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SYNOPSIS 

This publication-based habilitation thesis is divided into three parts representing the main 

research areas of my habilitation work. Part I focuses on determining factors that influence the 

degree of weight loss and energy compensation in lifestyle interventions aiming to improve 

weight and health-related outcomes. Part II focuses on technology-assisted methods for food 

intake assessment aiming to enhance the remote measurement and monitoring of dietary 

intake and eating behaviors. Part III highlights further work of my habilitation research, 

examining the health effects of large lifestyle interventions beyond weight loss and addressing 

the challenges in defining adherence to calorie restriction goals.  

PART I – Predictors of Energy Compensation and Weight Loss in Lifestyle Interventions 

According to the World Health Organization, 2.5 billion adults (43%) worldwide were 

overweight in 2022, and 890 million of these were living with obesity. Obesity is associated 

with an increased risk for numerous severe health conditions and premature mortality, 

presenting a substantial public health risk and economic burden worldwide. Intensive lifestyle 

interventions, combining a calorie restriction diet with physical activity prescription and 

behavioral therapy, are the current non-medical gold-standard approach to promote weight 

loss and effectively treat obesity and manage associated health risks. However, there is 

considerable variability in the response to lifestyle-based weight loss treatment, and many 

participants do not achieve clinically significant weight loss of more than 5%, especially in the 

medium to long term. Identifying these individuals early can help improve longer-term weight 

loss success. Exercise interventions are particularly prone to considerable variability in the 

weight loss response, and most individuals (>75%) lose significantly less weight than expected 

based on the energy expended in exercise. The discrepancy between the expected and actual 

energy deficit (or weight loss) is called compensation. Energy (or weight) compensation is 

primarily caused by increases in energy intake in response to the exercise regimen, which 

partially or even fully negate the energy deficit created by exercise and thereby impede weight 

loss. While regular exercise yields many health benefits independent of weight loss, these 

benefits can be maximized when exercise results in sustained weight loss. And because the 

prospect of weight loss is the primary reason and motivator for many individuals to engage in 

any exercise- or lifestyle-based weight loss intervention, absent weight loss often leads to 

discontinuation of the program as it is perceived as unsuccessful. Therefore, identifying 

predictors of weight loss success is important to guide treatment and identify patients needing 

increased support for weight loss, such as a dietary intervention as an add-on to an exercise 

intervention or increased contact with interventionists and individualized behavioral strategies. 

As part of my habilitation work, we comprehensively analyzed baseline and dynamic, 

intervention-specific predictors of energy compensation and weight loss, ranging from acute 

exercise bouts to exercise interventions and a pragmatic lifestyle intervention. Finally, in an 

industry-funded project, we went beyond classic predictor analyses and examined whether 

specific genotype patterns modify diet effects on weight loss. 
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In Publication 1, we aimed to identify baseline predictors of post-exercise energy intake and 

compensation after acute exercise. For this, we utilized data from the EAT-FC study, a 

randomized crossover study comparing the effects of 45 min aerobic exercise vs. rest on post-

exercise energy intake in a laboratory-based test meal. Biological (sex, body composition, 

appetite hormones) and behavioral (habitual exercise via prospective exercise log, eating 

behavior traits) characteristics were considered as potential predictors. We found that 

biological and behavioral characteristics differentially affect total and relative (compensatory) 

post-exercise energy intake in men and women. In men, fasting concentrations of appetite-

regulating hormones (peptide YY and adiponectin) predicted total post-exercise energy intake, 

explaining 78% and 44% of the variance in post-exercise energy intake, while in women, only 

habitual exercise predicted total post-exercise energy intake, with more exercise protecting 

against compensatory eating. These results can help identify individuals who are more likely 

to (over-) compensate for the energy expended in exercise via increased post-exercise energy 

intake, allowing to deploy targeted countermeasures ahead of time. 

In Publication 2, we went beyond acute exercise and aimed to determine whether habitual 

physical activity behavior predicts weight change, weight compensation, and changes in 

energy intake during a 24-week supervised aerobic exercise intervention. We utilized data 

from the Examination of Mechanisms of Exercise-induced Weight Compensation 

(E-MECHANIC) trial for these analyses. The primary aim of E-MECHANIC was to identify 

mechanisms of exercise-induced weight compensation by examining the effect of the two 

different doses of exercise training (moderate dose: 8 kcal/kg of body weight per week [KKW] 

of exercise-induced energy expenditure; high-dose: 20 KKW) on energy intake over a 24-week 

intervention period compared to a no-exercise control condition. In E-MECHANIC, most 

exercisers (82.6%) compensated (less weight loss than expected). Our results showed that, 

while there was substantial variability in the data, on average, lower baseline levels of 

moderate-to-vigorous physical activity (MVPA) were associated with less weight loss from 

exercise, higher compensation, and increased energy intake. Specifically, for every 15 min 

more of habitual MVPA at baseline, participants lost 0.23 kg more weight, compensated 0.20 

kg less, and decreased daily energy intake by 22 kcal per day from baseline to follow-up. 

Consequently, individuals with lower habitual MVPA levels at baseline could benefit from an 

additional dietary intervention when participating in an exercise intervention for weight loss to 

prevent compensatory mechanisms such as increased energy intake. 

In Publication 3, we shifted the focus away from classic baseline (participant) characteristics 

as predictors. Instead, we focused on dynamic interventions-specific factors as predictors of 

weight loss in an exercise intervention. While Publication 2 showed that habitual MVPA at 

baseline predicts weight loss, weight compensation, and changes in energy intake after six 

months of supervised exercise, the effect was only moderate, with habitual MVPA explaining 

12%, 13%, and 21% of the variance in these outcomes. This leaves a substantial portion of 

the variance unexplained, as is often the case for behavioral baseline predictors. Dynamic, 

intervention-specific factors that are modifiable have the potential to be more reliable 

predictors of medium-to-long-term weight loss success, as has been shown for restrictive 

https://www.mdpi.com/2072-6643/13/2/347
https://trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-15-212
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dietary interventions, including large trials such as Look AHEAD (Action for Health in 

Diabetes). We used data from two supervised 6-month exercise intervention studies: E-

MECHANIC and the Dose-Response to Exercise in Postmenopausal Women (DREW) study. 

Similar to E-MECHANIC, DREW compared the effects of different exercise doses (4 KKW, 8 

KKW, and 12 KKW) on weight loss and compensation and further examined the dose-

response relations between exercise training and cardiorespiratory fitness and cardiovascular 

disease risk factors. For our analyses, participants in both studies were divided into tertiles 

based on percent weight change from baseline to week 4, with tertiles 1 and 3 exhibiting the 

least and most initial weight loss, respectively. At month 6, weight loss was lower, and 

compensation was greater in tertile 1 than in tertile 3 in both studies. Further, changes in 

triglycerides and high-density lipoprotein (HDL) cholesterol were less favorable in tertile 1 

compared to tertile 3. These results show that less initial weight loss was associated with 

longer-term attenuated weight loss and greater compensation during aerobic exercise training. 

Individuals with less initial weight loss during exercise may require additional intervention 

measures early on to decrease compensation and facilitate weight loss. 

In Publication 4, an invited review article, we aimed to answer the question of why exercise by 

itself is a relatively ineffective method for weight loss despite playing an undisputedly important 

role in the prevention and management of obesity, summarizing our and others’ previous work. 

We discuss energy-related aspects of weight loss as well as exercise effects on eating 

behavior, illustrating that a greater calorie deficit can be achieved more efficiently through 

calorie restriction compared to exercise and that exercise is often accompanied by 

compensatory eating, which slows or even negates weight loss. We also show that the 

preservation of fat-free mass through exercise, which contributes to slower weight loss 

compared to calorie restriction, is, in fact, beneficial as it supports better long-term appetite 

and energy balance regulation and can thereby prevent weight regain. 

In Publication 5, we tested whether initial weight loss can predict longer-term weight loss in a 

2-year pragmatic weight loss intervention using data from the Promoting Successful Weight 

Loss in Primary Care in Louisiana (PROPEL) trial. Contrary to previous large intensive lifestyle 

interventions typically conducted in academic health centers, PROPEL used a more pragmatic 

approach, delivering the intervention content to participants via trained health coaches 

embedded in primary-care clinics in weekly sessions initially and monthly sessions in months 

7 through 24. A key intervention component in PROPEL was daily self-weighing and the 

incorporation of a personalized weight graph, which automatically plotted participants’ weight 

data in relation to the expected individualized weight loss trajectory (10% at six months with 

lower [7.5%] and upper [12.5%] bounds). In addition to initial weight loss, we utilized these 

self-weighing and weight graph data for our prediction analyses. Specifically, we tested 

whether initial weight loss, the number of daily weights, and the number of adherent weights 

(i.e., on the expected weight loss trajectory) at 2, 4, and 8 weeks predicted medium-to-long-

term weight loss at 6, 12, and 24 months of the intervention. Our results show that greater 

initial weight loss, daily self-weighing adherence, and adherence to the expected weight loss 

trajectory predicted weight loss at all time points, while initial weight loss remained the best 

https://journals.lww.com/acsm-msse/fulltext/2004/02000/dose_response_to_exercise_in_women_aged_45_75_yr.25.aspx
https://www.sciencedirect.com/science/article/pii/S155171441730695X?via%3Dihub
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predictor in multivariable models. As expected, a longer initial timeframe and the shortest 

outcome timeframe (i.e., six months) generally yielded the highest predictive value; 2-week 

weight loss explained 15%, 11%, and 9% of the variance in weight loss at 6, 12, and 24 

months, whereas 8-week weight loss explained 50%, 32%, and 16%. These results highlight 

the importance of initial weight loss for predicting long-term success and show that self-

weighing and adherence to the expected weight loss trajectory can improve weight loss 

prediction beyond initial weight loss alone. 

In Publication 6, we went beyond predictor analyses and aimed to identify the mediators of 

weight change during the PROPEL intervention. Understanding what factors drive weight loss 

in an intensive lifestyle intervention is important, as strategies and behaviors can be targeted 

and tested in future interventions to enhance the efficacy of weight-management programs. 

Specifically, we assessed whether self-reported eating behaviors (restraint, disinhibition), 

dietary intake (percentage fat intake, fruit/vegetable intake), physical activity, and weight- and 

health-related quality of life constructs mediated between-group (intervention group vs. control 

group) variations in weight change from baseline to month 12 and from month 12 to month 24. 

At 12 months, the intervention group lost 7.2 kg more weight compared to the control group, 

and improvements in disinhibition, percentage fat intake, physical activity, and subjective 

fatigue in the intervention group partially explained this between-group difference. Weight loss 

at 24 months was 5.4 kg greater in the intervention compared to the control group, showing 

that the intervention group (re-)gained 2.2 kg from months 12 to 24 compared to the control 

group. Change in fruit and vegetable intake partially explained this response, and no variables 

attenuated the weight regain of the intervention group. These results show that several 

psychological and behavioral variables mediated weight change during a 2-year pragmatic 

weight loss intervention, which could help refine weight management regimens in underserved 

patients with obesity. 

In Publication 7, we examined genotype-diet interactions on weight loss. Instead of conducting 

a classic predictor analysis, we designed a personalized nutrition intervention, testing the 

effects of diets with different macronutrient compositions on weight loss among individuals 

with different macronutrient-responsive genotypes. Specifically, we identified participants as 

fat-responders or carbohydrate-responders via a genetic algorithm that considered their 

combined genotypes at ten genetic variants. The algorithm was based on the most recent 

literature, suggesting that participants with carbohydrate-responsive polymorphisms lose 

more weight on high-carbohydrate vs. high-fat diets and vice versa for those with fat-

responsive polymorphisms. After identifying participants as fat-responders or carbohydrate-

responders, they were randomized to either a calorie-restricted (daily deficit of ~750 kcal) high-

fat or high-carbohydrate diet for 12 weeks. Dietitians delivered the weight loss intervention via 

12 weekly diet-specific small group sessions and participants received daily diet-specific meal 

plans to self-prepare meals during the intervention period. Weight loss at 12 weeks was ~5 kg 

(5.5%) and did not differ between the genotype-concordant and genotype-discordant diets for 

the whole sample or when analyzing carbohydrate- and fast-responders separately. Similarly, 

results for secondary endpoints such as percent body fat, waist and hip circumference, or 
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blood pressure did not differ between the genotype-concordant and genotype-discordant 

diets. These results show that with the current ability to genotype participants as fat- or 

carbohydrate-responders, evidence does not support greater weight loss on genotype-

concordant diets. This manuscript has been selected as an Editor’s Highlight, which features 

the 50 best publications in Nature Communications. 

Taken together, these results indicate that individual characteristics such as sex, fasting 

hormone levels, and habitual exercise play significant roles in post-exercise energy intake. 

The sex-dependent effects of fasting appetite hormone levels on acute post-exercise energy 

intake were particularly novel and should be further explored more longitudinally in future 

studies. Our results also highlight the importance of higher (pre-intervention) habitual MVPA 

for achieving weight loss during an exercise intervention, consistent with findings showing 

“unregulated” energy intake levels in individuals with low physical activity levels. Further, 

incorporating dynamic, intervention-specific predictors (i.e., initial weight loss), in addition to 

baseline characteristics, can substantially improve prediction models and identify individuals 

who may struggle with weight loss and compensation during both exercise- and diet-based 

lifestyle interventions to allow targeted countermeasures early on. These countermeasures 

should focus on psychological and other behavioral factors, such as disinhibition, dietary 

intake, and physical activity, to improve weight loss and prevent weight regain. Finally, specific 

genotypes that might enhance weight loss via a high-carbohydrate vs. high-fat diet are 

currently not supported by evidence, and the variability in weight loss is more likely explained 

by dietary adherence and other participant characteristics. 

PART II – Technology-Assisted Food Intake Assessment 

Accurate measurement of food intake is essential for assessing diet-health interactions in 

observational studies, examining and monitoring the effects of dietary changes (e.g., 

adherence to calorie restriction targets) on obesity treatment and health, and informing public 

health policies based on empirical data. To date, self-report methods (e.g., food records, food 

recalls, and food frequency questionnaires) are still commonly used in epidemiology and 

clinical research settings despite the evident inaccuracy of these methods in assessing energy 

and nutrient intake caused by (un-)intentional under- or over-reporting of foods, portion size 

estimation errors, and reactivity due to awareness of being measured. Technology- and 

particularly image-assisted methods of food intake assessment that quantify food intake via 

active or passive image capture and automated or semi-automated analysis have gained 

popularity in recent years, and these methods have addressed many of the limitations of 

traditional self-report. Another emerging approach for remote meal detection is continuous 

glucose monitoring (CGM), which measures glucose concentrations in the interstitial fluid as 

a proxy for blood glucose levels and offers the advantage of being completely unobtrusive. As 

part of my habilitation work, we comprehensively reviewed image-assisted methods of food 

intake assessment, including their accuracy, feasibility, and acceptability in different research 

settings and for day-to-day monitoring of dietary intake. We further reviewed CGM-based 

approaches regarding their accuracy in meal detection as standalone and combined methods. 
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Finally, we evaluated the applicability of these image- and sensor-based methods for Just-In-

Time Adaptive Interventions (JITAIs) that aim to detect dietary lapses and non-adherence in 

(near) real-time and respond with intervention content delivery in the moment when it is most 

needed and the patient is likely to be (most) receptive. 

In Publication 8, we conducted a literature review of the validity and feasibility of image-

assisted methods for dietary assessment. Our review showed that in free-living conditions, 

active smartphone-based image capture of food selection and plate waste can produce 

accurate energy intake estimates, though accuracy is not guaranteed and relies heavily on 

the quality of analysis by trained human raters. A limitation of active image capture that 

remains is intentional and/or unintentional under-reporting of foods due to social desirability 

or forgetfulness and reactivity, similar to traditional self-report. When an accurate assessment 

of habitual food intake is not the main objective, the reactivity (or self-monitoring) effect can, 

in fact, be beneficial, for example, when the goal is to change dietary behaviors, and many 

weight loss studies have used food recording as an effective behavior change strategy. 

Passive image capture via wearable cameras is promising and aims to reduce user burden. 

However, only pilot data with limited validity were available at the time the review was 

conducted, and these methods remained obtrusive and cumbersome. Further, the technology 

required for automated and semi-automated food recognition and portion size estimation was 

still in its infancy at that point, and fully automated food intake assessment with acceptable 

precision was not a reality. In general, analysis by human raters was more accurate and less 

variable than (semi-)automated image analysis, not least because existing nutrient databases 

could be utilized. With recent advances in artificial intelligence and machine-learning 

technology, methods with passive image capture and automated analysis have promise to 

dramatically improve in the future, allowing accurate automated in-the-moment feedback on 

food intake data to patients and researchers.  

In Publication 9, we conducted an online survey (n=1959) to examine participants’ preference, 

expected burden, and willingness to use image-based compared to traditional pen-and-paper 

self-report methods for food and alcohol intake assessment. While validity, reproducibility, 

usability, and feasibility of the method selected for food intake assessment are essential for 

collecting high-quality data, participants’ preference, acceptability, and perceived burden of a 

specific method also play an important role. These factors directly influence compliance and, 

thereby, data quality, which is particularly important in dietary weight loss interventions. We 

assessed participants’ preference, expected burden, and willingness to use the following four 

methods to record their food/drink intake for three days as part of a clinical or study setting: 

food/drink record, 24h recall, Remote Food Photography Method© (RFPM), and a novel app 

(PortionSize®) that allows the in-app portion size estimation of foods/drinks by the user. For 

both food intake and alcohol consumption, the greatest percentage of participants rated the 

expected burden of the RFPM as low, followed by PortionSize®, food/drink records, and the 

24h recall. Preference for these methods mirrored the ratings of expected burden, and 

correlations between low expected burden and high preference were strong for all methods. 

The willingness to use the RFPM was greater than that of PortionSize® and the 24h recalls, 



IX 

but it was not different from food records. Because preference for and expected burden of a 

specific food intake assessment method likely affect participants’ compliance over time and, 

thereby, data quality, these results can help inform the method selection in conjunction with 

the reliability, validity, and usability/feasibility data of these methods. 

In Publication 10, we conducted a scoping review on the accuracy of CGM for automatic meal 

detection. CGM is a particularly attractive option for passive, objective meal detection as it is 

much less obtrusive than current passive image-based approaches and consequently less 

prone to reactivity. Further, user and analysis burden are reduced compared to food 

photography, leading to better long-term compliance and remote data capture. Our review 

found several promising CGM-based approaches for automatic meal detection, with some 

approaches showing close to 100% sensitivity. Meal detection times ranged between 9 and 

45 min, with the majority being between 20 and 40 min. These detection times are likely too 

long for true in-the-moment intervention delivery (i.e., while the participant is still eating); 

however, this is likely not the goal. More realistically, intervention strategies would aim at 

altering behavior at a subsequent meal for which the current detection times are more than 

sufficient. However, the overall heterogeneity of studies (e.g., age range, controlled vs. free-

living settings, participants with vs. without type 1 diabetes), algorithms (e.g., input data being 

CGM only vs. additional data such as accelerometer, body core temperature, heart rate), 

performance (outcome) metrics, and methodological issues (e.g., self-report as ground truth 

method) prevent clear recommendations of a single approach and specific cases will dictate 

the most suitable approach.  

Collectively, these results show that image-based approaches with human rater-based 

analysis remain the state-of-the-art approach for the objective assessment of food intake in 

many settings, particularly of food items and portion size. These methods have excellent 

validity in estimating energy and macro-/micronutrient intake, and they are at the same time 

less burdensome and show higher patient acceptability than traditional pen-and-paper 

methods. Passive image capture, while promising, has, to date, limited validity, and the current 

methods are too obtrusive and cumbersome. While not yet accurate enough to serve as a 

standalone tool for food intake assessment, including timing, identification, and quantification, 

CGM can help further minimize under-reporting by reducing missing data, and it can be used 

to detect meal timings more accurately. Going forward, pairing active image-based 

approaches to assess what individuals eat with objective, passive methods such as CGM to 

determine when they eat is a promising prospect. Using mathematical modeling to integrate 

the multi-sensor data will likely yield further improvements in the accuracy of food intake 

assessment and monitoring, with automated in-the-moment feedback to patients and 

researchers being a realistic vision for the near future. 

PART III – Other Work 

Part III highlights further research of my habilitation work and postdoctoral training, such as 

examining the health effects of large lifestyle interventions beyond weight loss, discussing 
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challenges in defining adherence to calorie restriction goals in weight loss interventions, and 

gaining further expertise in food intake research. 

In Publication 11, we showed that the PROPEL intervention, as a patient-centered, pragmatic, 

and scalable obesity treatment program delivered by health coaches to over 800 patients in 

primary care, can elicit clinically meaningful improvements in cardiometabolic health. We 

found that fasting glucose decreased, and HDL cholesterol increased in the intervention group 

compared with the control group, with clinically significant improvements in both parameters. 

In addition to traditional cardiometabolic risk markers, we applied a novel, validated continuous 

metabolic syndrome severity score to better detect a worsening or improving condition over 

time compared to the conventional binary metabolic syndrome classification. Metabolic 

syndrome severity decreased significantly in the intervention group compared to control at 12 

and 24 months. Blood pressure and other blood lipids did not change throughout the 

intervention. These results show that by removing barriers to participation, PROPEL offered a 

viable and more successful primary care-based treatment option for obesity-related 

comorbidities compared to the existing model in the United States, which is supported by 

Medicare/Medicaid and offers insufficient access, particularly to underserved populations. 

During the last six months of the trial, I oversaw the intervention sessions at 6 of the 18 

participating clinics and led weekly meetings with the health coach. This manuscript was 

selected as Circulation’s paper of the month (02/2021) by the American Heart Association. 

In Publication 12, we delved deeper into the health effects of structured exercise. Specifically, 

using the E-MECHANIC dataset, we examined the impact of exercise dose on changes in 

central adiposity and its relationship with exercise-induced compensation. Exercise has been 

shown to decrease central adiposity, though the influence of exercise dose is poorly 

understood. Because central adiposity is more strongly linked to metabolic diseases than fat 

stored in other regions, reductions in central adiposity are particularly important to improve 

metabolic health. Our results showed that both the 8 KKW exercise dose, which is 

recommended for health, and the 20 KKW exercise dose, which is recommended for weight 

loss and maintenance, led to similar, negligible changes in waist circumference and visceral 

adipose tissue (via dual-energy X-ray absorptiometry). However, exercisers who 

compensated (82.6% of all participants) exhibited small (unfavorable) increases in waist 

circumference and visceral adipose tissue compared to those who did not compensate, and 

greater subjective desire to eat (via visual analog scale) directly predicted changes in visceral 

adipose tissue during exercise. To enhance reductions in central adiposity and improve 

metabolic health, exercise-induced compensation should be prevented and treated potentially 

through strategies managing appetite and compensatory food behaviors. This manuscript was 

selected as the Journal of Clinical Endocrinology & Metabolism’s featured article of the week 

in calendar week 11 of 2024. 

In Publication 13, we aimed to tackle a common challenge of dietary weight loss interventions: 

defining successful adherence to calorie restriction goals using data from the Comprehensive 

Assessment of Long-term Effects of Reducing Intake of Energy phase 2 trial (CALERIE 2). A 

recent approach for estimating dietary adherence in real-time is using body weight as a proxy. 



XI 

For this, the participant's actual (daily) weights are compared to expected weights over time, 

and if the actual body weight reflects the expected weight, adherence to the calorie restriction 

goal can be inferred. Because there are natural day-to-day fluctuations in body weight 

independent of calorie intake, participants are provided with a range (i.e., bounds around the 

goal weight; cf. Publication 5) of acceptable body weights (“zone of adherence”) that reflects 

calorie restriction adherence. Weights above the zone are considered non-adherent, and 

additional intervention strategies are needed to help participants better restrict their energy 

intake. Weights below the zone indicate a too-restrictive eating behavior, and efforts are 

needed to increase energy intake. In our analyses, we aimed to determine the level of calorie 

restriction associated with the zone of adherence in CALERIE 2 by utilizing a validated weight 

loss calculator (NIDDK Body Weight Planner) and to determine if participants' actual level of 

calorie restriction was within the zone of adherence by using the intake-balance method. Our 

results show that the upper bound of the zone of adherence reflected a percent calorie 

restriction that was well below CALERIE 2’s 25% calorie restriction goal at months 12 (13.7%) 

and 24 (10.4%) though the average level of calorie restriction achieved by participants 

(determined post-hoc via the intake-balance method) was within the zone at months 12 

(15.2%) and 24 (11.9%). The lower bound of the zone nearly reflected 25% calorie restriction 

only at month 12, and by month 24, the lower bound of the zone reflected ~19% calorie 

restriction. The fact that the zone of adherence in CALERIE 2 considered calorie restriction 

far less than the 25% goal as being adherent should be considered in designing future calorie 

restriction interventions and strategies to promote adherence. For example, lower adherence 

zones should be used to achieve higher levels of calorie restriction when participants' weights 

are in the zone of adherence. 

In Publication 14, as part of my postdoctoral training in food intake research, I designed a 

randomized crossover study measuring food intake during a test meal with acute e-cigarette 

use (“vaping”) as a manipulator. Because nicotine consumption (by itself or via cigarettes) has 

been shown to reduce appetite and, ultimately, body weight via brain and hormonal 

mechanisms, weight control is a common motive to start smoking, and the fear of post-

cessation weight gain is frequently cited as a barrier to smoking cessation. It is to date unclear 

if e-cigarettes have similar effects on appetite and energy intake, despite being actively 

marketed as methods of weight control and consumed by individuals with the intention to lose 

weight. In our study, participants completed two randomly ordered 20-min clinical lab sessions 

(20 puffs of an e-cigarette [5% nicotine] vs. access to an uncharged e-cigarette) and a buffet-

style meal with 21 food/drink items about 40 min after product administration. Our results show 

that while acute e-cigarette use increased subjective feelings of satiety and decreased 

subjective feelings of hunger, these subjective effects did not translate into reductions in acute 

energy intake. These findings are inconsistent with the smoking-related energy intake 

suppression observed in previous studies, and greater variability in energy intake and greater 

diversity in race/ethnicity and sex in our study compared to other studies may have influenced 

the effects. Nevertheless, while further research is needed, these findings could inform 

actionable approaches toward enhancing e-cigarette cessation efforts, with a particular focus 

on addressing perceptions of e-cigarette-related appetite control and/or weight management. 

https://www.niddk.nih.gov/bwp


1 

PART I 

Predictors of Energy Compensation and Weight Loss in Lifestyle 

Interventions 

  



2 

Publication 1 

Biological and behavioral predictors of relative energy intake 

after acute exercise. 

Christoph Höchsmann 1, Safiya E Beckford 2, Jeffrey A French 3, Julie B Boron 4, Jeffrey R 

Stevens 5, Karsten Koehler 1 

1 Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany  

2 Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA  

3 Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE, USA  

4 Department of Gerontology, University of Nebraska at Omaha, Omaha, NE, USA  

5 Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA 

 

Author contribution: 

First author; conducted the statistical analyses, drafted the manuscript, and created tables 

and figures. 

Journal Year DOI Impact Factor SCImago Citations to date 

Appetite, 

184: 106520 

2023 10.1016/j.appet.2023.

106520 

5.4 (2022) Q1 Scopus: 0 

Google Scholar: 0 

https://www.sciencedirect.com/science/article/abs/pii/S0195666323000739?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0195666323000739?via%3Dihub


Appetite 184 (2023) 106520

Available online 1 March 2023
0195-6663/© 2023 Elsevier Ltd. All rights reserved.

Biological and behavioral predictors of relative energy intake after 
acute exercise 
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A R T I C L E  I N F O   

Handling Editor: Dr. S. Higgs  

A B S T R A C T   

Energy intake in the post-exercise state is highly variable and compensatory eating – i.e., (over-) compensation of 
the expended energy via increased post-exercise energy intake – occurs in some individuals but not others. We 
aimed to identify predictors of post-exercise energy intake and compensation. In a randomized crossover design, 
57 healthy participants (21.7 [SD = 2.5] years; 23.7 [SD = 2.3] kg/m2, 75% White, 54% female) completed two 
laboratory-based test-meals following (1) 45-min exercise and (2) 45-min rest (control). We assessed associations 
between biological (sex, body composition, appetite hormones) and behavioral (habitual exercise via prospective 
exercise log, eating behavior traits) characteristics at baseline and total energy intake, relative energy intake 
(intake – exercise expenditure), and the difference between post-exercise and post-rest intake. We found a dif-
ferential impact of biological and behavioral characteristics on total post-exercise energy intake in men and 
women. In men, only fasting (baseline) concentrations of appetite-regulating hormones (peptide YY [PYY, β =
0.88, P < 0.001] and adiponectin [β = 0.66, P = 0.005] predicted total post-exercise energy intake, while in 
women, only habitual exercise (β = −0.44, P = 0.017) predicted total post-exercise energy intake. Predictors of 
relative intake were almost identical to those of total intake. The difference in energy intake between exercise 
and rest was associated with VO2peak (β = −0.45, P = 0.020), fasting PYY (β = 0.53, P = 0.036), and fasting 
adiponectin (β = 0.57, P = 0.021) in men but not women (all P > 0.51). Our results show that biological and 
behavioral characteristics differentially affect total and relative post-exercise energy intake in men and women. 
This may help identify individuals who are more likely to compensate for the energy expended in exercise. 
Targeted countermeasures to prevent compensatory energy intake after exercise should take the demonstrated 
sex differences into account.   

1. Introduction 

Regular physical activity (PA) and exercise are recommended as 
methods of weight control; however, the effectiveness of exercise by 
itself as a method for weight loss is highly variable (Church et al., 2009; 
Martin et al., 2019). This is primarily due to the substantial variability in 
acute and chronic post-exercise energy intake. While some individuals 
show reduced energy intake post-exercise, allowing for an 
exercise-induced energy deficit, others show a compensatory increase in 
energy intake which negates the potential for exercise to promote 

negative energy balance and subsequent weight loss (Dorling et al., 
2018; King et al., 2017). Post-exercise energy intake is affected by a 
variety of behavioral and biological variables. 

For example, higher levels of habitual PA are associated with 
improved energy balance regulation and maintenance of healthy body 
weight (Church & Martin, 2018; Edholm, 1956; Mayer et al., 1956). 
Further, higher levels of habitual moderate-to-vigorous PA before an 
exercise-based weight loss intervention are associated with greater 
weight loss and importantly less weight compensation (i.e., less weight 
loss than expected based on measured energy expenditure) (Höchsmann 
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et al., 2020a). The effects of habitual exercise on appetite and acute 
energy intake are, however, less clear and conflicting. Some studies have 
shown increases in subjective appetite following exercise training, 
whereas others have reported negligible effects or even reductions in 
appetite and energy intake after training (Dorling et al., 2018). The ef-
fects of habitual PA on acute exercise-induced energy compensation are 
to date largely unknown. 

Eating behavior traits such as cognitive restraint, uncontrolled 
eating, and emotional eating are associated with unintentional over-
eating in the presence of food (Feig et al., 2018; French et al., 2012). 
Over time, these eating behavior traits can lead to a continued positive 
energy balance and consequently contribute to weight gain (Feig et al., 
2018; French et al., 2012). It is unknown how these eating behavior 
traits affect energy intake (and compensation) after acute exercise and if 
they override the acute and transient exercise-induced suppression in 
appetite (exercise-induced anorexia) (Dorling et al., 2018; King et al., 
1994). 

Appetite-regulating hormones such as acylated ghrelin (appetite- 
stimulating), peptide YY (PYY), and glucagon-like peptide 1 (GLP-1) – 
the latter two are appetite-suppressing – modulate feelings of satiation 
on a meal-by-meal basis (Dorling et al., 2018; Murphy & Bloom, 2006). 
Acute bouts of moderate-to-vigorous aerobic exercise have been shown 
to suppress circulating concentrations of acylated ghrelin and simulta-
neously elevate concentrations of PYY and GLP-1, (Broom et al., 2007; 
Broom et al., 2009; Martins et al., 2007; Balaguera-Cortes et al., 2011) 
driving the aforementioned transient exercise-induced anorexia. In the 
fasted state, PYY concentrations are inversely correlated with markers of 
adiposity such as BMI and body fat (Guo et al., 2006), and fasting PYY 
concentrations have been shown to increase after exercise 
training-related weight (fat mass) loss (Jones et al., 2009), with sug-
gested benefits for satiety regulation. Similarly, fasting GLP-1 concen-
trations have been reported to be lower in individuals with obesity 
compared to healthy individuals (Alssema et al., 2013; Ranganath et al., 
1996), and greater fasting GLP-1 concentrations are associated with 
reduced carbohydrate but not total energy intake during an ad libitum 
test-meal (Basolo et al., 2019). It is to date unknown if fasting concen-
trations of appetite-regulating hormones (measured before an acute 
exercise bout) affect energy intake and compensation after acute exer-
cise. While the effects of these various behavioral and biological factors 
on post-exercise food intake have been examined, to our knowledge it 
has not yet been investigated whether it is possible to predict a person’s 
post-exercise food intake based on these (and other) participant char-
acteristics at baseline. Therefore, the overall objective of the present 
study was to identify predictors of post-exercise energy intake from a 
wide range of behavioral and biological characteristics that can be 
relatively easily assessed in a clinical setting before individuals partici-
pate in exercise-based weight loss interventions. If successful, this 
approach would allow to identify possible compensators before these 
individuals engage in exercise programs for weight loss and to deliver 
targeted behavioral add-ons to the exercise intervention (e.g., 
cognitive-behavioral strategies, additional calorie restriction, prepara-
tion of a post-exercise meal ahead of time, or consumption of a small 
meal before exercise) to help prevent compensatory eating ahead of time 
and maximize the weight loss potential of exercise. To achieve this 
objective, we aimed to assess predictors of (1) total energy intake (kcal) 
during an ad libitum test-meal following a 45-min aerobic exercise bout 
and (2) relative energy intake (kcal), i.e., test-meal energy intake rela-
tive to the energy expended during the exercise bout. Additionally, as 
control, we aimed to identify predictors of ad libitum test-meal intake 
following 45 min of rest as well as of the difference in energy intake 
between the post-exercise test-meal and test-meal following the rest 
condition. We investigated the contributions of sex, anthropometrics, 
behavioral characteristics, and physiological/endocrine factors at 
baseline to compensatory ad libitum post-exercise energy intake. We 
hypothesized that greater levels of habitual physical activity and exer-
cise would be associated with lower compensatory post-exercise energy 

intake. In explorative analyses, we additionally examined the predictive 
effects of eating behavior traits and fasting concentrations of 
appetite-regulating hormones on compensatory post-exercise energy 
intake. 

