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Abstract

Protein-coding genes (pcGenes) make up less than 2% of the human genome, while the
majority consists of non-coding sequences. These non-coding regions contain millions of
regulatory elements that play essential roles in regulating gene expression and cellular
functioning. In recent decades, non-coding RNAs (ncRNAs) have been identified as key
genomic regulators, but our understanding of their functions and mechanisms remains
incomplete. Thus, the ability to predict how genetic variation in non-coding regions translates
into diseases is limited. This dissertation aimed to contribute to the functional understanding

of the non-coding genome by exploring experimental and computational approaches.

The first project investigated the in vivo contribution of the three X-linked long non-coding
RNAs (IncRNAs) Crossfirre, Firre, and Dxz4. Prior to this study, Crossfirre was entirely
uncharacterized, including its effect on imprinted and random X chromosome inactivation
(XCI). Additionally, investigating the functional role of Firre and Dxz4 in random XCI has been
challenging to address due to the complexity of studying mixed cell populations where either
the maternal or paternal X chromosome is inactive. Using a large cohort of genetically modified
mouse models, this study uncovered the functional role of these loci at the molecular and
phenotypic levels. Despite the imprinting of Crossfirre and the unique female-specific
epigenetic characteristics of Crossfirre, Firre, and Dxz4, these loci were found to be
dispensable for XCI. In contrast, the study identified a combined effect of Crossfirre and Firre
in autosomal gene regulation. Subsequent large-scale phenotyping of triple knockout mouse
models revealed multiple knockout- and sex-specific phenotypes and shed light on the in vivo
roles of Crossfirre, Firre, and Dxz4. The resulting dataset provides a robust basis for further

studies exploring these X-linked loci.

Given that the experimental characterization of ncRNAs is laboratory extensive, the second
project aimed to computationally predict the target genes and mechanisms of cis-acting
ncRNAs. The study identified a significant enrichment of allele-specific n\cRNAs nearby allele-
specific pcGenes in both mice and humans, suggesting that the allele-specific expression
(ASE) pattern could predict the cis-acting targets of ncRNAs. This concept was translated into
a novel bioinformatics framework and used to predict 397 ncRNA-to-target linkages and their
mechanisms across the major mouse organs. Extending this approach to human samples, the
strategy was applied to 54 tissues from nearly 1,000 individuals of the Genotype-Tissue
Expression (GTEx) database. The outbred nature of the human population led to the discovery
of novel linkages with each sample, resulting in 2,291 human ncRNA-to-target linkages and

their predicted mode-of-action. Following extensive validation using sample-matched



expression quantitative trait loci (eQTLs), the integration of genome-wide association study
(GWAS) data allowed a substantial proportion of ncRNA-overlapping risk variants to be
mapped to their respective protein-coding targets. With the increasing availability of
sequencing data, this strategy has the potential to elucidate the targets and mechanisms of

the majority of the cis-acting elements of the non-coding genome.



Zusammenfassung

Protein-kodierende Gene (pcGene) machen weniger als 2% des menschlichen Genoms aus,
wahrend der Uberwiegende Teil aus nicht-kodierenden Sequenzen besteht. Diese nicht-
kodierenden Regionen enthalten Millionen von regulatorischen Elementen, die eine
wesentliche Rolle bei der Regulierung der Genexpression und der zellularen Funktion spielen.
In den letzten Jahrzehnten haben sich nicht-kodierende RNAs (ncRNAs) als wichtige
genomische Regulatoren herausgestellt, aber unser Verstandnis ihrer Funktionen und
Mechanismen ist nach wie vor unvollstdndig. Daher kdnnen wir nur begrenzt vorhersagen,
wie sich genetische Variationen in nicht-kodierenden Regionen auf Krankheiten auswirken.
Ziel dieser Dissertation war es, durch die Erforschung experimenteller und computergestitzter
Ansatze einen Beitrag zum funktionellen Verstandnis des nicht-kodierenden Genoms zu

leisten.

Das erste Projekt untersuchte die in vivo Funktion der drei X-chromosomalen langen nicht-
kodierenden RNAs (IncRNAs) Crossfirre, Firre und Dxz4. Vor dieser Studie war Crossfirre,
einschlieBlich seiner Wirkung auf die gepragte und zuféllige X-Chromosom-Inaktivierung
(XCI), nicht charakterisiert. Darliber hinaus war die Untersuchung der funktionellen Rolle von
Firre und Dxz4 bei der zufalligen XCI aufgrund der Komplexitat der Untersuchung gemischter
Zellpopulationen, in denen entweder das miuitterliche oder das vaterliche X-Chromosom
inaktiv ist, eine Herausforderung. Mit Hilfe einer gro3en Kohorte von genetisch veranderten
Mausmodellen hat diese Studie die funktionelle Rolle dieser Loci auf molekularer und
phanotypischer Ebene aufgedeckt. Trotz der Pragung von Crossfirre und der einzigartigen
weibchenspezifischen epigenetischen Merkmale von Crossfirre, Firre und Dxz4 erwiesen sich
diese Loci als nicht relevant fir XCl. Im Gegensatz dazu wurde in der Studie ein kombinierter
Effekt von Crossfire und Firre auf die autosomale Genregulation festgestellt. Die
anschlielende Phanotypisierung von dreifach-knockout-Mausmodellen ergab mehrere
knockout- und geschlechtsspezifische Phanotypen und gab Aufschluss Uber die in vivo Rolle
von Crossfirre, Firre und Dxz4. Der resultierende Datensatz bietet eine solide Grundlage fir

weitere Studien zur Erforschung dieser X-chromosomalen Loci.

Da die experimentelle Charakterisierung von ncRNAs im Labor sehr umfangreich ist, zielte
das zweite Projekt darauf ab, die Zielgene und Mechanismen von cis-wirkenden ncRNAs
computergestutzt vorherzusagen. In der Studie wurde eine signifikante Anreicherung von
allele-spezifischen ncRNAs in der Nahe von allele-spezifischen pcGenen sowohl bei Mausen
als auch bei Menschen festgestellt. Dies deutet darauf hin, dass diese sogenannten cis-

aktiven Ziele von ncRNAs anhand des allele-spezifischen Expressionsmusters vorhergesagt



werden kénnen. Dieses Konzept wurde in ein neuartiges bioinformatisches Modell uberfihrt
und zur Vorhersage von 397 ncRNA-Zielgen-Interaktionen und deren Mechanismus in den
zentralen Organen der Maus verwendet. Zudem wurde der Ansatz auf menschliche Proben
ausgeweitet und auf 54 verschiedene Gewebe von fast 1.000 Individuen aus der GTEx-
Datenbank angewendet. Die genetische Varianz innerhalb der menschlichen Population
fuhrte zur Entdeckung neuer Verbindungen mit jeder Probe, was zu 2.291 menschlichen
ncRNA-Ziel-Verbindungen und deren vorhergesagter Wirkungsweise flhrte. Nach einer
umfassenden Validierung mit Hilfe von probenangepassten eQTLs ermdglichte die Integration
von GWAS-Daten die Zuordnung eines erheblichen Anteils von ncRNA-Uberlappenden
Risikovarianten zu ihren jeweiligen protein-kodierenden Zielgenen. Mit der zunehmenden
Verfugbarkeit von Sequenzierungsdaten hat diese Strategie das Potenzial, die Ziele und
Mechanismen eines Grolteils der cis-wirkenden Elemente des nicht-kodierenden Genoms zu

identifizieren.

vi
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1 Introduction

1.1 The non-coding genome: An overview

The human genome comprises about 20,000 pcGenes which are essential for fulfilling the
fundamental processes of life’?. Surprisingly, these genes make up less than 2% of the
genome, while the vast majority is non-coding®**. These non-coding regions have long been
considered as "junk" DNA, encompassing introns and intergenic sequences without functional
relevance’®. However, over the past decades, it has become evident that the non-coding
genome harbors the critical regulatory elements that define when and where genes are turned
on and off. Additionally, 90% of the disease-associated genetic variants have been identified
outside of pcGenes, highlighting the functional relevance of the non-coding genome in health
and disease'®’. However, our lack of understanding of the underlying regulatory mechanisms

poses a significant challenge in elucidating how non-coding variants contribute to diseases.

1.1.1 DNA regulatory elements

A key group of regulatory elements within the non-coding genome are DNA elements that
guide the regulation of gene expression in a tissue- and cell-type-specific manner. These
elements include four general types of regulators, including promoters, enhancers, silencers,

and insulators (Figure 1.1)"%.

Promoters are short sequences of DNA adjacent to the transcription start site of the genes
they regulate®. Here, they serve as binding sites for transcription factors and the RNA
polymerase, playing critical roles in initiating transcription and determining the efficiency at
which a gene is expressed"'®. By integrating epigenetic characteristics and distal regulatory
elements, promoters act as central hubs in the gene regulatory network, ensuring the
appropriate temporal and spatial expression of genes'. One type of distal regulatory elements
are enhancers, which can increase gene expression in a tissue- and cell-type-specific
manner'. Enhancers possess sequence-specific binding sites for transcription factors,
enabling them to modulate chromatin structure and transcriptional activity'"'2. The activity of
enhancers is marked by specific chromatin signatures, including acetylated histone H3 lysine
27 (H3K27ac) and monomethylated histone H3 lysine 4 (H3K4me1)"'>. In order to act on the
transcriptional activity, enhancers must be located in open chromatin regions and form
physical contact with the target promoters. This kind of interaction is further required for
silencers. Analogous to enhancers, these elements recruit and bind co-factors that influence

transcriptional activity. In contrast to enhancers, silencers function to repress gene expression



upon promoter interaction®. Although silencer-specific histone modifications remain largely
unexplored, trimethylation of histone H3 lysine 27 (H3K27me3) is frequently observed at
repressed gene loci and may indicate silencer activity'. The formation of chromatin loops,
mediated by structural proteins such as CCCTC-binding factors (CTCF) and cohesin, is
required to establish physical contact between enhancers and silencers and the promoter of
target genes. This looping architecture organizes the genome into topologically associating
domains (TADs), within which regulatory elements and their target genes can interact™'. At
the boundaries of these TADs, insulators are frequently found to maintain the segregation.
Insulators allow the physical interactions between regulatory elements to be blocked, limiting
the influence of distal regulators and preventing them from affecting genes outside their
defined loops'. Collectively, the interplay of these DNA elements allows fine-tuned temporal

and spatial regulation of gene expression across different tissues and cell types.

1.1.2 Non-coding RNAs

In addition to DNA regulatory elements, high-throughput sequencing has discovered that most
of the human genome is transcribed under various conditions, producing RNA transcripts that
are not translated into proteins. These ncRNAs are essential for fundamental physiological
processes and play important roles in regulating gene expression. To date, hundreds of
thousands of ncRNAs have been identified and classified into diverse classes, each
characterized by different functional properties and mechanisms®%'%¢_ Although we are just
at the beginning of understanding their molecular functions, ncRNAs have changed the
perception of RNAs as simple intermediates in protein synthesis to key regulatory elements of

the genome'®.

Since the discovery of ncRNAs, their biological relevance in genome organization and protein
production has become increasingly apparent. Sequencing technologies have identified a
large number of different classes of ncRNAs with varying functional properties'®'”. Based on
their functional role, ncRNAs are categorized into housekeeping and regulatory ncRNAs
(Figure 1.1). Housekeeping RNAs, which include small nuclear RNAs (snRNAs), transfer
RNAs (tRNAs), ribosomal RNAs (rRNAs), and small nucleolar RNAs (snoRNAs), are
ubiquitously expressed transcripts essential for protein synthesis'®. Upon transcription of a
pcGene, the messenger RNA (mRNA) is processed and spliced. This splicing process is
mediated by snRNAs, which are core components of the splicing machinery'®. The mature
mRNA is then exported into the cytosol, where its sequence is translated into functional
proteins. This translation process is mediated by rRNAs that form the structural and catalytic

core of ribosomes?, while tRNAs act as molecular interpreters of the genetic code, pairing the



mRNA codons with their corresponding amino acids?"?2. Additionally, the proper functioning
of rRNAs and tRNAs is regulated by snoRNAs, which direct chemical modifications such as
methylation and pseudouridylation. These modifications increase the stability and structural

integrity of rRNAs and tRNAs, ensuring their efficiency in protein synthesis®.
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Figure 1.1 Overview of the functional elements of the non-coding genome.

Schematic overview of the functional elements of the non-coding genome, including DNA regulatory
elements and the different classes of non-coding RNAs (ncRNAs). Based on their functional role,
ncRNAs are categorized into housekeeping and regulatory ncRNAs. Regulatory ncRNAs are further
subdivided by length into small and long ncRNAs.

1.1.2.1 Small regulatory ncRNAs

In contrast to housekeeping RNAs, regulatory RNAs control the abundance of proteins and
are expressed in a dynamic and cell-type-specific manner. Based on their length, regulatory
ncRNAs are subdivided into small and long ncRNAs'®. Small ncRNAs were among the first
ncRNAs identified to function as regulatory transcripts at various layers (Figure 1.1)?*. The
definition of small ncRNAs is based on size rather than function and typically includes ncRNAs
smaller than 300 base pairs (bp) in length?®. In 1984, the 93-nucleotide microRNA F was
discovered in the bacterium Escherichia coli, marking the first reported ncRNA with regulatory
function. The microRNA F exerts its function through base pairing with the mRNA of the outer

membrane protein F, resulting in ribosome blocking and repression of translation?®2”. Today,



at least three different types comprise the class of small regulatory ncRNAs, including small
interfering RNAs (siRNAs), microRNAs (miRNAs), and piwi-interacting RNAs (piRNAs)?.

Both siRNAs and miRNAs are involved in post-transcriptional silencing by directing Argonaute
(Ago) proteins to the nucleic acids of target genes®. In invertebrates, siRNAs are abundant
and suppress viruses and transposable elements, whereas in mammals, their activity is largely
restricted to embryonic stem cells and the germ line®®. MiRNAs are thought to have evolved
from ancestral siRNA pathways and are involved in the regulation of endogenous mRNAs.
The biogenesis of miRNAs is commonly based on a canonical pathway that generates ~22
nucleotide short molecules. Upon transcription, the hairpin structure of a primary miRNA is
cleaved, resulting in a precursor miRNA that is exported into the cytosol. Here, the RNase llI
Dicer cleaves the precursor miRNA at the terminal loop to generate a miRNA duplex. This
duplex associates with the Ago protein and the passenger strand is discarded, forming the
single-stranded RNA-induced silencing complex (RISC). The guide strand directs the complex
to the transcripts of the regulatory targets, resulting in either translational repression or
degradation®. In contrast to the siRNA and miRNA pathways that interact with Ago proteins,
piRNAs direct PIWI proteins to methylate DNA or cleave the RNA transcript of target genes.
In animals, piRNAs function primarily in the germline to silence transposable elements and

maintain genomic stability®'.

1.1.2.2 LncRNAs and their regulatory mechanisms

Besides small regulatory RNAs, a significant proportion of the eukaryotic genome is
transcribed into INcRNAs**3°. Due to their generally low expression patterns, INcRNAs were
initially considered to be transcriptional noise®. However, since then, numerous studies have
demonstrated their functional roles in developmental and cellular processes''"*¢. To date,
thousands of IncRNA loci have been identified, with estimates ranging from 16,000 to 100,000

IncRNAs in humans®37-38,

LncRNAs are defined as RNA transcripts longer than 500bp that mostly lack coding potential.
This definition was intended to exclude housekeeping and small regulatory ncRNAs, which
are generally shorter in length®. According to their genomic position, IncRNAs are classified
as intergenic, located between genes; intronic, located within introns; and antisense,
transcribed on the opposite strand of genes. Additionally, IncRNAs that share the transcription

start sites with adjacent genes are classified as bidirectional INcRNAs>°.

Compared to pcGenes, IncRNAs share several characteristics, including conserved

promoters, exon structures, and splice junctions®. Many IncRNAs are transcribed by RNA



polymerase Il, are polyadenylated, and have 7-methylguanosine caps, suggesting their
processing is similar to mMRNAs**“°. However, IncRNAs also differ from pcGenes. While the
promoters and exons of INcRNAs show some conservation, their primary sequences are less
conserved across species compared to those of pcGenes***#4!, Furthermore, INcRNAs are
primarily localized in the nucleus®?®, with expression patterns that are often dynamic and highly
cell-type-specific, particularly during later stages of development*®#?. A hallmark of INcRNAs
is that the expression pattern can change rapidly in response to environmental factors,
including stress and disease conditions**®.

Given their critical role in gene regulation, INcRNAs are involved in various physiological

processes, ranging from DNA damage response*’, immune system regulation*®

49-51 54,55

inflammation
56-58

, and metabolism®?*® to hormone production, signal transduction®**°, neural

functions®8, and responses to environmental stresses in plants®*°®° Numerous studies
have shown that INcRNAs exert their functional roles at almost all layers of gene regulation,
including the modulation of chromatin architecture, orchestrating transcriptional and post-
transcriptional processes, as well as facilitating the formation of higher-order structures such
as scaffolds and condensates*’. Through these diverse mechanisms, IncRNAs can influence
gene activity by either enhancing or repressing transcription or protein abundance. These
effects can occur in cis, by affecting loci on the same chromosome, or in trans, by targeting

genes at distant genomic sites on different chromosomes®.

1.1.2.2.1 Chromatin regulation by IncRNAs

A regulatory mechanism by which INcCRNAs act on gene expression is via the interaction with
chromatin. The structure of chromatin is critical for gene activity, with open chromatin
facilitating the access of the transcriptional machinery and closed chromatin repressing it'.
LncRNAs can directly influence chromatin structure through their negative charge, which
interacts with histone proteins, resulting in chromatin decondensation and rapid changes in

)40,61

gene expression (Figure 1.2a . Furthermore, the interaction with various proteins can

modify the state of chromatin in an indirect manner. For example, INcRNAs can recruit

chromatin modifiers to gene promoters*®¢2

or act as decoys, sequestering these modifiers and
preventing them from accessing their target sites (Figure 1.2a)**3. Protein complexes like the
Polycomb Repressive Complex (PRC) 1 and PRC2 influence gene activity by modulating
transcription through histone modifications and chromatin compaction®. The IncRNA ANRIL
is a key example of a regulatory IncRNA that mediates its function through IncRNA-protein
interaction with PRC1 and PRC2 to affect the state of chromatin. ANRIL facilitates the

recruitment of these complexes to the adjacent genes CDKN2A and CDKN2B, exerting cis-



regulatory effects on their expression*®®2. Another aspect of IncRNA-chromatin interaction is
the formation of RNA-DNA hybrids, such as R-loops or RNA-DNA-DNA triplexes*’. Depending
on the context, these hybrid structures can be recognized by transcription factors or chromatin
modifiers that activate or inhibit transcription (Figure 1.2a)**%*%’ The IncRNA MEG3is a prime
example of a hybrid-forming IncRNA. Guided by GA-rich sequences, MEG3 represses genes
of the TGF-f signaling pathway by the formation of triplexes that facilitate the recruitment of
PRC2. This interaction leads to chromatin modifications that result in transcriptional
silencing®®®. However, it is important to note that the prevalence of these structures is still

controversial due to the challenges of detecting them in vivo®.
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Figure 1.2 Overview of IncRNA-mediated gene regulation.

Schematic overview of the different mechanisms by which long non-coding RNAs (IncRNAs) can regulate
gene expression. LncRNAs can modify (a) chromatin structure by sequestering or recruiting chromatin-
modifying proteins or by the charge of the transcript. Moreover, IncRNAs can bind DNA to form RNA-
DNA hybrids such as triplexes and R-loops. Acting as scaffolds, IncRNAs facilitate the assembly of
proteins and RNAs leading to the formation of (b) higher-order structures, or promoting inter-
chromosomal contacts. At the (c) transcriptional level, IncRNAs can modify gene expression via the act
of transcription, e.g. by transcriptional interference or via the IncRNA transcript itself. Regulatory
elements such as enhancer RNAs (eRNAs) can further be transcribed from IncRNA loci and promote
gene expression by chromatin looping. Regulatory effects can also be exerted at the (d) post-
transcriptional level by interacting with RNA-binding proteins to modify signaling pathways or the
processing and stability of RNA transcripts. Moreover, INncRNA transcripts can interact with RNA
molecules to recruit protein complexes that affect mRNA degradation, splicing, or act as sponges,



competing with target RNAs for miRNA binding. Created in BioRender. Andergassen, D. (2025)
https://BioRender.com/b98a895.

1.1.2.2.2 LncRNAs in higher-order structures: Scaffolds and condensates

Furthermore, IncRNAs contribute to the formation of higher-order structures, including
scaffolds and nuclear condensates. These structures are membraneless RNA-protein
compartments that are essential for various cellular processes*. Acting as scaffolds, I"cRNAs
facilitate the assembly of proteins and RNAs, critical for regulatory activities such as pre-
mRNA splicing or transcription*®®"! An example of a IncRNA involved in the formation of
higher-order structures is NEAT1. NEAT1 plays both structural and functional roles in the
formation of paraspeckles, which allow RNAs and proteins to be sequestered. Thus, IncRNA-
mediated gene regulation is not only contributed to individual transcripts but often involves
complex regulatory networks of multiple RNAs and proteins, collectively influencing gene
expression through their coordinated activity*®. Additionally, IncRNAs can act as modifiers of
nuclear architecture, bringing different chromosomes into proximity and promoting inter-
chromosomal contacts. These types of inter-chromosomal contacts allow for gene regulation

across different chromosomes in a trans-dependent manner (Figure 1.2b)".

1.1.2.2.3 Transcriptional regulation by IncRNAs

Another mechanism by which INcRNAs regulate gene expression is through directly affecting
transcriptional regulation. Thereby, gene expression can be modulated either by the act of
transcription or by the IncRNA transcript itself. The mechanisms by which IncRNA activity
represses or initiates gene expression are diverse and include interference with the

transcriptional machinery, polymerase recruitment, histone modifications”"*

, and changes in
chromatin accessibility (Figure 1.2¢)">®. Thereby, the mechanism is not restricted to a single
mode-of-action but can include multiple modalities. The antisense Igf2r ncRNA (Airn) is a well-
studied example of a IncRNA that regulates target gene expression in both a transcript-
dependent and transcript-independent manner. In mouse extraembryonic tissues, the Airn
transcript recruits PRC2’"® and G9a’® to the promoters of multiple distant genes, leading to
their silencing. Additionally, the transcription of Airn itself leads to the repression of the
overlapping insulin-like growth factor 2 receptor (Igf2r) gene through a mechanism known as
transcriptional interference in both extraembryonic and somatic tissues. Thereby, the
transcriptional activity of the Airn locus sterically blocks the RNA polymerase Il at the

,40,73,80,81

transcription start site, leading to the silencing of Igf2 . Moreover, IncRNAs can be

transcribed at active enhancers, resulting in enhancer RNAs (eRNAs)®?%% These non-



polyadenylated transcripts play a role in regulating chromatin looping by acting as scaffolds
for protein complexes that mediate interactions between promoters and enhancers (Figure

1 .2C)40’84’85.

1.1.2.2.4 Post-transcriptional regulation by IncRNAs

Beyond functioning at the transcriptional level, IncRNAs exert regulatory effects at the post-
transcriptional stage by interacting with RNA-binding proteins (RBPs) and nucleic acids.
These interactions allow IncRNAs to modulate mRNA splicing and signaling pathways,
affecting the processing, stability, and degradation of mRNA transcripts (Figure 1.2d)%-%.
Such post-transcriptional regulation is exemplified by the interaction between the IncRNA
NORAD and Pumilio proteins. Proteins of the Pumilio family bind to specific RNA motifs known
as Pumilio Response Elements (PREs) on target mRNAs, promoting their degradation and
repressing translation®. The INcRNA NORAD contains numerous PREs, making it a high-
affinity binding partner for Pumilio proteins®. In response to DNA damage, NORAD is highly
expressed and sequesters Pumilio proteins by binding them. This sequestration prevents

Pumilio proteins from over-repressing their mRNA targets and maintains genomic stability*®°.

In addition to these direct interactions with RBPs, IncRNAs can interact with RNA molecules
to recruit protein complexes that affect mMRNA degradation (Figure 1.2d). The STAU1 protein,
for example, binds to double-stranded RNA structures of certain mRNAs, promoting their
decay. This type of post-transcriptional regulation can be facilitated by IncRNAs that bind to
STAU1 mRNA targets with complementary sequences, facilitating STAU1-mediated decay®".
Moreover, some IncRNAs can affect gene regulation by competing with mRNAs for miRNA
binding, commonly known as miRNA sponging (Figure 1.2d)*>*%. These IncRNAs possess
complementary sequences to those found in miRNA target sites on mRNAs, preventing them
from binding to their intended mRNA targets. Thus, by acting as molecular sponges, INcRNAs

can regulate miRNA availability and influence the repression of target genes*.

In summary, IncRNAs can regulate gene expression through various mechanisms, including
transcriptional and post-transcriptional processes*. Their interactions with chromatin,
proteins, and nucleic acids, as well as their involvement in nuclear condensates, highlight the

complex nature of IncRNA-mediated gene regulation.



1.2 X chromosome inactivation: A case study of IncRNA function

In the early 1990s, H19 was discovered as the first InCRNA in humans and marked the
beginning of exploring the functional mechanisms of INcRNAs*. Shortly after, in 1991, the
IncRNA Xi-specific transcript (XIST) was identified and found to initiate the process of female
XC|36’95’96.

During mammalian development, one of the two X chromosomes becomes epigenetically
silenced to achieve gene dosage compensation between males (XY) and females (XX)¥. In
mice, the upregulation of Xist initiates XCI in cis on the chromosome from which it is
expressed®®. Early knockout studies demonstrated that Xist is essential for the viability and
proper development of female mice, as mouse models lacking Xist showed lethality early in
embryogenesis due to two active X chromosomes in the extra-embryonic tissue®. Subsequent
studies have shown that this early lethality can be bypassed using conditional knockout
models, in which Xist is specifically deleted in the epiblast. In these cases, mutant embryos
developed to term but failed to survive beyond weaning, attributed to defects in postnatal

organ maturation'®'%",

Functional and structural differences arise between the active (Xa) and inactive (Xi) X
chromosomes as a result of the inactivation process®. In mice, XCl occurs in two successive
waves, including an initial non-random phase early in development, followed by random XCI
at a later stage. In mouse embryos, the first wave occurs shortly after fertilization between the
two- and four-cell stadium, resulting in imprinted silencing of the paternal X chromosome'®.
During oogenesis, the imprinted repression of the maternal Xist is established by H3K27me3
of a Polycomb-dependent domain spanning Xist. As a result, Xist becomes upregulated
exclusively from the paternal allele, inducing the non-random inactivation of the paternal X

98,103

chromosome . In extraembryonic lineages, such as the placenta, imprinted XCI is

d'™, whereas reactivation occurs in cells of the inner cell mass of embryonic day 3.5

maintaine
blastocysts'%%%°. At embryonic day 5.5, the second wave of XCl occurs, leading to the random
inactivation of one of the two X chromosomes'®. In this phase, Xist becomes randomly
upregulated from one of the two X chromosomes, initiating the inactivation process and gene
silencing. Due to the random nature, somatic tissues exhibit a mosaic pattern of cells with
either the maternal or paternal X chromosome active®®. Although the mechanisms governing
the random expression choice of Xist are not fully understood, the antisense transcription of
Tsix has been identified as a repressive regulator of Xist during XCI?®'%  However, further
research is needed to elucidate the precise regulatory pathways of Xist expression.

107

Subsequently, the Xi remains inactive and is clonally transmitted by mitosis™’. An exception

of this process occurs in primordial germ cells, where Xi reactivation occurs in embryonic day



12.5 (E12.5) embryos to ensure that both X chromosomes are active prior to oogenesis
(Figure 1.3)'%,
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Figure 1.3 Overview of the cycle of X chromosome inactivation.

In mice, the first wave of X chromosome inactivation (XCI) occurs shortly after fertilization between
the two- and four-cell stadium. This process results in imprinted silencing of the paternal X
chromosome. Reactivation of the inactive X chromosome (Xi) occurs in E3.5 blastocysts in cells of
the inner cell mass, while imprinted XCl is maintained in extraembryonic lineages. The second wave
of XClI occurs in cells of the epiblast at embryonic stage E5.5, leading to the random inactivation of
one of the two X chromosomes. Subsequently, the Xi remains stable in somatic tissues, except for
primordial germ cells, where Xi reactivation occurs in E12.5 embryos to ensure that both X
chromosomes are active prior to oogenesis. The figure was adapted and redrawn from Wutz et al.
2011'%, Created in BioRender. Andergassen, D. (2025) https://BioRender.com/b98a895.

1.2.1 Mechanisms of action of the IncRNA Xist

Due to its prominent role in XCl, Xist became one of the best-studied examples of a cis-acting
IncRNA with complex modular organization. The Xist gene locus transcribes a 17 kilobase
(kb) polyadenylated and spliced transcript that contains several repetitive domains (A-F).

