on the upper branch C1.

D.1 Greens functions on the Schwinger-Keldysh contour

In the real-time formalism, we evolve the system along the Schwinger-Keldysh contour,
cf. figure D.1, which leads to a doubling of the degrees of freedom, since the quantum
fields can live either on the upper time-ordered branch C1, corresponding to the physical
time axis, or on the lower anti-time ordered branch C2. We denote accordingly the fields
on the upper branch with a subscript 1, which are the physical fields, and the ones
on the lower branch with a subscript 2, which are unphysical and can only enter via
internal propagators within any Feynman diagram under consideration.3 In the real-
time formalism, the general procedure to determine and draw all Feynman diagrams
is to assign all external lines to be of type 1, i.e. to consist only of fields of type 1,
whereas the internal lines can be of type 1 or 2, and one needs to sum over all possible
combinations of those assignments. Also the vertices can be either of type 1 or 2, where
the type-1 vertices are those related to the familiar vertices in QFTs at zero temperature.
The type-2 vertices differ by an additional negative sign.

Due to the doubling of the fields, there are four different kinds of two-point functions
that can be constructed. In momentum space, the dark photon two-point function can
be written in a matrix form as

Dµν(q) =

(
D11
µν(q) D12

µν(q)

D21
µν(q) D22

µν(q)

)
=

(
DT
µν(q) D<

µν(q)

D>
µν(q) (DT

µν(q))
∗

)
, (D.2)

where D11
µν(q) is the time-ordered two-point function, D22

µν(q) the anti-time-ordered two-
point function and the off-diagonal elements are the Wightman functions, with mixed
fields of each type 1 and 2 in the CTP-index space, that in case of a system in thermal
equilibrium satisfy the KMS-relation

D<
µν(q) = e−q0/TD>

µν(q) . (D.3)

3The additional subscript (1 or 2) on the fields in order to distinguish the two different time branches
C1 and C2 to which the fields can belong to, is sometimes referred to as the CTP-index (CTP = Closed-
time-path). The Schwinger-Keldysh formalism is also known as the closed-time-path formalism.
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In the abelian theory,4 the free (i.e. at leading order, superscript LO) thermal propagator
in Coulomb gauge reads5

DLO
00 (|q|) =


i

q2
0

0
−i
q2

 , (D.4)

DLO
ij (q) =

(
δij −

qiqj
|q|2

)


i

q2 + iϵ
Θ(−q0)2πδ(q2)

Θ(q0)2πδ(q
2)

−i
q2 − iϵ


+2πδ(q2)nB(|q0|)

(
1 1
1 1

)]
, (D.5)

where nB(E) = 1/(eE/T − 1) is the Bose–Einstein distribution. In Coulomb-gauge it
holds that D0i(q) = Di0(q) = 0. The 21- and time-ordered two-point functions, that
are used in this work to determine the rates like the bsf cross section or the bsf width,
can be derived from the retarded and advanced two-point functions DR

µν(q) and D
A
µν(q),

respectively, via

D>
µν(q) = [1 + nB(q0)][D

R
µν(q)−DA

µν(q)]

= 2[1 + nB(q0)]Re[D
R
µν(q)]

∣∣
q0>0

, (D.6)

D11
µν(q) = DR

µν(q) +D<
µν(q) = DA

µν(q) +D>
µν(q)

=
DR
µν(q) +DA

µν(q)

2
+

[
1

2
+ nB(q0)

]
[DR

µν(q)−DA
µν(q)]

=
1

2
[DR

µν(q) +DA
µν(q) +DS

µν(q)] . (D.7)

where in the last line we split the terms into a sum of symmetric, DS
µν(q), and anti-

symmetric, DAS
µν (q) = DR

µν(q) +DA
µν(q), functions which are real and imaginary, respec-

tively. The retarded and advanced free propagators in Coulomb gauge are

D
R/A
00,LO(|q|) =

i

q2
, (D.8)

D
R/A
ij,LO(q) =

(
δij −

qiqj
q2

)
i

(q0 ± iϵ)2 − q2
=

(
δij −

qiqj
q2

)
i

q2 ± i sign(q0)ϵ

≡
(
δij −

qiqj
q2

)
∆
R/A
LO (q) . (D.9)

4In the SU(N) case, we need to multiply the color matrix δAB to the expressions in (D.4) and (D.5),
where the trace of δAB is δAA = N2 − 1.

5Throughout this work, thermal propagators are assigned to particles that are in kinetic equilibrium
with the thermal environment.
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At higher order in perturbation theory, the free dark photon propagator gets modified
by loop corrections due to interactions with the light dark fermions fi from the thermal
bath, cf. section D.2 for more explicit details.6

The two-point function can be expanded as a series in terms of the free propagator
and one-loop polarization tensor,

Dµν(q) = DLO
µν (q) +DLO

µλ (q)
[
iΠλρ(q)

]
DLO
ρν (q) + . . . . (D.10)

An analogous series can be written for all other functions, e.g. D
R/A
µν (q), as well. If the

series cannot be truncated, it needs to be resummed, and, using the geometric series,
for the retarded and advanced functions it results in

D
R/A
00 (q) =

i

q2 +Π
R/A
00 (q)

, (D.11)

D
R/A
ij (q) =

(
δij −

qiqj
q2

)
i

(q0 ± iϵ)2 − q2 +Π
R/A
trans(q)

, (D.12)

where the transverse retarded/advanced polarization tensor is defined as Π
R/A
trans(q) =

(δij − qiqj/q2)ΠR/Aij (q)/2. The 21-Wightman function in an expanded form is given as

D>
µν(q) = 2[1 + nB(q0)] Re

[
DR,LO
µν (q) +DR,LO

µλ (q)
[
iΠλρR (q)

]
DR,LO
ρν (q) + . . .

] ∣∣∣∣
q0>0

= 2[1 + nB(q0)] Re
[
DR,LO
µν (q)

] ∣∣∣∣
q0>0

+ 2[1 + nB(q0)] Im
[
DR,LO
µλ (q)ΠλρR (q)DR,LO

ρν (q)
] ∣∣∣∣
q0>0

+ . . .

= D>,LO
µν (q) +D>,NLO

µν (q) + . . . . (D.13)

In the subsequent section D.2 we derive explicitly analytic expressions of the retarded
thermal polarization tensor and give the results for the resummed dark photon propa-
gator that were used in the main body of this work.

The free thermal bosonic propagator of the DM heavy fermion-antifermion field ϕ in
pNRQEDDM reads7

G(p0) =


i

p0 −H + iϵ
0

2πδ(p0 −H)
−i

p0 −H − iϵ

+ 2πδ(p0 −H)nB(p0)

(
1 1
1 1

)

≈


i

p0 −H + iϵ
0

2πδ(p0 −H)
−i

p0 −H − iϵ

 . (D.14)

6Loop diagrams, which involve the heavy DM (anti-)particles X, X̄ in the loop, are negligible (because
of the decoupling theorem in the limit of very large DM masses) and hence can be neglected.