2. Materials and methods 

2.1. Study design and participants 

This report is a secondary analysis of the EAT-FC (Exercise, Appetite, 
and Temporal Food Choices) randomized crossover study (Koehler et al., 
2021). In the EAT-FC study, following two preliminary assessment visits, 
two study conditions were completed in random order on two separate 
days at least 3 days apart: (1) one 45-min exercise bout and (2) one rest 
period of identical duration. The study used block randomization (block 
size of 4) to allocate participants to the study conditions. Volunteers for 
this study were recruited from the University of Nebraska and its sur-
rounding communities via fliers and word-of-mouth. Men and women 
were eligible if they were 19–29 years old, had a body mass index (BMI) 
of 18.5–29.9 kg/m2, were weight stable (≤2.5 kg weight change during 
the past six months), and exercised regularly (≥1 bout/week). Exclusion 
criteria included pregnancy, smoking, any medical condition or use of 
medication that could affect appetite or present any contraindications to 
exercise, a history of or current eating disorder, or a self-reported 
inability to exercise at a moderate intensity for 45 min. Further, par-
ticipants who were allergic to or strongly disliked the food offered 
during the ad libitum test meal were excluded (Koehler et al., 2021). All 
study procedures were approved by the University of Nebras-
ka-Lincoln’s Institutional Review Board (project number 17239) and 
written informed consent was obtained from all participants before 
participation in the study. 

2.2. Measures 

Anthropometric data, PA behavior, cardiorespiratory fitness, and 
eating behavior traits were assessed during two preliminary assessment 
visits that occurred before participation in the study conditions, and 
appetite-regulating hormones were measured at each study condition 
visit immediately after arrival at the laboratory. 

2.2.1. Anthropometric data 
Weight and height were measured using a digital scale and stadi-

ometer (Seca, Hamburg, Germany). Total body fat (%) and fat-free mass 
(FFM, kg) were estimated via a 7-site skinfold assessment. 

2.2.2. Physical activity behavior 
PA behavior, and specifically moderate-to-vigorous PA (MVPA, min/ 

week, cut-points according to Freedson (Freedson et al., 1998)), was 
assessed over seven days using accelerometry (hip-worn GT3X+, Acti-
graph, Pensacola, FL; epoch length 10 s). Participants were instructed to 
wear the GT3X + continuously throughout the 7-day monitoring period 
and to only remove it for swimming or taking a shower. Only full days of 
data, defined as a wear time of ≥95% (equating to 22 h and 48 min or 
1368 min), were included in the analyses. Additionally, as it has been 
reported before that Actigraph devices are inaccurate at recording ac-
tivities such as strength training and cycling (Berntsen et al., 2010; 
Herman Hansen et al., 2014; Höchsmann et al., 2020b), we instructed 
participants to prospectively record their habitual exercise (min/week 
and days/week) over the same period using an exercise log. 

2.2.3. Cardiorespiratory fitness 
Peak oxygen uptake (VO2peak) was measured using an incremental 

all-out exercise test on a bicycle ergometer (LC6, Monark, Vansbro, 
Sweden). Participants began cycling at a resistance of 60 W for 3 min, 
and the work rate was increased by 35 W every 3 min until exhaustion 
(Achten & Jeukendrup, 2003). Maximal exhaustion was accepted when 
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at least two of the following were met: (1) Heart rate of ≥90% of 
age-predicted maximal heart rate, (2) a respiratory exchange ratio ≥1.1, 
(3) rating of perceived exertion ≥19,28 (4) a plateau in oxygen uptake 
despite the increasing workload. Throughout the test, respiratory gas 
parameters were analyzed breath by breath (Quark CPET, COSMED, 
Rome, Italy) and heart rate was monitored through telemetry (Polar, 
Kempele, Finland). 

2.2.4. Eating behavior traits 
Cognitive restraint, uncontrolled eating, and emotional eating were 

assessed with the revised 18-item Three-Factor Eating Questionnaire 
(TFEQ-R18v2). The TFEQ-R18v2 is a shortened version of the original 
well-validated 51-item TFEQ by Stunkard and Messick (Stunkard & 
Messick, 1985), which has demonstrated improved psychometric prop-
erties, minimized floor and ceiling effects in the emotional eating 
domain, and improved internal consistency in the cognitive restraint 
domain compared to the earlier shortened versions of the TFEQ 
(TFEQ-R18 and TFEQ-R21), with an overall robust factor structure and 
good reliability in two large North American samples (Cappelleri et al., 
2009; Karlsson et al., 2000). 

2.2.5. Appetite-regulating hormones 
Fasting plasma concentrations of total GLP-1 (1-37a), acylated 

ghrelin, PYY (3-36), and adiponectin were measured at each study 
condition visit immediately after arrival to the laboratory before par-
ticipants received a standardized breakfast and continued with the 
initial 30-min rest period. Whole-blood samples were collected into 
ethylenediaminetetraacetic acid (EDTA) tubes from participants in a 
seated position. A protease inhibitor (aprotinin; Sigma Aldrich, St. Louis, 
MO) was added to PYY and ghrelin samples. Immediately after collec-
tion, the EDTA tubes were placed on ice for 15 min and then centrifuged 
at 1800×g for 10 min at +4 ◦C. Subsequently, plasma fractions were 
aliquoted and stored at −80 ◦C until analysis. Enzyme-linked immuno-
sorbent assays (ELISAs) were used to measure concentrations of PYY 
(Millipore Sigma, Burlington, MA; inter-assay coefficient of variation 
[CV]: 6%; intra-assay CV: 7%), GLP-1 (Invitrogen™, Carlsbad, CA; inter- 
assay CV: <12%; intra-assay CV: <10%), ghrelin (Invitrogen™, Carls-
bad, CA; inter-assay CV: 8.5%; intra-assay CV: 6%), and adiponectin 
(Invitrogen™, Carlsbad, CA; inter-assay CV: 3.1%; intra-assay CV: 
4.2%). 

2.3. Study conditions 

On the day of each study condition, participants arrived at the lab 
between 06:30 and 10:00 (appointments scheduled 30–60 min after 
habitual wake-up time, identical time at each visit), following an over-
night fast and abstinence from alcohol for at least 24 h. Participants 
further refrained from exercise and strenuous physical activity the day 
before and the morning of their visits, with compliance monitored via 
accelerometry (GT3X+, Actigraph, Pensacola, FL). During their first 
study condition visit, participants completed a 24-h diet recall using an 
Automated Self-Administered 24-h Dietary Assessment Tool (ASA24, 
National Cancer Institute, Bethesda, MD, USA). Participants received a 
copy of their recall after the visit and they were instructed to replicate 
the diet as closely as possible on the day before their second study 
condition visit. At each study condition visit, participants were provided 
with a small standardized breakfast (commercially available cereal bar 
[240 kcal] and 8 ounces of bottled water) upon arrival and instructed to 
rest for 30 min in a seated position. 

2.3.1. Exercise condition 
Following the initial 30-min rest, participants exercised on a bicycle 

ergometer (LC6, Monark, Vansbro, Sweden) for 45 min at an intensity of 
60% of their VO2peak. Heart rate and ratings of perceived exertion (Borg, 
1982) were monitored at regular intervals throughout the exercise bout. 
After completion of the exercise bout, participants rested for another 30 

min before being offered the test meal. 

2.3.2. Rest condition 
For the resting condition, participants were instructed to sit quietly 

in a chair for 45 min, following the initial 30-min rest period. To ensure 
an overall identical timing and sequence of the two study condition 
visits, participants rested for an additional 30 min after the 45-min rest 
condition before being offered the test meal. Throughout both visits, 
participants were allowed to listen to music or watch pre-approved TV 
programs that did not contain any images of or references to food. 

2.3.3. Ad libitum test-meal 
Thirty minutes after each study condition (exercise or rest), partici-

pants were offered an identical single-item ad libitum test meal. The test 
meal (frozen family-size cheese pizza, Hy-Vee, West Des Moines, IA) was 
prepared by the study staff, and participants were offered the entire 
pizza (~3200 kcal, above energy needs) at once. The test meal was 
consumed in a separate room and under supervision, and cell phone use 
was restricted. Participants were instructed to eat as much or as little of 
the test meal as they would like and to make sure to eat the pre-cut pizza 
slices evenly (i.e., not leave/discard the crust or take the cheese off, 
etc.). Pre- and post-meal weights (grams) were recorded, with the dif-
ference in weight representing food intake. Gram weights were con-
verted to energy intake (kcal) using the pizza’s nutrition label. 

2.4. Statistical analyses 

The distribution of variables was verified by visual inspection of 
histograms and quantile-quantile plots of the residuals. The exclusion of 
outliers (≤2 outliers for all models) did not change the results mean-
ingfully; therefore, the models including outliers are reported. 
Descriptive data are reported as mean and standard deviation (SD). We 
used simple linear regression models to estimate the association be-
tween anthropometric characteristics (weight, BMI, FFM, percent body 
fat), physiological characteristics (VO2peak, maximal power, and fasting 
concentrations of appetite-regulating hormones such as GLP-1, ghrelin, 
PYY, and adiponectin), and behavioral characteristics (habitual exercise 
min/week and days/week, MVPA, and eating behavior traits) and en-
ergy intake during an ad libitum single-item test meal. Specifically, we 
used the following four variables as dependent variables in our models: 
(1) post-exercise energy intake (kcal), (2) relative energy intake, which 
was defined as post-exercise energy intake [kcal] – energy expenditure 
during exercise session [kcal], (3) energy intake following the rest 
condition (kcal), and (4) the difference in energy intake between the 
post-exercise and the post-rest test meal (post-exercise energy intake 
[kcal] – post-rest energy intake [kcal]). Because it has been demon-
strated in several studies that FFM is a predictor of meal size and single 
meal food intake (Blundell et al., 2012; Hopkins et al., 2016; Weise et al., 
2014), we included FFM as a covariate in sensitivity analyses; however, 
results did not differ meaningfully and we consequently report the re-
sults without FFM as a covariate. In additional analyses, we performed 
multiple regression analyses using the significant single predictors for 
each outcome variable. Further, results for eating behavior traits 
(cognitive restraint, uncontrolled eating, and emotional eating) based 
on the TFEQ-R18 and TFEQ-R21 did not differ meaningfully from the 
results of the TFEQ-R18v2 presented herein. Because the TFEQ-R18v2 
has been validated in North American samples and improved internal 
consistency has been reported, as described above, only these results are 
reported. We used SPSS Statistics for Windows, version 27 (IBM Corp., 
Armonk, NY) for our analyses, and results were considered significant at 
P < 0.05. 
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3. Results 

3.1. Participant characteristics and energy intake following each study 
condition 

Sixty-five participants were enrolled in the study. Eight participants 
were excluded (intensity of exercise session not at 60% VO2peak [n = 6], 
no exercise data [n = 2]); hence 57 participants were included in our 
analyses. Baseline characteristics of all included participants (mean age 
21.7 [SD = 2.5] years, mean BMI 23.7 [SD = 2.3], 75% White, 54% 
female), as well as average energy expenditure during the exercise ses-
sion and energy intake following each study condition, are presented in 
Table 1. Energy expenditure during the exercise session was greater in 
men (400 [SD = 85] kcal) compared to women (296 [SD = 46] kcal, P <
0.001). 

3.2. Predictors of total post-exercise energy intake 

Total post-exercise energy intake was inversely associated with 
habitual exercise minutes (β = −0.29, P = 0.032; Table 2, Fig. 1A) and 
positively associated with FFM (β = 0.30, P = 0.025; Table 2) and fasting 
concentrations of PYY (β = 0.39, P = 0.015; Table 2, Fig. 1D). We also 
found a sex effect, as men consumed on average 261.9 kcal more than 
women (P = 0.015). After stratifying by sex, PYY (β = 0.88, P < 0.001) 
and additionally adiponectin (β = 0.66, P = 0.005, Table 2, Fig. 1G) 
were significant predictors of total post-exercise energy intake only in 
men, while habitual exercise minutes (β = −0.44, P = 0.017) were a 
significant predictor of total post-exercise energy intake only in women. 

3.3. Predictors of relative energy intake 

Similar to total post-exercise energy intake, relative energy intake 
was inversely associated with habitual exercise minutes (β = −0.31, P =
0.024; Table 3, Fig. 1B) and positively associated with fasting concen-
trations of PYY (β = 0.37, P = 0.021; Table 3, Fig. 1E). Similar to total 
post-exercise energy intake, PYY (β = 0.85, P < 0.001) and additionally 
adiponectin (β = 0.69, P = 0.003; Table 3, Fig. 1H) were significant 
predictors of relative energy intake only in men, while habitual exercise 
(min/week: β = −0.44, P = 0.016; days/week: β = −0.39, P = 0.032) 
and additionally VO2peak (relative: β = −0.36, P = 0.044; absolute: β =
−0.42; P = 0.020; Table 3) were significant predictors of relative energy 
intake only in women. 

3.4. Predictors of post-rest energy intake 

Energy intake after the rest condition was positively associated with 
weight (β = 0.35, P = 0.008), FFM (β = 0.38, P = 0.004), and aerobic 
fitness as measured by absolute VO2peak (β = 0.43, P < 0.001) and 
maximal power during the exercise test (β = 0.43, P < 0.001; Supple-
mental Table 1). Similar to post-exercise, post-rest energy intake 
differed by sex (P < 0.001). Absolute VO2peak (β = 0.53, P = 0.006) and 
maximal power (β = 0.54, P = 0.005) were only associated with adli-
bitum energy intake in men, while in women, only habitual exercise 
minutes per week were a significant predictor of adlibitum energy intake 
(β = −0.37, P=0.048). 

3.5. Predictors of the difference between post-exercise and post-rest 
energy intake 

The difference in total energy intake between exercise and rest was 
inversely associated with aerobic fitness as measured by relative (β =
−0.31, P = 0.020) and absolute (β = −0.35, P = 0.008) VO2peak. The 
difference between exercise and rest was also positively associated with 
fasting PYY concentrations (β = 0.33, P = 0.038; Supplemental Table 2, 
Fig. 1F). Notably, significant associations were driven by men, and they 
were not significant for women (Supplemental Table 2). In men, above a 

VO2peak cut point of 40.9 mL/kg/min (3.0 L/min), post-rest energy 
intake was greater than post-exercise energy intake, while below the cut 
point, post-exercise energy intake was greater than post-rest energy 
intake. For PYY in men, post-exercise energy intake was greater than 
post-rest energy intake above the cut point of 118.6 pg/mL, while below 
the cut point, post-rest energy intake was greater than post-exercise 

Table 1 
Participant characteristics.   

All (N = 57) Men (n = 26) Women (n = 31) 

Race/Ethinicity, n (%) 
White 43 (75.4) 18 (69.3) 25 (80.6) 
African American 9 (15.8) 6 (23.1) 3 (9.7) 
Asian 4 (7.0) 1 (3.8) 3 (9.7) 
Other 1 (1.8) 1 (3.8) 0 (0.0)  

Mean (SD) Mean (SD) Mean (SD) 
Age, years 21.7 (2.5) 21.4 (2.4) 21.9 (2.6) 
Weight, kg 68.7 (10.2) 73.6 (11.3) 64.6 (7.0) 
BMI, kg/m2 23.7 (2.3) 23.8 (2.7) 23.5 (2.1) 
Fat-free mass, kg 59.6 (9.0) 66.0 (8.9) 54.2 (4.6) 
Total body fat, % 13.2 (6.0) 9.9 (5.4) 15.9 (5.1) 
Physical activity behavior and cardiorespiratory fitness 
Total habitual 

exercise, min/ 
week a 

245.9 (181.2) 236.0 (137.7) 254.4 (213.9) 

Habitual exercise 
days, days/week 

3.4 (1.9) 3.7 (1.9) 3.3 (2.0) 

MVPA, min/week 332.4 (145.7) 350.4 (159.9) 317.3 (133.4) 
Relative VO2peak, 

mL/kg/min 
37.4 (6.2) 40.6 (5.8) 34.7 (5.2) 

Absolute VO2peak, L/ 
min 

2.6 (0.6) 2.3 (0.6) 2.2 (0.3) 

Maximal power, W b 220.6 (48.5) 248.5 (47.6) 196.5 (34.8) 
Eating behavior traits 
Cognitive Restraint 

via TFEQ-R18v2 
5.9 (2.2) 5.7 (2.6) 6.0 (1.8) 

Uncontrolled Eating 
via TFEQ-R18v2 

17.3 (4.7) 17.6 (4.9) 17.0 (4.5) 

Emotional Eating via 
TFEQ-R18v2 

9.8 (3.3) 9.2 (2.7) 10.2 (3.7) 

Appetite-regulating hormones c 

GLP-1, pg/mL d 10.9 (5.2) 10.0 (4.4) 11.4 (5.8) 
PYY, pg/mL d 110.8 (47.0) 110.4 (46.5) 111.1 (48.4) 
Ghrelin, pg/mL e 865.2 (393.0) 807.3 (435.0) 906.5 (365.3) 
Adiponectin, ng/mL 

f 
11.7 (7.1) 8.9 (6.4) 13.8 (6.9) 

Exercise session 
Energy expenditure, 

kcal 
343 (85) 400 (85) 296 (46) 

Test meal 
Energy intake (post 

exercise), kcal 
867 (411) 1010 (478) 748 (304) 

Energy Intake (post 
rest), kcal 

821 (383) 999 (376) 672 (326) 

Difference in energy 
intake, kcal g 

46 (303) 11 (398) 75 (193) 

Relative energy 
intake, kcal h 

526 (406) 609 (482) 452 (320) 

Data are mean (standard deviation) unless stated otherwise. 
Abbreviations: BMI, body mass index; GLP-1, Glucagon-like Peptide 1; MVPA, 
moderate-to-vigorous physical activity; PYY, peptide YY; SD, standard devia-
tion; TFEQ-R18v2, revised 18-item Three-Factor Eating Questionnaire. 

a Data available for 54/57 participants (25/26 men and 29/31 women). 
b Data available for 56/57 participants (26/26 men and 30/31 women). 
c Hormone concentrations are reported as means between pre-exercise and 

pre-rest. Fasting concentrations before the two study conditions did not differ 
(all P≥0.08). 

d Data available for 39/57 participants (16/26 men and 23/31 women). 
e Data available for 36/57 participants (15/26 men and 21/31 women). 
f Data available for 38/57 participants (16/26 men and 22/31 women). 
g Post-exercise ad libitum energy intake (kcal) – energy intake following the 

rest condition (kcal). 
h Energy intake during test meal (kcal) – energy expenditure during exercise 

session (kcal). 
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energy intake. 

3.6. Multiple regression analyses 

For total post-exercise energy intake, the combination of the signif-
icant single predictors (FFM, habitual exercise minutes, and PYY) 
increased the coefficient of determination (R2 = 0.279; P = 0.013, 
Supplemental Table 3) compared to the single predictors alone (all R2 ≤
0.149, Table 2). For relative post-exercise energy intake and post-rest 
energy intake, the combination of the significant single predictors did 
not change the coefficient of determination meaningfully compared to 
the single predictors alone (Table 3, Supplemental Table 1, and Sup-
plemental Table 3). For men, the combination of the significant single 
predictors did not change the coefficient of determination meaningfully 
compared to the single predictors alone for total and relative post- 
exercise energy intake as well as post-rest intake (Table 2, Table 3, 
Supplemental Table 1, and Supplemental Table 3). For women, the 
combination of the significant single predictors (habitual exercise mi-
nutes, habitual exercise days, and VO2peak) only had an impact on 
relative post-exercise energy intake, with an increased coefficient of 

determination (R2 = 0.311; P = 0.009, Supplemental Table 3) compared 
to the single predictors alone (all R2 ≤ 0.197, Table 3). 

4. Discussion 

The present study aimed to identify predictors of post-exercise en-
ergy intake and compensation in healthy adults following a single 45- 
min aerobic exercise bout. Our results show that individuals with 
lower habitual exercise and/or higher fasting concentrations of PYY eat 
more after an acute exercise bout, even after accounting for the energy 
expended during the exercise bout. Notably, these biological and 
behavioral characteristics differentially affected post-exercise energy 
intake in men and women; habitual exercise behavior was only predic-
tive of post-exercise energy intake in women whereas fasting PYY con-
centrations were only a significant predictor of post-exercise intake in 
men. For habitual exercise in women, every 30 min/week increase was 
associated with a decrease in post-exercise energy intake and compen-
sation of ~20 kcal. In men, albeit not significant, the trend in the as-
sociation between habitual exercise and post-exercise energy intake was 
similar to that in women. Of note, in women, habitual exercise was also a 

Table 2 
Linear regression analysis for the association between anthropometrics, physiological and behavioral baseline characteristics and total energy intake during the post- 
exercise ad libitum test meal.   

All participants Men Women 

Energy intake (kcal) Energy intake (kcal) Energy intake (kcal) 

R- 
squared 
values 

B SE β P R- 
squared 
values 

B SE β P R- 
squared 
values 

B SE β P 

Sex a 0.103 261.9 104.5 0.32 0.015           
Age, years 0.000 −2.3 22.3 −0.01 0.920 0.002 −8.2 40.0 −0.04 0.840 0.008 10.7 22.0 0.090 0.632 
Weight, kg 0.052 9.2 5.3 0.23 0.088 0.022 6.2 8.5 0.15 0.471 0.000 0.2 8.1 0.00 0.979 
BMI, kg/m2 0.009 16.8 23.5 0.10 0.477 0.000 2.9 36.4 0.02 0.937 0.034 27.0 26.9 0.18 0.323 
Fat-free mass, 

kg 
0.088 13.5 5.9 0.30 0.025 0.059 13.1 10.7 0.24 0.233 0.031 −11.6 12.0 −0.18 0.340 

Total body fat, 
% 

0.018 −9.4 9.2 −0.14 0.315 0.016 −11.2 18.1 −0.13 0.542 0.060 14.7 10.8 0.25 0.183 

Physical activity behavior and cardiorespiratory fitness 
Habitual 

exercise, 
min/week 

0.085 −0.7 0.3 −0.29 0.032 0.032 −0.6 0.7 −0.18 0.395 0.194 −0.6 0.3 −0.44 0.017 

Habitual 
exercise 
days/week 

0.024 −33.0 28.1 −0.16 0.246 0.013 −28.9 50.6 −0.12 0.572 0.103 −49.3 27.0 −0.32 0.078 

MVPA, min/ 
week 

0.012 0.3 0.4 0.11 0.418 0.019 0.4 0.6 0.14 0.498 0.000 0.0 0.4 −0.02 0.924 

Relative 
VO2peak, mL/ 
kg/min 

0.000 1.2 9.0 0.02 0.896 0.009 −7.8 16.8 −0.09 0.648 0.074 −16.0 10.5 −0.27 0.138 

Absolute 
VO2peak, L/ 
min 

0.021 97.5 90.2 0.14 0.284 0.000 9.4 158.1 0.01 0.953 0.083 −270.1 166.2 −0.29 0.115 

Maximal 
power, W 

0.049 1.9 1.1 0.22 0.101 0.015 1.2 2.0 0.12 0.558 0.003 −0.5 1.7 −0.05 0.781 

Eating behavior traits 
Cognitive 

Restraint 
0.013 −21.4 25.3 −0.11 0.401 0.058 −44.1 36.3 −0.24 0.237 0.040 34.5 31.5 0.20 0.282 

Uncontrolled 
Eating 

0.010 8.9 11.9 0.10 0.455 0.004 −6.2 19.7 −0.06 0.757 0.091 20.6 12.1 0.30 0.098 

Emotional 
Eating 

0.002 5.8 16.9 0.05 0.732 0.011 −18.0 35.5 −0.10 0.618 0.097 26.0 14.7 0.31 0.087 

Appetite-regulating hormones 
GLP-1, pg/mL 0.000 0.7 12.8 0.09 0.957 0.108 38.4 29.5 0.33 0.214 0.036 −8.4 9.5 −0.19 0.388 
PYY, pg/mL 0.149 3.3 1.3 0.39 0.015 0.775 9.6 1.4 0.88 <0.001 0.013 −0.6 1.1 −0.12 0.600 
Ghrelin, pg/mL 0.005 0.1 0.2 0.07 0.681 0.087 0.3 0.3 0.30 0.285 0.021 −0.1 0.2 −0.14 0.535 
Adiponectin, 

ng/mL 
0.043 12.0 9.5 0.21 0.213 0.438 52.9 16.0 0.66 0.005 0.010 3.8 8.4 0.10 0.659 

Bold font indicates statistical significance (P < 0.05). Dependent variable in all models: Total energy intake during the post-exercise ad libitum test meal (kcal). 
Abbreviations: B, unstandardized regression coefficient; β, standardized regression coefficient; BMI, body mass index; GLP-1, Glucagon-like Peptide 1; MVPA, 
moderate-to-vigorous physical activity; PYY, peptide YY; SE, standard error. 

a Female = 0, male = 1. 
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significant predictor of energy intake after rest, suggesting that in 
women the predictive value of habitual exercise behavior is not 
restricted to post-exercise energy intake, but applies to all habitual en-
ergy intake. Generally, the association between greater habitual exercise 
and lower (post-exercise) energy (compensation) is in line with our 
hypothesis and previous research. It has been shown that energy balance 
is better regulated at higher levels of PA-related energy expenditure due 
to better satiety signaling and the fact that exercise-induced food re-
wards and cravings play a less important role (Beaulieu et al., 2017, 
2020; Church & Martin, 2018; Mayer et al., 1956). It is noteworthy that 
accelerometer-measured MVPA did not confirm these results, as MVPA 
was not a significant predictor of post-exercise energy intake. Overall, 
our sample showed relatively high average MVPA levels (~330 min/-
week) at baseline, with 89% of participants above the established 
weekly recommendations of 150 min of MVPA and 54% even above 300 
min/week (Bull et al., 2020). It can be speculated whether self-reported 
exercise behavior (prospectively recorded) included certain types of 
(even high-intensity) exercise such as strength training, cycling, or 
swimming that were not (accurately) captured by the hip-worn Acti-
graph devices, as demonstrated before (Berntsen et al., 2010; Herman 
Hansen et al., 2014; Höchsmann et al., 2020b), and whether this 
contributed to exercise behavior (min/week) being a better predictor of 
post-exercise energy intake and compensation than overall MVPA. The 
generally high MVPA level suggests that most participants would be in 
the regulated zone of Mayer’s curve, in which energy expenditure and 
energy intake are in balance (Church & Martin, 2018; Mayer et al., 
1956). Nevertheless, despite the overall high MVPA levels, there was 
substantial variability in the post-exercise energy intake, demonstrating 
that the single exercise session evoked a greater relative (compensatory) 
energy intake response in some participants than others. 

The associations between fasting concentrations of appetite- 
regulating hormones and post-exercise energy intake are striking. 
Particularly the sex differences with a strong predictive value of PYY and 
adiponectin in men, explaining 78% and 44% of the variance in post- 

exercise energy intake, respectively (72% and 48% for energy 
compensation) but no significant associations with post-exercise energy 
intake in women were unexpected. In men, every ten pg/mL increase in 
fasting PYY concentrations and every one ng/mL increase in fasting 
adiponectin concentrations was associated with an increase in post- 
exercise energy intake of 96 kcal and 53 kcal, respectively (energy 
compensation: 94 kcal and 56 kcal, respectively). We are not aware of 
previous findings of similar sex differences in the association between 
fasting appetite-regulating hormones and (post-exercise) energy intake. 
In our study, PYY concentrations did not differ by sex at baseline, which 
is in line with the literature (Cooper, 2014). In the fasted state, circu-
lating concentrations of PYY are usually low with rapid increases upon 
nutrient ingestion (Cooper, 2014; Druce et al., 2004). During aerobic 
exercise, PYY has been shown to increase and remain elevated for up to 
5h after exercise (Stensel, 2010), with the appetite-suppressing effects 
usually diminishing within 30–60 min of exercise cessation, however 
(Dorling et al., 2018). It has been reported that sex differences exist in 
the PYY response to moderate-intensity exercise (bike ergometer at 65% 
VO2max, similar to our study), with greater increases and a greater 
subsequent post-exercise appetite suppression in men compared to 
women (Hazell et al., 2017). Importantly, however, the 
exercise-induced increases in PYY and associated appetite suppression 
do not always translate into de-facto decreases in post-exercise energy 
intake. In fact, the majority of exercise studies show no change in energy 
intake after acute bouts of exercise (Stensel, 2010), and it has been found 
in a review that 19% of such studies even report increases in energy 
intake while 16% show a decrease (65% no change) (Blundell & King, 
1999). Nevertheless, the strong associations between greater fasting 
concentrations of PYY (and adiponectin) and greater post-exercise en-
ergy intake and compensation as shown in the present study are still 
somewhat unexpected. Further research is needed to confirm our find-
ings and examine why fasting PYY may affect energy intake and 
compensation after exercise but not after a no-exercise rest condition; 
also of interest is why PYY concentrations affect post-exercise energy 

Fig. 1. Associations between habitual exercise, fasting PYY concentrations, and fasting adiponectin concentrations and post-exercise energy intake, relative energy 
intake (post-exercise energy intake − exercise energy expenditure), and the difference between post-exercise and post-rest energy intake. Regression lines are 
displayed for the entire sample (solid line), for men (dotted line), and for women (dashed line). 
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intake and compensation differently in men than women, despite similar 
fasting concentrations. 

Contrary to previous findings showing a general association between 
eating behavior traits, and particularly disinhibition or uncontrolled 
eating, with overeating in the presence of food (Brunner et al., 2021; 
Garcia-Garcia et al., 2022; Vainik et al., 2019), eating behavior traits 
(cognitive restraint, uncontrolled eating, and emotional eating) were not 
significant predictors of energy intake. This is similar to recent findings 
in adolescents in whom the three trait measures as assessed via the 
TFEQ-R18v2 were also not associated with ad libitum post-exercise en-
ergy intake (Fearnbach et al., 2022). Further, physiological processes 
may override these eating behavior traits in the post-exercise state; 
however, in our study, cognitive restraint, uncontrolled eating, or 
emotional eating were also not associated with ad libitum energy intake 
following the control condition involving rest. 

Energy intake after rest was associated with weight and FFM as well 
as cardiorespiratory fitness (VO2peak and maximal power). Of note, only 
absolute but not relative VO2peak were significant predictors of post-rest 
energy intake, suggesting that this association was driven by the 

significant predictors of weight, FFM, and sex, which have repeatedly 
been shown to predict meal size and single meal food intake (Blundell 
et al., 2012; Hopkins et al., 2016; Weise et al., 2014). When assessing 
predictors of the difference in energy intake between after exercise and 
after rest, we found significant associations with cardiorespiratory 
fitness, in this case, both relative and absolute VO2peak, for men but not 
women. Further, the associations revealed a turning point at 40.9 
mL/kg/min or 3.0 L/min, respectively. Individuals with 
average-to-above-average fitness seem to have reduced total energy 
intake post-exercise compared to post-rest while those with 
below-average fitness seem to have increased total energy intake 
post-exercise compared to post-rest. The finding of greater post-exercise 
energy intake in individuals with lower fitness compared to those with 
higher fitness is supported by previous findings showing that individuals 
with higher compared to lower fitness (mean VO2peak of 51.6 vs. 37.0) 
compensated after an acute exercise session compared to after rest 
(Charlot & Chapelot, 2013). Additionally, this relationship may be 
influenced by higher body fat accumulation, which often co-occurs with 
lower fitness and has been shown to predict greater post-exercise energy 

Table 3 
Linear regression analysis for the association between anthropometrics, physiological and behavioral baseline characteristics and relative post-exercise ad libitum 
energy intake (energy intake [kcal] – energy expenditure [kcal]).   