These domains show partial sequence conservation and are essential for the proper

10



functioning of Xist®®. Once transcribed, the Xist RNA remains in the nucleus and coats the
future Xi in cis. Changes in the 3D conformation of the X chromosome allow Xist to reach

distant sites, facilitating its spreading across the entire chromosome"°.

The A-repeats of Xist recruit the chromatin regulator SHARP/SPEN, which activates histone
deacetylase 3 (HDAC3) present on the X chromosome''"""*, HDAC3 then targets H3K27ac,
leading to chromatin condensation and gene silencing’'*. The B- and C-repeats of Xist bind
to the heterogeneous nuclear ribonucleoprotein (hnRNP) K to recruit PRC1 and PRC2'"°. This
process strengthens the repressive compartment by inhibiting transcription initiation and
sequestering the splicing machinery. After this process, Xist becomes dispensable for
silencing the X chromosome, as its maintenance is carried forward by epigenetic
modifications. These include PRC2-mediated deposition of repressive histone marks, such as
H3K27me3 on regulatory regions and DNA methylation by the DNA methyltransferase
(DNMT) 1 and DNMT3B*%.

Although the Xi is largely transcriptionally silent, a few genes can overcome the process of
XCl and remain active. These so-called escape genes are consequently expressed from both
alleles, increasing the gene dosage of females. In mice, approximately 3-7% of the X-linked
genes have been reported to escape XCI, while in humans more than 20% are estimated to
escape®® %8 This variability in gene expression contributes to an increased phenotypic
diversity in females. Gene escape occurs in a constitutive and facultative manner. Constitutive
escape genes consistently overcome XCI in most cell lineages and tissues, whereas
facultative escapees are tissue or lineage specific and can vary across developmental stages,
increasing the cellular diversity of females’®%1'81'° While constitutive escape genes often
have homologs on the Y chromosome and are required to maintain gene expression dosage,
the functional roles and the molecular mechanisms of many facultative escape genes remain

to be investigated.

1.2.2 The structure and organization of Xi: Roles of Dxz4 and Firre

As a result of the XCI process, the Xi forms a compact chromatin structure called the Barr
body'?°. Chromosome conformation capture methods have shown that the Xi is depleted of
TADs compared to the Xa. In contrast, the Xi harbors two conserved megadomains of high

121123 The conserved

intrachromosomal contact, that bisect the inactive chromosome
macrosatellite Dxz4 is located at the boundaries of these structures and is transcribed into the
IncRNA 4933407K13Rik. On the Xi, Dxz4 is hypomethylated and contains several Xi-specific

CTCF binding sites'®*. Moreover, Dxz4 contributes to the folding of the Xi by forming a

11



conserved superloop interaction with the functional intergenic repeating RNA element (Firre)
122,125

locus (Figure 1.4)

The Firre locus transcribes a well-studied INcRNA and exhibits multiple characteristics specific
to the Xi. Similar to the Dxz4 locus, the Firre gene body contains multiple CTCF binding sites
that are specific to the Xi and are marked by trimethylated histone H3 lysine 4 (H3K4me3)"® %4,
These binding sites have been shown to anchor the Xi to the nucleolus, supporting its
perinucleolar localization'®*'?®. The Firre locus produces full-length transcripts from the Xa,
whereas shorter isoforms have been reported to escape XCI on the Xi’>"®'2*, Furthermore,
the Firre RNA has been shown to mediate crosstalk between Xa and Xi in somatic cells, with

Xa-derived transcripts maintaining H3K27me3 enrichment on Xi (Figure 1.4)'%.

Due to these Xi-specific characteristics, Dxz4 and Firre have been hypothesized to play a role
in XCI, but multiple studies have indicated that these loci are dispensable for the inactivation

121,125-129 "1t has been shown that the deletion of Firre and Dxz4 in cell lines results in

process
the loss of the superloop interaction and the megastructures present on Xi'?®'%_ Interestingly,
these changes in the 3D conformational structure did not affect the expression of genes
located on the Xi'®. Another study revealed that the establishment of XCI remains further
unaffected, as deleting these loci in vivo revealed fertile and viable mutants'?’. However, the
mosaic nature of random XCI has made it challenging to assess the impact of these loci on
XCI maintenance in vivo, as single-cell analyses are required to conclusively determine their

precise role.

Although no overt effects have been detected for XCl, the deletion of Firre and Dxz4 has been
shown to affect autosomal gene regulation in an organ-specific manner in vivo'" 3!, While the
functional properties of Dxz4 remain largely elusive, the INcCRNA Firre has been extensively
studied. Cell culture models have demonstrated a variety of functions of Firre, including gene
regulation'®?, adipogenesis'®®, and nuclear architecture’'?8, Firre is abundantly transcribed
and contains multiple repeating RNA domains (RRDs) and local repeats’®'**. It has been
shown that the nuclear retention of Firre RNA is maintained by these RRDs, which serve as a
nuclear retention signal'*. Further, these repeats allow Firre to form trans-chromosomal
interactions that affect autosomal gene regulation'*. Upon transcription, Firre RNA localizes
around its gene body and binds to the nuclear matrix factor hnRNP U, facilitating the tethering
of distant chromosomes to co-regulate genes in trans’*'* Additionally, a recent study
investigated the temporal dynamics of Firre by monitoring gene expression changes across
different time points following Firre induction'. The authors observed that the RNA of Firre
acts on the epigenetic and transcriptional landscape within minutes, leading to abundant

transcriptional changes on a longer timescale'.
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Loss- and gain-of-function studies in mice have further shown the physiological implications
of Firre. During hematopoiesis, Firre mutants exhibit alterations in blood cell composition™".
Notably, these effects could be rescued by the transgenic expression of Firre, highlighting a
trans-acting molecular mechanism (Figure 1.4)"*'. Additionally, the study showed that
overexpression of Firre was associated with impaired survival upon exposure to
lipopolysaccharides™’. In humans, duplications of the FIRRE locus have been associated with
intellectual disability and dysmorphic features'®'%’. Moreover, FIRRE has been linked to the
survival outcomes of patients with diffuse large B-cell lymphoma and has been shown to
promote tumor growth in multiple cancers™®'°. Although the Firre locus is extensively
characterized, large-scale phenotyping studies of Firre using mouse models are currently

lacking.

1.2.3 The imprinted IncRNA Crossfirre within the Firre locus

An additional IncRNA has been annotated within the Firre locus, transcribed in an antisense
orientation to Firre. This INCRNA, termed Crossfirre (Gm35612), consists of 3 exons and is
embedded in a 50kb long interspersed nuclear element (LINE). LINEs are a group of
transposable elements that are hypothesized to facilitate the spreading of XCI across the
chromosome™'. Moreover, an extensive allele-specific analysis identified Crossfirre as an
imprinted X-linked gene in somatic tissues that is predominantly expressed from the maternal
X chromosome’®. Imprinted expression of Crossfirre was detected in adult brains through
RNA-sequencing (RNA-seq) analysis and further confirmed by observing maternal enrichment
of H3K4me3 at the promoter of Crossfirre in mouse embryonic fibroblasts’®. Considering the
imprinted characteristics, the Crossfirre locus may be worthwhile investigating for its potential
association with imprinted XCI. Prior to this thesis, the Crossfirre locus was entirely
uncharacterized and the in vivo role at the molecular and phenotypic level was unknown. In
addition, the relation of Crossfirre to both imprinted and random XClI, either independently or

in conjunction with Firre and Dxz4, remained to be explored (Figure 1.4).
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Figure 1.4 Schematic overview of the Crossfirre, Firre, and Dzx4 loci.

The active X chromosome (Xa, upper panel) and inactive X chromosome (Xi, lower panel) are shown
with the Crossfirre, Firre, and Dxz4 loci highlighted. Transcription of these loci is specific to the Xa,
with shorter isoforms of Firre that may transcribe from the Xi. The superloop interaction between Firre
and Dxz4, and the two megadomains are specific to the Xi. The colors indicate Crossfirre (red), Firre
(orange), and Dxz4 (black). Created in BioRender. Andergassen, D. (2025)
https://BioRender.com/b98a895.
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1.3 Allele-specific expression

Mammals are diploid individuals and thus, except for the sex chromosomes in males, the
genome consists of two copies of each chromosome, one inherited from the maternal and one
from the paternal side. For most genes, both alleles contribute equally to the expression,
referred to as biallelic expression. However, a subset of genes, including the IncRNA Xist on
the female X chromosome, show predominant expression from one allele, a phenomenon
known as ASE (Figure 1.5)"2,
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Figure 1.5 The concept of allele-specific expression.

Diploid individuals, such as mammals, possess two alleles of each chromosome, including a maternal
and a paternal allele. Usually, gene activity is considered as the sum of expression derived from both
chromosomes. In allele-specific expression (ASE) analysis, each allele is considered individually.
The majority of genes are expressed biallelically, with both alleles being expressed at equal levels.
However, a subset of genes shows ASE where gene expression levels differ between the maternal
and paternal alleles. Created in BioRender. Andergassen, D. (2025) https://BioRender.com/b98a895.

ASE occurs throughout the entire genome at both the tissue’ and single-cell level3144,
Several mechanisms can lead to the expression of genes in an allele-specific manner,
including random monoallelic expression, such as observed in the case of random XCI, as
well as allele-specific differences arising from genetic variation or epigenetic modifications like

genomic imprinting™*2.
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1.3.1 Allele-specific expression arising from genomic imprinting

A well-studied mechanism of ASE is genomic imprinting, which was discovered in the 1980s
through pronuclear transplantation in mice''*. Genomic imprinting is a consequence of
inheritance and characterized by epigenetic modifications between the alleles, leading to

parental-specific gene expression from either the maternal or paternal chromosome™’.

In 1991, Igf2r was the first gene in mice to be identified as imprinted, followed by the discovery
of Igf2 and H19"%"%°_ To date, approximately 100 mouse and 40 human imprinted genes have
been discovered, advancing our understanding of the underlying molecular mechanisms’®1%'-
33 In mice, the genetic imprint of genes is established in the germline during oocyte and
sperm development. This process involves the DNA methylation complexes DNMT1A and
DNMT3L to establish de novo methylation marks at gametic differentially methylated regions
(gDMRs)"**'%"_ After fertilization, genome-wide DNA demethylation occurs in both parental
genomes during preimplantation development. However, imprints at gDMRs are protected
from this demethylation and are stably maintained in somatic cells throughout mitosis by
DNMT 156158159 - A exception occurs in the primordial germ cells, where erasure of the

imprints occurs at E12.5 to reset them for gametogenesis'®.

Approximately 80% of the imprinted genes have been identified to be organized in clusters,
where a single gDMR regulates the imprinted expression of multiple genes. These gDMRs are
defined as imprinting control elements (ICEs) and act in cis to repress expression by targeting
small clusters of genes'®''®®. Genetic deletion studies of ICEs have identified the responsible
gDMRs for multiple imprinted gene clusters, including Kenq1, Pws/As, Gnas, Igf2-H19, Grb10,
DIk1-Meg3 or Igf2r-Airn'®*'"°. It was demonstrated that the imprinted INcRNAs in these
clusters are expressed from the opposite allele as their associated pcGenes. Additionally, it
was shown that deleting the ICE on the allele expressing the imprinted IncRNA restored the
biallelic expression of the pcGenes. These findings highlight the functional role of IncRNAs in
imprinted loci by repressing the pcGenes, as confirmed for Kcng1ot1 and Airn within the Kenqg1
and Igf2r clusters, respectively®®'"". For these cases, the ICE is located at the promoters of
the IncRNAs, regulating their parental-specific expression and resulting in allele-specific

repression of the target genes.

One of the best-studied examples of a regulatory INcCRNA that represses several pcGenes in
a parental-specific manner is the Igf2r/Airn cluster. Airn is an imprinted, paternally expressed
IncRNA that silences target genes in a cis-dependent manner across most tissues'’'"3,
Allele-specific analyses of this cluster have been a powerful tool for identifying the regulatory

targets of the IncRNA Airn. While Igf2r is repressed by Airn in almost all tissues through the
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act of transcription, the Airn RNA represses six distant genes within a 10 megabase (Mb)
window in the placenta (Pde10a, Park2, Sic22a3, Dact2, Smoc2, Thbs2), by the recruitment
of epigenetic repressors’79148.17417% The example of Airn illustrates that imprinted clusters
controlled by an allele-specific INcRNA provide valuable models for epigenetic discovery,
allowing researchers to disentangle the effects of INcRNA expression on one allele compared

to the allele lacking IncRNA expression, all within the same nuclear environment'®",

1.3.2 Allele-specific expression arising from genetic variation

Although genomic imprinting is a well-studied phenomenon leading to ASE, the vast majority
of ASE is driven by genetic variations between the alleles'’®. Genetic deletions, insertions,
and single-nucleotide polymorphisms (SNPs) can affect gene expression in cis or trans, with
heterozygous cis-acting SNPs frequently leading to ASE. Thereby, genetic variation can
mediate ASE through a variety of mechanisms, including the transcriptional and post-

transcriptional level (Figure 1.6).

At the transcriptional level, heterozygous SNPs can affect chromatin accessibility, giving rise
to ASE in a tissue-specific manner. In addition to imprinting, genetic variants can alter
epigenetic marks such as DNA methylation or histone modifications through sequence-

dependent allele-specific methylation'""178

. Moreover, heterozygous polymorphisms can
affect the binding affinity of transcription factors to promoters or enhancers, leading to

differential gene expression between the alleles (Figure 1.6)'791¢°,

At the post-transcriptional level, genetic variation can affect the abundance of transcripts and
isoforms. Heterozygous SNPs can trigger nonsense-mediated decay, a cellular quality control
mechanism that leads to the degradation of mMRNAs with premature stop codons'2181-183
(Figure 1.6). Another post-transcriptional mechanism by which genetic variants can affect the
transcript abundance of genes is by disrupting RNA binding sites for proteins that are crucial
for RNA processing, localization, and translation'®*. Alterations in binding sites, for example
those for miRNAs, can further alter transcript degradation rates and contribute to ASE'28%,
Moreover, variants located near splice sites can lead to alternative splicing, which often
involves alternate 3' or 5' exon ends, exon skipping, or intron retention, affecting the number
of transcript isoforms within cells (Figure 1.6)'**'®. Importantly, IncRNAs show ASE more
frequently than pcGenes and thus may contribute significantly to the presence of ASE in the

genes they regulate in cis’®142187

. Finally, heterozygous variants can further impact the
translation of MRNAs by altering the regulatory regions involved in this process, such as

secondary mRNA structures, the 5' untranslated region, or the translation start site (Figure
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1.6)"2'®_ In summary, the influence of genetic variation on the presence of ASE

encompasses a wide range of possibilities.
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Figure 1.6 Overview of the genetic mechanisms leading to allele-specific expression.
Heterozygous single nucleotide polymorphisms (hetSNPs) can affect gene expression in cis, leading
to allele-specific expression (ASE) through various mechanisms. Chromatin accessibility can be
affected by hetSNPs that alter epigenetic marks, such as histone modifications or DNA methylation.
Moreover, hetSNPs can affect the binding affinity of transcription factors to promoters or enhancers.
At the post-transcriptional level, genetic variation can influence the abundance of transcripts by
triggering nonsense-mediated decay or disrupting RNA binding sites. Variants located near splice
sites can further lead to alternative splicing. Changes in miRNA binding sites can alter transcript
degradation rates and thus contribute to ASE. Additionally, allele-specific n\cRNAs can cause ASE in
the genes they regulate in cis. At the translational level, hetSNPs can alter secondary mRNA
structures, the 5' untranslated region or the translation start site. Created in BioRender. Andergassen,
D. (2025) https://BioRender.com/b98a895.

1.3.3 Genome-wide allele-specific expression analysis

In order to identify loci with allelic imbalance, ASE analysis involves the quantification of
sequencing reads that derive from the paternal and maternal allele. This approach requires

that the sequencing reads overlap heterozygous SNPs to distinguish between the alleles.
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A robust method for studying ASE is the generation of F1 mouse hybrids by crossing different
inbred strains. Given that the SNP information for these strains is known, the individual
sequencing reads can be traced back to the allele of origin. Moreover, the number of variants
can be maximized by crossing genetically distant strains'®. In contrast, human studies require
prior genotyping and phasing to identify the corresponding alleles. While genetic variants can
be called directly from RNA-seq data, this approach fails to detect gene features with
monoallelic expression. In such cases, these sites are misclassified as homozygous because
only one allele is expressed'?. Despite the need for prior SNP calling, the high genetic
diversity of humans has led to a widespread prevalence of ASE gene loci across the
population. Analyses of the GTEx project, which includes RNA-seq data from nearly 1,000
individuals across 54 different tissues', have demonstrated that a substantial proportion of

142,191

genes show ASE in at least one sample . However, it is essential to note that the

occurrence of ASE in individual samples is not necessarily biological meaningful but rather a

result of the genetic variation in outbred populations'?19",

Due to the presence of heterozygous variants in ASE mapping, the alignment of sequencing
data can be biased towards the allele that is more similar to the reference genome. This
mapping bias can result in the identification of false positives and must be considered'®.

Several strategies can minimize this effect, including the use of SNP-tolerant mappers'9*1%

or the alignment to masked references'’, personalized genomes, or haplotypes'2198.19°
Subsequently, different computational approaches can be used to identify ASE from bulk or
scRNA-sequencing (scRNA-seq) data to resolve allelic imbalances on tissue or cell-type

level'2.

1.3.3.1 Statistical methods to identify allele-specific expression

Different statistical models are used to assess ASE, which can be classified into two
categories: those designed for ASE mapping in individual samples and those designed to
identify putative regulatory variants across populations'*. Further, sequencing reads can be
mapped to individual heterozygous SNPs or haplotypes encompassing multiple variants, for
example within a gene locus'*2. Haplotypes are sets of polymorphisms that are likely to be
inherited together and provide a more comprehensive picture than individual variants.

Including the haplotype information has been shown to increase the power of ASE mapping®®.

A straightforward approach to statistically assess for ASE within individuals is binomial testing.
A binomial test compares the number of sequencing reads corresponding to the maternal and

paternal allele against the null hypothesis that both alleles are expressed equally, meaning
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with the same probability'?

. A bioinformatics tool that uses the binomial test to identify ASE
from high-throughput sequencing data is Allelome.PRO. Allelome.PRO was designed to
provide the entire picture of ASE loci in F1 mouse hybrids, including biallelic, imprinted and
strain-biased genes. Furthermore, Allelome.PRO calculates an allelic ratio which is the
proportion of sequencing reads from one allele relative to the total reads at a specific locus®".
The ease of use and interpretation of the results have contributed to the success of

Allelome.PRO as an established tool for ASE mapping.

Another computational approach to test for allelic expression are Bayesian models. Bayesian
models provide a probabilistic framework to generate robust estimates of ASE?%2%4 By
integrating prior knowledge and updating probabilities, Bayesian approaches can offer deep
insights into complex patterns of ASE. The parameters of ASE variation across an individual's
genes can be learned using these models?®>?**. Moreover, intra-individual ASE data can be
combined with total gene expression variation across individuals to detect regulatory
variants'*2. By extending the haplotype information derived from population phasing to include
non-coding regions, these models further allow the identification of putative regulatory variants

and provide insights into the mechanisms driving ASE"422%

1.4 Unraveling the function of ncRNAs

Despite the rapid advances in the field of ncRNAs, our understanding remains fragmented
and incomplete, with functional insights often lacking®. To date, less than 1% of the identified

loci have been experimentally characterized'’2%.

For IncRNAs, genetically modified mouse models are considered gold-standard experiments
to unravel their functional roles, a process that is time-consuming and laboratory-extensive'®".
The diverse mechanisms inherent to the regulatory nature of IncRNAs require comprehensive
experimental strategies to unravel the precise functions and mechanisms. Especially for
IncRNAs it often remains challenging to distinguish whether regulatory effects arise from the
transcript, the act of transcription, or the underlying DNA sequence and thus, a variety of
experimental approaches are needed to disentangle their mechanisms. A critical starting point
for characterizing novel IncRNAs is the whole-gene ablation in vivo to identify potential
functional consequences. This approach can be complemented by more refined strategies,
such as polyadenylation-terminator insertion or promoter deletion, to induce transcriptional
termination. These techniques allow researchers to differentiate between the effects of DNA
elements inherent to the INcCRNA locus and those driven by the transcriptional process or the

transcript’®'. To further disentangle effects due to the transcription, promoter activity, or the
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IncRNA transcript, the gene body of IncRNAs can be replaced with a reporter gene. In addition,
transgene rescue experiments can be used to distinguish whether a IncRNA acts in cis or
trans. In some cases, INcRNAs may further encode small functional peptides that can be

identified by introducing frameshift or start codon mutations'',

Following a knockout experiment, characterization of the functional roles requires
comprehensive molecular phenotyping using multi-omics approaches such as epigenetic
profiling and transcriptomic analysis. In particular, knockout and knockdown experiments
enable the identification of dysregulated genes, allowing researchers to pinpoint the molecular
functions and regulatory targets of the ncRNA in question. Comparative analysis of
dysregulated genes can reveal the pathways affected by the ncRNA, providing insights into
its role in biological processes?®. By understanding the pathways and molecular interactions
involved, researchers can infer the broader physiological or developmental implications of a

ncRNA and predict potential effects on cellular function and disease mechanisms.

In addition, the functional consequences of dysfunctional regulatory RNAs can be revealed by
phenotypic analysis. For ncRNAs these effects are often subtle and context-dependent®?.
NcRNAs frequently exert pleiotropic effects, meaning that their influence can vary significantly
across developmental stages, tissues, or in response to environmental cues, leading to distinct
phenotypic outcomes under various conditions. Detecting these nuanced effects requires
comprehensive sampling across diverse tissues, cell types, and developmental stages, as
well as large-scale phenotyping efforts encompassing a wide range of tests®®’. This approach
enables researchers to capture subtle variations in gene expression, cellular function, and
organismal health that may arise due to the ncRNA, providing a clearer understanding of their

contributions to complex phenotypes and potential disease associations®®’,

An illustrative example of a IncRNA with no essential phenotype upon deletion in mice is the
highly abundant IncRNA Malat1. Several loss-of-function studies in cell culture models
highlight the importance of Malat1 for nuclear speckle formation®2°¢2%_ However, multiple
researchers did not detect any overt phenotype after genetic removal of the gene®®2'
Nevertheless, Malat1 has significant implications for the progression of multiple cancers and

33,211,212

diseases . The context-specific functionality of Malat1 underscores the need for

extensive molecular and large-scale phenotyping to identify the functional roles of ncRNAs.

To facilitate the selection of candidate loci for experimental investigation, there is a growing
need for computational methods that predict the functional role and regulatory targets of
ncRNAs. Bioinformatic tools that allow their prioritization based on predicted interactions and

associations to tissues or conditions can reduce the experimental effort and increase the
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likelihood of investigating functionally relevant ncRNAs. However, the computational
identification of ncRNA-targets and their mechanisms is challenging. Due to the low sequence
conservation among species, functional predictions based on paralogs or orthologs with
similar sequences is complex'’. Unlike pcGenes, whose sequences are rich in functional
information, ncRNAs mostly lack sequence-function relationships'’. Additionally, the low
expression levels often lead to the underrepresentation of ncRNA transcripts in sequencing
data. Bulk RNA-seq approaches favor highly abundant RNAs, resulting in the undersampling
of many ncRNAs*°. The dynamic and cell-type-specific nature of ncRNA expression further
complicates their detection, as many ncRNAs are expressed only in rare subpopulations of
cells, at specific time points during development, or in response to environmental factors®®. So
far, computational methods, such as genotype-expression correlation studies have been used
to predict the targets of regulatory loci. These studies test for genotypes associated with the
expression level of genes across samples. The resulting statistically significant associations
are defined as eQTLs, which represent genetic variations linked to the expression of a gene?'*.
However, genotype-expression correlation studies require large sample sizes to obtain
sufficient statistical power. Due to the dynamic expression patterns and temporal variations of
ncRNAs, these methods have consequently failed to identify a large number of regulatory

targets and mechanisms of ncRNAs.

To date, GWAS that rely on collections of DNA samples from individuals with different
phenotypes, such as healthy and diseased, have uncovered hundreds of thousands of
disease-associated variants by statistically testing genetic variations for their association with

214

phenotypes'®. Approximately 90% of the identified GWAS variants are located within the non-

coding genome?'>:216

. Interestingly, given their critical role in regulating gene expression,
ncRNA dysregulation has been associated to a vast range of human traits and diseases, such
as cardiovascular and infectious diseases, cancer, and neurological disorders'®. Notably, a
total of 371,647 risk variants have been mapped to IncRNA loci, accounting for 45% of all
identified human GWAS variants?'’. However, the lack of a functional understanding of the
vast majority of ncRNAs, including their regulatory targets and mechanisms of action, poses
a significant challenge in elucidating how variants within the non-coding genome contribute to
disease. Thus, one of the major challenges today is to unravel the targets and mechanisms of

action of ncRNAs'™"",
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2 Scientific aim

Despite the advances in ncRNA research, our understanding of their functional roles and
regulatory targets remains fragmented and incomplete. To date, less than 1% of the identified
ncRNA loci have been experimentally characterized'?°®. Thus, the ability to predict how
ncRNAs translate into diseases is limited. This dissertation aimed to contribute to the
functional understanding of ncRNAs by exploring experimental and computational

approaches.

