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Abstract 

Protein-coding genes (pcGenes) make up less than 2% of the human genome, while the 

majority consists of non-coding sequences. These non-coding regions contain millions of 

regulatory elements that play essential roles in regulating gene expression and cellular 

functioning. In recent decades, non-coding RNAs (ncRNAs) have been identified as key 

genomic regulators, but our understanding of their functions and mechanisms remains 

incomplete. Thus, the ability to predict how genetic variation in non-coding regions translates 

into diseases is limited. This dissertation aimed to contribute to the functional understanding 

of the non-coding genome by exploring experimental and computational approaches. 

The first project investigated the in vivo contribution of the three X-linked long non-coding 

RNAs (lncRNAs) Crossfirre, Firre, and Dxz4. Prior to this study, Crossfirre was entirely 

uncharacterized, including its effect on imprinted and random X chromosome inactivation 

(XCI). Additionally, investigating the functional role of Firre and Dxz4 in random XCI has been 

challenging to address due to the complexity of studying mixed cell populations where either 

the maternal or paternal X chromosome is inactive. Using a large cohort of genetically modified 

mouse models, this study uncovered the functional role of these loci at the molecular and 

phenotypic levels. Despite the imprinting of Crossfirre and the unique female-specific 

epigenetic characteristics of Crossfirre, Firre, and Dxz4, these loci were found to be 

dispensable for XCI. In contrast, the study identified a combined effect of Crossfirre and Firre 

in autosomal gene regulation. Subsequent large-scale phenotyping of triple knockout mouse 

models revealed multiple knockout- and sex-specific phenotypes and shed light on the in vivo 

roles of Crossfirre, Firre, and Dxz4. The resulting dataset provides a robust basis for further 

studies exploring these X-linked loci. 

Given that the experimental characterization of ncRNAs is laboratory extensive, the second 

project aimed to computationally predict the target genes and mechanisms of cis-acting 

ncRNAs. The study identified a significant enrichment of allele-specific ncRNAs nearby allele-

specific pcGenes in both mice and humans, suggesting that the allele-specific expression 

(ASE) pattern could predict the cis-acting targets of ncRNAs. This concept was translated into 

a novel bioinformatics framework and used to predict 397 ncRNA-to-target linkages and their 

mechanisms across the major mouse organs. Extending this approach to human samples, the 

strategy was applied to 54 tissues from nearly 1,000 individuals of the Genotype-Tissue 

Expression (GTEx) database. The outbred nature of the human population led to the discovery 

of novel linkages with each sample, resulting in 2,291 human ncRNA-to-target linkages and 

their predicted mode-of-action. Following extensive validation using sample-matched 
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expression quantitative trait loci (eQTLs), the integration of genome-wide association study 

(GWAS) data allowed a substantial proportion of ncRNA-overlapping risk variants to be 

mapped to their respective protein-coding targets. With the increasing availability of 

sequencing data, this strategy has the potential to elucidate the targets and mechanisms of 

the majority of the cis-acting elements of the non-coding genome.  
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Zusammenfassung 

Protein-kodierende Gene (pcGene) machen weniger als 2% des menschlichen Genoms aus, 

während der überwiegende Teil aus nicht-kodierenden Sequenzen besteht. Diese nicht-

kodierenden Regionen enthalten Millionen von regulatorischen Elementen, die eine 

wesentliche Rolle bei der Regulierung der Genexpression und der zellulären Funktion spielen. 

In den letzten Jahrzehnten haben sich nicht-kodierende RNAs (ncRNAs) als wichtige 

genomische Regulatoren herausgestellt, aber unser Verständnis ihrer Funktionen und 

Mechanismen ist nach wie vor unvollständig. Daher können wir nur begrenzt vorhersagen, 

wie sich genetische Variationen in nicht-kodierenden Regionen auf Krankheiten auswirken. 

Ziel dieser Dissertation war es, durch die Erforschung experimenteller und computergestützter 

Ansätze einen Beitrag zum funktionellen Verständnis des nicht-kodierenden Genoms zu 

leisten. 

Das erste Projekt untersuchte die in vivo Funktion der drei X-chromosomalen langen nicht-

kodierenden RNAs (lncRNAs) Crossfirre, Firre und Dxz4. Vor dieser Studie war Crossfirre, 

einschließlich seiner Wirkung auf die geprägte und zufällige X-Chromosom-Inaktivierung 

(XCI), nicht charakterisiert. Darüber hinaus war die Untersuchung der funktionellen Rolle von 

Firre und Dxz4 bei der zufälligen XCI aufgrund der Komplexität der Untersuchung gemischter 

Zellpopulationen, in denen entweder das mütterliche oder das väterliche X-Chromosom 

inaktiv ist, eine Herausforderung. Mit Hilfe einer großen Kohorte von genetisch veränderten 

Mausmodellen hat diese Studie die funktionelle Rolle dieser Loci auf molekularer und 

phänotypischer Ebene aufgedeckt. Trotz der Prägung von Crossfirre und der einzigartigen 

weibchenspezifischen epigenetischen Merkmale von Crossfirre, Firre und Dxz4 erwiesen sich 

diese Loci als nicht relevant für XCI. Im Gegensatz dazu wurde in der Studie ein kombinierter 

Effekt von Crossfirre und Firre auf die autosomale Genregulation festgestellt. Die 

anschließende Phänotypisierung von dreifach-knockout-Mausmodellen ergab mehrere 

knockout- und geschlechtsspezifische Phänotypen und gab Aufschluss über die in vivo Rolle 

von Crossfirre, Firre und Dxz4. Der resultierende Datensatz bietet eine solide Grundlage für 

weitere Studien zur Erforschung dieser X-chromosomalen Loci. 

Da die experimentelle Charakterisierung von ncRNAs im Labor sehr umfangreich ist, zielte 

das zweite Projekt darauf ab, die Zielgene und Mechanismen von cis-wirkenden ncRNAs 

computergestützt vorherzusagen. In der Studie wurde eine signifikante Anreicherung von 

allele-spezifischen ncRNAs in der Nähe von allele-spezifischen pcGenen sowohl bei Mäusen 

als auch bei Menschen festgestellt. Dies deutet darauf hin, dass diese sogenannten cis-

aktiven Ziele von ncRNAs anhand des allele-spezifischen Expressionsmusters vorhergesagt 
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werden können. Dieses Konzept wurde in ein neuartiges bioinformatisches Modell überführt 

und zur Vorhersage von 397 ncRNA-Zielgen-Interaktionen und deren Mechanismus in den 

zentralen Organen der Maus verwendet. Zudem wurde der Ansatz auf menschliche Proben 

ausgeweitet und auf 54 verschiedene Gewebe von fast 1.000 Individuen aus der GTEx-

Datenbank angewendet. Die genetische Varianz innerhalb der menschlichen Population 

führte zur Entdeckung neuer Verbindungen mit jeder Probe, was zu 2.291 menschlichen 

ncRNA-Ziel-Verbindungen und deren vorhergesagter Wirkungsweise führte. Nach einer 

umfassenden Validierung mit Hilfe von probenangepassten eQTLs ermöglichte die Integration 

von GWAS-Daten die Zuordnung eines erheblichen Anteils von ncRNA-überlappenden 

Risikovarianten zu ihren jeweiligen protein-kodierenden Zielgenen. Mit der zunehmenden 

Verfügbarkeit von Sequenzierungsdaten hat diese Strategie das Potenzial, die Ziele und 

Mechanismen eines Großteils der cis-wirkenden Elemente des nicht-kodierenden Genoms zu 

identifizieren. 
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1 Introduction 

1.1 The non-coding genome: An overview 
 
The human genome comprises about 20,000 pcGenes which are essential for fulfilling the 

fundamental processes of life1,2. Surprisingly, these genes make up less than 2% of the 

genome, while the vast majority is non-coding3,4. These non-coding regions have long been 

considered as "junk" DNA, encompassing introns and intergenic sequences without functional 

relevance1,5. However, over the past decades, it has become evident that the non-coding 

genome harbors the critical regulatory elements that define when and where genes are turned 

on and off. Additionally, 90% of the disease-associated genetic variants have been identified 

outside of pcGenes, highlighting the functional relevance of the non-coding genome in health 

and disease1,6,7. However, our lack of understanding of the underlying regulatory mechanisms 

poses a significant challenge in elucidating how non-coding variants contribute to diseases.  

 

1.1.1 DNA regulatory elements 
 
A key group of regulatory elements within the non-coding genome are DNA elements that 

guide the regulation of gene expression in a tissue- and cell-type-specific manner. These 

elements include four general types of regulators, including promoters, enhancers, silencers, 

and insulators (Figure 1.1)1,8. 

Promoters are short sequences of DNA adjacent to the transcription start site of the genes 

they regulate9. Here, they serve as binding sites for transcription factors and the RNA 

polymerase, playing critical roles in initiating transcription and determining the efficiency at 

which a gene is expressed1,10. By integrating epigenetic characteristics and distal regulatory 

elements, promoters act as central hubs in the gene regulatory network, ensuring the 

appropriate temporal and spatial expression of genes10. One type of distal regulatory elements 

are enhancers, which can increase gene expression in a tissue- and cell-type-specific 

manner1. Enhancers possess sequence-specific binding sites for transcription factors, 

enabling them to modulate chromatin structure and transcriptional activity11,12. The activity of 

enhancers is marked by specific chromatin signatures, including acetylated histone H3 lysine 

27 (H3K27ac) and monomethylated histone H3 lysine 4 (H3K4me1)1,13. In order to act on the 

transcriptional activity, enhancers must be located in open chromatin regions and form 

physical contact with the target promoters. This kind of interaction is further required for 

silencers. Analogous to enhancers, these elements recruit and bind co-factors that influence 

transcriptional activity. In contrast to enhancers, silencers function to repress gene expression 
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upon promoter interaction1. Although silencer-specific histone modifications remain largely 

unexplored, trimethylation of histone H3 lysine 27 (H3K27me3) is frequently observed at 

repressed gene loci and may indicate silencer activity1. The formation of chromatin loops, 

mediated by structural proteins such as CCCTC-binding factors (CTCF) and cohesin, is 

required to establish physical contact between enhancers and silencers and the promoter of 

target genes. This looping architecture organizes the genome into topologically associating 

domains (TADs), within which regulatory elements and their target genes can interact1,14. At 

the boundaries of these TADs, insulators are frequently found to maintain the segregation. 

Insulators allow the physical interactions between regulatory elements to be blocked, limiting 

the influence of distal regulators and preventing them from affecting genes outside their 

defined loops1. Collectively, the interplay of these DNA elements allows fine-tuned temporal 

and spatial regulation of gene expression across different tissues and cell types. 

 

1.1.2 Non-coding RNAs 
 
In addition to DNA regulatory elements, high-throughput sequencing has discovered that most 

of the human genome is transcribed under various conditions, producing RNA transcripts that 

are not translated into proteins. These ncRNAs are essential for fundamental physiological 

processes and play important roles in regulating gene expression. To date, hundreds of 

thousands of ncRNAs have been identified and classified into diverse classes, each 

characterized by different functional properties and mechanisms3,8,15,16. Although we are just 

at the beginning of understanding their molecular functions, ncRNAs have changed the 

perception of RNAs as simple intermediates in protein synthesis to key regulatory elements of 

the genome15.  

Since the discovery of ncRNAs, their biological relevance in genome organization and protein 

production has become increasingly apparent. Sequencing technologies have identified a 

large number of different classes of ncRNAs with varying functional properties15,17. Based on 

their functional role, ncRNAs are categorized into housekeeping and regulatory ncRNAs 

(Figure 1.1). Housekeeping RNAs, which include small nuclear RNAs (snRNAs), transfer 

RNAs (tRNAs), ribosomal RNAs (rRNAs), and small nucleolar RNAs (snoRNAs), are 

ubiquitously expressed transcripts essential for protein synthesis18. Upon transcription of a 

pcGene, the messenger RNA (mRNA) is processed and spliced. This splicing process is 

mediated by snRNAs, which are core components of the splicing machinery19. The mature 

mRNA is then exported into the cytosol, where its sequence is translated into functional 

proteins. This translation process is mediated by rRNAs that form the structural and catalytic 

core of ribosomes20, while tRNAs act as molecular interpreters of the genetic code, pairing the 



 3 

mRNA codons with their corresponding amino acids21,22. Additionally, the proper functioning 

of rRNAs and tRNAs is regulated by snoRNAs, which direct chemical modifications such as 

methylation and pseudouridylation. These modifications increase the stability and structural 

integrity of rRNAs and tRNAs, ensuring their efficiency in protein synthesis23. 

 

Figure 1.1 Overview of the functional elements of the non-coding genome. 
Schematic overview of the functional elements of the non-coding genome, including DNA regulatory 
elements and the different classes of non-coding RNAs (ncRNAs). Based on their functional role, 
ncRNAs are categorized into housekeeping and regulatory ncRNAs. Regulatory ncRNAs are further 
subdivided by length into small and long ncRNAs. 

 
 

1.1.2.1 Small regulatory ncRNAs 
 
In contrast to housekeeping RNAs, regulatory RNAs control the abundance of proteins and 

are expressed in a dynamic and cell-type-specific manner. Based on their length, regulatory 

ncRNAs are subdivided into small and long ncRNAs18. Small ncRNAs were among the first 

ncRNAs identified to function as regulatory transcripts at various layers (Figure 1.1)24. The 

definition of small ncRNAs is based on size rather than function and typically includes ncRNAs 

smaller than 300 base pairs (bp) in length25. In 1984, the 93-nucleotide microRNA F was 

discovered in the bacterium Escherichia coli, marking the first reported ncRNA with regulatory 

function. The microRNA F exerts its function through base pairing with the mRNA of the outer 

membrane protein F, resulting in ribosome blocking and repression of translation26,27. Today, 
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at least three different types comprise the class of small regulatory ncRNAs, including small 

interfering RNAs (siRNAs), microRNAs (miRNAs), and piwi-interacting RNAs (piRNAs)28.  

Both siRNAs and miRNAs are involved in post-transcriptional silencing by directing Argonaute 

(Ago) proteins to the nucleic acids of target genes29. In invertebrates, siRNAs are abundant 

and suppress viruses and transposable elements, whereas in mammals, their activity is largely 

restricted to embryonic stem cells and the germ line28. MiRNAs are thought to have evolved 

from ancestral siRNA pathways and are involved in the regulation of endogenous mRNAs. 

The biogenesis of miRNAs is commonly based on a canonical pathway that generates ~22 

nucleotide short molecules. Upon transcription, the hairpin structure of a primary miRNA is 

cleaved, resulting in a precursor miRNA that is exported into the cytosol. Here, the RNase III 

Dicer cleaves the precursor miRNA at the terminal loop to generate a miRNA duplex. This 

duplex associates with the Ago protein and the passenger strand is discarded, forming the 

single-stranded RNA-induced silencing complex (RISC). The guide strand directs the complex 

to the transcripts of the regulatory targets, resulting in either translational repression or 

degradation30. In contrast to the siRNA and miRNA pathways that interact with Ago proteins, 

piRNAs direct PIWI proteins to methylate DNA or cleave the RNA transcript of target genes. 

In animals, piRNAs function primarily in the germline to silence transposable elements and 

maintain genomic stability31. 

 

1.1.2.2 LncRNAs and their regulatory mechanisms 
 
Besides small regulatory RNAs, a significant proportion of the eukaryotic genome is 

transcribed into lncRNAs32-35. Due to their generally low expression patterns, lncRNAs were 

initially considered to be transcriptional noise33. However, since then, numerous studies have 

demonstrated their functional roles in developmental and cellular processes15,17,36. To date, 

thousands of lncRNA loci have been identified, with estimates ranging from 16,000 to 100,000 

lncRNAs in humans5,37,38.  

LncRNAs are defined as RNA transcripts longer than 500bp that mostly lack coding potential. 

This definition was intended to exclude housekeeping and small regulatory ncRNAs, which 

are generally shorter in length33. According to their genomic position, lncRNAs are classified 

as intergenic, located between genes; intronic, located within introns; and antisense, 

transcribed on the opposite strand of genes. Additionally, lncRNAs that share the transcription 

start sites with adjacent genes are classified as bidirectional lncRNAs39. 

Compared to pcGenes, lncRNAs share several characteristics, including conserved 

promoters, exon structures, and splice junctions33. Many lncRNAs are transcribed by RNA 
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polymerase II, are polyadenylated, and have 7-methylguanosine caps, suggesting their 

processing is similar to mRNAs33,40. However, lncRNAs also differ from pcGenes. While the 

promoters and exons of lncRNAs show some conservation, their primary sequences are less 

conserved across species compared to those of pcGenes32,33,41. Furthermore, lncRNAs are 

primarily localized in the nucleus33, with expression patterns that are often dynamic and highly 

cell-type-specific, particularly during later stages of development40,42. A hallmark of lncRNAs 

is that the expression pattern can change rapidly in response to environmental factors, 

including stress and disease conditions43-46.  

Given their critical role in gene regulation, lncRNAs are involved in various physiological 

processes, ranging from DNA damage response47, immune system regulation48, 

inflammation49-51, and metabolism52,53 to hormone production, signal transduction54,55, neural 

functions56-58, and responses to environmental stresses in plants33,59,60. Numerous studies 

have shown that lncRNAs exert their functional roles at almost all layers of gene regulation, 

including the modulation of chromatin architecture, orchestrating transcriptional and post-

transcriptional processes, as well as facilitating the formation of higher-order structures such 

as scaffolds and condensates40. Through these diverse mechanisms, lncRNAs can influence 

gene activity by either enhancing or repressing transcription or protein abundance. These 

effects can occur in cis, by affecting loci on the same chromosome, or in trans, by targeting 

genes at distant genomic sites on different chromosomes33. 

 

1.1.2.2.1 Chromatin regulation by lncRNAs 
 
A regulatory mechanism by which lncRNAs act on gene expression is via the interaction with 

chromatin. The structure of chromatin is critical for gene activity, with open chromatin 

facilitating the access of the transcriptional machinery and closed chromatin repressing it12. 

LncRNAs can directly influence chromatin structure through their negative charge, which 

interacts with histone proteins, resulting in chromatin decondensation and rapid changes in 

gene expression (Figure 1.2a)40,61. Furthermore, the interaction with various proteins can 

modify the state of chromatin in an indirect manner. For example, lncRNAs can recruit 

chromatin modifiers to gene promoters40,62 or act as decoys, sequestering these modifiers and 

preventing them from accessing their target sites (Figure 1.2a)40,63. Protein complexes like the 

Polycomb Repressive Complex (PRC) 1 and PRC2 influence gene activity by modulating 

transcription through histone modifications and chromatin compaction64. The lncRNA ANRIL 

is a key example of a regulatory lncRNA that mediates its function through lncRNA-protein 

interaction with PRC1 and PRC2 to affect the state of chromatin. ANRIL facilitates the 

recruitment of these complexes to the adjacent genes CDKN2A and CDKN2B, exerting cis-
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regulatory effects on their expression40,62. Another aspect of lncRNA-chromatin interaction is 

the formation of RNA-DNA hybrids, such as R-loops or RNA-DNA-DNA triplexes40. Depending 

on the context, these hybrid structures can be recognized by transcription factors or chromatin 

modifiers that activate or inhibit transcription (Figure 1.2a)40,65-67. The lncRNA MEG3 is a prime 

example of a hybrid-forming lncRNA. Guided by GA-rich sequences, MEG3 represses genes 

of the TGF-β signaling pathway by the formation of triplexes that facilitate the recruitment of 

PRC2. This interaction leads to chromatin modifications that result in transcriptional 

silencing66,68. However, it is important to note that the prevalence of these structures is still 

controversial due to the challenges of detecting them in vivo40. 

 

Figure 1.2 Overview of lncRNA-mediated gene regulation.  
Schematic overview of the different mechanisms by which long non-coding RNAs (lncRNAs) can regulate 
gene expression. LncRNAs can modify (a) chromatin structure by sequestering or recruiting chromatin-
modifying proteins or by the charge of the transcript. Moreover, lncRNAs can bind DNA to form RNA-
DNA hybrids such as triplexes and R-loops. Acting as scaffolds, lncRNAs facilitate the assembly of 
proteins and RNAs leading to the formation of (b) higher-order structures, or promoting inter-
chromosomal contacts. At the (c) transcriptional level, lncRNAs can modify gene expression via the act 
of transcription, e.g. by transcriptional interference or via the lncRNA transcript itself. Regulatory 
elements such as enhancer RNAs (eRNAs) can further be transcribed from lncRNA loci and promote 
gene expression by chromatin looping. Regulatory effects can also be exerted at the (d) post-
transcriptional level by interacting with RNA-binding proteins to modify signaling pathways or the 
processing and stability of RNA transcripts. Moreover, lncRNA transcripts can interact with RNA 
molecules to recruit protein complexes that affect mRNA degradation, splicing, or act as sponges, 
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competing with target RNAs for miRNA binding. Created in BioRender. Andergassen, D. (2025) 
https://BioRender.com/b98a895. 
 
 

1.1.2.2.2 LncRNAs in higher-order structures: Scaffolds and condensates 
 
Furthermore, lncRNAs contribute to the formation of higher-order structures, including 

scaffolds and nuclear condensates. These structures are membraneless RNA-protein 

compartments that are essential for various cellular processes40. Acting as scaffolds, lncRNAs 

facilitate the assembly of proteins and RNAs, critical for regulatory activities such as pre-

mRNA splicing or transcription40,69-71. An example of a lncRNA involved in the formation of 

higher-order structures is NEAT1. NEAT1 plays both structural and functional roles in the 

formation of paraspeckles, which allow RNAs and proteins to be sequestered. Thus, lncRNA-

mediated gene regulation is not only contributed to individual transcripts but often involves 

complex regulatory networks of multiple RNAs and proteins, collectively influencing gene 

expression through their coordinated activity40. Additionally, lncRNAs can act as modifiers of 

nuclear architecture, bringing different chromosomes into proximity and promoting inter-

chromosomal contacts. These types of inter-chromosomal contacts allow for gene regulation 

across different chromosomes in a trans-dependent manner (Figure 1.2b)72.  

 

1.1.2.2.3 Transcriptional regulation by lncRNAs 
 
Another mechanism by which lncRNAs regulate gene expression is through directly affecting 

transcriptional regulation. Thereby, gene expression can be modulated either by the act of 

transcription or by the lncRNA transcript itself. The mechanisms by which lncRNA activity 

represses or initiates gene expression are diverse and include interference with the 

transcriptional machinery, polymerase recruitment, histone modifications73,74, and changes in 

chromatin accessibility (Figure 1.2c)75,76. Thereby, the mechanism is not restricted to a single 

mode-of-action but can include multiple modalities. The antisense Igf2r ncRNA (Airn) is a well-

studied example of a lncRNA that regulates target gene expression in both a transcript-

dependent and transcript-independent manner. In mouse extraembryonic tissues, the Airn 

transcript recruits PRC277,78 and G9a79 to the promoters of multiple distant genes, leading to 

their silencing. Additionally, the transcription of Airn itself leads to the repression of the 

overlapping insulin-like growth factor 2 receptor (Igf2r) gene through a mechanism known as 

transcriptional interference in both extraembryonic and somatic tissues. Thereby, the 

transcriptional activity of the Airn locus sterically blocks the RNA polymerase II at the 

transcription start site, leading to the silencing of Igf2r40,73,80,81. Moreover, lncRNAs can be 

transcribed at active enhancers, resulting in enhancer RNAs (eRNAs)82,83. These non-
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polyadenylated transcripts play a role in regulating chromatin looping by acting as scaffolds 

for protein complexes that mediate interactions between promoters and enhancers (Figure 
1.2c)40,84,85. 

 

1.1.2.2.4 Post-transcriptional regulation by lncRNAs 
 
Beyond functioning at the transcriptional level, lncRNAs exert regulatory effects at the post-

transcriptional stage by interacting with RNA-binding proteins (RBPs) and nucleic acids. 

These interactions allow lncRNAs to modulate mRNA splicing and signaling pathways, 

affecting the processing, stability, and degradation of mRNA transcripts (Figure 1.2d)86-88. 

Such post-transcriptional regulation is exemplified by the interaction between the lncRNA 

NORAD and Pumilio proteins. Proteins of the Pumilio family bind to specific RNA motifs known 

as Pumilio Response Elements (PREs) on target mRNAs, promoting their degradation and 

repressing translation89. The lncRNA NORAD contains numerous PREs, making it a high-

affinity binding partner for Pumilio proteins90. In response to DNA damage, NORAD is highly 

expressed and sequesters Pumilio proteins by binding them. This sequestration prevents 

Pumilio proteins from over-repressing their mRNA targets and maintains genomic stability40,90. 

In addition to these direct interactions with RBPs, lncRNAs can interact with RNA molecules 

to recruit protein complexes that affect mRNA degradation (Figure 1.2d). The STAU1 protein, 

for example, binds to double-stranded RNA structures of certain mRNAs, promoting their 

decay. This type of post-transcriptional regulation can be facilitated by lncRNAs that bind to 

STAU1 mRNA targets with complementary sequences, facilitating STAU1-mediated decay91. 

Moreover, some lncRNAs can affect gene regulation by competing with mRNAs for miRNA 

binding, commonly known as miRNA sponging (Figure 1.2d)92,93. These lncRNAs possess 

complementary sequences to those found in miRNA target sites on mRNAs, preventing them 

from binding to their intended mRNA targets. Thus, by acting as molecular sponges, lncRNAs 

can regulate miRNA availability and influence the repression of target genes40. 

In summary, lncRNAs can regulate gene expression through various mechanisms, including 

transcriptional and post-transcriptional processes40. Their interactions with chromatin, 

proteins, and nucleic acids, as well as their involvement in nuclear condensates, highlight the 

complex nature of lncRNA-mediated gene regulation.  
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1.2 X chromosome inactivation: A case study of lncRNA function 
 
In the early 1990s, H19 was discovered as the first lncRNA in humans and marked the 

beginning of exploring the functional mechanisms of lncRNAs94. Shortly after, in 1991, the 

lncRNA Xi-specific transcript (XIST) was identified and found to initiate the process of female 

XCI36,95,96.  

During mammalian development, one of the two X chromosomes becomes epigenetically 

silenced to achieve gene dosage compensation between males (XY) and females (XX)97. In 

mice, the upregulation of Xist initiates XCI in cis on the chromosome from which it is 

expressed98. Early knockout studies demonstrated that Xist is essential for the viability and 

proper development of female mice, as mouse models lacking Xist showed lethality early in 

embryogenesis due to two active X chromosomes in the extra-embryonic tissue99. Subsequent 

studies have shown that this early lethality can be bypassed using conditional knockout 

models, in which Xist is specifically deleted in the epiblast. In these cases, mutant embryos 

developed to term but failed to survive beyond weaning, attributed to defects in postnatal 

organ maturation100,101. 

Functional and structural differences arise between the active (Xa) and inactive (Xi) X 

chromosomes as a result of the inactivation process98. In mice, XCI occurs in two successive 

waves, including an initial non-random phase early in development, followed by random XCI 

at a later stage. In mouse embryos, the first wave occurs shortly after fertilization between the 

two- and four-cell stadium, resulting in imprinted silencing of the paternal X chromosome102. 

During oogenesis, the imprinted repression of the maternal Xist is established by H3K27me3 

of a Polycomb-dependent domain spanning Xist. As a result, Xist becomes upregulated 

exclusively from the paternal allele, inducing the non-random inactivation of the paternal X 

chromosome98,103. In extraembryonic lineages, such as the placenta, imprinted XCI is 

maintained104, whereas reactivation occurs in cells of the inner cell mass of embryonic day 3.5 

blastocysts102,105. At embryonic day 5.5, the second wave of XCI occurs, leading to the random 

inactivation of one of the two X chromosomes105. In this phase, Xist becomes randomly 

upregulated from one of the two X chromosomes, initiating the inactivation process and gene 

silencing. Due to the random nature, somatic tissues exhibit a mosaic pattern of cells with 

either the maternal or paternal X chromosome active98. Although the mechanisms governing 

the random expression choice of Xist are not fully understood, the antisense transcription of 

Tsix has been identified as a repressive regulator of Xist during XCI98,106. However, further 

research is needed to elucidate the precise regulatory pathways of Xist expression. 

Subsequently, the Xi remains inactive and is clonally transmitted by mitosis107. An exception 

of this process occurs in primordial germ cells, where Xi reactivation occurs in embryonic day 
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12.5 (E12.5) embryos to ensure that both X chromosomes are active prior to oogenesis 

(Figure 1.3)108. 