7In the non-abelian theory, the color-adjoint heavy-pair propagator is (D.14) × δAB , whereas the
color-singlet heavy-pair propagator is simply (D.14).
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where p0 is the energy of the dark fermion-antifermion pair and in the heavy mass
limit, recalling that H = 2M + . . . , nB(H) is exponentially suppressed as e−2M/T .
The real-time formalism is convenient when dealing with heavy fields, since the type-
2 fermion-antifermion fields decouple from the type-1 fields due to the vanishing off-
diagonal element in the matrix propagator in the second line of eq. (D.14), and hence
may be ignored in the heavy-mass limit [48].

Finally, for the nf dark fermionic fields fi charged under U(1)DM with small masses
mi, the corresponding free thermal Dirac propagators are8 (in SU(N): multiply by δab)

SLO
i (k) = (/k +mi)

[
i

k2 −m2
i + iϵ

0

2π sign(k0)δ(k
2 −m2

i )
−i

k2 −m2
i − iϵ


−2π sign(k0)δ(k2 −m2

i )nF(k0)

(
1 1
1 1

)]
, (D.15)

where nF(E) = 1/(eE/T + 1) is the Fermi–Dirac distribution and in practice we neglect
the mass dependence for temperatures T ≫ mi. Hence, upon setting mi = 0 in (D.15),
each of the nf light particles has parametrically the same thermal propagator expression,
and we can omit the subscript i. The same relations among the different two-point func-
tions, like the ones given in (D.6)–(D.7) for the bosonic case, apply also for the fermionic
fields, except that one needs to replace the distribution function nB by −nF. In partic-
ular, the symmetric massless fermion propagator is SS(k) = [1− 2nF(|k0|)]2π/kδ(k2).

D.2 Thermal gauge-boson polarization tensor

In this section, we consider radiative corrections and resummation effects entirely in the
abelian theory. The retarded dark photon self-energy, its diagram depicted in figure D.2,
that enters in the next-to-leading order term of the 21-dark photon propagator in (D.13),
with nf massless dark particles in the loop, reads [205]

ΠRµν(q) = Π11
µν(q) + Π12

µν(q)

= −ig2nf
∫

d4k

(2π)4
(
Tr
[
γµS

11(k − q)γνS11(k)
]
− Tr

[
γµS

21(k − q)γνS12(k)
])

= −ig
2

2
nf

∫
d4k

(2π)4
(
Tr
[
γµS

S(k − q)γνSR(k)
]
+Tr

[
γµS

A(k − q)γνSS(k)
]

+Tr
[
γµS

A(k − q)γνSA(k)
]
+Tr

[
γµS

R(k − q)γνSR(k)
])
,

(D.16)
where the terms in the last line vanish after the integration over k0 using the residue
theorem. Shifting the momentum k → k+ q in the first term and k → −k in the second

8We do not consider self-energy corrections to the light fermionic propagator in (D.15), that would
involve dark photons in the loop, and hence we can omit the superscript LO in (D.15).
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term, and using the explicit form of the massless fermion propagators (i.e. eq. (D.15)
with mi = 0), we get

ΠRµν(q) = nfg
2

∫
d4k

(2π)3
[1− 2nF(|k0|)]Tr[γµ/kγν(/k + /q)]

δ(k2)

(k + q)2 + i sign(k0 + q0)ϵ

= ΠR,T=0
µν (q) + ΠR,T ̸=0

µν (q) ,
(D.17)

where the vacuum polarization tensor, ΠR,T=0
µν (q), stems from the first term in the

square bracket and in the MS scheme it reads

ΠR,T=0

µν,MS
(q) = (qµqν − gµνq2)

nfg
2

12π2

[
ln

(
(q0 + iϵ)2 − q2

−µ2
)
− 5

3

]
. (D.18)

The thermal retarded polarization tensor is

ΠR,T ̸=0
µν (q) = −2nfg2

∫
d4k

(2π)3
nF(|k0|)Tr[γµ/kγν(/k + /q)]

δ(k2)

(k + q)2 + i sign(k0 + q0)ϵ

= −nfg2
∫

d3k

(2π)3
nF(|k|)
|k|

×
(

Tr[γµ/kγν(/q + /k)]|k0=|k|

(q0 + |k|)2 − |q + k|2 + iϵ+
+

Tr[γµ/kγν(/q + /k)]|k0=−|k|

(q0 − |k|)2 − |q + k|2 + iϵ−

)
,

(D.19)
where we define ϵ± ≡ sign(±|k|+ q0)ϵ. Alternatively, using the relation9

1

(k + q)2 + i sign(k0 + q0)ϵ
=

∫
dk′0
2π

Θ(k′0)−Θ(−k′0)
k0 + q0 − k′0 + iϵ

2πδ(k′20 − |k + q|2) , (D.20)

it can be written as

ΠR,T ̸=0
µν (q) = nfg

2

∫
d3k

(2π)3
nF (|k|)

2|k + q||k|

 ∑
σ1,2=±1

σ2Tr[γµ/kγν(/k + /q)]|k0=σ1|k|
q0 + σ1|k|+ σ2|k + q|+ iϵ

 , (D.21)

which now contains poles only of first order. In the next step, we evaluate the trace
appearing in the numerator,

Tµν ≡ Tr[γµ/kγν(/q + /k)]

= 4[kµ(q + k)ν + kν(q + k)µ − gµνk(q + k)] ,
(D.22)

and in terms of its temporal and spatial components it becomes

T00 = 4(k0q0 + k20 + |k||q| cos θ + |k|2) ,
Tij = 4[2kikj + kiqj + kjqi + δij(k

2 + k0q0 − |k||q| cos θ)] ,

Ttrans ≡
1

2

(
δij − qiqj

q2

)
Tij

= 4(k20 + k0q0 − |k||q| cos θ − k2 cos2 θ) ,

(D.23)

9Equation (D.20) follows from the relation SR(x−y) = Θ(x0−y0)
[
S>(x− y)− S<(x− y)

]
between

the retarded fermionic propagator and the fermionic Wightman functions in coordinate space.
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q

k

k − q

Figure D.2: One-loop self-energy diagram of the dark photon propagator. The polariza-
tion tensor is denoted by Πµν(q). Only the nf dark light fermions run in the loop.

where θ denotes the angle between the momentum vectors q and k. The longitudinal
component of the thermal retarded polarization tensor in (D.19) reads