Project 1: Investigating the in vivo contribution of the Crossfirre locus alone and in combination
with Firre and Dxz4

Prior to the thesis, the characterization of the INcRNA Crossfirre, including its involvement in
XCI biology, remained entirely unexplored. Additionally, the contributions of Firre and Dxz4 to
random XCI in adult tissues have not been fully addressed. Finally, the impact of these X-
linked loci on gene regulation and the phenotypic consequences in loss-of-function models,
individually and in combination, have not been investigated. To address these knowledge
gaps, the first project aimed to investigate the in vivo role of Crossfirre, Firre, and Dxz4 by
performing comprehensive multi-omics analyses and large-scale phenotypic characterization
using one of the largest genetically modified X-linked mouse cohorts. This cohort included
mouse models carrying: (i) a deletion of Crossfirre, Firre, and Dxz4, (ii) double deletions of
Crossfirre-Firre and Firre-Dxz4, and (iii) a triple knockout (TKO) including the removal of

Crossfirre-Firre and Dxz4 (Figure 2.1).
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Figure 2.1 Schematic overview to investigate the in vivo role of Crossfirre, Firre, and Dxz4.
The study investigated whether loss-of-function models lacking the Crossfirre, Firre, and Dxz4 loci,
individually and in combination, exhibit essential phenotypes in vivo. In addition, the role of these loci
in X chromosome inactivation (XCI) biology was investigated, complemented by comprehensive
transcriptomic and phenotypic analyses. Created in BioRender. Andergassen, D. (2025).
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Project 2: Decoding the targets and mechanisms of the non-coding genome through allele-
specific genomics

Due to the cost- and time-extensive nature of experimentally characterizing ncRNAs in the
laboratory, the second project focused on predicting their target genes and mechanisms in
silico. This computational approach aims to facilitate the selection of future candidate ncRNAs
for experimental validation. ASE analyses, which compare allelic expression levels within the
same cellular environment, provide a highly controlled and sensitive system to overcome gene
dosage compensatory mechanisms and mitigate the dynamic expression patterns of ncRNAs.
It is hypothesized that the allelic bias of a cis-acting regulatory ncRNA would be reflected in
the allelic imbalance of the proximate targets. Consequently, ASE analyses provide a powerful
tool to predict the regulatory targets and mechanisms of cis-acting ncRNAs. This project aimed
to identify the regulatory cis-acting ncRNAs in mice and humans by developing a
bioinformatics framework that predicts their targets and mechanisms based on the allelic

expression patterns (Figure 2.2).
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Figure 2.2 Schematic overview of the allele-specific approach to predict ncRNA-targets.
Schematic overview of the allele-specific concept to predict the regulatory targets of cis-acting
ncRNAs. It is hypothesized that the allelic bias of a cis-acting regulatory ncRNA is reflected in the
allelic imbalance of the proximate target. Depending on whether the allelic bias between ncRNA and
pcGene is towards the same or opposite alleles, it is further assumed that the mechanism can be
inferred as either enhancing or repressive. Created in BioRender. Andergassen, D. (2025)
https://BioRender.com/b98a895.
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3 Materials

3.1 Wet-lab materials

3.1.1 Chemicals, reagents,

Substances or consumables

and consumables

Source

Chloroform (Trichloromethane, CHCI3)  Roth (Karlsruhe, Germany)
Dulbecco’s Phosphate Buffered Saline  Thermo Fisher Scientific Inc. (Waltham, USA)

Ethanol = 99,5%
Isopropanol = 99,8%
RNase Zap
RNase-free water

TRIzol Reagent

Roth (Karlsruhe, Germany)

Roth (Karlsruhe, Germany)

Sigma Aldrich (Taufkirchen, Germany)
Thermo Fisher Scientific Inc. (Waltham, USA)
Thermo Fisher Scientific Inc. (Waltham, USA)

3.1.2 Primer
Primer name Sequence Source
fwd_Crossfirre_Crossfirre-firre = AGAACAGCCCTGGAGGAAAT Sigma Aldrich
fwd_Dxz4 ACAGTGCATCAAAAGCACACG Sigma Aldrich
fwd_Dxz4 WT AGTTGGGAGCGAAGCAGAAA Sigma Aldrich
rev_Crossfirre GTAGGCAAGCCTGAGGAAAA Sigma Aldrich

rev_Crossfirre_Crossfirre-
firre, WT

rev_Crossfirre-firre

rev_Dxz4

3.1.3 gRNAs

Name (target)

TCTCTTGTAAGAGTTCCCATGTGT Sigma Aldrich

CCTGGGTCCTCTATAAAAGCAACAG Sigma Aldrich
CCTGGTGGCACAGAACTCTA Sigma Aldrich

Protospacer+PAM Source

gRNA_Crossfirre_up

gRNA_Crossfirre_down

gRNA_Crossfirre-firre_up

Integrated DNA
Technologies

Integrated DNA
Technologies

Integrated DNA
Technologies

GATCTTTACCCCACAGTATAAGG

GGGATGGCCACACCTCACAATGG

AATGGGTCCAGGTATTGGCGGGG
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gRNA_Crossfirre-firre_down = CTAAAAGGATTAGGGTCTCTTGG

gRNA_Dxz4_up CATGCTGCTTTTATGTGCTTCGG

gRNA_Dxz4 down TACTGAAGGAATCGTATGACCGG

3.1.4 Antibodies

Name

Integrated DNA
Technologies

Integrated DNA
Technologies

Integrated DNA
Technologies

Source

Anti-mouse CD16/CD32 (Fc Block)
TER-119-PE antibodies

Zombie Green™ viability dye

3.1.5 Mouse strains

Mouse strain

BD Biosciences
Thermo Fisher Scientific Inc. (Waltham, USA)
BioLegend (San Diego, USA)

Source

CASTI/EiJ
C57BL/6J
B6D2F1/J

3.1.6 Kits

Kit name

Jackson Laboratory, JAX: Strain #000928
Jackson Laboratory, JAX: Strain #000664
Jackson Laboratory, JAX: Strain #100006

Source

Chromium Next GEM Single Cell 3’
Reagent Kits v3.1 (Dual Index)

10x Genomics (Pleasanton, USA)

lllumina® Stranded mRNA Prep Ligation Kit  lllumina (SanDiego, USA)

RNeasy mini columns
TruSeq stranded lllumina®

Unstranded TruSeq libraries

3.1.7 Instruments

Devices

Qiagen (Dusseldorf, Germany)
lllumina (SanDiego, USA)
lllumina (SanDiego, USA)

Source

Agilent 2100 Bioanalyzer

Agilent (Santa Clara, USA)
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Agilent 4200 TapeStation
GentleMACS™ Dissociator
HiSeq 2500

NovaSeq 6000

Qubit 2.0 Fluorometer
Vortex-Genie 2

3.2 Bioinformatic requirements

3.2.1 Software

Software

Version

Agilent (Santa Clara, USA)

Miltenyi Biotec (Bergisch Gladbach, Germany)
lllumina (SanDiego, USA)

lllumina (SanDiego, USA)

Thermo Fisher Scientific Inc. (Waltham, USA)

Scientific industries (Bohemia, USA)

Source

Adobe Acrobat

Adobe lllustrator

Allelome.LINK
Allelome.PRO
Allelome.PRO v2.0
awk

bedtools
bowtie2
cellranger

curl

deeptools
fastqc

gatk

htseq

macs2

Perl

Python

R

rseqc
samtools

sed

2024.004.20272

25.4.1

1.0
1.0
20
20200816
2.30.0
2.3.51
6.1.2
7.76.1
3.3.0
0.11.6
3.8
0.11.3
214
5.32.1
2.7
3.6.3
264
1.12
4.8

Adobe Systems Incorporated (San
Jose, USA)

Adobe Systems Incorporated (San
Jose, USA)

This thesis

Andergassen et al., 20152
This thesis

Aho et al., 198728

Quinlan et al., 2010%"°
Langmead et al., 2012?%°
Zheng et al., 2017?*'
Hostetter et al., 1997°%
Ramirez et al., 201622
Andrews et al., 2010%%
McKenna et al., 2010%%°
Anders et al., 2015%°
Zhang et al., 2008%*7

Wall et al., 1994228

Python Software Foundation®®
R Core Team 2023%*°
Wang et al., 2012%"
Danecek et al., 202122

N/A
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sinto 0.8.1 https://timoast.github.io/sinto/index.html
SNPsplit 0.3.2 Krueger et al., 20162
sra-tools 2.11.0 SRA Toolkit Development Team
star 2.6.0c Dobin et al., 2013
ucsc-bedtobigbed 377 Kent et al., 201023
ucsc-fetchchromsizes 377 Kent et al., 2010%**
ucsc-wigtobigwig 377 Kent et al., 2010%*
vcftools 0.1.16 Danecek et al., 2011%°
3.2.2 R packages
Package Version Source
AnnotationDDbi 1.64.1 Pagés et al., 20232%
AnnotationFilter 1.26.0 Morgan et al., 2023%7
AnnotationHub 3.10.1 Morgan et al., 2024%®
ape 5.8 Paradis et al., 20192
apeglm 1.24.0 Zhu et al., 2019%%°
base 4.3.1 R Core Team?*°
beeswarm 0.4.0 Eklund et al., 2021%*'
biomaRt 2.58.2 Durinck et al., 2005%*2
BSgenome 1.70.2 Pagés et al., 2024**
CePa 0.8.0 Gu et al., 2022%*
ChlIPpeakAnno 3.36.1 Zhu et al., 201324
circlize 0.4.16 Gu et al., 201424¢
clusterProfiler 4.10.1 Yu et al., 2012%7
ComplexHeatmap 2.18.0 Gu et al., 20168
cowplot 11.3 Wilke et al., 2024%4°
data.table 1.16.0 Barrett et al., 2024%%°
DESeq2 1.42.1 Love et al., 201425
devtools 24.5 Wickham et al., 2022%?2
dplyr 1.1.4 Wickham et al., 2023%°®
EnhancedVolcano 1.20.0 Blighe et al., 2023%%*
enrichplot 1.22.0 Yu et al., 2023%%°

28



ensembldb
eulerr

fdrtool

gdata
GenomelnfoDb
GenomelnfoDbData
GenomicAlignments
GenomicFeatures
GenomicRanges
ggbeeswarm
ggbreak

ggExtra

ggforce

ggfun

ggnetwork
ggplot2

ggpubr

ggraph

ggrastr

ggrepel

ggridges

ggsci

ggsignif

ggtree
GOSemSim
gplots

grid

gridBase
gridExtra
gridGraphics
gtools

igraph

2.26.0
7.0.2
1.2.18
3.0.0
1.38.8
1.2.11
1.38.2
1.54.4
1.54.1
0.7.2
0.1.2
0.101
0.4.2
0.1.6
0.5.13
3.5.1
0.6.0
2.21
1.0.2
0.9.6
0.5.6
3.2.0
0.6.4
3.10.1
2.28.1
3.1.3.1
4.3.1
0.4-7
23
0.5-1
3.9.5
203

Rainer et al., 2019%%
Larsson et al., 2024%’
Klaus et al., 2024%%8
Warnes et al., 2023%%°
Arora et al., 20242%5°
Bioconductor Core Team, 2023%"
Lawrence et al., 2013262
Lawrence et al., 2013262
Lawrence et al., 2013262
Clarke et al., 2023%%°

Xu et al., 2021254

Attali et al., 202325°
Pedersen et al., 2024%%¢
Yu et al., 2024257

Briatte et al., 2024258
Wickham et al., 20162%°
Kassambara et al., 2023°™
Pedersen et al., 2024?"
Petukhov et al., 2023272
Slowikowski et al., 20242
Wilke et al., 2024%™

Xiao et al., 202427
Ahlmann-Eltze et al., 202127
Yu et al., 2017%"7

Yu et al., 2010%®

Warnes et al., 2024%"°

R Core Team, 2023%%
Murrell et al., 201428
Auguie et al., 2017%"
Murrell et al., 2020282
Warnes et al., 2023°%
Csardi et al., 2006%*
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IRanges
karyoploteR
karyotapR
leiden
leidenbase
limma
matrixStats
MuDataSeurat
org.Hs.eg.db
org.Mm.eg.db
pheatmap

plyr

png

qvalue
RColorBrewer
readr

readxl

reprex
Rsamtools
scales

Seurat
simplifyEnrichment
stringr
SummarizedExperiment
sctransform
tibble
tidygraph

tidyr

tidyverse
UpSetR
VennDiagram

writex|

2.36.0
1.28.0
1.0.1
0.4.31
0.1.31
3.58.1
1.4.1
0.0.1.0
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3.2.3 Public data, databases, and annotations

Name Source

ENCODE blacklist genes
GENCODE M25 GRCm38.p6 20191146
GENCODEvV26 annotation

Amemiya et al., 2019%°
Frankish et al., 2019%'°
Frankish et al., 2019%'°

Edgar et al., 2002%"7

GTEx Consortium atlas, 2020
Wen et al., 2017%'®

Gene expression omnibus
GTEx v8 release

GTEx_v8_finemapping_DAPG.txt

mm10 genome (version 2020-A)
Molecular Signatures Database

NHGRI-EBI GWAS Catalog v1.0

Zheng et al., 2017?%'
Subramanian et al., 20052%¢

Sollis et al., 2023 #'°

phASER_WASP_GTEx_v8_matrix.gw_phased.txt Castel et al., 2020
RefSeq gene annotation GRCm38/mm10 (2018)  O'Leary et al., 2016°"°
Keane et al., 2011'8°
Andergassen et al., 2019'%

Andergassen et al., 2019'°

Sanger database
SNP file CAST x BL6 (15,438,314 variants)
SNP file CAST x FVB (16,988,479 variants)

3.2.4 Public sequencing data

Name Sample identifier Source

PI_FixC_++_1 GSM3636720 GSE127554'%
PI_FixC_++_2 GSM3636721 GSE127554'%
PI_FixC_++_3 GSM3636722 GSE127554'%
PI_DxC_++_1 GSM3636709 GSE127554'%
PI_DxC_++_2 GSM3636710 GSE127554'%
PI_FDxC_++_1 GSM3636697 GSE127554'%
PI_FDxC_++_2 GSM3636698 GSE127554'%
PI_FDxC_++_3 GSM3636699 GSE127554'%
PI_FixC_-+_1 GSM3636714 GSE127554'%
PI_FixC_-+ 2 GSM3636715 GSE127554'%
PI_FixC_-+_3 GSM3636716 GSE127554'%
Pl_DxC_-+_1 GSM3636703 GSE127554'%
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Pl_DxC_-+ 2
Pl DxC_-+_3
Pl_FDxC_-+_1
Pl_FDxC_-+ 2
Pl_FDxC_-+ 3
Pl_CxFi_++_1
Pl_CxFi_++_2
Pl_CxFi_++ 3
Pl_CxD_++_1
Pl_CxD_++_2
Pl_CxD_++ 3
PI_CxFD_++_1
PI_CxFD_++_2
Pl_CxFD_++_3
Pl_CxFi_+-_1
Pl_CxFi_+- 2
Pl_CxFi_+- 3
Pl_CxD_+-_1
Pl_CxD_+- 2
Pl CxD_+- 3
Pl_CxFD_+-_1
Pl_CxFD_+- 2
Pl CxFD +- 3
Br_FDxFD_--_1
Br FDxFD_-- 2
Br_FDxFD_--_3
Br_ FDxFD_-- 4
Br WT_++_1
Br WT_++ 2

Br WT_++_3

Br WT_++ 4
He FDxFD_-- 1

GSM3636704
GSM3636705
GSM3636691
GSM3636692
GSM3636693
GSM3636741
GSM3636742
GSM3636743
GSM3636729
GSM3636730
GSM3636731
GSM3636735
GSM3636736
GSM3636737
GSM3636738
GSM3636739
GSM3636740
GSM3636726
GSM3636727
GSM3636728
GSM3636732
GSM3636733
GSM3636734
GSM3636580
GSM3636581
GSM3636582
GSM3636583
GSM3636584
GSM3636585
GSM3636586
GSM3636587
GSM3636588

GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
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He_ FDxFD_--_2
He_FDxFD_--_3
He_FDxFD_--_4
He WT_++_1
He WT_++_2
He WT_++_3
He WT_++_4
Ki_FDxFD_--_1
Ki_FDxFD_-- 2
Ki_FDxFD_--_3
Ki_FDxFD_-- 4
Ki_WT_++_1
Ki WT_++ 2
KiWT_++_3
Ki WT_++ 4
Li FDxFD_--_1
Li FDxFD_-- 2
Li FDxFD_--_3
Li FDxFD_-- 4
Li WT_++_1

Li WT_++_2
Li WT_++_3

Li WT_++_4
Lu_FDxFD_--_1
Lu_FDxFD_--_2
Lu_FDxFD_--_3
Lu_FDxFD_--_4
Lu WT_++_1

Lu WT_++_2
Lu WT_++_3
Lu WT_++ 4
Sp_FDxFD_--_1

GSM3636589
GSM3636590
GSM3636591
GSM3636592
GSM3636593
GSM3636594
GSM3636595
GSM3636596
GSM3636597
GSM3636598
GSM3636599
GSM3636600
GSM3636601
GSM3636602
GSM3636603
GSM3636604
GSM3636605
GSM3636606
GSM3636607
GSM3636608
GSM3636609
GSM3636610
GSM3636611
GSM3636617
GSM3636618
GSM3636619
GSM3636620
GSM3636621
GSM3636622
GSM3636623
GSM3636624
GSM3636625

GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
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Sp FDxFD -- 2
Sp_FDxFD_-- 3
Sp_FDxFD_-- 4
Sp_WT_++_1

Sp WT_++_2
Sp_WT_++_3

Sp WT_++_4
Sp_DxD_--_1
Sp_DxD_-- 2
Sp_FixFi_--_1
Sp_FixFi_--_2
Sp_FixFi_--_3

PI_E12 5 CF_1

PI_LE12 5 CF_2

PI_E12 5 FC_1

PI_LE12 5 FC_2
PI_E12_5_CxRSDel_++_3
PI_E12_5_CxRSDel_++_2
PI_E12_5_CxRSDel_++_1
PI_E12_5 CxRSDel_+-_3
PI_E12_5 CxRSDel_+-_2
PI_E12_5_CxRSDel_+-_1
NPC_XX2

NPC_XX4

Female Spleen_ Rep2
Female_Spleen_Rep1
Male_Spleen_Rep2
Male_Spleen_ Rep1
Male_Kidney Rep2
Male_Kidney_ Rep1
Male_Heart Rep2
Male_Heart_Rep1

GSM3636626
GSM3636627
GSM3636628
GSM3636629
GSM3636630
GSM3636631
GSM3636632
GSM3636633
GSM3636634
GSM3636635
GSM3636636
GSM3636637
GSM1970843
GSM1970844
GSM1970845
GSM1970846
SRR8753471

SRR8753472
SRR8753473
SRR8753474
SRR8753475
SRR8753476
SRR3933589
SRR3933595
SRR8119821

SRR8119822
SRR8119826
SRR8119827
SRR8119832
SRR8119833
SRR8119834
SRR8119835

GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE127554'%
GSE759577®
GSE759577®
GSE759577®
GSE759577®
GSE128513'"
GSE128513'"
GSE128513'"
GSE128513'"
GSE128513'"
GSE128513'"
GSE84646°%°
GSE84646°%°
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
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Male_Cerebrum_Rep2
Male_Cerebrum_Rep1
Male_Liver_Rep2
Male_Liver_Rep1
Female_Cerebrum_Rep1
Female Cerebrum_Rep2
Female_Liver_Rep1
Female_Liver_Rep2
Female_Lung_Rep1
Female_Lung_Rep2
Female_Heart_Rep1
Female_Heart_Rep2
Female_Kidney_Rep1
Female_Kidney_Rep2
Male_Lung_Rep1
Male_Lung_Rep?2
aBr_CF_1

aBr_CF_2

aBr_FC_1

aBr_FC 2
MEF_K4m3_CF_1
MEF_K4m3_CF_2
MEF_K4m3_FC_1
MEF_K4m3_FC_2

SRR8119836
SRR8119837
SRR8119838
SRR8119839
SRR8119850
SRR8119851
SRR8119852
SRR8119853
SRR8119854
SRR8119855
SRR8119856
SRR8119857
SRR8119858
SRR8119859
SRR8119864
SRR8119865
SRR3085966
SRR3085967
SRR3085968
SRR3085969
SRR2038034
SRR2038035
SRR2038036
SRR2038037

PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
PRJNA497970%
GSE759577®
GSE759577®
GSE759577®
GSE759577®
GSE69168°""
GSE69168°""
GSE69168°""
GSE69168°""
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4 Methods

Parts of the methods described in the sections of chapters 4, including 4.1 (4.1.1, 4.1.2), 4.2
(4.2.1,4.2.2),4.3,4.5. (4.5.1,4.5.2,4.5.3), and 4.6 have been previously published in a similar
form by the author of this thesis®?. Additionally, methods of the chapter 4, including 4.1 (4.1.2),
4.2 (4.21),4.4 (4.41,4.4.2),4.5 (4.5.2, 4.5.4) and 4.6 have been described similarly by the

author of this thesis in a submitted manuscript (see 9.2 Submitted manuscripts, 1.).

As a bioinformatician, my task in the projects was on the computational biology, including the
development of analysis pipelines and the execution of downstream analyses following next-
generation sequencing (NGS). Therefore, the wet lab procedures comprising the generation
of knockout mouse models and NGS sample preparation have been carried out in
collaboration. However, brief descriptions of all wet lab steps are included to provide a

comprehensive overview of the entire experimental framework.

4.1 Animal studies

Animals were housed in pathogen-free environments at Harvard University’s Biological
Research Infrastructure and the Institute of Pharmacology and Toxicology at the Technical
University of Munich. All animal experiments conducted at the Institute of Pharmacology and
Toxicology followed the EU guideline 2010/63 and the German Animal Welfare Act
(Tierschutzgesetz and Tierschutzversuchstierverordnung). Approval was granted by the
District Administrative Office of the City of Munich, Veterinary Office of the City of Munich, in
accordance with Section 11, Paragraph 1, Sentence 1, No. 1 of the German Animal Welfare
Act.

4.1.1 Generation of Crossfirre, Firre, and Dxz4 knockout mouse models

To investigate the in vivo effects of the Crossfirre locus alone and in combination with Firre
and Dxz4 in Project 1, three knockout mouse models were generated in collaboration: (i) a
single Crossfirre deletion encompassing the 50kb LINE cluster attached to the gene locus
(ACrossfirre), (ii) a double deletion of the Crossfirre and Firre loci (ACrossfirre-Firre), and (iii)

a triple deletion of Crossfirre, Firre, and Dxz4.

The ACrossfirre and ACrossfirre-Firre knockout mouse models were generated as previously
described for AFirre and ADxz4'?"'3', CAST/EiJ (CAST), B6D2F1/J (F1 BL6 and DBA/2J), and

C57BL/6J (BL6) mouse strains were obtained from the Jackson Laboratory. Zygotes of
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pronuclear stage 3 were isolated from superovulated B6D2F1/J females mated with BL6
males®?. Cas9 mRNA (200 ng/ul) and two guide RNAs flanking each locus (50 ng/ul) were
co-injected into the zygotes, which were cultured to the blastocyst stage and implanted into
pseudopregnant CD-1 females (Charles River)'?’*?*. Progenies were screened for the
deletions using polymerase chain reaction (PCR) and Sanger sequencing. The sequences of
the PCR primers and guide RNAs (gRNAs) are listed in the Materials sections 3.1.2 and
3.1.3.

In addition, TKO mouse models were generated by crossing ACrossfirre-Firre males with

ADxz4 females'?’

. As a result, female offspring inherited the Crossfirre-Firre deletion on the
paternal X chromosome and the Dxz4 knockout on the maternal X chromosome. To obtain
mouse models with all three deletions on the same X chromosome, females were further
mated with BL6 males and offspring were screened for meiotic recombination between
Crossfirre-Firre and Dxz4. To minimize strain bias and CRISPR-Cas9 off-target effects,
founder mice (75% BL6 background) were backcrossed twice with BL6 mice, resulting in an
expected BL6 strain background of 93%. Similarly, wildtype (WT) controls were generated by
backcrossing the founder mice to match the strain background of the knockout mouse
models'?’. For the phenotypic analysis at the German Mouse Clinic (GMC), TKO mouse
models underwent two additional backcrosses, resulting in an expected BL6 background of

98%.

All knockout mice were analyzed with the previously published AFirre and ADxz4 single-

127131 Combined, this set of

deletion and the AFirre-Dxz4 double-deletion mouse models
mutants provides a comprehensive framework for examining the in vivo contributions of the
X-linked LINE cluster, the megastructures and open chromatin specific to Xi, and the Xa-

specific expression of Crossfirre, Firre, and Dxz4.

4.1.2 Collection of tissue samples

For Project 1, one of the objectives was to investigate the effect of the in vivo deletions of
Crossfirre, Firre, and Dxz4 on imprinted XCI. Therefore, reciprocal crosses between WT CAST
and BL6 mutants (ACrossfirre, ACrossfirre-Firre, TKO) were performed to generate mice with
deletions on either the Xi (CAST x BL6) or Xa (BL6 x CAST). Placentas were harvested at
E12.5 from three biological replicates per genotype, resulting in the following number of
samples: ACrossfirre: Xa n = 3, Xi n = 3; ACrossfirre-Firre: Xan =3, Xin =3; TKO: Xa n =3,
Xi n = 3. In conjunction with these samples, E12.5 placentas from the previously published

ADxz4, AFirre, and AFirre-Dxz4 mouse models, as well as sample-matched WT data, were
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reanalyzed from Andergassen et al."®” (AFirre: Xan =3, Xin = 3; ADxz4: Xan =3, Xi n = 3;
AFirre-Dxz4: Xa n = 3, Xin = 3; WT: BL6 x CAST n =8; CAST x BL6 n =9).

For further investigation of the TKO effect on random XCI, homozygous TKO females were
mated to CAST males. Thus, heterozygous TKO (-/+ TKO x CAST) and WT (+/+ TKO x CAST)
mice were obtained as littermates. Spleens of female F1 offspring were harvested at six weeks
of age and used for scRNA-seq (TKO n =1, WT n = 1) and bulk RNA-seq (TKO n =3, WT n
=3).

Furthermore, samples were collected from adult homozygous TKO mice (-/- TKO, n = 3) to
generate a transcriptomic bodymap. Three TKO mice (-/- TKO, BL6) were sacrificed at six
weeks of age, and organs, including the brain, liver, lung, kidney, heart, and spleen, were
isolated (n = 3 per tissue). Additionally, spleens were collected from six-week-old ACrossfirre
(n =3) and ACrossfirre-Firre (n = 2) mouse models. Sample-matched transcriptomic data from
the previously published AFirre, AFirre-Dxz4, and WT tissue samples were included in the

analyses'?’.

To identify the protein-coding target genes of ncRNAs in Project 2, F1 hybrid mice (BL6 x
CAST) were generated by crossing BL6 females with CAST males. At nine weeks of age, the
liver, heart, kidney, spleen, brain, and lung were harvested from female mice (n = 3 per tissue),
resulting in 18 tissue samples. All samples were snap-frozen in liquid nitrogen and stored at -
80°C.

4.2 RNA extraction and library preparation
4.2.1 Sample preparation for bulk RNA-seq

For Project 1, RNA was extracted from ACrossfirre, ACrossfirre-Firre, and TKO tissue samples
(n = 41) using TRIzol lysates and RNeasy mini columns (Qiagen). Total mRNA was used to
generate strand-specific PolyA+ mRNA libraries for placentas (TruSeq stranded lllumina, n =
18) and unstranded TruSeq libraries for six-week-old adult organs (n = 23). A Qubit 2.0
Fluorometer was used to assess library concentrations and an Agilent 2100 Bioanalyzer to
determine library fragment size and purity. Sequencing was performed at the Harvard

University Bauer Sequencing Core on a HiSeq 2500 (75bp paired-end).

For heterozygous TKO and WT spleen samples (n = 6), strand-specific libraries were
generated using the lllumina Stranded mRNA Prep Ligation Kit. The Agilent’s TapeStation
System was employed to assess library concentrations, and sequencing was performed at

Helmholtz Munich using a NovaSeq 6000 (50bp paired-end). For Project 2, sequencing
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libraries were generated from tissue samples (brain, liver, lung, heart, spleen, kidney) of nine-
week-old F1 hybrid mice (BL6 x CAST, n = 18). Individual samples (50-100 mg) were
homogenized in 1 ml TRIzol using the GentleMACS Dissociator (program RNA_02_0). The
isolation of RNA was performed as described in the manufacturer's instructions (Invitrogen,
TRIzol Reagent, Cat. #15596018) with 1 ml of homogenized tissue solution. Subsequently,
100 ng of RNA and the lllumina Stranded mRNA Prep Ligation Kit were used to generate poly-
A captured sequencing libraries. The fragment length and concentration of the RNA-seq
libraries were evaluated using the Agilent TapeStation System, and sequencing was

conducted at Helmholtz Munich on a NovaSeq 6000 platform (50bp paired-end).

4.2.2 Sample preparation for scRNA-seq

For Project 1, scRNA-seq was performed on spleen samples obtained from heterozygous
TKO mice (-/+ TKO x CAST, n = 1) and WT littermates (+/+ TKO x CAST, n = 1). Spleens
were harvested from six-week-old female mice and dissociated between glass slides to
generate a single-cell suspension. The suspension was strained through 70 pm and 30 pm
filters and incubated with an Fc-blocker for 15 minutes to prevent non-specific antibody
binding. Subsequently, cells were stained with Zombie Green (Viability, BioLegend) to assess
cell viability and TER-119-PE antibodies (Erythrocytes, ThermoFisher) to label erythrocytes.
Each sample was incubated with Cell Multiplexing Oligos (10x) to add unique barcodes and
pool samples into a single 10x reaction. Following this step, cells were subjected to
fluorescence-activated cell sorting (FACS) to remove non-viable cells (Zombie Green-positive)
and erythrocytes (TER-119-positive). The viable, non-erythrocytic cells (Zombie Green-
negativ, TER-119-negative) were quantified and used to generate a single-cell library with the
Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual Index) featuring Feature Barcode
technology for Cell Multiplexing (10x). Sequencing was performed at Helmholtz Munich using
the NovaSeq 6000 platform.

4.3 Phenotypic analysis with the German Mouse Clinic

A cohort of 30 WT (male n = 15, female n = 15) and 26 TKO (male n = 13, female n = 13) mice
underwent a primary phenotypic screening at the GMC?°"32*. The GMC provides large-scale
phenotyping services for mouse mutants, conducting over 550 standardized phenotyping tests
across a broad range of categories. These categories include cardiovascular health, clinical
chemistry, pathology, behavior, metabolism, immunology/allergy, dysmorphology,

biomarkers, eyes, neurology, and nociception.
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Mice were housed in individually ventilated cages and were considered pathogen-free in
agreement with the Federation of European Laboratory Animal Science Associations
(FELASA) recommendations. Adherent to the GMC housing conditions and the directive
2010/63/EU German national law, all animals had access to standard mouse chow and water.

The authority of the district government of Upper Bavaria approved all animal experiments.

4.4 Development of bioinformatics pipelines

To facilitate the bioinformatic analysis of NGS data for ASE identification and ncRNA-target
gene predictions, the Allelome.PRO v2.0 and Allelome.LINK pipelines were developed as part
of the projects (Figure 4.1). A detailed manual for Allelome.PRO v2.0 and Allelome.LINK is
provided in the Appendix section 10.1. Both pipelines are available at the GitHub page of
the Andergassen Lab (https://github.com/AndergassenLab/Allelome.LINK).

4.4.1 Updating the Allelome.PRO pipeline to Allelome.PRO v2.0

The previously published Allelome.PRO pipeline is a bioinformatics tool that processes high-
throughput sequencing data to identify allele-specific genomic patterns®'. The pipeline was
initially developed to classify gene loci of F1 hybrid mice into biallelic, imprinted, strain-biased,
or non-informative. As a result, the tool requires sequencing data from reciprocal crosses,
making it unsuitable for single samples. To extend the utility of Allelome.PRO to individual

samples, single cells, and humans, the pipeline has been updated to Allelome.PRO v2.0.

To allow the analysis of single samples, the following input requirements were removed from
the primary pipeline: main_title, ratio, y_axis, fdr_param, strains, for_c1, for_c2, rev_c1,
rev_c2. Additionally, the classification scheme has been revised to categorize loci as allele-
specific or biallelic, removing the previous distinction between strain-biased and imprinted.
Accordingly, the output categories Imprinted: Maternal (MAT), Imprinted: Paternal (PAT),
Strain bias: Strain 1, Strain bias: Strain 2, Not informative, and No SNP have been removed

from the pipeline.