 

Figure 1.3 Overview of the cycle of X chromosome inactivation. 
In mice, the first wave of X chromosome inactivation (XCI) occurs shortly after fertilization between 
the two- and four-cell stadium. This process results in imprinted silencing of the paternal X 
chromosome. Reactivation of the inactive X chromosome (Xi) occurs in E3.5 blastocysts in cells of 
the inner cell mass, while imprinted XCI is maintained in extraembryonic lineages. The second wave 
of XCI occurs in cells of the epiblast at embryonic stage E5.5, leading to the random inactivation of 
one of the two X chromosomes. Subsequently, the Xi remains stable in somatic tissues, except for 
primordial germ cells, where Xi reactivation occurs in E12.5 embryos to ensure that both X 
chromosomes are active prior to oogenesis. The figure was adapted and redrawn from Wutz et al. 
2011109. Created in BioRender. Andergassen, D. (2025) https://BioRender.com/b98a895. 

 
 

1.2.1 Mechanisms of action of the lncRNA Xist 
 
Due to its prominent role in XCI, Xist became one of the best-studied examples of a cis-acting 

lncRNA with complex modular organization. The Xist gene locus transcribes a 17 kilobase 

(kb) polyadenylated and spliced transcript that contains several repetitive domains (A-F). 

These domains show partial sequence conservation and are essential for the proper 
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functioning of Xist95. Once transcribed, the Xist RNA remains in the nucleus and coats the 

future Xi in cis. Changes in the 3D conformation of the X chromosome allow Xist to reach 

distant sites, facilitating its spreading across the entire chromosome110. 

The A-repeats of Xist recruit the chromatin regulator SHARP/SPEN, which activates histone 

deacetylase 3 (HDAC3) present on the X chromosome111-113. HDAC3 then targets H3K27ac, 

leading to chromatin condensation and gene silencing114. The B- and C-repeats of Xist bind 

to the heterogeneous nuclear ribonucleoprotein (hnRNP) K to recruit PRC1 and PRC2115. This 

process strengthens the repressive compartment by inhibiting transcription initiation and 

sequestering the splicing machinery. After this process, Xist becomes dispensable for 

silencing the X chromosome, as its maintenance is carried forward by epigenetic 

modifications. These include PRC2-mediated deposition of repressive histone marks, such as 

H3K27me3 on regulatory regions and DNA methylation by the DNA methyltransferase 

(DNMT) 1 and DNMT3B98.  

Although the Xi is largely transcriptionally silent, a few genes can overcome the process of 

XCI and remain active. These so-called escape genes are consequently expressed from both 

alleles, increasing the gene dosage of females. In mice, approximately 3-7% of the X-linked 

genes have been reported to escape XCI, while in humans more than 20% are estimated to 

escape98,116-118. This variability in gene expression contributes to an increased phenotypic 

diversity in females. Gene escape occurs in a constitutive and facultative manner. Constitutive 

escape genes consistently overcome XCI in most cell lineages and tissues, whereas 

facultative escapees are tissue or lineage specific and can vary across developmental stages, 

increasing the cellular diversity of females78,98,118,119. While constitutive escape genes often 

have homologs on the Y chromosome and are required to maintain gene expression dosage, 

the functional roles and the molecular mechanisms of many facultative escape genes remain 

to be investigated. 

 

1.2.2 The structure and organization of Xi: Roles of Dxz4 and Firre 
 
As a result of the XCI process, the Xi forms a compact chromatin structure called the Barr 

body120. Chromosome conformation capture methods have shown that the Xi is depleted of 

TADs compared to the Xa. In contrast, the Xi harbors two conserved megadomains of high 

intrachromosomal contact, that bisect the inactive chromosome121-123. The conserved 

macrosatellite Dxz4 is located at the boundaries of these structures and is transcribed into the 

lncRNA 4933407K13Rik. On the Xi, Dxz4 is hypomethylated and contains several Xi-specific 

CTCF binding sites124. Moreover, Dxz4 contributes to the folding of the Xi by forming a 
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conserved superloop interaction with the functional intergenic repeating RNA element (Firre) 

locus (Figure 1.4)122,125. 

The Firre locus transcribes a well-studied lncRNA and exhibits multiple characteristics specific 

to the Xi. Similar to the Dxz4 locus, the Firre gene body contains multiple CTCF binding sites 

that are specific to the Xi and are marked by trimethylated histone H3 lysine 4 (H3K4me3)78,124. 

These binding sites have been shown to anchor the Xi to the nucleolus, supporting its 

perinucleolar localization124,126. The Firre locus produces full-length transcripts from the Xa, 

whereas shorter isoforms have been reported to escape XCI on the Xi72,78,124. Furthermore, 

the Firre RNA has been shown to mediate crosstalk between Xa and Xi in somatic cells, with 

Xa-derived transcripts maintaining H3K27me3 enrichment on Xi (Figure 1.4)124. 

Due to these Xi-specific characteristics, Dxz4 and Firre have been hypothesized to play a role 

in XCI, but multiple studies have indicated that these loci are dispensable for the inactivation 

process121,125-129. It has been shown that the deletion of Firre and Dxz4 in cell lines results in 

the loss of the superloop interaction and the megastructures present on Xi128,130. Interestingly, 

these changes in the 3D conformational structure did not affect the expression of genes 

located on the Xi125. Another study revealed that the establishment of XCI remains further 

unaffected, as deleting these loci in vivo revealed fertile and viable mutants127. However, the 

mosaic nature of random XCI has made it challenging to assess the impact of these loci on 

XCI maintenance in vivo, as single-cell analyses are required to conclusively determine their 

precise role. 

Although no overt effects have been detected for XCI, the deletion of Firre and Dxz4 has been 

shown to affect autosomal gene regulation in an organ-specific manner in vivo127,131. While the 

functional properties of Dxz4 remain largely elusive, the lncRNA Firre has been extensively 

studied. Cell culture models have demonstrated a variety of functions of Firre, including gene 

regulation132, adipogenesis133, and nuclear architecture72,128. Firre is abundantly transcribed 

and contains multiple repeating RNA domains (RRDs) and local repeats72,134. It has been 

shown that the nuclear retention of Firre RNA is maintained by these RRDs, which serve as a 

nuclear retention signal134. Further, these repeats allow Firre to form trans-chromosomal 

interactions that affect autosomal gene regulation134. Upon transcription, Firre RNA localizes 

around its gene body and binds to the nuclear matrix factor hnRNP U, facilitating the tethering 

of distant chromosomes to co-regulate genes in trans72,134. Additionally, a recent study 

investigated the temporal dynamics of Firre by monitoring gene expression changes across 

different time points following Firre induction135. The authors observed that the RNA of Firre 

acts on the epigenetic and transcriptional landscape within minutes, leading to abundant 

transcriptional changes on a longer timescale135. 
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Loss- and gain-of-function studies in mice have further shown the physiological implications 

of Firre. During hematopoiesis, Firre mutants exhibit alterations in blood cell composition131. 

Notably, these effects could be rescued by the transgenic expression of Firre, highlighting a 

trans-acting molecular mechanism (Figure 1.4)131. Additionally, the study showed that 

overexpression of Firre was associated with impaired survival upon exposure to 

lipopolysaccharides131. In humans, duplications of the FIRRE locus have been associated with 

intellectual disability and dysmorphic features136,137. Moreover, FIRRE has been linked to the 

survival outcomes of patients with diffuse large B-cell lymphoma and has been shown to 

promote tumor growth in multiple cancers138-140. Although the Firre locus is extensively 

characterized, large-scale phenotyping studies of Firre using mouse models are currently 

lacking. 

 

1.2.3 The imprinted lncRNA Crossfirre within the Firre locus 
 
An additional lncRNA has been annotated within the Firre locus, transcribed in an antisense 

orientation to Firre. This lncRNA, termed Crossfirre (Gm35612), consists of 3 exons and is 

embedded in a 50kb long interspersed nuclear element (LINE). LINEs are a group of 

transposable elements that are hypothesized to facilitate the spreading of XCI across the 

chromosome141. Moreover, an extensive allele-specific analysis identified Crossfirre as an 

imprinted X-linked gene in somatic tissues that is predominantly expressed from the maternal 

X chromosome78. Imprinted expression of Crossfirre was detected in adult brains through 

RNA-sequencing (RNA-seq) analysis and further confirmed by observing maternal enrichment 

of H3K4me3 at the promoter of Crossfirre in mouse embryonic fibroblasts78. Considering the 

imprinted characteristics, the Crossfirre locus may be worthwhile investigating for its potential 

association with imprinted XCI. Prior to this thesis, the Crossfirre locus was entirely 

uncharacterized and the in vivo role at the molecular and phenotypic level was unknown. In 

addition, the relation of Crossfirre to both imprinted and random XCI, either independently or 

in conjunction with Firre and Dxz4, remained to be explored (Figure 1.4).  
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Figure 1.4 Schematic overview of the Crossfirre, Firre, and Dzx4 loci. 
The active X chromosome (Xa, upper panel) and inactive X chromosome (Xi, lower panel) are shown 
with the Crossfirre, Firre, and Dxz4 loci highlighted. Transcription of these loci is specific to the Xa, 
with shorter isoforms of Firre that may transcribe from the Xi. The superloop interaction between Firre 
and Dxz4, and the two megadomains are specific to the Xi. The colors indicate Crossfirre (red), Firre 
(orange), and Dxz4 (black). Created in BioRender. Andergassen, D. (2025) 
https://BioRender.com/b98a895. 
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1.3 Allele-specific expression 
 
Mammals are diploid individuals and thus, except for the sex chromosomes in males, the 

genome consists of two copies of each chromosome, one inherited from the maternal and one 

from the paternal side. For most genes, both alleles contribute equally to the expression, 

referred to as biallelic expression. However, a subset of genes, including the lncRNA Xist on 

the female X chromosome, show predominant expression from one allele, a phenomenon 

known as ASE (Figure 1.5)142.  

 

Figure 1.5 The concept of allele-specific expression. 
Diploid individuals, such as mammals, possess two alleles of each chromosome, including a maternal 
and a paternal allele. Usually, gene activity is considered as the sum of expression derived from both 
chromosomes. In allele-specific expression (ASE) analysis, each allele is considered individually. 
The majority of genes are expressed biallelically, with both alleles being expressed at equal levels. 
However, a subset of genes shows ASE where gene expression levels differ between the maternal 
and paternal alleles. Created in BioRender. Andergassen, D. (2025) https://BioRender.com/b98a895. 

 
 
ASE occurs throughout the entire genome at both the tissue78 and single-cell level143,144. 

Several mechanisms can lead to the expression of genes in an allele-specific manner, 

including random monoallelic expression, such as observed in the case of random XCI, as 

well as allele-specific differences arising from genetic variation or epigenetic modifications like 

genomic imprinting142. 
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1.3.1 Allele-specific expression arising from genomic imprinting 
 
A well-studied mechanism of ASE is genomic imprinting, which was discovered in the 1980s 

through pronuclear transplantation in mice145,146. Genomic imprinting is a consequence of 

inheritance and characterized by epigenetic modifications between the alleles, leading to 

parental-specific gene expression from either the maternal or paternal chromosome147.  

In 1991, Igf2r was the first gene in mice to be identified as imprinted, followed by the discovery 

of Igf2 and H19148-150. To date, approximately 100 mouse and 40 human imprinted genes have 

been discovered, advancing our understanding of the underlying molecular mechanisms78,151-

153. In mice, the genetic imprint of genes is established in the germline during oocyte and 

sperm development. This process involves the DNA methylation complexes DNMT1A and 

DNMT3L to establish de novo methylation marks at gametic differentially methylated regions 

(gDMRs)154-157. After fertilization, genome-wide DNA demethylation occurs in both parental 

genomes during preimplantation development. However, imprints at gDMRs are protected 

from this demethylation and are stably maintained in somatic cells throughout mitosis by 

DNMT1156,158,159. An exception occurs in the primordial germ cells, where erasure of the 

imprints occurs at E12.5 to reset them for gametogenesis160. 

Approximately 80% of the imprinted genes have been identified to be organized in clusters, 

where a single gDMR regulates the imprinted expression of multiple genes. These gDMRs are 

defined as imprinting control elements (ICEs) and act in cis to repress expression by targeting 

small clusters of genes161-163. Genetic deletion studies of ICEs have identified the responsible 

gDMRs for multiple imprinted gene clusters, including Kcnq1, Pws/As, Gnas, Igf2-H19, Grb10, 

Dlk1-Meg3 or Igf2r-Airn164-170. It was demonstrated that the imprinted lncRNAs in these 

clusters are expressed from the opposite allele as their associated pcGenes. Additionally, it 

was shown that deleting the ICE on the allele expressing the imprinted lncRNA restored the 

biallelic expression of the pcGenes. These findings highlight the functional role of lncRNAs in 

imprinted loci by repressing the pcGenes, as confirmed for Kcnq1ot1 and Airn within the Kcnq1 

and Igf2r clusters, respectively80,171. For these cases, the ICE is located at the promoters of 

the lncRNAs, regulating their parental-specific expression and resulting in allele-specific 

repression of the target genes. 

One of the best-studied examples of a regulatory lncRNA that represses several pcGenes in 

a parental-specific manner is the Igf2r/Airn cluster. Airn is an imprinted, paternally expressed 

lncRNA that silences target genes in a cis-dependent manner across most tissues172,173. 

Allele-specific analyses of this cluster have been a powerful tool for identifying the regulatory 

targets of the lncRNA Airn. While Igf2r is repressed by Airn in almost all tissues through the 
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act of transcription, the Airn RNA represses six distant genes within a 10 megabase (Mb) 

window in the placenta (Pde10a, Park2, Slc22a3, Dact2, Smoc2, Thbs2), by the recruitment 

of epigenetic repressors78,79,148,174,175. The example of Airn illustrates that imprinted clusters 

controlled by an allele-specific lncRNA provide valuable models for epigenetic discovery, 

allowing researchers to disentangle the effects of lncRNA expression on one allele compared 

to the allele lacking lncRNA expression, all within the same nuclear environment161. 

 

1.3.2 Allele-specific expression arising from genetic variation 
 
Although genomic imprinting is a well-studied phenomenon leading to ASE, the vast majority 

of ASE is driven by genetic variations between the alleles176. Genetic deletions, insertions, 

and single-nucleotide polymorphisms (SNPs) can affect gene expression in cis or trans, with 

heterozygous cis-acting SNPs frequently leading to ASE. Thereby, genetic variation can 

mediate ASE through a variety of mechanisms, including the transcriptional and post-

transcriptional level (Figure 1.6). 

At the transcriptional level, heterozygous SNPs can affect chromatin accessibility, giving rise 

to ASE in a tissue-specific manner. In addition to imprinting, genetic variants can alter 

epigenetic marks such as DNA methylation or histone modifications through sequence-

dependent allele-specific methylation177,178. Moreover, heterozygous polymorphisms can 

affect the binding affinity of transcription factors to promoters or enhancers, leading to 

differential gene expression between the alleles (Figure 1.6)179,180. 

At the post-transcriptional level, genetic variation can affect the abundance of transcripts and 

isoforms. Heterozygous SNPs can trigger nonsense-mediated decay, a cellular quality control 

mechanism that leads to the degradation of mRNAs with premature stop codons142,181-183 

(Figure 1.6). Another post-transcriptional mechanism by which genetic variants can affect the 

transcript abundance of genes is by disrupting RNA binding sites for proteins that are crucial 

for RNA processing, localization, and translation184. Alterations in binding sites, for example 

those for miRNAs, can further alter transcript degradation rates and contribute to ASE142,185. 

Moreover, variants located near splice sites can lead to alternative splicing, which often 

involves alternate 3' or 5' exon ends, exon skipping, or intron retention, affecting the number 

of transcript isoforms within cells (Figure 1.6)142,186. Importantly, lncRNAs show ASE more 

frequently than pcGenes and thus may contribute significantly to the presence of ASE in the 

genes they regulate in cis78,142,187. Finally, heterozygous variants can further impact the 

translation of mRNAs by altering the regulatory regions involved in this process, such as 

secondary mRNA structures, the 5' untranslated region, or the translation start site (Figure 
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1.6)142,188. In summary, the influence of genetic variation on the presence of ASE 

encompasses a wide range of possibilities. 

 

Figure 1.6 Overview of the genetic mechanisms leading to allele-specific expression. 
Heterozygous single nucleotide polymorphisms (hetSNPs) can affect gene expression in cis, leading 
to allele-specific expression (ASE) through various mechanisms. Chromatin accessibility can be 
affected by hetSNPs that alter epigenetic marks, such as histone modifications or DNA methylation. 
Moreover, hetSNPs can affect the binding affinity of transcription factors to promoters or enhancers. 
At the post-transcriptional level, genetic variation can influence the abundance of transcripts by 
triggering nonsense-mediated decay or disrupting RNA binding sites. Variants located near splice 
sites can further lead to alternative splicing. Changes in miRNA binding sites can alter transcript 
degradation rates and thus contribute to ASE. Additionally, allele-specific ncRNAs can cause ASE in 
the genes they regulate in cis. At the translational level, hetSNPs can alter secondary mRNA 
structures, the 5' untranslated region or the translation start site. Created in BioRender. Andergassen, 
D. (2025) https://BioRender.com/b98a895. 

 
 

1.3.3 Genome-wide allele-specific expression analysis 
 
In order to identify loci with allelic imbalance, ASE analysis involves the quantification of 

sequencing reads that derive from the paternal and maternal allele. This approach requires 

that the sequencing reads overlap heterozygous SNPs to distinguish between the alleles. 
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A robust method for studying ASE is the generation of F1 mouse hybrids by crossing different 

inbred strains. Given that the SNP information for these strains is known, the individual 

sequencing reads can be traced back to the allele of origin. Moreover, the number of variants 

can be maximized by crossing genetically distant strains189. In contrast, human studies require 

prior genotyping and phasing to identify the corresponding alleles. While genetic variants can 

be called directly from RNA-seq data, this approach fails to detect gene features with 

monoallelic expression. In such cases, these sites are misclassified as homozygous because 

only one allele is expressed142. Despite the need for prior SNP calling, the high genetic 

diversity of humans has led to a widespread prevalence of ASE gene loci across the 

population. Analyses of the GTEx project, which includes RNA-seq data from nearly 1,000 

individuals across 54 different tissues190, have demonstrated that a substantial proportion of 

genes show ASE in at least one sample142,191. However, it is essential to note that the 

occurrence of ASE in individual samples is not necessarily biological meaningful but rather a 

result of the genetic variation in outbred populations142,191. 

Due to the presence of heterozygous variants in ASE mapping, the alignment of sequencing 

data can be biased towards the allele that is more similar to the reference genome. This 

mapping bias can result in the identification of false positives and must be considered192. 

Several strategies can minimize this effect, including the use of SNP-tolerant mappers193-196 

or the alignment to masked references197, personalized genomes, or haplotypes142,198,199. 

Subsequently, different computational approaches can be used to identify ASE from bulk or 

scRNA-sequencing (scRNA-seq) data to resolve allelic imbalances on tissue or cell-type 

level142. 

 

1.3.3.1 Statistical methods to identify allele-specific expression 
 
Different statistical models are used to assess ASE, which can be classified into two 

categories: those designed for ASE mapping in individual samples and those designed to 

identify putative regulatory variants across populations142. Further, sequencing reads can be 

mapped to individual heterozygous SNPs or haplotypes encompassing multiple variants, for 

example within a gene locus142. Haplotypes are sets of polymorphisms that are likely to be 

inherited together and provide a more comprehensive picture than individual variants. 

Including the haplotype information has been shown to increase the power of ASE mapping200. 

A straightforward approach to statistically assess for ASE within individuals is binomial testing. 

A binomial test compares the number of sequencing reads corresponding to the maternal and 

paternal allele against the null hypothesis that both alleles are expressed equally, meaning 
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with the same probability142. A bioinformatics tool that uses the binomial test to identify ASE 

from high-throughput sequencing data is Allelome.PRO. Allelome.PRO was designed to 

provide the entire picture of ASE loci in F1 mouse hybrids, including biallelic, imprinted and 

strain-biased genes. Furthermore, Allelome.PRO calculates an allelic ratio which is the 

proportion of sequencing reads from one allele relative to the total reads at a specific locus201. 

The ease of use and interpretation of the results have contributed to the success of 

Allelome.PRO as an established tool for ASE mapping. 

Another computational approach to test for allelic expression are Bayesian models. Bayesian 

models provide a probabilistic framework to generate robust estimates of ASE202-204. By 

integrating prior knowledge and updating probabilities, Bayesian approaches can offer deep 

insights into complex patterns of ASE. The parameters of ASE variation across an individual's 

genes can be learned using these models203,204. Moreover, intra-individual ASE data can be 

combined with total gene expression variation across individuals to detect regulatory 

variants142. By extending the haplotype information derived from population phasing to include 

non-coding regions, these models further allow the identification of putative regulatory variants 

and provide insights into the mechanisms driving ASE142,200.  

 

1.4 Unraveling the function of ncRNAs 
 
Despite the rapid advances in the field of ncRNAs, our understanding remains fragmented 

and incomplete, with functional insights often lacking36. To date, less than 1% of the identified 

loci have been experimentally characterized17,205. 

For lncRNAs, genetically modified mouse models are considered gold-standard experiments 

to unravel their functional roles, a process that is time-consuming and laboratory-extensive101. 

The diverse mechanisms inherent to the regulatory nature of lncRNAs require comprehensive 

experimental strategies to unravel the precise functions and mechanisms. Especially for 

lncRNAs it often remains challenging to distinguish whether regulatory effects arise from the 

transcript, the act of transcription, or the underlying DNA sequence and thus, a variety of 

experimental approaches are needed to disentangle their mechanisms. A critical starting point 

for characterizing novel lncRNAs is the whole-gene ablation in vivo to identify potential 

functional consequences. This approach can be complemented by more refined strategies, 

such as polyadenylation-terminator insertion or promoter deletion, to induce transcriptional 

termination. These techniques allow researchers to differentiate between the effects of DNA 

elements inherent to the lncRNA locus and those driven by the transcriptional process or the 

transcript101. To further disentangle effects due to the transcription, promoter activity, or the 
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lncRNA transcript, the gene body of lncRNAs can be replaced with a reporter gene. In addition, 

transgene rescue experiments can be used to distinguish whether a lncRNA acts in cis or 

trans. In some cases, lncRNAs may further encode small functional peptides that can be 

identified by introducing frameshift or start codon mutations101. 

Following a knockout experiment, characterization of the functional roles requires 

comprehensive molecular phenotyping using multi-omics approaches such as epigenetic 

profiling and transcriptomic analysis. In particular, knockout and knockdown experiments 

enable the identification of dysregulated genes, allowing researchers to pinpoint the molecular 

functions and regulatory targets of the ncRNA in question. Comparative analysis of 

dysregulated genes can reveal the pathways affected by the ncRNA, providing insights into 

its role in biological processes206. By understanding the pathways and molecular interactions 

involved, researchers can infer the broader physiological or developmental implications of a 

ncRNA and predict potential effects on cellular function and disease mechanisms. 

In addition, the functional consequences of dysfunctional regulatory RNAs can be revealed by 

phenotypic analysis. For ncRNAs these effects are often subtle and context-dependent33. 

NcRNAs frequently exert pleiotropic effects, meaning that their influence can vary significantly 

across developmental stages, tissues, or in response to environmental cues, leading to distinct 

phenotypic outcomes under various conditions. Detecting these nuanced effects requires 

comprehensive sampling across diverse tissues, cell types, and developmental stages, as 

well as large-scale phenotyping efforts encompassing a wide range of tests207. This approach 

enables researchers to capture subtle variations in gene expression, cellular function, and 

organismal health that may arise due to the ncRNA, providing a clearer understanding of their 

contributions to complex phenotypes and potential disease associations207. 

An illustrative example of a lncRNA with no essential phenotype upon deletion in mice is the 

highly abundant lncRNA Malat1. Several loss-of-function studies in cell culture models 

highlight the importance of Malat1 for nuclear speckle formation33,208,209. However, multiple 

researchers did not detect any overt phenotype after genetic removal of the gene208-210. 

Nevertheless, Malat1 has significant implications for the progression of multiple cancers and 

diseases33,211,212. The context-specific functionality of Malat1 underscores the need for 

extensive molecular and large-scale phenotyping to identify the functional roles of ncRNAs. 

To facilitate the selection of candidate loci for experimental investigation, there is a growing 

need for computational methods that predict the functional role and regulatory targets of 

ncRNAs. Bioinformatic tools that allow their prioritization based on predicted interactions and 

associations to tissues or conditions can reduce the experimental effort and increase the 
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likelihood of investigating functionally relevant ncRNAs. However, the computational 

identification of ncRNA-targets and their mechanisms is challenging. Due to the low sequence 

conservation among species, functional predictions based on paralogs or orthologs with 

similar sequences is complex17. Unlike pcGenes, whose sequences are rich in functional 

information, ncRNAs mostly lack sequence-function relationships17. Additionally, the low 

expression levels often lead to the underrepresentation of ncRNA transcripts in sequencing 

data. Bulk RNA-seq approaches favor highly abundant RNAs, resulting in the undersampling 

of many ncRNAs39. The dynamic and cell-type-specific nature of ncRNA expression further 

complicates their detection, as many ncRNAs are expressed only in rare subpopulations of 

cells, at specific time points during development, or in response to environmental factors33. So 

far, computational methods, such as genotype-expression correlation studies have been used 

to predict the targets of regulatory loci. These studies test for genotypes associated with the 

expression level of genes across samples. The resulting statistically significant associations 

are defined as eQTLs, which represent genetic variations linked to the expression of a gene213. 

However, genotype-expression correlation studies require large sample sizes to obtain 

sufficient statistical power. Due to the dynamic expression patterns and temporal variations of 

ncRNAs, these methods have consequently failed to identify a large number of regulatory 

targets and mechanisms of ncRNAs. 

To date, GWAS that rely on collections of DNA samples from individuals with different 

phenotypes, such as healthy and diseased, have uncovered hundreds of thousands of 

disease-associated variants by statistically testing genetic variations for their association with 

phenotypes214. Approximately 90% of the identified GWAS variants are located within the non-

coding genome215,216. Interestingly, given their critical role in regulating gene expression, 

ncRNA dysregulation has been associated to a vast range of human traits and diseases, such 

as cardiovascular and infectious diseases, cancer, and neurological disorders15. Notably, a 

total of 371,647 risk variants have been mapped to lncRNA loci, accounting for 45% of all 

identified human GWAS variants217. However, the lack of a functional understanding of the 

vast majority of ncRNAs, including their regulatory targets and mechanisms of action, poses 

a significant challenge in elucidating how variants within the non-coding genome contribute to 

disease. Thus, one of the major challenges today is to unravel the targets and mechanisms of 

action of ncRNAs15,17. 
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2 Scientific aim 
Despite the advances in ncRNA research, our understanding of their functional roles and 

regulatory targets remains fragmented and incomplete. To date, less than 1% of the identified 

ncRNA loci have been experimentally characterized17,205. Thus, the ability to predict how 

ncRNAs translate into diseases is limited. This dissertation aimed to contribute to the 

functional understanding of ncRNAs by exploring experimental and computational 

approaches. 

Project 1: Investigating the in vivo contribution of the Crossfirre locus alone and in combination 
with Firre and Dxz4 
 
Prior to the thesis, the characterization of the lncRNA Crossfirre, including its involvement in 

XCI biology, remained entirely unexplored. Additionally, the contributions of Firre and Dxz4 to 

random XCI in adult tissues have not been fully addressed. Finally, the impact of these X-

linked loci on gene regulation and the phenotypic consequences in loss-of-function models, 

individually and in combination, have not been investigated. To address these knowledge 

gaps, the first project aimed to investigate the in vivo role of Crossfirre, Firre, and Dxz4 by 

performing comprehensive multi-omics analyses and large-scale phenotypic characterization 

using one of the largest genetically modified X-linked mouse cohorts. This cohort included 

mouse models carrying: (i) a deletion of Crossfirre, Firre, and Dxz4, (ii) double deletions of 

Crossfirre-Firre and Firre-Dxz4, and (iii) a triple knockout (TKO) including the removal of 

Crossfirre-Firre and Dxz4 (Figure 2.1). 

 

Figure 2.1 Schematic overview to investigate the in vivo role of Crossfirre, Firre, and Dxz4. 
The study investigated whether loss-of-function models lacking the Crossfirre, Firre, and Dxz4 loci, 
individually and in combination, exhibit essential phenotypes in vivo. In addition, the role of these loci 
in X chromosome inactivation (XCI) biology was investigated, complemented by comprehensive 
transcriptomic and phenotypic analyses. Created in BioRender. Andergassen, D. (2025).  