ΠR,T ̸=0
00 (q) = −4nfg2

∫
d3k

(2π)3
nF(|k|)
|k|

[ |k|q0 + 2k2 + |k||q| cos θ
q20 + 2q0|k| − q2 − 2|k||q| cos θ + iϵ+

+
−|k|q0 + 2k2 + |k||q| cos θ

q20 − 2q0|k| − q2 − 2|k||q| cos θ + iϵ−

]
= nf

g2

π2

∫ ∞

0
d|k||k|nF(|k|)

[
4k2 + q2 + 4q0|k|

4|k||q| ln

(
q2 + 2q0|k| − 2|q||k|+ iϵ+
q2 + 2q0|k|+ 2|q||k|+ iϵ+

)
+

4k2 + q2 − 4q0|k|
4|k||q| ln

(
q2 − 2q0|k| − 2|q||k|+ iϵ−
q2 − 2q0|k|+ 2|q||k|+ iϵ−

)
+ 2

]
,

(D.24)
and the transversal component is

ΠR,T ̸=0
trans (q) = −4nfg2

∫
d3k

(2π)3
nF(|k|)
|k|

[
k2 + |k|q0 − |k||q| cos θ − k2 cos2 θ

q20 + 2q0|k| − q2 − 2|k||q| cos θ + iϵ+

+
k2 − |k|q0 − |k||q| cos θ − k2 cos2 θ

q20 − 2q0|k| − q2 − 2|k||q| cos θ + iϵ−

]
= nf

g2

π2

∫ ∞

0
d|k||k|nF(|k|)

[
−q

2
0 + q2

q2

+
4q2(k2 + |k|q0) + q4 − (q20 + 2q0|k|)2

8|k||q|3 ln

(
q2 + 2q0|k| − 2|q||k|+ iϵ+
q2 + 2q0|k|+ 2|q||k|+ iϵ+

)
+

4q2(k2 − |k|q0) + q4 − (q20 − 2q0|k|)2
8|k||q|3 ln

(
q2 − 2q0|k| − 2|q||k|+ iϵ−
q2 − 2q0|k|+ 2|q||k|+ iϵ−

)]
.

(D.25)
We split (D.24) and (D.25) into its real and imaginary parts,

Re
[
ΠR,T ̸=0

00 (q)
]
= nf

g2

π2

∫ ∞

0
d|k||k|nF(|k|)

[
4k2 + q2 + 4q0|k|

4|k||q| ln

∣∣∣∣q2 + 2q0|k| − 2|q||k|
q2 + 2q0|k|+ 2|q||k|

∣∣∣∣
+

4k2 + q2 − 4q0|k|
4|k||q| ln

∣∣∣∣q2 − 2q0|k| − 2|q||k|
q2 − 2q0|k|+ 2|q||k|

∣∣∣∣+ 2

]
,

(D.26)
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Im
[
ΠR,T ̸=0

00 (q)
]
= nf

g2

π

∫ ∞

0
d|k||k|nF(|k|)

×
[
4k2 + q2 + 4q0|k|

4|k||q| sign(ϵ+)
[
Θ(2|k|(q0 + |q|) + q2)−Θ(2|k|(q0 − |q|) + q2)

]
+

4k2 + q2 − 4q0|k|
4|k||q| sign(ϵ−)

[
Θ(2|k|(q0 + |q|)− q2)−Θ(2|k|(q0 − |q|)− q2)

]]
,

(D.27)
and

Re
[
ΠR,T ̸=0

trans (q)
]
= nf

g2

π2

∫ ∞

0
d|k||k|nF(|k|)

[
−q

2
0 + q2

q2

+
4q2(k2 + |k|q0) + q4 − (q20 + 2q0|k|)2

8|k||q|3 ln

∣∣∣∣q2 + 2q0|k| − 2|q||k|
q2 + 2q0|k|+ 2|q||k|

∣∣∣∣
+

4q2(k2 − |k|q0) + q4 − (q20 − 2q0|k|)2
8|k||q|3 ln

∣∣∣∣q2 − 2q0|k| − 2|q||k|
q2 − 2q0|k|+ 2|q||k|

∣∣∣∣] ,
(D.28)

Im
[
ΠR,T ̸=0

trans (q)
]
= nf

g2

π

∫ ∞

0
d|k||k|nF(|k|)

×
[
4q2(k2 + |k|q0) + q4 − (q20 + 2q0|k|)2

8|k||q|3 sign(ϵ+)

×
[
Θ(2|k|(q0 + |q|) + q2)−Θ(2|k|(q0 − |q|) + q2)

]
+

4q2(k2 − |k|q0) + q4 − (q20 − 2q0|k|)2
8|k||q|3 sign(ϵ−)

×
[
Θ(2|k|(q0 + |q|)− q2)−Θ(2|k|(q0 − |q|)− q2)

] ]
.

(D.29)
The advanced polarization tensor can be obtained from the general relations Re

[
ΠRµν

]
=

Re
[
ΠAµν

]
and Im

[
ΠRµν

]
= −Im

[
ΠAµν

]
.

D.2.1 Hierarchy T ∼ |q| ≫ q0

We take the spatial loop momentum k in the photon self-energy, cf. figure D.2, to be
of the order of the temperature T of the thermal bath, because we consider dark light
fermions to be the constituents that form the thermal bath. Then for the particular
hierarchy T ∼ |q| ≫ q0, which corresponds to interaction processes involving space-like
dark photons, we may expand the eqs. (D.26)–(D.29) for small q0, resulting in

Re
[
ΠR,T ̸=0

00 (q)
]
= nf

g2

π2

∫ ∞

0
d|k||k|nF(|k|)

[
2− 4k2 − q2

2|k||q| ln

∣∣∣∣ |q| − 2|k|
|q|+ 2|k|

∣∣∣∣] , (D.30)

Im
[
ΠR,T ̸=0

00 (q)
]
= 2nf

g2

π

q0
|q|

∫ ∞

|q|/2
d|k||k|nF(|k|) , (D.31)
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Re
[
ΠR,T ̸=0

trans (q)
]
= nf

g2

π2

∫ ∞

0
d|k||k|nF(|k|)

[
4k2 + q2

4|k||q| ln

∣∣∣∣ |q| − 2|k|
|q|+ 2|k|

∣∣∣∣− 1

]
, (D.32)

Im
[
ΠR,T ̸=0

trans (q)
]
= nf

g2

π

q0
|q|

∫ ∞

|q/2
d|k||k|nF(|k|) . (D.33)

The eqs. (D.30) and (D.31) are in agreement with the abelian versions of the expressions
in [130,150]. The thermal longitudinal symmetric polarization tensor then is

ΠS,T ̸=0
00 (q) = [1 + 2nB(q0)]

[
ΠR,T ̸=0

00 (q)−ΠA,T ̸=0
00 (q)

]
= 2i[1 + 2nB(q0)]Im

[
ΠR,T ̸=0

00 (q)
]

= 8inf
g2

π

T

|q|

∫ ∞

|q/2
d|k||k|nF(|k|) = 2ΠS,T ̸=0

trans (q) ,

(D.34)
where we expanded the Bose–Einstein distribution up to leading order in q0/T , i.e.
nB(q0) = T/q0 + . . . , and the second equality in the second line of (D.34) shows the
relation between the longitudinal and transverse part.