Furthermore, Allelome.PRO has been simplified by omitting the false discovery rate (FDR)-
based mock comparison and the user-defined ratio filter, as well as the output files:
<name>_|G.ixt, <name>_SG.ixt, <name>_locus_full.txt, <name>_SNP_full.txt, <name>.pdf,
and info.txt. A new option to filter loci based on total read coverage has been added to the
pipeline to enhance computational efficiency. Moreover, a comprehensive log file was

introduced to facilitate the tracking and debugging process. The scripts pileup_filter.pl,
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read_count.pl, bed creator SNP.sh, and bed creator.sh have been written in R and
integrated into the score.R script to reduce complexity. Furthermore, Allelome.PRO v2.0 has
been enhanced with a user-friendly interface by implementing direct command-line parsing. A
detailed overview of the updated pipeline is provided in Figure 4.1a and Appendix section
10.1.

4.4.2 Developing the Allelome.LINK extension tool

The Allelome.LINK pipeline was developed as an extension tool of Allelome.PRO v2.0 to
facilitate the target and mechanism prediction of cis-acting genomic loci based on the allele-
specific pattern. The pipeline was written using the R programming language and is designed
to accept the output of Allelome.PRO v2.0 (locus_table.txt) as input. Subsequently, the tool

links allele-specific loci within a user-defined range based on ASE (Figure 4.1b).

First, the input data is filtered for genomic positions with sufficient read coverage and allelic
bias using user-defined cutoff values. Informative loci are intersected and linked if they occur
within predefined window sizes. The regulatory mechanism between interaction sites is
inferred as either enhancing or repressive, depending on the correlation or anti-correlation of

the allelic bias towards the same or opposite alleles.

A linkage score (LS) is calculated to rank individual linkages using the following equation:

LS = logy, walllll‘iﬁ;w +1) x (1 —|AARY) (1)
Here, AS refers to the allelic score calculated by Allelome.PRO v2.0. This score is derived
from a binomial test using the number of maternal and paternal reads, with an assumed
probability of 0.52°'. The resulting p-value indicates the likelihood of an allelic bias at a given
locus. To increase the robustness of the linkage score, Allelome.LINK utilizes the minimum
AS from both loci, adjusted by 1 to avoid the decadic logarithm of zero. The adjusted value is

then multiplied by 1-|AAR|, where AAR is the difference in the allelic ratios calculated as:
AAR = |AR, — 0.5 — |AR, — 0.5] (2)

The AR of both loci are centered by subtracting 0.5 before calculating their absolute difference.
This method ensures that equal weight is assigned to allele-specific biases toward maternal
and paternal alleles. As a result, similar allelic ratios will yield a small AAR, exerting a more
pronounced impact on the linkage score. This approach is based on the assumption that co-

regulated loci exhibit similar changes in their allelic ratios.
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As an output, the Allelome.LINK pipeline generates a folder with linkage tables in text format,
including all candidate predictions, as well as BED and BEDPE files for intuitive genome
browser visualization. Furthermore, a log file is generated to track the analysis run. The
Allelelome.PRO v2.0 and Allelome.LINK pipelines can be exerted by a simple one-line
command. Detailed instructions for using the pipelines are provided in the Appendix section
10.1.

a b
Annotation| SNP file
(BEDS) BAM file (BED4)
Allelome table (txt)
v v
A #elome.PRO v2.0) A #Zelome.LINK|
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Allelic scoring Linkage scoring
Visualization file (BED) Allelome table (txt) Visualization file (BEDPE) Linkage table (txt)

Figure 4.1 Summary of the allele-specific analysis pipelines.

a, Overview of the Allelome.PRO v2.0 pipeline. As input files, Allelome.PRO v2.0 requires a sample
BAM file, a SNP file (BED4) and an annotation file (BEDG). The pipeline starts by intersecting the
SNP and annotation files, followed by read trimming to ensure that each read covers only one SNP.
It then generates a pileup file, which records the variants of the reads and is used to calculate the
allelic score for each locus. In addition, the pipeline produces a genome browser visualization file
(BED) and a classification table containing the allelic scores for informative loci (locus_table.txt).

b, Overview of the Allelome.LINK pipeline. The Allelome.LINK pipeline starts by using the
locus_table.txt output of an Allelome.PRO v2.0 run as input. The data is filtered to include only loci
with sufficient read coverage and allelic bias according to user-defined thresholds. Allele-specific
regions that co-occur within specified window sizes are linked with each other. Each interaction is
classified as enhancing or repressive based on allelic correlation or anti-correlation. The output is a
genome browser visualization file (BEDPE) and a linkage table with the predicted linkage information.
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4.5 Bioinformatic analysis

All bioinformatics scripts associated with Project 1 and the bioinformatics pipelines for Project
2 are publicly available at the GitHub page of the Andergassen Lab
(https://github.com/AndergassenLab/).

4.5.1 Analysis of ATAC-seq data

Two public ATAC-sequencing (ATAC-seq) datasets were downloaded from the Gene
Expression Omnibus (GEO) database and used for Project 1. The first dataset was derived
from the Sequence Read Archive (SRA) project PRINA497970 and comprised ATAC-seq
data from six different organs of eight-week-old BL6 mice of both sexes (lung, cerebrum,
spleen, liver, heart, and kidney)**'. Two replicates were obtained per tissue and sex (males
n =12, females n = 12). The second dataset includes ATAC-seq of two samples of clonal F1
neural progenitor cells (129S1/SvimJ x CAST F1) downloaded from the study GSE84646°%.
The corresponding accession numbers are listed in Materials section 3.2.4. A complete

overview of the steps comprising the ATAC-seq workflow is shown in Figure 4.2.
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Figure 4.2 Overview of the ATAC-seq workflow.
The ATAC-seq workflow starts with the alignment of raw FASTQ files using the Bowtie2 aligner.
Aligned data is subjected to quality control, which includes the removal of mapping artifacts, low-
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quality reads, blacklist genes, and duplicates. Processed data is then used to call ATAC peaks using
macs2 and the callpeak function. The identified peaks are used as annotation for the Allelome.PRO
v2.0 pipeline to perform allele-specific analyses. Additionally, peaks are intersected by tissue and
sex to quantify their distribution across the genome. A binomial test compares the epigenetic profiles
between females and males.

4.5.1.1 Data alignhment and quality control

Public ATAC-seq data was aligned using the Bowtie2 aligner?®® with the default parameters
for paired-end data. An index reference was created using the bowtie2-build command and
the GENCODE M25 GRCm38.p6 20191146 reference'®. Post-alignment, quality control
procedures were implemented to ensure data integrity. This process included the removal of
mapping artifacts with bp lengths = 2000 or < 38, mitochondrial and low-quality reads (MAPQ
< 20). In addition, ENCODE blacklist genes (blacklist.v2.bed)*'* and duplicates identified by

GATK MarkDuplicates (version 4.1.0.0)°* were excluded for downstream analysis.

4.5.1.2 Peak calling and epigenetic profiling

After quality control, the processed data was subjected to broad peak calling using macs2
callpeak®’. Peaks identified in the organs of eight-week-old BL6 mice®*' were intersected by
tissue and sex. The number of peaks within 100kb sliding windows (50kb overlap) was
quantified across the whole genome using bedtools and the intersectBed command?'®. A
binomial test was employed to calculate log1o p-values, using the median number of peaks per
window across all tissues with an expected probability of 0.5 to compare the epigenetic profile
between females and males. Peaks that were more abundant in females were assigned

positive values, while peaks that were more prevalent in males were assigned negative values.

4.5.1.3 Allele-specific analysis of neural progenitor cells

Allele-specific analysis was performed on samples derived from clonal F1 neural progenitor
cells®°. A SNP file containing 20,563,466 variants was generated for the 129S1/SvimJ and
CAST strains using SNP information obtained from the Sanger database
(mgp.v5.merged.snps_all.dbSNP142.vcf)'®°. As an annotation file, a 50kb sliding window with
a 25kb overlap was generated using the mm10 genome as a reference. Both files were used
as input for the Allelome.PRO v2.0 analysis, which was run to obtain the allele-specific
information for each sliding window, utilizing a read cutoff of = 1 read per SNP and a total read

cutoff of = 50 reads per gene.
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4.5.2 Analysis of bulk RNA-seq data

Bulk RNA-seq data was sequenced at the Helmholtz Munich Genomics Core Facility and the
Harvard University Bauer Sequencing Core. The sequencing facilities performed de-
multiplexing and adapter trimming of the raw data, and the resulting raw FASTQ files were
provided per sample. Furthermore, publicly available RNA-seq data was downloaded from the
GEO database from the following studies: Andergassen et al., 201778, 2019'"°, 2019'%". All
SRA projects and the corresponding accession numbers are listed in the Materials section
3.2.4. A detailed overview of the workflow for processing bulk RNA-seq data is provided in

Figure 4.3.
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Figure 4.3 Overview of the RNA-seq workflow.

Demultiplexed and adapter-trimmed FASTQ files are obtained from the sequencing facility for each
sample. Alignment is performed using STAR'®* for both paired-end and single-end reads. Depending
on the sequencing library, reads are quantified as either stranded or unstranded using HTseq?%%.
Raw read counts are used to identify differentially expressed genes and to calculate transcripts per
million (TPM) for data normalization. The aligned BAM file of unstranded data can be used directly
for allele-specific analyses with Allelome.PRO v2.0 and Allelome.LINK. To perform allele-specific
analyses in a strand-specific manner, BAM files are split into forward and reverse strands and
analyzed individually using Allelome.PRO v2.0. The results per strand are merged and used as input
for Allelome.LINK. BAM files can further be used to split the sequencing reads to the allele of origin
using SNPsplit?33.
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4.5.2.1 Alignment and read quantification

Raw FASTAQ files obtained from the sequencing facility or downloaded from the GEO database
underwent initial quality control using the FastQC tool (version 0.69). High-quality data was
aligned to the GENCODE_M25GRCm38.p6_201911 primary assembly®'® using STAR

(version 2.6.0c)'.

Alignments containing non-canonical junctions, multimappers, or
sequencing reads with intron sizes greater than 100,000bp were excluded for downstream
analysis. The alignment was performed in paired-end or single-end mode, depending on the

sequencing run.

Quantification of aligned reads was conducted with HTseq-count, applying the —stranded
reverse or —stranded no flag based on the strand-specificity of the data (HTSeq version
0.11.3)%®. Therefore, the gencode.vM25.primary_assembly.annotation.gtf was used as an
annotation file®'®. Given that GENCODE vM25 did not annotate Crossfirre (Gm35612), the
locus was manually added from the RefSeq gene annotation®'® to enable the quantification of
reads for samples associated with Project 1. Due to the absence of the strand-specific
information, the last exon of Crossfirre was removed to mitigate bias from the overlapping

Firre locus.

Raw read counts were normalized by calculating the transcripts per million (TPM) values,
accounting for gene length and sequencing depth. Strand-specific BAM files were separated
by strand using custom R and Perl scripts. The strand orientation was determined using the

infer_experiment.py script, and BigWig files were generated using bam2wig.py®*'.

4.5.2.2 Assignment of sequencing reads to the alleles

Sequencing data was further mapped to the allele of origin to facilitate visualization of ASE
with a genome browser. Gene coverage was maximized by merging individual FASTQ files
for each tissue across replicates. N-masked genomes were generated for FVB/CAST and
BL6/CAST SNPs using data from the Sanger database
(mgp.v5.merged.snps_all.dbSNP142.vcf)'®® and the  SNPsplit_genome_preparation
command (SNPsplit v0.3.2)*%, Read mapping was performed using STAR (version 2.6.0c)
with the following parameters: --outFilterintronMotifs RemoveNoncanonical, --alignintronMax
100000, --outFilterMultimapNmax 1, --outSAMattributes NH HI NM MD, --alignEndsType
EndToEnd. The same annotation file was used as described for FVB/CAST and BL6/CAST.
Following alignment, BAM files were split according to strand orientation and assigned to the

alleles using SNPsplit (version 0.3.2) with default parameters?*>.
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4.5.2.3 Differential gene expression and gene set enrichment analysis

Differential gene expression analysis was performed in R using the DESeq2 library (version
1.32.0)*®'. Dysregulated genes with an adjusted log: fold change (log2FC) = 1 or < -1 (using
lfcShrink with apeglm)®*® and a FDR < 0.01 were considered significant. The R package
limma?®® was used to identify enriched gene sets based on the DESeq?2 test statistic. Gene
sets containing between 10 and 500 genes were obtained from the Molecular Signatures
Database (MSigDB, ¢5.go.v7.4.symbols)?*® and significance was determined using an FDR-
adjusted p-value < 0.1. For the top 100 gene sets with the lowest FDR-adjusted p-values, a
similarity matrix was calculated using the R package simplifyEnrichment®®. Network plots

were created using the igraph library?®* and clusters were obtained by the walktrap method%*.

4.5.2.4 Allele-specific expression analysis for bulk RNA-seq data

RNA-seq data from mouse samples were analyzed for ASE using the updated Allelome.PRO
v2.0 pipeline. Each sample was processed individually per replicate and strand when feasible.
The RefSeq gene annotation (GRCm38/mm10)*'® was used for all analyses. Depending on
the F1 hybrid cross, various SNP files were generated using the helper script
createSNPbedfile.sh®® and SNP information from the Sanger database
(mgp.v5.merged.snps_all.dbSNP142.vcf)'®. A cutoff of = 1 read per SNP was applied to all
samples, while the total read cutoff per gene was adjusted for each dataset according to

sequencing depth and research question.

For placental samples of Project 1 obtained from reciprocal crosses between CAST and BL6,
including both WT and various knockout mouse models (ACrossfirre, AFirre, ADxz4,
ACrossfirre-Firre, AFirre-Dxz4, and TKO), as well as for the heterozygous TKO spleen
samples, a previously described SNP file containing 15,438,314 variants between the CAST
and BL6 strains was used'?’. This SNP file includes only BL6 alleles shared with the BALB/cJ,
DBA/2J, and 129 mouse strains to reduce potential confounding effects due to strain
background. A total read cutoff of = 30 reads per gene was applied to ensure robust allele-

specific predictions. The median was used to summarize the allelic ratios between replicates.

Publicly available RNA-seq data of the placenta was further used for Project 2 to investigate
the ASE pattern of genes expressed from the X chromosome’®. Biological replicates were
pooled for the forward and reverse cross, and Allelome.PRO v2.0 was run using a SNP file for
CAST x FVB including 20,581,027 polymorphisms. To compare the results between the
forward and reverse cross, the allelic ratios of the reverse cross were adjusted by subtracting

them from 1. A total read coverage of = 20 reads per gene was used for the analysis.
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For the BL6 x CAST F1 bodymap generated for Project 2, strand-specific data were analyzed
using Allelome.PRO v2.0 with a SNP file including 20,635,313 variants between BL6/CAST
and a total read cutoff of =2 20 reads per gene. The strand-specific results were combined per
sample and the biological replicates per tissue were combined as follows: For each tissue, the
lowest allelic score across all replicates was selected to be as robust as possible. Median
values were calculated to summarize total reads and allelic ratios. The downstream analysis

included only autosomal genes.

For the Airn knockout models used in Project 2874, unstranded sequencing data were pooled
across replicates and analyzed with Allelome.PRO v2.0 using a total read coverage of = 10
reads and a previously published SNP file containing 16,988,479 variants between the CAST

and FVB strains'”. The allelic ratios of replicates were summarized using the median.

4.5.2.5 Linking ncRNAs to protein-coding targets

Linking ncRNAs to their protein-coding targets was performed using the Allelome.LINK
pipeline. The results of the Allelome.PRO v2.0 analyses were used as input for Allelome.LINK

(locus_table.txt).

For tissue samples from nine-week-old F1 hybrid mice (BL6 x CAST), including heart, spleen,
lung, liver, kidney, and brain, ASE was defined using an allelic ratio cutoff of < 0.3 or = 0.7.
The window size for linking allele-specific loci was set to £100kb, as the significant enrichment
of allele-specific ncRNAs nearby allele-specific pcGenes was observed within this distance.
To filter for non-coding to protein-coding linkages, the coding information of each gene was

obtained from the RefSeq annotation®'®.

For the placental Airn knockout data, the same allelic ratio cutoff was used with an expanded
window size of +4000kb to encompass the entire Airn/Igf2r cluster. The Airn target prediction
was conducted per replicate and for pooled samples to determine if pooling improves the

accuracy of the Allelome.LINK results.

Moreover, a chromosome-wide linkage analysis was applied to publicly available RNA-seq
data of the placenta to identify the target genes of the INcRNA Xist’®. The allelic ratio cutoff
was raised to = 0.75 or < 0.25 to ensure stringency for long-range predictions across a whole

chromosome.
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4.5.3 Analysis of scRNA-seq data
4.5.3.1 Pre-processing scRNA-seq data

FASTQ files were acquired from the Helmholtz Munich Genomics Core Facility. Raw
sequencing data was processed utilizing the Cell Ranger multi-pipeline (Cell Ranger 6.1.2
toolkit, 10x Genomics) to demultiplex, align, and quantify individual sequencing reads?'. The
mm10 genome version 2020-A, a pre-built Cell Ranger reference from 10x Genomics, was
used as a reference. Further downstream analysis of the single-cell data was conducted in R

using the Seurat package®®.

Sample files were merged, and quality control was applied to exclude low-quality cells. Empty
droplets and droplets with multiple cells present were removed by filtering cells with < 500 or
> 5000 detected genes and < 2000 or > 20000 molecules. Moreover, cells with > 10%
mitochondrial reads were excluded, as elevated mitochondrial read counts indicate damaged

cells. Genes present in < 10 cells were further removed for downstream analysis.

Raw counts were normalized using SCTransform®”’, incorporating the regression for
mitochondrial reads. Data integration was carried out for WT and heterozygous TKO samples
using the IntegrateData() function of the Seurat package. Dimensionality reduction was
achieved using the top 40 principal components computed by RunPCA() and used for Uniform
Manifold Approximation and Projection (UMAP) visualization. Clusters were identified using
FindClusters() with a resolution parameter of 0.4. Cell types were manually assigned based

on marker gene expression.

4.5.3.2 Allele-specific expression analysis for scRNA-seq data

Allele-specific analysis for scRNA-seq data was performed at two different resolutions. First,
Allelome.PRO v2.0 was used to determine the allelic ratio of each chromosome for individual
cells to identify whether the Xa was the BL6 or CAST allele. Subsequently, cells were sorted
according to the Xi status and aggregated as pseudobulk to increase gene coverage. Thus,
this approach allows to overcome the issue of random XCI and allows for an allele-specific

analysis at the gene-level for cells with the same Xa.

BAM files were generated for each cell using the sinto package and the filterbarcodes option
(https://timoast.github.io/sinto/index.html) to conduct the allele-specific analysis at single-cell
resolution. The individual single-cell BAM files were used as input for Allelome.PRO v2.0,
along with the previously described SNP file containing 15,438,314 variants'®’. A

chromosome-wide annotation was generated using the mm10 genome as a reference. A total
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read cutoff of = 10 reads per chromosome and = 1 read per SNP was applied. Subsequently,
cells with the same Xa status were pooled into four different pseudobulk samples by
aggregating the read counts per gene (WT BL6 Xa, TKO BL6 Xa: X chromosomal allelic ratio
< 0.3 or WT CAST Xa, TKO CAST Xa: X chromosomal allelic ratio = 0.7). Cells with an X
chromosomal allelic ratio between 0.3 and 0.7 were likely duplicates and were excluded from
the analysis (WT = 2.99%, TKO = 2.49%). For each pseudobulk sample, individual BAM files
were generated with sinto and used as input for Allelome.PRO v2.0. The RefSeq gene
annotation was used to obtain gene-level ASE classification®'°. Allelome.PRO v2.0 was run
with a read cutoff of 2 1 read per SNP and = 30 total reads for each of the four samples (WT
BL6 Xa, TKO BL6 Xa, WT CAST Xa, TKO CAST Xa). The entire scRNA-seq workflow is shown
in Figure 4.4.
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Figure 4.4 Overview of the scRNA-seq workflow for XCl-based cell sorting and gene-level ASE
analysis.

FASTAQ files from the sequencing facility are pre-processed using the Cell Ranger multi-pipeline (Cell
Ranger 6.1.2 toolkit, 10x Genomics??") to demultiplex, align and quantify individual sequencing reads.
Quality control is performed using R and the Seurat package®®, taking into account gene counts,
transcript abundance, and the proportion of mitochondrial reads. This is followed by standard pre-
processing steps, including normalization, regression for mitochondrial reads, data integration,
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clustering, and cell-type annotation. To determine the allelic ratio of each chromosome for individual
cells, the BAM file is split into individual BAM files per cell and Allelome.PRO v2.0 is run with a
chromosome-wide annotation. Cells are then computationally sorted according to the XClI status and
aggregated as pseudobulk to increase gene coverage for a subsequent gene-level allele-specific
expression (ASE) analysis.

4.5.4 Analysis of human data from the GTEXx project

4.5.4.1 Data pre-processing and allele-specific linking

The Allelome.LINK strategy was further applied to human data from the GTEx project'®. The
publicly available haplotype dataset from the GTEx v8 release provided 153 million allele-
specific measurements from 838 individuals, comprising 15,253 samples and 54 tissues
(PhASER_WASP_GTEx_v8_ matrix.gw_phased.txt)'®". Metadata, including the sample
information, was retrieved from the GTEXx portal
(GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt) and used to separate the

expression data by sample using custom R scripts.

Small ncRNAs (combined exon length < 200bp) and overlapping genes were removed from
the dataset to minimize allelic bias due to overlapping gene loci. This filtering resulted in 8,106
informative genes (total read cutoff = 20), including 6,281 pcGenes (n = 27,155,698
expression values) and 1,825 ncRNA loci (n = 924,440 expression values). Subsequently,
Allelome.LINK was used to assign ncRNAs to their target genes applying an ASE cutoff of <
0.3 or 2 0.7 and a window size of +100kb. The results were filtered for non-coding to protein-
coding linkages. All analysis steps were based on the GENCODEV26 annotation®'® to ensure

consistency with the gene annotation of the GTEXx project.

4.5.4.2 Validation of ncRNA-to-target linkages using eQTL data

The predicted ncRNA-to-target linkages were validated using sample-matched eQTL data
from the GTEx v8 release (GTEx_v8_finemapping_DAPG.txt)*'®. This dataset provided
21,648,584 fine-mapped eQTLs across 49 tissues. eQTL data was unavailable for the
Bladder, Cervix - Ectocervix, Cervix - Endocervix, Fallopian Tube, and Kidney - Medulla.
Genomic locations and target genes were available for 21,412,255 eQTLs. The ncRNA-to-
target linkages were overlapped with the eQTL data by genomic position. A linkage was
confirmed if an overlapping eQTL was predicted to influence the expression of the same target

gene as predicted for the ncRNA by Allelome.LINK.
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4.5.4.3 Integrating GWAS data to assign non-coding risk variants to protein-coding
targets

To assign non-coding risk variants to their protein-coding targets, public GWAS data was
downloaded from the NHGRI-EBI GWAS Catalog v1.0, including 132,201 unique SNPs

)*'*. The dataset was filtered to

(gwas_catalog_v1.0-associations_e110_r2023-10-11.tsv
exclude non-mappable SNPs and epistatic interactions, resulting in 119,287 variants for
downstream analysis. Subsequently, the variant positions were overlapped with the
informative ncRNAs, which yielded 1,059 informative SNPs. Non-coding risk variants that
overlapped with linked ncRNAs were assigned to the same protein-coding target as predicted

by Allelome.LINK.

4.6 Statistical analysis

Data analysis was performed with R version 3.6.3. Depending on the research question, the
appropriate statistical test was performed as stated in the figure legends. The Shapiro-Wilk
test was used to assess the normality of the data distribution. Based on the data distribution,
Pearson or Spearman correlation coefficients were calculated to evaluate significant
correlations. Differences between two groups were assessed using either the Wilcoxon rank-
sum test for non-normally distributed data or the t-test for normally distributed data. Fisher’s
exact tests were used to compare categorical proportions between two variables. Binomial
tests were applied to determine whether the presence of an expected proportion is consistent
with equal probability. Results were considered significant with varying p-value thresholds, as
indicated for the respective tests based on stringency. If needed, FDR correction was applied

to adjust for multiple testing.

Genotype effects were further assessed by the GMC depending on the research question and
the assumed parameter distribution. These included Wilcoxon rank-sum tests, t-tests, ANOVA
and post-hoc tests, linear models, or Fisher's exact tests. A p-value < 0.05 was considered

statistically significant for the observed phenotypes with no adjustment for multiple testing.
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5 Results

The results described in the sections of chapter 5.1 (5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5, 5.1.6,
5.1.7) have been previously published in a similar form by the author of this thesis®?.
Additionally, the results presented in chapter 5.2 (5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5, 5.2.6, 5.2.7)
have been outlined similarly by the author in a submitted manuscript (see 9.2 Submitted

manuscripts, 1.).

5.1 Project 1: Investigating the in vivo contribution of the Crossfirre
locus alone and in combination with Firre and Dxz4

The IncRNA Crossfirre was recently detected as an imprinted gene on the X chromosome,
showing predominantly maternal expression in somatic tissues’®. Prior to this work, the in vivo
contribution of this locus, both alone and in combination with Firre and Dxz4, remained
unknown. Thus, the first project aimed to investigate the in vivo role of Crossfirre, Firre, and
Dxz4, including their relationship to imprinted and random XCI, as well as autosomal gene

regulation.

5.1.1 Crossfirre, Firre, and Dxz4 are the most female-specific loci in chromatin
accessibility

The initial aim of the study was to characterize the epigenetic profile and the expression
pattern of the Crossfirre locus. The Crossfirre locus comprises three exons and is embedded
in a 50kb LINE element. The IncRNA is transcribed from the forward strand, antisense to the
IncRNA Firre, and was previously identified as the only maternally expressed X-linked gene
in somatic tissues (Figure 5.1a)’®. To confirm the imprinted status of Crossfirre, publicly
available brain data from F1 hybrids of reciprocal crosses (FVB x CAST, CAST x FVB) were
reanalyzed for the allelic expression status of Crossfirre’. In line with previous work,
predominant expression was observed from the maternal allele independent of the XClI status,
confirming imprinting of the Crossfirre locus (Figure 5.1b). Further validation of the imprinting
of Crossfirre was achieved by reanalyzing H3K4me3 ChIP-sequencing data from F1 mouse

201

embryonic fibroblasts=”', which confirmed maternal H3K4me3 enrichment at the Crossfirre

promoter (Figure 5.1c).

The expression rates of Crossfirre, Firre, and Dxz4 were further examined in the six major
organs (brain, heart, lung, liver, kidney, spleen) of adult mice, revealing low to moderate

expression. The highest expression of Crossfirre was detected in the brain, while the lowest

53



expression was observed in the liver (Figure 5.1d). A correlation analysis of the TPM levels
between Crossfirre, Firre, and Dxz4 was performed to explore potential co-regulation.
However, no significant correlation was noted between the IncRNAs (Crossfirre-Firre:
R = 0.36, p-value = 0.4893; Crossfirre-Dxz4: R = 0.33, p-value = 0.5273; Firre-Dxz4: R = 0.57,
p-value = 0.2419, Figure 5.1e).
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Figure 5.1 Expression dynamics of Crossfirre, Firre, and Dxz4 across mouse organs.

a, Genome browser visualization of mouse brain RNA-seq data for the Crossfirre (Gm35612), Firre,
and Dxz4 loci. Sequencing reads are separated by strand orientation. The data was obtained from
Andergassen et al., 201778,
b, Allele-specific splitting of RNA-seq data from adult F1 hybrid brains. The genome browser tracks
display sequencing reads from the forward strand at the Crossfirre locus of reciprocal F1 hybrids
(FVB x CAST, CAST x FVB). Reads are labeled according to their allele of origin (FVB allele: black,

CAST allele: brown).