 24 

Project 2: Decoding the targets and mechanisms of the non-coding genome through allele-

specific genomics 
 
Due to the cost- and time-extensive nature of experimentally characterizing ncRNAs in the 

laboratory, the second project focused on predicting their target genes and mechanisms in 

silico. This computational approach aims to facilitate the selection of future candidate ncRNAs 

for experimental validation. ASE analyses, which compare allelic expression levels within the 

same cellular environment, provide a highly controlled and sensitive system to overcome gene 

dosage compensatory mechanisms and mitigate the dynamic expression patterns of ncRNAs. 

It is hypothesized that the allelic bias of a cis-acting regulatory ncRNA would be reflected in 

the allelic imbalance of the proximate targets. Consequently, ASE analyses provide a powerful 

tool to predict the regulatory targets and mechanisms of cis-acting ncRNAs. This project aimed 

to identify the regulatory cis-acting ncRNAs in mice and humans by developing a 

bioinformatics framework that predicts their targets and mechanisms based on the allelic 

expression patterns (Figure 2.2). 

 

Figure 2.2 Schematic overview of the allele-specific approach to predict ncRNA-targets. 
Schematic overview of the allele-specific concept to predict the regulatory targets of cis-acting 
ncRNAs. It is hypothesized that the allelic bias of a cis-acting regulatory ncRNA is reflected in the 
allelic imbalance of the proximate target. Depending on whether the allelic bias between ncRNA and 
pcGene is towards the same or opposite alleles, it is further assumed that the mechanism can be 
inferred as either enhancing or repressive. Created in BioRender. Andergassen, D. (2025) 
https://BioRender.com/b98a895. 
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3 Materials 

3.1 Wet-lab materials 
3.1.1 Chemicals, reagents, and consumables 

Substances or consumables Source 

Chloroform (Trichloromethane, CHCl3) Roth (Karlsruhe, Germany) 

Dulbecco’s Phosphate Buffered Saline Thermo Fisher Scientific Inc. (Waltham, USA) 

Ethanol ≥ 99,5% Roth (Karlsruhe, Germany) 

Isopropanol ≥ 99,8% Roth (Karlsruhe, Germany) 

RNase Zap Sigma Aldrich (Taufkirchen, Germany) 

RNase-free water Thermo Fisher Scientific Inc. (Waltham, USA) 

TRIzol Reagent Thermo Fisher Scientific Inc. (Waltham, USA) 

 
3.1.2 Primer 

Primer name Sequence Source 

fwd_Crossfirre_Crossfirre-firre AGAACAGCCCTGGAGGAAAT Sigma Aldrich 

fwd_Dxz4 ACAGTGCATCAAAAGCACACG Sigma Aldrich 

fwd_Dxz4_WT AGTTGGGAGCGAAGCAGAAA Sigma Aldrich 

rev_Crossfirre GTAGGCAAGCCTGAGGAAAA Sigma Aldrich 

rev_Crossfirre_Crossfirre-
firre_WT 

TCTCTTGTAAGAGTTCCCATGTGT Sigma Aldrich 

rev_Crossfirre-firre CCTGGGTCCTCTATAAAAGCAACAG Sigma Aldrich 

rev_Dxz4 CCTGGTGGCACAGAACTCTA Sigma Aldrich 

 
3.1.3 gRNAs 

Name (target) Protospacer+PAM Source 

gRNA_Crossfirre_up GATCTTTACCCCACAGTATAAGG 
Integrated DNA 
Technologies 

gRNA_Crossfirre_down GGGATGGCCACACCTCACAATGG 
Integrated DNA 
Technologies 

gRNA_Crossfirre-firre_up AATGGGTCCAGGTATTGGCGGGG 
Integrated DNA 
Technologies 
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gRNA_Crossfirre-firre_down CTAAAAGGATTAGGGTCTCTTGG 
Integrated DNA 
Technologies 

gRNA_Dxz4_up CATGCTGCTTTTATGTGCTTCGG 
Integrated DNA 
Technologies 

gRNA_Dxz4_down TACTGAAGGAATCGTATGACCGG 
Integrated DNA 
Technologies 

 
3.1.4 Antibodies 

Name Source 

Anti-mouse CD16/CD32 (Fc Block) BD Biosciences 

TER-119-PE antibodies Thermo Fisher Scientific Inc. (Waltham, USA) 

Zombie Green™ viability dye BioLegend (San Diego, USA) 

 
3.1.5 Mouse strains 

Mouse strain Source 

CAST/EiJ Jackson Laboratory, JAX: Strain #000928 

C57BL/6J Jackson Laboratory, JAX: Strain #000664 

B6D2F1/J Jackson Laboratory, JAX: Strain #100006 

 
3.1.6 Kits 

Kit name Source 

Chromium Next GEM Single Cell 3’ 
Reagent Kits v3.1 (Dual Index)  

10x Genomics (Pleasanton, USA) 

Illumina® Stranded mRNA Prep Ligation Kit Illumina (SanDiego, USA) 

RNeasy mini columns Qiagen (Düsseldorf, Germany) 

TruSeq stranded Illumina® Illumina (SanDiego, USA) 

Unstranded TruSeq libraries Illumina (SanDiego, USA) 

 
3.1.7 Instruments 

Devices Source 

Agilent 2100 Bioanalyzer Agilent (Santa Clara, USA) 
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Agilent 4200 TapeStation Agilent (Santa Clara, USA) 

GentleMACS™ Dissociator Miltenyi Biotec (Bergisch Gladbach, Germany) 

HiSeq 2500 Illumina (SanDiego, USA) 

NovaSeq 6000 Illumina (SanDiego, USA)  

Qubit 2.0 Fluorometer Thermo Fisher Scientific Inc. (Waltham, USA) 

Vortex-Genie 2  Scientific industries (Bohemia, USA) 

 
3.2 Bioinformatic requirements 
3.2.1 Software  

Software Version Source 

Adobe Acrobat  2024.004.20272 
Adobe Systems Incorporated (San 
Jose, USA) 

Adobe Illustrator  25.4.1 
Adobe Systems Incorporated (San 
Jose, USA) 

Allelome.LINK 1.0 This thesis 

Allelome.PRO 1.0 Andergassen et al., 2015201 

Allelome.PRO v2.0 2.0 This thesis 

awk 20200816 Aho et al., 1987218 

bedtools 2.30.0 Quinlan et al., 2010219 

bowtie2 2.3.5.1 Langmead et al., 2012220 

cellranger 6.1.2 Zheng et al., 2017221 

curl 7.76.1 Hostetter et al., 1997222 

deeptools 3.3.0 Ramirez et al., 2016223 

fastqc 0.11.6 Andrews et al., 2010224 

gatk 3.8 McKenna et al., 2010225 

htseq 0.11.3 Anders et al., 2015226 

macs2 2.1.4 Zhang et al., 2008227 

Perl 5.32.1 Wall et al., 1994228 

Python 2.7 Python Software Foundation229 

R 3.6.3 R Core Team 2023230 

rseqc 2.6.4 Wang et al., 2012231 

samtools 1.12 Danecek et al., 2021232 

sed 4.8 N/A 
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sinto 0.8.1 https://timoast.github.io/sinto/index.html 

SNPsplit 0.3.2 Krueger et al., 2016233 

sra-tools 2.11.0 SRA Toolkit Development Team 

star 2.6.0c Dobin et al., 2013194 

ucsc-bedtobigbed 377 Kent et al., 2010234 

ucsc-fetchchromsizes 377 Kent et al., 2010234 

ucsc-wigtobigwig 377 Kent et al., 2010234 

vcftools 0.1.16 Danecek et al., 2011235 

 

3.2.2 R packages 

Package Version Source 

AnnotationDbi 1.64.1 Pagès et al., 2023236 

AnnotationFilter 1.26.0 Morgan et al., 2023237 

AnnotationHub 3.10.1 Morgan et al., 2024238 

ape 5.8 Paradis et al., 2019239 

apeglm 1.24.0 Zhu et al., 2019240 

base 4.3.1 R Core Team230 

beeswarm 0.4.0 Eklund et al., 2021241 

biomaRt 2.58.2 Durinck et al., 2005242 

BSgenome 1.70.2 Pagès et al., 2024243 

CePa 0.8.0 Gu et al., 2022244 

ChIPpeakAnno 3.36.1 Zhu et al., 2013245 

circlize 0.4.16 Gu et al., 2014246 

clusterProfiler 4.10.1 Yu et al., 2012247 

ComplexHeatmap 2.18.0 Gu et al., 2016248 

cowplot 1.1.3 Wilke et al., 2024249 

data.table 1.16.0 Barrett et al., 2024250 

DESeq2 1.42.1 Love et al., 2014251 

devtools 2.4.5 Wickham et al., 2022252 

dplyr 1.1.4 Wickham et al., 2023253 

EnhancedVolcano 1.20.0 Blighe et al., 2023254 

enrichplot 1.22.0 Yu et al., 2023255 
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ensembldb 2.26.0 Rainer et al., 2019256 

eulerr 7.0.2 Larsson et al., 2024257 

fdrtool 1.2.18 Klaus et al., 2024258 

gdata 3.0.0 Warnes et al., 2023259 

GenomeInfoDb 1.38.8 Arora et al., 2024260 

GenomeInfoDbData 1.2.11 Bioconductor Core Team, 2023261 

GenomicAlignments 1.38.2 Lawrence et al., 2013262 

GenomicFeatures 1.54.4 Lawrence et al., 2013262 

GenomicRanges 1.54.1 Lawrence et al., 2013262 

ggbeeswarm 0.7.2 Clarke et al., 2023263 

ggbreak 0.1.2 Xu et al., 2021264 

ggExtra 0.10.1 Attali et al., 2023265 

ggforce 0.4.2 Pedersen et al., 2024266 

ggfun 0.1.6 Yu et al., 2024267 

ggnetwork 0.5.13 Briatte et al., 2024268 

ggplot2 3.5.1 Wickham et al., 2016269 

ggpubr 0.6.0 Kassambara et al., 2023270 

ggraph 2.2.1 Pedersen et al., 2024271 

ggrastr 1.0.2 Petukhov et al., 2023272 

ggrepel 0.9.6 Slowikowski et al., 2024273 

ggridges 0.5.6 Wilke et al., 2024274 

ggsci 3.2.0 Xiao et al., 2024275 

ggsignif 0.6.4 Ahlmann-Eltze et al., 2021276 

ggtree 3.10.1 Yu et al., 2017277 

GOSemSim 2.28.1 Yu et al., 2010278 

gplots 3.1.3.1 Warnes et al., 2024279 

grid 4.3.1 R Core Team, 2023230 

gridBase 0.4-7 Murrell et al., 2014280 

gridExtra 2.3 Auguie et al., 2017281 

gridGraphics 0.5-1 Murrell et al., 2020282 

gtools 3.9.5 Warnes et al., 2023283 

igraph 2.0.3 Csardi et al., 2006284 
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IRanges 2.36.0 Lawrence et al., 2013262 

karyoploteR 1.28.0 Gel et al., 2017285 

karyotapR 1.0.1 Mays et al., 2023286 

leiden 0.4.3.1 Kelly et al., 2023287 

leidenbase 0.1.31 Ewing et al., 2024288 

limma 3.58.1 Wu et al., 2012289 

matrixStats 1.4.1 Bengtsson et al., 2024290 

MuDataSeurat 0.0.1.0 Bredikhin et al., 2023291 

org.Hs.eg.db 3.18.0 Carlson et al., 2023292 

org.Mm.eg.db 3.18.0 Carlson et al., 2023292 

pheatmap 1.0.12 Kolde et al., 2019293 

plyr 1.8.9 Wickham et al., 2011294 

png 0.1-8 Urbanek et al., 2022295 

qvalue 2.34.0 Storey et al., 2023296 

RColorBrewer 1.1-3 Neuwirth et al., 2022297 

readr 2.1.5 Wickham et al., 2024298 

readxl 1.4.3 Wickham et al., 2023299 

reprex 2.1.1 Bryan et al., 2024300 

Rsamtools 2.18.0 Morgan et al., 2023301 

scales 1.3.0 Wickham et al., 2023302 

Seurat 4.1.1 Hao et al., 2021303 

simplifyEnrichment 1.12.0 Gu et al., 2023304 

stringr 1.5.1 Wickham et al., 2023305 

SummarizedExperiment 1.32.0 Morgan et al., 2023306 

sctransform 0.4.1 Hafemeister et al., 2019307 

tibble 3.2.1 Müller et al., 2023308 

tidygraph 1.3.1 Pedersen et al., 2024309 

tidyr 1.3.1 Wickham et al., 2024310 

tidyverse 2.0.0 Wickham et al., 2019311 

UpSetR 1.4.0 Gehlenborg et al., 2019312 

VennDiagram 1.7.3 Chen et al., 2022313 

writexl 1.5.0 Ooms et al., 2024314 
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3.2.3 Public data, databases, and annotations 

Name Source 

ENCODE blacklist genes Amemiya et al., 2019315 

GENCODE M25 GRCm38.p6 20191146 Frankish et al., 2019316 

GENCODEv26 annotation Frankish et al., 2019316 

Gene expression omnibus Edgar et al., 2002317 

GTEx v8 release GTEx Consortium atlas, 2020190 

GTEx_v8_finemapping_DAPG.txt Wen et al., 2017318 

mm10 genome (version 2020-A) Zheng et al., 2017221 

Molecular Signatures Database Subramanian et al., 2005206 

NHGRI-EBI GWAS Catalog v1.0 Sollis et al., 2023 215 

phASER_WASP_GTEx_v8_matrix.gw_phased.txt Castel et al., 2020191 

RefSeq gene annotation GRCm38/mm10 (2018) O'Leary et al., 2016319 

Sanger database Keane et al., 2011189 

SNP file CAST x BL6 (15,438,314 variants) Andergassen et al., 2019127 

SNP file CAST x FVB (16,988,479 variants) Andergassen et al., 2019175 

 

3.2.4 Public sequencing data 

Name Sample identifier Source 

Pl_FixC_++_1 GSM3636720 GSE127554127 

Pl_FixC_++_2 GSM3636721 GSE127554127 

Pl_FixC_++_3 GSM3636722 GSE127554127 

Pl_DxC_++_1 GSM3636709  GSE127554127 

Pl_DxC_++_2 GSM3636710 GSE127554127 

Pl_FDxC_++_1 GSM3636697 GSE127554127 

Pl_FDxC_++_2 GSM3636698 GSE127554127 

Pl_FDxC_++_3 GSM3636699 GSE127554127 

Pl_FixC_-+_1 GSM3636714 GSE127554127 

Pl_FixC_-+_2 GSM3636715 GSE127554127 

Pl_FixC_-+_3 GSM3636716 GSE127554127 

Pl_DxC_-+_1 GSM3636703 GSE127554127 
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Pl_DxC_-+_2 GSM3636704 GSE127554127 

Pl_DxC_-+_3 GSM3636705 GSE127554127 

Pl_FDxC_-+_1 GSM3636691 GSE127554127 

Pl_FDxC_-+_2 GSM3636692 GSE127554127 

Pl_FDxC_-+_3 GSM3636693 GSE127554127 

Pl_CxFi_++_1 GSM3636741 GSE127554127 

Pl_CxFi_++_2 GSM3636742 GSE127554127 

Pl_CxFi_++_3 GSM3636743 GSE127554127 

Pl_CxD_++_1 GSM3636729 GSE127554127 

Pl_CxD_++_2 GSM3636730 GSE127554127 

Pl_CxD_++_3 GSM3636731 GSE127554127 

Pl_CxFD_++_1 GSM3636735 GSE127554127 

Pl_CxFD_++_2 GSM3636736 GSE127554127 

Pl_CxFD_++_3 GSM3636737 GSE127554127 

Pl_CxFi_+-_1 GSM3636738 GSE127554127 

Pl_CxFi_+-_2 GSM3636739 GSE127554127 

Pl_CxFi_+-_3 GSM3636740 GSE127554127 

Pl_CxD_+-_1 GSM3636726 GSE127554127 

Pl_CxD_+-_2 GSM3636727 GSE127554127 

Pl_CxD_+-_3 GSM3636728 GSE127554127 

Pl_CxFD_+-_1 GSM3636732 GSE127554127 

Pl_CxFD_+-_2 GSM3636733 GSE127554127 

Pl_CxFD_+-_3 GSM3636734 GSE127554127 

Br_FDxFD_--_1 GSM3636580 GSE127554127 

Br_FDxFD_--_2 GSM3636581 GSE127554127 

Br_FDxFD_--_3 GSM3636582 GSE127554127 

Br_FDxFD_--_4 GSM3636583 GSE127554127 

Br_WT_++_1 GSM3636584  GSE127554127 

Br_WT_++_2 GSM3636585 GSE127554127 

Br_WT_++_3 GSM3636586 GSE127554127 

Br_WT_++_4 GSM3636587 GSE127554127 

He_FDxFD_--_1 GSM3636588 GSE127554127 



 33 

He_FDxFD_--_2 GSM3636589 GSE127554127 

He_FDxFD_--_3 GSM3636590 GSE127554127 

He_FDxFD_--_4 GSM3636591 GSE127554127 

He_WT_++_1 GSM3636592 GSE127554127 

He_WT_++_2 GSM3636593 GSE127554127 

He_WT_++_3 GSM3636594 GSE127554127 

He_WT_++_4 GSM3636595 GSE127554127 

Ki_FDxFD_--_1 GSM3636596 GSE127554127 

Ki_FDxFD_--_2 GSM3636597 GSE127554127 

Ki_FDxFD_--_3 GSM3636598 GSE127554127 

Ki_FDxFD_--_4 GSM3636599 GSE127554127 

Ki_WT_++_1 GSM3636600 GSE127554127 

Ki_WT_++_2 GSM3636601 GSE127554127 

Ki_WT_++_3 GSM3636602 GSE127554127 

Ki_WT_++_4 GSM3636603 GSE127554127 

Li_FDxFD_--_1 GSM3636604 GSE127554127 

Li_FDxFD_--_2 GSM3636605 GSE127554127 

Li_FDxFD_--_3 GSM3636606 GSE127554127 

Li_FDxFD_--_4 GSM3636607 GSE127554127 

Li_WT_++_1 GSM3636608 GSE127554127 

Li_WT_++_2 GSM3636609 GSE127554127 

Li_WT_++_3 GSM3636610 GSE127554127 

Li_WT_++_4 GSM3636611 GSE127554127 

Lu_FDxFD_--_1 GSM3636617 GSE127554127 

Lu_FDxFD_--_2 GSM3636618 GSE127554127 

Lu_FDxFD_--_3 GSM3636619 GSE127554127 

Lu_FDxFD_--_4 GSM3636620 GSE127554127 

Lu_WT_++_1 GSM3636621 GSE127554127 

Lu_WT_++_2 GSM3636622 GSE127554127 

Lu_WT_++_3 GSM3636623 GSE127554127 

Lu_WT_++_4 GSM3636624 GSE127554127 

Sp_FDxFD_--_1 GSM3636625 GSE127554127 
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Sp_FDxFD_--_2 GSM3636626 GSE127554127 

Sp_FDxFD_--_3 GSM3636627 GSE127554127 

Sp_FDxFD_--_4 GSM3636628 GSE127554127 

Sp_WT_++_1 GSM3636629 GSE127554127 

Sp_WT_++_2 GSM3636630 GSE127554127 

Sp_WT_++_3 GSM3636631 GSE127554127 

Sp_WT_++_4 GSM3636632 GSE127554127 

Sp_DxD_--_1 GSM3636633 GSE127554127 

Sp_DxD_--_2 GSM3636634 GSE127554127 

Sp_FixFi_--_1 GSM3636635 GSE127554127 

Sp_FixFi_--_2 GSM3636636 GSE127554127 

Sp_FixFi_--_3 GSM3636637 GSE127554127 

Pl_E12_5_CF_1 GSM1970843 GSE7595778   

Pl_E12_5_CF_2 GSM1970844 GSE7595778   

Pl_E12_5_FC_1 GSM1970845  GSE7595778   

Pl_E12_5_FC_2 GSM1970846 GSE7595778   

Pl_E12_5_CxRSDel_++_3 SRR8753471 GSE128513175 

Pl_E12_5_CxRSDel_++_2 SRR8753472 GSE128513175 

Pl_E12_5_CxRSDel_++_1 SRR8753473 GSE128513175 

Pl_E12_5_CxRSDel_+-_3 SRR8753474 GSE128513175 

Pl_E12_5_CxRSDel_+-_2 SRR8753475 GSE128513175 

Pl_E12_5_CxRSDel_+-_1 SRR8753476 GSE128513175 

NPC_XX2 SRR3933589 GSE84646320 

NPC_XX4 SRR3933595 GSE84646320 

Female_Spleen_Rep2 SRR8119821 PRJNA497970321 

Female_Spleen_Rep1 SRR8119822 PRJNA497970321 

Male_Spleen_Rep2 SRR8119826 PRJNA497970321 

Male_Spleen_Rep1 SRR8119827 PRJNA497970321 

Male_Kidney_Rep2 SRR8119832 PRJNA497970321 

Male_Kidney_Rep1 SRR8119833 PRJNA497970321 

Male_Heart_Rep2 SRR8119834 PRJNA497970321 

Male_Heart_Rep1 SRR8119835 PRJNA497970321 
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Male_Cerebrum_Rep2 SRR8119836 PRJNA497970321 

Male_Cerebrum_Rep1 SRR8119837 PRJNA497970321 

Male_Liver_Rep2 SRR8119838 PRJNA497970321 

Male_Liver_Rep1 SRR8119839 PRJNA497970321 

Female_Cerebrum_Rep1 SRR8119850 PRJNA497970321 

Female_Cerebrum_Rep2 SRR8119851 PRJNA497970321 

Female_Liver_Rep1 SRR8119852 PRJNA497970321 

Female_Liver_Rep2 SRR8119853 PRJNA497970321 

Female_Lung_Rep1 SRR8119854 PRJNA497970321 

Female_Lung_Rep2 SRR8119855 PRJNA497970321 

Female_Heart_Rep1 SRR8119856 PRJNA497970321 

Female_Heart_Rep2 SRR8119857 PRJNA497970321 

Female_Kidney_Rep1 SRR8119858 PRJNA497970321 

Female_Kidney_Rep2 SRR8119859 PRJNA497970321 

Male_Lung_Rep1 SRR8119864 PRJNA497970321 

Male_Lung_Rep2 SRR8119865 PRJNA497970321 

aBr_CF_1 SRR3085966 GSE7595778 

aBr_CF_2 SRR3085967 GSE7595778 

aBr_FC_1 SRR3085968 GSE7595778 

aBr_FC_2 SRR3085969 GSE7595778 

MEF_K4m3_CF_1 SRR2038034 GSE69168201 

MEF_K4m3_CF_2 SRR2038035 GSE69168201 

MEF_K4m3_FC_1 SRR2038036 GSE69168201 

MEF_K4m3_FC_2 SRR2038037 GSE69168201 
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4 Methods 
Parts of the methods described in the sections of chapters 4, including 4.1 (4.1.1, 4.1.2), 4.2 

(4.2.1, 4.2.2), 4.3, 4.5. (4.5.1, 4.5.2, 4.5.3), and 4.6 have been previously published in a similar 

form by the author of this thesis322. Additionally, methods of the chapter 4, including 4.1 (4.1.2), 

4.2 (4.2.1), 4.4 (4.4.1, 4.4.2), 4.5 (4.5.2, 4.5.4) and 4.6 have been described similarly by the 

author of this thesis in a submitted manuscript (see 9.2 Submitted manuscripts, 1.). 

As a bioinformatician, my task in the projects was on the computational biology, including the 

development of analysis pipelines and the execution of downstream analyses following next-

generation sequencing (NGS). Therefore, the wet lab procedures comprising the generation 

of knockout mouse models and NGS sample preparation have been carried out in 

collaboration. However, brief descriptions of all wet lab steps are included to provide a 

comprehensive overview of the entire experimental framework. 

 

4.1 Animal studies 
 
Animals were housed in pathogen-free environments at Harvard University’s Biological 

Research Infrastructure and the Institute of Pharmacology and Toxicology at the Technical 

University of Munich. All animal experiments conducted at the Institute of Pharmacology and 

Toxicology followed the EU guideline 2010/63 and the German Animal Welfare Act 

(Tierschutzgesetz and Tierschutzversuchstierverordnung). Approval was granted by the 

District Administrative Office of the City of Munich, Veterinary Office of the City of Munich, in 

accordance with Section 11, Paragraph 1, Sentence 1, No. 1 of the German Animal Welfare 

Act. 

 

4.1.1 Generation of Crossfirre, Firre, and Dxz4 knockout mouse models 
 
To investigate the in vivo effects of the Crossfirre locus alone and in combination with Firre 

and Dxz4 in Project 1, three knockout mouse models were generated in collaboration: (i) a 

single Crossfirre deletion encompassing the 50kb LINE cluster attached to the gene locus 

(∆Crossfirre), (ii) a double deletion of the Crossfirre and Firre loci (∆Crossfirre-Firre), and (iii) 

a triple deletion of Crossfirre, Firre, and Dxz4. 

The ∆Crossfirre and ∆Crossfirre-Firre knockout mouse models were generated as previously 

described for ∆Firre and ∆Dxz4127,131. CAST/EiJ (CAST), B6D2F1/J (F1 BL6 and DBA/2J), and 

C57BL/6J (BL6) mouse strains were obtained from the Jackson Laboratory. Zygotes of 
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pronuclear stage 3 were isolated from superovulated B6D2F1/J females mated with BL6 

males323. Cas9 mRNA (200 ng/µl) and two guide RNAs flanking each locus (50 ng/µl) were 

co-injected into the zygotes, which were cultured to the blastocyst stage and implanted into 

pseudopregnant CD-1 females (Charles River)127,323. Progenies were screened for the 

deletions using polymerase chain reaction (PCR) and Sanger sequencing. The sequences of 

the PCR primers and guide RNAs (gRNAs) are listed in the Materials sections 3.1.2 and 

3.1.3. 

In addition, TKO mouse models were generated by crossing ∆Crossfirre-Firre males with 

∆Dxz4 females127. As a result, female offspring inherited the Crossfirre-Firre deletion on the 

paternal X chromosome and the Dxz4 knockout on the maternal X chromosome. To obtain 

mouse models with all three deletions on the same X chromosome, females were further 

mated with BL6 males and offspring were screened for meiotic recombination between 

Crossfirre-Firre and Dxz4. To minimize strain bias and CRISPR-Cas9 off-target effects, 

founder mice (75% BL6 background) were backcrossed twice with BL6 mice, resulting in an 

expected BL6 strain background of 93%. Similarly, wildtype (WT) controls were generated by 

backcrossing the founder mice to match the strain background of the knockout mouse 

models127. For the phenotypic analysis at the German Mouse Clinic (GMC), TKO mouse 

models underwent two additional backcrosses, resulting in an expected BL6 background of 

98%. 

All knockout mice were analyzed with the previously published ∆Firre and ∆Dxz4 single-

deletion and the ∆Firre-Dxz4 double-deletion mouse models127,131. Combined, this set of 

mutants provides a comprehensive framework for examining the in vivo contributions of the 

X-linked LINE cluster, the megastructures and open chromatin specific to Xi, and the Xa-

specific expression of Crossfirre, Firre, and Dxz4. 

 

4.1.2 Collection of tissue samples 
 
For Project 1, one of the objectives was to investigate the effect of the in vivo deletions of 

Crossfirre, Firre, and Dxz4 on imprinted XCI. Therefore, reciprocal crosses between WT CAST 

and BL6 mutants (∆Crossfirre, ∆Crossfirre-Firre, TKO) were performed to generate mice with 

deletions on either the Xi (CAST x BL6) or Xa (BL6 x CAST). Placentas were harvested at 

E12.5 from three biological replicates per genotype, resulting in the following number of 

samples: ∆Crossfirre: Xa n = 3, Xi n = 3; ∆Crossfirre-Firre: Xa n = 3, Xi n = 3; TKO: Xa n = 3, 

Xi n = 3. In conjunction with these samples, E12.5 placentas from the previously published 

∆Dxz4, ∆Firre, and ∆Firre-Dxz4 mouse models, as well as sample-matched WT data, were 
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reanalyzed from Andergassen et al.127 (∆Firre: Xa n = 3, Xi n = 3; ∆Dxz4: Xa n = 3, Xi n = 3; 

∆Firre-Dxz4: Xa n = 3, Xi n = 3; WT: BL6 x CAST n = 8; CAST x BL6 n = 9). 