D.2.2 Hierarchy T ≫ q0, |q|
If the absolute value of the spatial momentum vector q is of the same order as q0, we can
expand the integrands in (D.26)–(D.29) both in |q| and q0, and perform the integration
over the loop momentum |k|. The analytic results are

Re
[
ΠR,T ̸=0

00 (q)
]

= m2
D

[
1 +

q0
2|q| ln

∣∣∣∣q0 − |q|q0 + |q|

∣∣∣∣] , (D.35)

Im
[
ΠR,T ̸=0

00 (q)
]

= m2
D

πq0
2|q|Θ(−q2) , (D.36)

Re
[
ΠR,T ̸=0

trans (q)
]

= −m2
D

q20
2q2

[
1− q0

2|q|

(
1− q2

q20

)
ln

∣∣∣∣q0 + |q|q0 − |q|

∣∣∣∣] , (D.37)

Im
[
ΠR,T ̸=0

trans (q)
]

= −m2
D

πq30
4|q|3

(
1− q2

q20

)
Θ(−q2) , (D.38)

where we computed the integral
∫∞
0 d|k||k|nF(|k|) = π2T 2/(12), and introduced the

Debye mass

mD =

√
nf
3
g2T 2 =

√
4π

3
nfα T , (D.39)

which depends on the coupling α, the temperature T and the total number nf of massless
dark particles. The thermal retarded polarization tensor develops an imaginary part only
for space-like dark photons, where q2 < 0. The results are in agreement with the abelian
analogues in refs. [129, 130, 150, 206]. Finally, we give the analytic expressions for the
longitudinal and transversal symmetric polarization tensors:

ΠS,T ̸=0
00 (q) = 2iπm2

D

T

|q|Θ(−q2) , (D.40)

ΠS,T ̸=0
trans (q) = −iπm2

D

Tq20
|q|3

(
1− q2

q20

)
Θ(−q2) . (D.41)
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D.2.3 Hierarchy T ≫ |q| ≫ q0

The hierarchy T ≫ |q| ≫ q0 is a special case of the one considered in section D.2.2,
therefore we expand the expressions in (D.35)–(D.38) up to first order in q0 ≪ |q|,

Re
[
ΠR,T ̸=0

00 (q)
]

= m2
D , (D.42)

Re
[
ΠR,T ̸=0

trans (q)
]

= m2
D ×O

(
q20
q2

)
, (D.43)

Im
[
ΠR,T ̸=0

00 (q)
]

= m2
D

πq0
2|q| , (D.44)

Im
[
ΠR,T ̸=0

trans (q)
]

= m2
D

πq0
4|q| . (D.45)

If the momentum |q| of the dark photon is of the order of the Debye mass, T ≫ |q| ∼
mD ≫ q0, then the thermal loop corrections contributing to the dark photon propagator
need to be resummed, which is known as the Hard Thermal Loop (HTL) resummation.
For the particular hierarchy considered in this section, after performing the resummation
which leads to the dressed propagators written in eqs. (D.11) and (D.12), we obtain for
the longitudinal part

D
R/A
00 (q) =

i

q2 +m2
D ± im2

D
πq0
2|q|

=
i

q2 +m2
D

± π

2

q0
|q|

m2
D

(q2 +m2
D)

2
+O

(
q20
q2

)
, (D.46)

and for the transverse part

D
R/A
ij (q) =

(
δij −

qiqj
q2

)
i

(q0 ± iϵ)2 − q2 ± im2
D
πq0
4|q|

=

(
δij −

qiqj
q2

)[
i

(q0 ± iϵ)2 − q2
± π

4

q0
|q|

m2
D

((q0 ± iϵ)2 − q2)2
+O

(
q20
q2

)]
. (D.47)

In fact it turns out that, by comparing (D.46) with (D.47), only the longitudinal part
gets dressed by the Debye mass, which removes the infrared divergence for q2 → 0 at
finite T , hence justifying the screening property of mD. On the contrary, the spatial
part in (D.47), upon expanding up to zeroth order in q0/|q|, reduces to the familiar
leading-order expression in (D.9).

Then, using the relations in eq. (D.3) and in eqs. (D.6)–(D.7), the resummed longi-
tudinal dark photon propagator becomes

D00(q) =
i

q2 +m2
D

(
1 0
0 −1

)
+ π

T

|q|
m2

D

(q2 +m2
D)

2

(
1 1
1 1

)
, (D.48)

and the resummed longitudinal symmetric propagator reads

DS
00(q) =

−iΠS00(q)
(q2 +ΠR00(q))(q

2 +ΠA00(q))
= 2π

T

|q|
m2

D

(q2 +m2
D)

2
. (D.49)
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On the other hand, for the less strict hierarchy considered in section D.2.2, if the dark
photon energy q0 is of the order of the Debye mass, such that q0, |q| ∼ mD, both the
longitudinal and transversal polarization tensors in (D.35)–(D.38) need to be resummed
and one obtains

D
R/A
00 (q) =

i

q2 +m2
D

[
1 + q0

2|q| ln
∣∣∣ q0−|q|
q0+|q|

∣∣∣]± iπm2
D

q0
2|q|Θ(−q2)

=
i

q2 +m2
D

[
1 + q0

2|q| ln
(
q0−|q|±iϵ
q0+|q|±iϵ

)] , (D.50)

and

D
R/A
ij (q)

=
i
(
δij − qiqj

q2

)
(q0 ± iϵ)2 − q2 −m2

D
q20
2q2

[
1− q0

2|q|

(
1− q2

q20

)
ln
∣∣∣ q0+|q|
q0−|q|

∣∣∣]∓ iπm2
D

q30
4|q|3

(
1− q2

q20

)
Θ(−q2)

=

(
δij −

qiqj
q2

)
i

q2 ± i sign(q0)ϵ− m2
D
2

[
q20
q2 − q0

2|q|3 q
2 ln

(
q0+|q|±iϵ
q0−|q|±iϵ

)] ,
(D.51)

from which one may compute the dressed symmetric propagator and, eventually, the full
matrix-valued dark photon two-point function.10

10We remind that, according to (D.7), one can deduce that DS
µν(q) = [1 + 2nB(q0)] [D

R
µν(q)−DA

µν(q)].
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Appendix E

Heavy two-pair system in OQS:
dipole exchange diagrams

In this section, we address the impact of the dipole exchange diagrams, which connect
a heavy particle-antiparticle pair (system I) with another heavy pair (system II) by an
exchange of a dark photon via dipole interactions, on the evolution of the single-heavy
pair reduced density ρI in the open quantum system (OQS) formalism. It follows up the
discussion at the end of section 12.2, and underpins the arguments provided there with
some concrete calculations. We consider a subset of the dipole exchange diagrams given
in figure E.1, where only the electric dipole interactions are shown, and denote the four
diagrams by Dee1 , Dee2 , Dee3 and Dee4 , respectively.1