All participants Men Women 

Relative energy intake (kcal) Relative energy intake (kcal) Relative energy intake (kcal) 

R- 
squared 
values 

B SE β P R- 
squared 
values 

B SE β P R- 
squared 
values 

B SE β P 

Sex a 0.038 157.4 106.9 0.19 0.147           
Age, years 0.000 −2.0 22.0 −0.01 0.929 0.007 −16.1 40.3 −0.08 0.693 0.012 13.8 23.1 0.11 0.554 
Weight, kg 0.007 3.4 5.4 0.09 0.528 0.000 0.9 8.7 0.02 0.923 0.002 −2.0 8.5 −0.04 0.816 
BMI, kg/m2 0.000 3.0 23.3 0.02 0.899 0.007 −14.5 36.6 −0.08 0.695 0.020 21.8 28.5 0.14 0.449 
Fat-free mass, 

kg 
0.019 6.1 6.0 0.14 0.312 0.013 6.1 11.0 0.11 0.583 0.054 −16.0 12.5 −0.23 0.209 

Total body fat, 
% 

0.009 −6.4 9.2 −0.09 0.490 0.027 −14.9 18.1 −0.17 0.419 0.053 14.6 11.4 0.23 0.211 

Physical activity behavior and cardiorespiratory fitness 
Habitual 

exercise, 
min/week 

0.094 −0.7 0.3 −0.31 0.024 0.035 −0.6 0.7 −0.19 0.372 0.197 −0.7 0.3 −0.44 0.016 

Habitual 
exercise 
days/week 

0.054 −48.7 27.4 −0.23 0.081 0.028 −41.9 50.6 −0.17 0.416 0.149 −62.4 27.6 −0.39 0.032 

MVPA, min/ 
week 

0.012 0.3 0.4 0.11 0.419 0.027 0.5 0.6 0.16 0.421 0.001 −0.1 0.4 −0.02 0.900 

Relative 
VO2peak, mL/ 
kg/min 

0.019 −9.1 8.8 −0.14 0.306 0.043 −17.3 16.7 −0.21 0.312 0.133 −22.6 10.7 −0.36 0.044 

Absolute 
VO2peak, L/ 
min 

0.004 −40.1 89.9 −0.06 0.657 0.026 −127.0 157.4 −0.16 0.428 0.173 −408.6 166.0 −0.42 0.020 

Maximal 
power, W 

0.001 0.3 1.1 0.04 0.781 0.001 −0.4 2.1 −0.04 0.853 0.027 −1.5 1.7 −0.16 0.386 

Eating behavior traits 
Cognitive 

Restraint 
0.012 −20.4 25.0 −0.11 0.420 0.050 −41.2 36.8 −0.22 0.274 0.021 26.4 33.4 0.15 0.436 

Uncontrolled 
Eating 

0.008 7.7 11.7 0.09 0.517 0.008 −8.5 19.9 −0.09 0.671 0.094 22.0 12.7 0.31 0.093 

Emotional 
Eating 

0.004 7.4 16.7 0.06 0.660 0.016 −22.6 35.7 −0.13 0.532 0.095 27.0 15.5 0.31 0.092 

Appetite-regulating hormones 
GLP-1, pg/mL 0.002 3.0 12.5 0.04 0.811 0.108 38.8 29.8 0.33 0.214 0.024 −7.5 10.3 −0.16 0.477 
PYY, pg/mL 0.136 3.1 1.3 0.37 0.021 0.724 9.4 1.6 0.85 <0.001 0.022 −0.8 1.2 −0.15 0.501 
Ghrelin, pg/ 

mL 
0.018 0.1 0.2 0.14 0.431 0.090 0.4 0.3 0.30 0.278 0.001 −0.0 0.2 −0.03 0.911 

Adiponectin, 
ng/mL 

0.066 14.6 9.2 0.26 0.120 0.476 55.8 15.6 0.69 0.003 0.001 1.3 9.0 0.03 0.888 

Bold font indicates statistical significance (P < 0.05). Dependent variable in all models: Relative post-exercise ad libitum energy intake (energy intake during test meal 
[kcal] – energy expenditure during exercise session [kcal]). 
Abbreviations: B, unstandardized regression coefficient; β, standardized regression coefficient; BMI, body mass index; GLP-1, Glucagon-like Peptide 1; MVPA, 
moderate-to-vigorous physical activity; PYY, peptide YY; SE, standard error. 

a Female = 0, male = 1. 
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compensation due to a progressively increasing impairment of energy 
balance (Careau et al., 2021). 

Overall, our results may help identify individuals who are likely to 
show post-exercise energy compensation and help explain why this 
adverse response to exercise occurs in some individuals but not others. 
To prevent increased post-exercise energy intake, countermeasures such 
as the selection and preparation of the post-exercise meal ahead of the 
exercise session may be beneficial, as demonstrated previously (Gus-
tafson et al., 2018; Koehler et al., 2021). Strengths of the present study 
include the crossover design, the relatively balanced sample of men and 
women, and the comprehensive analysis of the contribution of anthro-
pometric, behavioral, cognitive, and endocrine factors at baseline to 
post-exercise energy intake. Limitations include the relatively small 
sample, particularly for the appetite-regulating hormone data, and the 
relative lack of racial and age-related diversity. However, we specifically 
chose to recruit a convenience sample of young adults to minimize the 
impact of age, as it has been shown that exercise-induced consequences 
of hunger, satiety, and compensation differentially affect adults aged 
60+ years (Hubner et al., 2021). 

Nevertheless, future studies with larger and more diverse samples 
should examine potential differences in predictors of post-exercise en-
ergy intake by race/ethnicity and age. Further, it would be interesting to 
assess how different exercise modalities (type, intensity, duration) with 
similar energy expenditure affect post-exercise food intake and 
compensation and whether the found associations hold for repeated 
exercise bouts. 

5. Conclusions 

Biological and behavioral characteristics differentially affect post- 
exercise energy intake in men and women. In women, habitual exer-
cise behavior predicts post-exercise energy intake, with more exercise 
protecting against compensatory eating. In men, appetite-regulating 
hormones, specifically PYY and adiponectin, play a role in the energy 
intake response to acute exercise, even when measured before exercise 
and after controlling for post-rest energy intake. Our results can help 
identify individuals who are more likely to (over-) compensate for the 
energy expended in exercise via increased post-exercise energy intake 
allowing to deploy targeted countermeasures ahead of time. 
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Baseline Habitual Physical Activity Predicts Weight Loss, 
Weight Compensation, and Energy Intake During Aerobic 
Exercise
Christoph Höchsmann 1, James L. Dorling 1, John W. Apolzan 1, Neil M. Johannsen 1,2, Daniel S. Hsia 1,  
and Corby K. Martin 1

Objective: This study aimed to determine whether different measures of 
habitual physical activity (PA) at baseline predict weight change, weight 
compensation, and changes in energy intake (EI) during a 24-week super-
vised aerobic exercise intervention.
Methods: Data from 108 participants (78 women; 48.7 [SD: 11.6] years; 
BMI  31.4 [SD: 4.6] kg/m2), randomly assigned to either the moderate-
dose exercise group (8 kcal/kg of body weight per week) or the high-dose 
exercise group (20 kcal/kg of body weight per week) of the Examination of 
Mechanisms of Exercise-induced Weight Compensation (E-MECHANIC) 
trial, were analyzed. Moderate-to-vigorous PA (MVPA), steps per day, and 
PA energy expenditure (PAEE) were measured with SenseWear armbands 
(BodyMedia, Pittsburgh, Pennsylvania), and total activity energy expendi-
ture and EI were estimated with doubly labeled water, all over 2 weeks, 
before and toward the end of the intervention. Multiple linear regression 
models, adjusted for sex, exercise group, and baseline value of the out-
come, were used.
Results: Baseline habitual MVPA levels predicted weight change 
(β = −0.275; P = 0.020), weight compensation (β = −0.238; P = 0.043), and 
change in EI (β = −0.318; P = 0.001). Associations between baseline PAEE 
and outcomes were comparable, whereas steps per day and, importantly, 
total activity energy expenditure (via doubly labeled water) did not signifi-
cantly predict change in weight-related outcomes.
Conclusions: While acknowledging substantial variability in the data,  
on average, lower baseline habitual MVPA and PAEE levels were  
associated with less weight loss from exercise, higher compensation, and 
increased EI.

Obesity (2020) 28, 882-892. 

Introduction
The prevalence of overweight and obesity has grown into a worldwide epidemic in recent 
years (1), and excess body weight substantially increases the risk of adverse health condi-
tions (2). Exercise has been shown to support the prevention and management of obesity 
(3); however, when used for weight loss, exercise interventions consistent with the physical 
activity (PA) guidelines for weight loss and weight  loss maintenance (> 225 min/wk of 
moderate-intensity PA) frequently produce less weight loss than expected based on energy 

© 2020 The Obesity Society. Received: 15 October 2019; Accepted: 22 January 2020; Published online 6 March 2020. doi:10.1002/oby.22766

1 Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA. Correspondence: Corby K. Martin (Corby.Martin@pbrc.edu) 2 Louisiana State 
University, Baton Rouge, Louisiana, USA.
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Study Importance

What is already known?
►	Exercise is recommended for weight 

management.
►	Exercise-induced weight loss often is 

less than expected based on measured 
energy expenditure (EE).

►	This is called weight compensation and 
results primarily from increased energy 
intake (EI).

What does this study add?
►	Moderate-to-vigorous physical activ-

ity (MVPA) and physical activity EE 
(PAEE) (≥ 3 metabolic equivalents) lev-
els prior to engaging in a moderate- to 
high-dose aerobic exercise intervention 
predict weight loss, weight compen-
sation, and changes in EI during the 
intervention.

►	Prior MVPA and PAEE have a superior 
predictive value compared with steps 
per day and total activity-related EE, as 
estimated by doubly labeled water, re-
garding these outcomes.

How might these results change the 
direction of research?
►	Further research is needed to under-

stand why participants with lower base-
line habitual MVPA and PAEE levels lose 
less weight from structured exercise, 
show higher weight compensation, and 
increase their EI more than those who 
are more active at baseline to develop 
strategies to mitigate this detrimental 
effect.
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expended in exercise (4-7). This discrepancy is called weight compen-
sation (8), and it results primarily from exercise-induced increases in 
appetite and energy intake (EI) as opposed to changes in metabolism 
or activity (6,9).

It is unknown whether factors pertaining to one’s lifestyle prior to 
starting an exercise program affect weight compensation and food 
intake (FI). An individual’s habitual PA level at baseline might be 
such a determinant of the observed difference between actual weight 
change and predicted weight loss from the energy balance model. 
As suggested by Westerterp (10), it is possible that a lower habitual 
PA level at baseline allows an exercise-induced increase in energy 
expenditure (EE) without or with less compensatory increase in EI. 
Conversely, and based on previous research indicating that EI and 
energy balance are better regulated at higher levels of activity-re-
lated EE (11,12), lower habitual PA levels at baseline might be asso-
ciated with larger compensatory increases in EI in response to an  
exercise-induced increase in EE (10).

To further elucidate the mechanisms for weight compensation 
in response to exercise, the aim of this analysis was to determine 
whether different measures of habitual PA at baseline predict weight 
change, weight compensation, and changes in EI during a 24-week, 
supervised, controlled aerobic exercise intervention. Specifically, 
we aimed to compare the predictive value of (1) minutes spent in 
moderate-to-vigorous PA (MVPA), (2) steps per day, and (3) EE 
through PA (PAEE), assessed via two validated methods, with regard 
to these outcomes. Based on previous work (11,12), we hypothe-
sized that participants with lower PA levels at baseline would show 
greater weight compensation and larger exercise-induced increases 
in EI. Although PAEE is directly related to the energy balance model 
and a significant association with our outcomes might be expected, 
we aimed to additionally assess the association of MVPA and steps 
per day with our outcomes, as PA recommendations based on these 
parameters are commonly communicated to patients, and a predictive 
value of these parameters would consequently be of interest to many 
clinical and research settings.

Methods
Design and participants
This report is a secondary analysis of the Examination of Mechanisms 
of Exercise-induced Weight Compensation (E-MECHANIC) study 
(Clini calTr ials.gov identifier NCT01264406) that was approved by 
the institutional review board and conducted between November 
2010 and December 2015 at Pennington Biomedical Research Center 
(Baton Rouge, Louisiana). The complete design, methods, and pri-
mary outcomes of the E-MECHANIC study have been previously 
published (6,13). In brief, this 24-week randomized controlled trial 
recruited 198 healthy men and women with overweight or obesity 
(BMI ≥ 25 kg/m2 to ≤ 45 kg/m2) and low levels of PA (≤ 20 minutes of 
structured exercise on ≤ 3 d/wk based on self-report; < 8,000 steps per 
day (14) assessed during 1 week of accelerometer data [SenseWear 
armband; BodyMedia, Pittsburgh, Pennsylvania]). Participants were 
randomly allocated in a 1:1:1 ratio to either a moderate-dose exer-
cise group (8 kcal/kg of body weight per week [KKW]), a high-dose 
exercise group (20 KKW), or a nonexercise control group (13). The 
selected exercise doses reflect recommendations for general health  
(8 KKW) and for weight loss (20 KKW) (15). Exercise intensity 
during the supervised exercise sessions was self-selected between 

65% and 85% peak oxygen uptake, and sessions varied in length to 
meet each participant’s EE goal (16).

Participants were excluded if they were currently participating in 
a weight  loss program (and/or had  ≥ 4-kg weight change in the past  
6 months), were currently pregnant or had been pregnant within the past 
6 months, or were diagnosed with diabetes, cardiovascular disease, or 
arrhythmia. All participants provided written informed consent prior to 
inclusion in the study.

The primary aim of the E-MECHANIC study was to identify mecha-
nisms of exercise-induced weight compensation (i.e., less than expected 
weight loss) by examining the effect of the two different doses of exercise 
training on EI over the 24-week intervention period. The study found 
significantly higher weight compensation in the high-dose exercise group 
compared with the moderate-dose exercise group, which resulted primar-
ily from increased EI and concomitant increases in appetite (6).

In this report, to examine the impact of baseline levels of habitual 
PA on outcome measures during a supervised exercise interven-
tion, only participants allocated to the two exercise groups (n = 110) 
who completed the trial per protocol were included in the main 
analyses. Demographics of those exercisers who did not complete 
the trial (n = 25) did not differ significantly from completers (all  
P values ≥ 0.093).

Outcome variables
Anthropometry and body composition. At baseline and follow-up, 
body weight was assessed under fasting conditions using a Tanita scale 
(Arlington Heights, Illinois), and waist circumference was determined 
using a nonextensible tape measure (Gulick II; Sammons Preston, 
Chicago, Illinois). Dual-energy x-ray absorptiometry (DXA) (Lunar 
iDXA and Encore software version 13.60; GE Healthcare, Madison, 
Wisconsin) was used to assess fat mass.

Weight compensation. Weight compensation is the difference 
between the amount of weight loss predicted from exercise-
associated EE and observed weight loss from baseline to follow-up 
(actual − predicted weight change). Predicted weight loss was calculated 
using a validated dynamic energy balance model that overcomes the 
limitations of the conventional assumption that 1 kg of body weight 
equals 7,700 kcal/kg (7,17,18), accounting for adaptations that occur 
when body mass changes, including adaptations to resting metabolic 
rate (RMR), dietary-induced thermogenesis, and nonexercise activity 
thermogenesis (19).

EI. EI was estimated with doubly labeled water (DLW) and FI tests at 
baseline and follow-up. DLW data were collected over a 2-week period 
at both time points. DLW measures total daily EE (TDEE), which equals 
total daily EI during weight stability (20,21). The DLW period at baseline 
occurred before participants began exercising. During the DLW period 
at follow-up, participants exercised at their prescribed dose. During both 
DLW periods, participants were weight stable (≤ 0.15-kg change in weight 
during the 2-week period). Change in EI by DLW was calculated with 
and without adjusting for change in RMR. For participants who were 
weight stable or who gained weight during the 6-month trial, follow-up 
TDEE was subtracted from baseline TDEE to quantify the change in EI, 
as any changes in RMR from weight gain are reflected in the TDEE value 
from DLW. For participants who lost weight during the intervention, this 
calculation fails to consider decreased basal metabolic requirements; 
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therefore, the difference between RMR from baseline to follow-up was 
added to the difference in TDEE for these participants to quantify the 
change in EI during the intervention period.

In addition, at baseline and follow-up, validated laboratory-based FI 
tests were conducted at lunch and dinner. Following a standard breakfast 
between 0700 and 0800 consisting of a 190-kcal nutrition bar, participants 
returned to the center between 1100 and 1200 to complete their test lunch, 
which consisted of ad libitum sandwiches, potato chips, cookies, water, 
and choice of an artificially-sweetened soda or tea or sugar-sweetened 
soda or tea. At 5.5 hours after the start of their lunch, participants returned 
to the center again to complete their dinner meal, which consisted of a 
previously described 18-food-item buffet meal (22), presented to the par-
ticipants all at once within arm’s reach. At both test meals, participants 
were instructed to eat as much or as little of the presented food items as 
desired and to avoid distractions (e.g., mobile phone use), focusing com-
pletely on the meal. FI testing at follow-up occurred at least 24 hours after 
the last exercise session. We quantified FI at lunch and dinner by covertly 
weighing food provision and waste and combined EI (kilocalories) from 
both meals for the analyses presented in this paper.

RMR. We measured RMR with indirect calorimetry over 30 minutes 
after a 12-hour overnight fast with Max-II metabolic carts (AEI 
Technologies, Pittsburgh, Pennsylvania) at baseline and follow-up. The 
change in RMR was calculated as RMR at follow-up minus RMR at 
baseline. Calculations adjusted for change in body composition (i.e., lean 
mass measured with DXA), sex, and age did not differ meaningfully from 
the basic change scores; hence, the basic change scores are reported.

PA. SenseWear armbands measured the minutes per day spent in 
activities of different intensities, steps per day, and PAEE during a 
2-week period at baseline and follow-up. In the MVPA-related analyses 
presented in this paper, only activities ≥ 3 metabolic equivalents (MET) 
are included (3), and, congruent with the most recent Physical Activity 
Gudelines for Americans (23), all MVPA was considered rather than 
only that accumulated in bouts of at least 10 minutes as recommended 
previously. The SenseWear software classifies any activity  ≤ 3 MET 
as sedentary; hence, PAEE included only  activities  ≥ 3 MET (24). 
Participants were instructed to wear the armbands continuously and to 
take them off only  during activities involving water. The SenseWear 
armbands detect and record wear time, and only full days of data, 
defined as a wear time of ≥ 95% (equating to 22 hours and 48 minutes or 
1,368 minutes), were included in the analyses. During the monitoring 
period at follow-up, participants exercised at their prescribed dose; 
therefore, PA data collected by the SenseWear armbands during these 
sessions were removed before analysis. To account for differing wear 
times between participants caused by varying durations of the exercise 
sessions and different nonwear times within the time frame of 22 hours 
and 48 minutes, the total number of minutes of daily activity was 
divided by the total daily wear time (minutes) and then extrapolated out 
to a 24-hour day.

In addition to the PAEE estimates by the SenseWear armband, we 
calculated the gold standard of activity EE (AEE) based on the DLW-
estimated TDEE (DLW-AEE = TDEE − [RMR + thermic effect of food]),  
which captures all PA-related EE. The thermic effect of food was esti-
mated as 10% of TDEE.

Questionnaires. Retrospective visual analog scales assessed average 
ratings of appetite during the previous week (25) at baseline and follow-
up. The Eating Inventory (26) was used to assess eating behavior, 

specifically restraint, disinhibition, and hunger at baseline and follow-
up. Additional questionnaires included the Multifactorial Assessment 
of Eating Disorders Symptoms (27), Food Preference Questionnaire 
(28), and Food Craving Inventory (29).

Statistical analyses
The distribution of variables was verified using the Shapiro-Wilk 
test and by visual inspection of histograms and quantile-quantile 
plots of the residuals. The influence of outliers was estimated using 
studentized residuals, and multicollinearity was assessed via the 
variance inflation factor. Exclusion of outliers (≤ 2 for all models) 
did not change the results meaningfully; therefore, the models in-
cluding outliers are reported. Descriptive data are reported as mean 
and SD. We used multiple linear regression models to estimate the  
effect of SenseWear-assessed habitual MVPA levels (minutes per 
day), steps per day, PAEE, and DLW-estimated AEE at baseline on 
weight change (kilograms) and weight compensation (kilograms), as 
well as on changes in waist circumference (centimeters), fat mass 
(kilograms), EI (by DLW in kilocalories per day), EI during FI test-
ing (kilocalories at a test lunch and test dinner combined), RMR  
(kilocalories per day), and habitual MVPA levels (minutes per day), 
steps per day, and PAEE  (kilocalories per day). Covariates in the 
models were sex, exercise group, and baseline value of the respective 
outcome. Results of analyses that included age, ethnicity, and base-
line BMI did not differ meaningfully; therefore, the models without 
these additional covariates are reported. Similarly, interaction terms 
for sex and exercise group were nonsignificant; therefore, results are 
reported without the interaction terms in the models. Pearson prod-
uct moment correlation analysis was used to assess the association 
between habitual MVPA levels and questionnaire-assessed eating 
behaviors at baseline. The analyses were conducted using SPSS 
Statistics for Windows, version 25 (IBM Corp., Armonk, New York), 
with the significance level set to 0.05 (two-sided).

Results
Two participants were excluded from the analyses because they did 
not provide baseline accelerometer data. Baseline characteristics of 
all included 108 participants are shown in Table 1. Baseline charac-
teristics of the control group (not included in main analyses) are pro-
vided in Supporting Information Table S1. At baseline, average wear 
time of the armbands was 1,415.2 min/d (SD: 9.1 min/d), equating 
to 98.3% (SD: 0.6%); at follow-up, average wear time (excluding 
study-related exercise sessions) was 1,393.1 min/d (SD: 31.7 min/d) 
or 97.8% (SD: 2.1%). Baseline habitual MVPA was 61.2 min/d  
(SD: 46.9 min/d) on average, with an average intensity of 3.7 
MET (SD: 0.2 MET) and 99.2% (SD: 0.2%) of all MVPA below  
6 MET. Total habitual PA, measured as steps per day, was 6,300 
(SD: 2,301) at baseline. Total duration and intensity of daily habit-
ual MVPA, habitual steps per day, and habitual PAEE (all outside of 
the structured exercise sessions) did not change significantly from 
baseline to follow-up (all P values ≥ 0.094). Average self-chosen  
exercise intensity during the intervention was 6.9 MET (SD: 1.0 MET),  
with no significant difference between the 20-KKW group and the 
8-KKW group (P = 0.074). This average exercise intensity corre-
sponds to vigorous PA (3).

Table 2 and Figure 1 (MVPA), Table 3 (steps per day), Table 4 
(SenseWear PAEE), and Table 5 (DLW-estimated AEE) show the results 
of the multiple linear regression analyses. We found significant negative 
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associations between baseline habitual MVPA levels and weight change 
(P = 0.020; Figure 1A), weight compensation (P = 0.043; Figure 1B), 
and change in DLW-estimated EI both with (P = 0.001; Figure 1C) and 
without (P = 0.001; not shown in Figure 1) adjustment for change in 
RMR. The analyses further showed significant negative associations 
between baseline habitual MVPA levels and changes in waist circum-
ference (P = 0.030), fat mass (P = 0.025), and habitual MVPA levels 
(P < 0.001; Figure 1D). Although there is substantial variability in 
the data (Figure 1), these results suggest that, on average, for every  
15-minute decrease in habitual MVPA per day at baseline, participants 
lost 0.23 kg less weight, compensated 0.20 kg more, and increased 
DLW-estimated daily EI from baseline to follow-up by 21.5 kcal/d 
(adjusted for RMR of 23.2 kcal/d).

Compared with women, men lost 1.9 kg less weight, compensated  
1.8 kg more, and increased DLW-estimated EI by 182.4 kcal/d 
(adjusted for RMR of 171.6 kcal/d) (Table 2). Further, compared 
with participants in the 8-KKW group, participants in the 20-KKW 
group lost 1.4 kg more weight but showed 1-kg-higher weight com-
pensation (Table 2).

Baseline levels of habitual MVPA were significantly correlated 
with the disinhibition subscale of the Eating Inventory (r = −0.229; 
P = 0.018) and with the binge eating subscale of the Multifactorial 
Assessment of Eating Disorders Symptoms (r = −0.230; P = 0.018). 
No other correlations between baseline levels of habitual MVPA and 
eating behavior–related constructs, as assessed by questionnaires, 
were significant.

Baseline PA levels measured as steps per day significantly predicted 
change in steps per day (β = −0.382; P < 0.001); however, no associa-
tions between steps per day at baseline and change in any other of the 
outcome variables were significant (Table 3). Associations between 
average intensity (MET) of baseline habitual MVPA and all outcomes 
were nonsignificant (all P > 0.1, data not shown).

Associations between baseline habitual PAEE and outcomes 
were similar to those of baseline habitual MVPA, albeit slightly 
attenuated, as indicated by the regression coefficients (Table 4). 
DLW-estimated AEE only significantly predicted change in DLW-
estimated EI (Table 5); all other associations were nonsignificant (all 
P values ≥ 0.709).

As described above, habitual MVPA, steps per day, and PAEE (all out-
side of structured exercise sessions) did not change significantly from 
baseline to follow-up on a group level. However, on an individual level, 
baseline habitual MVPA (Table 2, Figure 1D), steps per day (Table 3), 
and PAEE (Table 4) were significantly inversely associated with change 
in the respective measure.

Supporting Information Tables S2-S5 show the results of the multiple 
linear regression analyses for the control group. For habitual MVPA 
(Supporting Information Table S2), steps per day (Supporting Information 
Table S3), and PAEE (Supporting Information Table S4), only change in 
each PA measure was significantly associated with the respective baseline 
value. A Fisher r-to-z transformation revealed that the correlation coeffi-
cients for habitual MVPA did not differ between exercisers and the control 

TABLE 1 Baseline characteristics of 108 included participants

  All (N = 108) 8 KKW (n = 57) 20 KKW (n = 51)

Female, n (%) 78 (72.2) 42 (73.7) 36 (70.6)
Ethnicity, n (%)      

Caucasian 74 (68.5) 37 (64.9) 37 (72.5)
African American 32 (29.6) 20 (35.1) 12 (23.5)
Hispanic/other 2 (1.9) 0 (0.0) 2 (4.0)

Age (y) 48.7 (11.6) 48.3 (11.0) 49.1 (12.4)
Height (cm) 167.1 (8.2) 167.2 (8.7) 167.0 (7.6)
Weight (kg) 87.8 (15.5) 89.0 (16.0) 86.5 (15.1)
Waist circumference (cm) 97.8 (12.0)a 98.7 (12.1)b 97.0 (11.9)
BMI (kg/m2) 31.4 (4.6) 31.8 (4.6) 30.9 (4.5)
Fat mass (kg) 36.8 (9.8) 37.3 (9.7) 36.2 (9.9)
EI, DLW (kcal/d) 2,497.7 (462.5) 2,530.1 (438.8) 2,461.5 (489.4)
EI, buffet (kcal at lunch and dinner combined) 1,795.5 (550.7) 1,820.1 (489.7) 1,768.1 (615.7)
RMR (kcal/d) 1,529.1 (297.1)a 1,525.8 (261.2) 1,532.8 (334.7)
MVPA (min/d) 61.2 (46.9) 63.9 (49.5) 58.2 (44.0)
Average intensity of MVPA (MET) 3.7 (0.2) 3.8 (0.2) 3.7 (0.2)
Steps per day 6,300 (2,301) 6,576 (2,613) 5,992 (1,870)
PAEE, SenseWear (kcal/d) 336.7 (257.8) 349.1 (257.6) 322.9 (259.8)
AEE, DLW (kcal/d) 717.5 (216.6)a 749.3 (201.3)b 682.6 (229.2)

Data are mean (SD) if not stated otherwise. ANOVA (continuous variables) and χ2 test (categorical variables) used to test for baseline differences between two groups. The 
8-KKW and 20-KKW groups did not differ significantly in any baseline measures presented in table.
aData available in 107 of 108 participants.
bData available in 56 of 57 participants.
AEE, activity energy expenditure; DLW, doubly labeled water; EI, energy intake; KKW, kcal/kg of body weight/wk; MET, metabolic equivalent; MVPA, moderate-to-vigorous 
physical activity; PAEE, physical AEE; RMR, resting metabolic rate.
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TABLE 2 Multiple linear regression analysis for association between baseline habitual MVPA levels and changes in body weight, 
fat mass, EI, and MVPA levels

  R2 B SE β P

Weight change (kg) 0.124        
Habitual MVPA at baseline (min/d)   −0.015 0.006 −0.275 0.020

Weight at baseline (kg)   −0.033 0.019 −0.197 0.095
Sexa   1.880 0.716 0.328 0.010
Groupb   −1.442 0.483 −0.280 0.004

Waist circumference change (cm) 0.074        
Habitual MVPA at baseline (min/d)   −0.019 0.009 −0.267 0.030

Waist circumference at baseline (cm)   −0.034 0.034 −0.122 0.317
Sexa   1.357 0.947 0.185 0.155
Groupb   −1.325 0.638 −0.201 0.040

Weight compensation (kg) 0.127        
Habitual MVPA at baseline (min/d)   −0.013 0.006 −0.238 0.043

Weight at baseline (kg)   −0.011 0.020 −0.064 0.585
Sexa   1.826 0.723 0.315 0.013
Groupb   1.049 0.488 0.201 0.034

Fat mass change (kg) 0.153        
Habitual MVPA at baseline (min/d)   −0.014 0.006 −0.257 0.025

Fat mass at baseline (kg)   −0.070 0.027 −0.271 0.011
Sexa   1.173 0.562 0.209 0.039
Groupb   −1.478 0.462 −0.293 0.002

Change in EI, DLW (kcal/d) 0.220        
Habitual MVPA at baseline (min/d)   −1.546 0.442 −0.336 0.001

EI, DLW at baseline (kcal/d)   −0.206 0.054 −0.443 < 0.001
Sexa   182.400 57.888 0.381 0.002
Groupb   −11.680 37.824 −0.027 0.758

Change in EI, adjusted DLW kcal/d)c 0.205        
Habitual MVPA at baseline (min/d)   −1.436 0.438 −0.318 0.001

EI, DLW at baseline (kcal/d)   −0.195 0.054 −0.427 < 0.001
Sexa   171.594 57.370 0.365 0.003
Groupb   3.388 37.486 0.008 0.928

Change EI, buffet (kcal at lunch and dinner combined) 0.158        
Habitual MVPA at baseline (min/d)   −0.938 0.951 −0.098 0.326

EI, buffet at baseline (kcal at lunch and dinner combined)   −0.287 0.077 −0.354 < 0.001
Sexa   319.655 102.282 0.322 0.002
Groupb   21.191 80.993 0.024 0.794

Change in RMR, indirect calorimetry (kcal/d) 0.067        
Habitual MVPA at baseline (min/d)   0.210 0.641 0.036 0.744

RMR at baseline (kcal/d)   −0.160 0.109 −0.195 0.146
Sexa   −44.702 77.817 −0.081 0.567
Groupb   41.109 50.933 0.083 0.422

Change in habitual MVPA (min/d) 0.223        
Habitual MVPA at baseline (min/d)   −0.274 0.058 −0.450 < 0.001

Sexa   −2.425 5.996 −0.039 0.687
Groupb   7.963 4.992 0.141 0.114

Bold font indicates statistical significance (P < 0.05). Independent variable in all models: habitual MVPA levels (min/d) at baseline.
aFemale = 0, male = 1.
b8 kcal/kg of body weight per week = 0, 20 kcal/kg of body weight per week = 1.
cAdjusted for change in RMR.
DLW, doubly labeled water; EI, energy intake; MVPA, moderate-to-vigorous physical activity; RMR, resting metabolic rate.

 

17



ObesityOriginal Article
CLINICAL TRIALS AND INVESTIGATIONS

www.obesityjournal.org  Obesity | VOLUME 28 | NUMBER 5 | MAY 2020     887

group (data not shown). For habitual PAEE, the difference between exer-
cisers and control participants was significant, with a markedly more pro-
nounced association for the control participants.

Discussion
To our knowledge, this is the first study to determine and compare 
the effect of prior habitual MVPA, steps per day, and PAEE on 
changes in weight, EI, RMR, and MVPA, steps per day, and PAEE in 
response to a moderate- to high-dose aerobic exercise intervention. 
The results show that, on average, lower levels of habitual MVPA 
and/or PAEE at baseline are related to less weight loss and greater 
weight compensation during the exercise intervention, supporting 
our hypothesis. Importantly, lower levels of habitual MVPA and/or 
PAEE at baseline were also associated with greater increases in EI, 
which likely contributed to the lower weight compensation in those 
with higher baseline levels of habitual MVPA and/or PAEE, partic-
ularly because changes in RMR were not associated with baseline 
habitual MVPA and/or PAEE levels. Interestingly, we found substan-
tial heterogeneity in the weight  loss/compensation response, which 
likely influenced the results of the regression analysis. Although 
many participants across all baseline MVPA levels successfully lost 
weight during the intervention, some participants with low MVPA at 

baseline actually gained weight, whereas no one with higher baseline 
MVPA gained weight.