For further investigation of the TKO effect on random XCI, homozygous TKO females were 

mated to CAST males. Thus, heterozygous TKO (-/+ TKO x CAST) and WT (+/+ TKO x CAST) 

mice were obtained as littermates. Spleens of female F1 offspring were harvested at six weeks 

of age and used for scRNA-seq (TKO n = 1, WT n = 1) and bulk RNA-seq (TKO n = 3, WT n 

= 3). 

Furthermore, samples were collected from adult homozygous TKO mice (-/- TKO, n = 3) to 

generate a transcriptomic bodymap. Three TKO mice (-/- TKO, BL6) were sacrificed at six 

weeks of age, and organs, including the brain, liver, lung, kidney, heart, and spleen, were 

isolated (n = 3 per tissue). Additionally, spleens were collected from six-week-old ∆Crossfirre 

(n = 3) and ∆Crossfirre-Firre (n = 2) mouse models. Sample-matched transcriptomic data from 

the previously published ∆Firre, ∆Firre-Dxz4, and WT tissue samples were included in the 

analyses127. 

To identify the protein-coding target genes of ncRNAs in Project 2, F1 hybrid mice (BL6 x 

CAST) were generated by crossing BL6 females with CAST males. At nine weeks of age, the 

liver, heart, kidney, spleen, brain, and lung were harvested from female mice (n = 3 per tissue), 

resulting in 18 tissue samples. All samples were snap-frozen in liquid nitrogen and stored at -

80°C.  

 

4.2 RNA extraction and library preparation 
4.2.1 Sample preparation for bulk RNA-seq 
 
For Project 1, RNA was extracted from ∆Crossfirre, ∆Crossfirre-Firre, and TKO tissue samples 

(n = 41) using TRIzol lysates and RNeasy mini columns (Qiagen). Total mRNA was used to 

generate strand-specific PolyA+ mRNA libraries for placentas (TruSeq stranded Illumina, n = 

18) and unstranded TruSeq libraries for six-week-old adult organs (n = 23). A Qubit 2.0 

Fluorometer was used to assess library concentrations and an Agilent 2100 Bioanalyzer to 

determine library fragment size and purity. Sequencing was performed at the Harvard 

University Bauer Sequencing Core on a HiSeq 2500 (75bp paired-end). 

For heterozygous TKO and WT spleen samples (n = 6), strand-specific libraries were 

generated using the Illumina Stranded mRNA Prep Ligation Kit. The Agilent’s TapeStation 

System was employed to assess library concentrations, and sequencing was performed at 

Helmholtz Munich using a NovaSeq 6000 (50bp paired-end). For Project 2, sequencing 
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libraries were generated from tissue samples (brain, liver, lung, heart, spleen, kidney) of nine-

week-old F1 hybrid mice (BL6 x CAST, n = 18). Individual samples (50-100 mg) were 

homogenized in 1 ml TRIzol using the GentleMACS Dissociator (program RNA_02_0). The 

isolation of RNA was performed as described in the manufacturer's instructions (Invitrogen, 

TRIzol Reagent, Cat. #15596018) with 1 ml of homogenized tissue solution. Subsequently, 

100 ng of RNA and the Illumina Stranded mRNA Prep Ligation Kit were used to generate poly-

A captured sequencing libraries. The fragment length and concentration of the RNA-seq 

libraries were evaluated using the Agilent TapeStation System, and sequencing was 

conducted at Helmholtz Munich on a NovaSeq 6000 platform (50bp paired-end). 

 

4.2.2 Sample preparation for scRNA-seq 
 
For Project 1, scRNA-seq was performed on spleen samples obtained from heterozygous 

TKO mice (-/+ TKO x CAST, n = 1) and WT littermates (+/+ TKO x CAST, n = 1). Spleens 

were harvested from six-week-old female mice and dissociated between glass slides to 

generate a single-cell suspension. The suspension was strained through 70 µm and 30 µm 

filters and incubated with an Fc-blocker for 15 minutes to prevent non-specific antibody 

binding. Subsequently, cells were stained with Zombie Green (Viability, BioLegend) to assess 

cell viability and TER-119-PE antibodies (Erythrocytes, ThermoFisher) to label erythrocytes. 

Each sample was incubated with Cell Multiplexing Oligos (10x) to add unique barcodes and 

pool samples into a single 10x reaction. Following this step, cells were subjected to 

fluorescence-activated cell sorting (FACS) to remove non-viable cells (Zombie Green-positive) 

and erythrocytes (TER-119-positive). The viable, non-erythrocytic cells (Zombie Green-

negativ, TER-119-negative) were quantified and used to generate a single-cell library with the 

Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual Index) featuring Feature Barcode 

technology for Cell Multiplexing (10x). Sequencing was performed at Helmholtz Munich using 

the NovaSeq 6000 platform. 

 

4.3 Phenotypic analysis with the German Mouse Clinic 
 
A cohort of 30 WT (male n = 15, female n = 15) and 26 TKO (male n = 13, female n = 13) mice 

underwent a primary phenotypic screening at the GMC207,324. The GMC provides large-scale 

phenotyping services for mouse mutants, conducting over 550 standardized phenotyping tests 

across a broad range of categories. These categories include cardiovascular health, clinical 

chemistry, pathology, behavior, metabolism, immunology/allergy, dysmorphology, 

biomarkers, eyes, neurology, and nociception.  
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Mice were housed in individually ventilated cages and were considered pathogen-free in 

agreement with the Federation of European Laboratory Animal Science Associations 

(FELASA) recommendations. Adherent to the GMC housing conditions and the directive 

2010/63/EU German national law, all animals had access to standard mouse chow and water. 

The authority of the district government of Upper Bavaria approved all animal experiments.  

 

4.4 Development of bioinformatics pipelines 
 
To facilitate the bioinformatic analysis of NGS data for ASE identification and ncRNA-target 

gene predictions, the Allelome.PRO v2.0 and Allelome.LINK pipelines were developed as part 

of the projects (Figure 4.1). A detailed manual for Allelome.PRO v2.0 and Allelome.LINK is 

provided in the Appendix section 10.1. Both pipelines are available at the GitHub page of 

the Andergassen Lab (https://github.com/AndergassenLab/Allelome.LINK). 

 

4.4.1 Updating the Allelome.PRO pipeline to Allelome.PRO v2.0 
 
The previously published Allelome.PRO pipeline is a bioinformatics tool that processes high-

throughput sequencing data to identify allele-specific genomic patterns201. The pipeline was 

initially developed to classify gene loci of F1 hybrid mice into biallelic, imprinted, strain-biased, 

or non-informative. As a result, the tool requires sequencing data from reciprocal crosses, 

making it unsuitable for single samples. To extend the utility of Allelome.PRO to individual 

samples, single cells, and humans, the pipeline has been updated to Allelome.PRO v2.0. 

To allow the analysis of single samples, the following input requirements were removed from 

the primary pipeline: main_title, ratio, y_axis, fdr_param, strains, for_c1, for_c2, rev_c1, 

rev_c2. Additionally, the classification scheme has been revised to categorize loci as allele-

specific or biallelic, removing the previous distinction between strain-biased and imprinted. 

Accordingly, the output categories Imprinted: Maternal (MAT), Imprinted: Paternal (PAT), 

Strain bias: Strain 1, Strain bias: Strain 2, Not informative, and No SNP have been removed 

from the pipeline. 

Furthermore, Allelome.PRO has been simplified by omitting the false discovery rate (FDR)-

based mock comparison and the user-defined ratio filter, as well as the output files: 

<name>_IG.txt, <name>_SG.txt, <name>_locus_full.txt, <name>_SNP_full.txt, <name>.pdf, 

and info.txt. A new option to filter loci based on total read coverage has been added to the 

pipeline to enhance computational efficiency. Moreover, a comprehensive log file was 

introduced to facilitate the tracking and debugging process. The scripts pileup_filter.pl, 
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read_count.pl, bed_creator_SNP.sh, and bed_creator.sh have been written in R and 

integrated into the score.R script to reduce complexity. Furthermore, Allelome.PRO v2.0 has 

been enhanced with a user-friendly interface by implementing direct command-line parsing. A 

detailed overview of the updated pipeline is provided in Figure 4.1a and Appendix section 
10.1. 

 

4.4.2 Developing the Allelome.LINK extension tool 
 
The Allelome.LINK pipeline was developed as an extension tool of Allelome.PRO v2.0 to 

facilitate the target and mechanism prediction of cis-acting genomic loci based on the allele-

specific pattern. The pipeline was written using the R programming language and is designed 

to accept the output of Allelome.PRO v2.0 (locus_table.txt) as input. Subsequently, the tool 

links allele-specific loci within a user-defined range based on ASE (Figure 4.1b).  

First, the input data is filtered for genomic positions with sufficient read coverage and allelic 

bias using user-defined cutoff values. Informative loci are intersected and linked if they occur 

within predefined window sizes. The regulatory mechanism between interaction sites is 

inferred as either enhancing or repressive, depending on the correlation or anti-correlation of 

the allelic bias towards the same or opposite alleles.  

A linkage score (LS) is calculated to rank individual linkages using the following equation: 

 

Here, AS refers to the allelic score calculated by Allelome.PRO v2.0. This score is derived 

from a binomial test using the number of maternal and paternal reads, with an assumed 

probability of 0.5201. The resulting p-value indicates the likelihood of an allelic bias at a given 

locus. To increase the robustness of the linkage score, Allelome.LINK utilizes the minimum 

AS from both loci, adjusted by 1 to avoid the decadic logarithm of zero. The adjusted value is 

then multiplied by 1−|ΔAR|, where ΔAR is the difference in the allelic ratios calculated as:  

 

The AR of both loci are centered by subtracting 0.5 before calculating their absolute difference. 

This method ensures that equal weight is assigned to allele-specific biases toward maternal 

and paternal alleles. As a result, similar allelic ratios will yield a small ΔAR, exerting a more 

pronounced impact on the linkage score. This approach is based on the assumption that co-

regulated loci exhibit similar changes in their allelic ratios. 
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As an output, the Allelome.LINK pipeline generates a folder with linkage tables in text format, 

including all candidate predictions, as well as BED and BEDPE files for intuitive genome 

browser visualization. Furthermore, a log file is generated to track the analysis run. The 

Allelelome.PRO v2.0 and Allelome.LINK pipelines can be exerted by a simple one-line 

command. Detailed instructions for using the pipelines are provided in the Appendix section 
10.1. 

 

Figure 4.1 Summary of the allele-specific analysis pipelines. 
a, Overview of the Allelome.PRO v2.0 pipeline. As input files, Allelome.PRO v2.0 requires a sample 
BAM file, a SNP file (BED4) and an annotation file (BED6). The pipeline starts by intersecting the 
SNP and annotation files, followed by read trimming to ensure that each read covers only one SNP. 
It then generates a pileup file, which records the variants of the reads and is used to calculate the 
allelic score for each locus. In addition, the pipeline produces a genome browser visualization file 
(BED) and a classification table containing the allelic scores for informative loci (locus_table.txt). 
b, Overview of the Allelome.LINK pipeline. The Allelome.LINK pipeline starts by using the 
locus_table.txt output of an Allelome.PRO v2.0 run as input. The data is filtered to include only loci 
with sufficient read coverage and allelic bias according to user-defined thresholds. Allele-specific 
regions that co-occur within specified window sizes are linked with each other. Each interaction is 
classified as enhancing or repressive based on allelic correlation or anti-correlation. The output is a 
genome browser visualization file (BEDPE) and a linkage table with the predicted linkage information. 
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4.5 Bioinformatic analysis 
 
All bioinformatics scripts associated with Project 1 and the bioinformatics pipelines for Project 

2 are publicly available at the GitHub page of the Andergassen Lab 

(https://github.com/AndergassenLab/).  

 

4.5.1 Analysis of ATAC-seq data 
 
Two public ATAC-sequencing (ATAC-seq) datasets were downloaded from the Gene 

Expression Omnibus (GEO) database and used for Project 1. The first dataset was derived 

from the Sequence Read Archive (SRA) project PRJNA497970 and comprised ATAC-seq 

data from six different organs of eight-week-old BL6 mice of both sexes (lung, cerebrum, 

spleen, liver, heart, and kidney)321. Two replicates were obtained per tissue and sex (males 

n = 12, females n = 12). The second dataset includes ATAC-seq of two samples of clonal F1 

neural progenitor cells (129S1/SvImJ x CAST F1) downloaded from the study GSE84646320. 

The corresponding accession numbers are listed in Materials section 3.2.4. A complete 

overview of the steps comprising the ATAC-seq workflow is shown in Figure 4.2. 

  

Figure 4.2 Overview of the ATAC-seq workflow. 
The ATAC-seq workflow starts with the alignment of raw FASTQ files using the Bowtie2 aligner. 
Aligned data is subjected to quality control, which includes the removal of mapping artifacts, low-
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quality reads, blacklist genes, and duplicates. Processed data is then used to call ATAC peaks using 
macs2 and the callpeak function. The identified peaks are used as annotation for the Allelome.PRO 
v2.0 pipeline to perform allele-specific analyses. Additionally, peaks are intersected by tissue and 
sex to quantify their distribution across the genome. A binomial test compares the epigenetic profiles 
between females and males. 

 
 
 

4.5.1.1 Data alignment and quality control 
 
Public ATAC-seq data was aligned using the Bowtie2 aligner220 with the default parameters 

for paired-end data. An index reference was created using the bowtie2-build command and 

the GENCODE M25 GRCm38.p6 20191146 reference316. Post-alignment, quality control 

procedures were implemented to ensure data integrity. This process included the removal of 

mapping artifacts with bp lengths ≥ 2000 or ≤ 38, mitochondrial and low-quality reads (MAPQ 

< 20). In addition, ENCODE blacklist genes (blacklist.v2.bed)315 and duplicates identified by 

GATK MarkDuplicates (version 4.1.0.0)225 were excluded for downstream analysis. 

 

4.5.1.2 Peak calling and epigenetic profiling 
 
After quality control, the processed data was subjected to broad peak calling using macs2 

callpeak227. Peaks identified in the organs of eight-week-old BL6 mice321 were intersected by 

tissue and sex. The number of peaks within 100kb sliding windows (50kb overlap) was 

quantified across the whole genome using bedtools and the intersectBed command219. A 

binomial test was employed to calculate log10 p-values, using the median number of peaks per 

window across all tissues with an expected probability of 0.5 to compare the epigenetic profile 

between females and males. Peaks that were more abundant in females were assigned 

positive values, while peaks that were more prevalent in males were assigned negative values. 

 

4.5.1.3 Allele-specific analysis of neural progenitor cells 
 
Allele-specific analysis was performed on samples derived from clonal F1 neural progenitor 

cells320. A SNP file containing 20,563,466 variants was generated for the 129S1/SvImJ and 

CAST strains using SNP information obtained from the Sanger database 

(mgp.v5.merged.snps_all.dbSNP142.vcf)189. As an annotation file, a 50kb sliding window with 

a 25kb overlap was generated using the mm10 genome as a reference. Both files were used 

as input for the Allelome.PRO v2.0 analysis, which was run to obtain the allele-specific 

information for each sliding window, utilizing a read cutoff of ≥ 1 read per SNP and a total read 

cutoff of ≥ 50 reads per gene.  
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4.5.2 Analysis of bulk RNA-seq data 
 
Bulk RNA-seq data was sequenced at the Helmholtz Munich Genomics Core Facility and the 

Harvard University Bauer Sequencing Core. The sequencing facilities performed de-

multiplexing and adapter trimming of the raw data, and the resulting raw FASTQ files were 

provided per sample. Furthermore, publicly available RNA-seq data was downloaded from the 

GEO database from the following studies: Andergassen et al., 201778, 2019175, 2019127. All 

SRA projects and the corresponding accession numbers are listed in the Materials section 
3.2.4. A detailed overview of the workflow for processing bulk RNA-seq data is provided in 

Figure 4.3. 

 

Figure 4.3 Overview of the RNA-seq workflow. 
Demultiplexed and adapter-trimmed FASTQ files are obtained from the sequencing facility for each 
sample. Alignment is performed using STAR194 for both paired-end and single-end reads. Depending 
on the sequencing library, reads are quantified as either stranded or unstranded using HTseq226. 
Raw read counts are used to identify differentially expressed genes and to calculate transcripts per 
million (TPM) for data normalization. The aligned BAM file of unstranded data can be used directly 
for allele-specific analyses with Allelome.PRO v2.0 and Allelome.LINK. To perform allele-specific 
analyses in a strand-specific manner, BAM files are split into forward and reverse strands and 
analyzed individually using Allelome.PRO v2.0. The results per strand are merged and used as input 
for Allelome.LINK. BAM files can further be used to split the sequencing reads to the allele of origin 
using SNPsplit233. 
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4.5.2.1 Alignment and read quantification 
 
Raw FASTQ files obtained from the sequencing facility or downloaded from the GEO database 

underwent initial quality control using the FastQC tool (version 0.69). High-quality data was 

aligned to the GENCODE_M25GRCm38.p6_201911 primary assembly316 using STAR 

(version 2.6.0c)194. Alignments containing non-canonical junctions, multimappers, or 

sequencing reads with intron sizes greater than 100,000bp were excluded for downstream 

analysis. The alignment was performed in paired-end or single-end mode, depending on the 

sequencing run. 

Quantification of aligned reads was conducted with HTseq-count, applying the –stranded 

reverse or –stranded no flag based on the strand-specificity of the data (HTSeq version 

0.11.3)226. Therefore, the gencode.vM25.primary_assembly.annotation.gtf was used as an 

annotation file316. Given that GENCODE vM25 did not annotate Crossfirre (Gm35612), the 

locus was manually added from the RefSeq gene annotation319 to enable the quantification of 

reads for samples associated with Project 1. Due to the absence of the strand-specific 

information, the last exon of Crossfirre was removed to mitigate bias from the overlapping 

Firre locus.  

Raw read counts were normalized by calculating the transcripts per million (TPM) values, 

accounting for gene length and sequencing depth. Strand-specific BAM files were separated 

by strand using custom R and Perl scripts. The strand orientation was determined using the 

infer_experiment.py script, and BigWig files were generated using bam2wig.py231.  

 

4.5.2.2 Assignment of sequencing reads to the alleles 
 
Sequencing data was further mapped to the allele of origin to facilitate visualization of ASE 

with a genome browser. Gene coverage was maximized by merging individual FASTQ files 

for each tissue across replicates. N-masked genomes were generated for FVB/CAST and 

BL6/CAST SNPs using data from the Sanger database 

(mgp.v5.merged.snps_all.dbSNP142.vcf)189 and the SNPsplit_genome_preparation 

command (SNPsplit v0.3.2)233. Read mapping was performed using STAR (version 2.6.0c) 

with the following parameters: --outFilterIntronMotifs RemoveNoncanonical, --alignIntronMax 

100000, --outFilterMultimapNmax 1, --outSAMattributes NH HI NM MD, --alignEndsType 

EndToEnd. The same annotation file was used as described for FVB/CAST and BL6/CAST. 

Following alignment, BAM files were split according to strand orientation and assigned to the 

alleles using SNPsplit (version 0.3.2) with default parameters233. 
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4.5.2.3 Differential gene expression and gene set enrichment analysis  
 
Differential gene expression analysis was performed in R using the DESeq2 library (version 

1.32.0)251. Dysregulated genes with an adjusted log2 fold change (log2FC) ≥ 1 or ≤ -1 (using 

lfcShrink with apeglm)240 and a FDR ≤ 0.01 were considered significant. The R package 

limma289 was used to identify enriched gene sets based on the DESeq2 test statistic. Gene 

sets containing between 10 and 500 genes were obtained from the Molecular Signatures 

Database (MSigDB, c5.go.v7.4.symbols)206 and significance was determined using an FDR-

adjusted p-value ≤ 0.1. For the top 100 gene sets with the lowest FDR-adjusted p-values, a 

similarity matrix was calculated using the R package simplifyEnrichment304. Network plots 

were created using the igraph library284 and clusters were obtained by the walktrap method304. 

 

4.5.2.4 Allele-specific expression analysis for bulk RNA-seq data 
 
RNA-seq data from mouse samples were analyzed for ASE using the updated Allelome.PRO 

v2.0 pipeline. Each sample was processed individually per replicate and strand when feasible. 

The RefSeq gene annotation (GRCm38/mm10)319 was used for all analyses. Depending on 

the F1 hybrid cross, various SNP files were generated using the helper script 

createSNPbedfile.sh201 and SNP information from the Sanger database 

(mgp.v5.merged.snps_all.dbSNP142.vcf)189. A cutoff of ≥ 1 read per SNP was applied to all 

samples, while the total read cutoff per gene was adjusted for each dataset according to 

sequencing depth and research question. 

For placental samples of Project 1 obtained from reciprocal crosses between CAST and BL6, 

including both WT and various knockout mouse models (ΔCrossfirre, ΔFirre, ΔDxz4, 

ΔCrossfirre-Firre, ΔFirre-Dxz4, and TKO), as well as for the heterozygous TKO spleen 

samples, a previously described SNP file containing 15,438,314 variants between the CAST 

and BL6 strains was used127. This SNP file includes only BL6 alleles shared with the BALB/cJ, 

DBA/2J, and 129 mouse strains to reduce potential confounding effects due to strain 

background. A total read cutoff of ≥ 30 reads per gene was applied to ensure robust allele-

specific predictions. The median was used to summarize the allelic ratios between replicates. 

Publicly available RNA-seq data of the placenta was further used for Project 2 to investigate 

the ASE pattern of genes expressed from the X chromosome78. Biological replicates were 

pooled for the forward and reverse cross, and Allelome.PRO v2.0 was run using a SNP file for 

CAST x FVB including 20,581,027 polymorphisms. To compare the results between the 

forward and reverse cross, the allelic ratios of the reverse cross were adjusted by subtracting 

them from 1. A total read coverage of ≥ 20 reads per gene was used for the analysis. 
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For the BL6 x CAST F1 bodymap generated for Project 2, strand-specific data were analyzed 

using Allelome.PRO v2.0 with a SNP file including 20,635,313 variants between BL6/CAST 

and a total read cutoff of ≥ 20 reads per gene. The strand-specific results were combined per 

sample and the biological replicates per tissue were combined as follows: For each tissue, the 

lowest allelic score across all replicates was selected to be as robust as possible. Median 

values were calculated to summarize total reads and allelic ratios. The downstream analysis 

included only autosomal genes. 

For the Airn knockout models used in Project 278,174, unstranded sequencing data were pooled 

across replicates and analyzed with Allelome.PRO v2.0 using a total read coverage of ≥ 10 

reads and a previously published SNP file containing 16,988,479 variants between the CAST 

and FVB strains175. The allelic ratios of replicates were summarized using the median. 

 

4.5.2.5 Linking ncRNAs to protein-coding targets 
 
Linking ncRNAs to their protein-coding targets was performed using the Allelome.LINK 

pipeline. The results of the Allelome.PRO v2.0 analyses were used as input for Allelome.LINK 

(locus_table.txt). 

For tissue samples from nine-week-old F1 hybrid mice (BL6 x CAST), including heart, spleen, 

lung, liver, kidney, and brain, ASE was defined using an allelic ratio cutoff of ≤ 0.3 or ≥ 0.7. 

The window size for linking allele-specific loci was set to ±100kb, as the significant enrichment 

of allele-specific ncRNAs nearby allele-specific pcGenes was observed within this distance. 

To filter for non-coding to protein-coding linkages, the coding information of each gene was 

obtained from the RefSeq annotation319. 

For the placental Airn knockout data, the same allelic ratio cutoff was used with an expanded 

window size of ±4000kb to encompass the entire Airn/Igf2r cluster. The Airn target prediction 

was conducted per replicate and for pooled samples to determine if pooling improves the 

accuracy of the Allelome.LINK results. 

Moreover, a chromosome-wide linkage analysis was applied to publicly available RNA-seq 

data of the placenta to identify the target genes of the lncRNA Xist78. The allelic ratio cutoff 

was raised to ≥ 0.75 or ≤ 0.25 to ensure stringency for long-range predictions across a whole 

chromosome. 
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4.5.3 Analysis of scRNA-seq data 
4.5.3.1 Pre-processing scRNA-seq data 
 
FASTQ files were acquired from the Helmholtz Munich Genomics Core Facility. Raw 

sequencing data was processed utilizing the Cell Ranger multi-pipeline (Cell Ranger 6.1.2 

toolkit, 10x Genomics) to demultiplex, align, and quantify individual sequencing reads221. The 

mm10 genome version 2020-A, a pre-built Cell Ranger reference from 10x Genomics, was 

used as a reference. Further downstream analysis of the single-cell data was conducted in R 

using the Seurat package303. 

Sample files were merged, and quality control was applied to exclude low-quality cells. Empty 

droplets and droplets with multiple cells present were removed by filtering cells with < 500 or 

> 5000 detected genes and < 2000 or > 20000 molecules. Moreover, cells with > 10% 

mitochondrial reads were excluded, as elevated mitochondrial read counts indicate damaged 

cells. Genes present in ≤ 10 cells were further removed for downstream analysis. 

Raw counts were normalized using SCTransform307, incorporating the regression for 

mitochondrial reads. Data integration was carried out for WT and heterozygous TKO samples 

using the IntegrateData() function of the Seurat package. Dimensionality reduction was 

achieved using the top 40 principal components computed by RunPCA() and used for Uniform 

Manifold Approximation and Projection (UMAP) visualization. Clusters were identified using 

FindClusters() with a resolution parameter of 0.4. Cell types were manually assigned based 

on marker gene expression. 

 

4.5.3.2 Allele-specific expression analysis for scRNA-seq data 
 
Allele-specific analysis for scRNA-seq data was performed at two different resolutions. First, 

Allelome.PRO v2.0 was used to determine the allelic ratio of each chromosome for individual 

cells to identify whether the Xa was the BL6 or CAST allele. Subsequently, cells were sorted 

according to the Xi status and aggregated as pseudobulk to increase gene coverage. Thus, 

this approach allows to overcome the issue of random XCI and allows for an allele-specific 

analysis at the gene-level for cells with the same Xa. 

BAM files were generated for each cell using the sinto package and the filterbarcodes option 

(https://timoast.github.io/sinto/index.html) to conduct the allele-specific analysis at single-cell 

resolution. The individual single-cell BAM files were used as input for Allelome.PRO v2.0, 

along with the previously described SNP file containing 15,438,314 variants127. A 

chromosome-wide annotation was generated using the mm10 genome as a reference. A total 
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read cutoff of ≥ 10 reads per chromosome and ≥ 1 read per SNP was applied. Subsequently, 

cells with the same Xa status were pooled into four different pseudobulk samples by 

aggregating the read counts per gene (WT BL6 Xa, TKO BL6 Xa: X chromosomal allelic ratio 

≤ 0.3 or WT CAST Xa, TKO CAST Xa: X chromosomal allelic ratio ≥ 0.7). Cells with an X 

chromosomal allelic ratio between 0.3 and 0.7 were likely duplicates and were excluded from 

the analysis (WT = 2.99%, TKO = 2.49%). For each pseudobulk sample, individual BAM files 

were generated with sinto and used as input for Allelome.PRO v2.0. The RefSeq gene 

annotation was used to obtain gene-level ASE classification319. Allelome.PRO v2.0 was run 

with a read cutoff of ≥ 1 read per SNP and ≥ 30 total reads for each of the four samples (WT 

BL6 Xa, TKO BL6 Xa, WT CAST Xa, TKO CAST Xa). The entire scRNA-seq workflow is shown 

in Figure 4.4. 

 

Figure 4.4 Overview of the scRNA-seq workflow for XCI-based cell sorting and gene-level ASE 
analysis. 
FASTQ files from the sequencing facility are pre-processed using the Cell Ranger multi-pipeline (Cell 
Ranger 6.1.2 toolkit, 10x Genomics221) to demultiplex, align and quantify individual sequencing reads. 
Quality control is performed using R and the Seurat package303, taking into account gene counts, 
transcript abundance, and the proportion of mitochondrial reads. This is followed by standard pre-
processing steps, including normalization, regression for mitochondrial reads, data integration, 
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clustering, and cell-type annotation. To determine the allelic ratio of each chromosome for individual 
cells, the BAM file is split into individual BAM files per cell and Allelome.PRO v2.0 is run with a 
chromosome-wide annotation. Cells are then computationally sorted according to the XCI status and 
aggregated as pseudobulk to increase gene coverage for a subsequent gene-level allele-specific 
expression (ASE) analysis. 