In the center-of-mass frame, neglecting the thermal bath motion, they are given by2

Dee1 = (ig)2
∫ t

t0

dt1 e
−iHI(t−t1)riIe

−iHI(t1−t0)ρI(t0)e
iHI(t−t0)

×
∫ t

t0

dt2 e
−iHII(t−t2)rjIIe

−iHII(t2−t0)ρII(t0)e
iHII(t−t0)⟨EiI(t1,0)EjII(t2,0)⟩11

≡ −g2
∫ t

t0

dt1

∫ t

t0

dt2 II(t, t1, t0, riI)III(t, t2, t0, rjII)⟨EiI(t1)E
j
II(t2)⟩11 , (E.1)

Dee2 = (−ig)ig
∫ t

t0

dt1 e
−iHI(t−t0)ρI(t0)e

iHI(t1−t0)riIe
iHI(t−t1)

×
∫ t

t0

dt2 e
−iHII(t−t2)rjIIe

−iHII(t2−t0)ρII(t0)e
iHII(t−t0)⟨EiI(t1,0)EjII(t2,0)⟩21

≡ g2
∫ t

t0

dt1

∫ t

t0

dt2 I†I (t, t1, t0, riI)III(t, t2, t0, r
j
II)⟨EiI(t1)E

j
II(t2)⟩21 , (E.2)

1The other set of diagrams, at order r2, includes exchanges between system I and system II through
magnetic dipole interactions, cf. the Röntgen vertex in fig. 4.1 right, but also mixed exchanges between
an electric and magnetic vertex.

2We adopt the notation used in the main body of this work, where the subscript I (II) denotes that
the operators are with respect to system I (II).
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Figure E.1: Electric dipole exchange diagrams between a heavy DM pair (system I), the
upper solid lines, and another heavy DM pair (system II), corresponding to the lower
solid lines. The CTP-indices 1 or 2 denote that the fields and vertices are either along
the temporal path C1 or C2, cf. figure D.1 for the Schwinger-Keldysh contour.

Dee3 = ig(−ig)
∫ t

t0

dt1 e
−iHI(t−t1)riIe

−iHI(t1−t0)ρI(t0)e
iHI(t−t0)

×
∫ t

t0

dt2 e
−iHII(t−t0)ρII(t0)e

iHII(t2−t0)rjIIe
iHII(t−t2)⟨EiI(t1,0)EjII(t2,0)⟩12

≡ g2
∫ t

t0

dt1

∫ t

t0

dt2 II(t, t1, t0, riI)I†II(t, t2, t0, r
j
II)⟨EiI(t1)E

j
II(t2)⟩12 , (E.3)

and

Dee4 = (−ig)2
∫ t

t0

dt1 e
−iHI(t−t0)ρI(t0)e

iHI(t1−t0)riIe
iHI(t−t1)

×
∫ t

t0

dt2 e
−iHII(t−t0)ρII(t0)e

iHII(t2−t0)rjIIe
iHII(t−t2)⟨EiI(t1,0)EjII(t2,0)⟩22

≡ −g2
∫ t

t0

dt1

∫ t

t0

dt2 I†I (t, t1, t0, riI)I
†
II(t, t2, t0, r

j
II)⟨EiI(t1)E

j
II(t2)⟩22 . (E.4)

Using a relation among the four dark photon propagators in the Schwinger-Keldysh
formalism,3 it follows for the electric-electric correlators that

⟨EiEj⟩11 = ⟨EiEj⟩12 + ⟨EiEj⟩21 − ⟨EiEj⟩22 , (E.5)

such that the sum of the four terms in (E.1)–(E.4) can be written as

Dee1 +Dee2 +Dee3 +Dee4 = −g2
∫ t

t0

dt1

∫ t

t0

dt2

[
IiI
(
IjII − I

j,†
II

)
⟨EiI(t1)EjII(t2)⟩12

+
(
IiI − Ii,†I

)
IjII⟨EiI(t1)E

j
II(t2)⟩21 −

(
IiIIjII − I

i,†
I I

j,†
II

)
⟨EiI(t1)EjII(t2)⟩22

]
. (E.6)

3In the closed-time-path formalism, the time-ordered photon propagator can be split into a combi-
nation of the anti-time ordered propagator and the Wightman functions as follows, here in momentum
space,

Dµν
11 (q) = Dµν

12 (q) +Dµν
21 (q)−D

µν
22 (q) ,

which can be straightforwardly shown to be valid for the propagators at leading order given in eqs. (D.4)
and (D.5).
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The first two terms in eq. (E.6), which contain the factors IjII − I
j,†
II = 2i Im

[
IjII
]
and

IiI − I
i,†
I = 2i Im

[
IiI
]
, respectively, can be shown to vanish. We proof it for the first

term:4

Im
[
IjII
]

= Im
[
e−iHII(t−t2)rjIIe

−iHII(t2−t0)ρII(t0)e
iHII(t−t0)

]
= Im

[
e−iHII(t−t2)rjIIe

−iHII(t2−t0)eiHII(t−t0)e−iHII(t−t0)ρII(t0)e
iHII(t−t0)

]
= Im

[
e−iHII(t−t2)rjIIe

iHII(t−t2)ρII(t)
]

= Im

[(
rjII −

2pjII
M

(t− t2)
)
ρII(t)

]
= 0 , (E.7)

where in the third line we used ρII(t, t) = e−iHII(t−t0)ρII(t0, t0)e
iHII(t−t0), which is exact

within the accuracy of order r2. New terms arise at O(r4), hence are beyond the dipole
approximation [153]. All operators in the last line of (E.7) are hermitian, hence the
imaginary part is zero. A similar computation gives Im

[
IiI
]
= 0.