In line with previous findings (30,31), participants with lower 
habitual MVPA levels showed higher tendencies for disinhibition 
and binge eating at baseline, factors that may have influenced the 
greater increases in EI and subsequent greater weight compensation 
in response to the exercise intervention. This assumption is supported 
by previous findings showing that individuals with lower levels of 
measured MVPA have weaker appetite control and satiety response 
to food and thus have an impaired regulation of energy balance com-
pared with their more active counterparts (32-34). Consequently, in 
our study, participants with lower levels of habitual MVPA and/or 
PAEE at baseline may have had a more impaired regulation of energy 
balance than those with higher levels of habitual MVPA and/or PAEE, 
and this became particularly apparent with the onset of the exercise 
intervention. Although participants were weight stable during the 
2-week baseline accelerometer assessment, suggesting an adequately 
regulated energy balance during that period, the exercise intervention 
and, subsequently, the substantial increase in daily EE disrupted this 
balance. This disruption may have revealed the potentially impaired 
energy balance regulation in participants with lower baseline levels 
of habitual MVPA and/or PAEE, as the intervention-related increases 
in MVPA and/or PAEE (i.e., structured exercise sessions) were 

Figure 1 Association between habitual moderate-to-vigorous physical activity (MVPA) at baseline and change in (A) 
body weight, (B) weight compensation, (C) change in doubly labeled water (DLW)-measured energy intake, adjusted 
for change in resting metabolic rate, and (D) change in MVPA. Regression line (solid line) in each panel represents 
the relationship for the fully adjusted model with 95% confidence intervals (dotted lines). [Color figure can be viewed 
at wileyonlinelibrary.com]
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TABLE 3 Multiple linear regression analysis for association between habitual steps per day at baseline and changes in body 
weight, fat mass, EI, and steps per day

  R2 B SE β P

Weight change (kg) 0.091        
Habitual PA at baseline (steps/d)   −0.0001 0.0001 −0.1233 0.211

Weight at baseline (kg)   −0.0156 0.0177 −0.0945 0.379
Sexa   1.0394 0.6043 0.1812 0.088
Groupb   −1.3705 0.4924 −0.2664 0.006

Waist circumference change (cm) 0.075        
Habitual PA at baseline (steps/d)   −0.0001 0.0001 −0.2324 0.057

Waist circumference at baseline (cm)   −0.0223 0.0311 −0.0807 0.476
Sexa   0.5600 0.7905 0.0763 0.480
Groupb   −1.3730 0.6409 −0.2082 0.035

Weight compensation (kg) 0.098        
Habitual PA at baseline (steps/d)   −0.0001 0.0001 −0.0818 0.404

Weight at baseline (kg)   0.0052 0.0179 0.0310 0.772
Sexa   1.0611 0.6094 0.1828 0.085
Groupb   1.1322 0.4965 0.2174 0.025

Fat mass change (kg) 0.124        
Habitual PA at baseline (steps/d)   −0.0001 0.0001 −0.1223 0.212

Fat mass at baseline (kg)   −0.0505 0.0252 −0.1954 0.048
Sexa   0.6968 0.5256 0.1238 0.188
Groupb   −1.4435 0.4715 −0.2860 0.003

Change in EI, DLW (kcal/d) 0.147        
Habitual PA at baseline (steps/d)   −0.0138 0.0089 −0.1475 0.128

EI, DLW at baseline (kcal/d)   −0.1923 0.0589 −0.4127 0.001
Sexa   112.1006 58.4187 0.2340 0.058
Groupb   −7.8955 39.6422 −0.0183 0.843

Change in EI, adjusted DLW kcal/d)c 0.140        
Habitual PA at baseline (steps/d)   −0.0128 0.0088 −0.1397 0.150

EI, DLW at baseline (kcal/d)   −0.1823 0.0580 −0.3985 0.002
Sexa   106.2766 57.5923 0.2260 0.068
Groupb   6.8974 39.0800 0.0163 0.860

Change EI, buffet (kcal at lunch and dinner combined) 0.173        
Habitual PA at baseline (steps/d)   −0.0298 0.0177 −0.1537 0.095

EI, buffet at baseline (kcal at lunch and dinner combined)   −0.2771 0.0769 −0.3416 < 0.001
Sexa   288.0988 93.6300 0.2901 0.003
Groupb   10.5387 80.6567 0.0118 0.896

Change in RMR, indirect calorimetry (kcal/d) 0.066        
Habitual PA at baseline (steps/d)   −0.0006 0.0109 −0.0057 0.956

RMR at baseline (kcal/d)   −0.1629 0.1086 −0.1984 0.137
Sexa   −35.6318 72.7619 −0.0647 0.626
Groupb   38.1756 51.0429 0.0774 0.456

Change in habitual PA (steps/d) 0.173        
Habitual PA at baseline (steps/d)   −0.3591 0.0870 −0.3823 < 0.001

Sexa   74.8373 438.7446 0.0156 0.865
Groupb   500.2422 399.3502 0.1159 0.213

Bold font indicates statistical significance (P < 0.05). Independent variable in all models: habitual PA levels (steps/d) at baseline.
aFemale = 0, male = 1.
b8 kcal/kg of body weight per week = 0, 20 kcal/kg of body weight per week = 1.
cAdjusted for change in RMR.
DLW, doubly labeled water; EI, energy intake; PA, physical activity; RMR, resting metabolic rate.
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TABLE 4 Multiple linear regression analysis for association between baseline habitual PAEE as assessed by SenseWear 
armband and changes in body weight, fat mass, EI, and SenseWear-assessed PAEE

  R2 B SE β P

Weight change (kg) 0.121        
Habitual PAEE at baseline (kcal/d)   −0.003 0.001 −0.260 0.024

Weight at baseline (kg)   −0.023 0.018 −0.136 0.208
Sexa   1.856 0.718 0.324 0.011
Groupb   −1.400 0.481 −0.272 0.004

Waist circumference change (cm) 0.059        
Habitual PAEE at baseline (kcal/d)   −0.003 0.002 −0.220 0.074

Waist circumference at baseline (cm)   −0.019 0.032 −0.068 0.553
Sexa   1.222 0.980 0.167 0.215
Groupb   −1.265 0.641 −0.192 0.051

Weight compensation (kg) 0.121        
Habitual PAEE at baseline (kcal/d)   −0.002 0.001 −0.212 0.065

Weight at baseline (kg)   −0.001 0.018 −0.008 0.944
Sexa   1.756 0.727 0.303 0.017
Groupb   1.093 0.487 0.210 0.027

Fat mass change (kg) 0.156        
Habitual PAEE at baseline (kcal/d)   −0.003 0.001 −0.261 0.021

Fat mass at baseline (kg)   −0.059 0.025 −0.230 0.019
Sexa   1.376 0.597 0.245 0.023
Groupb   −1.462 0.460 −0.290 0.002

Change in EI, DLW (kcal/d) 0.228        
Habitual PAEE at baseline (kcal/d)   −0.322 0.088 −0.385 < 0.001

EI, DLW at baseline (kcal/d)   −0.169 0.055 −0.362 0.003
Sexa   186.132 57.668 0.389 0.002
Groupb   −8.899 37.567 −0.021 0.813

Change in EI, adjusted DLW kcal/d)c 0.212        
Habitual PAEE at baseline (kcal/d)   −0.298 0.087 −0.363 0.001

EI, DLW at baseline (kcal/d)   −0.160 0.055 −0.351 0.004
Sexa   174.869 57.211 0.372 0.003
Groupb   5.993 37.269 0.014 0.873

Change EI, buffet (kcal at lunch and dinner combined) 0.164        
Habitual PAEE at baseline (kcal/d)   −0.246 0.184 −0.142 0.184

EI, buffet at baseline (kcal at lunch and dinner combined)   −0.284 0.077 −0.350 < 0.001
Sexa   351.316 107.794 0.354 0.002
Groupb   19.233 80.663 0.022 0.812

Change in RMR, indirect calorimetry (kcal/d) 0.066        
Habitual PAEE at baseline (kcal/d)   −0.025 0.127 −0.023 0.846

RMR at baseline (kcal/d)   −0.163 0.108 −0.198 0.136
Sexa   −29.457 79.345 −0.053 0.711
Groupb   37.075 51.013 0.075 0.469

Change in habitual PAEE (kcal/d) 0.289        
Habitual PAEE at baseline (kcal/d)   −0.400 0.069 −0.564 < 0.001

Sexa   52.423 38.970 0.131 0.182
Groupb   43.443 30.461 0.121 0.157

Bold font indicates statistical significance (P < 0.05). Independent variable in all models: habitual PAEE (kcal/d) at baseline as assessed by SenseWear armband.
aFemale = 0, male = 1.
b8 kcal/kg of body weight per week = 0, 20 kcal/kg of body weight per week = 1.
cAdjusted for change in RMR.
DLW, doubly labeled water; EI, energy intake; PAEE, physical activity energy expenditure; RMR, resting metabolic rate.
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met by increases in EI, leading to the observed weight compensa-
tion. Participants with higher MVPA and/or PAEE levels at baseline 
might have already experienced this compensatory effort before the 

start of the intervention, explaining, at least partially, the observed 
results. In addition to being driven by homeostatic mechanisms such 
as the aforementioned changes in appetite and satiety, the observed 

TABLE 5 Multiple linear regression analysis for association between baseline habitual AEE as assessed by DLW and changes in 
body weight, fat mass, and EI

  R2 B SE β P

Weight change (kg) 0.076        
Habitual AEE at baseline (kcal/d)   −0.001 0.001 −0.041 0.709

Weight at baseline (kg)   −0.009 0.018 −0.053 0.630
Sexa   1.009 0.620 0.177 0.107
Groupb   −1.250 0.496 −0.244 0.013

Waist circumference change (cm) 0.027        
Habitual AEE at baseline (kcal/d)   0.001 0.002 0.035 0.749

Waist circumference at baseline (cm)   0.003 0.030 0.012 0.911
Sexa   0.098 0.829 0.014 0.906
Groupb   −0.999 0.654 −0.153 0.130

Weight compensation (kg) 0.098        
Habitual AEE at baseline (kcal/d)   −0.001 0.001 −0.013 0.906

Weight at baseline (kg)   0.009 0.018 0.053 0.626
Sexa   1.031 0.624 0.178 0.101
Groupb   1.237 0.499 0.237 0.015

Fat mass change (kg) 0.109        
Habitual AEE at baseline (kcal/d)   −0.001 0.001 −0.019 0.854

Fat mass at baseline (kg)   −0.040 0.025 −0.155 0.111
Sexa   0.749 0.583 0.134 0.202
Groupb   −1.324 0.479 −0.263 0.007

Change in EI, DLW (kcal/d) 0.171        
Habitual AEE at baseline (kcal/d)   −0.317 0.137 −0.317 0.023

EI, DLW at baseline (kcal/d)   −0.095 0.078 −0.204 0.223
Sexa   99.726 58.661 0.208 0.092
Groupb   −13.740 39.562 −0.032 0.729

Change in EI, adjusted DLW kcal/d)c 0.167        
Habitual AEE at baseline (kcal/d)   −0.320 0.135 −0.326 0.020

EI, DLW at baseline (kcal/d)   −0.082 0.076 −0.179 0.287
Sexa   92.237 57.688 0.196 0.113
Groupb   0.181 38.906 0.001 0.996

Change in EI, buffet (kcal at lunch and dinner combined) 0.149        
Habitual AEE at baseline (kcal/d)   0.070 0.210 0.034 0.741

EI, buffet at baseline (kcal at lunch and dinner combined)   −0.295 0.079 −0.366 < 0.001
Sexa   264.367 101.080 0.267 0.010
Groupb   25.578 82.706 0.029 0.758

Change in RMR, indirect calorimetry (kcal/d) 0.067        
Habitual AEE at baseline (kcal/d)   0.043 0.128 0.038 0.736

RMR at baseline (kcal/d)   −0.165 0.108 −0.201 0.132
Sexa   −42.818 75.767 −0.078 0.573
Groupb   42.681 51.771 0.087 0.412

Bold font indicates statistical significance (P < 0.05). Independent variable in all models: habitual AEE (kcal/d) at baseline as assessed by DLW (total daily energy expendi-
ture − [RMR + thermic effect of eating]) Thermic effect of food estimated as 10% of total daily energy expenditure.
aFemale = 0, male = 1.
b8 kcal/kg of body weight per week = 0, 20 kcal/kg of body weight per week = 1.
cAdjusted for change in RMR.
AEE, activity energy expenditure; DLW, doubly labeled water; EI, energy intake; RMR, resting metabolic rate.
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increases in EI may also be related to hedonic processes such as food 
reward behaviors (35).

It is noteworthy that although habitual MVPA and/or PAEE levels did 
not change on a group level, on an individual level, these parameters 
were significantly inversely associated with change in the respective 
measure, indicating the substitution of habitual PA with prescribed 
PA (i.e., structured exercise session) in some participants (36,37). As 
shown by the results of a Fisher r-to-z transformation, however, the 
correlation coefficients for habitual MVPA did not differ between 
exercisers and the control group, suggesting that any decrease in 
MVPA in the exercisers was likely not caused by the structured exer-
cise sessions but instead  ocurred more likely because of regression to 
the mean. For habitual PAEE, the difference between exercisers and 
control participants was significant, with a substantially more pro-
nounced association for the control participants, suggesting that the 
structured exercise sessions actually protected against decreases in 
habitual PAEE. It is further noteworthy that participants with greater 
prior habitual MVPA and/or PAEE remained more active compared 
with those with lower levels (B = −0.274 [MVPA] and B = −0.400 
[PAEE]). Therefore, considering the magnitude of the change in 
habitual MVPA and/or PAEE levels and, more importantly, the oppo-
site directionality compared with weight change, it is unlikely that 
the decrease in habitual MVPA and/or PAEE affected participants’ 
weight compensation. Rather, higher absolute levels of MVPA and/or 
PAEE at follow-up, along with the reduced increase in EI during the 
intervention, contributed to the lower weight compensation in those 
who were more active at baseline.

The identification of baseline habitual MVPA and/or PAEE levels as 
predictors of weight loss, weight compensation, and changes in EI in 
this study may have important ramifications for future exercise interven-
tions targeting weight loss. Less  than expected weight loss from exer-
cise likely leads to frustration and possibly causes discontinuation of the 
newly started exercise regimen because of the perceived lack of benefit. 
Assessing prior habitual PA levels may help determine when the exercise 
prescription should be combined with a concomitant lifestyle, dietary, 
or possibly pharmacological intervention to counteract weight compen-
sation and increase the weight loss intervention–related health benefits.

Although habitual MVPA and PAEE predicted our outcomes quite 
comparably, daily step counts at baseline did not have the same predic-
tive value with regard to weight loss, weight compensation, or EI during 
the intervention as habitual MVPA and/or PAEE. The better predictive 
value of PAEE compared with steps per day was expected because of 
the fact that PAEE is directly related to the energy balance model. The 
better predictive value of habitual MVPA compared with steps per day 
is likely because of the fact that MVPA includes an intensity compo-
nent, whereas steps per day does not. Therefore, to identify individuals 
with a higher risk for exercise-induced weight compensation, baseline 
levels of habitual MVPA or PAEE should be considered. It should be 
noted that AEE, as estimated by DLW, did not predict most of our out-
comes, with a substantial discrepancy compared with the associations 
from SenseWear-assessed PAEE. This suggests that the intensity com-
ponent included in PAEE (and MVPA) made these parameters better 
predictors with regard to our outcomes. Therefore, total AEE seems to 
be less important than EE at an intensity ≥ 3 MET, which is different 
from Mayer et al.’s original suggestion (11,12). The use of MVPA as a 
predictor offers the advantages of being accurately assessable via most 
current accelerometers and of accelerometer data being more straight-
forward compared with PAEE data such as that of the SenseWear 

armband, which is based on a complex pattern-recognition algorithm 
consisting of heat flux, skin temperature, near-body ambient tempera-
ture, and galvanic skin response, in addition to the accelerometer- 
recorded activity counts.

The present study has several strengths. E-MECHANIC was a large 
randomized controlled trial, in which exercise dose was strictly moni-
tored and supervised. Habitual PA was measured with validated accel-
erometers that allow an estimation of the intensity and EE of habitual 
PA. Additionally, EE and EI (via DLW) and RMR (via indirect cal-
orimetry) were measured with the gold-standard methods to compre-
hensively assess all aspects of energy balance. The assessment of EI 
via validated laboratory-based FI tests and via DLW over 2 weeks is a 
particularly major strength, as self-reported EI, which is still commonly 
used in many trials today, has been found to be fundamentally inaccu-
rate (38,39). A limitation of this analysis is that although PA assessment 
at follow-up was performed while participants were still exercising at 
their prescribed dose, we did not measure habitual MVPA, steps per 
day, and PAEE continuously throughout the intervention period and 
thus have no record of the effect of the exercise training on these out-
comes over the course of the intervention.

In conclusion, taking into account the substantial variability in the data, 
our results show that habitual MVPA and/or PAEE levels before engag-
ing in a structured exercise intervention predict weight loss, weight 
compensation, and changes in EI during that intervention. Importantly, 
habitual MVPA and/or PAEE (≥ 3 MET) at baseline showed a supe-
rior predictive value with regard to these outcome measures compared 
with steps per day and total AEE, suggesting that time spent and energy 
expended during MVPA rather than total activity-related EE before an 
exercise intervention targeting weight loss are protective against weight 
compensation. In this regard, habitual MVPA may be the preferable 
parameter compared with PAEE because of its easier, more econom-
ical, and (likely) more accurate assessment. Future studies are needed 
to elucidate the observed heterogeneous relationship between baseline 
habitual MVPA and/or PAEE levels and weight loss and compensation 
to develop individualized strategies to mitigate the detrimental compen-
satory increase in EI in response to an exercise-induced increase in EE 
in some individuals.O
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Initial Weight Change and Long-Term Changes
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ABSTRACT

DORLING, J. L., C. HÖCHSMANN, S. N. FEARNBACH, J. W. APOLZAN, D. S. HSIA, N.M. JOHANNSEN, T. S. CHURCH, and C. K.
MARTIN. Initial Weight Change and Long-Term Changes in Weight and Compensation during Supervised Exercise Training. Med. Sci.
Sports Exerc., Vol. 53, No. 8, pp. 1675–1684, 2021. Introduction:Our primary aim was to investigate the association between initial weight
change and longer-term changes in weight and compensation (predicted weight loss–observed weight loss) during exercise. As secondary
aims, we investigated if initial weight change was related to change in cardiometabolic risk markers and energy balancemodulators.Methods:
Two 6-month randomized controlled exercise trials conducted in individuals with overweight or obesity were analyzed (study 1, n = 312;
study 2, n = 102). In both studies, participants in an exercise condition (4 kcal·kg−1·wk−1 [KKW], 8 KKW, 12 KKW, or 20 KKW) were split
into tertiles based on percent weight change from baseline to week 4. Tertiles 1 and 3 exhibited the least and most initial weight loss, respec-
tively. Changes in end points were compared between tertiles. Results: At month 6, weight loss was lower in tertile 1 than tertile 3 (study 1:
−3.6%, 95% confidence interval [CI] = −4.6 to −2.6; study 2: −1.8%, 95% CI = −3.1 to −0.4; P ≤ 0.034). Tertile 1 also showed greater com-
pensation than tertile 3 in study 1 (3.0 kg, 95% CI = 2.2 to 3.9) and study 2 (1.5 kg, 95% CI = 0.3 to 2.6; P ≤ 0.048). Changes in triglycerides
and, in study 1, HDL cholesterol were less favorable in tertile 1 versus tertile 3 (P ≤ 0.043); however, changes in other cardiometabolic markers
were similar (P ≥ 0.209). In study 2, tertile 1 increased energy intake and exhibitedmaladaptive changes in eating behaviors relative to tertile 3
(P < 0.050). No between-tertile differences in cumulative exercise energy expenditure and physical activity were evident (P ≥ 0.321).
Conclusions: Less initial weight loss was associated with longer-term attenuated weight loss and greater compensation during aerobic exercise
training. Individuals who display less initial weight loss during exercise may require early interventions to decrease compensation and facilitate
weight loss. Key Words: CARDIOMETABOLIC HEALTH, ENERGY INTAKE, FOOD PREFERENCES, COMPENSATORY HEALTH
BELIEFS, INITIAL WEIGHT LOSS, WEIGHT MANAGEMENT

Excess body weight is associated with increased risk for
various physical and psychological conditions (1), and
over two-thirds of Americans are either overweight or

obese (2). Exercise training is advocated in individuals with
overweight or obesity because it reduces the risk for a plethora
of chronic diseases (3) and can stimulate clinically significant
reductions in weight (4). However, interindividual variability
in exercise-inducedweight change exists.Withinmany exercise

training studies, some individuals present clinically significant
weight loss and others gain weight (5). Although exercise
training triggers weight-independent benefits (4), substandard
weight loss or weight gain attenuates many improvements of
exercise (6,7). Thus, during exercise training, it is crucial to
identify characteristics of individuals who experience attenu-
ated weight loss or weight gain and determine the mechanisms
underlying substandard weight change.

A reliable predictor of long-term weight loss within dietary
interventions is initial weight change (e.g., weight change in
first 4 wk) (8). Individuals who exhibit less initial weight loss
display poorer changes in weight and cardiometabolic end
points at the end of studies (9,10). This early indicator of
long-termweight loss success allows interventionists to identify in-
dividuals who are likely to experience substandard weight-related
outcomes and apply procedures to optimize end points (8). Such
strategies look to decrease compensation, which is a discrepancy
betweenweight loss achieved and expected (11), and can include
more rigorous modifications of key dietary patterns, such as
eating behaviors and attitudes (12).

No study has examined if initial weight change during exer-
cise is related to longer-term changes inweight, compensation,
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and cardiometabolic risk markers. Such investigations are im-
portant, given the heterogeneity in exercise-induced weight
loss and the unknown indicators of this variability (13). It is
also important to examine modulators of energy balance to as-
certain the mechanisms underlying differences in weight
change and compensation, and to inform approaches that aug-
ment the benefits of exercise training.

Our primary aim was to investigate the association between
initial weight change from baseline to week 4 and changes in
weight and compensation after 6 months of exercise training.
We hypothesized that individuals who lose less weight from
baseline to week 4 would experience lower weight loss and
greater compensation after 6 months of training. As secondary
aims, we investigated the associations between initial weight
change and 6-month change in cardiometabolic risk markers,
components of energy expenditure and energy intake, eating
behaviors and attitudes, and compensatory health beliefs.

METHODS

The current analysis uses data from two supervised 6-month
exercise intervention studies: the Dose–Response to Exercise
in postmenopausal Women (DREW) study and the Examina-
tion ofMechanisms of Exercise-InducedWeight Compensation
(E-MECHANIC) study. Trial design, randomization methods,
trial dates, blinding procedures, and sample size calculations
of both studies have been published (14–17). Previous inter-
ventions have found robust relationships between weight
change from baseline to week 4 and prolonged weight change
(18–20). Accordingly, we chose to examine the association
between initial weight change at week 4 and weight change
and compensation at the end of these studies. Compensation
was defined as the difference between predicted weight loss
and observed weight loss. Predicted weight loss was estimated
in both studies using a dynamic energy balance model, which
accounts formetabolic adaptation and body composition changes
(fat mass and lean mass) during aerobic exercise training,
and which overcomes limitations with conventional estimates
that assume a 7700-kcal energy deficit leads to a 1-kg reduc-
tion in weight (see Appendix, Supplemental Digital Content,
Supplementary Information, http://links.lww.com/MSS/
C274) (17,21,22). This model has been validated on previous
aerobic training studies (21).

To improve validity of our findings, participants were in-
cluded if they 1) were randomized to an exercise condition,
2) completed the trial, 3) performed weight measurements at
week 4, and 4) achieved >75% compliance (number of exer-
cise sessions/prescribed exercise sessions) and/or adherence
(achieved exercise energy expenditure/prescribed energy ex-
penditure) to the exercise regimen (17,23,24).

The DREW Study

TheDREW study (Clinical Trials.gov: NCT00011193) was
performed at the Cooper Institute and was approved by the in-
stitute’s Institutional Review Board. All participants provided
written informed consent before screening. The study included

females with overweight or obesity (body mass index [BMI] =
25.0–43.0 kg·m−2) and elevated systolic blood pressure (120.0–
159.9 mm Hg). Other exclusion criteria have been detailed (14).

Detailed descriptions of the exercise intervention have been
published (14,15). Participants were enrolled into either a
no-exercise control group or one of three exercise groups for
6 months. The three exercise groups included a group that
aimed to expend 4 kcal·kg−1·wk−1 (KKW), one that aimed to
expend 8 KKW, and another that aimed to expend 12 KKW.
All participants expended 4 KKW during the first week; there-
after, participants enrolled to the 4 KKW group continued at
this dose, whereas the 8 KKW and the 12 KKW groups
ramped up their exercise dose by 1 KKW every week until
their prescribed dose was reached. Body weight measure-
ments were collected before exercise sessions every week in
the exercise training facility on an electronic scale (Siemens
Medical Solutions, Malvern, PA). Exercise training was per-
formed on semirecumbent cycle ergometers and treadmills,
with the intensity set at a heart rate equivalent to 50% of base-
line peak oxygen uptake (V̇O2). Using standard American
College of Sports Medicine (ACSM) equations (25), the en-
ergy expenditure of exercise was calculated in real time based
on the participant’s weight and either watts (cycle ergometer)
or speed and gradient (treadmill). Exercise time was adjusted
by dividing the stipulated daily caloric dose by energy expen-
diture rate. All sessions were monitored to ensure the pre-
scribed exercise dose (energy expenditure) was closely met.
The intervention was intended to take place over 24 wk, but
two additional weeks were allowed for participants who had
not met their exercise doses (14,15).

Outcomes. Outcome measures were assessed at baseline
and month 6. Weight change and compensation at month 6
were primary end points, whereas others were secondary or
exploratory. During clinical assessment visits, fasting body
weight was measured on a calibrated electronic scale (Siemens
Medical Solutions). Compensation was calculated as described
previously, with predicted weight loss estimated using the dy-
namic energy balance model (17,21).

Waist circumference was determined (26), and fitness tests
were performed as documented to measure peak absolute and
relative V̇O2 (14). Further, triglycerides, cholesterol (total choles-
terol, LDL cholesterol [LDL-C], HDL cholesterol [HDL-C]),
glucose, and insulin concentrations were measured, and blood
pressure was determined (14,27).

The E-MECHANIC Study

The E-MECHANIC study (ClinicalTrials.gov: NCT01264406)
was conducted at Pennington Biomedical Research Center, with
approval of the center’s Institutional Review Board. Males and
females with overweight or obesity (BMI = 25.0–45.0 kg·m−2)
were recruited, with all participants providing written in-
formed consent before enrolment. Exclusion criteria have been
reported (16).

The details of the intervention have been reported (16,17).
Participants were randomized to either a no-exercise control
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group or two exercise groups: 8 KKW and 20 KKW (17). Par-
ticipants assigned to the 8 KKW group performed their pre-
scribed dose from the start; conversely, the 20 KKW group
ramped up their exercise prescription from 8 KKW during
week 1 to 14 KKW during week 2 and 20 KKW during week 3.
A Tanita scale (Tanita Corporation, Arlington Heights, IL)
was used weekly before exercise sessions to measure body
weight. All exercise was performed on a treadmill at a speed
and gradient that kept participants within a heart range equiv-
alent to 65% to 85% of baseline peak V̇O2. Energy expenditure
was calculated in real time based on treadmill speed, treadmill
gradient, and participant weight using standard ACSM equa-
tions (28). Moreover, energy expenditure was measured using
a metabolic cart at weeks 2, 4, 6, 8, 12, 16, and 20 to monitor
changes in metabolic and/or biomechanical efficiency. The du-
ration of exercise was adjusted to meet participant’s energy ex-
penditure targets (16,17). Participants aimed to achieve their
total intervention energy expenditure within 24 wk, although
an additional 3 wk was allowed if needed.

Outcomes. Outcomes were collected at baseline, month 6,
and (for questionnaire data only) week 4. Weight change and
compensation at month 6 were primary end points; all other
end points were secondary. Body weight measurements at
baseline and month 6 were the average of three fasting
weights on a calibrated Tanita scale collected over a 14-d pe-
riod (days 0, 7, and 14 of the 14-d period). Compensation
was calculated using methods identical to DREW (see Ap-
pendix, Supplemental Digital Content, Supplementary Infor-
mation, http://links.lww.com/MSS/C274) (17,21).

Waist circumference was measured at baseline and month 6
in clinical assessment visits via a nonextensible tape measurer
(Gulick II; Sammons Preston, Chicago, IL), and fat mass and
lean mass were determined through dual-energy x-ray absorp-
tiometry (DXA; iDXA, encore software version 13.60; GE
Healthcare, Chicago, IL) before the exercise intervention and
on completion of the trial. As described previously (16), fitness
tests were performed at baseline and follow-up to measure peak
and relative V̇O2. The aforementioned cardiometabolic disease
risk markers that were assessed in DREW were measured in
E-MECHANIC (16,17,29).

Energy intake was estimated over a 2-wk period at baseline
and month 6 using doubly labeled water. This method, consid-
ered the gold standard of free-living energy requirements (30),
assesses total daily energy expenditure while accounting for
body composition changes during exercise (31,32). Energy in-
take can also be measured using unadjusted energy expendi-
ture and energy expenditure adjusted for metabolic rate (17),
but our results were not meaningfully affected when using
these alternative methods. Daily steps were measured for
2 wk using SenseWear armbands (Body Media, Pittsburgh,
PA), with steps from exercise sessions excluded from the
month 6 measurement period. After a 12-h fast, resting metabolic
rate (RMR)wasmeasured for 30minwithMax-II metabolic carts
at baseline and month 6 (AEI Technologies, Pittsburgh, PA).

Several validated questionnaires were administered at base-
line, week 4, and month 6 to measure constructs of eating

behaviors and attitudes and physical activity. These included
appetite ratings on visual analog scales (33) that were admin-
istered on two occasions: the laboratory after the consumption
of a 190-kcal nutrition bar and retrospectively during the previous
week (34). The Activity Temperament Questionnaire (35), the
Compensatory Health Belief Scale (CHBS) (36), the Eating
Inventory (37), the Food Craving Inventory (38), the Food
Preference Questionnaire (FPQ) (39), and the Multifactorial
Assessment of Eating Disorder Symptoms (40) were also
administered.

Statistical Analysis

The present manuscript is a post hoc analysis of the DREW
and E-MECHANIC studies; accordingly, the present analysis
used the sample size obtained from both studies. In both stud-
ies, participants were divided into tertiles based on percent
weight change from baseline to week 4, given residuals of
changes were nonnormally distributed and skewed. Participants
in tertile 1 and tertile 3 had the least and most percent weight
loss at week 4, respectively.

Similar analyses were performed on both DREW and E-
MECHANIC data. Between-tertile differences in continuous
and categorical measures were assessed via a one-way ANOVA
and a chi-square test, respectively, for baseline and descriptive
data. A one-way ANCOVA was used to compare change in
primary and secondary end points from baseline, with age,
exercise group, self-reported race, baseline values, and (for
E-MECHANIC only) sex used as covariates. If between-tertile
differences in cardiometabolic risk markers were evident, we
also included percent weight change as a covariate to deter-
mine if variations were weight dependent. As an exploratory
analysis, for participants with all weekly weight data up to
week 24, a two-way mixed (tertile–time) ANCOVA was per-
formed using the same covariates to examine weight change
and compensation during the trial. ANCOVA analyses were
used irrespective of normality (41). If data were aspherical, a
Greenhouse–Geisser correction was applied for epsilon <0.75,
whereas the Huynh–Feldt correction was used for less severe
asphericity (epsilon >0.75). Where significance occurred, ad-
justed post hoc pairwise comparisons (Holm–Bonferroni) located
differences. Analyses were performed using SPSS version 25
(IBM Corp., Armonk, NY), and α was set at 0.05. Unless
noted otherwise, baseline and descriptive data are reported as
mean ± SD, whereas outcome measures are presented as esti-
mated marginal mean ± 95% confidence interval (CI).

RESULTS
The DREW Study

Participant characteristics. The DREW study enrolled
362 participants into the three exercise groups. In the present
study, 312 participants were analyzed for the primary and sec-
ondary end points, with 50 participants removed for reasons
related to attrition and abidance to the exercise regimen (Supple-
mentary Fig. 1, see Appendix, Supplemental Digital Content,
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http://links.lww.com/MSS/C274). The baseline and descriptive
characteristics of the tertiles are shown in Table 1.Most variables
were similar between tertiles (P ≥ 0.063), although there was a
significant effect of tertile on BMI and glucose (P ≤ 0.049).