 

4.5.4 Analysis of human data from the GTEx project 
4.5.4.1 Data pre-processing and allele-specific linking 
 
The Allelome.LINK strategy was further applied to human data from the GTEx project190. The 

publicly available haplotype dataset from the GTEx v8 release provided 153 million allele-

specific measurements from 838 individuals, comprising 15,253 samples and 54 tissues 

(phASER_WASP_GTEx_v8_matrix.gw_phased.txt)191. Metadata, including the sample 

information, was retrieved from the GTEx portal 

(GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt) and used to separate the 

expression data by sample using custom R scripts. 

Small ncRNAs (combined exon length ≤ 200bp) and overlapping genes were removed from 

the dataset to minimize allelic bias due to overlapping gene loci. This filtering resulted in 8,106 

informative genes (total read cutoff ≥ 20), including 6,281 pcGenes (n = 27,155,698 

expression values) and 1,825 ncRNA loci (n = 924,440 expression values). Subsequently, 

Allelome.LINK was used to assign ncRNAs to their target genes applying an ASE cutoff of ≤ 

0.3 or ≥ 0.7 and a window size of ±100kb. The results were filtered for non-coding to protein-

coding linkages. All analysis steps were based on the GENCODEv26 annotation316 to ensure 

consistency with the gene annotation of the GTEx project. 

 

4.5.4.2 Validation of ncRNA-to-target linkages using eQTL data 
 
The predicted ncRNA-to-target linkages were validated using sample-matched eQTL data 

from the GTEx v8 release (GTEx_v8_finemapping_DAPG.txt)318. This dataset provided 

21,648,584 fine-mapped eQTLs across 49 tissues. eQTL data was unavailable for the 

Bladder, Cervix - Ectocervix, Cervix - Endocervix, Fallopian Tube, and Kidney - Medulla. 

Genomic locations and target genes were available for 21,412,255 eQTLs. The ncRNA-to-

target linkages were overlapped with the eQTL data by genomic position. A linkage was 

confirmed if an overlapping eQTL was predicted to influence the expression of the same target 

gene as predicted for the ncRNA by Allelome.LINK. 
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4.5.4.3 Integrating GWAS data to assign non-coding risk variants to protein-coding 
targets 

 
To assign non-coding risk variants to their protein-coding targets, public GWAS data was 

downloaded from the NHGRI-EBI GWAS Catalog v1.0, including 132,201 unique SNPs 

(gwas_catalog_v1.0-associations_e110_r2023-10-11.tsv)215. The dataset was filtered to 

exclude non-mappable SNPs and epistatic interactions, resulting in 119,287 variants for 

downstream analysis. Subsequently, the variant positions were overlapped with the 

informative ncRNAs, which yielded 1,059 informative SNPs. Non-coding risk variants that 

overlapped with linked ncRNAs were assigned to the same protein-coding target as predicted 

by Allelome.LINK. 

 

4.6 Statistical analysis 
 
Data analysis was performed with R version 3.6.3. Depending on the research question, the 

appropriate statistical test was performed as stated in the figure legends. The Shapiro-Wilk 

test was used to assess the normality of the data distribution. Based on the data distribution, 

Pearson or Spearman correlation coefficients were calculated to evaluate significant 

correlations. Differences between two groups were assessed using either the Wilcoxon rank-

sum test for non-normally distributed data or the t-test for normally distributed data. Fisher’s 

exact tests were used to compare categorical proportions between two variables. Binomial 

tests were applied to determine whether the presence of an expected proportion is consistent 

with equal probability. Results were considered significant with varying p-value thresholds, as 

indicated for the respective tests based on stringency. If needed, FDR correction was applied 

to adjust for multiple testing. 

Genotype effects were further assessed by the GMC depending on the research question and 

the assumed parameter distribution. These included Wilcoxon rank-sum tests, t-tests, ANOVA 

and post-hoc tests, linear models, or Fisher's exact tests. A p-value < 0.05 was considered 

statistically significant for the observed phenotypes with no adjustment for multiple testing. 
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5 Results 
The results described in the sections of chapter 5.1 (5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5, 5.1.6, 

5.1.7) have been previously published in a similar form by the author of this thesis322. 

Additionally, the results presented in chapter 5.2 (5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5, 5.2.6, 5.2.7) 

have been outlined similarly by the author in a submitted manuscript (see 9.2 Submitted 
manuscripts, 1.). 

 

5.1 Project 1: Investigating the in vivo contribution of the Crossfirre 
locus alone and in combination with Firre and Dxz4 

 
The lncRNA Crossfirre was recently detected as an imprinted gene on the X chromosome, 

showing predominantly maternal expression in somatic tissues78. Prior to this work, the in vivo 

contribution of this locus, both alone and in combination with Firre and Dxz4, remained 

unknown. Thus, the first project aimed to investigate the in vivo role of Crossfirre, Firre, and 

Dxz4, including their relationship to imprinted and random XCI, as well as autosomal gene 

regulation. 

 

5.1.1 Crossfirre, Firre, and Dxz4 are the most female-specific loci in chromatin 
accessibility 

 
The initial aim of the study was to characterize the epigenetic profile and the expression 

pattern of the Crossfirre locus. The Crossfirre locus comprises three exons and is embedded 

in a 50kb LINE element. The lncRNA is transcribed from the forward strand, antisense to the 

lncRNA Firre, and was previously identified as the only maternally expressed X-linked gene 

in somatic tissues (Figure 5.1a)78. To confirm the imprinted status of Crossfirre, publicly 

available brain data from F1 hybrids of reciprocal crosses (FVB x CAST, CAST x FVB) were 

reanalyzed for the allelic expression status of Crossfirre78. In line with previous work, 

predominant expression was observed from the maternal allele independent of the XCI status, 

confirming imprinting of the Crossfirre locus (Figure 5.1b). Further validation of the imprinting 

of Crossfirre was achieved by reanalyzing H3K4me3 ChIP-sequencing data from F1 mouse 

embryonic fibroblasts201, which confirmed maternal H3K4me3 enrichment at the Crossfirre 

promoter (Figure 5.1c). 

The expression rates of Crossfirre, Firre, and Dxz4 were further examined in the six major 

organs (brain, heart, lung, liver, kidney, spleen) of adult mice, revealing low to moderate 

expression. The highest expression of Crossfirre was detected in the brain, while the lowest 
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expression was observed in the liver (Figure 5.1d). A correlation analysis of the TPM levels 

between Crossfirre, Firre, and Dxz4 was performed to explore potential co-regulation. 

However, no significant correlation was noted between the lncRNAs (Crossfirre-Firre: 

R = 0.36, p-value = 0.4893; Crossfirre-Dxz4: R = 0.33, p-value = 0.5273; Firre-Dxz4: R = 0.57, 

p-value = 0.2419, Figure 5.1e). 

 

Figure 5.1 Expression dynamics of Crossfirre, Firre, and Dxz4 across mouse organs.  
a, Genome browser visualization of mouse brain RNA-seq data for the Crossfirre (Gm35612), Firre, 
and Dxz4 loci. Sequencing reads are separated by strand orientation. The data was obtained from 
Andergassen et al., 201778. 
b, Allele-specific splitting of RNA-seq data from adult F1 hybrid brains. The genome browser tracks 
display sequencing reads from the forward strand at the Crossfirre locus of reciprocal F1 hybrids 
(FVB x CAST, CAST x FVB). Reads are labeled according to their allele of origin (FVB allele: black, 
CAST allele: brown). 
c, H3K4me3 data of F1 mouse embryonic fibroblasts from Andergassen et al., 2015201. Shown is the 
allele-specific splitting for the aligned sequencing reads towards the FVB and CAST allele. 
d, Expression of the Crossfirre, Firre, and Dxz4 loci across various adult mouse tissues. To avoid the 
decadic logarithm of zero, the mean transcripts per million (TPM) were adjusted with a pseudo 
number of 1 prior to log10-transformation. Expression levels for Crossfirre (red), Firre (orange), and 
Dxz4 (gray) are shown for the brain, heart, kidney, liver, lung, and spleen. 
e, TPM correlation analysis for Crossfirre, Firre, and Dxz4. Pearson correlation coefficients were 
calculated for the mean TPM values between Crossfirre and Firre, Crossfirre and Dxz4, and Firre 
and Dxz4 across multiple organs. The figure was modified from Hasenbein et al., 2024322. 
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Previous studies have shown that the Firre and Dxz4 loci contain several Xi-specific 

transcription start sites with CTCF binding78,121,124,128. Thus, the epigenetic profile of these loci 

was further investigated using publicly available ATAC-seq data321. Peak calling confirmed the 

presence of multiple sites of open chromatin at these loci in the brain (Figure 5.2a). Notably, 

female mice exhibited a more pronounced chromatin accessibility profile at the Crossfirre-Firre 

and Dxz4 loci compared to males (ATAC peaks: Crossfirre-Firre n = 21, Dxz4 n = 11; male 

ATAC peaks: Crossfirre-Firre n = 9, Dxz4 n = 2, Figure 5.2a). To further investigate this 

pattern, the epigenetic ATAC-seq profile of all loci was analyzed across multiple female and 

male organs. Interestingly, this analysis identified that Crossfirre, Firre, and Dxz4 are the most 

female-specific chromatin accessibility loci genome-wide (Figure 5.2b-c). Additionally, an 

allele-specific analysis of ATAC-seq data from neural progenitor cells320 confirmed that the 

female-specific open chromatin originates from the Xi (Figure 5.2d). 
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Figure 5.2 Crossfirre, Firre, and Dxz4 are the top female-specific loci. 
a, Genome browser visualization of ATAC-seq data321 of the Crossfirre-Firre and Dxz4 loci. ATAC-
seq data from female (red) and male (blue) brain samples are displayed. Peaks were called using 
macs2227 and compared between the sexes. Female-specific ATAC peaks are highlighted with 
boxes. cCRES: ENCODE Candidate Cis-Regulator Elements, CTCF: blue, Promoter: red, 
DNase/H3K4me3: pink, Proximal enhancer: orange, Distal enhancer: yellow. 
b, Epigenetic ATAC-seq profile across six adult mouse tissues321. Peaks were called per tissue and 
sex and quantified within 100kb windows across the X chromosome. A binomial test was used to 
calculate log10 p-values, using the median number of peaks per window across all tissues. Peaks 
more frequent in females were assigned positive values, while those more frequent in males were 
assigned negative values. 
c, Analysis as in (b), but across the entire genome. 
d, Allele-specific analysis for neural progenitor cells320. The allelic ratios are shown for 50kb sliding 
windows across the X chromosome. Boxplots represent the interquartile range with the median, and 
whiskers indicate 1.5x the interquartile range. The figure was modified from Hasenbein et al., 2024322. 
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5.1.2 The deletion of Crossfirre does not affect viability and development 
 
To further investigate the in vivo role of Crossfirre, individually and in combination with Firre 

and Dxz4, several knockout mouse models were generated, including a Crossfirre deletion 

(∆Crossfirre), a Crossfirre-Firre double deletion (∆Crossfirre-Firre), and a Crossfirre-Firre-

Dxz4 triple deletion (TKO). The samples were analyzed with the previously published single-

deletions of ∆Firre and ∆Dxz4 and the ∆Firre-Dxz4 double-deletion mouse models (Figure 
5.3)127,131. 

 

Figure 5.3 Overview of mutant mouse models.  
Schematic overview of the mutant mouse models used in the study. The X chromosome is shown, 
with the Crossfirre, Firre, and Dxz4 loci highlighted. Transcription of these loci is specific to the active 
X chromosome. In contrast, the superloop interaction between Firre and Dxz4, and the two 
megadomains are observed exclusively on the inactive X chromosome (Xi). Below the X 
chromosome, the different mutant mouse models are shown, with deletions indicated by dotted lines. 
Stars denote mouse models described in previous studies that were reanalyzed for the study127,131. 
The figure was obtained from Hasenbein et al., 2024322. 

 

The presence of each knockout was confirmed by genotyping and subsequent Sanger 

sequencing of the PCR product (Figure 5.4a-c). RNA-seq of spleens from homozygous 

mutant mice was further performed to validate the loss of expression (Figure 5.4d). Notably, 

the loss of Crossfirre did not affect Firre expression, and the combined deletion of Crossfirre 

and Firre did not alter the expression levels of Dxz4 (Figure 5.4e). Furthermore, no 

developmental abnormalities were observed in any of the three mutant mouse models, as 

homozygous knockout strains were viable and fertile, and offspring displayed average sex 

ratios and expected litter sizes (Figure 5.4f). Taken together, these results suggest that the 

Crossfirre locus, individually and combined with Firre and Dxz4, is dispensable for 

development. 
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Figure 5.4 Crossfirre, Firre, and Dxz4 mutant strains are viable and develop normally. 
a, Sequences of guide RNAs and primers used to generate and genotype ∆Crossfirre, ∆Crossfirre-
Firre, and ∆Dxz4 mouse models. 
b,Genotyping approach for identifying knockout and wildtype (WT) alleles for ∆Crossfirre, 
∆Crossfirre-Firre, and ∆Crossfirre-Firre-Dxz4 (TKO). 
c, Genome browser visualization of Sanger sequencing of the PCR products from knockout bands 
of the Crossfirre-Firre and Dxz4 loci.  
d, Genome browser visualization of RNA-seq tracks covering the Crossfirre-Firre and Dxz4 loci. 
RNA-seq data was obtained from adult spleens of WT (black), ∆Crossfirre (red), ∆Crossfirre-Firre 
(green), and ∆Crossfirre-Firre-Dxz4 (TKO, turquoise) mouse models. Scissor symbols highlight the 
corresponding deletion. Long interspersed nuclear elements and a gene annotation are shown below 
the sequencing tracks. 
e, Transcript per million (TPM) values for Crossfirre, Firre, and Dxz4. Shown are the mean TPMs for 
all three lncRNAs in the adult spleen of ∆Crossfirre, ∆Crossfirre-Firre, and TKO. Error bars display 
the standard deviation.  
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f, Overview of the sex distribution for the breeding of homozygous ∆Crossfirre, ∆Crossfirre-Firre, and 
TKO mouse models. A one-sided binomial test was used to calculate p-values. The figure was 
modified from Hasenbein et al., 2024322. 

 

5.1.3 The deletion of Crossfirre, Firre, and Dxz4 does not alter imprinted XCI 
 
Given the imprinting of Crossfirre, it was hypothesized that this locus could serve as a marker 

for imprinted XCI and is therefore involved in the XCI process. To test this hypothesis, the 

study investigated whether the knockout of Crossfirre, individually or combined with Firre and 

Dxz4, affects imprinted XCI in the placenta. Because the paternal X chromosome is 

epigenetically silenced in imprinted XCI, deletions inherited from the paternal allele affect the 

Xi, whereas deletions inherited from the maternal allele are present on Xa. Placentas were 

isolated from E12.5 WT and heterozygous offspring of reciprocal crosses (CAST x -/+ BL6, -

/+ BL6 x CAST, n = 53). This approach allowed for the evaluation of both the effects of the 

loss of the lncRNA expression (deletion on Xa) and the disruption of the epigenetic patterns 

and megastructures (deletion on Xi). 

The relative expression of Crossfirre, Firre, and Dxz4 was examined in TKO models. Mutants 

with the deletion on Xi showed expression levels similar to the WT conditions. In contrast, 

mutants with the deletion on Xa lost the expression of Crossfirre, Firre, and Dxz4, confirming 

the Xa-specific expression of these lncRNAs (Figure 5.5a). Differential gene expression 

analysis was performed for all generated mutant strains and the previously published ∆Firre 

and ∆Dxz4 single and double deletion models127. Interestingly, this analysis revealed very few 

dysregulated genes, regardless of whether the deletion was placed on Xa or Xi (|shrunk 

log2FC| ≥ 1, FDR ≤ 0.01, Figure 5.5b, mean ∆Xi = 10, mean ∆Xa = 37). When the deletion 

was present on Xa, Firre was the only gene shared between the double knockouts ∆Crossfirre-

Firre and ∆Firre-Dxz4, and the TKO. For the ∆Crossfirre-Firre and TKO Xa mutants, two 

additional pseudogenes (Gm13340, Gm13436) were shared, while one pseudogene (Rpsa-

ps10) was shared when the deletion was present on Xi (Figure 5.5c). 
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Figure 5.5 Effect of the Crossfirre, Firre, and Dxz4 deletion on placental gene expression. 
a, Overview of the breeding scheme to place the deletion on the inactive (Xi) or active (Xa) X 
chromosome. Due to imprinted X chromosome inactivation in the placenta, the paternal X 
chromosome is epigenetically silenced. Thus, deletions inherited from the paternal allele affect Xi, 
while deletions from the maternal allele affect Xa. The relative mean expression of Crossfirre, Firre, 
and Dxz4 is shown for triple knockout (TKO) mutants and wildtype (WT). Error bars indicate the 
standard deviation. 
b, Results of a differential gene expression analysis for mutant strains with the deletions on Xi or Xa. 
E12.5 placentas from three biological replicates per genotype were analyzed. Numbers indicate the 
up- and downregulated genes with a significance threshold of FDR ≤ 0.01 and a |shrunk log2FC| ≥ 1. 
c, Volcano plot of the differential gene expression analysis for the TKO model with the deletions on 
Xi and Xa. The Venn diagram shows the dysregulated genes shared between the ∆Firre-Dxz4 (blue), 
∆Crossfirre-Firre (green), and TKO (turquoise) genotypes. The figure was obtained from Hasenbein 
et al., 2024322. 

 
 

To determine whether the absence of these loci affects the expected maternal expression of 

X-linked genes, an allele-specific analysis was performed using RNA-seq data from E12.5 

placentas. Notably, more CAST-specific escape genes were detected in WT BL6 x CAST F1 

hybrid samples (Figure 5.6a). This observation is a well-known phenomenon that has 

previously been reported as strain-specific escape78,325,326. To illustrate the reproducibility of 

this pattern, the allelic ratios were plotted for all WT samples from both forward and reverse 

crosses (n = 17), showing a consistently higher frequency of CAST-specific escapees127 

(Figure 5.6b).  
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Figure 5.6 Strain-specific escape results in more escape genes from CAST Xi. 
a, Violin plots displaying the median allelic ratios of informative X-linked genes for wildtype samples 
from forward (BL6 inactive X chromosome (Xi), left, n = 9) and reverse crosses (CAST Xi, right, n = 
8). Colors indicate the strain background of the active X chromosome (Xa, CAST: brown, BL6: black), 
with blue dots marking the allelic ratios of Xist.  
b, Heatmap representing the median allelic ratios of X-linked genes for wildtype samples of the 
forward (BL6 Xi, upper panel, n = 9) and reverse crosses (CAST Xi, lower panel, n = 8). Colors 
represent the strain background of the Xa (CAST: brown, BL6: black). Genes with an allelic ratio 
change between BL6 Xi and CAST Xi of ≥ 0.1 are labeled. An asterisk indicates previously identified 
strain-specific escape genes127. The figure was obtained from Hasenbein et al., 2024322. 

 
 
The WT allelic ratios were further compared to all mutant strains and showed no changes in 

the median allelic ratios of X-linked genes, independent of whether the deletions were on Xi 

or Xa (Figure 5.7a-b). The Crossfirre deletion further encompassed the removal of a 50kb 

LINE cluster, DNA elements hypothesized to facilitate the spreading of XCI to escaping-prone 

regions141,327. Therefore, local regions in proximity to the Crossfirre, Firre, and Dxz4 loci were 

further examined for subtle changes in cis. However, the allelic ratios of nearby genes were 

not affected by the absence of these loci (Figure 5.7b-c). In conclusion, the absence of the 

imprinted Crossfirre locus on Xi or Xa, individually or combined with Firre and Dxz4, does not 

impair imprinted XCI in the placenta. 
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Figure 5.7 Imprinted XCI is not affected by deleting Crossfirre alone or in combination with 
Firre and Dxz4. 
a, Violin plots displaying median allelic ratios of X-linked genes for wildtype (WT) and knockout 
models with the deletion on Xi (left, n = 7) or Xa (right, n = 7). Colors denote the different mutant 
genotypes, and blue dots indicate the allelic ratios of Xist. Boxes represent the interquartile range, 
with whiskers extending to 1.5x the interquartile range. 
b, Heatmap illustrating the median allelic ratios of informative X-linked genes for WT samples and 
mutant strains from forward (BL6 Xi, upper panel) and reverse (CAST Xi, lower panel) crosses. Colors 
indicate the strain background of Xa (CAST: brown, BL6: black). Arrows emphasize the approximate 
position of Crossfirre, Firre, and Dxz4. *Note: Artifact of the non-strand-specific analysis. Tsix 
expression is biased by Xist, which is transcribed in the antisense direction. 
c, Overview of the median allelic ratios and standard deviations for genes in close proximity to 
Crossfirre/Firre (±2 Mb) and Dxz4 (±1 Mb). Results for ∆Crossfirre-Firre-Dxz4 (TKO) mutants, with 
the deletions on Xi (left) or Xa (right) are compared to strain background matched WT samples. The 
figure was modified from Hasenbein et al., 2024322. 
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5.1.4 Random XCI maintenance remains unaffected in TKO mutants 
 
Random XCI results in each X chromosome being either active or inactive in a mosaic pattern 

across cells in adult organs, complicating the study of how the knockouts affect random XCI. 

To address this challenge, allele-specific analyses have been performed on single cells, which 

allow the random nature of XCI to be overcome (Figure 5.8). 

 

 
Figure 5.8 Overview of the scRNA-seq workflow of adult F1 spleens. 
a, Overview of the scRNA-seq workflow to obtain wildtype (WT) and heterozygous ∆Crossfirre-Firre-
Dxz4 (TKO) cells with the deletion on either Xi or Xa. CAST males were crossed with -/+ TKO females 
(BL6), and scRNA-seq was performed on the spleens of a WT and a heterozygous F1 hybrid. 
Preprocessing steps of the sequencing data included alignment, quality control, and data 
normalization. Based on the genotype (WT, -/+TKO), two datasets were obtained with a mixed cell 
population containing cells with the CAST and BL6 allele Xa. Consequently, the TKO deletion was 
present on Xi or Xa. 
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b, UMAP visualization of the unsupervised clustering of the cells in (a), including WT and -/+ TKO 
samples. The figure was obtained from Hasenbein et al., 2024322. 

 
Heterozygous TKO females (-/+ BL6) were crossed with WT males (+/+ CAST) to obtain 

female F1 littermates of a -/+ TKO and a WT sample. The spleen from these two animals were 

harvested at six weeks of age and used for scRNA-seq, resulting in the allele-specific single-

cell transcriptome of 1642 heterozygous and 2043 WT cells after quality control (Figure 5.8a). 

Clustering revealed the expected cell types and cell-type proportions for both samples (Figure 
5.8b). 

Subsequently, an allele-specific analysis was performed at the chromosome-level by 

aggregating reads from the same chromosome for individual cells. Biallelic expression was 

observed for autosomes of most WT and heterozygous TKO cells (Figure 5.9a). For the X 

chromosome, a subset of cells showed biallelic expression (WT n = 61, TKO n = 40). These 

cells are likely to be duplicates and were excluded from further analysis. The majority of WT 

cells showed an X chromosomal allelic ratio ≥ 0.7 (n = 1342, 65.7%), indicating that the CAST 

allele was Xa. In contrast, 640 (31.3%) WT cells had an allelic ratio ≤ 0.3, suggesting that the 

BL6 allele was Xa (Figure 5.9b). Consequently, WT cells exhibited the expected XCI skewing 

ratio in F1 hybrids between CAST and BL6 (70% CAST Xa, 30% BL6 Xa328). Interestingly, 

cells from the heterozygous TKO population showed a more pronounced skewing ratio, with 

82.8% CAST Xa (TKO on Xi, n = 1359) and 14.8% BL6 Xa (TKO on Xa, n = 243, Figure 5.9b). 

To validate this shift in the XCI skewing pattern of mutant cells, bulk RNA-seq was performed 

for -/+ TKO (n = 3) and WT samples (n = 3, Figure 5.9c). However, the allelic ratios of X-

linked genes showed a similar skewing pattern for mutant and WT samples. Moreover, no 

significant differences were detected in the allelic ratios of the lncRNA Xist (Figure 5.9d-e). 
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Figure 5.9 Allele-specific analysis of spleens using scRNA-seq and bulk RNA-seq data. 
a, Violin plot for autosomes showing the allelic ratios of wildtype (WT, gray) and -/+ ∆Crossfirre-Firre-
Dxz4 (TKO, turquoise) samples at the chromosome-level. An allelic ratio of 1 corresponds to 100% 
CAST expression, and 0 corresponds to 100% expression from the BL6 allele. Boxplots represent 
the interquartile range from the median, with whiskers indicating 1.5x the interquartile range. 
b, Violin plot showing the allelic ratios of the X chromosome for single cells from WT and -/+ TKO 
samples. An allelic ratio of ≥ 0.7 indicates that the CAST allele is Xa, whereas a ratio of ≤ 0.3 indicates 
that the BL6 allele is Xa. Individual dots represent single cells. 
c, Schematic overview of the bulk RNA-seq workflow to obtain WT and -/+ TKO samples. CAST 
males and -/+ TKO females (BL6) were mated, and spleens were harvested from female F1 offspring 
(n = 6). Subsequently, bulk RNA-seq was performed.  
d, Violin plot displaying the allelic ratios of X-linked genes per genotype and replicate (n = 3 per 
genotype). The dots highlight the allelic ratio of Xist. 
e, Comparison of the allelic ratios of Xist for WT (n = 3) and heterozygous TKO (n = 3) bulk RNA-seq 
samples. Differences in the allelic ratios were assessed using a t-test. The figure was obtained from 
Hasenbein et al., 2024322. 

 
 
To identify potential gene-level effects in mutant mice on random XCI, cells were 

computationally sorted according to the strain background of Xa and pooled as pseudobulk to 

maximize read coverage. This analysis allowed for a background matched comparison 

between WT and TKO cells with the deletion present on either Xa or Xi. Known escape genes 
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such as Kdm6a, Eif2s3x, Ftx, and Kdm5c were detected as biallelically expressed, while Xist 

was expressed exclusively from the Xi, validating the approach (Figure 5.10a). However, 

similar to the results for imprinted XCI, no changes in the allelic ratios of X-linked genes were 

observed between WT and mutant samples with the TKO on Xa or Xi (Figure 5.10a). Thus, 

the deletion of the Crossfirre, Firre, and Dxz4 loci does not impact random XCI biology in vivo. 

Although the XCI biology was not affected by the TKO, it is noteworthy that the cell-type 

composition was altered in heterozygous TKO samples compared to the WT (Figure 5.10b). 

In spleen samples with the TKO on Xi, fewer CD4 T cells were present (Fisher odds = 0.71, 

p-value = 0.003). Conversely, for cells with the TKO on the Xa, the proportion of B cells was 

reduced in the spleen sample of mutant mice (Fisher odds = 0.71, p-value = 0.023, Figure 
5.10c). Taken together, these findings demonstrate differences in cell-type composition 

depending on whether the deletion is present on Xa or Xi. 
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Figure 5.10 Pseudobulk and cell-type composition analysis using scRNA-seq data. 
a, Heatmap of pseudobulk samples showing the median allelic ratio of informative X-linked genes. 
Sequencing reads were aggregated for wildtype (WT) and -/+ ∆Crossfirre-Firre-Dxz4 (TKO) samples 
with the TKO located on either Xi (upper panel) or Xa (lower panel). The color scale represents the 
allelic ratio and ranges from 1 (brown, CAST Xa) to 0 (black, BL6 Xa). The heatmap also shows the 
absolute delta change in allelic ratios between WT and heterozygous TKO samples. Arrows mark the 
approximate positions of Crossfirre, Firre, and Dxz4. *Note: The observed expression bias of Tsix is 
an artifact of the non-strand-specific analysis influenced by Xist, which is transcribed in the antisense 
direction. 
b, Uniform Manifold Approximation and Projection (UMAP) visualization of the unsupervised 
clustering of the WT and heterozygous TKO cells, divided by cells with the CAST allele Xa or the BL6 
allele Xa. For the heterozygous TKO, this resulted in the deletion being present on Xi or Xa, 
respectively. Different colors represent distinct cell types. 
c, Cell-type composition shifts depending on whether the TKO deletion is located on Xi (left panel) 
or Xa (right panel). Bar plots show the percentage of each cell type for WT and -/+ TKO samples, 
with colors corresponding to cell types as in (b). Asterisks indicate statistically significant changes in 
cell-type proportions as determined by Fisher's exact test (p-value ≤ 0.05). For cell types with ≥ 20 
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cells, the odds ratio of the Fisher test is shown next to the bar graph. Statistically significant changes 
are highlighted in red. The figure was modified from Hasenbein et al., 2024322. 