¢, H3K4me3 data of F1 mouse embryonic fibroblasts from Andergassen et al., 20152°". Shown is the
allele-specific splitting for the aligned sequencing reads towards the FVB and CAST allele.

d, Expression of the Crossfirre, Firre, and Dxz4 loci across various adult mouse tissues. To avoid the
decadic logarithm of zero, the mean transcripts per million (TPM) were adjusted with a pseudo
number of 1 prior to log1o-transformation. Expression levels for Crossfirre (red), Firre (orange), and
Dxz4 (gray) are shown for the brain, heart, kidney, liver, lung, and spleen.
e, TPM correlation analysis for Crossfirre, Firre, and Dxz4. Pearson correlation coefficients were
calculated for the mean TPM values between Crossfirre and Firre, Crossfirre and Dxz4, and Firre
and Dxz4 across multiple organs. The figure was modified from Hasenbein et al., 2024322,
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Previous studies have shown that the Firre and Dxz4 loci contain several Xi-specific
transcription start sites with CTCF binding”®1%1124128 Thus, the epigenetic profile of these loci
was further investigated using publicly available ATAC-seq data®?'. Peak calling confirmed the
presence of multiple sites of open chromatin at these loci in the brain (Figure 5.2a). Notably,
female mice exhibited a more pronounced chromatin accessibility profile at the Crossfirre-Firre
and Dxz4 loci compared to males (ATAC peaks: Crossfirre-Firre n = 21, Dxz4 n = 11; male
ATAC peaks: Crossfirre-Firre n = 9, Dxz4 n = 2, Figure 5.2a). To further investigate this
pattern, the epigenetic ATAC-seq profile of all loci was analyzed across multiple female and
male organs. Interestingly, this analysis identified that Crossfirre, Firre, and Dxz4 are the most
female-specific chromatin accessibility loci genome-wide (Figure 5.2b-c). Additionally, an
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allele-specific analysis of ATAC-seq data from neural progenitor cells®* confirmed that the

female-specific open chromatin originates from the Xi (Figure 5.2d).
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Figure 5.2 Crossfirre, Firre, and Dxz4 are the top female-specific loci.

a, Genome browser visualization of ATAC-seq data?! of the Crossfirre-Firre and Dxz4 loci. ATAC-
seq data from female (red) and male (blue) brain samples are displayed. Peaks were called using
macs2??” and compared between the sexes. Female-specific ATAC peaks are highlighted with
boxes. cCRES: ENCODE Candidate Cis-Regulator Elements, CTCF: blue, Promoter: red,
DNase/H3K4me3: pink, Proximal enhancer: orange, Distal enhancer: yellow.

b, Epigenetic ATAC-seq profile across six adult mouse tissues®'. Peaks were called per tissue and
sex and quantified within 100kb windows across the X chromosome. A binomial test was used to
calculate log1o p-values, using the median number of peaks per window across all tissues. Peaks
more frequent in females were assigned positive values, while those more frequent in males were
assigned negative values.

¢, Analysis as in (b), but across the entire genome.

d, Allele-specific analysis for neural progenitor cells®?°. The allelic ratios are shown for 50kb sliding
windows across the X chromosome. Boxplots represent the interquartile range with the median, and
whiskers indicate 1.5x the interquartile range. The figure was modified from Hasenbein et al., 2024322,
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5.1.2 The deletion of Crossfirre does not affect viability and development

To further investigate the in vivo role of Crossfirre, individually and in combination with Firre
and Dxz4, several knockout mouse models were generated, including a Crossfirre deletion
(ACrossfirre), a Crossfirre-Firre double deletion (ACrossfirre-Firre), and a Crossfirre-Firre-
Dxz4 triple deletion (TKO). The samples were analyzed with the previously published single-
deletions of AFirre and ADxz4 and the AFirre-Dxz4 double-deletion mouse models (Figure
5.3)127,131.

Superloop (Xi)
Q. — P
%, -

Megadomain (Xi)

3,
-/;\7
|

e —— AFirre &
L ADxz4 &
B — — — = = = = = e AFirre—sz-'lc_“
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ACrossﬁrre-Firrt(a__“
_________________________ TKO L2

Figure 5.3 Overview of mutant mouse models.
Schematic overview of the mutant mouse models used in the study. The X chromosome is shown,

with the Crossfirre, Firre, and Dxz4 loci highlighted. Transcription of these loci is specific to the active
X chromosome. In contrast, the superloop interaction between Firre and Dxz4, and the two
megadomains are observed exclusively on the inactive X chromosome (Xi). Below the X
chromosome, the different mutant mouse models are shown, with deletions indicated by dotted lines.
Stars denote mouse models described in previous studies that were reanalyzed for the study'?”:131,
The figure was obtained from Hasenbein et al., 2024322,

The presence of each knockout was confirmed by genotyping and subsequent Sanger
sequencing of the PCR product (Figure 5.4a-c). RNA-seq of spleens from homozygous
mutant mice was further performed to validate the loss of expression (Figure 5.4d). Notably,
the loss of Crossfirre did not affect Firre expression, and the combined deletion of Crossfirre
and Firre did not alter the expression levels of Dxz4 (Figure 5.4e). Furthermore, no
developmental abnormalities were observed in any of the three mutant mouse models, as
homozygous knockout strains were viable and fertile, and offspring displayed average sex
ratios and expected litter sizes (Figure 5.4f). Taken together, these results suggest that the
Crossfirre locus, individually and combined with Firre and Dxz4, is dispensable for

development.
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Figure 5.4 Crossfirre, Firre, and Dxz4 mutant strains are viable and develop normally.
a, Sequences of guide RNAs and primers used to generate and genotype ACrossfirre, ACrossfirre-
Firre, and ADxz4 mouse models.
b,Genotyping approach for identifying knockout and wildtype (WT) alleles for ACrossfirre,
ACrossfirre-Firre, and ACrossfirre-Firre-Dxz4 (TKO).
¢, Genome browser visualization of Sanger sequencing of the PCR products from knockout bands
of the Crossfirre-Firre and Dxz4 loci.
d, Genome browser visualization of RNA-seq tracks covering the Crossfirre-Firre and Dxz4 loci.
RNA-seq data was obtained from adult spleens of WT (black), ACrossfirre (red), ACrossfirre-Firre
(green), and ACrossfirre-Firre-Dxz4 (TKO, turquoise) mouse models. Scissor symbols highlight the
corresponding deletion. Long interspersed nuclear elements and a gene annotation are shown below
the sequencing tracks.
e, Transcript per million (TPM) values for Crossfirre, Firre, and Dxz4. Shown are the mean TPMs for
all three IncRNAs in the adult spleen of ACrossfirre, ACrossfirre-Firre, and TKO. Error bars display
the standard deviation.
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f, Overview of the sex distribution for the breeding of homozygous ACrossfirre, ACrossfirre-Firre, and
TKO mouse models. A one-sided binomial test was used to calculate p-values. The figure was
modified from Hasenbein et al., 2024322,

5.1.3 The deletion of Crossfirre, Firre, and Dxz4 does not alter imprinted XCI

Given the imprinting of Crossfirre, it was hypothesized that this locus could serve as a marker
for imprinted XCI and is therefore involved in the XCI process. To test this hypothesis, the
study investigated whether the knockout of Crossfirre, individually or combined with Firre and
Dxz4, affects imprinted XCI in the placenta. Because the paternal X chromosome is
epigenetically silenced in imprinted XClI, deletions inherited from the paternal allele affect the
Xi, whereas deletions inherited from the maternal allele are present on Xa. Placentas were
isolated from E12.5 WT and heterozygous offspring of reciprocal crosses (CAST x -/+ BLS6, -
/+ BL6 x CAST, n = 53). This approach allowed for the evaluation of both the effects of the
loss of the INCRNA expression (deletion on Xa) and the disruption of the epigenetic patterns

and megastructures (deletion on Xi).

The relative expression of Crossfirre, Firre, and Dxz4 was examined in TKO models. Mutants
with the deletion on Xi showed expression levels similar to the WT conditions. In contrast,
mutants with the deletion on Xa lost the expression of Crossfirre, Firre, and Dxz4, confirming
the Xa-specific expression of these IncRNAs (Figure 5.5a). Differential gene expression
analysis was performed for all generated mutant strains and the previously published AFirre
and ADxz4 single and double deletion models'?’. Interestingly, this analysis revealed very few
dysregulated genes, regardless of whether the deletion was placed on Xa or Xi (|shrunk
log2FC| = 1, FDR < 0.01, Figure 5.5b, mean AXi = 10, mean AXa = 37). When the deletion
was present on Xa, Firre was the only gene shared between the double knockouts ACrossfirre-
Firre and AFirre-Dxz4, and the TKO. For the ACrossfirre-Firre and TKO Xa mutants, two
additional pseudogenes (Gm13340, Gm13436) were shared, while one pseudogene (Rpsa-

ps10) was shared when the deletion was present on Xi (Figure 5.5¢).
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Figure 5.5 Effect of the Crossfirre, Firre, and Dxz4 deletion on placental gene expression.

a, Overview of the breeding scheme to place the deletion on the inactive (Xi) or active (Xa) X
chromosome. Due to imprinted X chromosome inactivation in the placenta, the paternal X
chromosome is epigenetically silenced. Thus, deletions inherited from the paternal allele affect Xi,
while deletions from the maternal allele affect Xa. The relative mean expression of Crossfirre, Firre,
and Dxz4 is shown for triple knockout (TKO) mutants and wildtype (WT). Error bars indicate the
standard deviation.

b, Results of a differential gene expression analysis for mutant strains with the deletions on Xi or Xa.
E12.5 placentas from three biological replicates per genotype were analyzed. Numbers indicate the
up- and downregulated genes with a significance threshold of FDR < 0.01 and a |shrunk log2FC| = 1.
¢, Volcano plot of the differential gene expression analysis for the TKO model with the deletions on
Xi and Xa. The Venn diagram shows the dysregulated genes shared between the AFirre-Dxz4 (blue),
ACrossfirre-Firre (green), and TKO (turquoise) genotypes. The figure was obtained from Hasenbein
et al., 2024322,

To determine whether the absence of these loci affects the expected maternal expression of
X-linked genes, an allele-specific analysis was performed using RNA-seq data from E12.5
placentas. Notably, more CAST-specific escape genes were detected in WT BL6 x CAST F1
hybrid samples (Figure 5.6a). This observation is a well-known phenomenon that has
previously been reported as strain-specific escape’®*?°3%_ To illustrate the reproducibility of
this pattern, the allelic ratios were plotted for all WT samples from both forward and reverse
crosses (n = 17), showing a consistently higher frequency of CAST-specific escapees'?’

(Figure 5.6b).
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Figure 5.6 Strain-specific escape results in more escape genes from CAST Xi.

a, Violin plots displaying the median allelic ratios of informative X-linked genes for wildtype samples
from forward (BL6 inactive X chromosome (Xi), left, n = 9) and reverse crosses (CAST Xi, right, n =
8). Colors indicate the strain background of the active X chromosome (Xa, CAST: brown, BL6: black),
with blue dots marking the allelic ratios of Xist.

b, Heatmap representing the median allelic ratios of X-linked genes for wildtype samples of the
forward (BL6 Xi, upper panel, n = 9) and reverse crosses (CAST Xi, lower panel, n = 8). Colors
represent the strain background of the Xa (CAST: brown, BL6: black). Genes with an allelic ratio
change between BL6 Xi and CAST Xi of 2 0.1 are labeled. An asterisk indicates previously identified
strain-specific escape genes'?’. The figure was obtained from Hasenbein et al., 2024322,

The WT allelic ratios were further compared to all mutant strains and showed no changes in
the median allelic ratios of X-linked genes, independent of whether the deletions were on Xi
or Xa (Figure 5.7a-b). The Crossfirre deletion further encompassed the removal of a 50kb
LINE cluster, DNA elements hypothesized to facilitate the spreading of XCI to escaping-prone
regions'*'3%"_ Therefore, local regions in proximity to the Crossfirre, Firre, and Dxz4 loci were
further examined for subtle changes in cis. However, the allelic ratios of nearby genes were
not affected by the absence of these loci (Figure 5.7b-c). In conclusion, the absence of the
imprinted Crossfirre locus on Xi or Xa, individually or combined with Firre and Dxz4, does not

impair imprinted XCI in the placenta.
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Figure 5.7 Imprinted XCI is not affected by deleting Crossfirre alone or in combination with
Firre and Dxz4.

a, Violin plots displaying median allelic ratios of X-linked genes for wildtype (WT) and knockout
models with the deletion on Xi (left, n = 7) or Xa (right, n = 7). Colors denote the different mutant
genotypes, and blue dots indicate the allelic ratios of Xist. Boxes represent the interquartile range,
with whiskers extending to 1.5x the interquartile range.

b, Heatmap illustrating the median allelic ratios of informative X-linked genes for WT samples and
mutant strains from forward (BL6 Xi, upper panel) and reverse (CAST Xi, lower panel) crosses. Colors
indicate the strain background of Xa (CAST: brown, BL6: black). Arrows emphasize the approximate
position of Crossfirre, Firre, and Dxz4. *Note: Artifact of the non-strand-specific analysis. Tsix
expression is biased by Xist, which is transcribed in the antisense direction.

¢, Overview of the median allelic ratios and standard deviations for genes in close proximity to
Crossfirre/Firre (+2 Mb) and Dxz4 (1 Mb). Results for ACrossfirre-Firre-Dxz4 (TKO) mutants, with
the deletions on Xi (left) or Xa (right) are compared to strain background matched WT samples. The
figure was modified from Hasenbein et al., 2024322,
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5.1.4 Random XCIl maintenance remains unaffected in TKO mutants

Random XClI results in each X chromosome being either active or inactive in a mosaic pattern
across cells in adult organs, complicating the study of how the knockouts affect random XCI.
To address this challenge, allele-specific analyses have been performed on single cells, which

allow the random nature of XClI to be overcome (Figure 5.8).
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Figure 5.8 Overview of the scRNA-seq workflow of adult F1 spleens.
a, Overview of the scRNA-seq workflow to obtain wildtype (WT) and heterozygous ACrossfirre-Firre-
Dxz4 (TKO) cells with the deletion on either Xi or Xa. CAST males were crossed with -/+ TKO females
(BL6), and scRNA-seq was performed on the spleens of a WT and a heterozygous F1 hybrid.
Preprocessing steps of the sequencing data included alignment, quality control, and data
normalization. Based on the genotype (WT, -/+TKO), two datasets were obtained with a mixed cell
population containing cells with the CAST and BL6 allele Xa. Consequently, the TKO deletion was
present on Xi or Xa.
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b, UMAP visualization of the unsupervised clustering of the cells in (a), including WT and -/+ TKO

samples. The figure was obtained from Hasenbein et al., 20243%2,
Heterozygous TKO females (-/+ BL6) were crossed with WT males (+/+ CAST) to obtain
female F1 littermates of a -/+ TKO and a WT sample. The spleen from these two animals were
harvested at six weeks of age and used for scRNA-seq, resulting in the allele-specific single-
cell transcriptome of 1642 heterozygous and 2043 WT cells after quality control (Figure 5.8a).
Clustering revealed the expected cell types and cell-type proportions for both samples (Figure
5.8b).

Subsequently, an allele-specific analysis was performed at the chromosome-level by
aggregating reads from the same chromosome for individual cells. Biallelic expression was
observed for autosomes of most WT and heterozygous TKO cells (Figure 5.9a). For the X
chromosome, a subset of cells showed biallelic expression (WT n = 61, TKO n = 40). These
cells are likely to be duplicates and were excluded from further analysis. The majority of WT
cells showed an X chromosomal allelic ratio 2 0.7 (n = 1342, 65.7%), indicating that the CAST
allele was Xa. In contrast, 640 (31.3%) WT cells had an allelic ratio < 0.3, suggesting that the
BL6 allele was Xa (Figure 5.9b). Consequently, WT cells exhibited the expected XCI skewing
ratio in F1 hybrids between CAST and BL6 (70% CAST Xa, 30% BL6 Xa®?®). Interestingly,
cells from the heterozygous TKO population showed a more pronounced skewing ratio, with
82.8% CAST Xa (TKO on Xi, n =1359) and 14.8% BL6 Xa (TKO on Xa, n =243, Figure 5.9b).
To validate this shift in the XCI skewing pattern of mutant cells, bulk RNA-seq was performed
for -/+ TKO (n = 3) and WT samples (n = 3, Figure 5.9c). However, the allelic ratios of X-
linked genes showed a similar skewing pattern for mutant and WT samples. Moreover, no

significant differences were detected in the allelic ratios of the INcCRNA Xist (Figure 5.9d-e).
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Figure 5.9 Allele-specific analysis of spleens using scRNA-seq and bulk RNA-seq data.

a, Violin plot for autosomes showing the allelic ratios of wildtype (WT, gray) and -/+ ACrossfirre-Firre-
Dxz4 (TKO, turquoise) samples at the chromosome-level. An allelic ratio of 1 corresponds to 100%
CAST expression, and 0 corresponds to 100% expression from the BL6 allele. Boxplots represent
the interquartile range from the median, with whiskers indicating 1.5x the interquartile range.

b, Violin plot showing the allelic ratios of the X chromosome for single cells from WT and -/+ TKO
samples. An allelic ratio of 2 0.7 indicates that the CAST allele is Xa, whereas a ratio of < 0.3 indicates
that the BL6 allele is Xa. Individual dots represent single cells.

¢, Schematic overview of the bulk RNA-seq workflow to obtain WT and -/+ TKO samples. CAST
males and -/+ TKO females (BL6) were mated, and spleens were harvested from female F1 offspring
(n = 6). Subsequently, bulk RNA-seq was performed.

d, Violin plot displaying the allelic ratios of X-linked genes per genotype and replicate (n = 3 per
genotype). The dots highlight the allelic ratio of Xist.

e, Comparison of the allelic ratios of Xist for WT (n = 3) and heterozygous TKO (n = 3) bulk RNA-seq
samples. Differences in the allelic ratios were assessed using a t-test. The figure was obtained from
Hasenbein et al., 2024322,

To identify potential gene-level effects in mutant mice on random XCI, cells were
computationally sorted according to the strain background of Xa and pooled as pseudobulk to
maximize read coverage. This analysis allowed for a background matched comparison

between WT and TKO cells with the deletion present on either Xa or Xi. Known escape genes
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such as Kdmé6a, Eif2s3x, Ftx, and Kdm5c were detected as biallelically expressed, while Xist
was expressed exclusively from the Xi, validating the approach (Figure 5.10a). However,
similar to the results for imprinted XCI, no changes in the allelic ratios of X-linked genes were
observed between WT and mutant samples with the TKO on Xa or Xi (Figure 5.10a). Thus,

the deletion of the Crossfirre, Firre, and Dxz4 loci does not impact random XCI biology in vivo.

Although the XCI biology was not affected by the TKO, it is noteworthy that the cell-type
composition was altered in heterozygous TKO samples compared to the WT (Figure 5.10b).
In spleen samples with the TKO on Xi, fewer CD4 T cells were present (Fisher odds = 0.71,
p-value = 0.003). Conversely, for cells with the TKO on the Xa, the proportion of B cells was
reduced in the spleen sample of mutant mice (Fisher odds = 0.71, p-value = 0.023, Figure
5.10c). Taken together, these findings demonstrate differences in cell-type composition

depending on whether the deletion is present on Xa or Xi.
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Figure 5.10 Pseudobulk and cell-type composition analysis using scRNA-seq data.

a, Heatmap of pseudobulk samples showing the median allelic ratio of informative X-linked genes.
Sequencing reads were aggregated for wildtype (WT) and -/+ ACrossfirre-Firre-Dxz4 (TKO) samples
with the TKO located on either Xi (upper panel) or Xa (lower panel). The color scale represents the
allelic ratio and ranges from 1 (brown, CAST Xa) to 0 (black, BL6 Xa). The heatmap also shows the
absolute delta change in allelic ratios between WT and heterozygous TKO samples. Arrows mark the
approximate positions of Crossfirre, Firre, and Dxz4. *Note: The observed expression bias of Tsix is
an artifact of the non-strand-specific analysis influenced by Xist, which is transcribed in the antisense
direction.

b, Uniform Manifold Approximation and Projection (UMAP) visualization of the unsupervised
clustering of the WT and heterozygous TKO cells, divided by cells with the CAST allele Xa or the BL6
allele Xa. For the heterozygous TKO, this resulted in the deletion being present on Xi or Xa,
respectively. Different colors represent distinct cell types.

c, Cell-type composition shifts depending on whether the TKO deletion is located on Xi (left panel)
or Xa (right panel). Bar plots show the percentage of each cell type for WT and -/+ TKO samples,
with colors corresponding to cell types as in (b). Asterisks indicate statistically significant changes in
cell-type proportions as determined by Fisher's exact test (p-value < 0.05). For cell types with = 20
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cells, the odds ratio of the Fisher test is shown next to the bar graph. Statistically significant changes
are highlighted in red. The figure was modified from Hasenbein et al., 2024322,

5.1.5 Mice lacking Crossfirre, Firre, and Dxz4 show upregulation of multiple
autosomal pathways

Previously, Firre and Dxz4 have been shown to affect autosomal gene expression in adult

Organs127,131

. To further investigate the additional effect of Crossfirre, a transcriptomic
bodymap was generated for homozygous TKO mice, including the spleen, kidney, lung, heart,
liver, and brain. In addition, organ and age-matched samples from the previously published
AFirre-Dxz4 mutants were reanalyzed. Interestingly, the additional knockout of Crossfirre
resulted in an 11.4-fold increase in the number of dysregulated genes (TKO n = 1190, AFirre-
Dxz4 n =104, FDR £0.01, |shrunk log2FC| = 1, Figure 5.11a). In the TKO, the spleen exhibited
the highest number of differentially expressed genes (n = 417), with the majority located on
autosomes (97.1%, Figure 5.11a). In total, 148 differentially expressed genes were common
in = 2 tissues, with 93.2% sharing the direction of dysregulation. Genes shared in = 5 organs
were upregulated in all samples (Figure 5.11b). Subsequently, gene set enrichment analysis
(GSEA) revealed that the common dysregulation led to a predominant upregulation of
mitochondrial and ribosomal gene-sets across five tissues except the brain (FDR < 0.1, Figure

5.11c).
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Figure 5.11 Homozygous triple deletion of Crossfirre, Firre, and Dxz4 results in widespread
autosomal dysregulation observed across multiple organs.

a, Transcriptomic analysis of homozygous AFirre-Dxz4 and ACrossfirre-Firre-Dxz4 (TKO) mouse
models. A transcriptomic bodymap was generated for adult female -/- TKO mice covering six different
organs and analyzed together with the previously published sample- and age-matched AFirre-Dxz4
mouse models'?” (wildtype n = 4; AFirre-Dxz4 n = 4; TKO n = 3). The number of significantly
differentially expressed genes (DEGs, DEseg2: FDR < 0.01, |log2FC| = 1) is shown as a bar graph
for each tissue and genotype (TKO: turquoise, AFirre-Dxz4: blue). Pie charts illustrate the distribution
of TKO DEGs on autosomes and the X chromosome, respectively, with sizes proportional to the
number of DEGs.

b, Number of shared DEGs in the TKO across organs. The accompanying heatmap presents the log:
fold changes for genes shared between the tissues. The color code indicates up- (orange) and down-
regulated (black) genes.

¢, Heatmap of the top 100 most significantly enriched gene sets based on log1(FDR) values from
the TKO gene set enrichment analysis (left; FDR < 0.1). The color code represents up- and down-
regulated gene sets. Different colors indicate cluster IDs, which were calculated based on gene
similarity (n = 18). The network plot shows the different gene set clusters from the spleen, highlighting
the ribosomal (cluster ID: 3 n = 35) and mitochondrial (cluster ID: 1 n = 21) clusters. The figure was
obtained from Hasenbein et al., 2024322,
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5.1.6 Double deletion of Crossfirre and Firre drives the autosomal gene
dysregulation

To identify the driving loci of the observed molecular phenotype in TKO organs, spleens from
all homozygous mouse mutant models were further investigated, including ACrossfirre, AFirre,
ADxz4, ACrossfirre-Firre, AFirre-Dxz4 and TKO. Again, differential gene expression analysis
was performed using sample-matched WT controls (Figure 5.12a). Most of the dysregulated
genes were detected in mutant models with the combined Crossfirre-Firre deletion (TKO: n =
417, ACrossfirre-Firre: n = 103, FDR < 0.01, |shrunk log2FC| = 1), with the majority of genes
being dysregulated in the same direction (n = 73, 70.87%, Figure 5.12b). Notably, the
knockout of either ACrossfirre or AFirre individually resulted in few dysregulated genes
(ACrossfirre: n =9, Firre: n =7), suggesting a combined effect of both loci. Subsequent GSEA
revealed that the Crossfirre-Firre knockout reproduced the molecular phenotype of the TKO
in the spleen, including the upregulation of mitochondrial and ribosomal pathways (Figure
5.12c). Interestingly, the molecular phenotype could not be reproduced in any of the single
deletion models, indicating that Crossfirre and Firre combined affect the autosomal gene

dysregulation observed in TKO samples.
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Figure 5.12 The combined deletion of Crossfirre and Firre drives the upregulation of
mitochondrial and ribosomal pathways.

a, Differential gene expression analysis for female spleen samples of different mouse mutant models.
The number of differentially expressed genes (DEGs) is displayed for various knockout mice,
including the single, double, and triple deletions (DEseq2: FDR < 0.01, |shrunk log2FC| = 1). Genes
are categorized as up- (orange) or downregulated (black).
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b, Number of knockout-specific DEGs in the spleen and DEGs shared among mutants. The heatmap
presents the logz fold changes for genes shared between ACrossfirre-Firre and ACrossfirre-Firre-
Dxz4 (TKO).

¢, Heatmap showing the log1o(FDR) values for the top 100 informative enriched gene sets identified
in the TKO. The heatmap shows upregulated and downregulated gene sets across the ACrossfirre,
AFirre, and ADxz4 single deletions and the ACrossfirre-Firre and TKO models. The figure was taken
from Hasenbein et al., 2024322,

5.1.7 Phenotyping pipeline uncovers sex-specific phenotypes in TKO mutants

To further investigate the phenotypic characteristics of the observed gene dysregulation of the
Crossfirre, Firre, and Dxz4 deletion, a cohort of control and TKO mice (females: n = 13 TKO,
n=15WT, males: n =13 TKO, n = 15 WT) was subjected to the comprehensive phenotyping
pipeline of the GMC?*?*. This analysis included multiple phenotypic screens with hundreds of
tests covering the categories: immunology/allergy, behavior, biomarkers, cardiovascular,
clinical chemistry, pathology, dysmorphology, eyes, metabolism, neurology, and nociception
(Figure 5.13a). A detailed description of the phenotyping pipeline is available at

https://www.mouseclinic.de.

A total of 28 knockout- and sex-specific phenotypes were identified by the phenotypic screen,
encompassing immunology/allergy (n = 5), behavior (n = 2), neurology (n = 1), cardiovascular
(n = 2), clinical chemistry (n = 8), dysmorphology (n = 2), metabolism (n = 3), and pathology
(n =5, Figure 5.13b).

Nine of the 28 observed phenotypes were TKO-specific, independent of sex. These included
(i) an increased locomotor and (ii) exploratory activity, which was most pronounced during the
first five minutes of the observation. In contrast, (iii) the acoustic startle reactivity was
decreased compared to the control mice. In addition, TKO mutants showed (iv) altered red
blood cell morphology with decreased mean corpuscular volume and increased mean
corpuscular hemoglobin concentration. Mild effects were observed on (v) iron metabolism,
including reduced plasma iron levels and calculated transferrin saturation. Additionally, (vi)
pathology of the intestinal Peyer's patches revealed that mutant mice had increased
secondary follicles (Figure 5.13b-c). Furthermore, consistent with the scRNA-seq analysis of
the spleen, shifts were observed in the (vii) CD4/CD8 T cell ratios, as well as in the (viii) relative

percentages of B cells and (ix) monocytes of the peripheral blood (Figure 5.13b-c).
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Figure 5.13 Comprehensive phenotyping pipeline identifies knockout- and sex-specific
phenotypes.

a, Schematic overview of the phenotyping process with the German Mouse Clinic (GMC). A total of
30 wildtype (male n = 15, female n = 15) and 26 ACrossfirre-Firre-Dxz4 (TKO, male n = 13, female n
= 13) mice were subjected to the phenotyping pipeline of the GMC. Various phenotyping screens
were performed covering the categories: immunology/allergy, behavior, biomarkers, cardiovascular,
clinical chemistry, pathology, dysmorphology, eyes, metabolism, neurology, and nociception.
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b, Overview of the results of a set of parameter tests for each category. The parameters are selected
to provide a summary overview of the phenotyping results of the GMC. Triangles indicate the direction
of the effect sizes (Cohen’s D), with color coding according to significance (p-value < 0.05). N.S.: not
significant (t-test). An overview of the phenotyping screen abbreviations is provided in Appendix 10.2.
c, Overview of all significant parameters by screening category for TKO (n = 9), female- (n = 6), and
male-specific (n = 13) phenotypes. The color coding corresponds to the respective screening
category, while the arrows denote the direction of effect sizes (Cohen’s D). The figure was obtained
from Hasenbein et al., 2024322,

In addition to the knockout-specific phenotypes, the GMC revealed sex-specific effects for
TKO mice. A total of 13 phenotypes were identified as male-specific. Clinical chemistry
detected (i) elevated insulin secretion and (ii) plasma triglyceride levels, along with (iii) reduced
creatinine and (iv) lactate concentrations. The immunology screening found (v) higher levels
of IL-6, a proinflammatory cytokine, in mutant males. In addition, males exhibited (vi) increased
body weight and (vii) oxygen consumption, as well as (viii) a higher metabolic rate attributed
to (ix) the increase in lean mass. The pathology screen identified (x) bronchopneumonia and
mild inflammatory cell infiltrates in a subset of male mutants (1/5). The (xi) bone mineral
content was increased, and (xii) 2/13 male mice showed abnormal hind paws digits. Notably,
an (xiii) increased auditory brainstem response was identified in the neurology screen,

indicating alterations in auditory processing (Figure 5.13b-c).