Concerning the last term in eq. (E.6), we will show that it vanishes once the partial
trace over system II has been done, since we are eventually interested to proof that the
mixed diagrams in fig. E.1 do not contribute to the evolution equation for the reduced
density ρI of system I. Taking the partial trace of IjII, we obtain

TrII

[
IjII
]

= TrII

[
e−iHII(t−t2)rjIIe

−iHII(t2−t0)ρII(t0)e
iHII(t−t0)

]
= TrII

[
rjIIe

−iHII(t2−t0)ρII(t0)e
iHII(t−t0)e−iHII(t−t2)

]
= TrII

[
rjIIe

−iHII(t2−t0)ρII(t0)e
iHII(t2−t0)

]
= TrII

[
rjIIρII(t2)

]
, (E.8)

where in the second line we used the cyclicity of the trace. Following the same steps as
in (E.8), but now for Ij,†II , we obtain

TrII

[
Ij,†II

]
= TrII

[
rjIIρII(t2)

]
= TrII

[
IjII
]
. (E.9)

Therefore, when taking the partial trace of the sum of the exchange diagrams, eq. (E.6),
over system II, we end up with the temporal integrals of the residual term

g2
(
IiI − Ii,†I

)
TrII

[
IjII
]
⟨EiI(t1)EjII(t2)⟩22

= 2ig2 Im
[
IiI
]
TrII

[
IjII
]
⟨EiI(t1)EjII(t2)⟩22 = 0 , (E.10)

4In order to get from the third to the fourth line in eq. (E.7), we use

e−iHII(t−t2)rjII =
[
e−iHII(t−t2), rjII

]
+ rjIIe

−iHII(t−t2) = −i ∂

∂pjII

(
e−iHII(t−t2)

)
+ rjIIe

−iHII(t−t2)

=

(
rjII −

2pjII
M

(t− t2)

)
e−iHII(t−t2) .
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and hence we conclude with our statement that the dipole exchange diagrams decouple
from system I, once we take the partial trace over system II, i.e.

TrII [Dee1 +Dee2 +Dee3 +Dee4 ] = 0 . (E.11)

We expect the results shown in this section, that were derived in the center-of-mass
frame without recoil effects, to be valid also when the motion of the thermal bath is
included.
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Appendix F

Annihilations: alternative
viewpoint

Throughout the main body of this work, the observables have been computed by means
of the the optical theorem, where the information about a specific scattering process can
be extracted from the imaginary part of the corresponding forward scattering amplitude.
In QFTs, it is closely connected to the sum of all possible Feynman diagrams that emerge
due the cutting through internal propagators on the basis of the Cutkosky rules and the
extended rules appropriate for diagrams in the real-time field theory [126, 207]. In this
appendix, however, we aim to provide a different point of view on how to compute the
interaction rates without the usage of the EFT-framework. We focus on annihilation
processes in the U(1)DM model only, and compute the corresponding free annihilation
cross section in section F.1, and in section F.2 we show how the Sommerfeld effect can be
tackled by means of the Bethe–Salpeter approach [208]; it should serve as an alternative
to the EFT techniques scrutinized in e.g. chapter 5.

F.1 Free annihilations in QEDDM

In section 5.1, we inferred the dark matter pair annihilations in the non-relativistic limit
from the matching coefficients of the irrelevant four-fermion operators in NRQEDDM,
which at leading order in the coupling encode the diagrams in fig. 5.1. But we can
compute the annihilation cross section also directly, using the Feynman rules from the
parent U(1)DM model. From Fermi’s golden rule generalized to QFTs, we have for the
annihilation into two dark photons X + X̄ → γγ1

dσann =
1

2

d3k1
(2π)32k01

d3k2
(2π)32k02

(2π)4δ4(k1 + k2 − p1 − p2)
4
√

(p1p2)2 −M4
|Mann|2 , (F.1)

whereMann is the dimensionless annihilation S-matrix amplitude and in the center-of-
mass frame the incoming DM momenta are pµ1/2 = (E,±p), with E =

√
M2 + p2 and

1In this section, we put nf = 0 and consider only annihilations at leading order in α for simplicity.
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p = (p1 − p2)/2; the outgoing photon momenta are kµ1/2 = (E,±k), and |k| = E due to
energy-momentum conservation. The differential annihilation cross section then reads

dσann
dΩ

=
|Mann|2

512π2E|p| =
α2

16E|p|

[
3M2 + p2(3 + cos2 θ)

M2 + p2 sin2 θ
−
(
M2 − p2 sin2 θ

M2 + p2 sin2 θ

)2
]
. (F.2)

In the non-relativistic limit, upon expanding the terms in the square bracket in (F.2)
up to first order in p2/M2, we get [. . . ] ≈ 2 + 4p2/M2 = 2 + v2rel, where p ≡ |p| =
Mvrel/2. We expand also the energy up to first order, E ≈ M + p2/(2M) = M(1 +
v2rel/8). In this limit, the dependence on the scattering angles vanishes in (F.2), hence
the angular integration can be done straightforwardly and the annihilation cross section
up to O(α2, v2rel) reads

σNR
annvrel =

πα2

M2

(
1 +

3

8
v2rel

)
. (F.3)

We should get this result from the dimension eight four-fermion operators, with matching
coefficients at order α2, in the NRQEDDM model as well. We can take a different path,
and use the result we obtained for the annihilation cross section, up to order 1/M4, in
the pNRQEDDM theory, cf. (5.22), where we take the scattering wavefunction of the
pair to be the one of a plane wave in the center-of-mass frame, i.e. ψp(r) = exp (ip · r),
and hence discard the Sommerfeld effect, since |ψp(0)|2 = 1.2 We obtain

(σNR
annvMøl)cm =

πα2

M2
+

p2

3M4
(3πα2 + 4πα2) +

p2

M4

(
−4

3
πα2

)
=
πα2

M2

(
1 +

p2

M2

)
. (F.4)

We finally insert the Møller velocity in the center-of-mass frame, written in eq. (5.8),
into the left-hand side of (F.4), expand up to order v2rel and hereby verify that the
result (F.3) from a direct computation in the parent QEDDM model agrees with the
free annihilation cross section (F.4) in the lower EFT, that is a sum of S- and P-wave
annihilations. We can go in a similar manner to higher order in the coupling α =
α(2M) and consider processes with more than two dark photon productions, or include
non-relativistic corrections of higher order than v2rel, or compute the cross section with
respect to another reference frame. However, we will not be able to encounter the
Sommerfeld effect. Despite the weak coupling α, it is a non-perturbative effect, where
the perpetual t-channel soft-photon exchanges between the fermion and antifermion
prior to its annihilation are enhanced if the pair is close to threshold. At this point one
needs to resum the infinitely many ladder diagrams, which is not feasible in standard
perturbation theory. In pNRQEDDM, cf. section 4.2, the resummation is done at the
Lagrangian level due to a multipole expansion of the soft dark photon fields, which
in turn leads to a distortion of the plane wave function into a Coulombic scattering-
state wavefunction (C.4), together with the emergence of bound-state configurations.
In the next section, we pursue instead the resummation of the ladder diagrams at the
diagrammatic level.

2The gradient and Laplace operator acting on a plane wave are ∇rψ
(∗)
p (r) = ±ipψ(∗)

p (r) and

∆rψ
(∗)
p (r) = −p2ψ

(∗)
p (r), respectively. Eq. (5.22) reduces to the result in the center-of-mass frame,

once we set P = 0.
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Figure F.1: Annihilation of a heavy fermion-antifermion dark matter pair into two dark
photons in the center-of-mass frame. The grey shaded loop denotes that the resummation
of the infinitely many ladder diagrams has been taken into account.