 

5.1.5 Mice lacking Crossfirre, Firre, and Dxz4 show upregulation of multiple 
autosomal pathways  

 
Previously, Firre and Dxz4 have been shown to affect autosomal gene expression in adult 

organs127,131. To further investigate the additional effect of Crossfirre, a transcriptomic 

bodymap was generated for homozygous TKO mice, including the spleen, kidney, lung, heart, 

liver, and brain. In addition, organ and age-matched samples from the previously published 

∆Firre-Dxz4 mutants were reanalyzed. Interestingly, the additional knockout of Crossfirre 

resulted in an 11.4-fold increase in the number of dysregulated genes (TKO n = 1190, ∆Firre-

Dxz4 n = 104, FDR ≤ 0.01, |shrunk log2FC| ≥ 1, Figure 5.11a). In the TKO, the spleen exhibited 

the highest number of differentially expressed genes (n = 417), with the majority located on 

autosomes (97.1%, Figure 5.11a). In total, 148 differentially expressed genes were common 

in ≥ 2 tissues, with 93.2% sharing the direction of dysregulation. Genes shared in ≥ 5 organs 

were upregulated in all samples (Figure 5.11b). Subsequently, gene set enrichment analysis 

(GSEA) revealed that the common dysregulation led to a predominant upregulation of 

mitochondrial and ribosomal gene-sets across five tissues except the brain (FDR ≤ 0.1, Figure 
5.11c). 
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Figure 5.11 Homozygous triple deletion of Crossfirre, Firre, and Dxz4 results in widespread 
autosomal dysregulation observed across multiple organs. 
a, Transcriptomic analysis of homozygous ∆Firre-Dxz4 and ∆Crossfirre-Firre-Dxz4 (TKO) mouse 
models. A transcriptomic bodymap was generated for adult female -/- TKO mice covering six different 
organs and analyzed together with the previously published sample- and age-matched ∆Firre-Dxz4 
mouse models127 (wildtype n = 4; ∆Firre-Dxz4 n = 4; TKO n = 3). The number of significantly 
differentially expressed genes (DEGs, DEseq2: FDR ≤ 0.01, |log2FC| ≥ 1) is shown as a bar graph 
for each tissue and genotype (TKO: turquoise, ∆Firre-Dxz4: blue). Pie charts illustrate the distribution 
of TKO DEGs on autosomes and the X chromosome, respectively, with sizes proportional to the 
number of DEGs. 
b, Number of shared DEGs in the TKO across organs. The accompanying heatmap presents the log2 

fold changes for genes shared between the tissues. The color code indicates up- (orange) and down-
regulated (black) genes. 
c, Heatmap of the top 100 most significantly enriched gene sets based on log10(FDR) values from 
the TKO gene set enrichment analysis (left; FDR ≤ 0.1). The color code represents up- and down-
regulated gene sets. Different colors indicate cluster IDs, which were calculated based on gene 
similarity (n = 18). The network plot shows the different gene set clusters from the spleen, highlighting 
the ribosomal (cluster ID: 3 n = 35) and mitochondrial (cluster ID: 1 n = 21) clusters. The figure was 
obtained from Hasenbein et al., 2024322. 
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5.1.6 Double deletion of Crossfirre and Firre drives the autosomal gene 
dysregulation 

 
To identify the driving loci of the observed molecular phenotype in TKO organs, spleens from 

all homozygous mouse mutant models were further investigated, including ∆Crossfirre, ∆Firre, 

∆Dxz4, ∆Crossfirre-Firre, ∆Firre-Dxz4 and TKO. Again, differential gene expression analysis 

was performed using sample-matched WT controls (Figure 5.12a). Most of the dysregulated 

genes were detected in mutant models with the combined Crossfirre-Firre deletion (TKO: n = 

417, ∆Crossfirre-Firre: n = 103, FDR ≤ 0.01, |shrunk log2FC| ≥ 1), with the majority of genes 

being dysregulated in the same direction (n = 73, 70.87%, Figure 5.12b). Notably, the 

knockout of either ∆Crossfirre or ∆Firre individually resulted in few dysregulated genes 

(∆Crossfirre: n = 9, Firre: n = 7), suggesting a combined effect of both loci. Subsequent GSEA 

revealed that the Crossfirre-Firre knockout reproduced the molecular phenotype of the TKO 

in the spleen, including the upregulation of mitochondrial and ribosomal pathways (Figure 
5.12c). Interestingly, the molecular phenotype could not be reproduced in any of the single 

deletion models, indicating that Crossfirre and Firre combined affect the autosomal gene 

dysregulation observed in TKO samples. 

 

Figure 5.12 The combined deletion of Crossfirre and Firre drives the upregulation of 
mitochondrial and ribosomal pathways. 
a, Differential gene expression analysis for female spleen samples of different mouse mutant models. 
The number of differentially expressed genes (DEGs) is displayed for various knockout mice, 
including the single, double, and triple deletions (DEseq2: FDR ≤ 0.01, |shrunk log2FC| ≥ 1). Genes 
are categorized as up- (orange) or downregulated (black). 
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b, Number of knockout-specific DEGs in the spleen and DEGs shared among mutants. The heatmap 
presents the log2 fold changes for genes shared between ∆Crossfirre-Firre and ∆Crossfirre-Firre-
Dxz4 (TKO).  
c, Heatmap showing the log10(FDR) values for the top 100 informative enriched gene sets identified 
in the TKO. The heatmap shows upregulated and downregulated gene sets across the ∆Crossfirre, 
∆Firre, and ∆Dxz4 single deletions and the ∆Crossfirre-Firre and TKO models. The figure was taken 
from Hasenbein et al., 2024322. 

 

5.1.7 Phenotyping pipeline uncovers sex-specific phenotypes in TKO mutants 
 
To further investigate the phenotypic characteristics of the observed gene dysregulation of the 

Crossfirre, Firre, and Dxz4 deletion, a cohort of control and TKO mice (females: n = 13 TKO, 

n = 15 WT, males: n = 13 TKO, n = 15 WT) was subjected to the comprehensive phenotyping 

pipeline of the GMC324. This analysis included multiple phenotypic screens with hundreds of 

tests covering the categories: immunology/allergy, behavior, biomarkers, cardiovascular, 

clinical chemistry, pathology, dysmorphology, eyes, metabolism, neurology, and nociception 

(Figure 5.13a). A detailed description of the phenotyping pipeline is available at 

https://www.mouseclinic.de. 

A total of 28 knockout- and sex-specific phenotypes were identified by the phenotypic screen, 

encompassing immunology/allergy (n = 5), behavior (n = 2), neurology (n = 1), cardiovascular 

(n = 2), clinical chemistry (n = 8), dysmorphology (n = 2), metabolism (n = 3), and pathology 

(n = 5, Figure 5.13b). 

Nine of the 28 observed phenotypes were TKO-specific, independent of sex. These included 

(i) an increased locomotor and (ii) exploratory activity, which was most pronounced during the 

first five minutes of the observation. In contrast, (iii) the acoustic startle reactivity was 

decreased compared to the control mice. In addition, TKO mutants showed (iv) altered red 

blood cell morphology with decreased mean corpuscular volume and increased mean 

corpuscular hemoglobin concentration. Mild effects were observed on (v) iron metabolism, 

including reduced plasma iron levels and calculated transferrin saturation. Additionally, (vi) 

pathology of the intestinal Peyer’s patches revealed that mutant mice had increased 

secondary follicles (Figure 5.13b-c). Furthermore, consistent with the scRNA-seq analysis of 

the spleen, shifts were observed in the (vii) CD4/CD8 T cell ratios, as well as in the (viii) relative 

percentages of B cells and (ix) monocytes of the peripheral blood (Figure 5.13b-c). 
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Figure 5.13 Comprehensive phenotyping pipeline identifies knockout- and sex-specific 
phenotypes. 
a, Schematic overview of the phenotyping process with the German Mouse Clinic (GMC). A total of 
30 wildtype (male n = 15, female n = 15) and 26 ∆Crossfirre-Firre-Dxz4 (TKO, male n = 13, female n 
= 13) mice were subjected to the phenotyping pipeline of the GMC. Various phenotyping screens 
were performed covering the categories: immunology/allergy, behavior, biomarkers, cardiovascular, 
clinical chemistry, pathology, dysmorphology, eyes, metabolism, neurology, and nociception. 



 73 

b, Overview of the results of a set of parameter tests for each category. The parameters are selected 
to provide a summary overview of the phenotyping results of the GMC. Triangles indicate the direction 
of the effect sizes (Cohen’s D), with color coding according to significance (p-value < 0.05). N.S.: not 
significant (t-test). An overview of the phenotyping screen abbreviations is provided in Appendix 10.2. 
c, Overview of all significant parameters by screening category for TKO (n = 9), female- (n = 6), and 
male-specific (n = 13) phenotypes. The color coding corresponds to the respective screening 
category, while the arrows denote the direction of effect sizes (Cohen’s D). The figure was obtained 
from Hasenbein et al., 2024322. 

 
 
In addition to the knockout-specific phenotypes, the GMC revealed sex-specific effects for 

TKO mice. A total of 13 phenotypes were identified as male-specific. Clinical chemistry 

detected (i) elevated insulin secretion and (ii) plasma triglyceride levels, along with (iii) reduced 

creatinine and (iv) lactate concentrations. The immunology screening found (v) higher levels 

of IL-6, a proinflammatory cytokine, in mutant males. In addition, males exhibited (vi) increased 

body weight and (vii) oxygen consumption, as well as (viii) a higher metabolic rate attributed 

to (ix) the increase in lean mass. The pathology screen identified (x) bronchopneumonia and 

mild inflammatory cell infiltrates in a subset of male mutants (1/5). The (xi) bone mineral 

content was increased, and (xii) 2/13 male mice showed abnormal hind paws digits. Notably, 

an (xiii) increased auditory brainstem response was identified in the neurology screen, 

indicating alterations in auditory processing (Figure 5.13b-c). 

In contrast to the male-specific phenotypes, female mice exhibited six phenotypes, including 

(i) increased eosinophilic proportions and (ii) mean platelet volumes, while (iii) urea levels 

were decreased. Apparent changes in 1/5 female mice were detected by histopathological 

screens, including (iv) inflammatory cell infiltrates in the lungs and (v) congestive arteries with 

vessel wall thickening. These changes were mild and focal in the remaining females (4/5). 

Cardiological tests revealed subtle shifts (vi) characterized by higher heart rates and heart-

rate-corrected QT intervals. Interestingly, one female mutant further exhibited dilated 

cardiomyopathy (Figure 5.13b-c). 

In summary, the extensive phenotyping of the GMC highlights that Crossfirre, Firre, and Dxz4 

are involved in various physiological processes. The majority of phenotypes were sex-specific 

(female TKO-specific: 21.43%, n = 6; male TKO-specific: 46.43%, n = 13), while only a subset 

(32.14%, n = 9) was attributed to the TKO independent of sex. The discovery of sex-specific 

phenotypes underscores the highly sex-specific characteristics of these loci. A detailed 

overview of all phenotyping results and raw measurements can be found on the GMC 

Phenomap website (https://www.mouseclinic.de, Figure 5.14).  

https://www.mouseclinic.de/
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Figure 5.14 Overview of the Phenomap webpage of the German Mouse Clinic. 
The Phenomap resource comprises all raw measurements of the comprehensive TKO phenotyping 
for each category assessed. The data is publicly accessible at https://www.mouseclinic.de and can 
be found by searching for the Crossfirre, Firre, or Dxz4 gene name. 

  

https://www.mouseclinic.de/
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5.2 Project 2: Decoding the targets and mechanisms of the non-
coding genome through allele-specific genomics  

 
Given that the experimental characterization of ncRNAs is laboratory extensive, the second 

project aimed to develop a novel bioinformatics framework to predict the target genes and 

mechanisms of ncRNAs. 

 

5.2.1 Enrichment of allele-specific ncRNAs nearby allele-specific pcGenes 
 
Previously, a comprehensive map of ASE was generated across multiple mouse organs and 

observed that the number of allele-specific ncRNAs correlated with the number of allele-

specific pcGenes78. In this study, the allele-specific transcriptome was mapped across the 

major mouse organs including the brain, heart, lung, liver, kidney, and spleen, to further 

investigate this correlation. Organs were collected from nine-week-old F1 hybrids and used 

for RNA-seq (replicates n = 3; Figure 5.15a). Subsequently, ASE mapping was performed for 

loci that were consistently informative across replicates using the Allelome.PRO v2.0 pipeline.  

On average, ASE was observed for 8.98% (n = 1039) of the informative genes per tissue 

(allelic ratio cutoff ≥ 0.7 or ≤ 0.3, Figure 5.15b). The highest proportion of allele-specific genes 

was found in the liver (10.5%, n = 1007), while the lowest amount was present in the brain 

(6.4%, n = 840, Figure 5.15c). Of these, an average of 2.13% were ncRNAs, with lncRNAs 

accounting for the majority of biotypes (69.4%, Figure 5.15d). 

Next, the proportion of allele-specific ncRNAs and pcGenes was correlated across tissues, 

identifying a positive correlation (Spearman correlation: R = 0.66, p-value = 0.004, Figure 
5.15e). The co-occurrence of allele-specific pcGenes and ncRNAs was quantified across 

various genomic window sizes to confirm this correlation. This analysis revealed a strong 

enrichment of allele-specific ncRNAs in the vicinity of allele-specific pcGenes within a distance 

of ±100kb (Wilcoxon test p-value = 0.002, Figure 5.15f). The finding that allele-specific 

ncRNAs often surround allele-specific pcGenes suggests a potential co-regulation and 

indicates that the allele-specific pattern could be used to predict the protein-coding targets of 

cis-acting ncRNAs. Furthermore, this approach allows to infer the mechanism of action based 

on the pattern of the allelic bias between ncRNA and pcGene towards the same (enhancing) 

or opposite (repressive) alleles (Figure 5.15g). 
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Figure 5.15 Allele-specific non-coding RNAs are enriched near allele-specific protein-coding 
genes. 
a, Overview of the workflow to map the allele-specific transcriptome. BL6 females were crossed with 
CAST males. Nine-week-old female F1 organs (brain, spleen, liver, heart, kidney, lung) were 
harvested from three replicates (n = 18). RNA-seq was conducted and Allelome.PRO v2.0 was 
employed to generate an allele-specific bodymap. 
b, Violin plot displaying the median allelic ratio for informative autosomal genes across replicates 
(n = 3, total reads ≥ 20). Colors represent different tissues. Allele-specific expression (ASE) was 
defined by an allelic ratio cutoff of ≥ 0.7 or ≤ 0.3. Genes beyond these cutoff values are indicated as 
dots. Boxplots indicate the interquartile range and median, while whiskers represent 1.5x the 
interquartile range. 
c, Bar plot illustrating the fraction of allele-specific genes per tissue. Numbers denote the total count 
of biased genes. Light gray and dark gray colors represent protein-coding and non-coding genes, 
respectively. Pc: protein-coding, nc: non-coding. 
d, Pie chart showing the biotype distribution of the ncRNAs with an allele-specific bias. Biotype 
information was available for 52.74% of the ncRNAs (n = 520). Misc RNA: miscellaneous RNAs 
without classification, TEC: to be experimentally confirmed. 
e, Correlation plot showing the proportion of allele-specific ncRNAs against the fraction of allele-
specific protein-coding genes for each replicate, normalized by the total amount of informative genes. 
Spearman correlation was calculated as a statistical test (R = 0.66, p-value = 0.004). The color coding 
is according to the tissue sample. 
f, Boxplot displaying the enrichment of allele-specific ncRNAs around allele-specific and biallelic 
protein-coding genes within a ±100kb window. The colors represent the various tissues. Statistical 
significance was assessed using a Wilcoxon test (p-value = 0.002). Boxplots show the interquartile 
range, median, and whiskers range from maximum to minimum values. 
g, Schematic overview of the mechanism prediction based on the allele-specific pattern. Depending 
on whether the allelic bias between ncRNA and pcGene was towards the same or opposite alleles, 
they were classified as enhancing or repressive, respectively. The figure was obtained from a 
submitted manuscript by the author of this thesis (see 9.2 Submitted manuscripts, 1.). 
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5.2.2 Validation of the Allelome.LINK pipeline using known targets of imprinted 
lncRNAs 

 
Based on the findings that allele-specific ncRNAs and allele-specific pcGenes correlate with 

each other, the Allelome.LINK tool was developed to facilitate the target prediction of cis-acting 

ncRNAs. Allelome.LINK is a bioinformatics framework that builds upon the Allelome.PRO v2.0 

pipeline to link regulatory loci to their potential target genes based on the ASE pattern. The 

mechanism is determined based on the allelic bias towards the same or opposite alleles 

(Figure 5.16a). Both, Allelome.PRO v2.0 and Allelome.LINK, offer straightforward execution 

through a simple one-line command, improving the accessibility for users of diverse 

backgrounds. The results from Allelome.LINK are provided in a tabular format sorted by a 

linkage score, along with a BEDPE file for genome browser visualization. A comprehensive 

overview of both tools is available in the Appendix section 10.1.  

The pipeline was initially evaluated using the lncRNA Xist. Xist is the initiator of XCI, a process 

in which one of the two female X chromosomes undergoes epigenetic silencing to achieve 

dosage compensation between males and females97,98. Although XCI becomes random after 

embryonic implantation, it consistently results in the silencing of the paternal X chromosome 

in extraembryonic lineages104. In the placenta, Allelome.LINK correctly identified Xist as a 

repressive ncRNA for the majority of X-linked genes, with the exception of known escape 

genes, such as Kdm6a, Eif2s3x, Jpx, and Kdm5c, showcasing the robustness of the 

Allelome.LINK strategy (Figure 5.16b). 

To further evaluate the efficacy of the pipeline, the target prediction for the lncRNA Airn was 

tested. Airn is an imprinted, paternally expressed lncRNA that silences target genes within the 

Igf2r/Airn cluster in a cis-dependent manner. In the placenta, the Airn locus is the largest 

imprinted region in mice78. Here, the paternally expressed lncRNA Airn represses multiple 

genes on the paternal allele, leading to maternal expression of the targets. Among these, 

seven genes (Pde10a, Park2, Slc22a3, Igf2r, Dact2, Smoc2, and Thbs2) were validated as 

repressive targets by reactivation of the silent allele upon deletion of the Airn promoter78,174. 

To assess the efficacy of the pipeline, Allelome.LINK was employed to analyze WT and Airn 

knockout placental RNA-seq datasets78. Allelome.PRO v2.0 accurately identified maternal 

bias for the known Airn targets and confirmed biallelic expression of the target genes upon 

Airn promoter deletion (Figure 5.16c). 

Knowing the cis-acting targets of the lncRNA Airn in the placenta allowed the computation of 

the precision and recall for the Airn locus. This was done separately for each replicate and for 

pooled samples. The highest precision (85.7%) was obtained by pooling replicates, while the 
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recall remained above 85% (Figure 5.16d). These results highlight the effectiveness of the 

Allelome.LINK pipeline in predicting the targets of ncRNAs. 

 

Figure 5.16 Workflow and validation of the Allelome.LINK pipeline. 
a, Overview of the Allelome.PRO v2.0 and Allelome.LINK pipeline. Allelome.PRO v2.0 requires three 
input files: a SNP file, an annotation file, and an aligned sample BAM file. The allelic ratio is calculated 
for each locus based on the number of reads with SNPs from the maternal or paternal allele. The 
output of Allelome.PRO v2.0 is used as input for Allelome.LINK. The tool links allele-specific loci 
within user-defined genomic windows and calculates linkage scores. The output includes a list of 
candidate predictions and a genome browser file. 
b, Genome browser output of the Allelome.LINK pipeline. Shown is the X chromosome with red arcs 
highlighting repressive interactions between Xist and protein-coding X-linked genes (total reads ≥ 20, 
window size: full chromosome, allelic ratio > 0.75 and < 0.25). Below the chromosome is the 
Allelome.PRO v2.0 output showing loci classified as maternally (red) or biallelic (green) expressed. 
Known escape genes are labeled. RNA-seq data from E12.5 placentas were used (CAST x FVB 
n = 2, FVB x CAST n = 2)175. 
c, Genome browser output of the Allelome.LINK pipeline for the Igf2r/Airn locus, showing the 
predicted interactions for the imprinted lncRNA Airn. Red arcs indicate repressive linkages, with arc 
height proportional to the linkage score. Below is the Allelome.PRO v2.0 output showing loci 
classified as maternal (MAT: red), biallelic (BAE: green) and paternal (PAT: blue). The upper panel 
shows results for wildtype mice (n = 3), and the lower panel for mice with an Airn promoter deletion 
(n = 3). Samples were pooled using the median (total reads ≥ 10, allelic ratio ≥ 0.7 or ≤ 0.3, window 
size: 4000kb) and were obtained from E12.5 placentas (n = 6)78. 
d, Precision-recall plot for the Allelome.LINK results of the Igf2r/Airn locus from E12.5 placentas 
(n = 3). Precision and recall were calculated per replicate and for pooled samples. The figure was 
sourced from a submitted manuscript by the author of this thesis (see 9.2 Submitted manuscripts, 
1.). 
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5.2.3 Identification of 397 mouse ncRNA-target linkages and their mechanisms 
across organs 

 
Following validation of the Allelome.LINK pipeline, the tool was used to predict the protein-

coding targets of ncRNAs in a comprehensive set of mouse organs. Therefore, the mapped 

allele-specific transcriptome of nine-week-old animals was used, including samples from the 

brain, heart, lung, liver, kidney, and spleen (Figure 5.17a). On average, the approach 

identified 66.2 ncRNA-target associations per tissue, ranging from 50 linkages in the heart to 

99 linkages in the spleen (Figure 5.17b). High-confident linkages were identified by using the 

linkage score. Notably, the known repressive interaction between Airn and Igf2r was among 

the top interactions in all tissues except the brain (Figure 5.17c). Using this approach, an 

average of 11.3% of the allele-specific ncRNAs per tissue were linked to their putative protein-

coding target genes (Figure 5.17d). Interestingly, the analysis also revealed a predominance 

of tissue-specific linkages (62.2%, n = 247), while only 37.8% (n = 150) of the linkages were 

shared by two or more tissues (Figure 5.17e). Additionally, repressive interactions showed an 

even distribution of target distances, peaking at 32kb, while enhancing linkages were in close 

proximity (Figure 5.17f-g). 

 

Figure 5.17 Identification of ncRNA-target linkages and their regulatory mechanisms. 
a, Schematic overview of the workflow for predicting ncRNA-targets in mice. Allelome.PRO v2.0 was 
applied to a comprehensive set of organs from nine-week-old F1 mice (BL6 x CAST), including the 
brain, spleen, liver, heart, kidney, and lung (per replicate n = 3, total n = 18). The results were used 
as input for Allelome.LINK to predict candidate linkages. 
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b, Bar plot showing the number of predicted ncRNA-to-target linkages per tissue. Red bars illustrate 
repressive interactions, while green color marks enhancing linkages. 
c, Manhattan plot displaying the linkage score of candidate linkages per tissue. Colors denote the 
different tissue samples. 
d, Pie chart showing the mean fraction of linked ncRNAs per tissue relative to the total amount of 
ncRNAs with allele-specific expression. 
e, Bar plot illustrating the number of linkages present in the number of tissues.  
f, Density plot showing the distribution of linkage distances for enhancing (green) and repressive 
(red) interactions. 
g, Bar plots displaying the number of anti-sense and intergenic linkages separated by enhancing 
(green) and repressive (red) interactions. The figure was taken from a submitted manuscript by the 
author of this thesis (see 9.2 Submitted Manuscripts, 1.). 

 
 
Two examples of high-confident linkages are highlighted. The first example is a repressive 

anti-sense linkage identified in the kidney between the ncRNA Gm35993 and the pcGene 

Acmsd (Figure 5.18a). Allele-specific read mapping of the underlying RNA-seq data 

confirmed the predominant expression of Gm35993 from the maternal allele and the paternal 

expression of Acmsd, indicating a repressive association (Figure 5.18a). The second example 

is an intergenic repressive link in the liver, where Gm38596 was predicted to repress Sult2a7. 

Allele-specific read mapping confirmed that low expression of Gm38596 correlated with high 

expression of Sult2a7, while increased expression of Gm38596 anti-correlated with the loss 

of Sult2a7 expression (Figure 5.18b). 

 

Figure 5.18 Examples of high-confident ncRNA-to-target predictions in mice. 
a, Genome browser visualization of the repressive linkage between the ncRNA Gm35993 and the 
protein-coding gene Acmsd, detected in the kidney. The red arc indicates a repressive interaction. 
The allelic bias is shown by gene color: red for maternal and blue for paternal expression, with the 
intensity reflecting the allelic bias. Sequencing tracks display the number of strand-specific reads 
mapped to the maternal (red) and paternal (blue) allele. The bar chart illustrates the quantification of 
sequencing reads per allele and gene. 
b, Same as in (a), but for the repressive interaction between Gm38596 and Sult2a7 detected in the 
liver. The figure was obtained from a submitted manuscript by the author of this thesis (see 9.2 
Submitted Manuscripts, 1.). 

 
 



 81 

In total, the Allelome.LINK framework identified 397 ncRNA-to-target linkages across a 

comprehensive set of mouse organs (Figure 5.19). These results provide detailed insights 

into the tissue-specific nature of ncRNAs within the mouse genome. To support the exploration 

of all candidate linkages, an interactive resource was created using the Integrative Genomics 

Viewer (IGV)329. This database enables the dynamic visualization and analysis of the linkage 

data, allowing researchers to select candidates for further investigation and characterization 

in the tissue of interest. The URL links to access the interactive database are available at the 

https://github.com/AndergassenLab/Allelome.LINK. Detailed explanations of how to use the 

generated resource can be found in Appendix section 10.3. 

 

Figure 5.19 Comprehensive ncRNA-to-target resource for the major mouse organs.  
Chord plot showing chromosome 1-19 with the predicted candidate linkages between ncRNA and 
protein-coding target identified in adult mice across six different tissues (spleen: blue, lung: gray, 

https://github.com/AndergassenLab/Allelome.LINK
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liver: red, kidney: green, heart: black, brain: yellow). Linkages labeled on the outside are predicted to 
be enhancing, while linkages on the inside represent repressive interactions. The ncRNAs are 
highlighted in bold font. Dashes separate multiple protein-coding targets. The density plot shows the 
genomic distribution of linkages per chromosome. The figure was taken from a submitted manuscript 
by the author of this thesis (see 9.2 Submitted Manuscripts, 1.). 

 
 

5.2.4 Leveraging the human genetic variation to uncover the gene targets of 
ncRNAs 

 
Next, the Allelome.LINK framework was applied to human samples taking advantage of the 

GTEx resource191. The GTEx consortium collected RNA-seq data from up to 54 different 

tissues across 838 individuals, resulting in 15,253 samples and 153 million allele-specific 

haplotype measurements (Figure 5.20a). Due to the non-strand-specific nature of the GTEx 

RNA-seq data, overlapping genes were removed. Furthermore, a total read cutoff of ≥ 20 SNP-

overlapping reads was required for a gene to be considered informative. Post filtering, 924,440 

non-coding and 27,155,698 protein-coding allele-specific measurements remained in the 

dataset, comprising 1,825 ncRNAs and 6,281 pcGene loci (Figure 5.20b). The number of 

unique allele-specific genes generally increased with sample size, with an average of 3,580 

ASE loci per tissue, including 312 ncRNAs and 3,268 pcGenes. The Kidney - Medulla, with 

data from only four individuals, had the fewest number of ASE genes (n = 310), while the lung, 

with data from 515 individuals, had the highest number of ASE gene loci (n = 4,983, Figure 
5.20c). 

Before predicting the protein-coding targets of ncRNAs, the co-occurrence of allelic ncRNAs 

and pcGenes was quantified to confirm the applicability of this approach in humans. Each 

tissue sample was screened for allele-specific ncRNAs, and the abundance of allele-specific 

pcGenes within a distance of ±100kb was compared to the abundance of biallelic pcGenes. 