In contrast to the male-specific phenotypes, female mice exhibited six phenotypes, including
(i) increased eosinophilic proportions and (ii) mean platelet volumes, while (iii) urea levels
were decreased. Apparent changes in 1/5 female mice were detected by histopathological
screens, including (iv) inflammatory cell infiltrates in the lungs and (v) congestive arteries with
vessel wall thickening. These changes were mild and focal in the remaining females (4/5).
Cardiological tests revealed subtle shifts (vi) characterized by higher heart rates and heart-
rate-corrected QT intervals. Interestingly, one female mutant further exhibited dilated

cardiomyopathy (Figure 5.13b-c).

In summary, the extensive phenotyping of the GMC highlights that Crossfirre, Firre, and Dxz4
are involved in various physiological processes. The majority of phenotypes were sex-specific
(female TKO-specific: 21.43%, n = 6; male TKO-specific: 46.43%, n = 13), while only a subset
(32.14%, n = 9) was attributed to the TKO independent of sex. The discovery of sex-specific
phenotypes underscores the highly sex-specific characteristics of these loci. A detailed
overview of all phenotyping results and raw measurements can be found on the GMC

Phenomap website (https://www.mouseclinic.de, Figure 5.14).
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Figure 5.14 Overview of the Phenomap webpage of the German Mouse Clinic.

The Phenomap resource comprises all raw measurements of the comprehensive TKO phenotyping
for each category assessed. The data is publicly accessible at https://www.mouseclinic.de and can
be found by searching for the Crossfirre, Firre, or Dxz4 gene name.
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5.2 Project 2: Decoding the targets and mechanisms of the non-
coding genome through allele-specific genomics

Given that the experimental characterization of ncRNAs is laboratory extensive, the second
project aimed to develop a novel bioinformatics framework to predict the target genes and

mechanisms of ncRNAs.

5.2.1 Enrichment of allele-specific ncRNAs nearby allele-specific pcGenes

Previously, a comprehensive map of ASE was generated across multiple mouse organs and
observed that the number of allele-specific ncRNAs correlated with the number of allele-
specific pcGenes’®. In this study, the allele-specific transcriptome was mapped across the
major mouse organs including the brain, heart, lung, liver, kidney, and spleen, to further
investigate this correlation. Organs were collected from nine-week-old F1 hybrids and used
for RNA-seq (replicates n = 3; Figure 5.15a). Subsequently, ASE mapping was performed for

loci that were consistently informative across replicates using the Allelome.PRO v2.0 pipeline.

On average, ASE was observed for 8.98% (n = 1039) of the informative genes per tissue
(allelic ratio cutoff 2 0.7 or < 0.3, Figure 5.15b). The highest proportion of allele-specific genes
was found in the liver (10.5%, n = 1007), while the lowest amount was present in the brain
(6.4%, n = 840, Figure 5.15c). Of these, an average of 2.13% were ncRNAs, with IncCRNAs
accounting for the majority of biotypes (69.4%, Figure 5.15d).

Next, the proportion of allele-specific ncRNAs and pcGenes was correlated across tissues,
identifying a positive correlation (Spearman correlation: R = 0.66, p-value = 0.004, Figure
5.15e). The co-occurrence of allele-specific pcGenes and ncRNAs was quantified across
various genomic window sizes to confirm this correlation. This analysis revealed a strong
enrichment of allele-specific ncRNAs in the vicinity of allele-specific pcGenes within a distance
of +100kb (Wilcoxon test p-value = 0.002, Figure 5.15f). The finding that allele-specific
ncRNAs often surround allele-specific pcGenes suggests a potential co-regulation and
indicates that the allele-specific pattern could be used to predict the protein-coding targets of
cis-acting ncRNAs. Furthermore, this approach allows to infer the mechanism of action based
on the pattern of the allelic bias between ncRNA and pcGene towards the same (enhancing)

or opposite (repressive) alleles (Figure 5.15g).
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Figure 5.15 Allele-specific non-coding RNAs are enriched near allele-specific protein-coding
genes.

a, Overview of the workflow to map the allele-specific transcriptome. BL6 females were crossed with
CAST males. Nine-week-old female F1 organs (brain, spleen, liver, heart, kidney, lung) were
harvested from three replicates (n = 18). RNA-seq was conducted and Allelome.PRO v2.0 was
employed to generate an allele-specific bodymap.

b, Violin plot displaying the median allelic ratio for informative autosomal genes across replicates
(n= 3, total reads = 20). Colors represent different tissues. Allele-specific expression (ASE) was
defined by an allelic ratio cutoff of = 0.7 or < 0.3. Genes beyond these cutoff values are indicated as
dots. Boxplots indicate the interquartile range and median, while whiskers represent 1.5x the
interquartile range.

c, Bar plot illustrating the fraction of allele-specific genes per tissue. Numbers denote the total count
of biased genes. Light gray and dark gray colors represent protein-coding and non-coding genes,
respectively. Pc: protein-coding, nc: non-coding.

d, Pie chart showing the biotype distribution of the ncRNAs with an allele-specific bias. Biotype
information was available for 52.74% of the ncRNAs (n = 520). Misc RNA: miscellaneous RNAs
without classification, TEC: to be experimentally confirmed.

e, Correlation plot showing the proportion of allele-specific ncRNAs against the fraction of allele-
specific protein-coding genes for each replicate, normalized by the total amount of informative genes.
Spearman correlation was calculated as a statistical test (R = 0.66, p-value = 0.004). The color coding
is according to the tissue sample.

f, Boxplot displaying the enrichment of allele-specific ncRNAs around allele-specific and biallelic
protein-coding genes within a £100kb window. The colors represent the various tissues. Statistical
significance was assessed using a Wilcoxon test (p-value = 0.002). Boxplots show the interquartile
range, median, and whiskers range from maximum to minimum values.

d, Schematic overview of the mechanism prediction based on the allele-specific pattern. Depending
on whether the allelic bias between ncRNA and pcGene was towards the same or opposite alleles,
they were classified as enhancing or repressive, respectively. The figure was obtained from a
submitted manuscript by the author of this thesis (see 9.2 Submitted manuscripts, 1.).
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5.2.2 Validation of the Allelome.LINK pipeline using known targets of imprinted
IncRNAs

Based on the findings that allele-specific ncRNAs and allele-specific pcGenes correlate with
each other, the Allelome.LINK tool was developed to facilitate the target prediction of cis-acting
ncRNAs. Allelome.LINK is a bioinformatics framework that builds upon the Allelome.PRO v2.0
pipeline to link regulatory loci to their potential target genes based on the ASE pattern. The
mechanism is determined based on the allelic bias towards the same or opposite alleles
(Figure 5.16a). Both, Allelome.PRO v2.0 and Allelome.LINK, offer straightforward execution
through a simple one-line command, improving the accessibility for users of diverse
backgrounds. The results from Allelome.LINK are provided in a tabular format sorted by a
linkage score, along with a BEDPE file for genome browser visualization. A comprehensive

overview of both tools is available in the Appendix section 10.1.

The pipeline was initially evaluated using the IncRNA Xist. Xist is the initiator of XClI, a process
in which one of the two female X chromosomes undergoes epigenetic silencing to achieve
dosage compensation between males and females®”*8. Although XCI becomes random after
embryonic implantation, it consistently results in the silencing of the paternal X chromosome
in extraembryonic lineages'®. In the placenta, Allelome.LINK correctly identified Xist as a
repressive ncRNA for the majority of X-linked genes, with the exception of known escape
genes, such as Kdmé6a, Eif2s3x, Jpx, and Kdmbc, showcasing the robustness of the
Allelome.LINK strategy (Figure 5.16b).

To further evaluate the efficacy of the pipeline, the target prediction for the INcCRNA Airn was
tested. Airn is an imprinted, paternally expressed INcCRNA that silences target genes within the
Igf2riAirn cluster in a cis-dependent manner. In the placenta, the Airn locus is the largest
imprinted region in mice’®. Here, the paternally expressed INcRNA Airn represses multiple
genes on the paternal allele, leading to maternal expression of the targets. Among these,
seven genes (Pde10a, Park2, Slc22a3, |gf2r, Dact2, Smoc2, and Thbs2) were validated as
repressive targets by reactivation of the silent allele upon deletion of the Airn promoter’®'#,
To assess the efficacy of the pipeline, Allelome.LINK was employed to analyze WT and Airn
knockout placental RNA-seq datasets’®. Allelome.PRO v2.0 accurately identified maternal
bias for the known Airn targets and confirmed biallelic expression of the target genes upon

Airn promoter deletion (Figure 5.16c).

Knowing the cis-acting targets of the IncRNA Airn in the placenta allowed the computation of
the precision and recall for the Airn locus. This was done separately for each replicate and for

pooled samples. The highest precision (85.7%) was obtained by pooling replicates, while the
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recall remained above 85% (Figure 5.16d). These results highlight the effectiveness of the

Allelome.LINK pipeline in predicting the targets of ncRNAs.
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Figure 5.16 Workflow and validation of the Allelome.LINK pipeline.
a, Overview of the Allelome.PRO v2.0 and Allelome.LINK pipeline. Allelome.PRO v2.0 requires three
input files: a SNP file, an annotation file, and an aligned sample BAM file. The allelic ratio is calculated
for each locus based on the number of reads with SNPs from the maternal or paternal allele. The
output of Allelome.PRO v2.0 is used as input for Allelome.LINK. The tool links allele-specific loci
within user-defined genomic windows and calculates linkage scores. The output includes a list of
candidate predictions and a genome browser file.
b, Genome browser output of the Allelome.LINK pipeline. Shown is the X chromosome with red arcs
highlighting repressive interactions between Xist and protein-coding X-linked genes (total reads = 20,
window size: full chromosome, allelic ratio > 0.75 and < 0.25). Below the chromosome is the
Allelome.PRO v2.0 output showing loci classified as maternally (red) or biallelic (green) expressed.
Known escape genes are labeled. RNA-seq data from E12.5 placentas were used (CAST x FVB
n=2, FVB x CAST n =2)""5,
¢, Genome browser output of the Allelome.LINK pipeline for the Igf2r/Airn locus, showing the
predicted interactions for the imprinted INncRNA Airn. Red arcs indicate repressive linkages, with arc
height proportional to the linkage score. Below is the Allelome.PRO v2.0 output showing loci
classified as maternal (MAT: red), biallelic (BAE: green) and paternal (PAT: blue). The upper panel
shows results for wildtype mice (n = 3), and the lower panel for mice with an Airn promoter deletion
(n = 3). Samples were pooled using the median (total reads = 10, allelic ratio =2 0.7 or < 0.3, window
size: 4000kb) and were obtained from E12.5 placentas (n = 6)’8.
d, Precision-recall plot for the Allelome.LINK results of the Igf2r/Airn locus from E12.5 placentas
(n = 3). Precision and recall were calculated per replicate and for pooled samples. The figure was
sourced from a submitted manuscript by the author of this thesis (see 9.2 Submitted manuscripts,

1.).
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5.2.3 Identification of 397 mouse ncRNA-target linkages and their mechanisms
across organs

Following validation of the Allelome.LINK pipeline, the tool was used to predict the protein-
coding targets of ncRNAs in a comprehensive set of mouse organs. Therefore, the mapped
allele-specific transcriptome of nine-week-old animals was used, including samples from the
brain, heart, lung, liver, kidney, and spleen (Figure 5.17a). On average, the approach
identified 66.2 ncRNA-target associations per tissue, ranging from 50 linkages in the heart to
99 linkages in the spleen (Figure 5.17b). High-confident linkages were identified by using the
linkage score. Notably, the known repressive interaction between Airn and Igf2r was among
the top interactions in all tissues except the brain (Figure 5.17c). Using this approach, an
average of 11.3% of the allele-specific ncRNAs per tissue were linked to their putative protein-
coding target genes (Figure 5.17d). Interestingly, the analysis also revealed a predominance
of tissue-specific linkages (62.2%, n = 247), while only 37.8% (n = 150) of the linkages were
shared by two or more tissues (Figure 5.17e). Additionally, repressive interactions showed an
even distribution of target distances, peaking at 32kb, while enhancing linkages were in close

proximity (Figure 5.17f-g).
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Figure 5.17 Identification of ncRNA-target linkages and their regulatory mechanisms.

a, Schematic overview of the workflow for predicting ncRNA-targets in mice. Allelome.PRO v2.0 was
applied to a comprehensive set of organs from nine-week-old F1 mice (BL6 x CAST), including the
brain, spleen, liver, heart, kidney, and lung (per replicate n = 3, total n = 18). The results were used
as input for Allelome.LINK to predict candidate linkages.
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b, Bar plot showing the number of predicted ncRNA-to-target linkages per tissue. Red bars illustrate
repressive interactions, while green color marks enhancing linkages.

¢, Manhattan plot displaying the linkage score of candidate linkages per tissue. Colors denote the
different tissue samples.

d, Pie chart showing the mean fraction of linked ncRNAs per tissue relative to the total amount of
ncRNAs with allele-specific expression.

e, Bar plot illustrating the number of linkages present in the number of tissues.

f, Density plot showing the distribution of linkage distances for enhancing (green) and repressive
(red) interactions.

g, Bar plots displaying the number of anti-sense and intergenic linkages separated by enhancing
(green) and repressive (red) interactions. The figure was taken from a submitted manuscript by the
author of this thesis (see 9.2 Submitted Manuscripts, 1.).

Two examples of high-confident linkages are highlighted. The first example is a repressive
anti-sense linkage identified in the kidney between the ncRNA Gm35993 and the pcGene
Acmsd (Figure 5.18a). Allele-specific read mapping of the underlying RNA-seq data
confirmed the predominant expression of Gm35993 from the maternal allele and the paternal
expression of Acmsd, indicating a repressive association (Figure 5.18a). The second example
is an intergenic repressive link in the liver, where Gm38596 was predicted to repress Sult2a7.
Allele-specific read mapping confirmed that low expression of Gm38596 correlated with high
expression of Sult2a7, while increased expression of Gm38596 anti-correlated with the loss

of Sult2a7 expression (Figure 5.18b).
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Figure 5.18 Examples of high-confident ncRNA-to-target predictions in mice.
a, Genome browser visualization of the repressive linkage between the ncRNA Gm35993 and the
protein-coding gene Acmsd, detected in the kidney. The red arc indicates a repressive interaction.
The allelic bias is shown by gene color: red for maternal and blue for paternal expression, with the
intensity reflecting the allelic bias. Sequencing tracks display the number of strand-specific reads
mapped to the maternal (red) and paternal (blue) allele. The bar chart illustrates the quantification of
sequencing reads per allele and gene.
b, Same as in (a), but for the repressive interaction between Gm38596 and Sult2a7 detected in the
liver. The figure was obtained from a submitted manuscript by the author of this thesis (see 9.2
Submitted Manuscripts, 1.).
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In total, the Allelome.LINK framework identified 397 ncRNA-to-target linkages across a
comprehensive set of mouse organs (Figure 5.19). These results provide detailed insights
into the tissue-specific nature of ncRNAs within the mouse genome. To support the exploration
of all candidate linkages, an interactive resource was created using the Integrative Genomics
Viewer (IGV)*?. This database enables the dynamic visualization and analysis of the linkage
data, allowing researchers to select candidates for further investigation and characterization
in the tissue of interest. The URL links to access the interactive database are available at the
https://github.com/AndergassenLab/Allelome.LINK. Detailed explanations of how to use the

generated resource can be found in Appendix section 10.3.
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Figure 5.19 Comprehensive ncRNA-to-target resource for the major mouse organs.
Chord plot showing chromosome 1-19 with the predicted candidate linkages between ncRNA and
protein-coding target identified in adult mice across six different tissues (spleen: blue, lung: gray,
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liver: red, kidney: green, heart: black, brain: yellow). Linkages labeled on the outside are predicted to
be enhancing, while linkages on the inside represent repressive interactions. The ncRNAs are
highlighted in bold font. Dashes separate multiple protein-coding targets. The density plot shows the
genomic distribution of linkages per chromosome. The figure was taken from a submitted manuscript
by the author of this thesis (see 9.2 Submitted Manuscripts, 1.).

5.2.4 Leveraging the human genetic variation to uncover the gene targets of
ncRNAs

Next, the Allelome.LINK framework was applied to human samples taking advantage of the
GTEXx resource'’. The GTEx consortium collected RNA-seq data from up to 54 different
tissues across 838 individuals, resulting in 15,253 samples and 153 million allele-specific
haplotype measurements (Figure 5.20a). Due to the non-strand-specific nature of the GTEx
RNA-seq data, overlapping genes were removed. Furthermore, a total read cutoff of = 20 SNP-
overlapping reads was required for a gene to be considered informative. Post filtering, 924,440
non-coding and 27,155,698 protein-coding allele-specific measurements remained in the
dataset, comprising 1,825 ncRNAs and 6,281 pcGene loci (Figure 5.20b). The number of
unique allele-specific genes generally increased with sample size, with an average of 3,580
ASE loci per tissue, including 312 ncRNAs and 3,268 pcGenes. The Kidney - Medulla, with
data from only four individuals, had the fewest number of ASE genes (n = 310), while the lung,
with data from 515 individuals, had the highest number of ASE gene loci (n = 4,983, Figure
5.20c).

Before predicting the protein-coding targets of ncRNAs, the co-occurrence of allelic ncRNAs
and pcGenes was quantified to confirm the applicability of this approach in humans. Each
tissue sample was screened for allele-specific ncRNAs, and the abundance of allele-specific
pcGenes within a distance of £100kb was compared to the abundance of biallelic pcGenes.
Notably, this analysis revealed a significant enrichment of allele-specific ncRNAs around

allele-specific pcGenes in half of the tissues examined (27 out of 54 tissues, Figure 20d).
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Figure 5.20 Allele-specific ncRNAs are enriched in proximity to allele-specific protein-coding
genes in multiple human tissues.

a, Overview of the Allelome.LINK strategy on human samples. The allele-specific transcriptome of
15,253 samples, including 54 tissues and nearly 1,000 individuals, was obtained from the GTEx v8
release’®! and used to predict ncRNA-targets using Allelome.LINK.

b, Boxplot displaying the distribution of allele-specific loci per individual and tissue. The color code
follows the GTEx color scheme for each tissue, and the tissue abbreviations are consistent with those
used in the GTEx resource'. An overview of the GTEX tissue abbreviations is provided in Appendix
10.4.

c, Scatter plot illustrating the number of informative loci with allele-specific expression (ASE, allelic
bias = 0.7 or = 0.3, total n = 193,327) and the number of individuals. Different colors indicate different
tissues, consistent with the color coding used in panel (b).

d, Boxplot showing the enrichment of allele-specific ncRNAs in proximity to allele-specific (dark gray)
and biallelic (light gray) protein-coding genes within £100kb distance. Boxplots summarize samples
per tissue. The significance level is indicated by the number of asterisks and was determined by
Wilcoxon tests. Boxplots show the interquartile range, median, and whiskers range from maximum
to minimum. ASE: allele-specific expression, BAE: biallelic expression. The figure was sourced from
a submitted manuscript by the author of this thesis (see 9.2 Submitted Manuscripts, 1.).

Allelome.LINK was subsequently applied to all samples of the GTEx database. Due to the
outbred nature of the human population, each individual possesses a unique set of genetic
variants, resulting in a personalized allelic landscape. This diversity allows novel linkages to
be identified with each sample. Although linkages can only be detected in samples where the
ncRNA exhibits ASE, the regulatory relationship is expected to be common across samples
(Figure 5.21a).
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Each tissue sample revealed an average of one linkage per individual (Figure 5.21b).
However, a significant proportion of these linkages were specific to individual samples
(63.77%) rather than shared between individuals (36.23%, Figure 5.21c). This observation
suggests that each individual contributes to the discovery of novel linkages. Notably, no
saturation of novel linkages was observed in any tissue as the sample size increased (Figure
5.21d). Thus, the genetic variation present in humans provides substantial potential for

discovering a large number of linkages as the sample sizes increase.

On average, 42.43 ncRNA-to-target linkages were identified per tissue in the human dataset,
with the highest number of linkages observed in the Skin - Sun Exposed (lower leg, n = 95)
and the Thyroid (n = 95), while the Kidney - Medulla showed the lowest number of ncRNA-to-
target linkages, likely due to the small sample size (n = 4, Figure 5.21e). Next, the distribution
of these ncRNA-to-target linkages was analyzed across all tissues and identified 530 unique
linkages. Among these, 233 linkages (43.96%) were tissue-specific, while 297 linkages
(56.04%) were shared by two or more sampling sites (Figure 5.21f). Notably, 80.47% (n =
239) of the shared linkages were present in fewer than 10 tissues (Figure 5.21f-g). Linkages
identified in more than 38 tissues belong exclusively to the human leukocyte antigen (HLA)
cluster, genes known to show high genetic variability leading to ASE>*°. The finding of a higher
frequency of tissue-specific linkages compared to shared linkages across tissues aligns with

the observations in mice and highlights the tissue-specific nature of ncRNAs.
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Figure 5.21 Properties of ncRNA-to-target linkages of outbred human samples.

a, Overview of the Allelome.LINK framework for outbred samples with different genotypes. The ncRNA-
to-target interaction is detected in individual 2 due to a heterozygous SNP (hetSNP) that results in
allele-specific expression of the ncRNA. Although this regulatory association is expected to be present
across all samples, it is often masked by the biallelic expression of the ncRNA.

b, Boxplot demonstrating the mean number of linkages per individual across tissues. The interquartile
range around the median is shown. Whiskers range from maximum to minimum.

¢, Density plot displaying the distribution of linkages shared across different numbers of individuals.
d, Saturation curve representing the average number of linkages relative to the number of individuals.
Lines display mean values and shaded areas the standard deviations calculated from random sampling
(iterations n = 1,000). Different colors correspond to various tissues.

e, Bar plot showing the number of identified linkages per tissue. The color codes and abbreviations
correspond to the respective tissues, consistent with the GTEx database'®°.
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f, Bar plot showing the number of linkages shared in a given number of sampling sites. The pie chart
illustrates the fraction of linkages that are tissue-specific and present in = 2 tissues.

g, Cumulative fraction plot of the number of tissues in which a ncRNA was linked. The figure was
modified from a submitted manuscript by the author of this thesis (see 9.2 Submitted Manuscripts, 1.).
In summary, 2,291 linkages were identified across all tissues, representing 17.75% of the
informative ncRNAs (n = 324) that were successfully assigned to their targets (Figure 5.22).
The entire resource, including all linkages, is available via URL links listed in
https://github.com/AndergassenLab/Allelome.LINK. A detailed explanation for using the

generated resource can be retrieved from Appendix section 10.3.
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Figure 5.22 Comprehensive ncRNA-to-target resource for 54 different human tissues.

Chord plot showing the predicted ncRNA-to-target linkages identified across 54 human tissues for
chromosome 1-22. The outer labels indicate linkages that were more frequently detected as
enhancing interactions, while the inner labels depict predominantly repressive linkages. Bold font
highlights ncRNAs. Dashes separate multiple protein-coding targets. The density plot indicates the
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genomic distribution of linkages per chromosome. Individual tracks and colors denote the tissues in
which a linkage was detected. The figure was obtained from a submitted manuscript by the author of
this thesis (see 9.2 Submitted Manuscripts, 1.).

5.2.5 Most linkages identified in humans are supported by eQTL data

Sample-matched eQTL data from the GTEx database was used to validate the predicted
ncRNA-to-target linkages in human tissues. This dataset contains 21,412,255 fine-mapped
eQTLs across 49 of the 54 tissues analyzed®'®. eQTL data was unavailable for tissue samples
of the Kidney - Medulla, Fallopian Tube, Cervix - Endocervix, Cervix - Ectocervix, and Bladder.
The validation rates ranged up to 100% for small sample groups such as the Bladder (Figure
5.23a). On average, 77.47% (standard deviation = 9.83) of the linkages were confirmed by the
eQTL data, of which 18.72% were specifically validated by eQTLs from the same tissue type
(Figure 5.23a). This substantial validation rate underscores the robustness and efficacy of the
allele-specific approach for ncRNA-target prediction, providing valuable insights into the

regulatory landscape of the non-coding genome.

In addition, the accuracy of predicted regulatory mechanisms (enhancing or repressive) was
assessed by evaluating the mechanism assignments for linkages shared by a large proportion
of individuals. This approach helped to determine the consistency of enhancing and repressive
mechanism assignments. The mechanism prediction was first tested for linkages within the
HLA cluster. Given the high variability in ASE among HLA genes®°, a random distribution of
mechanisms was anticipated across individuals, which was tested for samples of the Whole
Blood. Indeed, 49.25% of the linkages were identified as enhancing and 50.75% as repressive
for a total of 361 HLA gene interactions (Figure 5.23b). Moreover, Allelome.LINK was applied
to samples of the Heart - Left Ventricle (n = 386), Pancreas (n = 305), Adrenal gland (n = 233),
and Muscle - Skeletal (n = 706), where the imprinted status of DLK1 and MEG3 was previously
confirmed by allelic expression data''. In a mouse embryonic stem cell system, the IncRNA
Meg3 was shown to repress DIk1 expression in cis**’. Remarkably, the interaction was
consistently identified as repressive in 79.46% of the 564 individuals where the linkage was
detected (Figure 5.23c). This result highlights the reliability of the Allelome.LINK framework

in accurately assigning the regulatory mechanisms across individuals.

In conclusion, the high validation rate of predicted ncRNA-to-target interactions and the
accuracy in mechanism assignment underscore the effectiveness of the Allelome.LINK

framework in identifying regulatory ncRNA-to-target interactions.
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Figure 5.23 Validation of the ncRNA-to-target linkages and the mechanism assignment.

a, Bar plot showing the number of validated linkages confirmed by eQTL analysis across various
tissues. Each bar represents the number of validated linkages for a specific tissue. The horizontal
bar plot shows the mean fraction and standard deviation of all linkages summarized across tissues.
Linkages confirmed by eQTLs from the same tissue are depicted in dark green, while those validated
by eQTLs from different tissues are shown in light green.

b, Genome browser visualization of the Allelome.LINK output for Whole Blood samples (n = 611).
Shown are the linkage predictions between the genes: HLA-DRB9, HLA-DRB5, HLA-DRB6, HLA-
DRB1, and HLA-DQA1. Enhancing interactions are represented by green arcs (n = 178), and
repressive interactions are depicted by red arcs (n = 183), with arc height proportional to the linkage
score. Black gene names highlight ncRNAs, while gray color indicates protein-coding genes. The
RNA-seq track shows gene expression levels of a representative tissue sample from the GTEx
database. The bar plot shows the proportion of enhancing (green) and repressive (red) linkages for
each interaction.

¢, Genome browser visualization of the Allelome.LINK output as in (b) but for the imprinted interaction
between MEG3 and DLK1 of Heart - Left Ventricle samples. The bar chart displays the faction of
enhancing (green) and repressive (red) MEG3-DLK1 linkages for samples from Heart - Left Ventricle,
Pancreas, Adrenal gland, and Muscle - Skeletal. The figure was taken from a submitted manuscript
by the author of this thesis (see 9.2 Submitted Manuscripts, 1.).

5.2.6 Elucidating high-confident ncRNA-targets by assessing the mechanism
assignment

The mechanism fraction for each linkage was determined by calculating the proportion of
individuals within each tissue sample where a given linkage was classified as either enhancing
or repressive. This approach allowed the evaluation of the consistency of mechanism

assignments across samples within each tissue type (Figure 24a). A consistency threshold of
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> 75% was applied to filter for high-confident linkages, meaning that a linkage had to be
classified as enhancing or repressive in at least 75% of the tissue samples where it was
detected. This process resulted in 35.0% repressive (n = 802) and 48.1% enhancing (n =
1102) linkages. Notably, of the 16.89% (n = 387) of linkages with random mechanism
assignment, 36.69% involved the HLA genes (Figure 5.24a).

While linkages identified in single individuals provide valuable regulatory insights, those
observed consistently across multiple samples with identical mechanisms represent more
robust findings due to their reproducibility. Therefore, linkages with consistent mechanism
predictions in more than 10 individuals were filtered, uncovering 24 high-confident linkages

(repressive n =9, enhancing n = 15, Figure 5.24a).