F.2 Sommerfeld-effect: Bethe–Salpeter ansatz

We consider once again annihilations at order α2 and nf = 0 in the center-of-mass
frame, but now we resum the ladder diagrams with soft-photon exchanges, see the grey
shaded loop in figure F.1, by means of the Bethe–Salpeter equation for the composite
fermion-antifermion four-point Green function. The result for the S-matrix amplitude
in momentum space reads

MSe
ann(p,k) =

∫
d3p′

(2π)3
Mann(p

′,k)Ψp(p
′) (F.5)

where the superscript Se denotes that the resummation has been taken into account, and
Mann(p

′,k) is the S-matrix for annihilations without resummation - it corresponds to
the amplitudeMann defined in section F.1 - and the relative momentum p′ of the internal
propagators is taken on-shell. [73,209] From eq. (F.5) it can be seen that the Sommerfeld-
enhanced annihilation amplitude is written as a convolution of the free annihilation
amplitude and the Bethe-Salpeter wavefunction, which in the non-relativistic limit is
the momentum-space Coulomb wavefunction of the heavy pair above threshold, first
derived in ref. [210]. It is the Fourier transform of the scattering-state wavefunction,3

Ψp(p
′) =

∫
d3r Ψp(r)e

−ip′·r

=
∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (p̂′)Y m,∗

ℓ (p̂)

[
4π

∫ ∞

0
dr r2jℓ(p

′r)Rp,ℓ(r)

]

=

∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (p̂′)Y m,∗

ℓ (p̂)Rp,ℓ(p′) , (F.6)

3In order to get to the last line of (F.6), we inserted in the first line of eq. (F.6) the partial-wave

decomposition of the scattering-state Ψp(r) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓRp,ℓ(r)Y
m
ℓ (r̂)Y mℓ (p̂) and of the plane wave

eip·r =
∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓRp,ℓ(r)
∣∣
α=0

Y mℓ (r̂)Y mℓ (p̂) = 4π
∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(pr)Y
m
ℓ (r̂)Y mℓ (p̂), and used the orthonor-

mality relation
∫
dΩr̂ Y

m
ℓ (r̂)Y m

′
ℓ′ (r̂) = δℓℓ′δmm′ for the spherical harmonics.
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which is now expanded into partial waves, and jℓ(pr) are the spherical Bessel functions of
the first kind. From the definition of Rp,ℓ(p′) in (F.6), it follows for the radial scattering-
state wavefunction that4

Rp,ℓ(r) =

∫ ∞

0

dp′

2π2
p′2jℓ(p

′r)Rp,ℓ(p′) . (F.7)

We can decompose the free annihilation amplitude in a similar way, i.e.5

Mann(p
′,k) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (k̂)Y m,∗

ℓ (p̂′)Mℓ
ann(p

′, k) , (F.8)

and obtain for the resummed annihilation amplitude, upon inserting (F.6) and (F.8)
into equation (F.5) the following decomposition in partial-wave amplitudes:6

MSe
ann(p,k) =

∞∑
ℓ=0

Mℓ,Se
ann =

∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (k̂)Y m,∗

ℓ (p̂)

∫ ∞

0

dp′

(2π)3
p′2Mℓ

ann(p
′, k)Rp,ℓ(p′) ,

(F.9)
where we have performed the angular Ωp̂′-integration using the orthonormality rela-
tion for the spherical harmonics Y m

ℓ (p′). One could in principle drop the k = |k|-
dependence in the partial scattering amplitude Mℓ

ann inside the integral in eq. (F.9),
since k = E =

√
M2 + p′2 = k(p′) due to energy-momentum conservation at the ver-

tices. Likewise for the k-dependence on the left-hand side, i.e. MSe
ann =MSe

ann(p, k̂). It
can be advantageous to decompose the S-matrix into partial-wave amplitudes as in (F.9),
because the entire angular dependencies are then factored out, which is only possible
for rotationally symmetric potentials, and the remaining effort is in the computation of
the one-dimensional momentum integral as soon as Mℓ

ann and Rp,ℓ are known. This,
however, can be a difficult task. In case of the Coulomb potential, it is known that the
radial scattering-state wavefunction in momentum space possesses a collinear singularity
due to the long-range behaviour of the massless dark photon [210]. This holds also for
the individual partial waves in momentum space, i.e. Rp,ℓ(p′), which can be shown by
rewriting the spherical Bessel function of the first kind in terms of the confluent hyperge-
ometric function,7 and inserting it together with the ℓth radial wavefunction in position

4Equation (F.7) can be proven to be consistent by inserting it into the definition for Rp,ℓ(p′) and
using the orthogonality relation

∫∞
0
dr r2jℓ(pr)jℓ(p

′r) = πδ(p′ − p)/(2p2).
5Equation (F.8) can be checked straightforwardly to hold if soft-scale resummation is discarded:

ψα=0
p (p′) =

∫
d3r ψα=0

p (r)e−ip
′·r =

∫
d3r ei(p−p′)·r = (2π)3δ3(p− p′), which, upon plugging into (F.5),

gives a consistency checkMSe,α=0
ann =Mann.

6One can check that the decomposition in (F.9) is consistent when long-range interactions are absent,
i.e. by setting α to zero: Rα=0

p,ℓ (p′) = 4π
∫∞
0
dr r2jℓ(p

′r)Rp,ℓ(r)
∣∣
α=0

= (4π)2
∫∞
0
dr r2jℓ(p

′r)jℓ(pr) =

(2π)3δ(p′ − p)/p2, then plugging into the integral in (F.9) givesMSe,α=0
ann =Mann.

7To be more explicit, we use the relation

jℓ(p
′r) =

√
π

2

(
p′r

2

)ℓ
exp (ip′r)

Γ(ℓ+ 3/2)
1F1(ℓ+ 1, 2ℓ+ 2,−2ip′r) .
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space (to be read out from eq. (C.4)) into Rp,ℓ. It reads

Rp,ℓ(p′) =
(4π)2

Γ
(
ℓ+ 3

2

)√ 2π/(a0p)

1− e−2π/(aop)

√
π

2

(pp′)ℓ

(2ℓ+ 1)!

ℓ∏
κ=1

√
κ2 + (a0p)−2

×
∫ ∞

0
dr r2ℓ+2ei(p

′+p)r
1F1(ℓ+ 1, 2ℓ+ 2,−2ip′r) 1F1(ℓ+ 1− i/(a0p), 2ℓ+ 2,−2ipr) ,

(F.10)

where the integral in the second line of (F.10) resembles one of the two integrals in equa-
tion (C.52).8 The analytic result of the integral in (F.10) can be read off directly from
the eqs. (C.53) and (C.54), and hence the Coulomb wavefunction in momentum space
possesses the very same collinear divergence as the continuum dipole matrix element for
a transition between two scattering states of momenta p and p′. It can therefore be
regularized in the very same manner as the matrix element, and we can expand around
the collinear singularity p′ ≈ p, and obtain similar divergent terms ((p′ − p) − iϵ)−1

and ((p′ − p) − iϵ)−2. We refer the reader to the following refs. [211–213], where the
authors regularize the momentum-space Coulomb wavefunction and partial waves with
equivalent methods.