Notably, this analysis revealed a significant enrichment of allele-specific ncRNAs around 

allele-specific pcGenes in half of the tissues examined (27 out of 54 tissues, Figure 20d).  
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Figure 5.20 Allele-specific ncRNAs are enriched in proximity to allele-specific protein-coding 
genes in multiple human tissues. 
a, Overview of the Allelome.LINK strategy on human samples. The allele-specific transcriptome of 
15,253 samples, including 54 tissues and nearly 1,000 individuals, was obtained from the GTEx v8 
release191 and used to predict ncRNA-targets using Allelome.LINK.  
b, Boxplot displaying the distribution of allele-specific loci per individual and tissue. The color code 
follows the GTEx color scheme for each tissue, and the tissue abbreviations are consistent with those 
used in the GTEx resource190. An overview of the GTEx tissue abbreviations is provided in Appendix 
10.4. 
c, Scatter plot illustrating the number of informative loci with allele-specific expression (ASE, allelic 
bias ≥ 0.7 or ≤ 0.3, total n = 193,327) and the number of individuals. Different colors indicate different 
tissues, consistent with the color coding used in panel (b). 
d, Boxplot showing the enrichment of allele-specific ncRNAs in proximity to allele-specific (dark gray) 
and biallelic (light gray) protein-coding genes within ±100kb distance. Boxplots summarize samples 
per tissue. The significance level is indicated by the number of asterisks and was determined by 
Wilcoxon tests. Boxplots show the interquartile range, median, and whiskers range from maximum 
to minimum. ASE: allele-specific expression, BAE: biallelic expression. The figure was sourced from 
a submitted manuscript by the author of this thesis (see 9.2 Submitted Manuscripts, 1.). 

 
 
Allelome.LINK was subsequently applied to all samples of the GTEx database. Due to the 

outbred nature of the human population, each individual possesses a unique set of genetic 

variants, resulting in a personalized allelic landscape. This diversity allows novel linkages to 

be identified with each sample. Although linkages can only be detected in samples where the 

ncRNA exhibits ASE, the regulatory relationship is expected to be common across samples 

(Figure 5.21a).  
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Each tissue sample revealed an average of one linkage per individual (Figure 5.21b). 

However, a significant proportion of these linkages were specific to individual samples 

(63.77%) rather than shared between individuals (36.23%, Figure 5.21c). This observation 

suggests that each individual contributes to the discovery of novel linkages. Notably, no 

saturation of novel linkages was observed in any tissue as the sample size increased (Figure 
5.21d). Thus, the genetic variation present in humans provides substantial potential for 

discovering a large number of linkages as the sample sizes increase. 

On average, 42.43 ncRNA-to-target linkages were identified per tissue in the human dataset, 

with the highest number of linkages observed in the Skin - Sun Exposed (lower leg, n = 95) 

and the Thyroid (n = 95), while the Kidney - Medulla showed the lowest number of ncRNA-to-

target linkages, likely due to the small sample size (n = 4, Figure 5.21e). Next, the distribution 

of these ncRNA-to-target linkages was analyzed across all tissues and identified 530 unique 

linkages. Among these, 233 linkages (43.96%) were tissue-specific, while 297 linkages 

(56.04%) were shared by two or more sampling sites (Figure 5.21f). Notably, 80.47% (n = 

239) of the shared linkages were present in fewer than 10 tissues (Figure 5.21f-g). Linkages 

identified in more than 38 tissues belong exclusively to the human leukocyte antigen (HLA) 

cluster, genes known to show high genetic variability leading to ASE330. The finding of a higher 

frequency of tissue-specific linkages compared to shared linkages across tissues aligns with 

the observations in mice and highlights the tissue-specific nature of ncRNAs. 
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Figure 5.21 Properties of ncRNA-to-target linkages of outbred human samples. 
a, Overview of the Allelome.LINK framework for outbred samples with different genotypes. The ncRNA-
to-target interaction is detected in individual 2 due to a heterozygous SNP (hetSNP) that results in 
allele-specific expression of the ncRNA. Although this regulatory association is expected to be present 
across all samples, it is often masked by the biallelic expression of the ncRNA. 
b, Boxplot demonstrating the mean number of linkages per individual across tissues. The interquartile 
range around the median is shown. Whiskers range from maximum to minimum. 
c, Density plot displaying the distribution of linkages shared across different numbers of individuals. 
d, Saturation curve representing the average number of linkages relative to the number of individuals. 
Lines display mean values and shaded areas the standard deviations calculated from random sampling 
(iterations n = 1,000). Different colors correspond to various tissues. 
e, Bar plot showing the number of identified linkages per tissue. The color codes and abbreviations 
correspond to the respective tissues, consistent with the GTEx database190.  
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f, Bar plot showing the number of linkages shared in a given number of sampling sites. The pie chart 
illustrates the fraction of linkages that are tissue-specific and present in ≥ 2 tissues. 
g, Cumulative fraction plot of the number of tissues in which a ncRNA was linked. The figure was 
modified from a submitted manuscript by the author of this thesis (see 9.2 Submitted Manuscripts, 1.). 
 
In summary, 2,291 linkages were identified across all tissues, representing 17.75% of the 

informative ncRNAs (n = 324) that were successfully assigned to their targets (Figure 5.22). 

The entire resource, including all linkages, is available via URL links listed in 
https://github.com/AndergassenLab/Allelome.LINK. A detailed explanation for using the 

generated resource can be retrieved from Appendix section 10.3.  

 

Figure 5.22 Comprehensive ncRNA-to-target resource for 54 different human tissues. 
Chord plot showing the predicted ncRNA-to-target linkages identified across 54 human tissues for 
chromosome 1-22. The outer labels indicate linkages that were more frequently detected as 
enhancing interactions, while the inner labels depict predominantly repressive linkages. Bold font 
highlights ncRNAs. Dashes separate multiple protein-coding targets. The density plot indicates the 

https://github.com/AndergassenLab/Allelome.LINK
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genomic distribution of linkages per chromosome. Individual tracks and colors denote the tissues in 
which a linkage was detected. The figure was obtained from a submitted manuscript by the author of 
this thesis (see 9.2 Submitted Manuscripts, 1.). 

 
 

5.2.5 Most linkages identified in humans are supported by eQTL data 
 
Sample-matched eQTL data from the GTEx database was used to validate the predicted 

ncRNA-to-target linkages in human tissues. This dataset contains 21,412,255 fine-mapped 

eQTLs across 49 of the 54 tissues analyzed318. eQTL data was unavailable for tissue samples 

of the Kidney - Medulla, Fallopian Tube, Cervix - Endocervix, Cervix - Ectocervix, and Bladder. 

The validation rates ranged up to 100% for small sample groups such as the Bladder (Figure 
5.23a). On average, 77.47% (standard deviation = 9.83) of the linkages were confirmed by the 

eQTL data, of which 18.72% were specifically validated by eQTLs from the same tissue type 

(Figure 5.23a). This substantial validation rate underscores the robustness and efficacy of the 

allele-specific approach for ncRNA-target prediction, providing valuable insights into the 

regulatory landscape of the non-coding genome. 

In addition, the accuracy of predicted regulatory mechanisms (enhancing or repressive) was 

assessed by evaluating the mechanism assignments for linkages shared by a large proportion 

of individuals. This approach helped to determine the consistency of enhancing and repressive 

mechanism assignments. The mechanism prediction was first tested for linkages within the 

HLA cluster. Given the high variability in ASE among HLA genes330, a random distribution of 

mechanisms was anticipated across individuals, which was tested for samples of the Whole 

Blood. Indeed, 49.25% of the linkages were identified as enhancing and 50.75% as repressive 

for a total of 361 HLA gene interactions (Figure 5.23b). Moreover, Allelome.LINK was applied 

to samples of the Heart - Left Ventricle (n = 386), Pancreas (n = 305), Adrenal gland (n = 233), 

and Muscle - Skeletal (n = 706), where the imprinted status of DLK1 and MEG3 was previously 

confirmed by allelic expression data151. In a mouse embryonic stem cell system, the lncRNA 

Meg3 was shown to repress Dlk1 expression in cis331. Remarkably, the interaction was 

consistently identified as repressive in 79.46% of the 564 individuals where the linkage was 

detected (Figure 5.23c). This result highlights the reliability of the Allelome.LINK framework 

in accurately assigning the regulatory mechanisms across individuals. 

In conclusion, the high validation rate of predicted ncRNA-to-target interactions and the 

accuracy in mechanism assignment underscore the effectiveness of the Allelome.LINK 

framework in identifying regulatory ncRNA-to-target interactions. 
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Figure 5.23 Validation of the ncRNA-to-target linkages and the mechanism assignment. 
a, Bar plot showing the number of validated linkages confirmed by eQTL analysis across various 
tissues. Each bar represents the number of validated linkages for a specific tissue. The horizontal 
bar plot shows the mean fraction and standard deviation of all linkages summarized across tissues. 
Linkages confirmed by eQTLs from the same tissue are depicted in dark green, while those validated 
by eQTLs from different tissues are shown in light green. 
b, Genome browser visualization of the Allelome.LINK output for Whole Blood samples (n = 611). 
Shown are the linkage predictions between the genes: HLA-DRB9, HLA-DRB5, HLA-DRB6, HLA-
DRB1, and HLA-DQA1. Enhancing interactions are represented by green arcs (n = 178), and 
repressive interactions are depicted by red arcs (n = 183), with arc height proportional to the linkage 
score. Black gene names highlight ncRNAs, while gray color indicates protein-coding genes. The 
RNA-seq track shows gene expression levels of a representative tissue sample from the GTEx 
database. The bar plot shows the proportion of enhancing (green) and repressive (red) linkages for 
each interaction. 
c, Genome browser visualization of the Allelome.LINK output as in (b) but for the imprinted interaction 
between MEG3 and DLK1 of Heart - Left Ventricle samples. The bar chart displays the faction of 
enhancing (green) and repressive (red) MEG3-DLK1 linkages for samples from Heart - Left Ventricle, 
Pancreas, Adrenal gland, and Muscle - Skeletal. The figure was taken from a submitted manuscript 
by the author of this thesis (see 9.2 Submitted Manuscripts, 1.). 

 
 

5.2.6 Elucidating high-confident ncRNA-targets by assessing the mechanism 
assignment 

 
The mechanism fraction for each linkage was determined by calculating the proportion of 

individuals within each tissue sample where a given linkage was classified as either enhancing 

or repressive. This approach allowed the evaluation of the consistency of mechanism 

assignments across samples within each tissue type (Figure 24a). A consistency threshold of 
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≥ 75% was applied to filter for high-confident linkages, meaning that a linkage had to be 

classified as enhancing or repressive in at least 75% of the tissue samples where it was 

detected. This process resulted in 35.0% repressive (n = 802) and 48.1% enhancing (n = 

1102) linkages. Notably, of the 16.89% (n = 387) of linkages with random mechanism 

assignment, 36.69% involved the HLA genes (Figure 5.24a). 

While linkages identified in single individuals provide valuable regulatory insights, those 

observed consistently across multiple samples with identical mechanisms represent more 

robust findings due to their reproducibility. Therefore, linkages with consistent mechanism 

predictions in more than 10 individuals were filtered, uncovering 24 high-confident linkages 

(repressive n = 9, enhancing n = 15, Figure 5.24a). 

One of these high-confident linkages is the interaction between the lncRNA FENDRR and the 

pcGene FOXF1. In line with previous studies, a regulatory interaction between these gene loci 

was identified across multiple samples332,333. This linkage was consistently classified as 

enhancing in 94.55% (n = 52) of the FENDRR-FOXF1 linkages detected in Cells - Cultured 

Fibroblast samples (Figure 5.24a-b). Another example of a high-confident linkage was the 

positive regulatory relationship of the pcGene TREML4 with the ncRNAs TREML3P and 

TREML5P in Whole Blood samples. These interactions were consistently identified as 

enhancing in 117 (TREML3P - TREML4) and 103 (TREML5P - TREML4) individuals (Figure 
5.24a-b). As repressive examples, the linkages between the ncRNA SERPINB9P1 and the 

predicted target SERPINB9 in the Esophagus - Mucosa (n = 21), as well as the ncRNA 

MIR2117HG and the pcGene ARL4D in the Skin - Sun-Exposed Lower Leg (n = 65), were 

highlighted. Both linkages were identified in a large subset of individuals and showed 

consistent mechanism assignment (Figure 5.24a-b). 
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Figure 5.24 Analysis of linkage mechanisms and high-confidence examples. 
a, Scatter plot illustrating the proportion of enhancing and repressive mechanisms for each linkage 
relative to the number of individuals exhibiting that linkage. A value of 1 means that the linkage is 
enhancing in all individuals where it was detected, while a value of 0 means that the linkage is 
repressive in all individuals. Transparent dots represent linkages involving genes from the HLA gene 
cluster. Colored dots represent the different tissues. The upper density plot shows the distribution of 
linkages across individuals per tissue, and the right density plot depicts the distribution of linkage 
mechanisms, ranging from 100% repressive to 100% enhancing. 
b, Examples of high-confident linkages. Green arcs denote enhancing interactions, while red arcs 
indicate repressive interactions, with arc height proportional to the linkage score. Gene names in 
black denote ncRNAs, while gray names indicate protein-coding genes. The RNA-seq track displays 
gene expression levels for a representative example of that tissue from the GTEx database. Red 
lines mark GWAS hits sourced from the GWAS catalog334. The figure was retrieved from a submitted 
manuscript by the author of this thesis (see 9.2 Submitted Manuscripts, 1.). 

 
 

5.2.7 Assignment of ncRNA-overlapping GWAS variants to their protein-coding 
targets via identified linkages 

 
As a final step, the generated ncRNA-to-target linkages were leveraged to assign GWAS 

variants in the non-coding genome to their potential protein-coding targets. To accomplish 
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this, all GWAS variants present in the NHGRI-EBI catalog were downloaded and overlapped 

with the informative ncRNA loci (n = 1,059 variants)334. The number of linkages with GWAS 

variants varied between tissues, ranging from 1 in the Kidney - Medulla to 42 in the 

Skin - Sun Exposed Lower leg (median n = 15, Figure 5.25a). Overall, 36.73% (n = 119) of 

the linked ncRNAs were associated with at least one GWAS variant (Figure 5.25b). 

Notably, using the Allelome.LINK resource, a fraction of 30.59% of the informative non-coding 

GWAS variants were assigned to a pcGene, allowing researchers to gain important insights 

into their potential functional consequences (n = 324, Figure 5.25b). All candidate linkages, 

including their associated GWAS variants, are available via URL links listed in 

https://github.com/AndergassenLab/Allelome.LINK, providing a valuable resource for further 

exploration by the research community (Appendix 10.3). This extensive resource contributes 

to the understanding of the functional role of trait- and disease-related variants within the non-

coding genome. As the availability of GWAS datasets and sequencing information continues 

to grow, this approach will continue to decode the target genes of non-coding risk variants. 

 

Figure 5.25 Linking non-coding GWAS variants to their potential protein-coding targets. 
a, Bar plot displaying the number of linkages identified per tissue. Red bars indicate the number of 
linkages where the ncRNA harbors a GWAS variant. 
b, The upper pie chart shows the fraction of ncRNAs that could be linked (n = 324) and contain a 
GWAS-SNP in the ncRNA (red) versus the fraction of linked ncRNAs without a GWAS variant (gray). 
The lower pie chart depicts the percentage of GWAS variants overlapping informative ncRNAs (n = 
1,059), separated by linked (red) and unlinked (gray) ncRNAs. The figure was obtained from a 
submitted manuscript by the author of this thesis (see 9.2 Submitted Manuscripts, 1.). 

  

https://github.com/AndergassenLab/Allelome.LINK
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6 Discussion 

6.1 Project 1: Investigating the in vivo contribution of the Crossfirre 
locus alone and in combination with Firre and Dxz4 

 
The present study investigated the in vivo contribution of the previously uncharacterized 

lncRNA Crossfirre, alone and in combination with Firre and Dxz4. Using one of the largest 

cohorts of genetically modified X-linked mouse models, combined with multi-omics 

approaches and extensive phenotyping, the project uncovered their functional role at the 

molecular and phenotypic level.  

 

6.1.1 Deletion of the top female-specific loci has no effect on development and 
XCI biology 

 
Over the past decade, several studies have demonstrated that the Crossfirre-Firre and Dxz4 

loci possess female-specific signatures of open chromatin that are absent in 

males78,121,124,128,129. However, it remained unclear whether such female-specific patterns 

occur frequently throughout the genome. This study addressed this question for the first time 

by systematically comparing the epigenetic landscape between males and females and found 

that this pattern represents the topmost female-specific accessible regions genome-wide. 

Despite the distinct female-specific pattern, the results of this thesis revealed that mutant mice 

lacking the Crossfirre locus, alone or in combination with Firre and Dxz4, exhibited no adverse 

effects on development or fertility, with the offspring being viable and showing the expected 

sex ratios and litter sizes. Similarly, genetic deletion models have previously demonstrated 

that the Firre and Dxz4 loci are dispensable for mouse development, as the offspring of mutant 

mice were both viable and fertile127,131. These observations lead to the conclusion that, despite 

their highly female-specific epigenetic properties, Crossfirre, Firre and Dxz4 are not essential 

for either development or fertility.   

Moreover, the results of this study confirmed previous findings demonstrating that the female-

specific chromatin accessibility pattern originates from the Xi78,124,126. Several studies have 

shown that these open chromatin regions correspond to Xi-specific CTCF binding sites, which 

contribute to the perinucleolar localization of the Xi124,126. Knockdown experiments of Firre 

resulted in the loss of the perinucleolar localization and lower H3K27me3 levels, highlighting 

a functional importance of this locus in maintaining both the Xi epigenetic landscape and 

nuclear positioning124,126. 
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In addition to the female-specific features of the Firre and Dxz4 loci, Andergassen et al. 

performed an extensive allele-specific analysis and identified Crossfirre as the only imprinted 

X-linked gene in somatic tissues, predominantly expressed from the maternal X 

chromosome78. This finding was observed in RNA-seq data from the brain, where Crossfirre 

is expressed at comparatively higher levels, and was confirmed in mouse embryonic 

fibroblasts by maternal H3K4me3 enrichment at the Crossfirre promoter78. Thus, it has been 

speculated that Crossfirre may act as a key genomic regulator of imprinted XCI, marking the 

maternal X chromosome. Prior to this study, the functional contribution of Crossfirre to XCI 

biology was entirely unknown. Despite its imprinted expression, the present study found that 

the deletion of Crossfirre has no effect on imprinted XCI, independent of whether the deletion 

was on Xa (maternal X chromosome) or Xi (paternal X chromosome), or whether it was 

deleted individually or in combination with Firre and Dxz4. Given the Xi-specific epigenetic 

signatures of Firre and Dxz4, along with their role in folding of the Barr body, a functional role 

for these loci in XCI has been hypothesized. Yet, several studies have shown that despite the 

loss of the Xi-structure, Firre and Dxz4 are dispensable for XCI biology in cell culture 

models121,125,126,128,129. A knockout study by Andergassen et al. has further investigated the 

effects of Firre and Dxz4 in vivo127. Consistent with the results of this thesis, the authors did 

not observe a significant enrichment of differentially expressed genes on the X chromosome 

or changes in the ASE patterns of X-linked genes in the placenta, concluding that the deletion 

of Firre and Dxz4 does not affect imprinted XCI in vivo.  

The authors of the same study also investigated the effects of the loss of these loci on random 

XCI by analyzing XCI skewing ratios in brain tissues of mutant mice127. In line with the findings 

of this thesis, no alterations in the XCI skewing were observed, suggesting that random XCI 

is not affected by the absence of Firre and Dxz4. However, the conclusive effects on random 

XCI have not been addressed at the gene-level. This gap arises from the complexity of 

studying XCI at the whole-organ level, in particular due to the random XCI status where cells 

alternate between having the maternal or paternal X chromosome active. By developing a 

novel approach that includes allele-specific single-cell sorting, this study addressed the 

challenge and investigated the consequences of the deletion of the Xa-specific lncRNA 

expression and the Xi-specific epigenetic characteristics on random XCI in vivo. This analysis 

conclusively demonstrated that the deletions of Crossfirre, Firre, and Dxz4 do not affect 

random XCI maintenance in the adult spleen. 

The Crossfirre knockout further marked the first deletion on an X-linked LINE cluster attached 

to the Crossfirre locus. The deletion of this element was of particular interest as LINE clusters 

have been suggested to prevent local gene escape and contribute to the maintenance of 
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XCI141,327. The lack of effect on the expression of neighboring genes further challenges the 

presumed role of LINE clusters in XCI stability, suggesting that LINE clusters may be 

dispensable for the maintenance of XCI. 

In conclusion, the comprehensive allele-specific analyses of this study demonstrate that 

Crossfirre, Firre, and Dxz4 are dispensable for both imprinted and random XCI in vivo. These 

findings provide important insights into long-standing questions in the field and address 

previous assumptions about the role of these loci in XCI biology. 

 

6.1.2 Crossfirre and Firre combined have a synergistic role in autosomal gene 
regulation 

 
In contrast to the dispensability of these loci in XCI biology, transcriptomic analysis of the TKO 

mouse models revealed large-scale autosomal gene dysregulation, a finding that was 

common across organs except for the brain.  

Previously, Firre and Dxz4 have been reported to play a functional role in autosomal gene 

regulation in an organ-specific manner127,131. In mice lacking these loci, spleen tissue exhibited 

autosomal gene dysregulation associated with chromosome segregation and structure gene 

sets. A single deletion model of Firre confirmed this locus as the primary driver of these 

effects127. Interestingly, the additional knockout of Crossfirre to the Firre-Dxz4 double deletion 

in the present study resulted in a more than 11.4-fold increase in the number of dysregulated 

genes. These findings suggest a significant effect of Crossfirre in addition to Firre and Dxz4 

on autosomal gene regulation. Comparisons of multiple knockout strains, including single and 

double deletions, further provide evidence that the combined knockout of Crossfirre and Firre 

contributes to the autosomal gene dysregulation. These findings indicate a synergistic role for 

Crossfirre and Firre in autosomal gene regulation. Synergistic effects between genes are 

known as epistasis or gene-gene interactions and describe a functional relationship of 

genes335. An example for synergistic gene induction is provided by Goldstein et al., where the 

authors show that STAT3 binding to the target sites is enhanced by NF-κB. In this process, 

the activity of NF-κB primes enhancers, facilitating STAT3 binding to chromatin and driving 

synergistic gene expression336. However, the mechanism by which Crossfirre and Firre may 

interact and affect autosomal gene expression is unknown, representing a significant limitation 

of the study that requires further investigation. 

To regulate genes on autosomes, Crossfirre and Firre would have to function in trans. This 

assumption aligns with the proposed mechanism for Firre, which serves as a platform for 

trans-chromosomal interactions, bringing together at least three gene loci located on different 
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chromosomes around the transcription site of Firre72. Additional evidence for a trans-acting 

Firre RNA comes from a study by Lewandowski et al.131. The authors showed that Firre-

mediated hematopoietic defects in knockout mice could be rescued by transgenic expression 

of Firre131. A trans-acting role for Firre has also been described in Patski cell lines, where Fang 

et al. found that Firre RNA transcribed from the Xa preserves H3K27me3 enrichment on the 

Xi126. However, further investigation is needed to understand how Crossfirre contributes to 

these findings. The same study observed that the knockdown of Firre leads to the upregulation 

of Crossfirre, suggesting that Firre represses the antisense transcript126. In contrast, the 

present study found that the deletion of Crossfirre does not exert regulatory control over the 

expression of Firre, indicating that Crossfirre does not play a significant role in controlling Firre 

expression. Given the complexity of lncRNA-mediated gene regulation, the potential 

mechanisms by which both loci affect autosomal gene expression are diverse and could 

further include indirect trans-regulatory effects, such as those mediated by interactions with 

RBPs or small RNA pathways, including piRNA-driven gene regulation or miRNA 

sponging40,337. Future studies are required to elucidate the exact mechanisms underlying the 

observed gene dysregulation and whether these function via RNA or DNA elements.  

 

6.1.3 Deletion of X-linked lncRNAs revealed knockout and sex-specific 
phenotypes 

 
TKO mice further underwent an extensive phenotypic screening at the GMC to elucidate the 

phenotypic consequences upon deleting these gene loci. The GMC provides standardized 

and unbiased phenotyping services for mouse mutant lines, assessing over 550 disease-

relevant parameters207,324. Gene loci, especially lncRNAs, often exert pleiotropic effects with 

different functions during developmental stages or across different tissues207. Thus, large-

scale phenotyping of knockout mouse models is essential to robustly detect phenotypic 

consequences207. 

The phenotypic characterization of mouse models lacking Crossfirre, Firre, and Dxz4 

uncovered genotype effects on traits related to immunology, behavior, clinical chemistry, 

dysmorphology, metabolism, and pathology. These findings support a functional role of these 

loci in various biological processes. Transcriptomic analysis of TKO mice identified an 

upregulation of mitochondrial and ribosomal gene sets, suggesting implications in energy 

metabolism338,339. This is consistent with several phenotypes detected by the GMC, including 

lower plasma cholesterol concentrations and urea levels, phenotypic traits associated with 

shifts in protein metabolism340. Moreover, the observed upregulation of mitochondrial and 

ribosomal gene sets is supported by the finding that TKO mutants showed higher levels of 
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triglycerides, as well as lower creatinine levels and lactate concentrations341-343. Interestingly, 

the decrease in lactate was one of the most pronounced effects observed by the GMC. Lactate 

has been reported to have important functional roles in cellular metabolism, serving as a 

product of the glycolysis pathway and substate for mitochondrial respiration341. Apart these 

functions, lactate has further gained recognition as signaling molecule between different 

tissues and organs to facilitate metabolic adaptation in response to changing conditions344. 

Combined, the increase in mitochondrial and ribosomal activity, along with the identified 

metabolic phenotypes support alterations in the energy metabolism of mutant mice. The origin 

of these metabolic shifts remains unknown, but may arise in response to altered cellular 

processes or metabolic demands338,339. 

Beyond energy metabolism, analysis of the peripheral blood showed apparent differences in 

monocyte and eosinophil proportions, as well as B cell and CD4/CD8 T cell ratios. These 

findings are in agreement with the previously described molecular function of Firre in 

hematopoiesis, where Lewandowski et al. reported alterations in the blood cell composition 

upon the deletion of Firre131. The same study further showed that Firre-overexpressing mice 

had elevated levels of proinflammatory cytokines and decreased survival when exposed to 

lipopolysaccharide131. Interestingly, phenotyping of the TKO males also revealed increased 

levels of the proinflammatory cytokine IL-6, confirming a link between the TKO and immune 

response. These findings are further supported by studies of human FIRRE that demonstrate 

a feedback loop between FIRRE and the NF-κB signaling pathway132,345. Combined with the 

results of the thesis, a conserved functional role for Firre/FIRRE in regulating inflammatory 

responses in both mice and humans is indicated. 

Interestingly, male mutants further displayed altered behavior and deficits characteristic for 

sensory processing disorders, such as impaired hearing346. These findings may be supported 

by two human case studies that report male children with a FIRRE locus duplication136,137. The 

patients showed mild to severe intellectual disability with clinical phenotypes of 

neurodevelopmental delay associated to the genetic alteration136,137. One of the human studies 

further observed cardiac abnormalities that may correspond with the subtle cardiovascular 

phenotypes observed in female mice, including higher heart rates and heart-rate-corrected 

QT intervals, as well as signs of dilated cardiomyopathy136. Although these findings need to 

be further investigated in future studies, the results support the disease relevance of Firre and 

a possible conservation of its pathological effects across species.  

Among all phenotypes identified in the TKO mice, a significant number was specific to sex. 

The presence of a high number of sex-specific phenotypes indicates potential sex-specific 

functions for Crossfirre, Firre, and Dxz4. This is in line with the findings, that these loci were 



 97 

identified as the topmost female-specific chromatin accessibility regions. However, it is 

important to note that sexual dimorphisms between males and females can influence the 

prevalence of phenotypic traits. A study by Karp et al., which analyzed 234 traits across 40,192 

mutant mice, revealed that a large proportion of phenotypes are impacted by sex347. 

Consequently, it remains to be investigated whether the observed sex-specific TKO 

phenotypes result from direct sex-specific functions of Crossfirre, Firre, and Dxz4 or manifest 

as a result of the sexual dimorphism between males and females. 

Considering that all three lncRNAs are located on the X chromosome, phenotypes observed 

independently of sex or in male mutant mice suggest a functional role of the RNA of these loci 

from the Xa. In contrast, the involvement of Xi-specific epigenetic signatures cannot be 

excluded for female-specific phenotypes. Determining how these sex-specific loci function 

differently in males and females remains a subject for further investigation. Evidence 

supporting the differential effects of these loci based on whether the deletion occurs on Xa or 

Xi comes from the scRNA-seq analysis of the spleen. Consistent with the immunological 

findings from the phenotyping screen, a significant reduction in B cell proportions was 

observed in cells lacking Crossfirre, Firre, and Dxz4 expression when the deletion was present 

on Xa. Conversely, cells with the deletion on Xi maintained normal B cell proportions but 

showed a significant reduction in CD4 T cells. These results underscore the distinct functional 

roles of these loci depending on whether they are located on Xa or Xi, potentially explaining 

the emergence of sex-specific phenotypes. 