Week 4 percent weight change differed between all tertiles
per the design of this analysis (P < 0.001), with tertile 1 (least
initial weight loss/initial weight gain), tertile 2, and tertile 3
(most initial weight loss) exhibiting 1.6% ± 1.0%, −0.2% ± 0.4%,
and −2.9% ± 2.0% mean ± SD weight change, respectively,
at week 4. Cumulative energy expended at exercise sessions was

not different among tertiles at week 4 (tertile 1, 1547 ± 370 kcal;
tertile 2, 1619 ± 325 kcal; tertile 3, 1569 ± 367 kcal; P = 0.321)
and at the end of the trial (tertile 1, 15,127 ± 7686 kcal; tertile 2,
14,761 ± 6455 kcal; tertile 3, 13,809 ± 6077 kcal; P = 0.351).

Change in outcome data at month 6.Weight and BMI
change at follow-up were different between tertiles (P < 0.001;
Table 2). Post hoc tests revealed tertile 1 (least initial weight
loss/initial weight gain) exhibited less weight loss compared
with tertile 2 (−1.0 kg, 95% CI = −1.8 to −0.1; P = 0.022)
and tertile 3 (most initial weight loss; −3.0 kg, 95% CI = −3.8

TABLE 1. Demographic and baseline characteristics of participants in the DREW study across tertiles of initial percent weight change.

All (n = 312) Tertile 1 (n = 104), Least Initial Weight Loss Tertile 2 (n = 104) Tertile 3 (n = 104), Most Initial Weight Loss

PVariable Mean SD/% Mean SD/% Mean SD/% Mean SD/%

Ethnicity (n) 0.433
White 195 62.5 71 68.3 63 60.6 61 58.7
African American 96 30.8 28 26.9 33 31.7 35 33.7
Hispanic/other 21 6.7 5 4.8 8 7.7 8 7.7

Exercise group (n) 0.077
4 KKW 134 42.9 43 41.3 46 44.2 45 43.3
8 KKW 87 27.9 31 29.8 20 19.2 36 34.6
12 KKW 91 29.2 30 28.8 38 36.5 23 22.1

Age (yr) 57.3 6.5 58.0 6.5 57.3 6.8 56.6 6.0 0.272
Weight (kg) 83.7 11.8 81.9 11.3 84.6 11.6 84.6 12.5 0.179
BMI (kg·m−2) 31.5 3.8 30.8 3.4 31.9 3.9 31.9 4.1 0.049
Waist circumference (cm) 100.3 11.7 99.5 11.0 101.8 11.7 99.7 12.5 0.299
Fitness variables

Peak absolute V̇O2 (L·min−1) 1.29 0.24 1.25 0.24 1.31 0.24 1.30 0.25 0.175
Peak relative V̇O2 (mL·kg−1·min−1) 15.5 2.9 15.4 2.6 15.6 2.9 15.5 3.0 0.798

Cardiometabolic disease risk markers
Triglycerides (mg·dL−1) 128.0 62.8 126.4 69.2 131.9 60.1 125.8 59.2 0.740
Total cholesterol (mg·dL−1) 201.1 29.6 198.5 28.2 201.8 31.9 203.0 28.8 0.536
LDL-C (mg·dL−1) 117.7 26.4 113.0 24.8 119.6 27.2 120.4 26.7 0.090
HDL-C (mg·dL−1) 58.0 14.6 60.6 14.6 55.9 12.5 57.4 16.1 0.063
Glucose (mg·dL−1) 94.5 8.6 94.5 8.5 96.0 7.5* 92.9 9.6 0.036
Insulin (pmol·L−1) 73.6 41.6 76.4 47.0 73.1 35.9 71.2 41.7 0.693
Systolic blood pressure (mm Hg) 139.0 13.3 140.8 13.8 138.1 13.1 138.1 13.0 0.236
Diastolic blood pressure (mm Hg) 80.8 8.7 81.5 9.1 79.6 8.3 81.3 8.6 0.209

P is derived from ANOVA for continuous variables and contingency chi-square test for categorical variables.
Values are presented as mean and SD for continuous variables and number (n) and percentage for categorical variables.
Bold indicates significant (P < 0.05).
*Significant difference in tertile 2 vs tertile 3 (P = 0.03).

TABLE 2. Predicted weight change, compensation, and change in outcome variables after 6 months of exercise in participants from the DREW study.

Tertile 1 (n = 104), Least Initial Weight Loss Tertile 2 (n = 104) Tertile 3 (n = 104), Most Initial Weight Loss

PVariable EM Mean 95% CI EM Mean 95% CI EM Mean 95% CI

Weight (kg) −0.2 −0.8 to 0.4 −1.2c −1.8 to −0.6 −3.2a,b −3.8 to −2.6 <0.001
Weight (%) −0.2 −0.9 to 0.5 −1.4c −2.1 to −0.7 −3.8a,b −4.5 to −3.1 <0.001
BMI (kg·m−2) −0.1 −0.4 to 0.1 −0.5 −0.7 to −0.2 −1.3a,b −1.5 to −1.0 <0.001
Waist circumference (cm) −3.1 −4.4 to −1.8 −1.9 −3.2 to −0.6 −3.2 −4.6 to −1.9 0.270
Predicted weight change −2.0 −2.1 to −1.9 −2.0 −2.2 to −1.9 −2.0 −2.1 to −1.9 0.856
Weight compensation (kg) 1.8 1.2 to 2.4 0.8c 0.2 to 1.4 −1.2a,b −1.8 to −0.6 <0.001
Fitness variables

Peak absolute V̇O2 (L·min−1) 0.05 0.02 to 0.09 0.07 0.04 to 0.10 0.05 0.02 to 0.09 0.756
Peak relative V̇O2 (mL·kg−1·min−1) 0.7 0.3 to 1.2 1.0 0.6 to 1.4 1.3 0.9 to 1.7 0.194

Cardiometabolic disease risk markers
Triglycerides (mg·dL−1) 3.6 −4.7 to 12.0 0.5 −7.8 to 8.8 −11.2a −19.5 to −2.9 0.035
Total cholesterol (mg·dL−1) −1.4 −5.7 to 2.8 3.8 −0.4 to 8.0 0.5 −3.7 to 4.8 0.229
LDL-C (mg·dL−1) −0.4 −4.7 to 3.9 2.9 −1.4 to 7.1 1.6 −2.7 to 5.8 0.568
HDL-C (mg·dL−1) −3.5 −4.9 to −2.1 −0.1c −1.5 to 1.3 1.1a −0.3 to 2.5 <0.001
Glucose (mg·dL−1) −1.8 −3.1 to −0.5 −1.0 −2.3 to 0.3 −1.2 −2.5 to 0.1 0.690
Insulin (pmol·L−1) −2.0 −7.9 to 3.9 −5.6 −11.3 to 0.2 −3.3 −9.1 to 2.4 0.690
Systolic blood pressure (mm Hg) −0.6 −3.0 to 1.7 −1.5 −3.9 to 0.8 −0.5 −2.8 to 1.9 0.795
Diastolic blood pressure (mm Hg) 0.7 −0.7 to 2.0 −0.5 −1.9 to 0.9 0.7 −0.7 to 2.1 0.395

P is derived from ANCOVA. When significant, post hoc comparisons among tertiles were adjusted with Holm–Bonferroni corrections.
Values are estimated marginal means and 95% CI adjusted for age, ethnicity, group, and baseline.
Bold indicates significant (P < 0.05).
aSignificant difference between tertile 1 and tertile 3 (P < 0.05).
bSignificant difference between tertile 2 and tertile 3 (P < 0.05).
cSignificant difference between tertile 1 and tertile 2 (P < 0.05).
EM, estimated marginal.
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to −2.2; P < 0.001), plus tertile 2 showed less weight loss
compared with tertile 3 (−2.0 kg, 95% CI = −2.8 to −1.2;
P < 0.001; Table 2). Tertile 1 and tertile 2 also showed a
smaller reduction in BMI compared with tertile 3 (P < 0.001),
but no differences between tertiles for change in waist circum-
ference were seen (P = 0.270).

Predicted weight change did not differ between tertiles
(P = 0.856), yet one-way ANCOVA showed that initial weight
change tertile was linked to compensation (P < 0.001). Post hoc
tests revealed that tertile 1 showed 3.0 kg (95% CI = 2.2 to 3.9)
more compensation than tertile 3 (P < 0.001). Further, tertile 1 ex-
hibited greater compensation compared with tertile 2 (P = 0.025),
and tertile 3 displayed lower compensation than tertile 2
(P < 0.001; Table 2).

There was a significant effect of tertile on change in HDL-C
(P < 0.001; Table 2), with tertile 1 having a decrease in HDL-C
relative to tertile 2 (P = 0.002) and tertile 3 (P < 0.001). More-
over, change in triglycerides was different between tertiles
(P = 0.035); specifically, tertile 1 showed an increase in triglycer-
ides versus tertile 3 (P = 0.043; Table 2). The between-tertile var-
iations remained significant for change inHDL-C (P< 0.001) but
not change in triglycerides (P = 0.329) when controlled for per-
cent weight change at month 6. Change in other cardiometabolic
risk markers and fitness variables were similar between tertiles
(all P ≥ 0.194; Table 2).

Weeklyweight change and compensation. In partic-
ipants with all weekly weights (n = 110), there was a main effect

of tertile on weight change (P < 0.001), although no time or
tertile–time effects were seen (P ≥ 0.175; Fig. 1). Post hoc com-
parisons for main tertile effect showed that tertile 1 displayed less
weight loss versus tertile 2 and tertile 3 (P ≤ 0.027), whereas
weight loss was also lower in tertile 2 versus tertile 3 (P < 0.001).
Although predicted weight was expected to decrease over time
(main effect of time; P < 0.001), there were no effects of tertile
and no tertile–time interaction for predicted weight change
(P ≥ 0.083; Supplementary Fig. 2, see Appendix, Supplemental
Digital Content, http://links.lww.com/MSS/C274). There was a
main effect of tertile on compensation (P < 0.001), with tertile 1
exhibiting greater compensation than tertile 3 (P < 0.001) and
tertile 2 showing higher compensation than tertile 3 (P < 0.001;
Fig. 1). No main effect of time and no tertile–time interaction
were revealed, however (P ≥ 0.174). All weekly weight change
and compensation data are shown in Supplementary Figure 3
(see Appendix, Supplemental Digital Content, http://links.lww.
com/MSS/C274).

The E-MECHANIC Study

Participant characteristics. In total, 133 participants
were enrolled into exercise groups, although 102 were used
in the analysis because of attrition, inadequate adherence/
compliance, or no weight data at week 4 (Supplementary
Fig. 4, see Appendix, Supplemental Digital Content, http://
links.lww.com/MSS/C274). There were no differences in most
baseline characteristics among tertiles (P ≥ 0.053), although
significant differences were seen for glucose (Table 3), CHBS
total score, restraint, and Food Craving Inventory sweet score
(all P ≤ 0.034; Supplementary Table 1, see Appendix, Supple-
mental Digital Content, http://links.lww.com/MSS/C274).

In accord with analysis design, mean ± SD week 4 percent
weight change was different between tertile 1 (least initial
weight loss/most initial weight gain; 2.1% ± 0.9%), tertile 2
(0.8% ± 0.3%), and tertile 3 (most initial weight loss; −0.5% ±
0.7%) at week 4 (P < 0.001). Cumulative energy expenditure
at exercise sessions was not different among tertiles at week 4
(tertile 1, 3915 ± 1425 kcal; tertile 2, 3779 ± 1323 kcal; tertile
3, 3990 ± 1565 kcal; P = 0.829) and at the end of the trial (tertile
1, 28,231 ± 11,570 kcal; tertile 2, 26,328 ± 12,142 kcal; tertile 3,
27,810 ± 13,357 kcal; P = 0.802).

Change in outcome data at month 6. Initial weight
change tertile was related to weight change at month 6
(P ≤ 0.042), with tertile 1 (least initial weight loss/most initial
weight gain) presenting less weight loss compared with tertile
3 (most initial weight loss; −1.5 kg, 95% CI = −2.7 to −0.3;
P ≤ 0.042; Table 4). There was only a tendency for a differ-
ence in change in BMI between tertiles (P = 0.052), and change
in waist circumference did not differ between tertiles
(P = 0.227). Further, changes in fat mass and lean mass were
not significantly different between tertiles (P ≥ 0.189).

There were no between-tertile differences in predicted weight
change (P = 0.641). One-way ANCOVA showed a significant
effect on compensation (P = 0.043). Post hoc comparisons dem-
onstrated that tertile 1 had greater compensation relative to tertile
3 (1.5 kg, 95% CI = 0.3 to 2.6; P = 0.048).

FIGURE 1—A, Weight change data for participants in the DREW study
with all weekly weight data up to week 24 (n = 110 [tertile 1, n = 34; tertile
2, n = 41; tertile 3, n = 35]). B, Compensation data for participants in the
DREW study with all weekly weight data up to week 24 (n = 110 [tertile 1,
n = 34; tertile 2, n = 41; tertile 3, n = 35]). Data are from weekly weight
measurements performed before exercise sessions. Participants in tertile
1 and tertile 3 had the least andmost percent weight loss at week 4, respec-
tively. Black arrows represent point where tertiles were calculated. Values
are estimated marginal means (95% CI) adjusted for age, ethnicity,
group, and baseline.
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There was an association between initial weight change and
change in triglycerides at month 6 (P = 0.013). Individuals cat-
egorized in tertile 3 had a reduction in triglyceride levels com-
pared with tertile 1 (P = 0.011; Table 4). The effect of initial
weight change was reduced when percent weight change at
month 6 was controlled, with only a tendency for a
between-tertile difference in change in triglycerides seen
(P = 0.050). Change in other cardiometabolicmarkers and fitness
variables were similar among tertiles (all P ≥ 0.115; Table 4).

Change in energy intake differed between initial weight change
tertiles (P = 0.031), with change in energy intake higher in tertile 1
compared with tertile 3 (P = 0.003). No between-tertile differ-
ences in change in steps per day and RMR were seen (all
P ≥ 0.567; Table 4). Tertile 1 had a reduction in the Multifac-
torial Assessment of Eating Disorder Symptoms avoidance of
forbidden foods relative to tertile 3 at month 6 (P = 0.020;
Table 4), yet no other between-tertile changes were seen (all
P ≥ 0.085; Supplementary Table 2, see Appendix, Supple-
mental Digital Content, http://links.lww.com/MSS/C274).

Change in outcome data at week 4. There was an ef-
fect of tertile on change in CHBS score (P = 0.039; Table 4),
although there was only a tendency for a difference after
pairwise adjustments (P = 0.050). Tertile 3 showed a decrease
in several FPQ-assessed food preferences compared with
tertile 1, including high fat, high fat/high complex carbohydrate,
high sugar, and low fat/high sugar foods (all P ≤ 0.041; Table 4).
No other between-tertile differences in questionnaire change
scores were seen (all P ≥ 0.081; Supplementary Table 3, see

Appendix, Supplemental Digital Content, http://links.lww.
com/MSS/C274).

Weekly weight change and compensation. For par-
ticipants with all weekly weight data up to week 24 (n = 63),
there was a main effect of tertile on weight change
(P = 0.001) but no main effect of time and no tertile–time in-
teraction (P ≥ 0.586; Fig. 2). The main tertile effect indicated
that tertile 1 showed less weight loss than tertile 3
(P = 0.001); further, tertile 2 had less weight loss compared
with tertile 3 (P = 0.019). Two-way ANCOVA for predicted
weight change showed that weight was predicted to decrease
(main effect of time; P < 0.001), yet no main effect of tertile
(P = 0.961) and no tertile–time interaction (P = 0.840) was ob-
served (Supplementary Fig. 5, see Appendix, Supplemental
Digital Content, http://links.lww.com/MSS/C274). There was
a main effect of tertile on compensation (P = 0.001), with lower
compensation in tertile 3 relative to tertiles 1 (P = 0.001) and 2
(P = 0.020; Fig. 2); however, no time or tertile–time effects
were shown (P ≥ 0.580). All weekly weight change and com-
pensation data for participants are depicted in Supplemen-
tary Figure 6 (see Appendix, Supplemental Digital
Content, http://links.lww.com/MSS/C274).

DISCUSSION

The present analysis demonstrated that during aerobic exer-
cise training, individuals with overweight or obesity who
showed less initial weight loss (or most initial weight gain)

TABLE 3. Demographic and baseline characteristics of participants in the E-MECHANIC study across tertiles of initial percent weight change.

All (n = 102) Tertile 1 (n = 34), Least Initial Weight Loss Tertile 2 (n = 34) Tertile 3 (n = 34), Most Initial Weight Loss

PVariable Mean SD/% Mean SD/% Mean SD/% Mean SD/%

Ethnicity (n) 0.608
White 71 69.6 24 70.6 23 67.6 24 70.6
African American 29 28.4 10 29.4 11 32.4 8 23.5
Hispanic/other 2 2.0 0 0.0 0 0.0 2 5.9

Exercise group (n) 0.624
8 KKW 54 52.9 16 47.1 20 58.9 18 52.9
20 KKW 48 47.1 18 52.9 14 41.2 16 47.1

Sex (n) 0.371
Male 30 29.4 8 23.5 13 38.2 9 26.5
Female 72 70.6 26 76.5 21 61.8 25 73.5

Age (yr) 48.8 11.9 50.7 11.8 47.3 12.3 48.6 11.6 0.506
Weight (kg) 87.1 15.4 85.7 15.8 87.1 15.1 88.5 15.7 0.753
BMI (kg·m−2) 31.1 4.5 30.8 4.9 30.9 4.4 31.6 4.3 0.732
Waist circumference (cm) 97.3 11.9 95.1 10.9 97.4 12.3 99.3 12.3 0.347
Fat mass (kg) 36.2 9.5 36.2 10.5 35.1 9.3 37.3 8.6 0.652
Lean mass (kg) 47.9 10.1 46.7 10.0 49.0 10.5 48.1 9.9 0.654
Fitness variables

Peak absolute V̇O2 (L·min−1) 2.05 0.54 1.93 0.49 2.14 0.66 2.07 0.43 0.273
Peak relative V̇O2 (mL·kg−1·min−1) 23.9 5.3 22.8 4.0 24.9 6.7 23.9 4.9 0.253

Cardiometabolic disease risk markers
Triglycerides (mg·dL−1) 109.5 51.8 108.3 62.4 114.6 47.7 110.1 44.4 0.695
Total cholesterol (mg·dL−1) 204.9 35.8 197.7 40.3 213.6 33.3 203.3 32.3 0.175
LDL-C (mg·dL−1) 123.4 27.3 117.9 30.6 128.2 26.7 124.2 23.9 0.295
HDL-C (mg·dL−1) 59.5 16.9 59.0 20.3 62.5 16.3 57.1 13.6 0.414
Glucose (mg·dL−1) 92.4 7.6 89.6 7.1 94.1 6.8* 93.3 8.2 0.034
Systolic blood pressure (mm Hg) 119.8 9.9 118.2 12.1 120.1 9.0 120.9 8.3 0.512
Diastolic blood pressure (mm Hg) 76.7 7.2 75.6 8.8 76.9 6.1 77.6 6.4 0.512

Energy intake (kcal·d−1) 2498 471 2389 479 2513 494 2591 430 0.207
Steps per day 6180 2254 5968 1939 6093 2179 6468 2612 0.645
RMR (kcal·d−1) 1519 284 1474 304 1502 276 1582 268 0.271

P is derived from ANOVA for continuous variables and contingency chi-square test for categorical variables.
Values are mean and SD for continuous variables and number (n) and percentage for categorical variables.
Bold indicates significant (P ≤ 0.05).
*Significant difference in tertile 2 vs tertile 1 (P ≤ 0.045).
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at week 4 displayed less weight loss, greater compensation,
and poorer changes in blood lipids at the end of 6 months com-
pared with those with most initial weight loss. In addition, we
showed that individuals with the least initial weight loss
showed a greater rise in energy intake and maladaptive alter-
ations in eating attitudes and behaviors relative to those with
most initial weight loss, supplying potential mechanisms that
drove differences in weight-related end points.

Exercise training is recommended for individuals with over-
weight or obesity due to the numerous health benefits it stim-
ulates (3), but there is substantial unexplained heterogeneity in
weight change, which can alter many improvements seen (5,42).
Our findings showed that individuals with less initial weight loss
exhibited poorer long-term changes in weight in two exercise
training studies. All individuals in tertile 1 showed weight gain
at week 4 in both exercise studies. Generally speaking, this
is at odds with dietary interventions that have characterized in-
dividuals with less initial weight loss as those who attain
0.5%–3.0% weight loss at 1–2 months (8). Although this dis-
crepancy could occur because—at odds with many dietary
studies—weight loss was not a primary objective of exercise
training in DREW and E-MECHANIC, the lower initial weight
loss shown in our study comparedwith these studies is unsurpris-
ing, as it is easier to induce greater energy deficits through diet

than exercise (17). It is less clear whether initial weight change
affects long-term changes in body composition because we ob-
served nonsignificant between-tertile variations in fat mass and
lean mass in E-MECHANIC participants. Still, our findings
broadly support work demonstrating that weight change from
baseline to week 4 is associated with weight loss after 12 wk of
exercise (43) and suggest, akin to dietary interventions (44), that
initial weight change at week 4 can be monitored by interven-
tionists to forecast weight loss during long-term exercise inter-
ventions. In light of previous trials (10,19), it is tempting to
speculate that the associations we observed occur for even lon-
ger periods after the onset of exercise training, but additional
studies beyond 6 months are needed.

In dietary studies, individuals with less initial weight loss
often display inadequate adherence, and this leads to lower en-
ergy deficits and in turn poorer changes in weight-associated
end points (8,19). Consequently, initial weight change can be
used as an indicator of adherence to dietary restriction and can
pinpoint individuals who require early support to improve ad-
herence, increase energy deficits, and attain weight loss targets
(8). We found that the amount of exercise performed is not im-
plicated in the associations between initial weight change and
weight change at month 6, as we saw no between-tertile differ-
ences in cumulative exercise energy expenditure. Participants

TABLE 4. Predicted weight change, compensation, and change in outcome variables after 6 months and 4 wk (questionnaire data only) of exercise in participants from the E-MECHANIC study.

Tertile 1 (n = 34), Least Initial Weight Loss Tertile 2 (n = 34) Tertile 3 (n = 34), Most Initial Weight Loss

PVariable EM Mean 95% CI EM Mean 95% CI EM Mean 95% CI

Weight (kg) −0.3 −1.2 to 0.5 −0.8 −1.7 to 0.0 −1.8a −2.7 to −1.0 0.042
Weight (%) −0.5 −1.4 to 0.5 −1.0 −1.9 to −0.0 −2.2a −3.2 to −1.3 0.033
BMI (kg·m−2) −0.2 −0.5 to 0.2 −0.3 −0.6 to −0.0 −0.7 −1.0 to −0.4 0.052
Waist circumference (cm) −0.5 −1.6 to 0.6 −0.8 −1.9 to 0.3 −1.8 −2.9 to −0.7 0.227
Fat mass (kg) −0.6 −1.3 to 0.1 −0.7 −1.4 to 0.4 −1.5 −2.2 to −0.7 0.189
Lean mass (kg) −0.1 −0.5 to 0.3 −0.2 −0.6 to 0.1 −0.4 −0.8 to −0.1 0.512
Predicted weight change (kg) −3.0 −3.1 to −2.9 −3.1 −3.2 to −3.0 −3.0 −3.2 to −2.9 0.641
Weight compensation (kg) 2.7 1.8 to 3.5 2.3 1.4 to 3.1 1.2a 0.4 to 2.0 0.043
Fitness variables

Peak absolute V̇O2 (L·min−1) 0.18 0.11 to 0.26 0.17 0.10 to 0.24 0.17 0.09 to 0.24 0.933
Peak relative V̇O2 (mL·kg−1·min−1) 1.5 0.2 to 2.8 2.0 0.7 to 3.3 2.0 0.7 to 3.3 0.831

Cardiometabolic risk markers
Triglycerides (mg·dL−1) 5.3 −5.8 to 16.3 −9.1 −20.1 to 1.9 −18.2a −29.1 to −7.3 0.013
Total cholesterol (mg·dL−1) −4.3 −10.5 to 2.0 −5.0 −11.3 to 1.2 0.3 −5.9 to 6.4 0.428
LDL-C (mg·dL−1) −4.4 −9.8 to 1.0 −2.3 −7.6 to 3.1 2.2 −3.1 to 7.5 0.209
HDL-C (mg·dL−1) −1.0 −3.2 to 1.1 −0.9 −3.1 to 1.3 1.8 −0.3 to 3.9 0.115
Glucose (mg·dL−1) 0.0 −2.0 to 2.0 −1.7 −3.7 to 0.3 −0.2 −2.1 to 1.8 0.424
Systolic blood pressure (mm Hg) −2.5 −4.8 to −0.1 −4.7 −7.0 to −2.3 −4.7 −7.0 to −2.3 0.329
Diastolic blood pressure (mm Hg) −1.4 −3.2 to 0.3 −1.9 −3.6 to −0.2 −1.1 −2.8 to 0.7 0.789

Energy intake (kcal·d−1) 321 155 to 487 76 −90 to 242 −92a −259 to 75 0.003
Steps per day −487 −1218 to 245 −329 −1024 to 366 −509 −1199 to 180 0.926
RMR (kcal·d−1) 17 −53 to 88 45 −28 to 117 72 −1 to 145 0.567
Questionnaires, week 4

CHBS −2.2 −4.0 to −0.4 1.0 −0.8 to 2.8 0.3 −1.4 to 2.1 0.039
FPQ, high fat 0.0 −0.5 to 0.5 −0.6 −1.1 to −0.1 −0.9a −1.3 to −0.4 0.044
FPQ, high fat and high complex carbohydrates 0.2 −0.3 to 0.6 −0.4 −0.9 to 0.1 −0.9a −1.3 to −0.4 0.018
FPQ, high sugars 0.0 −0.4 to 0.5 −0.5 −0.9 to −0.0 −0.8a −1.2 to −0.4 0.040
FPQ, high protein −0.0 −0.5 to 0.5 −0.7 −1.2 to −0.3 −0.9 −1.4 to −0.4 0.039
FPQ, low fat 0.0 −0.4 to 0.5 −0.5 −1.0 to −0.1 −0.7 −1.1 to −0.3 0.049
FPQ, low fat and high protein −0.0 −0.6 to 0.5 −0.8 −1.3 to −0.3 −0.9 −1.4 to −0.4 0.043
FPQ, low fat and high sugars 0.2 −0.2 to 0.6 −0.3 −0.7 to 0.1 −0.7a −1.1 to −0.3 0.016

Questionnaires, month 6
MAEDS, avoidance of forbidden foods −1.5 −3.4 to 0.4 0.1 −1.8 to 1.9 2.3a 0.4 to 4.2 0.024

P is derived from ANCOVA. When significant, post hoc comparisons among tertiles were adjusted with Holm–Bonferroni corrections.
Values are estimated marginal means (95% CI) adjusted for age, sex, ethnicity, group, and baseline.
Bold indicates significant (P < 0.05).
aSignificant difference between tertile 1 and tertile 3 (P < 0.05).
EM, estimated marginal; MAEDS, Multifactorial Assessment of Eating Disorder Symptoms.
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who completed higher exercise doses in DREW (8 KKW and
12 KKW) and E-MECHANIC (20 KKW) ramped up their ex-
ercise prescription during the initial phases of exercise training
(14,16), and this would have lessened cumulative energy ex-
penditure differences between exercise groups (doses) at week
4. It is interesting, however, that between-tertile differences in
weight change at month 6 also occurred independent of cumula-
tive exercise energy expenditure. Our findings are consistent with
the primary weight loss results from our two studies (5,17) and
imply that at exercise doses typically recommended for health,
interindividual variations in weight occur, with exercise energy
expenditure exerting limited influence on initial and long-term
weight change variability (21).

Our results indicate that the associations between initial weight
change and long-term weight change are due to differences in
compensation to exercise-induced energy deficits. Specifically,
during exercise training, individuals who present less initial
weight loss show greater weight compensation. Consistent
with previous studies (17,42), the variations in compensation
in response to exercise were likely driven by differences in en-
ergy intake. Indeed, in E-MECHANIC, we saw a greater rise
in free-living energy intake at month 6 in individuals who lost
less weight (or gained most weight) initially compared with
those who lost most weight, yet we saw no between-tertile dif-
ferences in change in physical activity or RMR. We addition-
ally saw that those with less initial weight loss presented a
reduction in avoidance of forbidden foods at month 6 and a
smaller decline in food preferences, including those foods high
in fat and sugar, at week 4 compared with individuals with the

most initial weight loss. Shifts in food preferences (45) and an
elevation in avoidance of forbidden foods (46) affect food in-
take. It is thus possible, given the differences in week 4 food
preferences, that changes in eating patterns started during the
initial phases of exercise. This suggests that interventionists
could implement early strategies that attenuate food preferences
and increase avoidance of unhealthy foods in individuals who
display substandard weight change promptly during exercise.
Such strategies have been frequently used in dietary regimens
(12) and could comprise early nutritional classes that assist indi-
viduals controlling portions sizes and food cravings, with a par-
ticular focus on unhealthy foods as defined by the FPQ (cakes,
doughnuts, and potato chips) (39). Similarly, as demonstrated
by the findings of Unick and colleagues (47), early interven-
tional support focused on goal setting and meal planning may
be effective (8). Nevertheless, studies with such interventions
during exercise training are needed, particularly as changes in
several other eating-related constructs (e.g., restraint and food
cravings) were similar between tertiles.

Our findings show that individuals who present less initial
weight loss experience poorer changes in blood lipids after ex-
ercise training. Intriguingly, in DREW, the relationship be-
tween initial weight change and change in HDL-C at month
6 remained after weight change was statistically controlled.
Consonant with some postulations (48), it is possible that
those with less initial weight loss exhibited an increase in en-
ergy intake early in response to exercise, which resulted in de-
creases in HDL-C that were not mitigated by longer-term
weight changes. However, between-tertile differences in tri-
glyceride were attenuated when weight change was controlled,
indicating the greater weight loss experienced by those in tertile
3 drove these findings. We also saw similar responses in other
cardiometabolic disease risk markers, waist circumference,
and fitness between tertiles. This implies that exercise induces
metabolic and health improvements irrespective of weight
loss, supporting previous work (15,49).

There are two notable strengths of our study: it comprises a
large sample of participants with overweight or obesity from
two exercise training studies, and exercise sessions were su-
pervised, with stringent monitoring of exercise doses. Our
study has limitations, however. We indeed did not perform
measurements of DXA at week 4, and although our primary
end point measurements were performed in controlled condi-
tions, our measurements of weight before exercise sessions
were performed in testing facilities where less standardization
procedures were enforced. Furthermore, most of our sample
(93%) consisted of females, suggesting that additional studies
in males are required. We were also unable to obtain sophis-
ticated measures of energy balance and body composition in
the larger-powered DREW study. Nevertheless, despite the
smaller sample size, we used advanced measures of energy in-
take, physical activity, RMR, and weight-related constructs in
E-MECHANIC at baseline and month 6.

In conclusion, less initial weight loss from baseline to week 4
was associated with diminished weight loss at 6 months in
two supervised aerobic exercise interventions comprising

FIGURE 2—A, Weight change data for participants in the E-MECHANIC
studywith all weeklyweight data up toweek 24 (n=63 [tertile 1,n= 17; tertile
2, n = 21; tertile 3, n = 25]). B, Compensation data for participants in the
E-MECHANIC study with all weekly weight data up to week 24 (n = 63
[tertile 1, n = 17; tertile 2, n = 21; tertile 3, n = 25]). Data are from weekly
weight measurements performed before exercise sessions. Participants in
tertile 1 and tertile 3 had the least and most percent weight loss at week 4, re-
spectively.Black arrows represent point where tertiles were calculated. Values
are estimated marginal means (95% CI) adjusted for age, ethnicity, group,
baseline, and sex.

http://www.acsm-msse.org1682 Official Journal of the American College of Sports Medicine

A
PP

LI
ED

SC
IE
N
CE

S

32

http://www.acsm-msse.org


individuals with overweight or obesity. Individuals who ini-
tially lost less weight or gained weight also showed greater
compensation at month 6, and this was likely linked to an in-
crease in energy intake and changes in eating behaviors and
preferences conducive to poorer dietary patterns. Although exer-
cise training should be universally advocated, individuals with
overweight or obesity who show poor weight change initially dur-
ing exercise training may benefit from early support to improve
eating patterns, decrease compensation, and assist weight loss.
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REVIEW

Why exercise by itself is often ineffective for
weight loss but crucial for weight management

EXERCISE IS MEDICINE

Höchsmann Christoph, Koehler Karsten
Department of Sport and Health Sciences, Technical University of Munich, Germany

Abstract
The prevalence of obesity is increasing worldwide, and excess body weight is associated with a
substantially increased risk of adverse health conditions. Exercise supports the prevention and
management of obesity; however, when used for weight loss, exercise (even at high volumes) is usually
relatively ineffective, frequently producing less weight loss than expected based on measured energy
expenditure. The difference between observed and expected weight loss is called compensation and it is
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primarily caused by increases in energy intake in response to exercise (compensatory eating). On the other
hand, it has been shown that energy balance and body weight are better regulated in individuals with
moderate to high levels of physical activity (i.e., energy intake = energy expenditure) compared to those
with a sedentary lifestyle (energy expenditure < energy intake), demonstrating that physical activity and
exercise are crucial for long-term maintenance of a healthy weight. Weight loss approaches should
combine dietary components (calorie restriction) and physical activity for increased success. Calorie
restriction facilitates weight loss while physical activity can support the conservation of fat-free mass to
avoid a state of increased hunger, often occurring following calorie restriction interventions due to the
associated loss in fat-free mass, which ultimately encourages weight regain.