One of these high-confident linkages is the interaction between the INcRNA FENDRR and the
pcGene FOXF1. In line with previous studies, a regulatory interaction between these gene loci
was identified across multiple samples®?23%®, This linkage was consistently classified as
enhancing in 94.55% (n = 52) of the FENDRR-FOXF1 linkages detected in Cells - Cultured
Fibroblast samples (Figure 5.24a-b). Another example of a high-confident linkage was the
positive regulatory relationship of the pcGene TREML4 with the ncRNAs TREML3P and
TREML5P in Whole Blood samples. These interactions were consistently identified as
enhancing in 117 (TREML3P - TREML4) and 103 (TREMLS5P - TREML4) individuals (Figure
5.24a-b). As repressive examples, the linkages between the ncRNA SERPINB9P1 and the
predicted target SERPINB9 in the Esophagus - Mucosa (n = 21), as well as the ncRNA
MIR2117HG and the pcGene ARL4D in the Skin - Sun-Exposed Lower Leg (n = 65), were
highlighted. Both linkages were identified in a large subset of individuals and showed

consistent mechanism assignment (Figure 5.24a-b).
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Figure 5.24 Analysis of linkage mechanisms and high-confidence examples.

a, Scatter plot illustrating the proportion of enhancing and repressive mechanisms for each linkage
relative to the number of individuals exhibiting that linkage. A value of 1 means that the linkage is
enhancing in all individuals where it was detected, while a value of 0 means that the linkage is
repressive in all individuals. Transparent dots represent linkages involving genes from the HLA gene
cluster. Colored dots represent the different tissues. The upper density plot shows the distribution of
linkages across individuals per tissue, and the right density plot depicts the distribution of linkage
mechanisms, ranging from 100% repressive to 100% enhancing.

b, Examples of high-confident linkages. Green arcs denote enhancing interactions, while red arcs
indicate repressive interactions, with arc height proportional to the linkage score. Gene names in
black denote ncRNAs, while gray names indicate protein-coding genes. The RNA-seq track displays
gene expression levels for a representative example of that tissue from the GTEx database. Red
lines mark GWAS hits sourced from the GWAS catalog3**. The figure was retrieved from a submitted
manuscript by the author of this thesis (see 9.2 Submitted Manuscripts, 1.).

5.2.7 Assignment of ncRNA-overlapping GWAS variants to their protein-coding
targets via identified linkages

As a final step, the generated ncRNA-to-target linkages were leveraged to assign GWAS

variants in the non-coding genome to their potential protein-coding targets. To accomplish
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this, all GWAS variants present in the NHGRI-EBI catalog were downloaded and overlapped
with the informative ncRNA loci (n = 1,059 variants)®***. The number of linkages with GWAS
variants varied between tissues, ranging from 1 in the Kidney - Medulla to 42 in the
Skin - Sun Exposed Lower leg (median n = 15, Figure 5.25a). Overall, 36.73% (n = 119) of
the linked ncRNAs were associated with at least one GWAS variant (Figure 5.25b).

Notably, using the Allelome.LINK resource, a fraction of 30.59% of the informative non-coding
GWAS variants were assigned to a pcGene, allowing researchers to gain important insights
into their potential functional consequences (n = 324, Figure 5.25b). All candidate linkages,
including their associated GWAS variants, are available via URL links listed in
https://github.com/AndergassenLab/Allelome.LINK, providing a valuable resource for further
exploration by the research community (Appendix 10.3). This extensive resource contributes
to the understanding of the functional role of trait- and disease-related variants within the non-
coding genome. As the availability of GWAS datasets and sequencing information continues

to grow, this approach will continue to decode the target genes of non-coding risk variants.
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Figure 5.25 Linking non-coding GWAS variants to their potential protein-coding targets.

a, Bar plot displaying the number of linkages identified per tissue. Red bars indicate the number of
linkages where the ncRNA harbors a GWAS variant.

b, The upper pie chart shows the fraction of ncRNAs that could be linked (n = 324) and contain a
GWAS-SNP in the ncRNA (red) versus the fraction of linked ncRNAs without a GWAS variant (gray).
The lower pie chart depicts the percentage of GWAS variants overlapping informative ncRNAs (n =
1,059), separated by linked (red) and unlinked (gray) ncRNAs. The figure was obtained from a
submitted manuscript by the author of this thesis (see 9.2 Submitted Manuscripts, 1.).

91


https://github.com/AndergassenLab/Allelome.LINK

6 Discussion

6.1 Project 1: Investigating the in vivo contribution of the Crossfirre
locus alone and in combination with Firre and Dxz4

The present study investigated the in vivo contribution of the previously uncharacterized
IncRNA Crossfirre, alone and in combination with Firre and Dxz4. Using one of the largest
cohorts of genetically modified X-linked mouse models, combined with multi-omics
approaches and extensive phenotyping, the project uncovered their functional role at the

molecular and phenotypic level.

6.1.1 Deletion of the top female-specific loci has no effect on development and
XCI biology

Over the past decade, several studies have demonstrated that the Crossfirre-Firre and Dxz4
loci possess female-specific signatures of open chromatin that are absent in

78.121.124128129 " However, it remained unclear whether such female-specific patterns

males
occur frequently throughout the genome. This study addressed this question for the first time
by systematically comparing the epigenetic landscape between males and females and found
that this pattern represents the topmost female-specific accessible regions genome-wide.
Despite the distinct female-specific pattern, the results of this thesis revealed that mutant mice
lacking the Crossfirre locus, alone or in combination with Firre and Dxz4, exhibited no adverse
effects on development or fertility, with the offspring being viable and showing the expected
sex ratios and litter sizes. Similarly, genetic deletion models have previously demonstrated
that the Firre and Dxz4 loci are dispensable for mouse development, as the offspring of mutant
mice were both viable and fertile'?” 3!, These observations lead to the conclusion that, despite
their highly female-specific epigenetic properties, Crossfirre, Firre and Dxz4 are not essential

for either development or fertility.

Moreover, the results of this study confirmed previous findings demonstrating that the female-
specific chromatin accessibility pattern originates from the Xi’®?4'% Several studies have
shown that these open chromatin regions correspond to Xi-specific CTCF binding sites, which
contribute to the perinucleolar localization of the Xi'**'?, Knockdown experiments of Firre
resulted in the loss of the perinucleolar localization and lower H3K27me3 levels, highlighting
a functional importance of this locus in maintaining both the Xi epigenetic landscape and

nuclear positioning'?*'2¢,
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In addition to the female-specific features of the Firre and Dxz4 loci, Andergassen et al.
performed an extensive allele-specific analysis and identified Crossfirre as the only imprinted
X-linked gene in somatic tissues, predominantly expressed from the maternal X
chromosome’®. This finding was observed in RNA-seq data from the brain, where Crossfirre
is expressed at comparatively higher levels, and was confirmed in mouse embryonic
fibroblasts by maternal H3K4me3 enrichment at the Crossfirre promoter’®. Thus, it has been
speculated that Crossfirre may act as a key genomic regulator of imprinted XCI, marking the
maternal X chromosome. Prior to this study, the functional contribution of Crossfirre to XCI
biology was entirely unknown. Despite its imprinted expression, the present study found that
the deletion of Crossfirre has no effect on imprinted XCI, independent of whether the deletion
was on Xa (maternal X chromosome) or Xi (paternal X chromosome), or whether it was
deleted individually or in combination with Firre and Dxz4. Given the Xi-specific epigenetic
signatures of Firre and Dxz4, along with their role in folding of the Barr body, a functional role
for these loci in XCI has been hypothesized. Yet, several studies have shown that despite the
loss of the Xi-structure, Firre and Dxz4 are dispensable for XCI biology in cell culture
models'?"125:126128.129 " A knockout study by Andergassen et al. has further investigated the

127 Consistent with the results of this thesis, the authors did

effects of Firre and Dxz4 in vivo
not observe a significant enrichment of differentially expressed genes on the X chromosome
or changes in the ASE patterns of X-linked genes in the placenta, concluding that the deletion

of Firre and Dxz4 does not affect imprinted XCI in vivo.

The authors of the same study also investigated the effects of the loss of these loci on random
XClI by analyzing XCI skewing ratios in brain tissues of mutant mice'? . In line with the findings
of this thesis, no alterations in the XCI skewing were observed, suggesting that random XCI
is not affected by the absence of Firre and Dxz4. However, the conclusive effects on random
XCI have not been addressed at the gene-level. This gap arises from the complexity of
studying XCI at the whole-organ level, in particular due to the random XCI status where cells
alternate between having the maternal or paternal X chromosome active. By developing a
novel approach that includes allele-specific single-cell sorting, this study addressed the
challenge and investigated the consequences of the deletion of the Xa-specific IncRNA
expression and the Xi-specific epigenetic characteristics on random XCI in vivo. This analysis
conclusively demonstrated that the deletions of Crossfirre, Firre, and Dxz4 do not affect

random XCI maintenance in the adult spleen.

The Crossfirre knockout further marked the first deletion on an X-linked LINE cluster attached
to the Crossfirre locus. The deletion of this element was of particular interest as LINE clusters

have been suggested to prevent local gene escape and contribute to the maintenance of

93



XCI'™327 The lack of effect on the expression of neighboring genes further challenges the
presumed role of LINE clusters in XCI stability, suggesting that LINE clusters may be

dispensable for the maintenance of XCI.

In conclusion, the comprehensive allele-specific analyses of this study demonstrate that
Crossfirre, Firre, and Dxz4 are dispensable for both imprinted and random XClI in vivo. These
findings provide important insights into long-standing questions in the field and address

previous assumptions about the role of these loci in XClI biology.

6.1.2 Crossfirre and Firre combined have a synergistic role in autosomal gene
regulation

In contrast to the dispensability of these loci in XCI biology, transcriptomic analysis of the TKO
mouse models revealed large-scale autosomal gene dysregulation, a finding that was

common across organs except for the brain.

Previously, Firre and Dxz4 have been reported to play a functional role in autosomal gene
regulation in an organ-specific manner'?”®*'_ In mice lacking these loci, spleen tissue exhibited
autosomal gene dysregulation associated with chromosome segregation and structure gene
sets. A single deletion model of Firre confirmed this locus as the primary driver of these
effects'?’. Interestingly, the additional knockout of Crossfirre to the Firre-Dxz4 double deletion
in the present study resulted in a more than 11.4-fold increase in the number of dysregulated
genes. These findings suggest a significant effect of Crossfirre in addition to Firre and Dxz4
on autosomal gene regulation. Comparisons of multiple knockout strains, including single and
double deletions, further provide evidence that the combined knockout of Crossfirre and Firre
contributes to the autosomal gene dysregulation. These findings indicate a synergistic role for
Crossfirre and Firre in autosomal gene regulation. Synergistic effects between genes are
known as epistasis or gene-gene interactions and describe a functional relationship of

genes®®

. An example for synergistic gene induction is provided by Goldstein et al., where the
authors show that STAT3 binding to the target sites is enhanced by NF-kB. In this process,
the activity of NF-kB primes enhancers, facilitating STAT3 binding to chromatin and driving
synergistic gene expression®*. However, the mechanism by which Crossfirre and Firre may
interact and affect autosomal gene expression is unknown, representing a significant limitation

of the study that requires further investigation.

To regulate genes on autosomes, Crossfirre and Firre would have to function in trans. This
assumption aligns with the proposed mechanism for Firre, which serves as a platform for

trans-chromosomal interactions, bringing together at least three gene loci located on different
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chromosomes around the transcription site of Firre’2. Additional evidence for a trans-acting
Firre RNA comes from a study by Lewandowski et al.”*'. The authors showed that Firre-
mediated hematopoietic defects in knockout mice could be rescued by transgenic expression

of Firre'

. A trans-acting role for Firre has also been described in Patski cell lines, where Fang
et al. found that Firre RNA transcribed from the Xa preserves H3K27me3 enrichment on the
Xi'?®. However, further investigation is needed to understand how Crossfirre contributes to
these findings. The same study observed that the knockdown of Firre leads to the upregulation

"5 In contrast, the

of Crossfirre, suggesting that Firre represses the antisense transcrip
present study found that the deletion of Crossfirre does not exert regulatory control over the
expression of Firre, indicating that Crossfirre does not play a significant role in controlling Firre
expression. Given the complexity of IncRNA-mediated gene regulation, the potential
mechanisms by which both loci affect autosomal gene expression are diverse and could
further include indirect frans-regulatory effects, such as those mediated by interactions with
RBPs or small RNA pathways, including piRNA-driven gene regulation or miRNA
sponging*®*¥_ Future studies are required to elucidate the exact mechanisms underlying the

observed gene dysregulation and whether these function via RNA or DNA elements.

6.1.3 Deletion of X-linked IncRNAs revealed knockout and sex-specific
phenotypes

TKO mice further underwent an extensive phenotypic screening at the GMC to elucidate the
phenotypic consequences upon deleting these gene loci. The GMC provides standardized
and unbiased phenotyping services for mouse mutant lines, assessing over 550 disease-
relevant parameters?’-3?*, Gene loci, especially IncRNAs, often exert pleiotropic effects with
different functions during developmental stages or across different tissues®’. Thus, large-
scale phenotyping of knockout mouse models is essential to robustly detect phenotypic

consequences?”’.

The phenotypic characterization of mouse models lacking Crossfirre, Firre, and Dxz4
uncovered genotype effects on traits related to immunology, behavior, clinical chemistry,
dysmorphology, metabolism, and pathology. These findings support a functional role of these
loci in various biological processes. Transcriptomic analysis of TKO mice identified an
upregulation of mitochondrial and ribosomal gene sets, suggesting implications in energy
metabolism33®*%*_ This is consistent with several phenotypes detected by the GMC, including
lower plasma cholesterol concentrations and urea levels, phenotypic traits associated with
shifts in protein metabolism**°. Moreover, the observed upregulation of mitochondrial and

ribosomal gene sets is supported by the finding that TKO mutants showed higher levels of
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triglycerides, as well as lower creatinine levels and lactate concentrations®'-**3, Interestingly,
the decrease in lactate was one of the most pronounced effects observed by the GMC. Lactate
has been reported to have important functional roles in cellular metabolism, serving as a
product of the glycolysis pathway and substate for mitochondrial respiration®'. Apart these
functions, lactate has further gained recognition as signaling molecule between different
tissues and organs to facilitate metabolic adaptation in response to changing conditions*.
Combined, the increase in mitochondrial and ribosomal activity, along with the identified
metabolic phenotypes support alterations in the energy metabolism of mutant mice. The origin
of these metabolic shifts remains unknown, but may arise in response to altered cellular

processes or metabolic demands®*®*%.

Beyond energy metabolism, analysis of the peripheral blood showed apparent differences in
monocyte and eosinophil proportions, as well as B cell and CD4/CD8 T cell ratios. These
findings are in agreement with the previously described molecular function of Firre in
hematopoiesis, where Lewandowski et al. reported alterations in the blood cell composition
upon the deletion of Firre''. The same study further showed that Firre-overexpressing mice
had elevated levels of proinflammatory cytokines and decreased survival when exposed to
lipopolysaccharide™". Interestingly, phenotyping of the TKO males also revealed increased
levels of the proinflammatory cytokine IL-6, confirming a link between the TKO and immune
response. These findings are further supported by studies of human FIRRE that demonstrate
a feedback loop between FIRRE and the NF-kB signaling pathway'3?**5, Combined with the
results of the thesis, a conserved functional role for Firre/FIRRE in regulating inflammatory

responses in both mice and humans is indicated.

Interestingly, male mutants further displayed altered behavior and deficits characteristic for
sensory processing disorders, such as impaired hearing®¥. These findings may be supported
by two human case studies that report male children with a FIRRE locus duplication'%'¥". The
patients showed mild to severe intellectual disability with clinical phenotypes of
neurodevelopmental delay associated to the genetic alteration® '3, One of the human studies
further observed cardiac abnormalities that may correspond with the subtle cardiovascular
phenotypes observed in female mice, including higher heart rates and heart-rate-corrected

QT intervals, as well as signs of dilated cardiomyopathy'3®

. Although these findings need to
be further investigated in future studies, the results support the disease relevance of Firre and

a possible conservation of its pathological effects across species.

Among all phenotypes identified in the TKO mice, a significant number was specific to sex.
The presence of a high number of sex-specific phenotypes indicates potential sex-specific

functions for Crossfirre, Firre, and Dxz4. This is in line with the findings, that these loci were
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identified as the topmost female-specific chromatin accessibility regions. However, it is
important to note that sexual dimorphisms between males and females can influence the
prevalence of phenotypic traits. A study by Karp et al., which analyzed 234 traits across 40,192
mutant mice, revealed that a large proportion of phenotypes are impacted by sex®".
Consequently, it remains to be investigated whether the observed sex-specific TKO
phenotypes result from direct sex-specific functions of Crossfirre, Firre, and Dxz4 or manifest

as a result of the sexual dimorphism between males and females.

Considering that all three IncRNAs are located on the X chromosome, phenotypes observed
independently of sex or in male mutant mice suggest a functional role of the RNA of these loci
from the Xa. In contrast, the involvement of Xi-specific epigenetic signatures cannot be
excluded for female-specific phenotypes. Determining how these sex-specific loci function
differently in males and females remains a subject for further investigation. Evidence
supporting the differential effects of these loci based on whether the deletion occurs on Xa or
Xi comes from the scRNA-seq analysis of the spleen. Consistent with the immunological
findings from the phenotyping screen, a significant reduction in B cell proportions was
observed in cells lacking Crossfirre, Firre, and Dxz4 expression when the deletion was present
on Xa. Conversely, cells with the deletion on Xi maintained normal B cell proportions but
showed a significant reduction in CD4 T cells. These results underscore the distinct functional
roles of these loci depending on whether they are located on Xa or Xi, potentially explaining

the emergence of sex-specific phenotypes.

6.1.4 Outlook

The multi-omics characterization of different mutant mouse models lacking Crossfirre, Firre,
and Dxz4, as well as the comprehensive phenotypic analysis, lays a robust foundation for
future studies investigating the interplay of these X-linked loci and their role in autosomal gene
regulation. However, further research is needed to dissect the specific functional implications
of the synergistic gene regulation of Crossfirre-Firre and the pleiotropic phenotypic effects

observed in the TKO mutants.

One limitation of the current study is that the impact of the lack of these loci on XCI was only
investigated at one developmental timepoint (E12.5) and in multiple adult organs of the same
age (6-weeks). Therefore, effects on the maintenance of Xi repression during aging cannot be
excluded. Additionally, imprinted genes are often functional during embryonic development

and can have subtle effects during the transient embryonic growth period, which can be
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compensated until birth**. Although these experiments were beyond the scope of the current

study, they may warrant investigation in the future.

In addition, the present study did not investigate the regulatory mechanism through which
Crossfirre and Firre influence autosomal gene expression. Given the complexity of IncCRNA-
mediated gene regulation, the potential mechanisms are diverse and could include direct or
indirect trans-regulatory pathways. Therefore, further studies are needed to determine the

underlying molecular mechanisms and whether these function via RNA and/or DNA elements.

This study further found sex-specific effects of Crossfirre, Firre, and Dxz4 with different
phenotypic consequences in males and females. While the Xi-specific characteristics of these
loci are specific to females, a higher frequency of phenotypes was found in males. This raises
the question of the distinct functional properties of these loci between the sexes. Further
investigation is needed to unravel the functional properties that mediate the sex-specific

functions and to elucidate the different functional mechanisms that can arise from Xi and Xa.

Finally, several findings from the study point towards the disease relevance of the TKO model,
including sensory processing disorders or subtle cardiac phenotypes. Interestingly, the
dysregulation of FIRRE in humans has been linked to intellectual disability in male patients
with a FIRRE locus duplication'®'¥". Together, these findings indicate a disease relevance of
the Firre locus in both mice and humans. Further research is required to explore these
implications, particularly by challenging the mouse mutants in disease models. Such models
could help to delineate the molecular pathways affected by these loci and how their

dysregulation contributes to disease phenotypes.

6.1.5 Summary

In summary, this project provides the first in vivo characterization of the previously
uncharacterized INcRNA Crossfirre, both individually and in combination with Firre and Dxz4.
By leveraging one of the largest cohorts of genetically modified X-linked mouse models,
combined with multi-omics approaches and extensive phenotyping, the study uncovered their
functional roles at both the molecular and phenotypic levels. Interestingly, the study identified
these loci as the topmost female-specific chromatin accessibility regions. Despite the
imprinting of Crossfirre and the unique female-specific characteristics, these X-linked loci were
found to be dispensable for XCI biology. In contrast, the study identified that Crossfirre and
Firre function synergistically in autosomal gene regulation, affecting mitochondrial and
ribosomal pathways. Finally, mouse models lacking all three loci underwent a comprehensive

phenotypic screening at the GMC, revealing knockout- and sex-specific effects, shedding light
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on the in vivo roles of Crossfirre, Firre, and Dxz4. The resulting dataset provides a solid basis

for further studies exploring these X-linked loci.
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6.2 Project 2: Decoding the targets and mechanisms of the non-
coding genome through allele-specific genomics

Despite advances in ncRNA research, the understanding of their functional roles and
regulatory targets remains incomplete. Experimental characterization of ncRNAs using mouse
models is considered the gold-standard but is laboratory extensive. Thus, computational tools
are needed to predict the target genes and mechanisms of ncRNAs a priori to facilitate the
selection of candidates for experimental validation. So far, traditional approaches, such as
genotype correlation studies, rely on large sample sizes and have been unable to identify a
high number of ncRNA-targets due to their dynamic expression patterns. This project aimed
to unravel the cis-regulatory ncRNAs of mice and humans by developing a novel

bioinformatics framework to predict their targets and mechanisms, based on the ASE patterns.

6.2.1 Leveraging the allele-specific information to identify the regulatory
targets of ncRNAs

Previously, Andergassen et al. performed comprehensive mapping of the allele-specific
landscape across different mouse tissues and observed that the number of allele-specific
ncRNAs and pcGenes correlated’®. The present study confirmed this observation by
systematically assessing the frequency of allele-specific gene loci, which identified that allele-
specific ncRNAs are significantly enriched around allele-specific pcGenes in mice. To further
validate these findings in humans, the GTEx database was used and revealed similar trends,
supporting the hypothesis of the co-regulation between adjacent allele-specific loci. However,
a significant enrichment was detected in only half of the human tissues tested. A possible
explanation for several non-significant samples is that overlapping gene loci of the GTEx data
were not considered. Due to the non-strand-specific nature of the data, overlapping gene loci
had to be removed to avoid the detection of false positives. In mice, 15.18% of the linkages
were found to overlap antisense transcripts. Consequently, the lack of strand-specificity of the
GTEx data represents a significant limitation of the study and may have hindered the

identification of a significant fraction of relevant cis-acting ncRNAs.

Over the past decades, the computational identification of ncRNA-targets has remained
challenging, mainly due to the dynamic expression pattern of ncRNAs*#2, The developed
Allelome.LINK approach leverages the allele-specific information, providing a promising
framework to address this issue by comparing the expression levels of alleles within the same
sample. This approach provides a highly controlled system that avoids compensatory effects

or dynamic expression patterns. To date, ASE has been used to identify regulatory variants in
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the genomes of multiple organisms, including yeast, plants, mice, flies, wasps, birds, and
humans®*®. However, rather than investigating the effects of genetic variants, this study
examined the co-occurrence of ASE gene loci, providing insights beyond variant-specific
effects. In addition to the Allelome.LINK approach, a recent study by Goede et al. also
suggested that ASE patterns might be used to detect cis-regulatory interactions between
genes**. The study identified local patterns of high ASE sharing between IncRNAs and nearby
genes and identified 137 ASE sharing events. For these cases, the authors also implied
potential cis-regulatory relationships between the nearby allele-specific genes**°. However,
the study examined ASE at the population level to identify associations that were consistently
observed across the cohort. In contrast, Allelome.LINK performs individual-level analyses to
capture ASE variability specific to particular samples. This approach provides a more nuanced
understanding of ASE patterns and offers insights into personalized regulatory mechanisms
that may be missed in population-wide summaries. Several studies have shown that allele-
specific ncRNAs can induce ASE in their regulatory target genes'#%'8"3%" Thus, investigating
the ASE pattern of ncRNA and target further allow to infer the underlying mechanism of the
regulatory relationship. An enhancing ncRNA that is higher expressed on one allele is
expected to result in increased expression of the target gene on the same allele. In contrast,

repressive effects should be reflected as anti-correlation between the alleles.

While one limitation of Allelome.LINK is that the detection of targets is restricted to cis-acting
ncRNAs, this characteristic simplifies the process of identifying direct regulatory targets.
Differential gene expression analysis following a gene knockout often reveals numerous
dysregulated genes, making the interpretation of the results challenging®®2*52. These include
all genes affected by the knockout in a direct and indirect manner. In contrast, in an allele-
specific model, effects that occur in frans are masked, as these effects affect both alleles
equally®®. As a result, allele-specific models provide a robust framework for identifying the
primary cis-interactions of n\cRNAs and their targets. Additionally, one of the key advantages
of the Allelome.LINK approach is the ability to identify regulatory associations based on
transcriptomic data. This facilitates the candidate selection by providing prior knowledge of

the specific tissues in which a ncRNA regulates a target gene.

6.2.2 Predicting ncRNA-targets in mice

The present study identified 397 ncRNA-to-target linkages in the major organs of F1 hybrid
mice between the BL6 and CAST strains. The usage of F1 hybrids provides a robust approach
for identifying gene loci with ASE, as the SNP information of the inbred strains are well

defined'®. Furthermore, F1 mouse hybrids allow the inclusion of biological replicates with the
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same genetic background. As a higher number of replicates has been shown to increase the
power of ASE detection, the ability to use replicates increases the robustness of ASE detection
for both ncRNAs and targets®*. This finding was further confirmed by our study, highlighting

that the highest precision and recall for Allelome.LINK were obtained for pooled samples.

The predicted interactions identified by Allelome.LINK are based on statistical correlations
between the ncRNAs and potential target genes. Therefore, these correlations do not
necessarily imply causation. However, the significant enrichment of allele-specific ncRNAs
nearby allele-specific pcGenes supports the likelihood of co-regulatory associations. It is
important to note that the Allelome.LINK strategy was designed to predict regulatory
interactions, providing a valuable foundation for further investigation. Future studies can build
upon these findings and leverage this resource for candidate selection to perform functional

assays and refine our understanding of regulatory ncRNAs.

The present study provided functional validation of Allelome.LINK by using a genetic knockout
mouse model for the INcRNA Airn’®. The Airn cluster has been shown to provide a powerful
model for studying the regulatory targets of a INcRNA with ASE’879148174.175 However, to
further investigate the associations identified by Allelome.LINK, different knockout strategies
have to be used in future experiments to validate the predicted regulatory relationships and
explore their mechanisms beyond cis-acting effects. While transcriptomic data suggest RNA-
based mechanisms, the possibility that regulatory DNA elements or the transcription of the
ncRNA itself drive the regulatory effect on the target cannot be excluded'®'3*°, Further studies
are needed to disentangle these mechanisms, including whole-gene ablation to confirm
regulatory relationships, followed by strategies such as polyadenylation-terminator insertion
or promoter deletion to distinguish between DNA elements, transcription, and the ncRNA
transcript’®’. Replacement of the gene body with reporter genes can further identify effects
due to the act of transcription and promoter activity. Trans effects can be tested by rescue
experiments following ncRNA deletion, while frameshift or start codon mutations can be used
to investigate small functional peptides within ncRNAs'®". Although Allelome.LINK identifies
regulatory ncRNAs that act primarily in cis, it may be worthwhile to test for additional functional
effects in trans, as regulatory effects can be affected by multiple cis and trans effects®®. For
example, the IncRNA Tug1, which is essential for male fertility, acts in cis by regulating
neighboring genes via DNA elements and in trans, through RNA-based mechanisms®’. These

findings highlight the relevance of testing gene loci for multiple regulatory mechanisms.

In contrast to knockout studies, analyses of parent-hybrid trios with data collected from the
parental lines and the F1 hybrid allow the influence of cis- over trans-regulatory effects to be

inferred. Comparative analysis of parent-hybrid trios allows the identification of both regulatory
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relationships within F1 hybrids®®. Sequencing of parental FO strains offers the advantage of
detecting regulatory variation by differential gene expression analysis. Trans-acting regulatory
effects manifest as expression differences between the parental strains without ASE in the F1
hybrid, whereas cis-acting effects are reflected in both the allelic ratio of the F1 hybrids and in
the differential expression between the parental strains®*®. This approach provides valuable

insights into the regulatory mechanisms underlying gene expression variation.

The ability to replicate biological samples in mice further offers the advantage of studying F1
hybrids across various conditions, including disease models or different stages during
development and aging. In outbred populations such as humans, genetic variation makes it
challenging to distinguish genotype-driven effects from true context-specific interactions, as
collecting samples from the same individual under different environmental contexts is often
impractical. The use of genetically identical F1 hybrids eliminates this variability and facilitates
the identification of context-dependent regulatory interactions. Thus, this strategy provides a

robust model for studying regulatory shifts across different conditions.

The integration of multiple strains into the analytical framework could further be used to cross-
validate existing regulatory linkages and to identify novel associations by mimicking outbred
populations and genetic diversity. A recent study by Tsouris et al. employed a large diallel
panel comprising 323 hybrid yeast strains to analyze the impact of different genetic variants
on gene expression®*®. This concept could be translated to the allele-specific analysis, to
pinpoint the causal variants leading to ASE in the identified regulatory ncRNAs. Comparing
the ASE patterns of different F1 strains enables to classify strains with and without ASE for a
particular locus. This allows the identification of genetic variants present in ASE-positive
strains but absent in ASE-negative strains, leading to the identification of candidate variants.
Subsequently, statistical approaches such as regression models can be applied to establish
causal relationships between these variants and ASE. To gain further mechanistic insights,
these variants could then be investigated using epigenetic data to determine whether these
variants are located within open chromatin regions or known DNA regulatory sites®*®. Motif
analysis can then assess whether these variants disrupt transcription factor binding, providing
a detailed understanding of their functional impact. Thus, these analyses could elucidate the

underlying molecular variants responsible for ASE.
6.2.3 Predicting ncRNA-targets in humans
After predicting ncRNA-targets in mice, the Allelome.LINK approach was applied to the GTEx

database and identified 2,291 linkages across 54 different tissues and 838 human individuals.
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Interestingly, most ncRNA-to-target associations were detected in single individuals. Unlike
inbred mouse strains, the human population is outbred, exhibiting high genetic diversity. Thus,
each individual possesses a unique set of genotypes. Considering that genetic variation can
lead to ASE, the human population has the potential to reveal a vast array of ASE gene
loci™?'78. The observation that more ASE loci are identified as the number of individuals
increases supports this notion. As a result, novel linkages were identified with each sample
with no saturation observed in any tissue. Thus, the human genetic variation provides a
substantial potential for the discovery of a large number of linkages. Although the regulatory
effects can only be detected in individuals harboring the specific set of variants leading to ASE,

the underlying associations are expected to be common across individuals.

