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Motivation

=il o . o
Seismic wave propagation for applications in

: h
ENERXICO the energy sector

¢ Interaction with a fluid phase
= anisotropic and poroelastic materials

¢ Not just elasticity -

e Cracked or damaged rock
In particular we are interested in the interplay of induced earthquake
rupture, wave propagation, complex topography and poroelastic effects.
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Earthquake simulations

Use SeisSol to solve the elastic wave equation:
e g collects stresses and velocities

(Palgunadi et al. 2020):

"Dynamic Fault Interaction
during a Fluid-Injection-
Induced Earthquake: The
2017 Mw 5.5 Pohang Event"

Abs. velocity (m/s
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Discontinuous Galerkin method

e Discretize Q2 in tetrahedrons

Expand the solution in terms of polynomials
ap(t, X) = Qp(t)¢i(X).

Multiply the PDE with an element local test
function v and integrate by parts

¢ Use numerical fluxes to exchange informations
between elements.

S. Wolf et al. | Advanced Material Models with ADER-DG | SIAM GS21| 218! June, 2021 4



High-Order time stepping

Can be combined with time stepping like Range-Kutta—er Arbitrary
DERivatives ansatz.

e Expand solution in time as a Taylor series around t" to predict
solution

e Use space derivatives at time t” to get the time derivatives with the
Cauchy-Kowalevski procedure

¢ Use fluxes to correct the solution
=- Achieve same convergence order in space and time
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HPC Optimizations

Parallelization
¢ Element local discretization with DG
¢ Mesh partitioning based on workload estimate
e Exchange values at partion boundaries
Node-level performance
e Update scheme is a sequence of tensor contractions

e Use YATeTo' to map the tensor operations to GEMMs
(C=aAB+ 30)

¢ Use architecture specific backends (like 1ibxsmm) for optimized
code

'(Uphoff and Bader 2020)
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Model extensions — Anisotropy

Anisotropic material: directional dependent material behaviour
In seismology: layered or cracked media
For SeisSol: Extend work from (Puente, Késer, et al. 2007)

Necessary changes:
¢ Jacobian matrices A, B and C more densely populated.

® Flux solver needs an eigendecomposition: switch from analytic
expression to numerical solver

e Wave speeds depend on the direction: switch from single
evaluation to sampling

¢ Free surface boundary condition: Solve an inverse Riemann
Problem
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Anisotropy — application example

Figure: Vertical velocity field after 3 s, left: isotropic material, right: anisotropic
material
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Model extensions — Poroelasticity

Poroelastic material: porous elastic medium, filled with a fluid
In seismology: georeservoirs

Necessary changes:

® g now contains fluid pressure p and fluid velocities as additional
quantities

¢ Coupling between fluid and solid phase for low frequencies:
9q + Adxq + Bdyq + Co,q =
e System of PDEs is stiff!

* reduece-time-step-or use (locally) implicit scheme
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Poroelasticity — Space time predictor

Before: Expand the solution from t" as Taylor series in time

Now: gp(t,X) = Quis¢1(X)xs(t) (Puente, Dumbser, et al. 2008)

* Plug this into the discretization to obtain a linear system of
equations.

e For order 6 this has 4368 unknows.

e We have to solve this system for every element and every
timestep.

e Standard approach: precompute LU decomposition, do
backsubstitution
= 38.2 MFLOP for the backsubstitution only
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Poroelasticity — System of equations

Solve a linear equation in tensorial form: Opksqit Qqit = bpks:

0
dpg (Xs(1)k, xt(1)P1) Qqit — Opq {&_qubkaXtﬁbl] Qqit
+ A, [Xs¢kaXt 5525/} Qi + B [Xs¢kaXs ¢>/} Qqit

+ Cpq {Xséf)kaXtaCQS/} Qqit — Epg [XsPk, xs91] Qqut
= 5pm <Xs(0)¢k, an) an
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T

Poroelasticity — Examine the system more closely

Unroll pks and glt to linear indices:

0 -
1000+
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3000+

4000+

0 2000 4000

Figure: Sparsity pattern of the system matrix, if unrolled correctly
S. Wolf et al. | Advanced Material Models with ADER-DG | SIAM GS21 | 215t June, 2021 12



Poroelasticity — Improved solver

System is already in upper triangluar form, but with blocks of size
O x O on the diagonal.

Use blockwise backsubstitution to solve the system.
= 1.94 MFLOP

This is only 4 % of the original workload.

Blockwise backsubstitution can be mapped to GEMMs with YATeTo
for high performance
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Poroelasticity — Results

e Convergence test v
e Various benchmarks against analytic solutions v/
e LOHp v
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Figure: Layer over halfspace scenario with poroelastic materials.
Vertical velocity after 1 s.
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Poroelasticity — Parallel efficiency
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Figure: Parallel efficiency for a mesh with 7.33 million elements. We see
good scaling until 100.000 elements per node.
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Conclusion

e Successfully added anisotropic material behaviour to SeisSol

e Extension to poroelastic materials is work-in-progress, with
promising results
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Backup Slide Equations

Weak formulation of the PDE in 1D:

[ 0a-sax— [ Aqosax+ [ oAq-nis= [ Eqoax
T T oT T

Semidiscrete form:
0t Qpi /T G10kdX — ApgQui /T ¢10xPKdx
+ / For(Qpt, Qly)ds
oT

= quQpl/7_¢l¢kdX
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