Zusammenfassung
Die Prävalenz von Adipositas ist in den letzten Jahren weltweit dramatisch angestiegen, und übermässiges
Körpergewicht (Körperfett) ist mit einem deutlich erhöhten Risiko für langfristige gesundheitliche
Beeinträchtigungen verbunden. Körperliche Bewegung unterstützt die Prävention und Behandlung von
Adipositas; als alleiniges Mittel zur Gewichtsabnahme ist Bewegung (selbst bei hohen Trainingsumfängen)
in der Regel jedoch relativ unwirksam und führt häufig zu einem geringeren Gewichtsverlust als aufgrund
des gemessenen Energieverbrauchs zu erwarten wäre. Die Differenz zwischen dem beobachteten und dem
erwarteten Gewichtsverlust wird als Kompensation bezeichnet und ist in erster Linie auf eine erhöhte
Energiezufuhr als Reaktion auf das Training zurückzuführen (kompensatorisches Essen). Andererseits hat
sich gezeigt, dass der Energiehaushalt und das Körpergewicht bei Personen mit mässiger bis hoher
körperlicher Aktivität (d.h. Energieaufnahme = Energieverbrauch) besser reguliert sind als bei Personen
mit einem sitzenden Lebensstil (Energieverbrauch < Energieaufnahme), was verdeutlicht, dass körperliche
Aktivität und Bewegung für die langfristige Aufrechterhaltung eines gesunden Gewichts entscheidend
sind. Ansätze zur Gewichtsabnahme sollten ernährungsbezogene Komponenten (Kalorienrestriktion) und
körperliche Aktivität kombinieren, um den Erfolg zu steigern. Eine Kalorienrestriktion erleichtert die
Gewichtsabnahme, während körperliche Aktivität die Erhaltung der fettfreien Masse unterstützen kann.
Dies kann wiederum helfen, das verstärkte Hungergefühl zu reduzieren, das nach einer
Kalorienrestriktion aufgrund des damit verbundenen Verlusts an fettfreier Masse häufig auftritt und
letztlich eine erneute Gewichtszunahme begünstigt.

Introduction
Overweight and obesity rates have reached epidemic proportions worldwide. In Europe, approximately

60% of citizens are either overweight (body mass index [BMI] ≥25 kg/m2) or have obesity (BMI ≥30 kg/m2)
[1]. It has been estimated that the worldwide obesity prevalence will reach 18-21% by 2025, suggesting that
over one billion people will be affected by obesity [1]. Obesity is associated with an increased risk for
serious health conditions, presenting a substantial public health and economic burden worldwide [2].
Weight loss is one of the most important reasons why individuals with overweight and obesity choose to
engage in an exercise or physical activity (PA) program [3], and the fitness industry frequently advertises
specific ‘weight loss workouts’ to target these individuals. Regular exercise and PA are associated with a
plethora of health benefits, including improvements in psychiatric, neurological, metabolic,
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cardiovascular, respiratory, and musculoskeletal conditions and diseases as well as many cancers are well
established [4]. However, despite the many important health benefits of exercise and PA, by itself, exercise
is often ineffective for weight loss, with most individuals losing less weight than expected based on
measured energy expenditure, and some individuals even gaining weight after engaging in an exercise or
PA program [5]. Villareal et al. showed that average weight loss during a 1-year randomized controlled
trial (N=107) was only around 1% (not significant) following an exercise intervention (3x90min per week)
compared to around 10% following a diet intervention (daily energy deficit of 500-750 kcal), independent
of whether or not the diet intervention was combined with an exercise program [6]. 
Various factors contribute to the seeming ineffectiveness of exercise in producing weight loss. Most
importantly it is due to an insufficient energy deficit primarily caused by changes (increases) in energy
intake in response to the exercise program that (over-) compensate the exercise-induced energy deficit and
negate weight loss. 

Energy-related aspects of weight loss
Both PA, which is defined as any bodily movement produced by skeletal muscles [7], and exercise, a subset
of PA that is planned, structured, and repetitive and aims to improve or maintain physical fitness [8],
increase energy expenditure. The amount of energy expenditure during exercise is dependent on the type,
intensity, and duration of the activity. One metabolic equivalent (MET) equals an oxygen uptake of 3.5
mL/kg/min or 1 kcal/kg/h, which roughly corresponds to a person’s resting metabolic rate. For example, at
a running speed of 12 km/h (11.5 MET), a person weighing 70 kg would expend ~400 kcal during a 30-min
run, whereas a person weighing 90 kg would expend ~ 520 kcal [9]. Of course, the exercise-related energy
expenditure (EEE) only accounts for parts of the total daily energy expenditure (TDEE), with resting
metabolic rate (RMR; ~60-70% of TDEE), thermic effect of food (TEF; ~5-10% of TDEE), and non-exercise
activity thermogenesis (NEAT = TDEE−[RMR+TEF]), making up the other components. As illustrated in
Figure 1, regular PA and exercise increase TDEE; however a moderate PA level (PAL=1.8) only increases
TDEE by around 20% compared to a sedentary lifestyle and even in very active individuals such as
competitive athletes with a training load of 2-3h per day, TDEE is only about 50-60% higher than in
physically inactive individuals. This illustrates why calorie restriction diets such as a very low-calorie diet
(VLCD, ~600-800 kcal/d) and even more moderate diet approaches (1600-1800 kcal/d) can induce a much
greater calorie deficit, which is subsequently reflected in more substantial weight loss. 
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Figure 1: Relative contribution of exercise-related energy expenditure and non-exercise activity thermogenesis to total
daily energy expenditure. EEE, energy-related energy expenditure; NEAT, non-exercise activity thermogenesis; PAL,

physical activity level; RMR, resting metabolic rate; TEF, thermic effect of food

Additionally, regular exercise alters the energy deficit necessary to lose 1 kg of weight. During a typical
calorie restriction intervention, 3/4 of the lost weight consists of fat mass while 1/4 consists of fat-free mass
(FFM). In a weight loss intervention that combines calorie restriction and exercise, this ratio shifts to
approximately 7/8 (fat mass) and (1/8 FFM), and in an exercise intervention without calorie restriction,
almost all FFM is conserved, and the weight loss is almost exclusively due to a reduction in fat mass [10].
While the conservation of FFM is, of course, positive and beneficial for health and longevity [11], it
explains the slower rate of weight loss. Because fat mass has a substantially higher energy density than
FFM (9400 vs. 1800 kcal/kg) [12], an about 25% greater energy deficit is needed to lose the same amount of
weight solely from exercise compared to solely from calorie restriction.
Further, while PA and exercise increase TDEE, most individuals increase energy intake in response to the
PA or exercise program [13], which reduces or even negates the exercise-induced energy deficit and
consequently the weight lost from exercise (weight compensation). The 6-month E-Mechanic (Examination
of Mechanisms of Exercise-Induced Weight Compensation) study examined the mechanisms of weight
compensation by comparing two exercise interventions with different weekly energy expenditures: 8
kcal/kg/wk (8KKW) and 20 kcal/kg/wk (20KKW) [5]. For an individual with a body weight of 70 kg, this
would equate to a total weekly EEE of 560 kcal (8KKW) and 1400 kcal (20KKW), respectively. The study
found that only 58% (8KKW) and 77% (20KKW) of participants lost work at all during the 6-month
intervention and that in 76% (8KKW) and 90% (20KKW) of participants weight compensation (less weight
loss than expected based on measured EEE) occurred. On average, participants in the 8KKW group lost 0.4
kg (vs. the expected 1.9 kg) and participants in the 20KKW group lost 1.6 kg (vs. the expected 4.3 kg).
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Measurement of energy intake via doubly-labeled water further showed that participants increased their
daily energy intake by 91 kcal (8KKW) and 124 kcal (20KKW) on average compared to baseline [5]. Various
factors contribute to compensatory eating, for example, physiological changes such as an increased release
of appetite-stimulating hormones or psychological factors such as food reward after an exhausting
workout [14]. 

Effect of exercise on eating behavior
As early as the 1950s, Jean Mayer found that an increased TDEE leads to an increased energy intake, but
that conversely, a decrease in TDEE does not cause a reduction in energy intake. Specifically, in
experiments on factory workers in India, Mayer et al. found the greatest energy intake both in workers
with the highest work-related energy expenditure and those with the lowest work-related energy
expenditure. Those workers conducting light-to-moderate work had the lowest energy intake [15]. This J-
shaped association between energy expenditure and energy intake has been confirmed in several studies
[16], demonstrating that becoming sedentary does not downregulate energy intake (unregulated zone of
energy intake), which consequently leads to higher body weight and BMI over time. In the unregulated
zone, non-homeostatic factors such as the availability of food influence food intake [17]. Increasing PA on
the other hand improves satiety signaling, and homeostatic factors (i.e., factors to maintain body weight)
influence energy intake (regulated zone) [17,18]. Importantly, this association also holds for the intake of
sugar and nutrient-dense foods. An analysis of NHANES (National Health and Nutrition Examination
Survey) data further showed (Figure 2) that intake of sugar and sweetened beverages (energy-dense and
low-nutrient foods) was highest in sedentary individuals and those with very high PA levels, while it was
the lowest among moderately active individuals [19]. Conversely, intake of nutrient-dense, “healthy” foods
(fruit and vegetables, fiber, whole grain, dairy products) increased from sedentary to moderately active
but then remained stable despite further increases in energy intake (Figure 2). Finally, and consistent with
the Mayer curve, a secondary analysis of the E-Mechanic study found that PA behavior before
participating in the 6-month exercise intervention predicted weight compensation, with greater amounts
of habitual PA (moderate-to-vigorous intensity) being associated with less weight compensation and more
weight loss during the intervention [20].
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Figure 2: Intake of added sugar and healthy foods (fruit and vegetables, fiber, whole grain, dairy products) as well as
BMI at different levels of physical activity. Figure modified from Koehler et al. (2019)[19]. 

In addition to affecting general long-term eating habits and energy balance, PA and exercise also acutely
affect how much and what we want to eat. A recent study examined hypothetical food choices before,
immediately after and 30 min after a 45-min exercise session on a bike ergometer (60% VO2peak)
compared to a rest condition of identical duration [21]. Specifically, participants viewed a series of food
images displaying hypothetical food choices with varying palatability and energy density (sweet/low fat,
non-sweet/low fat, sweet/high fat, and non-sweet/high fat, respectively) and rated their food amount
preference at these time points after each study condition (bike ergometer vs. rest). The results showed
that the selected food amount (kcal) increased after the exercise condition, with increases of 23%
(immediately after) and 30% (30 min after), whereas the rest condition did not induce such increases in
food amount preference [21]. Another field-based study asked participants to choose between a “healthy”
snack (apple) and an “unhealthy” snack (brownie) either before or after a gym visit, with the consumption
of the snack taking place after the gym visit in either case [22]. The proportion of participants, who chose
the healthy snack option (to be eaten after the gym visit) decreased from 74% (choice before the gym visit)
to 55% (choice after the gym visit) and the proportion of the unhealthy snack option increased from 14% to
20% from before to after [22]. These findings are consistent with the behavioral phenomenon of immediate
gratification that leads to more impulsive food choices in a state of increased hunger, irrespective of
longer-term consequences, and has been linked to an increased risk of obesity [23]. Further, these results
suggest that food choices are generally better (i.e., less food, healthier choices) before compared to after
exercise. This may have implications for clinical practice, as food choices and preparation before exercise
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may help reduce compensatory energy intake and thereby support long-term weight loss through exercise.

Exercise and long-term weight management
While the aforementioned phenomena are responsible for a slowed initial weight loss through exercise,
this explains at the same time, why (the addition of) PA and exercise are crucial for long-term weight
management and advantageous compared to mere calorie restriction interventions. Importantly, the
conservation of FFM through exercise can help prevent rapid weight regain after the end of the calorie
restriction intervention. That is because the loss of FFM during a mere calorie restriction intervention
leads to a state of hyperphagia that persists until FFM is fully recovered. The recovery of FFM is inevitably
accompanied by fat deposition, causing weight regain [24]. Conserving FFM during a weight loss
intervention through moderate-to-high levels of PA will consequently facilitate better maintenance of the
new weight, as demonstrated in a follow-up study to a large weight loss intervention [25]. Participants in
that study who were highly active (2500 kcal/wk) during the 6-month behavioral weight loss intervention
had a lower weight 2 years after the end of the intervention compared to those who were moderately
active (1000 kcal/wk) during the intervention. Even more impressive, those participants who sustained the
high PA levels during the 2 years after the weight loss intervention maintained 12 kg weight loss, whereas
those who ceased to be physically active returned to their baseline weight [25]. 

Conclusions
Despite the numerous positive effects in the prevention and treatment of various diseases, the effects of PA
and exercise on body weight are at least in the initial period of weight loss interventions small to
negligible. It is, therefore, crucial to lower (unrealistic) expectations of rapid exercise-induced weight loss
in clinical practice and to counteract compensatory eating behaviors, which further reduce the weight lost
during an exercise-based weight loss intervention. However, the positive effects of PA and exercise for
long-term weight management are undisputed, and lasting benefits for energy balance are particularly
achieved through the lifelong implementation of a physically active lifestyle.
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Abstract

Objective: This study tested whether initial weight change (WC), self-weighing, and

adherence to the expected WC trajectory predict longer-term WC in an underserved

primary-care population with obesity.

Methods: Data from the intervention group (n = 452; 88% women; 74% Black; BMI

37.3 kg/m2 [SD: 4.6]) of the Promoting Successful Weight Loss in Primary Care in

Louisiana trial were analyzed. Initial (2-, 4-, and 8-week) percentage WC was calcu-

lated from baseline clinic weights and daily at-home weights. Weights were consid-

ered adherent if they were on the expected WC trajectory (10% at 6 months with

lower [7.5%] and upper [12.5%] bounds). Linear mixed-effects models tested

whether initial WC and the number of daily and adherent weights predicted WC at

6, 12, and 24 months.

Results: Percentage WC during the initial 2, 4, and 8 weeks predicted percentage WC at

6 (R2 = 0.15, R2 = 0.28, and R2 = 0.50), 12 (R2 = 0.11, R2 = 0.19, and R2 = 0.32), and

24 (R2 = 0.09, R2 = 0.11, and R2 = 0.16) months (all p < 0.01). Initial daily and adherent

weights were significantly associated withWC as individual predictors, but they only mar-

ginally improved predictions beyond initial weight loss alone in multivariable models.

Conclusions: These results highlight the importance of initial WC for predicting long-

term WC and show that self-weighing and adherence to the expected WC trajectory

can improve WC prediction.
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INTRODUCTION

Almost half of all US adults are affected by obesity [1], presenting a

substantial public health burden with an increased risk for serious

health conditions [2]. Particularly alarming is that 9% of adults have

severe or Class III obesity with body mass index (BMI) ≥ 40 kg/m2 [1].

Certain demographic groups, such as Black and Hispanic populations

as well as those with a low household income, exhibit higher rates of

obesity [3, 4]. To decrease these health disparities, it is important to

identify effective weight management methods for individuals with

obesity in these populations.

Intensive lifestyle interventions (ILIs) are the current non-medical

gold-standard approach to promote weight loss (WL) and effectively

treat obesity and manage associated health risks [5]. However, there

is considerable variability in the response to lifestyle-based WL treat-

ment, and many participants in ILIs do not achieve clinically significant

WL (≥5%), particularly in the medium to long term [6, 7]. Therefore,

identifying predictors of medium-to-long-term WL is important to

guide treatment and identify patients who may need increased support

for WL [8]. The ultimate goal is to predict an individual’s WL as early as

possible and to intervene with alternative treatment approaches if

needed. Patient-specific characteristics such as male sex [9–11], older

age [12–14], and White versus Black race [15] have been shown to be

predictive of greater WL; however, overall, there is only limited evi-

dence for the association between baseline patient-specific characteris-

tics and WL outcomes in lifestyle-based WL studies [8]. In addition to

being modifiable behaviors, dynamic, intervention-specific characteris-

tics such as greater initial WL and adherence to an ILI program are

more reliable predictors of medium-to-long-termWL [8].

For example, in a 12-month behavioral WL intervention, initial

(1-month) WL made the strongest unique contribution to the predic-

tion of WL at 12 months [10]. Similarly, in a 10-week dietary interven-

tion (!600 kcal/d), halfway (5-week) WL explained 77% of the

variance in 10-week WL, and even very early (1-week) WL explained

28% of the variance [11]. Furthermore, initial WL was shown to pre-

dict long-term WL, with those losing >4% in the first month and >6%

in the first 2 months having 2- and 2.8-times greater odds of achiev-

ing ≥5% WL after 8 years in the Action for Health in Diabetes (Look

AHEAD) trial [16]. In addition to initial WL, behavioral adherence

(i.e., session attendance, self-monitoring of behavior, and self-weigh-

ing) is associated with greater WL. In the Preventing Overweight

Using Novel Dietary Strategies (POUNDS Lost) Study [17], early (first

6 months) adherence was predictive of greater WL after 6 and

24 months, and in two other clinical behavioral intervention studies in

academic health centers, self-weighing adherence predicted WL after

12 weeks [18] and 12 months [19].

To date, no study, to our knowledge, has examined the effects of

initial WL or initial adherence to a self-weighing protocol or the

expected WL trajectory on medium-to-long-term WL during a prag-

matic ILI program conducted in primary care. We aimed to test

whether WL, self-weighing adherence, and adherence to the expected

WL trajectory during different time points in the early phase of a

pragmatic WL intervention (2 weeks, 4 weeks, and 8 weeks) predicted

medium-to-long-term (6, 12, and 24 months) WL. Identifying the time

at which the prediction is best is important to inform clinical applica-

tion, as it allows deployment of targeted countermeasures in those

who struggle with initial adherence and WL as early as possible to

improve the odds of medium-to-long-term WL. We used data from

the Promoting Successful Weight Loss in Primary Care in Louisiana

(PROPEL) trial for our analyses, which demonstrated significant WL of

4.5% (95% confidence interval[CI]: 3.1%–5.9%) in underserved

individuals with obesity following a 24-month ILI compared with usual

care [20], alongwith significant improvements in cardiovascular disease

risk factors [21]. We hypothesized that greater initial WL, self-weighing

adherence, and adherence to the expectedWL trajectory would predict

greater WL at 6, 12, and 24 months. We further hypothesized that a

longer time frame of initial WL and adherence (i.e., 8 weeks) would

yield the strongest prediction of medium-to-long-termWL.

Study Importance

What is already known?

• There is limited evidence for the association between

baseline patient-specific characteristics and weight loss

outcomes in lifestyle-based weight loss studies.

• Dynamic, intervention-specific characteristics such as

greater initial weight loss and adherence to the lifestyle

intervention are more reliable predictors of medium-

to-long-term weight loss.

What does this study add?

• Percentage weight change during the initial 2, 4, and

8 weeks of an intensive lifestyle intervention delivered to

an underserved population with obesity in primary care

predicted percentage weight change at 6, 12, and

24 months.

• Initial self-weighing and particularly adherence to the pre-

dicted weight loss trajectory further improved the predic-

tion models, but the improvements were small.

How might these results change the direction of
research or the focus of clinical practice?

• The present results highlight the benefits of the weight

graph approach in pragmatic weight loss interventions

that allows early identification of individuals who may

perform poorly and need additional support for long-term

weight loss.

• These results further demonstrate the importance for

those administering weight loss interventions in primary

care of ensuring participants’ early intervention adher-

ence (diet/calorie restriction, daily self-weighing) to

improve long-term weight loss.
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METHODS

Design and participants

This report is a secondary analysis of the 24-month PROPEL trial

(ClinicalTrials.gov identifier NCT02561221). PROPEL was a cluster-

randomized, two-arm trial conducted in primary-care clinics between

April 2016 and September 2019. The complete design, methods, and

primary and secondary outcomes of the PROPEL trial have been pre-

viously published [20–22]. Briefly, 18 primary-care clinics across Loui-

siana were randomly allocated in equal numbers to either an ILI group

or a usual care group. Participants were recruited from the participat-

ing clinics and eligible if they were 20 to 75 years old, had BMI of 30

to 50, and were patients at one of the participating clinics. Partici-

pants were excluded if they were participating in a structured WL pro-

gram or using WL medication at the time of enrollment, had ever

undergone bariatric surgery or planned to within the next 2 years, or

had lost >10 lb of weight within the last 6 months. The complete list

of eligibility criteria is provided in the protocol [22]. All procedures of

the PROPEL trial were approved by the Institutional Review Board of

the Pennington Biomedical Research Center, and all participants pro-

vided written informed consent before inclusion in the study.

The primary aim of the PROPEL trial was to develop and test

the effectiveness of a 24-month, patient-centered, and pragmatic obesity

treatment program delivered within primary care in an underserved pop-

ulation [22]. The trial found clinically relevant WL over 24 months in the

ILI group of 5.0% (95% CI: 4.0%–6.0%; p < 0.01) [20].

In these analyses, to test whether WL, self-weighing adherence,

and adherence to the expected WL trajectory during the initial 2, 4,

and 8 weeks of the intervention predicted medium-to-long-term WL,

only participants allocated to the ILI group (n = 452) were included.

Participants at clinics allocated to the ILI group received a comprehen-

sive high-intensity lifestyle intervention, based on previous successful

behavioral lifestyle regimens such as the Diabetes Prevention Pro-

gram [23], Look AHEAD [24], and Comprehensive Assessment of

Long-term Effects of Reducing Intake of Energy (CALERIE) [25]. The

pragmatic PROPEL program was consistent with the 2013 American

Heart Association (AHA)/American College of Cardiology (ACC)/The

Obesity Society (TOS) Guidelines for Managing Overweight and Obe-

sity in Adults [5]. The ILI regimen was administered by trained health

coaches embedded in primary-care clinics in weekly sessions (16 in-

person sessions and 6 via phone) during the first 6 months and at least

monthly sessions for the remaining 18 months. The objective for par-

ticipants in the ILI group was to lose 10% of their body weight during

the first 6 months and to maintain that WL in the remaining

18 months. The health coaches worked with participants to develop

and adhere to personalized action plans focusing on changes in eating,

diet, and physical activity behavior. An important intervention compo-

nent of PROPEL’s ILI program was daily self-weighing and the incor-

poration of a personalized weight graph, which automatically plotted

participants’ wirelessly transmitted weight data (BodyTrace scale,

BodyTrace Inc., Palo Alto, California) via a computer tracking system

(CTS) in relation to the individualized WL (target) zone. The WL zone

reflected the expected WL trajectory (10% WL after 6 months) if the

personalized daily energy targets were met, including lower and upper

bounds representing "7.5% and "12.5% of WL to accommodate bio-

logical variation and error in the prediction model [22]. Weights were

considered adherent if they were on that WL trajectory. An example

of the personalized weight graph for a single patient is provided in the

protocol [22]. Daily self-weighing has been shown to promote self-

efficacy and self-regulatory behavior in between intervention ses-

sions, and participants and health coaches were able to access the

weight graph via a website at any time, allowing them to quickly

detect deviations from the intended WL progress [26, 27]. If devia-

tions occurred, adjustments were made to the personalized action

plans via a toolbox approach (i.e., specific nutritional, physical activity,

and behavioral strategies tailored to the needs of the patient, such as

increased contact, modifying recipes to decrease energy density,

strategies to avoid impulse eating, or adding variety to physical activ-

ity routines), as applied in previous clinical trials [23–25].

Measures

Body weight

Body weight was measured during the clinic visits at baseline and at 6,

12, and 24 months, as well as daily via cellular-connected scales in par-

ticipants’ homes. In the clinic, trained staff measured weight

in duplicate to the nearest 0.1 kg using a digital scale (Seca Model

876, Weigh and Measure LLC, Olney, Maryland) with participants in

light clothing and without shoes. Daily at-home weights were measured

by participants autonomously via a BodyTrace scale. Participants were

instructed to weigh themselves after getting up in the morning in a sim-

ilar state (e.g., before breakfast, after the first void) and with similar

clothing (e.g., after disrobing to get in the shower), and health coaches

worked with participants to foster consistency. Percentage weight

change (WC) during the initial 2, 4, and 8 weeks was calculated by sub-

tracting the CTS-recorded weights at 2 weeks (Day 14), 4 weeks (Day

28), and 8 weeks (Day 56) from the baseline clinic weight.

Self-weighing and adherence to the predicted WL
trajectory

Self-weighing adherence (the total number of daily at-home weights)

and adherence to the expected WL trajectory (the total number of

weights in or below the projected WL zone [i.e., adherent weights])

during the initial 2, 4, and 8 weeks of the intervention were assessed

via the CTS data.

Statistical analyses

Descriptive data are reported as means and SDs for continuous vari-

ables and as frequencies (percentages) for categorical variables. The

2274 INITIAL WEIGHT LOSS PREDICTS LONG-TERM SUCCESS
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primary end points in the present analysis were percentage WC at

6, 12, and 24 months. We used linear mixed-effects models (LMMs)

to evaluate the predictive effect of initial WL, self-weighing, and

adherence to the predicted WL trajectory (all at week 2, week 4, and

week 8, respectively) on WL at each consecutive follow-up time point

(6, 12, and 24 months). In the first step, we ran separate models fit-

ting initial percentage WC, number of recorded weights, and number

of adherent weights to predict follow-up percentage WC at each

time point. These results provided a preliminary view of relation-

ships. Next, all three predictors (initial percentage WC, number of

recorded weights, and number of adherent weights) of a specific ini-

tial week were entered in the model as candidate independent vari-

ables with percentage WC at a follow-up time point as the

dependent variable. The model selection process involved comparing

models with different combinations of predictor variables and select-

ing the model with the lowest Akaike information criterion as the

final model. We assessed the assumptions of LMMs, including nor-

mality of residuals, constant variance, and linearity of the predictor

variables, using diagnostic plots and statistical tests. Coefficient esti-

mates of single-predictor models and final models were provided to

quantify the rate at which each predictor forecast the outcome.

Because it was reasonable to assume that patients within clinics

were more homogeneous than between clinics, we took account of

the nine clinics as random cluster variance components that deviate

from the main fixed effect. The full model can be expressed as the

following:

Weight lossij ¼ β0þβ1Initial%weight lossijþβ2Numberof weightsij
þβ3Number of adherent weightsijþ γjþεij

where i denoted the ith patient and j denoted the jth clinic. The clus-

tering effect of clinics was considered as a random intercept term

γj "N 0,σ2c
! "

, which consequently made the covariance matrix block

diagonal. Additionally, we calculated the generalized coefficients of

determination (R2) for the single-predictor and optimal LMMs to

quantify the proportion of variance explained by each model [28].

Furthermore, to determine optimal cutoff values to discriminate

between successfully achieving versus not achieving clinically relevant

WL (≥3%, ≥5%, and ≥10%) at 6, 12, and 24months based on initial

(2-, 4-, and 8-week) WL, we used receiver operating characteristic

curves including area under the curve estimates from logistic

regression models. Clinically significant WL is typically defined as a

reduction of ≥5% of initial weight [5]. However, because modest WL

("3%) is associated with some health benefits in those with obesity

and substandard cardiovascular disease risk factors, and more WL

(≥10%) is associated with even greater benefits [29], we also deter-

mined optimal cutoff values for these categories of WL. The point

which minimizes the Euclidean distance of sensitivity (true positive)

and specificity (true negative) from perfection (sensitivity=1

and specificity=1) was identified as the respective optimal cutoff. All

analyses were conducted with SAS version 9.4 (SAS Institute Inc.,

Cary, North Carolina) for Windows with the significance level set to

0.05 (two-sided).

RESULTS

Participant characteristics

A total of 452 participants were included in the present analyses.

Participants (74% Black, 88% women) were 48.8 years (SD = 12.7)

old on average and had an average BMI of 37.3 (SD = 4.6).

Baseline characteristics are shown in Table 1. On average, participants

T AB L E 1 Participant characteristics at baseline and descriptive
statistics for dependent and independent variables

N = 452

Race, n (%)

Black 332 (73.5)

White 95 (21.0)

Other 25 (5.5)

Sex, n (%)

Male 54 (11.9)

Female 398 (88.1)

Age (y) 48.8 (12.7)

Weight (kg) 101.6 (16.4)

BMI (kg/m2) 37.3 (4.6)

Initial weight change

Percentage weight change in initial 2 weeksa !2.9 (1.8)

Percentage weight change in initial 4 weeksa !3.9 (2.2)

Percentage weight change in initial 8 weeksa !5.4 (3.2)

Self-weighing adherence

At-home weights in initial 2 weeks (n)a 12.9 (2.0)

At-home weights in initial 4 weeks (n)a 24.9 (4.7)

At-home weights in initial 8 weeks (n)a 46.9 (11.9)

Adherence to predicted weight loss trajectory

Adherent at-home weights in initial 2 weeks (n)a,b 12.8 (2.2)

Adherent at-home weights in initial 4 weeks (n)a,b 24.6 (5.1)

Adherent at-home weights in initial 8 weeks (n)a,b 45.4 (13.0)

Medium-to-long-term weight change

Percentage weight change at 6 monthsc !7.4 (5.6)

Percentage weight change at 12 monthsd !7.0 (7.1)

Percentage weight change at 24 monthse !5.1 (7.7)

Note: Data are mean (SD) unless stated otherwise.
aData available for 449 of 452 participants.
bAdherent at-home weight was defined as weight in or below the
projected weight loss zone.
cData available for 391 of 452 participants.
dData available for 373 of 452 participants.
eData available for 370 of 452 participants.
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recorded 12.9 (SD = 2.0), 24.9 (SD = 4.7), and 46.9 (SD = 11.9) daily

weights during the initial 2, 4, and 8 weeks of the intervention,

respectively, corresponding to a self-weighing adherence of 92%,

89%, and 84%. Of these weights, 99% (initial 2 weeks), 98% (initial

4 weeks), and 96% (initial 8 weeks) were in or below the projected

WL zone (i.e., adherent), on average. Average WL was 2.9%

T AB L E 2 Associations between initial weight change (%), self-weighing, and adherence to the predicted weight loss trajectory (single
predictors) during the first 2, 4, and 8 weeks and medium-to-long-term weight change

R 2 B SE df t p

Percentage weight change at 6 months

Weight change

Percentage weight change in initial 2 weeks 0.15 1.15 0.16 379 7.38 <0.01

Percentage weight change in initial 4 weeks 0.28 1.46 0.11 379 12.81 <0.01

Percentage weight change in initial 8 weeks 0.50 1.28 0.06 379 20.11 <0.01

Self-weighing adherence

Weights recorded in initial 2 weeks (n) 0.10 !0.66 0.15 379 !4.47 <0.01

Weights recorded in initial 4 weeks (n) 0.14 !0.47 0.06 379 !6.92 <0.01

Weights recorded in initial 8 weeks (n) 0.19 !0.24 0.03 379 !8.92 <0.01

Adherence to predicted weight loss trajectory

Adherent weights in initial 2 weeks (n)a 0.10 !0.68 0.14 379 !4.90 <0.01

Adherent weights in initial 4 weeks (n)a 0.15 !0.46 0.06 379 !7.49 <0.01

Adherent weights in initial 8 weeks (n)a 0.26 !0.26 0.02 379 !11.48 <0.01

Percentage weight change at 12 months

Weight change

Percentage weight change in initial 2 weeks 0.11 1.11 0.20 361 5.48 <0.01

Percentage weight change in initial 4 weeks 0.19 1.46 0.16 361 9.33 <0.01

Percentage weight change in initial 8 weeks 0.32 1.27 0.10 361 13.35 <0.01

Self-weighing adherence

Weights recorded in initial 2 weeks (n) 0.09 !0.85 0.21 361 !4.07 <0.01

Weights recorded in initial 4 weeks (n) 0.11 !0.51 0.09 361 !5.67 <0.01

Weights recorded in initial 8 weeks (n) 0.14 !0.24 0.04 361 !6.86 <0.01

Adherence to predicted weight loss trajectory

Adherent weights in initial 2 weeks (n)a 0.10 !0.92 0.20 361 !4.72 <0.01

Adherent weights in initial 4 weeks (n)a 0.13 !0.53 0.08 361 !6.65 <0.01

Adherent weights in initial 8 weeks (n)a 0.19 !0.27 0.03 361 !9.08 <0.01

Percentage weight change at 24 months

Weight change

Percentage weight change in initial 2 weeks 0.09 1.07 0.22 358 4.82 <0.01

Percentage weight change in initial 4 weeks 0.11 1.17 0.18 358 6.59 <0.01

Percentage weight change in initial 8 weeks 0.16 0.96 0.11 358 8.35 <0.01

Self-weighing adherence

Weights recorded in initial 2 weeks (n) 0.06 !0.58 0.23 358 !2.49 0.01

Weights recorded in initial 4 weeks (n) 0.07 !0.40 0.10 358 !4.02 <0.01

Weights recorded in initial 8 weeks (n) 0.08 !0.18 0.04 358 !4.55 <0.01

Adherence to predicted weight loss trajectory

Adherent weights in initial 2 weeks (n)a 0.07 !0.71 0.21 358 !3.31 <0.01

Adherent weights in initial 4 weeks (n)a 0.09 !0.44 0.09 358 !5.07 <0.01

Adherent weights in initial 8 weeks (n)a 0.11 !0.20 0.03 358 !6.15 <0.01

Note: Models accounted for the random clustering effects of clinics. Bold font indicates statistical significance (p < 0.05).
Abbreviations: B, unstandardized regression coefficient; df, degrees of freedom.
aAn adherent at-home weight was defined as a weight in or below the projected weight loss zone.
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(SD = 1.8%) at 2 weeks, 3.9% (SD = 2.2%) at 4 weeks, and 5.4%

(SD = 3.2%) at 8 weeks (Table 1).