To further evaluate the performance of the pipeline, sample-matched eQTL data were
retrieved from the GTEx database and used to validate the predicted ncRNA-target linkages
in human tissues®'®. Remarkably, 77.47% of the linkages were confirmed by the eQTL data
across tissues, with 18.72% of the eQTLs originating from the same tissue as the predicted
linkage. This substantial validation rate highlights the effectiveness of the allele-specific
approach for predicting ncRNA-targets. In addition, the accuracy of the mechanism prediction
was assessed by evaluating the mechanism assignments for the imprinted interaction
between DLK1 and MEGS3. Testing the mechanism assignment for this imprinted interaction
is particularly useful as the expected repressive relationship is independent of the DNA
sequence'®'. Remarkably, the interaction was correctly identified as repressive in 79.46% of
the samples tested, highlighting the reliability of the allele-specific framework in accurately
assigning regulatory mechanisms. About 20% of the linkages were misclassified as
enhancing, which could be due to errors in phasing. Phasing is a statistical method that
assigns alleles to haplotypes based on linkage disequilibrium. However, as the distance
between loci increases, phasing tends to become less accurate and more prone to errors®®.
Advances in phasing algorithms will further improve the mechanism assignment of the

Allelome.LINK strategy.

Linkages that were identified in many samples and were consistently classified as enhancing
or repressive were highlighted as high-confident linkages. While linkages identified in
individual samples are expected to reflect common mechanisms, the high-confident linkages
could be replicated across multiple samples and thus represent more robust findings due to
their reproducibility. It is noted that the prevalence of a consistent ASE pattern may further

142

indicate biological relevance'*“. Given that ASE is primarily driven by heterozygous variants,

their widespread presence in a population implies that balancing selection favors the
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heterozygous state®®°. Consequently, these loci are of particular interest and warrant further

investigation.
6.2.4 GWAS integration links non-coding variants to pcGenes

Over the past few decades, GWAS have significantly advanced our understanding of the
genetic basis of disease, uncovering hundreds of thousands of risk variants®'*. However, the
vast majority of these variants are located in the non-coding genome, making it difficult to
interpret their functional implications®®'. Many risk variants identified by GWAS closely co-
localize with regulatory regions, such as ncRNA loci, yet the limited functional understanding,
including their regulatory targets and mechanisms, poses a significant challenge in

understanding how these variants contribute to disease®®.

This study successfully predicted the protein-coding targets for 30.59% of the variants that
overlapped informative ncRNA loci (n = 324). Although this number represents only a fraction
of the total GWAS-identified SNPs, the future integration of more human sequencing datasets
will continue to increase the number of non-coding risk variants that can be assigned to their
respective protein-coding targets. To incorporate additional GWAS variants that do not overlap
with linked ncRNAs, variants and ncRNA loci can be linked via eQTL co-localization®*®°. If an
eQTL associated with the expression of a particular ncRNA significantly co-localizes with a
disease-associated variant, this SNP could be assigned to the ncRNA, which can be linked to
the target gene via Allelome.LINK. This approach will further increase the number of non-

coding GWAS variants linked to their protein-coding target genes.

All ncRNA-target predictions, including the inferred mechanisms and GWAS information, are
accessible via intuitive genome browser visualization and can be accessed via URL links listed
in the GitHub repository at https://github.com/AndergassenLab/Allelome.LINK. This dataset
provides a valuable resource to select candidate ncRNAs for the tissue of interest. As the
availability of sequencing data and risk variants continues to expand, our strategy offers

promising avenues for future research.

6.2.5 Outlook

The present findings provide the basis for numerous future research projects that will help to
elucidate the non-coding genome. The extensive resource, comprising ncRNA-target
predictions for the major mouse organs and 54 different human tissues, serves as an ideal
starting point for the community to select candidates for further investigation and validation.

This resource will help to prioritize functional and disease-relevant ncRNAs that can be
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investigated using wet-lab experiments. The user-friendly nature of Allelome.LINK, combined
with the growing pool of GWAS variants and sequencing data, will continue to identify novel

regulatory interactions and shed light on the functional implications of the non-coding genome.

The highly dynamic expression pattern of ncRNAs also provides the opportunity to discover
novel linkages in different tissues, cell types, or conditions. Thus, as more data is integrated,
the pool of ncRNA-target predictions will continue to grow. Because bulk RNA-seq data
comprises mixed cell types, ASE patterns deriving from different cell types could be
masked'?. To address this limitation, the updated Allelome.PRO v2.0 can be used on single-
cell data, allowing Allelome.LINK to identify cell-type-specific interactions. Additionally,
integrating data from different developmental stages or conditions, such as aging or disease,
can reveal condition-specific ncRNA-target interactions. Interestingly, it is assumed that the
presence of ASE increases with age'*?. By stratifying sequencing data based on condition,
such as age or disease, this would not only allow the identification of novel linkages but could

potentially highlight linkages or ASE patterns with biological relevance to a specific condition.

The vast amount of data offered by the GTEx database provides further opportunities. RNA-
seq data can be used to calculate gene co-expression networks to assign linked ncRNAs and
targets to pathways or cell types, providing additional insights into their functional roles®°.
Moreover, outlier enrichment analysis could be used to investigate the expression of ncRNA
and target in the tissue and individual where the linkage was identified*®*. Due to the presence
of ASE, the expression profiles of both interaction partners are likely to differ significantly from
that of the remaining population®*®. Correlation of the outlier expression of ncRNA and target
could validate the identified interaction in the respective individual and tissue and provide an
approach to confirm linkages in silico. Finally, comparative analyses of genetic variants could
reveal the specific variations responsible for the observed expression changes®®. This could
provide further insights into the genetics of ncRNA regulation and its potential relevance to

disease.

It is worth noting that the Allelome.LINK approach can be extended by integrating sample-
matched genomic data, such as those obtained from ATAC- or ChlP-sequencing. The
additional integration of such sequencing data would allow the prediction of target genes
associated with DNA regulatory elements, for example enhancer elements. This integration
enables a comprehensive understanding of the regulatory mechanisms within the non-coding
genome, providing insights into the complex network of interactions that control gene
expression. Additionally, since many GWAS risk variants are located in DNA regulatory
elements, including enhancers or repressors®®*, these regulatory-target predictions can

subsequently be applied to link disease variants that overlap DNA elements to their associated
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target genes. Thus, the Allelome.LINK strategy has the potential to unravel the intricacies of

a majority of the cis-acting non-coding genome and its implications for complex diseases.

6.2.6 Summary

The present study found a significant enrichment of allele-specific ncRNAs nearby allele-
specific pcGenes in both mice and humans, supporting the concept of co-regulatory
associations. This discovery led to the development of Allelome.LINK, a novel bioinformatics
framework that uses the allele-specific information to predict the target genes and
mechanisms of cis-acting ncRNAs. Applying Allelome.LINK to the major mouse organs and
human samples resulted in the identification of 397 mouse and 2,291 human ncRNA-target
pairs and their predicted mode-of-actions. Following extensive validation, the integration of
GWAS data allowed a substantial proportion of ncRNA-overlapping risk variants to be mapped
to their respective protein-coding targets. With the increasing availability of sequencing data,
this strategy has the potential to elucidate the targets and mechanisms of a majority of the cis-

acting non-coding genome.
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10 Appendix

10.1 Manual of the Allelome.PRO v2.0 and Allelome.LINK pipeline

manual.md 2025-02-21

Allelome.PRO v2.0 [A#Zelome.Pro v2.0) [A%elome.Link]
Allelome.LINK

Allelome.PRO is a previously published, fully automated bioinformatics pipeline to detect allele-specific
expression and histone marks (Andergassen et. al Nucleic Acids Res. 43, 2015). Based on heterozygous
SNPs, Allelome.PRO assigns sequencing reads to the alleles and classifies NGS data into bi- or
monoallelically expressed. By accepting different input data such as RNA-, ChIP-, ATAC-, or single-cell
sequencing data, the tool offers a wide range of applications. Here, we present Allelome.PRO v2.0, an
updated version of the previously published pipeline. Unlike its predecessor, Allelome.PRO v2.0 does not
discriminate between ASE loci arising from imprinted or genetic factors. This update streamlines the
identification of ASE at the individual level, improving its applicability to diverse biological samples,
including human datasets where forward and reverse crosses cannot be obtained.

To facilitate the prediction of regulatory interactions and their mode-of-action, we have generated
Allelome.LINK as an extension to Allelome.PRO v2.0. Leveraging the allele-specific information, the pipeline
connects ASE loci within user-defined windows in cis and predicts enhancing or repressive effects based
on the allelic bias toward identical or opposite alleles. Allelome.LINK offers straightforward execution
through a simple one-line command, improving accessibility for diverse users. The output is presented as a
tabular list of potential target candidates sorted by linkage score and is accompanied by a BEDPE file for
direct visualization, providing an intuitive interface for exploring the results. By default, Allelome.LINK
connects all allele-specific loci within the specified window-size. To obtain only ncRNA-to-target linkages,
the user must filter the output file.

Publications:

Allelome.PRO v1.0

Andergassen, D., Dotter, C.P, Kulinski, .M., Guenzl, PM., Bammer, P.C., Barlow, D.P., Pauler, F.M., and
Hudson, Q.J. (2015). Allelome.PRO, a pipeline to define allele-specific genomic features from high-
throughput sequencing data. Nucleic Acids Res. 43.

Allelome.PRO v2.0 / Allelome.LINK
Hasenbein T., Andergassen D. (2025)

1. Installation

To run Allelome.PRO v2.0 / Allelome.LINK no installation is required. The source code is provided as
https://github.com/AndergassenLab/Allelome.LINK/. Simply download and unzip the repository and you can
start the pipeline via the terminal.

1.1 Dependencies

Software:

1/6
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bedtools (= version 2.20.1)
SAMtools (= version 0.1.19)

R (= version 3.1.0)

Perl (= version 5.20.0)
fetchChromSizes (= version 377)
bedToBigBed (= version 377)

R packages:

plyr; gtools; optparse
# If not installed, Allelome.PRO v2.0 / Allelome.LINK will try to install
them in the default R library path

2. Run Allelome.PRO v2.0 |Adfelome.PRo v2.0)

To run Allelome.PRO v2.0, you need to prepare your input files as described below (2.1). Once you have
your sample BAM, the annotation and SNP file, you can start the pipeline from the command line by typing:

bash Allelome.PROv2.0.sh —i <input_bam> -a <annotation_file> —-s <SNP_file>
-0 <output_directory> [options]

Please make sure that Allelome.PROv2.0.sh is in your PATH, or specify the absolute path of the script. For
all input files, we suggest giving full paths and locations. Besides the required input flags, you have
additional options, as shown below in table 2.

2.1 Input files
Three different files are required as input for Allelome.PRO v2.0:

o Aligned sample file (BAM format)
¢ Annotation file (BED6 format)
e SNP file (BED6 format)

2.1.1 Sample file:

The sample file is a BAM file that stores the aligned NGS-reads from either RNA-, ChIP-, ATAC-, or scRNA-
sequencing in binary format. The file can be sorted by coordinates or unsorted. If unsorted, Allelome.PRO
v2.0 can sort the BAM file for you.

2.1.2 Annotation file:
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The annotation file is a six-column text file containing the position information of your loci of interest in
BEDG6 format (see UCSC format description for more details). The helperscript createAnnotation.sh can be
used to create your own annotation file.

Table 1 Overview of the BED6 annotation file format.

Column Description

1 Chromosome(eg. chr1)

2 Start Position

3 End Position

4 Name (e.g. gene name)

5 Score (not used here)

6 Strand (e.g. +,- or . for not defined)
2.1.3 SNP file:

The SNP file is also a six-column text file in BED6 format. However, the difference to the annotation file is
that the name column consists of two letters representing the two SNPs present at a given locus. The SNP
file is used to determine which SNP is located on which allele. Therefore, the order of the two-letter SNPs is
important since the first base indicates the variant at allele 1, while the second base is present at allele 2.
The way the SNP file is created determines which allele is "1" and "2". SNP positions must be based on the
same reference genome to which the BAM file was aligned to (e.g. mm10). A source for mouse SNP data is
the FTP site of the Sanger Institute (e.g. https://ftp.ebi.ac.uk/pub/databases/mousegenomes/REL-1505-
SNPs_Indels/). If Allelome.PRO v2.0 is used with hybrid F1 mice samples, the helperscript createSNPfile.sh
can be used to generate the SNP file via:

sh create_SNPfile_v5.sh mgp.v5.merged.snps_all.dbSNP142.vcf

If Allelome.PRO v2.0 is used with eg. human data, SNPs must be called and phased in advance to generate
the SNP file.

2.2 Input flags for Allelome.PRO2.0:

Table 2. Overview of the Allelome.PRO v2.0 options.

Required Description

=i * Input sample file (bam format)

-a * Annotation file (BED6 format)
-s * SNP file (BED6 format)

-0 * Qutput directory

Optional:

141



manual.md

2025-02-21

Required Description

-z * Specify if bam file is sorted (1 sorted (default); O unsorted)

-r * Min. number of reads to cover a SNP to be included (default 1)

-t * Min. number of total reads to cover a locus to be included (default 20)
Misc:

-h * Display this help message

2.3 Output files

Allelome.PRO v2.0 generates a results directory with different files, including the allelic bias of your
seqguencing reads, as well as files for debugging and visualization. The main output files are the
locus_table.txt file with information on the allelic status of each locus in the annotation and the .bed file
for visualizing your results in a genome browser. Please find detailed information about all output files in

Table 3.

Table 3. Overview of the Allelome.PRO v2.0 output files.

Name

Description

locus_table.txt

Information about the allelic ratio of all informative loci

read_count_per_SNP.txt

Information about the number of reads covering the
individual SNPs

.log Log file with information about your Allelome.PRO v2.0 run

.IBED_files:

bed BED®6-file containing all loci, color-coded according to their
allelic ratio

.bb Big bed file of .bed

|debug Folder containing files created during the run for debugging

_SNP.pileup

.pileup

trimmed_s.bam

|debug/annotation

Folder containing files created during the run for debugging

annotation_overlapping_snps.txt

annotation_sorted.bed

snps_overlapping_annotation_forjoin.txt

snps_overlapping_annotation_list.txt
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Name Description

snps_overlapping_annotation.bed

3. Run Allelome.LINK A#felome.Link]

To run Allelome.LINK the locus_table.txt file from the Allelome.PRO v2.0 run is required. To start
Allelome.LINK, type in your command line:

Rscript Allelome.LINK.R -i <input_locus_table.txt> -0 <output_directory>
[options]

Again, please make sure that Allelome.LINK is in your PATH, or give the full path to the file. Allelome.LINK
will link loci within a given window size in cis. You can specify your genomic window with the --window-size
or -w flag, which is the number of base pairs up- and downstream of the locus (see Table 4). The default
value is 100kb in each direction from a given locus. Further, you can specify the number of total reads that
must cover a gene to be included for the analysis (--total-reads/-r; default: 20), as well as the --allelelic-
bias/-b flag to define the cutoff that distinguishes biallelic from allele-specific expression. The default value
is 0.7, which means that at least 70% of the reads from a gene must be expressed from one allele to
consider it as imbalanced. Please find all options described in Table 4.

3.1 Input files

e Locus table (.txt format) as given by Allelome.PRO. To run Allelome.LINK the /ocus_table.txt file from
the Allelome.PRO v2.0 run is needed.

3.2 Input flags for Allelome.LINK

Table 4 Overview of the Allelome.LINK options.

Required Description

-input -i * Input locus_table.txt (as given by Allelome.PRO v2.0)
Optional:

--name -n * Sample name (default date and time)

--window-size -w  * Window range to draw links (in kb; default +100)

--total-reads -r * Total read cutoff to consider allele-specific genes (default 20)
--allelic-bias -b * Cutoff to define genes with an allelic bias (default 0.7)
5/6
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Required Description

--duplicates -d * Remove mirrored duplicates (default TRUE)
--output -o * Output directory (default ./)

Misc:

--help -h * Display this help message

3.3 Output files

Allelome.LINK generates a results directory including different output files. The main output files are
links_table.txt with information about the linked loci and a .bedpe file to visualize the links in a genome
browser. Please find the detailed information about all output files in Table 5.

Table 5. Overview of the Allelome.LINK output files.

Name Description

_links_table.txt Information about the predicted regulatory association between nearby loci

_links_full_table.txt  As _links_table.txt but including the read and allele-specific information

log Log file with information about your Allelome.LINK run

|BED_files

.bed BEDG6-file containing all loci passed, color-coded according to their allelic bias
.bedpe BEDPE file for link representation, color-coded according to mechanism

_repressing.bedpe  BEDPE file for IGV browser visualization, repressive links only

_enhancing.bedpe BEDPE file for IGV browser visualization, enhancing links only
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10.2 Abbreviations: Phenotyping screens

Table 1 Abbreviations: Phenotyping screens

Abbreviation

Name

TEWL

Calc IFN gamma

Calc IL5
Calc IL6
Calc TNF alpha
DisTTot
NRTot
PcDisCenTot
PcTiCenTot
CenPermTi
BN

ST110
PcPPI_PP67
PcPPI_PP69
PcPPI_PP73
PcPPI_PP81
PcPPI_Global
Conc TNF
Conc Insulin
Conc FGF 21
Conc Leptin
LVPWD
LVIDd

LVIDs

IVSd

IVSs

LVPWs
Heart rate

PR

Transepidermal water loss

Calculated IFN gamma

Calculated IL5

Calculated IL6

Calculated TNF alpha

Distance traveled - Total

Number of rears - Total

Percent center distance - Total

Percent time spent in the center - Total
Center - Permanence time

Startle amplitude - Background Noise
Acoustic Startle Response at 110 dB
Percentage Prepulse inhibition - PP 67 dB
Percentage Prepulse inhibition - PP 69 dB
Percentage Prepulse inhibition - PP 73 dB
Percentage Prepulse inhibition - PP 81 dB
Percentage Prepulse inhibition - Global
Concentration TNF

Concentration Insulin

Concentration FGF21

Concentration Leptin

Left ventricular posterior wall width in diastole
Left ventricular internal dimension in diastole
Left ventricular internal dimension in systole
Interventricular septum in diastole
Interventricular septum in systole

Left ventricular posterior wall in systole
Heart Rate

Duration of the PR interval
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QRS

QTcB

EJ fraction
Fract shortening
QTcM

Ca

Chol

Fe

Gluc

LDH
Phos
TP
Trig
Urea
AP
Cl
Na
RBC
WBC
HGB
HCT
MCV
MCH
MCHC

GPT

GOT

MPV
PLYM
PMO
RDW

Duration of the QRS interval

Duration of the QTC interval

Ejection fraction

Fractional shortening

Heart rate-corrected QT interval (QTcM)

Calcium concentration in plasma

Cholesterol concentration in plasma

Iron concentration in plasma

Glucose concentration in plasma

Potassium concentration in plasma
Lactat-dehydrogenase activity in plasma

Inorganic phosphate concentration in plasma

Total protein concentration in plasma

Triglyceride concentration in plasma

Urea concentration in plasma

Alkaline phosphatase activity in plasma

Chloride concentration in plasma

Sodium concentration in plasma

Red blood cell count in whole blood

Total white blood cell count in whole blood
Hemoglobin concentration in whole blood

Hematocrit - percentage of cellular components on whole blood
Mean corpuscular volume

Mean corpuscular hemoglobin content of erythrocytes
Mean corpuscular hemoglobin concentration of erythrocytes

Alanine aminotransferase (Glutamat pyruvat transaminase) activity in
plasma

Aspartate aminotransferase (Glutamat oxalacetat transaminase) activity
in plasma

Mean platelets volume
Percentage of lymphocytes in total white blood cells
Percentage of monocytes in total white blood cells

Distribution index of red blood cells
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uiBC
Albumin
Ekrea

alpha Amylase CNPG3

Glucose conc
Lactat AU400
PDW

PLCR

Bw X Ray

BMC whole mouse
BMD whole mouse
Lean mass

Fat mass

Axial length |

Le fnmv

Le rethi

Fat mass NMR

Unsaturated iron binding capacity in plasma
Albumin concentration in plasma

Creatinine concentration in plasma measured enzymatically
alpha-Amylase (CNPG3)

Glucose concentration

Lactat concentration in plasma (AU400)

Calculated distribution width of platelets

Platelet large cell ratio

Body weight at x-ray analysis

Bone mineral content whole mouse (excluding skull)
Bone mineral density whole mouse (excluding skull)
Lean mass whole mouse (excluding skull)

Fat mass whole mouse (excluding skull)

Axial length left eye

Left fundus number of main vessels

Left retinal thickness

Fat mass determination at nuclear magnetic resonance
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10.3 Resource file: ncRNA-to-target linkages across mice and human

samples
explanation.md 2025-02-20
Explanation file for [A#elome.Pro v2.0] [Aelome.Link]

Resource: ncRNA-to-
target linkages

To interactively access the resource generated by Hasenbein et al., please click the URL link for the tissue
of interest at the resource section of the corresponding GitHub page
(https://github.com/AndergassenLab/Allelome.LINK). Candidate predictions are displayed via the Integrative
Genomics Viewer (IGV)[1]. A description of the individual tracks can be found in the example section for
mice and human.

1. Mice example: Kidney

Genome ¥ Tracks ¥ Session ¥ Share Bookmark Save SVG Circular View v Help ~

IGV o 27z 25012178154 Q9o X+
GE Il BN I I TS BSOS W

b 127,690 kb 127,700 kb 127,710 kb 127,720 kb 127,730 kb 127,740 kb 127,750 kb 127,760 kb 127,770 kb 127,780
o
9| [Allelome.LINK Ki 9w_enhancing] o3
9
% | (Merged fwd J o
9 . . B S J | -
Allelome.PRO_Ki_9w [ ] o
_median_ratio:0.52 Gm359 median_reads 2.289_median_ratio:0.71 Ccnt2_median_re:
A\omsd_median_reads: 4_min_score:45.668_median_ralio:0.28
et H o3
t 1 | } J [N L
t 1. — 1 — -
_ . P - fra— - — -
° ™ 'I'“‘!“F r o
28]
9| [Allelome.LINK Ki 9w _repressive o]
18]
ﬁ igv.org UCSanDiego EEBROAD
Track Description
1/4
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Description

Allelome.LINK_Ki_9w_enhancing

Green arcs show enhancing linkages, where a ncRNA was predicted
to have an enhancing function on the linked protein-coding target
gene. Clicking on the linkage will name both interaction loci and
display the linkage score.

Merged_fwd

RNA-seq track as a representative example. The track was obtained
from a single replicate of the three replicates on which the linkage is
based. Reads are shown for the forward strand only and are split
towards the maternal (red) and paternal (blue) allele.

Allelome.PRO_Ki_9w

Allelome.PRO v2.0 output showing the locus, the median number of
reads, the minimum allelic score and the median allelic ratio. The
color denotes the allelic bias (red: maternal, green: biallelic, blue:
paternal).

Refseq Genes

RefSeq gene annotation

Merged_rev

RNA-seq track as a representative example. The track was obtained
from a single replicate of the three replicates on which the linkage is
based. Reads are shown for the reverse strand only and are split
towards the maternal (red) and paternal (blue) allele.

Allelome.LINK_Ki_9w_repressive

Red arcs show repressive linkages, where a ncRNA was predicted to
have a repressive function on the linked protein-coding target gene.

Clicking on the linkage will name both interaction loci and display the
linkage score.

2. Human GTEx example: Cells - cultured fibroblasts
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Genome ¥ Tracks ~ Session ¥ Share Bookmark Save SVG Circular View v Help ~

IGV hess chr16:86,459,138-86,518.946 | Q 59kb

race abes [ — RN +)

CC W N N | X | I T W W T
1,460 kb 86,470 kb 86,480 kb 86,490 kb 86,500 kb 86,510 kb 8
-3
14| [Cells-Cultured-fibroblasts_enh.bedpe] o3
\ x|
Region 1 chr16:86,491,815-86,491,814
Region 2 chr16:86,512,973-86,512,972
Name FENDRR_FOXF1_GTEX-1F75B-0008-SM-EAZCP
Score 1.36
9
9"] GTEX-117XS-0008-SM-5Q5DQ.Cells Cultured fibroblasts.RNAseq.bw e}
0 - . TP T Y |
gencode.v26.GRCh38.genes.name.color.bed | |
FENDRR FOXF1 RP11
0| (Cells-Cultured-fibroblasts_rep.bedpe o]
0.9
o
rs34247085_Fibrinogen rs12918742_Deliberate_self-harm

E igv.org

Track

UCSanDiego EEBROAD

Description

Cells-Cultured-
fibroblasts_enh

Green arcs show enhancing linkages, where a ncRNA was predicted to have an
enhancing function on the linked protein-coding target gene. Clicking on the linkage
will name both interaction loci and display the linkage score, along with the GTEx
sample where the linkage was found. Different arcs represent different samples.

RNAseq.bw

RNA-seq track as a representative example. The track was obtained from a single
sample of the tissue on which the linkages are based on.

annotation.bed

GENCODE v26 GRCh38 annotation

Cells-Cultured-
fibroblasts_rep

Red arcs show repressive linkages, where a ncRNA was predicted to have a
repressive function on the linked protein-coding target gene. Clicking on the linkage
will name both interaction loci and display the linkage score, along with the GTEx
sample where the linkage was found. Different arcs represent different samples.

gwas_snps.bed

GWAS SNPs derived from the GWAS catalog [2]

[1]: James T. Robinson, Helga Thorvaldsddttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz,
Jill P. Mesirov. Integrative Genomics Viewer. Nature Biotechnology 29, 24—26 (2011). A public access

3/4
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version is also available: PMC3346182.

[2]: Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids
Res 51, D977-d985 (2023).
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10.4 Abbreviations: GTEx tissues
Table 2 Abbreviations: GTEx tissues

Abbreviation

Name

ADPSBQ
ADPVSC
ADRNLG
ARTAORT
ARTCRN
ARTTBL
BLDDER
BREAST
BRNACC
BRNAMY
BRNCDT
BRNCHA
BRNCHB
BRNCTXA
BRNCTXB
BRNHPP
BRNHPT
BRNNCC
BRNPTM
BRNSNG
BRNSPC
CLNSGM
CLNTRN
CVSEND
CVXECT
ESPGEJ
ESPMCS
ESPMSL
FIBRBLS

Adipose - Subcutaneous

Adipose - Visceral Omentum

Adrenal Gland

Artery - Aorta

Artery - Coronary

Artery - Tibial

Bladder

Breast - Mammary Tissue

Brain - Anterior cingulate cortex BA24
Brain - Amygdala

Brain - Caudate basal ganglia

Brain - Cerebellum

Brain - Cerebellar Hemisphere

Brain - Cortex

Brain - Frontal Cortex BA9

Brain - Hippocampus

Brain - Hypothalamus

Brain - Nucleus accumbens basal ganglia
Brain - Putamen basal ganglia

Brain - Substantia nigra

Brain - Spinal cord cervical c1

Colon - Sigmoid

Colon - Transverse

Cervix - Endocervix
Cervix - Ectocervix

Esophagus - Gastroesophageal Junction
Esophagus - Mucosa

Esophagus - Muscularis

Cells - Cultured fibroblasts
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FLLPNT
HRTAA
HRTLV
KDNCTX
KDNMDL
LCL
LIVER
LUNG
MSCLSK
NERVET
OVARY
PNCREAS
PRSTTE
PTTARY
SKINNS
SKINS
SLVRYG
SNTTRM
SPLEEN
STMACH
TESTIS
THYROID
UTERUS
VAGINA
WHLBLD

Fallopian Tube

Heart - Atrial Appendage

Heart - Left Ventricle

Kidney - Cortex

Kidney - Medulla

Cells - EBV-transformed lymphocytes
Liver

Lung

Muscle - Skeletal

Nerve - Tibial

Ovary

Pancreas

Prostate

Pituitary

Skin - Not Sun Exposed Suprapubic
Skin - Sun Exposed Lower leg
Minor Salivary Gland

Small Intestine - Terminal lleum
Spleen

Stomach

Testis

Thyroid

Uterus

Vagina

Whole Blood
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