 

6.1.4 Outlook  
 
The multi-omics characterization of different mutant mouse models lacking Crossfirre, Firre, 

and Dxz4, as well as the comprehensive phenotypic analysis, lays a robust foundation for 

future studies investigating the interplay of these X-linked loci and their role in autosomal gene 

regulation. However, further research is needed to dissect the specific functional implications 

of the synergistic gene regulation of Crossfirre-Firre and the pleiotropic phenotypic effects 

observed in the TKO mutants.  

One limitation of the current study is that the impact of the lack of these loci on XCI was only 

investigated at one developmental timepoint (E12.5) and in multiple adult organs of the same 

age (6-weeks). Therefore, effects on the maintenance of Xi repression during aging cannot be 

excluded. Additionally, imprinted genes are often functional during embryonic development 

and can have subtle effects during the transient embryonic growth period, which can be 
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compensated until birth348. Although these experiments were beyond the scope of the current 

study, they may warrant investigation in the future. 

In addition, the present study did not investigate the regulatory mechanism through which 

Crossfirre and Firre influence autosomal gene expression. Given the complexity of lncRNA-

mediated gene regulation, the potential mechanisms are diverse and could include direct or 

indirect trans-regulatory pathways. Therefore, further studies are needed to determine the 

underlying molecular mechanisms and whether these function via RNA and/or DNA elements. 

This study further found sex-specific effects of Crossfirre, Firre, and Dxz4 with different 

phenotypic consequences in males and females. While the Xi-specific characteristics of these 

loci are specific to females, a higher frequency of phenotypes was found in males. This raises 

the question of the distinct functional properties of these loci between the sexes. Further 

investigation is needed to unravel the functional properties that mediate the sex-specific 

functions and to elucidate the different functional mechanisms that can arise from Xi and Xa.  

Finally, several findings from the study point towards the disease relevance of the TKO model, 

including sensory processing disorders or subtle cardiac phenotypes. Interestingly, the 

dysregulation of FIRRE in humans has been linked to intellectual disability in male patients 

with a FIRRE locus duplication136,137. Together, these findings indicate a disease relevance of 

the Firre locus in both mice and humans. Further research is required to explore these 

implications, particularly by challenging the mouse mutants in disease models. Such models 

could help to delineate the molecular pathways affected by these loci and how their 

dysregulation contributes to disease phenotypes. 

 

6.1.5 Summary 
 
In summary, this project provides the first in vivo characterization of the previously 

uncharacterized lncRNA Crossfirre, both individually and in combination with Firre and Dxz4. 

By leveraging one of the largest cohorts of genetically modified X-linked mouse models, 

combined with multi-omics approaches and extensive phenotyping, the study uncovered their 

functional roles at both the molecular and phenotypic levels. Interestingly, the study identified 

these loci as the topmost female-specific chromatin accessibility regions. Despite the 

imprinting of Crossfirre and the unique female-specific characteristics, these X-linked loci were 

found to be dispensable for XCI biology. In contrast, the study identified that Crossfirre and 

Firre function synergistically in autosomal gene regulation, affecting mitochondrial and 

ribosomal pathways. Finally, mouse models lacking all three loci underwent a comprehensive 

phenotypic screening at the GMC, revealing knockout- and sex-specific effects, shedding light 
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on the in vivo roles of Crossfirre, Firre, and Dxz4. The resulting dataset provides a solid basis 

for further studies exploring these X-linked loci.  
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6.2 Project 2: Decoding the targets and mechanisms of the non-
coding genome through allele-specific genomics  

 
Despite advances in ncRNA research, the understanding of their functional roles and 

regulatory targets remains incomplete. Experimental characterization of ncRNAs using mouse 

models is considered the gold-standard but is laboratory extensive. Thus, computational tools 

are needed to predict the target genes and mechanisms of ncRNAs a priori to facilitate the 

selection of candidates for experimental validation. So far, traditional approaches, such as 

genotype correlation studies, rely on large sample sizes and have been unable to identify a 

high number of ncRNA-targets due to their dynamic expression patterns. This project aimed 

to unravel the cis-regulatory ncRNAs of mice and humans by developing a novel 

bioinformatics framework to predict their targets and mechanisms, based on the ASE patterns.  

 

6.2.1 Leveraging the allele-specific information to identify the regulatory 
targets of ncRNAs 

 
Previously, Andergassen et al. performed comprehensive mapping of the allele-specific 

landscape across different mouse tissues and observed that the number of allele-specific 

ncRNAs and pcGenes correlated78. The present study confirmed this observation by 

systematically assessing the frequency of allele-specific gene loci, which identified that allele-

specific ncRNAs are significantly enriched around allele-specific pcGenes in mice. To further 

validate these findings in humans, the GTEx database was used and revealed similar trends, 

supporting the hypothesis of the co-regulation between adjacent allele-specific loci. However, 

a significant enrichment was detected in only half of the human tissues tested. A possible 

explanation for several non-significant samples is that overlapping gene loci of the GTEx data 

were not considered. Due to the non-strand-specific nature of the data, overlapping gene loci 

had to be removed to avoid the detection of false positives. In mice, 15.18% of the linkages 

were found to overlap antisense transcripts. Consequently, the lack of strand-specificity of the 

GTEx data represents a significant limitation of the study and may have hindered the 

identification of a significant fraction of relevant cis-acting ncRNAs. 

Over the past decades, the computational identification of ncRNA-targets has remained 

challenging, mainly due to the dynamic expression pattern of ncRNAs33,42. The developed 

Allelome.LINK approach leverages the allele-specific information, providing a promising 

framework to address this issue by comparing the expression levels of alleles within the same 

sample. This approach provides a highly controlled system that avoids compensatory effects 

or dynamic expression patterns. To date, ASE has been used to identify regulatory variants in 
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the genomes of multiple organisms, including yeast, plants, mice, flies, wasps, birds, and 

humans349. However, rather than investigating the effects of genetic variants, this study 

examined the co-occurrence of ASE gene loci, providing insights beyond variant-specific 

effects. In addition to the Allelome.LINK approach, a recent study by Goede et al. also 

suggested that ASE patterns might be used to detect cis-regulatory interactions between 

genes350. The study identified local patterns of high ASE sharing between lncRNAs and nearby 

genes and identified 137 ASE sharing events. For these cases, the authors also implied 

potential cis-regulatory relationships between the nearby allele-specific genes350. However, 

the study examined ASE at the population level to identify associations that were consistently 

observed across the cohort. In contrast, Allelome.LINK performs individual-level analyses to 

capture ASE variability specific to particular samples. This approach provides a more nuanced 

understanding of ASE patterns and offers insights into personalized regulatory mechanisms 

that may be missed in population-wide summaries. Several studies have shown that allele-

specific ncRNAs can induce ASE in their regulatory target genes142,187,351. Thus, investigating 

the ASE pattern of ncRNA and target further allow to infer the underlying mechanism of the 

regulatory relationship. An enhancing ncRNA that is higher expressed on one allele is 

expected to result in increased expression of the target gene on the same allele. In contrast, 

repressive effects should be reflected as anti-correlation between the alleles.  

While one limitation of Allelome.LINK is that the detection of targets is restricted to cis-acting 

ncRNAs, this characteristic simplifies the process of identifying direct regulatory targets. 

Differential gene expression analysis following a gene knockout often reveals numerous 

dysregulated genes, making the interpretation of the results challenging206,352. These include 

all genes affected by the knockout in a direct and indirect manner. In contrast, in an allele-

specific model, effects that occur in trans are masked, as these effects affect both alleles 

equally353. As a result, allele-specific models provide a robust framework for identifying the 

primary cis-interactions of ncRNAs and their targets. Additionally, one of the key advantages 

of the Allelome.LINK approach is the ability to identify regulatory associations based on 

transcriptomic data. This facilitates the candidate selection by providing prior knowledge of 

the specific tissues in which a ncRNA regulates a target gene. 

 

6.2.2 Predicting ncRNA-targets in mice 
 
The present study identified 397 ncRNA-to-target linkages in the major organs of F1 hybrid 

mice between the BL6 and CAST strains. The usage of F1 hybrids provides a robust approach 

for identifying gene loci with ASE, as the SNP information of the inbred strains are well 

defined189. Furthermore, F1 mouse hybrids allow the inclusion of biological replicates with the 
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same genetic background. As a higher number of replicates has been shown to increase the 

power of ASE detection, the ability to use replicates increases the robustness of ASE detection 

for both ncRNAs and targets354. This finding was further confirmed by our study, highlighting 

that the highest precision and recall for Allelome.LINK were obtained for pooled samples. 

The predicted interactions identified by Allelome.LINK are based on statistical correlations 

between the ncRNAs and potential target genes. Therefore, these correlations do not 

necessarily imply causation. However, the significant enrichment of allele-specific ncRNAs 

nearby allele-specific pcGenes supports the likelihood of co-regulatory associations. It is 

important to note that the Allelome.LINK strategy was designed to predict regulatory 

interactions, providing a valuable foundation for further investigation. Future studies can build 

upon these findings and leverage this resource for candidate selection to perform functional 

assays and refine our understanding of regulatory ncRNAs. 

The present study provided functional validation of Allelome.LINK by using a genetic knockout 

mouse model for the lncRNA Airn78. The Airn cluster has been shown to provide a powerful 

model for studying the regulatory targets of a lncRNA with ASE78,79,148,174,175. However, to 

further investigate the associations identified by Allelome.LINK, different knockout strategies 

have to be used in future experiments to validate the predicted regulatory relationships and 

explore their mechanisms beyond cis-acting effects. While transcriptomic data suggest RNA-

based mechanisms, the possibility that regulatory DNA elements or the transcription of the 

ncRNA itself drive the regulatory effect on the target cannot be excluded101,355. Further studies 

are needed to disentangle these mechanisms, including whole-gene ablation to confirm 

regulatory relationships, followed by strategies such as polyadenylation-terminator insertion 

or promoter deletion to distinguish between DNA elements, transcription, and the ncRNA 

transcript101. Replacement of the gene body with reporter genes can further identify effects 

due to the act of transcription and promoter activity. Trans effects can be tested by rescue 

experiments following ncRNA deletion, while frameshift or start codon mutations can be used 

to investigate small functional peptides within ncRNAs101. Although Allelome.LINK identifies 

regulatory ncRNAs that act primarily in cis, it may be worthwhile to test for additional functional 

effects in trans, as regulatory effects can be affected by multiple cis and trans effects356. For 

example, the lncRNA Tug1, which is essential for male fertility, acts in cis by regulating 

neighboring genes via DNA elements and in trans, through RNA-based mechanisms357. These 

findings highlight the relevance of testing gene loci for multiple regulatory mechanisms.  

In contrast to knockout studies, analyses of parent-hybrid trios with data collected from the 

parental lines and the F1 hybrid allow the influence of cis- over trans-regulatory effects to be 

inferred. Comparative analysis of parent-hybrid trios allows the identification of both regulatory 
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relationships within F1 hybrids358. Sequencing of parental F0 strains offers the advantage of 

detecting regulatory variation by differential gene expression analysis. Trans-acting regulatory 

effects manifest as expression differences between the parental strains without ASE in the F1 

hybrid, whereas cis-acting effects are reflected in both the allelic ratio of the F1 hybrids and in 

the differential expression between the parental strains358. This approach provides valuable 

insights into the regulatory mechanisms underlying gene expression variation. 

The ability to replicate biological samples in mice further offers the advantage of studying F1 

hybrids across various conditions, including disease models or different stages during 

development and aging. In outbred populations such as humans, genetic variation makes it 

challenging to distinguish genotype-driven effects from true context-specific interactions, as 

collecting samples from the same individual under different environmental contexts is often 

impractical. The use of genetically identical F1 hybrids eliminates this variability and facilitates 

the identification of context-dependent regulatory interactions. Thus, this strategy provides a 

robust model for studying regulatory shifts across different conditions. 

The integration of multiple strains into the analytical framework could further be used to cross-

validate existing regulatory linkages and to identify novel associations by mimicking outbred 

populations and genetic diversity. A recent study by Tsouris et al. employed a large diallel 

panel comprising 323 hybrid yeast strains to analyze the impact of different genetic variants 

on gene expression358. This concept could be translated to the allele-specific analysis, to 

pinpoint the causal variants leading to ASE in the identified regulatory ncRNAs. Comparing 

the ASE patterns of different F1 strains enables to classify strains with and without ASE for a 

particular locus. This allows the identification of genetic variants present in ASE-positive 

strains but absent in ASE-negative strains, leading to the identification of candidate variants. 

Subsequently, statistical approaches such as regression models can be applied to establish 

causal relationships between these variants and ASE. To gain further mechanistic insights, 

these variants could then be investigated using epigenetic data to determine whether these 

variants are located within open chromatin regions or known DNA regulatory sites358. Motif 

analysis can then assess whether these variants disrupt transcription factor binding, providing 

a detailed understanding of their functional impact. Thus, these analyses could elucidate the 

underlying molecular variants responsible for ASE. 

 

6.2.3 Predicting ncRNA-targets in humans 
 
After predicting ncRNA-targets in mice, the Allelome.LINK approach was applied to the GTEx 

database and identified 2,291 linkages across 54 different tissues and 838 human individuals. 
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Interestingly, most ncRNA-to-target associations were detected in single individuals. Unlike 

inbred mouse strains, the human population is outbred, exhibiting high genetic diversity. Thus, 

each individual possesses a unique set of genotypes. Considering that genetic variation can 

lead to ASE, the human population has the potential to reveal a vast array of ASE gene 

loci142,176. The observation that more ASE loci are identified as the number of individuals 

increases supports this notion. As a result, novel linkages were identified with each sample 

with no saturation observed in any tissue. Thus, the human genetic variation provides a 

substantial potential for the discovery of a large number of linkages. Although the regulatory 

effects can only be detected in individuals harboring the specific set of variants leading to ASE, 

the underlying associations are expected to be common across individuals. 

To further evaluate the performance of the pipeline, sample-matched eQTL data were 

retrieved from the GTEx database and used to validate the predicted ncRNA-target linkages 

in human tissues318. Remarkably, 77.47% of the linkages were confirmed by the eQTL data 

across tissues, with 18.72% of the eQTLs originating from the same tissue as the predicted 

linkage. This substantial validation rate highlights the effectiveness of the allele-specific 

approach for predicting ncRNA-targets. In addition, the accuracy of the mechanism prediction 

was assessed by evaluating the mechanism assignments for the imprinted interaction 

between DLK1 and MEG3. Testing the mechanism assignment for this imprinted interaction 

is particularly useful as the expected repressive relationship is independent of the DNA 

sequence151. Remarkably, the interaction was correctly identified as repressive in 79.46% of 

the samples tested, highlighting the reliability of the allele-specific framework in accurately 

assigning regulatory mechanisms. About 20% of the linkages were misclassified as 

enhancing, which could be due to errors in phasing. Phasing is a statistical method that 

assigns alleles to haplotypes based on linkage disequilibrium. However, as the distance 

between loci increases, phasing tends to become less accurate and more prone to errors359. 

Advances in phasing algorithms will further improve the mechanism assignment of the 

Allelome.LINK strategy. 

Linkages that were identified in many samples and were consistently classified as enhancing 

or repressive were highlighted as high-confident linkages. While linkages identified in 

individual samples are expected to reflect common mechanisms, the high-confident linkages 

could be replicated across multiple samples and thus represent more robust findings due to 

their reproducibility. It is noted that the prevalence of a consistent ASE pattern may further 

indicate biological relevance142. Given that ASE is primarily driven by heterozygous variants, 

their widespread presence in a population implies that balancing selection favors the 
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heterozygous state360. Consequently, these loci are of particular interest and warrant further 

investigation. 

6.2.4 GWAS integration links non-coding variants to pcGenes 
 
Over the past few decades, GWAS have significantly advanced our understanding of the 

genetic basis of disease, uncovering hundreds of thousands of risk variants214. However, the 

vast majority of these variants are located in the non-coding genome, making it difficult to 

interpret their functional implications361. Many risk variants identified by GWAS closely co-

localize with regulatory regions, such as ncRNA loci, yet the limited functional understanding, 

including their regulatory targets and mechanisms, poses a significant challenge in 

understanding how these variants contribute to disease362. 

This study successfully predicted the protein-coding targets for 30.59% of the variants that 

overlapped informative ncRNA loci (n = 324). Although this number represents only a fraction 

of the total GWAS-identified SNPs, the future integration of more human sequencing datasets 

will continue to increase the number of non-coding risk variants that can be assigned to their 

respective protein-coding targets. To incorporate additional GWAS variants that do not overlap 

with linked ncRNAs, variants and ncRNA loci can be linked via eQTL co-localization350. If an 

eQTL associated with the expression of a particular ncRNA significantly co-localizes with a 

disease-associated variant, this SNP could be assigned to the ncRNA, which can be linked to 

the target gene via Allelome.LINK. This approach will further increase the number of non-

coding GWAS variants linked to their protein-coding target genes. 

All ncRNA-target predictions, including the inferred mechanisms and GWAS information, are 

accessible via intuitive genome browser visualization and can be accessed via URL links listed 

in the GitHub repository at https://github.com/AndergassenLab/Allelome.LINK. This dataset 

provides a valuable resource to select candidate ncRNAs for the tissue of interest. As the 

availability of sequencing data and risk variants continues to expand, our strategy offers 

promising avenues for future research. 

 

6.2.5 Outlook  
 
The present findings provide the basis for numerous future research projects that will help to 

elucidate the non-coding genome. The extensive resource, comprising ncRNA-target 

predictions for the major mouse organs and 54 different human tissues, serves as an ideal 

starting point for the community to select candidates for further investigation and validation. 

This resource will help to prioritize functional and disease-relevant ncRNAs that can be 

https://github.com/AndergassenLab/Allelome.LINK
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investigated using wet-lab experiments. The user-friendly nature of Allelome.LINK, combined 

with the growing pool of GWAS variants and sequencing data, will continue to identify novel 

regulatory interactions and shed light on the functional implications of the non-coding genome.  

The highly dynamic expression pattern of ncRNAs also provides the opportunity to discover 

novel linkages in different tissues, cell types, or conditions. Thus, as more data is integrated, 

the pool of ncRNA-target predictions will continue to grow. Because bulk RNA-seq data 

comprises mixed cell types, ASE patterns deriving from different cell types could be 

masked142. To address this limitation, the updated Allelome.PRO v2.0 can be used on single-

cell data, allowing Allelome.LINK to identify cell-type-specific interactions. Additionally, 

integrating data from different developmental stages or conditions, such as aging or disease, 

can reveal condition-specific ncRNA-target interactions. Interestingly, it is assumed that the 

presence of ASE increases with age142. By stratifying sequencing data based on condition, 

such as age or disease, this would not only allow the identification of novel linkages but could 

potentially highlight linkages or ASE patterns with biological relevance to a specific condition. 

The vast amount of data offered by the GTEx database provides further opportunities. RNA-

seq data can be used to calculate gene co-expression networks to assign linked ncRNAs and 

targets to pathways or cell types, providing additional insights into their functional roles350. 

Moreover, outlier enrichment analysis could be used to investigate the expression of ncRNA 

and target in the tissue and individual where the linkage was identified363. Due to the presence 

of ASE, the expression profiles of both interaction partners are likely to differ significantly from 

that of the remaining population350. Correlation of the outlier expression of ncRNA and target 

could validate the identified interaction in the respective individual and tissue and provide an 

approach to confirm linkages in silico. Finally, comparative analyses of genetic variants could 

reveal the specific variations responsible for the observed expression changes350. This could 

provide further insights into the genetics of ncRNA regulation and its potential relevance to 

disease. 

It is worth noting that the Allelome.LINK approach can be extended by integrating sample-

matched genomic data, such as those obtained from ATAC- or ChIP-sequencing. The 

additional integration of such sequencing data would allow the prediction of target genes 

associated with DNA regulatory elements, for example enhancer elements. This integration 

enables a comprehensive understanding of the regulatory mechanisms within the non-coding 

genome, providing insights into the complex network of interactions that control gene 

expression. Additionally, since many GWAS risk variants are located in DNA regulatory 

elements, including enhancers or repressors364, these regulatory-target predictions can 

subsequently be applied to link disease variants that overlap DNA elements to their associated 
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target genes. Thus, the Allelome.LINK strategy has the potential to unravel the intricacies of 

a majority of the cis-acting non-coding genome and its implications for complex diseases.  

 

6.2.6 Summary 
 
The present study found a significant enrichment of allele-specific ncRNAs nearby allele-

specific pcGenes in both mice and humans, supporting the concept of co-regulatory 

associations. This discovery led to the development of Allelome.LINK, a novel bioinformatics 

framework that uses the allele-specific information to predict the target genes and 

mechanisms of cis-acting ncRNAs. Applying Allelome.LINK to the major mouse organs and 

human samples resulted in the identification of 397 mouse and 2,291 human ncRNA-target 

pairs and their predicted mode-of-actions. Following extensive validation, the integration of 

GWAS data allowed a substantial proportion of ncRNA-overlapping risk variants to be mapped 

to their respective protein-coding targets. With the increasing availability of sequencing data, 

this strategy has the potential to elucidate the targets and mechanisms of a majority of the cis-

acting non-coding genome. 
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10 Appendix 

10.1 Manual of the Allelome.PRO v2.0 and Allelome.LINK pipeline 
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bedtools (≥ version 2.20.1) 
SAMtools (≥ version 0.1.19) 
R (≥ version 3.1.0) 
Perl (≥ version 5.20.0) 
fetchChromSizes (≥ version 377) 
bedToBigBed (≥ version 377) 

plyr; gtools; optparse 
# If not installed, Allelome.PRO v2.0 / Allelome.LINK will try to install 
them in the default R library path

bash Allelome.PROv2.0.sh -i <input_bam> -a <annotation_file> -s <SNP_file> 
-o <output_directory> [options] 
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sh create_SNPfile_v5.sh mgp.v5.merged.snps_all.dbSNP142.vcf 
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Rscript Allelome.LINK.R -i <input_locus_table.txt> -o <output_directory> 
[options]  
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10.2 Abbreviations: Phenotyping screens 
Table 1 Abbreviations: Phenotyping screens 

Abbreviation Name 

TEWL Transepidermal water loss 

Calc IFN gamma Calculated IFN gamma 

Calc IL5 Calculated IL5 

Calc IL6 Calculated IL6 

Calc TNF alpha Calculated TNF alpha 

DisTTot Distance traveled - Total 

NRTot Number of rears - Total 

PcDisCenTot Percent center distance - Total 

PcTiCenTot Percent time spent in the center - Total 

CenPermTi Center - Permanence time 

BN Startle amplitude - Background Noise 

ST110 Acoustic Startle Response at 110 dB 

PcPPI_PP67 Percentage Prepulse inhibition - PP 67 dB 

PcPPI_PP69 Percentage Prepulse inhibition - PP 69 dB 

PcPPI_PP73 Percentage Prepulse inhibition - PP 73 dB 

PcPPI_PP81 Percentage Prepulse inhibition - PP 81 dB 

PcPPI_Global Percentage Prepulse inhibition - Global 

Conc TNF Concentration TNF 

Conc Insulin Concentration Insulin 

Conc FGF 21 Concentration FGF21 

Conc Leptin Concentration Leptin 

LVPWD Left ventricular posterior wall width in diastole 

LVIDd Left ventricular internal dimension in diastole 

LVIDs Left ventricular internal dimension in systole 

IVSd Interventricular septum in diastole 

IVSs Interventricular septum in systole 

LVPWs Left ventricular posterior wall in systole 

Heart rate Heart Rate 

PR Duration of the PR interval 
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QRS Duration of the QRS interval 

QTcB Duration of the QTC interval 

EJ fraction Ejection fraction 

Fract shortening Fractional shortening 

QTcM Heart rate-corrected QT interval (QTcM) 

Ca Calcium concentration in plasma 

Chol Cholesterol concentration in plasma 

Fe Iron concentration in plasma 

Gluc Glucose concentration in plasma 

K Potassium concentration in plasma 

LDH Lactat-dehydrogenase activity in plasma 

Phos Inorganic phosphate concentration in plasma 

TP Total protein concentration in plasma 

Trig Triglyceride concentration in plasma 

Urea Urea concentration in plasma 

AP Alkaline phosphatase activity in plasma 

Cl Chloride concentration in plasma 

Na Sodium concentration in plasma 

RBC Red blood cell count in whole blood 

WBC Total white blood cell count in whole blood 

HGB Hemoglobin concentration in whole blood 

HCT Hematocrit - percentage of cellular components on whole blood 

MCV Mean corpuscular volume 

MCH Mean corpuscular hemoglobin content of erythrocytes 

MCHC Mean corpuscular hemoglobin concentration of erythrocytes 

GPT 
Alanine aminotransferase (Glutamat pyruvat transaminase) activity in 
plasma 

GOT 
Aspartate aminotransferase (Glutamat oxalacetat transaminase) activity 
in plasma 

MPV Mean platelets volume 

PLYM Percentage of lymphocytes in total white blood cells 

PMO Percentage of monocytes in total white blood cells 

RDW Distribution index of red blood cells 
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UIBC Unsaturated iron binding capacity in plasma 

Albumin Albumin concentration in plasma 

Ekrea Creatinine concentration in plasma measured enzymatically  

alpha Amylase CNPG3 alpha-Amylase (CNPG3) 

Glucose conc Glucose concentration 

Lactat AU400 Lactat concentration in plasma (AU400) 

PDW Calculated distribution width of platelets 

PLCR Platelet large cell ratio 

Bw X Ray Body weight at x-ray analysis 

BMC whole mouse Bone mineral content whole mouse (excluding skull) 

BMD whole mouse Bone mineral density whole mouse (excluding skull) 

Lean mass Lean mass whole mouse (excluding skull) 

Fat mass Fat mass whole mouse (excluding skull) 

Axial length l Axial length left eye 

Le fnmv Left fundus number of main vessels 

Le rethi Left retinal thickness 

Fat mass NMR Fat mass determination at nuclear magnetic resonance 
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10.3 Resource file: ncRNA-to-target linkages across mice and human 
samples 
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10.4 Abbreviations: GTEx tissues 
Table 2 Abbreviations: GTEx tissues 

Abbreviation Name 

ADPSBQ Adipose - Subcutaneous 

ADPVSC Adipose - Visceral Omentum 

ADRNLG Adrenal Gland 

ARTAORT Artery - Aorta 

ARTCRN Artery - Coronary 

ARTTBL Artery - Tibial 

BLDDER Bladder 

BREAST Breast - Mammary Tissue 

BRNACC Brain - Anterior cingulate cortex BA24 

BRNAMY Brain - Amygdala 

BRNCDT Brain - Caudate basal ganglia 

BRNCHA Brain - Cerebellum 

BRNCHB Brain - Cerebellar Hemisphere 

BRNCTXA Brain - Cortex 

BRNCTXB Brain - Frontal Cortex BA9 

BRNHPP Brain - Hippocampus 

BRNHPT Brain - Hypothalamus 

BRNNCC Brain - Nucleus accumbens basal ganglia 

BRNPTM Brain - Putamen basal ganglia 

BRNSNG Brain - Substantia nigra 

BRNSPC Brain - Spinal cord cervical c1 

CLNSGM Colon - Sigmoid 

CLNTRN Colon - Transverse 

CVSEND Cervix - Endocervix 

CVXECT Cervix - Ectocervix 

ESPGEJ Esophagus - Gastroesophageal Junction 

ESPMCS Esophagus - Mucosa 

ESPMSL Esophagus - Muscularis 

FIBRBLS Cells - Cultured fibroblasts 



 153 

FLLPNT Fallopian Tube 

HRTAA Heart - Atrial Appendage 

HRTLV Heart - Left Ventricle 

KDNCTX Kidney - Cortex 

KDNMDL Kidney - Medulla 

LCL Cells - EBV-transformed lymphocytes 

LIVER Liver 

LUNG Lung 

MSCLSK Muscle - Skeletal 

NERVET Nerve - Tibial 

OVARY Ovary 

PNCREAS Pancreas 

PRSTTE Prostate 

PTTARY Pituitary 

SKINNS Skin - Not Sun Exposed Suprapubic 

SKINS Skin - Sun Exposed Lower leg 

SLVRYG Minor Salivary Gland 

SNTTRM Small Intestine - Terminal Ileum 

SPLEEN Spleen 

STMACH Stomach 

TESTIS Testis 

THYROID Thyroid 

UTERUS Uterus 

VAGINA Vagina 

WHLBLD Whole Blood 
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