Association between initial WL and medium-to-long-
term WL

Percentage WC during the initial 2, 4, and 8 weeks predicted percent-

age WC at 6, 12, and 24 months (all p < 0.01; Table 2, Figure 1). At

6 months, initial WL explained 15% (2 weeks), 28% (4 weeks), and

50% (8 weeks) of the variance in WC. At 12 months, these values

were 11% (2 weeks), 19% (4 weeks), and 32% (8 weeks) and at

24 months were 9% (2 weeks), 11% (4 weeks), and 16% (8 weeks).

Table 3 shows the optimal cutoff values to discriminate between suc-

cessfully achieving versus not achieving clinically relevant WL (≥3%,

≥5%, and ≥10%) at 6, 12, and 24 months based on initial (2-, 4-, and

8-week) WL. For example, selecting the threshold of 2.7% WL in the

initial 2 weeks provided the best compromise between sensitivity

(true positive rate) and specificity (true negative rate) of correctly iden-

tifying WL of ≥10%/<10% at 6 months. Because the area under the

curve estimates were <0.7 in several cases (all receiver operating char-

acteristic curves are provided in Supporting Information Table S1), the

presented cut points should be interpreted with caution.

Association between self-weighing and adherence to
the predicted WL trajectory and medium-to-long-
term WL

Self-weighing and adherence to the predicted WL trajectory were

associated with medium-to-long-term WL (Table 2). At 6 months,

self-weighing explained 10% (2 weeks), 14% (4 weeks), and 19%

(8 weeks) of the variance in WC. At 12 months, these values were

9% (2 weeks), 11% (4 weeks), and 14% (8 weeks) and at 24 months

were 6% (2 weeks), 7% (4 weeks), and 8% (8 weeks). At 6 months,

adherence to the predicted WL trajectory explained 10% (2 weeks),

15% (4 weeks), and 26% (8 weeks) of the variance in WC.

At 12 months, these values were 10% (2 weeks), 13% (4 weeks),

and 19% (8 weeks) and at 24 months were 7% (2 weeks), 9%

(4 weeks), and 11% (8 weeks).

F I GU R E 1 Association between initial weight change and medium-to-long-term weight change. Panels A–C show the associations between
initial weight change at 2 weeks, 4 weeks, and 8 weeks and 6-month weight change. Panels D–F show the associations between initial weight
change at 2 weeks, 4 weeks, and 8 weeks and 12-month weight change. Panels G–I show the associations between initial weight change at
2 weeks, 4 weeks, and 8 weeks and 24-month weight change. [Color figure can be viewed at wileyonlinelibrary.com]
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T AB L E 3 Cutoff values to discriminate between successfully achieving versus not achieving clinically significant weight loss (≥3%, ≥5%, and
≥10%) at 6, 12, and 24 months based on initial (2-, 4-, and 8-week) weight loss

Weight loss

≥3%a ≥5%a ≥10%a

At 6 months

Percentage weight loss in initial 2 weeks 2.5 2.7 2.7

AUC (95% CI) 0.70 (0.64–0.76) 0.68 (0.63–0.73) 0.59 (0.54–0.64)

Sensitivity (95% CI) 0.68 (0.63–0.73) 0.65 (0.60–0.71) 0.65 (0.59–0.72)

Specificity (95% CI) 0.69 (0.59–0.78) 0.69 (0.61–0.76) 0.65 (0.59–0.72)

Percentage weight loss in initial 4 weeks 3.4 4.0 4.0

AUC (95% CI) 0.77 (0.72–0.82) 0.75 (0.71–0.80) 0.65 (0.59–0.70)

Sensitivity (95% CI) 0.71 (0.66–0.76) 0.65 (0.59–0.70) 0.65 (0.58–0.72)

Specificity (95% CI) 0.75 (0.67–0.84) 0.80 (0.74–0.87) 0.61 (0.55–0.67)

Percentage weight loss in initial 8 weeks 4.4 5.3 6.0

AUC (95% CI) 0.81 (0.77–0.86) 0.79 (0.75–0.83) 0.71 (0.66–0.76)

Sensitivity (95% CI) 0.73 (0.68–0.77) 0.67 (0.62–0.73) 0.64 (0.57–0.71)

Specificity (95% CI) 0.80 (0.71–0.88) 0.81 (0.75–0.87) 0.70 (0.65–0.76)

At 12 months

Percentage weight loss in initial 2 weeks 2.6 2.7 2.7

AUC (95% CI) 0.66 (0.60–0.72) 0.63 (0.57–0.68) 0.54 (0.48 0.59)b

Sensitivity (95% CI) 0.62 (0.57–0.68) 0.63 (0.57–0.68) 0.60 (0.53–0.67)

Specificity (95% CI) 0.65 (0.56–0.74) 0.63 (0.55–0.70) 0.50 (0.44–0.56)

Percentage weight loss in initial 4 weeks 3.4 4.0 4.0

AUC (95% CI) 0.72 (0.66–0.77) 0.68 (0.63–0.73) 0.57 (0.52–0.62)

Sensitivity (95% CI) 0.69 (0.64–0.74) 0.61 (0.55–0.66) 0.57 (0.50–0.65)

Specificity (95% CI) 0.67 (0.58–0.76) 0.70 (0.63–0.77) 0.55 (0.49–0.61)

Percentage weight loss in initial 8 weeks 4.8 4.9 6.6

AUC (95% CI) 0.75 (0.70–0.80) 0.73 (0.68–0.78) 0.63 (0.58–0.68)

Sensitivity (95% CI) 0.68 (0.63–0.73) 0.70 (0.65–0.75) 0.52 (0.45–0.59)

Specificity (95% CI) 0.71 (0.63–0.80) 0.67 (0.60–0.75) 0.73 (0.67–0.78)

At 24 months

Percentage weight loss in initial 2 weeks 2.7 2.7 2.7

AUC (95% CI) 0.64 (0.58–0.69) 0.60 (0.54–0.65) 0.55 (0.49–0.60)b

Sensitivity (95% CI) 0.63 (0.57–0.68) 0.63 (0.57–0.69) 0.58 (0.51–0.66)

Specificity (95% CI) 0.63 (0.55–0.71) 0.57 (0.50–0.63) 0.50 (0.44–0.56)

Percentage weight loss in initial 4 weeks 3.4 4.2 4.5

AUC (95% CI) 0.64 (0.59–0.70) 0.62 (0.57–0.67) 0.54 (0.48–0.59)b

Sensitivity (95% CI) 0.70 (0.65–0.75) 0.55 (0.49–0.61) 0.45 (0.37–0.53)

Specificity (95% CI) 0.55 (0.47–0.63) 0.64 (0.57–0.70) 0.63 (0.58–0.69)

Percentage weight loss in initial 8 weeks 5.4 5.4 5.3

AUC (95% CI) 0.68 (0.63–0.73) 0.66 (0.61–0.71) 0.56 (0.51–0.62)

Sensitivity (95% CI) 0.61 (0.55–0.66) 0.61 (0.55–0.67) 0.56 (0.49–0.64)

Specificity (95% CI) 0.68 (0.60–0.75) 0.62 (0.55–0.68) 0.51 (0.45–0.57)

Abbreviation: AUC, area under the curve.
aCutoffs determined via receiver operating characteristic (ROC) curves from logistic regression models. The point, which minimizes the Euclidean distance
of sensitivity (true positive) and specificity (true negative) from perfection, was identified as the optimal cutoff. AUC estimates including 95% CI are
provided for each ROC curve.
bLikely nondiscriminant.
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Multivariable associations between initial WL,
self-weighing, and adherence to the predicted WL
trajectory and medium-to-long-term WL

The optimal models selected and their coefficients at each time point

are reported in Table 4. WL was computed as follow-up minus base-

line, and consequently positive values represent weight gain. Positive

values in the percentage WC coefficients in the initial weeks suggest

that greater initial percentage WC predicts less follow-up percentage

weight gain. Negative values in the coefficients of the number of

weights recorded/adherent weights in initial weeks suggest that a

greater number of weights recorded/adherent weights in initial weeks

predicts less follow-up percentage weight gain.

All optimal models showed that more than one predictor is

important. Among them, percentage WC during the initial 2, 4, and

8 weeks was a predictor in all models (β ranging from 0.79 to 1.38,

all p < 0.01; Table 4). The number of weights recorded and the num-

ber of adherent weights were mostly not selected in the same model

because of correlation between the two. The number of weights

recorded in the initial 2 (β = !0.48, p < 0.01) and 4 (β = !0.53,

p < 0.01) weeks was a predictor for percentage WC at 6 months. The

number of weights recorded in the initial 4 (β = !0.31, p < 0.01)

weeks was also selected in the model for 12 months. At all other

time points, the number of adherent weights in the initial weeks

(rather than the number of weights recorded) was a better predictor.

Notably, for WL at 6 months, both the number of weights recorded

and the number of adherent weights in the initial 4 weeks were

selected.

At 6 months, the best model explained 17% (2 weeks), 32%

(4 weeks), and 53% (8 weeks) of the variance in WC. At 12 months,

these values were 13% (2 weeks), 22% (4 weeks), and 35% (8 weeks).

At 24 months, the best model explained 9% (2 weeks), 13% (4 weeks),

and 17% (8 weeks) of the variance in WC. The comparison of Akaike

information criterion (not reported) across the best models with the

same dependent variable suggests that initial predictors at week

8 were stronger than those at week 2 and 4.

DISCUSSION

The present analysis demonstrated that initial WL, self-weighing

adherence, and adherence to the expected WL trajectory were associ-

ated with medium-to-long-term WL during a comprehensive ILI deliv-

ered to patients in primary care. Specifically, and in line with our

hypothesis and previous findings [10, 16, 30, 31], greater initial WL

predicted WL at 6, 12, and 24 months. Furthermore, greater initial

daily self-weighing adherence and adherence to the predicted WL tra-

jectory were also associated with longer-term WL, highlighting the

importance of getting participants off to a good start in ILIs by ensur-

ing early program (diet, physical activity, calorie restriction) and

T AB L E 4 Multivariable associations between initial weight loss, self-weighing, and adherence to the predicted weight loss trajectory and
medium-to-long-term weight change

Predictor time Predictor B SE df p R 2

Percentage weight change at 6 months 2 weeks Percentage weight change 1.05 0.16 378 <0.01 0.17

2 weeks Weights recorded (n) !0.48 0.14 378 <0.01

Percentage weight change at 12 months 2 weeks Percentage weight change 0.92 0.21 360 <0.01 0.13

2 weeks Adherent weights (n) !0.68 0.20 360 <0.01

Percentage weight change at 24 months 2 weeks Percentage weight change 0.93 0.23 357 <0.01 0.09

2 weeks Adherent weights (n) !0.45 0.22 357 0.04

Percentage weight change at 6 months 4 weeks Percentage weight change 1.38 0.13 377 <0.01 0.32

4 weeks Weights recorded (n) !0.53 0.18 377 <0.01

4 weeks Adherent weights (n) 0.28 0.17 377 0.11

Percentage weight change at 12 months 4 weeks Percentage weight change 1.28 0.16 360 <0.01 0.22

4 weeks Weights recorded (n) !0.31 0.09 360 <0.01

Percentage weight change at 24 months 4 weeks Percentage weight change 0.93 0.20 357 <0.01 0.13

4 weeks Adherent weights (n) !0.24 0.10 357 0.01

Percentage weight change at 6 months 8 weeks Percentage weight change 1.11 0.07 378 <0.01 0.53

8 weeks Adherent weights (n) !0.09 0.02 378 <0.01

Percentage weight change at 12 months 8 weeks Percentage weight change 1.06 0.11 360 <0.01 0.35

8 weeks Adherent weights (n) !0.12 0.03 360 <0.01

Percentage weight change at 24 months 8 weeks Percentage weight change 0.79 0.14 357 <0.01 0.17

8 weeks Adherent weights (n) !0.08 0.04 357 0.02

Note: The optimal linear mixed-effects models presented were selected based on the lowest Akaike information criterion (not reported). Bold font
indicates statistical significance (p < 0.05).
Abbreviations: B, unstandardized regression coefficient; df, degrees of freedom.
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behavioral (self-weighing) adherence. However, in multivariable

models, the best predictor remained initial WL.

As hypothesized, a longer time frame of initial WL and adherence

(i.e., 8 weeks) yielded stronger predictions of medium-to-long-term

WL compared with shorter time frames (2 weeks and 4 weeks). Of

note, the predictive value of the initial 2-, 4-, and 8-week WL was

generally highest for the 6-month WL and it decreased for the 12-

month and particularly the 24-month WL. The improved prediction

with later early time (8 weeks) and more proximal later time

(6 months) is likely because predicting the future is difficult and,

therefore, the shortest period is likely to be the most accurate.

The significant associations of 2-week WL (albeit attenuated

compared with 4- and 8-week WL, in line with previous findings)

[32, 33] with WL at 6, 12, and 24 months may be particularly relevant,

as they demonstrated that individuals undergoing primary care-based

ILIs may be identified very early on as needing additional support to

increase longer-term WL. Contrary to previous findings showing that

2-week WL predicted only short-term (6 months) but not later (1 year

or 2 years) WL and 4-week WL predicted WL at 6 months and 1 year

but not 2 years [32], our study demonstrated that 2-week and 4-week

WL was predictive of WL at 6, 12, and 24 months. Consequently, our

results indicate that WL may be evaluated as early as 2 weeks to deter-

mine whether treatment needs to be altered to improve medium-to-

long-term WL. However, because 4-week and particularly 8-week WL

was a stronger predictor of medium-to-long-term WL, WL progression

should be reevaluated at these time points.

Importantly, our results also show that greater initial daily self-

weighing adherence and adherence to the individualized weight graph

are associated with medium-to-long-term WL, showing that even

after 2 weeks of an ILI program, lower levels of program (calorie

restriction) adherence, displayed as poorer adherence to the expected

WL trajectory, can already have an impact on longer-term WL. These

findings demonstrated the benefits of the weight graph approach as a

method to promote early program (calorie restriction) adherence and

improve medium-to-long-term WL. The visualization of daily weights

on the weight graph can help the interventionist detect deviations

from the projected WL trajectory quickly (i.e., within days) and get

the patient back on track by deploying targeted countermeasures

according to the individual progress and preferences (toolbox

approach) [22, 24, 25]. In patients with low initial WL (and poor

adherence to the expected WL trajectory), other treatment options

(“rescue efforts”) such as more digital messages, different diets, inten-

sifying the calorie restriction, meal planning or meal replacements,

additional physical activity, or pharmacotherapy as add-ons may be

considered [34]. These strategies can help reduce participant frustra-

tion (and attrition) that is likely to occur from absent WL and increase

interest in continued weight management efforts. Importantly,

through the weight graph, patients can detect deviations from the

expected WL trajectory and even independently of the intervention-

ists’ feedback [26, 27, 35]. This can help facilitate self-efficacy and

effective problem solving as the patient can more easily link his/her

behavior to the outcome of interest (i.e., WL). When adherent to the

calorie restriction goals, the patient receives daily confirmation of the

WL progress, as visualized on the weight graph, which can act as a

great motivator and facilitate continued intervention adherence [36].

Ultimately, the weight graph approach can also increase the cost-

effectiveness of ILIs: less interventionist-patient interaction may be

required, especially in the longer term [26], which may be of particular

interest in primary care.

In the PROPEL trial, meal replacements proved to be a particularly

effective strategy to drive initial adherence in the trial’s underserved,

low-income population. In fact, as reported by the health coaches in

informal conversations, participants asked for continued provision of the

meal-replacement shakes that were originally intended only for the first

4 weeks [22], and they were provided them as long as supplies lasted.

The popularity of the meal replacements was somewhat unexpected, but

it demonstrated that the very limited grocery budget in individuals with

low income (and food insecurity), such as the PROPEL sample, played an

important role in the lack of access to WL-supporting foods, simply

because these foods (e.g., meal-replacement shakes) were expensive

enough that they could not be regularly incorporated into the tight gro-

cery budget. Aside from the benefits for WL, the meal replacements may

have reduced some of the general food insecurity and led to a less lim-

ited (grocery) budget, which likely contributed to their popularity, some-

thing that should be considered for clinical practice.

More studies are needed to test the aforementioned rescue

efforts for improving long-term WL in those with poor initial WL,

especially in racially diverse, low-income populations with obesity.

Continued provision of meal replacements may be an effective strat-

egy in these populations that should be tested. Future studies should

also determine whether other differences (e.g., genetics, personal

health beliefs, cultural factors) exist between those who lose more

versus less weight initially and how interventionists can tailor ILIs in a

primary-care setting to address those differences.

Strengths of this study include the large and diverse sample of typi-

cally underserved individuals from urban and rural regions of

Louisiana, who generally are underrepresented in clinical research. Con-

sequently, the present results apply to the large underserved, low-

income population in the United States. Further strengths include the

objective measures of daily self-weighing and the weight graph

approach that illustrate a potential model for WL programs in primary

care. A limitation of this study is that the PROPEL sample was mostly

women, which limits the generalizability of the present results for both

sexes. However, this is not uncommon in lifestyle interventions [37].

CONCLUSION

In this 2-year lifestyle intervention delivered to underserved patients

with obesity in primary care, greater WL during the initial 2, 4, and

8 weeks predicted greater WL at 6, 12, and 24 months. Self-weighing

and adherence to the expected WL trajectory in the initial weeks mar-

ginally improved WL prediction beyond initial WL alone. Those admin-

istering WL interventions in primary care should ensure participants’

early adherence to daily self-weighing and the predicted WL trajec-

tory, particularly when initial WL is suboptimal.O
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ABSTRACT
Background: Intensive lifestyle interventions (ILIs) stimulate
weight loss in underserved patients with obesity, but the mediators
of weight change are unknown.
Objectives: We aimed to identify the mediators of weight change
during an ILI compared with usual care (UC) in underserved patients
with obesity.
Methods: The PROPEL (Promoting Successful Weight Loss in Pri-
mary Care in Louisiana) trial randomly assigned 18 clinics (n = 803)
to either an ILI or UC for 24 mo. The ILI group received an intensive
lifestyle program; the UC group had routine care. Body weight was
measured; further, eating behaviors (restraint, disinhibition), dietary
intake (percentage fat intake, fruit and vegetable intake), physical
activity, and weight- and health-related quality of life constructs
were measured through questionnaires. Mediation analyses assessed
whether questionnaire variables explained between-group variations
in weight change during 2 periods: baseline to month 12 (n = 779)
and month 12 to month 24 (n = 767).
Results: The ILI induced greater weight loss at month 12 compared
with UC (between-group difference: −7.19 kg; 95% CI: −8.43,
−6.07 kg). Improvements in disinhibition (−0.33 kg; 95% CI:
−0.55, −0.10 kg), percentage fat intake (−0.25 kg; 95% CI: −0.50,
−0.01 kg), physical activity (−0.26 kg; 95% CI: −0.41, −0.09 kg),
and subjective fatigue (−0.28 kg; 95% CI: −0.46, −0.10 kg) at
month 6 during the ILI partially explained this between-group
difference. Greater weight loss occurred in the ILI at month 24, yet
the ILI group gained 2.24 kg (95% CI: 1.32, 3.26 kg) compared
with UC from month 12 to month 24. Change in fruit and vegetable
intake (0.13 kg; 95% CI: 0.05, 0.21 kg) partially explained this
response, and no variables attenuated the weight regain of the
ILI group.
Conclusions: In an underserved sample, weight change induced by
an ILI compared with UC was mediated by several psychological
and behavioral variables. These !ndings could help re!ne weight
management regimens in underserved patients with obesity. This
trial was registered at clinicaltrials.gov as NCT02561221. Am J
Clin Nutr 2022;116:1112–1122.

Keywords: comprehensive lifestyle intervention, diet, eating atti-
tudes, health disparities, minority groups, primary health care, weight
loss, weight regain
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Introduction
Obesity is a public health disease that increases the risk of type

2 diabetes, cardiovascular disease, cancer, and premature death
(1, 2). Overall, obesity affects ∼40% of adults in the United States
(3), and health disparities are present. Obesity is more prevalent
in certain demographic groups with a low annual income (4).
Moreover, compared with non-Hispanic white adults, black and
Hispanic populations exhibit higher rates of obesity (5). It is thus
important to identify effective weight-management methods for
individuals with obesity in these populations to attain national
health targets and decrease health disparities.

Usual care (UC) for weight loss and weight management
within primary care typically involves behavioral counseling
and therapy to improve dietary habits and physical activity,
yet such regimens often yield substandard weight loss because
of time constraints and a lack of training among practitioners
(6). Intensive lifestyle interventions (ILIs) are recommended as
alternative programs for weight loss in individuals with obesity
in primary care (7). These aim to stimulate energy de!cits
and weight loss through reduced-calorie diets, improvements
in physical activity, and behavioral therapy in an on-site and
intensive (≥14 sessions in the !rst 6 mo) regimen delivered by
trained interventionists (7, 8).

In the PROPEL (Promoting Successful Weight Loss in
Primary Care in Louisiana) trial, we demonstrated that under-
served patients with obesity lose more weight and improve
cardiometabolic risk markers during an ILI compared with UC
over 24 mo (9, 10). However, it is unclear what factors drove the
increased weight loss produced by the ILI relative to UC. It is
in addition not known if the factors associated with midterm (6–
12 mo) weight loss during the ILI were effective at attenuating
weight regain, which is common and can decrease the health
bene!ts associated with lifestyle interventions (11). These factors
could include those that have been associated with weight loss
and were linked to behaviors and strategies covered in counseling
sessions of the ILI, such as increased dietary restraint (i.e.,
the intent and ability to restrict food intake), reduced dietary
disinhibition (i.e., the tendency to overeat) (12), increased intake
of healthy foods with low fat (13), increased physical activity
(14), and improved quality of life (15). Identifying the factors
that mediated weight loss and weight-loss maintenance during
the PROPEL trial is important because strategies and behaviors
can be targeted and tested in future interventions, enhancing the
ef!cacy of weight-management programs that are delivered to
underserved individuals with obesity in primary care.

The aim of this exploratory investigation was to use mediation
analyses to identify the mediators of weight change during an
ILI compared with UC in underserved patients with obesity. We
hypothesized that improvements in eating behaviors (increased
dietary restraint and reduced dietary disinhibition), dietary intake
(reductions in dietary fat and increases in fruit and vegetable
intake), physical activity, and quality of life shown in the ILI
compared with UC would mediate improved weight change
during the ILI.

Methods

Patients

Primary inclusion criteria for PROPEL (NCT02561221)
included an age of 20–75 y, a BMI (in kg/m2) of 30.0–50.0, and

being a patient at a participating primary care clinic. Patients were
excluded if they used weight-loss medication, were presently
partaking in a structured weight-loss program, previously had
bariatric surgery or planned to have bariatric surgery within 2 y,
or had lost >10 lbs (4.5 kg) in the last 6 mo. A full list of inclusion
and exclusion criteria has been previously published (9, 16), and
all these criteria applied to these analyses.

Study design

The PROPEL study was a cluster-randomized trial consisting
of 18 primary care clinics from 5 health systems across Louisiana.
Details of the trial’s design, randomization and recruitment
methods, and protocol have been published (9, 16). The
Pennington Biomedical Research Center Institutional Review
Board approved the study. All procedures followed the ethical
standards set by this Institutional Review Board, and all patients
provided written informed consent. A self-report demographic
questionnaire was used to obtain information about sex, race, and
income.

Clinics were randomly assigned in a 1:1 allocation ratio to
provide patients with an ILI or UC for 24 mo. Randomization was
strati!ed by health system, with the random allocation method
generated by a study statistician. Patients were not blinded to their
group assignment because randomization occurred at the clinic
level and the interventions are distinct. Efforts were nonetheless
made to blind staff involved in data collection to the clinic
randomization, and intervention staff were blinded to the patient’s
of!cial study measures. The PROPEL trial data were collected
and managed via the use of Research Electronic Data Capture
(REDCap) resources hosted by the Pennington Biomedical
Research Center (9, 17). The trial was conducted between April
2016 and September 2019, !nishing when recruited patients who
completed the trial had their month 24 assessments (9, 16).

Patients in the ILI received a pragmatic, intensive lifestyle
program, which was based on previous lifestyle regimens (18–
20) and consistent with the 2013 recommendations for the
management of overweight and obesity set out by the American
Heart Association, American College of Cardiology, and The
Obesity Society (8). The ILI regimen was administered by
appropriately trained health coaches embedded within primary
care clinics and comprised weekly sessions in the !rst 6 mo (16
face-to-face and 6 delivered via telephone), followed by sessions
that were held at least monthly. The objective for patients in the
ILI was to lose 10% of their body weight through numerous
strategies which aimed to change eating behaviors and physical
activity. Strategies incorporated in the ILI included the provision
of suitable prepackaged foods and meal replacements, coaching
on appropriate portion sizes, and information on how to purchase
and prepare healthy foods. It also included encouragement to
increase physical activity to 175 min/wk in line with the physical
activity goal of the Look AHEAD (Action for Health in Diabetes)
trial (19). In addition to these strategies, a weight-loss calculator
was used to formulate personalized energy intake targets and
then display predicted weight loss to patients and health
coaches (21).

Patients assigned to UC received the care routinely delivered
by their clinic for the duration of the trial. They were also
provided 6 newsletters that covered numerous topics such as
sitting and health, goal setting, memory health, self-care, sleep
hygiene, and smoking cessation. Primary care providers in the
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1114 Dorling et al.

UC clinics received information at baseline and annually on
the Centers for Medicare and Medicaid Services approach to
behavioral therapy for obesity (22).

Measures

Body weight.

Body weight was measured using a digital scale (Seca
Model 876) at assessment visits conducted at baseline and at
months 6, 12, 18, and 24. Patients were instructed to wear
light clothes and no shoes while measurements were conducted.
Anthropometric measurements were made in duplicate, although
a third measurement was taken if weight differed by 0.5 kg. The
mean of the 2 closest measurements was recorded.

Questionnaires.

All questionnaires used in the present analysis were adminis-
tered at baseline, month 6, month 12, and month 24.

The Eating Inventory (EI) is a 51-item tool that assesses dietary
restraint, dietary disinhibition, and hunger (23). However, only
restraint and disinhibition were assessed and thus a shortened 37-
item EI was provided to PROPEL patients, with items assessing
hunger removed (9). Dietary restraint is de!ned as the intent
and ability to restrict food intake; a higher score is generally
positive for weight control when disinhibition is low (24). Dietary
disinhibition is de!ned as the tendency to overeat, and a higher
value is associated with eating disorder symptoms and poor
weight control (25). Greater scores for restraint and disinhibition
were indicative of higher levels of the eating behavior assessed.

A customized questionnaire was administered to measure
aspects of dietary intake. The questionnaire utilized scales from
several sources to measure 3 outcomes: a National Cancer
Institute (NCI) fat screener assessed percentage fat intake (26);
a 7-item screener devised by the NCI and National 5 A Day
Program examined fruit and vegetable consumption (27, 28);
and 3 questions from the Brief Questionnaire to Assess Habitual
Beverage Intake (BEVQ-15) assessed the frequency of alcohol
intake (29).

Weight-related quality of life was measured through the
31-item Impact of Weight on Quality of Life-Lite (IWQOL)
questionnaire (30, 31). This measures obesity-related aspects of
quality of life, with a total quality of life score and separate scores
for physical function, self-esteem, sexual life, public distress,
and work or daily activities yielded. Scores are transformed to
a 0–100 scale; a score of 100 represents the highest quality of
life. The questionnaire asks patients to re"ect on quality of life
constructs because of their weight (30). Hence, in line with other
analyses (15), only the total IWQOL score was utilized in the
current analysis to limit the inclusion of variables that may be
causally affected by weight change.

The Patient-Reported Outcomes Measurement Information
System-29 (PROMIS-29) questionnaire was also administered
to measure health-related quality of life (32). This 29-item
questionnaire assesses health-related domains related to physical
function, anxiety, fatigue, depression, sleep disturbance, ability to
partake in social roles and activities, pain interference, and pain
intensity. All constructs were used except for pain intensity owing
to its relation with pain interference.

The International Physical Activity Questionnaire (IPAQ)
short form was used to assess physical activity levels (33). The
questionnaire, which asks questions related to physical activity
over the previous 7 d, provides physical activity scores in median
metabolic equivalent of task (MET)-minutes per week. Four
constructs of physical activity were assessed in MET-minutes per
week: vigorous, moderate, walking, and total. In the PROPEL
trial, numerous patients had missing data for particular activity
types (vigorous, moderate, and walking), meaning total MET-
minutes per week scores could not be calculated for these patients
per standardized scoring methods (33). Thus, in the present
analysis, we only included vigorous, moderate, and walking
MET-minutes per week variables.

Statistical analysis.

The present article is an exploratory analysis; accordingly,
the sample size acquired in the trial was studied. As sum-
mary statistics, between-group differences in change scores
for questionnaire variables were determined using unadjusted
independent-samples t tests. Absolute Cohen’s d effect size (ES)
values were also assessed for change scores (34). The magnitude
of an ES value was considered trivial (<0.20), small (0.20–0.49),
medium (0.50–0.79), or large (≥0.80) (34).

Our objective was to identify the mediators of weight change in
the ILI compared with UC; in other words, we aimed to test the
extent to which a set of variables (mediators) explained weight
differences between the ILI group and the UC group. Multilevel
mediation analysis was used to measure the effects conveyed
by intervening variables (mediators) to the observed relation
between an exposure variable and an outcome variable (35, 36).
In this analysis, the mediator (change in questionnaire variables)
and outcome (weight change) variables were continuous, whereas
the exposure variable was binary (ILI or UC group). We built
random intercept models to account for the correlation among
subjects within the clinic. As part of the analysis, the total
effect was estimated at the individual level; that is, the average
difference in weight change (outcome variable) caused by the
ILI compared with UC (exposure variable). The analysis further
separated the total effect of the ILI (compared with UC) on weight
change into 2 components: the indirect effects from mediators
and the direct effect. The indirect effect is the effect of the
ILI (compared with UC) on weight change that is driven by
each proposed mediator; the direct effect is the effect of the ILI
(compared with UC) on weight change that is not explained by
the change in the proposed mediators.

In accord with the aims of the article, 2 conceptual models
were used to guide the analyses (Figure 1). The !rst model aimed
to determine the mediators of weight change induced by the ILI
relative to UC during the !rst 12 mo of the trial. This was chosen
to highlight mediators of midterm weight loss (6 to ≤12 mo)
(37). The exposure variable was the trial group (ILI or UC), the
proposed mediators were change in questionnaire variables from
baseline to month 6, and the outcome variable was weight change
from baseline to month 12. In the second model, the aim was
to assess the mediators of weight change during the second 12
mo of the trial. This was broadly chosen to identify mediators
of weight change during periods of weight-loss maintenance.
This model had the same exposure variable as model 1, although
change in questionnaire variables from baseline to month 12
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Weight change mediators in underserved individuals 1115

FIGURE 1 Hypothetical mediation models.

were the proposed mediators and change in weight from month
12 to month 24 was the outcome variable. In both models, the
proposed mediators preceded the outcome variable, with a time
difference (6 mo in model 1 and 12 mo in model 2) between the
!nal measurement of the proposed mediators and the outcome
variable. This was to ensure temporal ordering of our exposure
variable, proposed mediators, and outcome variable, limiting
the confounding in"uence of reverse causality. In addition, we
removed patients with censored weights from the mediation
models. Weight measurements were censored if a patient became
pregnant, developed a medical condition, or died.