There is, however, a way to circumvent the collinear singularity p′ ≈ p inRp,ℓ(p′) that
would spoil the integration over p′ in (F.9). Following the arguments in refs. [209, 214],
we assume that the free partial-wave amplitude Mℓ

ann(p
′) can be Taylor expanded in

powers of the relative velocity v′rel ∼ p′/M ≪ 1 of the annihilating non-relativistic
fermion-antifermion pair,9

Mℓ
ann(p

′) = cℓ
p′ℓ

M ℓ
+
cℓ+2

2

p′ℓ+2

M ℓ+2
+ . . . ≡

∞∑
n=0

Cℓ+2n

M ℓ+2n
p′ℓ+2n , (F.11)

where the dimensionless coefficients Cℓ+2n depend on the coupling α and on the spin
or polarization, but we are not interested in the explicit form of them. Instead we
recognize that the polynomials p′ℓ+2n can be of help in transforming the integral in
(F.9) into a higher order derivative acting on the ℓth radial wavefunction in position
space. According to ref. [209], we can write∫ ∞

0

dp′

(2π)3
p′2Mℓ

ann(p
′, k)Rp,ℓ(p′) =

∞∑
n=0

Cℓ+2n

M ℓ+2n

∫ ∞

0

dp′

(2π)3
p′ℓ+2n+2Rp,ℓ(p′)

=
1

(2π)3

∞∑
n=0

Cℓ+2n

M ℓ+2n

2nn!(2ℓ+ 2n+ 1)!!

(−1)n(ℓ+ 2n)!
2π2

∂ℓ+2n

∂rℓ+2n
Rp,ℓ(r)

∣∣∣∣
r=0

, (F.12)

8In fact the integral in (F.10) differs from the first integral in (C.52) only because of the first entry
in the confluent hypergeometric function in the first term of the third line in (C.52), i.e. ℓ + 1 ←→
ℓ+ 2− i/(a0p′).

9In (F.11) we take into account that for a Coulombic potential the ℓth partial amplitude scales as vℓrel
at zeroth order in the non-relativistic expansion. Then for fixed orbital quantum number ℓ, higher order
corrections come with powers of 2n in vrel, where n is a positive integer counting the order of accuracy
in the expansion.

203



which can be checked straightforwardly upon inserting (F.7) into the second line of
(F.12), and

∂ℓ+2n

∂rℓ+2n
jℓ(p

′r) = p′ℓ+2n ∂ℓ+2n

∂(p′r)ℓ+2n
jℓ(p

′r) = p′ℓ+2n

[
(−1)n(ℓ+ 2n)!

2nn!(2n+ 2ℓ+ 1)!!
+O(p′r)

]
.

(F.13)

Finally, we can write for the Sommerfeld-resummed amplitude (F.9), corresponding
to the annihilation of a non-relativistic fermion-antifermion pair above threshold with
relative momentum p in the center-of-mass frame:

MSe
ann(p, k̂) =

∞∑
ℓ=0

Mℓ,Se
ann(p, k̂)

=

∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
ℓ (k̂)Y m,∗

ℓ (p̂)

∞∑
n=0

Cℓ+2n

M ℓ+2n

(−1)n
4π

2nn!
(2ℓ+ 2n+ 1)!!

(ℓ+ 2n)!

∂ℓ+2n

∂rℓ+2n
Rp,ℓ(r)

∣∣∣∣
r=0

,

(F.14)
which is now regular. Once the coefficients Cℓ+2n are known, the residual computational
task is on the derivatives on the ℓth radial wavefunction, evaluated at r = 0, and one
can include relativistic corrections up to the desired accuracy in n for each partial wave.
The absolute value squared of (F.14), |MSe

ann|2, can eventually be inserted into (F.1) or
(F.2) in order to derive the Sommerfeld-enhanced annihilation cross section.
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[114] C. Hellmann and P. Ruiz-Femeńıa, Non-relativistic pair annihilation of nearly
mass degenerate neutralinos and charginos II. P-wave and next-to-next-to-leading
order S-wave coefficients, JHEP 08 (2013) 084 [1303.0200].

212

https://doi.org/10.1016/S0550-3213(97)00801-8
https://arxiv.org/abs/hep-ph/9707223
https://doi.org/10.1142/S0217732304012927
https://doi.org/10.1142/S0217732304012927
https://arxiv.org/abs/hep-ph/0311303
https://doi.org/10.1103/PhysRevD.81.015005
https://arxiv.org/abs/0910.3293
https://doi.org/10.1103/PhysRevD.86.105025
https://doi.org/10.1103/PhysRevD.86.105025
https://arxiv.org/abs/1209.2328
https://doi.org/10.1103/PhysRevD.87.054031
https://doi.org/10.1103/PhysRevD.87.054031
https://arxiv.org/abs/1212.5241
https://doi.org/10.1007/JHEP08(2013)084
https://arxiv.org/abs/1303.0200
https://doi.org/10.1088/1475-7516/2013/10/031
https://arxiv.org/abs/1305.6391
https://doi.org/10.1103/PhysRevD.100.119901, 10.1103/PhysRevD.95.055001
https://arxiv.org/abs/1612.04814
https://doi.org/10.1103/PhysRevD.99.095015
https://arxiv.org/abs/1903.10998
https://doi.org/10.1103/PhysRevD.100.095024
https://arxiv.org/abs/1906.11269
https://doi.org/10.1017/S0305004100016091
https://doi.org/10.1017/S0305004100016091
https://doi.org/10.1007/JHEP03(2013)148
https://arxiv.org/abs/1210.7928
https://doi.org/10.1007/JHEP08(2013)084
https://arxiv.org/abs/1303.0200


[115] N. Brambilla, E. Mereghetti and A. Vairo, Electromagnetic quarkonium decays at
order v7, Journal of High Energy Physics 2006 (2006) 039.

[116] N. Brambilla, D. Eiras, A. Pineda, J. Soto and A. Vairo, Inclusive decays of heavy
quarkonium to light particles, Phys. Rev. D 67 (2003) 034018 [hep-ph/0208019].

[117] N. Brambilla, E. Mereghetti and A. Vairo, Hadronic quarkonium decays at order
v**7, Phys. Rev. D 79 (2009) 074002 [0810.2259].

[118] M. Berwein, N. Brambilla, S. Hwang and A. Vairo, Poincaré invariance in
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