We conducted our analyses using the multilevel mediation
analysis method of Yu and colleagues (36, 38), which is
implemented in the mlma package in the software R. Brie"y,
potential mediators from our proposed mediators were informally
selected if 2 conditions were satis!ed. First, the proposed
mediator distributed differently with or without the study’s
intervention (ILI compared with UC). In this regard, we used
the ANOVA method to test if the mean of the variable differed
between the ILI and UC. Second, the variable was signi!cantly
related to the outcome (weight change) while adjusting for all
other related factors. This condition was tested through mixed-
effect generalized linear models, with linear regression models
used for linear outcomes or mediators. If only the second
condition was satis!ed, the variable was included as a covariate;
yet the variable was excluded if the second condition was not
satis!ed (39). Further to the tests of 2 conditions, the package
allows related variables to be forced into the model as mediators
or covariates and it can assess joint effects of groups of mediators.
Because the PROMIS-29 is used to determine overall health-
related quality of life and no total score is obtained in the measure,
we forced all PROMIS-29 constructs into the model as potential
mediators and their joint effect was estimated. We likewise forced
vigorous, moderate, and walking MET scores into the model
as potential mediators and estimated the joint effect of these
variables. Age, sex, race, baseline values for selected mediators,
and weight (baseline weight for model 1; month 12 weight for

model 2) were added as covariates. We estimated absolute total,
direct, and indirect effects, as well as relative direct and indirect
effects that provide the magnitude of these effects as a proportion
of the total effect. For both the absolute and relative effect
estimates, the SE and asymmetric 95% CIs around estimates were
calculated, with inferences made using the bootstrap method.
Unless noted otherwise, within the text, data are displayed as
mean ± SD and 95% CI.

Results

Patient characteristics

A total of 803 patients with obesity (BMI: 37.2 ± 4.7) and a
mean ± SD age of 49.4 ± 13.1 y were enrolled in the trial from
18 clinics: 452 patients from 9 clinics enrolled into the ILI and
351 patients from 9 clinics enrolled into UC (Figure 2). Details
of the sample and the numbers who missed visits and withdrew
are reported in the primary outcome article (9). The majority of
patients were female (n = 678; 84.4%), were black (n = 540;
67.2%), and had a total household income <$40,000 (n = 515;
64.1%) (Table 1). Moreover, 247 patients (30.8%) were food
insecure.

During the trial, 24 patients had their month 12 weight
censored, whereas a further 12 had their weight censored at
month 24 (Figure 2). Therefore, the !rst mediation analysis and
related summary comparisons (change scores in mediators from
baseline to month 6) included 779 (439 ILI; 340 UC) patients,
whereas the second mediation analysis and related summary
comparisons (change scores for mediators from baseline to month
12) included 767 patients (433 ILI; 334 UC). Supplemental
Tables 1 and 2 show baseline characteristics of these analytical
samples.

Change scores

The analysis in the primary outcome article showed that weight
loss in the ILI group was greater than in the UC group at month
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1116 Dorling et al.

FIGURE 2 Participant "owchart for the analyses.

12 (ILI: −7.22 kg; 95% CI: −8.25, −6.19 kg; UC: −0.99 kg;
95% CI: −2.08, 0.09 kg) and month 24 (ILI: −5.43 kg; 95% CI:
−6.52, −4.34 kg; UC: −0.91 kg; 95% CI: −2.07, 0.24 kg) (9).

Unadjusted independent-sample t tests suggested that the ILI
group displayed a signi!cant and large increase in restraint
compared with the UC group at month 6 and month 12
(P < 0.001; ES ≥ 1.16), whilst a 0.9-point reduction in
disinhibition was shown in the ILI relative to UC at month 6

(P < 0.001; ES = 0.33) (Table 2). At month 6 and month 12,
compared with the UC group, the ILI group showed a small
reduction in percentage fat intake and an increase in fruit and
vegetable intake (P ≤ 0.010; ES ≥ 0.20); yet both groups
reported a similar change in alcohol intake at months 6 and 12
(P ≥ 0.662; ES ≤ 0.03) (Table 2). The ILI group reported an
increase in all physical activity constructs at month 6 (P ≤ 0.035;
ES ≥ 0.17), although only change in vigorous physical activity
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TABLE 1 Baseline characteristics and measures of the PROPEL (Promoting Successful Weight Loss in Primary Care in Louisiana) trial cohort1

All (n = 803) ILI (n = 452) UC (n = 351)

Age, y 49.4 ± 13.1 48.8 ± 12.7 50.1 ± 13.6
Sex

Male 125 (15.6) 54 (11.9) 71 (20.2)
Female 678 (84.4) 398 (88.1) 280 (79.8)

Race
White 208 (25.9) 95 (21.0) 113 (32.2)
Black 540 (67.2) 332 (73.5) 208 (59.3)
Other 55 (6.8) 25 (5.5) 30 (8.5)

Total annual household income, $
<10,000 156 (19.4) 86 (19.0) 70 (19.9)
10,000–19,999 168 (20.9) 95 (21.0) 73 (20.8)
20,000–39,999 191 (23.8) 112 (24.8) 79 (22.5)
40,000–59,999 117 (14.6) 69 (15.3) 48 (13.7)
>60,000 154 (19.2) 83 (18.4) 71 (20.2)
Missing 17 (2.1) 7 (1.5) 10 (2.8)

Household food security status
Food insecure 247 (30.8) 129 (28.5) 118 (33.6)
Food secure 556 (69.2) 323 (71.5) 233 (66.4)

Weight, kg 102.1 ± 16.7 101.6 ± 16.4 102.7 ± 17.0
BMI, kg/m2 37.2 ± 4.7 37.3 ± 4.6 37.2 ± 4.8
EI

EI, restraint 9.6 ± 4.5 9.6 ± 4.5 9.5 ± 4.5
EI, disinhibition 6.9 ± 3.7 7.0 ± 3.6 6.7 ± 3.7

Dietary intake questionnaire
NCI, percentage fat intake 35.3 ± 6.4 35.9 ± 6.7 34.6 ± 5.9
NCI, fruit and vegetable intake 2.2 ± 1.7 2.2 ± 1.6 2.3 ± 1.8
BEVQ-15, alcohol intake 0.2 ± 0.4 0.2 ± 0.4 0.2 ± 0.4

Physical activity, MET-min/wk
IPAQ, vigorous 561.4 ± 956.1 504.7 ± 891.1 634.3 ± 1030.3
IPAQ, moderate 475.2 ± 839.4 435.9 ± 803.3 525.2 ± 881.9
IPAQ, walking 808.9 ± 1011.2 780.8 ± 1027.3 844.0 ± 991.2

Weight-related quality of life
IWQOL, total score 73.9 ± 19.0 72.8 ± 19.5 75.3 ± 18.3

Health-related quality of life
PROMIS-29, sadness 47.5 ± 8.6 47.0 ± 8.5 48.1 ± 8.7
PROMIS-29, pain interference 51.9 ± 9.6 51.5 ± 9.7 52.5 ± 9.4
PROMIS-29, physical function 48.6 ± 8.0 48.9 ± 7.9 48.1 ± 8.1
PROMIS-29, social functioning 54.8 ± 9.0 55.2 ± 8.9 54.3 ± 9.1
PROMIS-29, fatigue 50.1 ± 10.1 49.4 ± 9.8 50.9 ± 10.4
PROMIS-29, anxiety 51.9 ± 9.9 51.7 ± 9.7 52.2 ± 10.1
PROMIS-29, sleep disturbance 50.7 ± 9.4 50.2 ± 9.2 51.5 ± 9.5

1Values are mean ± SD for continuous data and n (%) for categoric variables. BEVQ-15, Brief Questionnaire to Assess Habitual Beverage Intake; EI,
Eating Inventory; ILI, intensive lifestyle intervention; IPAQ, International Physical Activity Questionnaire; IWQOL, Impact of Weight on Quality of
Life-Lite; MET, metabolic equivalent of task; NCI, National Cancer Institute; PROMIS-29, Patient-Reported Outcomes Measurement Information
System-29; UC, usual care.

was greater in the ILI group than in the UC group at month 12
(Table 2).

There was an increase in weight-related quality of life in
the ILI group relative to the UC group at months 6 and 12
(P < 0.001; ES ≥ 0.62) (Table 2). Apart from sadness (P = 0.177;
ES = 0.10), all health-related quality of life constructs of
the PROMIS-29 were signi!cantly improved in the ILI at
month 6 compared with UC, with trivial-to-small ESs observed
(P ≤ 0.008; ES ≥ 0.20) (Table 2). At month 12, however,
statistically signi!cant improvements were only observed for
pain interference, physical function, social functioning, and
fatigue in the ILI group relative to the UC group (P ≤ 0.041;
ES ≥ 0.16) (Table 2).

Mediation analysis

Table 3 summarizes results from the mediation analyses.
In model 1 (baseline to month 12 weight change), restraint,
disinhibition, percentage fat intake, and weight-related quality of
life total score met the 2 criteria and were selected as potential
mediators alongside the IPAQ and PROMIS-29 variables and
their composite scores. Similar to the primary outcome article
(9), the total effect of the ILI (compared with UC) on weight
change at month 12 was −7.19 kg (95% CI: −8.43, −6.07 kg).
The direct effect [i.e., effect of ILI (compared with UC) on 12-
mo weight change independent of change in mediators] was
−5.36 kg (95% CI: −6.90, −3.94 kg), with a relative effect
estimate showing that 75% of the between-group weight change
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1118 Dorling et al.

TABLE 2 Change scores in questionnaire variables at month 6 and month 12 during the PROPEL (Promoting Successful Weight Loss in Primary Care in
Louisiana) trial1

Baseline to month 6 Baseline to month 12

ILI (n = 439) UC (n = 340) P Cohen’s d ILI (n = 433) UC (n = 334) P Cohen’s d

EI
EI, restraint 6.3 ± 4.5 0.7 ± 3.6 <0.001 1.37 5.6 ± 4.4 0.8 ± 3.9 <0.001 1.16
EI, disinhibition − 1.8 ± 3.1 − 0.9 ± 2.5 <0.001 0.33 − 1.3 ± 3.1 − 1.0 ± 2.7 0.109 0.12

Dietary intake questionnaire
NCI, percentage fat intake − 3.7 ± 6.0 − 1.2 ± 5.5 <0.001 0.43 − 2.9 ± 6.0 − 1.0 ± 5.1 <0.001 0.34
NCI, fruit and vegetable
intake

0.2 ± 1.6 − 0.2 ± 1.7 0.003 0.23 0.2 ± 1.7 − 0.1 ± 1.9 0.010 0.20

BEVQ-15, alcohol intake 0.0 ± 0.3 0.0 ± 0.3 0.662 0.03 0.0 ± 0.3 0.0 ± 0.3 0.881 0.01
Physical activity, MET-min/wk

IPAQ, vigorous 300.5 ± 1038.2 43.4 ± 1172.5 0.003 0.23 272.8 ± 1124.7 74.0 ± 1173.4 0.030 0.17
IPAQ, moderate 189.0 ± 1049.8 17.3 ± 989.6 0.035 0.17 238.0 ± 1047.3 138.8 ± 964.0 0.228 0.10
IPAQ, walking 211.1 ± 1203.9 9.5 ± 1047.3 0.034 0.18 125.4 ± 1283.0 − 4.4 ± 1117.0 0.215 0.11

Weight-related quality of life
IWQOL, total score 10.9 ± 14.0 3.2 ± 10.8 <0.001 0.62 12.1 ± 14.4 3.4 ± 11.5 <0.001 0.67

Health-related quality of life
PROMIS-29, sadness − 0.1 ± 7.1 0.7 ± 7.9 0.177 0.10 0.2 ± 7.7 0.8 ± 7.4 0.281 0.08
PROMIS-29, pain
interference

− 1.3 ± 8.1 0.3 ± 8.3 0.008 0.20 − 0.9 ± 9.2 0.9 ± 8.3 0.009 0.20

PROMIS-29, physical
function

2.3 ± 6.4 0.1 ± 6.7 <0.001 0.34 1.8 ± 6.9 − 0.1 ± 6.6 <0.001 0.28

PROMIS-29, social
functioning

2.0 ± 7.5 0.1 ± 7.4 <0.001 0.26 2.0 ± 8.2 0.4 ± 7.8 0.007 0.21

PROMIS-29, fatigue − 3.0 ± 9.2 − 0.6 ± 8.2 <0.001 0.28 − 2.2 ± 9.2 − 0.8 ± 8.9 0.041 0.16
PROMIS-29, anxiety − 1.4 ± 9.2 0.6 ± 8.9 0.003 0.22 − 1.0 ± 8.9 0.0 ± 8.5 0.153 0.11
PROMIS-29, sleep
disturbance

− 1.8 ± 8.0 0.3 ± 7.7 <0.001 0.28 − 0.8 ± 8.7 0.1 ± 8.5 0.174 0.10

1Values are mean ± SD unless indicated otherwise. Independent-sample t tests compared change scores between groups at month 6 and month 12.
Absolute Cohen’s d effect size values were used to compare change scores between groups at month 6 and month 12. BEVQ-15, Brief Questionnaire to
Assess Habitual Beverage Intake; EI, Eating Inventory; ILI, intensive lifestyle intervention; IPAQ, International Physical Activity Questionnaire; IWQOL,
Impact of Weight on Quality of Life-Lite; MET, metabolic equivalent of task; NCI, National Cancer Institute; PROMIS-29, Patient-Reported Outcomes
Measurement Information System-29; UC, usual care.

was not caused by mediators. Of the selected potential mediators,
disinhibition, percentage fat intake, moderate physical activity,
walking, and fatigue change from baseline to month 6 were
signi!cant mediators of the improved weight loss displayed
by the ILI group compared with the UC group at month 12.
Speci!cally, month 6 change in disinhibition, percentage fat
intake, moderate physical activity, walking, and fatigue explained
−0.33 kg (95% CI: −0.55, −0.10 kg), −0.25 kg (95% CI: −0.50,
−0.01 kg), −0.13 kg (95% CI: −0.23, −0.03 kg), −0.11 kg
(95% CI: −0.21, −0.02 kg), and −0.28 kg (95% CI: −0.46,
−0.10 kg), respectively, of the 12-mo weight change caused
by the ILI (compared with UC). The joint indirect effect of
physical activity (composite score for vigorous physical activity,
moderate physical activity, and walking) was also signi!cant
and explained −0.26 kg (95% CI: −0.41, −0.09 kg) of the 12-
mo weight change caused by the ILI (compared with UC). The
relative effect estimates indicated that disinhibition, percentage
fat intake, physical activity (joint effect), and fatigue explained
5%, 4%, 4%, and 4%, respectively, of the improved weight
change seen in the ILI group compared with the UC group at
month 12. Restraint was not a statistically signi!cant mediator
(−0.70 kg; 95% CI: −1.44, 0.03 kg). Similarly, the individual
and joint effects of other PROMIS-29 variables and the change

in weight-related quality of life did not signi!cantly mediate
month 12 weight change induced by the ILI (compared with UC)
(Table 3).

In model 2 (month 12 to month 24 weight change), only
fruit and vegetable intake met the 2 criteria and was selected
as a potential mediator with the IPAQ and PROMIS variables.
The ILI group displayed a signi!cant 2.24-kg (95% CI: 1.32,
3.26 kg) increase in weight from month 12 to month 24 compared
with the UC group (Table 3). The direct effect in this model
was 2.00 kg (95% CI: 1.09, 3.02 kg), with the relative effect
estimate suggesting 89% of the increase in weight exhibited by
the ILI group (compared with UC) was not explained by the
selected mediators. The change in fruit and vegetable intake from
baseline to month 12 was a signi!cant mediator of the increase in
weight shown by the ILI group relative to the UC group from
month 12 to month 24 (0.13 kg; 95% CI: 0.05, 0.21 kg); the
relative effect estimate suggested that this explained 6% of the
weight gain shown by the ILI (compared with UC). None of the
other indirect effects of the selected mediators were signi!cant
(Table 3), suggesting 12-mo change in these selected mediators
from baseline did not explain or attenuate (i.e., inconsistent
mediation) the increase in weight seen by the ILI group compared
with the UC group from month 12 to month 24.
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TABLE 3 Total, direct, and indirect effects of the PROPEL (Promoting Successful Weight Loss in Primary Care in Louisiana) ILI (compared with UC) on
weight change, with questionnaire variables as mediators1

Absolute effect Relative effect

Estimate 95% CI Estimate 95% CI

Model 1 (baseline to month 12 weight change)2

EI
EI, restraint − 0.70 ± 0.40 −1.44, 0.03 0.10 ± 0.05 −0.01, 0.20
EI, disinhibition − 0.33 ± 0.11 −0.55, −0.10 0.05 ± 0.02 0.02, 0.07

Dietary intake questionnaire
NCI, percentage fat intake − 0.25 ± 0.12 −0.50, −0.01 0.04 ± 0.02 0.00, 0.07

Physical activity, MET-min/wk
IPAQ, joint effect of constructs3 − 0.26 ± 0.08 −0.41, −0.09 0.04 ± 0.01 0.01, 0.06
IPAQ, vigorous 0.02 ± 0.06 −0.14, 0.11 0.00 ± 0.01 −0.02, 0.02
IPAQ, moderate − 0.13 ± 0.05 −0.23, −0.03 0.02 ± 0.01 0.00, 0.03
IPAQ, walking − 0.11 ± 0.05 −0.21, −0.02 0.02 ± 0.01 0.00, 0.03

Weight-related quality of life
IWQOL, total score − 0.35 ± 0.21 −0.76, 0.04 0.05 ± 0.03 −0.01, 0.11

Health-related quality of life
PROMIS-29, joint effect of constructs4 0.06 ± 0.13 −0.19, 0.33 − 0.01 ± 0.02 −0.05, 0.03
PROMIS-29, sadness 0.01 ± 0.03 −0.05, 0.06 − 0.00 ± 0.00 −0.01, 0.01
PROMIS-29, pain interference − 0.02 ± 0.06 −0.13, 0.09 0.00 ± 0.01 −0.01, 0.02
PROMIS-29, physical function 0.14 ± 0.09 −0.03, 0.31 − 0.02 ± 0.01 −0.04, 0.01
PROMIS-29, social functioning 0.03 ± 0.08 −0.12, 0.20 − 0.00 ± 0.01 −0.03, 0.02
PROMIS-29, fatigue − 0.28 ± 0.09 −0.46, −0.10 0.04 ± 0.01 0.01, 0.06
PROMIS-29, anxiety 0.12 ± 0.08 −0.03, 0.27 − 0.02 ± 0.01 −0.04, 0.00
PROMIS-29, sleep disturbance 0.06 ± 0.09 −0.12, 0.25 − 0.01 ± 0.01 −0.03, 0.02

Direct effect − 5.36 ± 0.76 −6.90, −3.94 0.75 ± 0.06 0.62, 0.87
Total effect − 7.19 ± 0.60 −8.43, −6.07 — —

Model 2 (month 12 to month 24 weight change)5

Dietary intake questionnaire
NCI, fruit and vegetable intake 0.13 ± 0.04 0.05, 0.21 0.06 ± 0.02 0.01, 0.11

Physical activity, MET-min/wk
IPAQ, joint effect of constructs3 0.03 ± 0.04 −0.06, 0.10 0.01 ± 0.02 −0.03, 0.05
IPAQ, vigorous 0.02 ± 0.04 −0.06, 0.09 0.01 ± 0.02 −0.03, 0.04
IPAQ, moderate 0.01 ± 0.02 −0.03, 0.05 0.00 ± 0.01 −0.02, 0.02
IPAQ, walking 0.00 ± 0.03 −0.05, 0.06 0.00 ± 0.01 −0.02, 0.03

Health-related quality of life
PROMIS-29, joint effect of constructs4 0.09 ± 0.07 −0.06, 0.23 0.04 ± 0.03 −0.03, 0.10
PROMIS-29, sadness 0.02 ± 0.02 −0.02, 0.06 0.01 ± 0.01 −0.01, 0.03
PROMIS-29, pain interference 0.06 ± 0.06 −0.06, 0.17 0.02 ± 0.03 −0.03, 0.08
PROMIS-29, physical function 0.09 ± 0.07 −0.05, 0.23 0.04 ± 0.03 −0.03, 0.11
PROMIS-29, social functioning − 0.03 ± 0.05 −0.13, 0.07 − 0.02 ± 0.03 −0.07, 0.03
PROMIS-29, fatigue − 0.01 ± 0.04 −0.08, 0.06 0.00 ± 0.02 −0.04, 0.03
PROMIS-29, anxiety − 0.05 ± 0.03 −0.10, 0.01 − 0.02 ± 0.01 −0.05, 0.01
PROMIS-29, sleep disturbance 0.01 ± 0.02 −0.04, 0.05 0.00 ± 0.01 −0.02, 0.03

Direct effect 2.00 ± 0.49 1.09, 3.02 0.89 ± 0.04 0.81, 0.98
Total effect 2.24 ± 0.49 1.32, 3.26 — —

1Values and 95% CIs were calculated with the mlma package of Yu and colleagues (36, 38). Absolute effects are estimated means ± SEs, whereas
relative direct and indirect effects are the corresponding direct or indirect effect divided by the total effect ± SE. EI, Eating Inventory; ILI, intensive lifestyle
intervention; IPAQ, International Physical Activity Questionnaire; IWQOL, Impact of Weight on Quality of Life-Lite; MET, metabolic equivalent of task;
NCI, National Cancer Institute; PROMIS-29, Patient-Reported Outcomes Measurement Information System-29; UC, usual care.

2The exposure variable was group (ILI compared with UC), the proposed mediators were change in questionnaire variables from baseline to month 6,
and the outcome variable was weight change from baseline to month 12. Adjusted for age, sex, race, baseline questionnaire variables for selected mediators,
and baseline weight; n = 779 (439 ILI; 340 UC).

3Indirect effect is a composite score of the joint effect of all constructs: vigorous MET-mins/wk, moderate MET-mins/wk, and walking MET-mins/wk.
4Indirect effect is a composite score of the joint effect of all constructs: sadness, pain interference, physical function, social functioning, fatigue, anxiety,

and sleep disturbance.
5The exposure variable was group (ILI compared with UC), the proposed mediators were change in questionnaire variables from baseline to month 12,

and the outcome variable was weight change from month 12 to month 24. Adjusted for age, sex, race, baseline questionnaire variables for selected mediators,
and month 12 weight; n = 767 (433 ILI; 334 UC).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/a
jc

n
/a

rtic
le

/1
1
6
/4

/1
1
1
2
/6

6
1
9
0
7
1
 b

y
 T

e
c
h
n
ic

a
l U

n
iv

e
rs

ity
 o

f M
u
n
ic

h
, U

n
iv

e
rs

ity
 L

ib
ra

ry
 u

s
e
r o

n
 2

6
 O

c
to

b
e
r 2

0
2
2

65



1120 Dorling et al.

Discussion

Over 24 mo, an ILI induced weight loss relative to UC in
a sample of underserved patients with obesity. These analyses
showed that month 6 change in disinhibition, percentage fat
intake, physical activity, and subjective fatigue partially mediated
the weight change seen in the ILI group relative to the UC group
at 12 mo. The ILI group lost more weight than the UC group
at month 24, but weight gain of 2.24 kg was observed in the
ILI compared with UC from month 12 to month 24, with fruit
and vegetable intake identi!ed as a mediator. Analyses showed
that the change in questionnaire constructs explained a small
amount of the between-group weight change. More speci!cally,
each mediator explained ≤10% of the between-group weight
change, and relative direct effect values indicated that ≥75%
of the between-group weight change was not explained by
assessed constructs. Nonetheless, although other unmeasured
factors could drive between-group weight variations, these results
could help improve weight regimens by highlighting critical
constructs and behaviors for weight loss.

Behavioral lifestyle interventions typically offer counseling
sessions that aim to improve the eating behaviors of individuals
with obesity via an increase in dietary restraint and a reduction
in dietary disinhibition (8). In this analysis, we observed that
a decrease in dietary disinhibition was a signi!cant mediator
of 12-mo weight loss seen in the ILI group compared with
the UC group. This is consonant with studies reporting that a
reduction in dietary disinhibition (12) is associated with weight
loss in individuals with obesity during lifestyle interventions,
and it suggests that regimens provided to underserved cohorts
should place particular focus on behavioral strategies linked
to disinhibition. Such strategies could consist of those utilized
during the PROPEL ILI behavioral sessions, including controlled
eating of foods, eating habits in response to stress and negative
emotion, and healthy eating during special events. In contrast to
the decrease in disinhibition, the increase in dietary restraint was
not a signi!cant mediator in our analyses. This supports research
showing no association between restraint and weight loss (40),
although in contrast to some work (12), we may have been
underpowered to detect a positive in"uence of dietary restraint
on weight loss.

A core strategy recommended for weight loss in individuals
with obesity is the adoption of healthy dietary patterns. This
includes limiting fat and alcohol intake and incorporating fruits,
vegetables, and grains into a calorie-de!cit diet (8, 37). Our
results suggest that a decrease in percentage fat intake was a
mediator of the between-group difference in month 12 weight
loss, supporting previous analyses (13, 41) and suggesting that
a reduction in fat intake is a key practice that assists the
development of a calorie de!cit and weight loss in underserved
individuals with obesity. However, consistent with previous
evidence (42), change in alcohol consumption did not mediate
weight loss seen in the ILI compared with UC. In addition,
although it did not in"uence weight loss in the !rst year of the
trial, the increase in fruit and vegetable consumption seen in the
ILI relative to UC did mediate the relative weight gain from
month 12 to month 24. It is possible that fruit and vegetable
consumption increased energy intake during a period of relapse
in the ILI group, but it should be noted that research examining

the in"uence of fruit and vegetable intake per se on long-
term weight maintenance is mixed (14, 43). Therefore, further
research is needed to elucidate the role of fruit and vegetable
intake during weight-management interventions in underserved
individuals with obesity.

Studies show that physical activity combined with dietary
modi!cations stimulate greater weight loss over periods of ≥12
mo than do dietary modi!cations alone (44). We found, in line
with these !ndings, that increased physical activity at month 6
mediated the greater 12-mo weight loss in the ILI, particularly the
increase in moderate physical activity and walking. This suggests
future weight-loss regimens in similar patient populations should
seek to increase physical activity to improve weight loss. It
could also imply that interventions should set more ambitious
activity goals that have been recommended for weight loss, such
as ≥200 min/wk of walking or moderate physical activity (45).
However, because physical activity did not in"uence between-
group weight change from month 12 to month 24, future research
should elucidate the long-term role of physical activity during
ILIs in underserved populations, especially because physical
activity may be important in preventing weight regain (46). These
studies should identify methods to sustain elevations in physical
activity, given there were no differences in moderate physical
activity and walking between the groups at month 12.

In addition to physical activity, model 1 revealed decreased
fatigue as a mediator of improved 12-mo weight change during
the ILI. Speculatively, although concurrent changes in weight and
fatigue may reciprocally affect each other (15), the behavioral
strategies of the ILI may have decreased subjective fatigue and
led to better adherence to the weight-loss regimen compared
with UC. Our analysis nonetheless indicated that other health-
and weight-related quality of life constructs did not drive the
greater weight loss seen in the ILI group during the !rst 12
mo, and quality of life changes at month 12 did not in"uence
between-group weight change during the trial from month 12 to
month 24.

A strength of the analyses is that they comprise data from
a cluster-randomized trial performed in patients with obesity
who are underserved and understudied within clinical studies.
As a result, broadly, our !ndings have implications for socioeco-
nomically disadvantaged individuals who are disproportionally
affected by obesity and obesity-related conditions, and who face
signi!cant barriers for treatment. Another strength is that we
collected mediator and weight measurements at multiple points
during the 24-mo trial, enabling us to investigate mediators
of weight change during periods which, despite variations in
de!nitions (47), can be generally considered midterm weight loss
(37) and weight-loss maintenance. This means our results can be
utilized to develop enhanced ILIs which target constructs that are
important for long-term weight management in similar at-risk
populations. A !nal noteworthy strength is that trained health
coaches of the trial were embedded within a team in primary
care. This may explain why our analyses revealed many !ndings
that are similar to those derived from more controlled trials, and
it could supply a model for weight-management regimens in
primary care (9).

The current article has limitations. First, the trial consisted
mostly of females, restricting our ability to generalize our results
to underserved males with obesity. Second, because there were
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no sessions offered in the UC group, we could not incorporate
number of sessions attended into our analyses. It is possible that
session attendance was a signi!cant driver of weight change,
as indicated by some studies (8). Third, these analyses are
exploratory, so although our analyses comprised a relatively
large number of participants from an understudied population,
we included several variables and may be underpowered to
detect some effects. Fourth, unmeasured mediator variables and
mediator–outcome confounders may be more causally linked to
between-group weight differences, limiting our ability to make
causal inferences. Finally, measurement errors likely explain, at
least in part, why our mediators explained a small proportion
of between-group weight differences (48). Indeed, we used self-
report assessments of diet and physical activity, which, in contrast
to objective measures (e.g., waist devices for physical activity),
are prone to systematic and random errors, primarily because they
rely on recall and can be in"uenced by demand characteristics
(49). The PROPEL trial was a pragmatic trial performed in a
low-literate population in primary care; hence, a large battery
of sophisticated assessments was unfeasible, and we decreased
the burden of some questionnaires (e.g., not administering the
EI hunger subscale). Yet additional research is needed during
lifestyle interventions in underserved populations to elucidate
the causal drivers of weight change. Such studies could examine
further potential mediators of weight change like calorie intake,
consistency of eating (50), hunger, energy density (51), and
sugar-sweetened beverage consumption (52). Further, where
possible, they should utilize reliable and objective assessment
methods, particularly for diet (e.g., emerging technologies like
food photography) and physical activity (e.g., pedometers or
accelerometers) (49).

In conclusion, our analyses indicated that 12-mo weight loss
during an ILI compared with UC was explained by improvements
in disinhibition, percentage fat intake, physical activity, and
fatigue in underserved patients with obesity. These variables did
not, however, attenuate the weight gain shown during the ILI
compared with UC in the !nal 12 mo of the trial, and fruit and
vegetable intake may partially explain this response. Although
additional work is needed using precise assessment methods
to elucidate causal drivers of weight change during ILIs, these
!ndings highlight psychological and behavioral constructs that
could be targeted to re!ne interventions and facilitate weight
management in underserved patients with obesity.
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The Personalized Nutrition Study (POINTS):
evaluation of a genetically informed weight
loss approach, a Randomized Clinical Trial

Christoph Höchsmann 1,2 , Shengping Yang2, José M. Ordovás 3,
James L. Dorling 4, Catherine M. Champagne 2, John W. Apolzan 2,
Frank L. Greenway 2, Michelle I. Cardel5,6, Gary D. Foster 5,7 &
Corby K. Martin 2

Weight loss (WL) differences between isocaloric high-carbohydrate and high-fat
diets are generally small; however, individual WL varies within diet groups.
Genotype patterns may modify diet effects, with carbohydrate-responsive gen-
otypes losing more weight on high-carbohydrate diets (and vice versa for fat-
responsive genotypes). We investigated whether 12-week WL (kg, primary out-
come) differs between genotype-concordant and genotype-discordant diets. In
this 12-week single-center WL trial, 145 participants with overweight/obesity
were identified a priori as fat-responders or carbohydrate-responders based on
their combined genotypes at ten genetic variants and randomized to a high-fat
(n = 73) or high-carbohydrate diet (n = 72), yielding 4 groups: (1) fat-responders
receiving high-fat diet, (2) fat-responders receiving high-carbohydrate diet, (3)
carbohydrate-responders receiving high-fat diet, (4) carbohydrate-responders
receiving high-carbohydrate diet. Dietitians delivered theWL intervention via 12
weekly diet-specific small group sessions. Outcome assessors were blind to diet
assignment and genotype patterns. We included 122 participants (54.4 [SD:13.2]
years, BMI 34.9 [SD:5.1] kg/m2, 84%women) in the analyses. Twelve-weekWLdid
not differ between the genotype-concordant (−5.3 kg [SD:1.0]) and genotype-
discordant diets (−4.8 kg [SD:1.1]; adjusted difference: −0.6 kg [95% CI: −2.1,0.9],
p =0.50). With the current ability to genotype participants as fat- or carbohy-
drate-responders, evidence does not support greater WL on genotype-
concordant diets. ClinicalTrials identifier: NCT04145466.

The 2017–2018 National Health and Nutrition Examination Survey
(NHANES) showed that almost 43% of US adults aged 20 and over have
obesity, including 9.0% with severe obesity, and another 31% are
overweight1. Excess body fat increases the risk of numerous medical

conditions and premature mortality2, presenting public health and
economic challenges3,4.

Many weight loss (WL) strategies emphasize either high-
carbohydrate (and low-fat) or high-fat (low-carbohydrate) diets5,6. WL
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differences between isocaloric high-carbohydrate and high-fat diets are
generally small or negligible7; however, individual WL varies sub-
stantially within diet groups6, suggesting that individuals react differ-
ently to high-carbohydrate or high-fat diets. Retrospective data suggest
that participants with carbohydrate-responsive polymorphisms lose
more weight on high-carbohydrate vs. high-fat diets and vice versa for
those with fat-responsive polymorphisms8. However, these results have
not been confirmed in randomized controlled trials (RCT), and the
approach of determining low-fat- and low-carbohydrate-responsive
genotypes based on single-nucleotide polymorphisms (SNPs) from
three genes (PPARG, ADRB2, and FABP2)8,9 has been criticized10. Overall,
reports show that most genotype × diet interactions are not significant,
and replication is rare11. A more comprehensive and informative risk
score (determined a priori), comprised of a greater number of SNPs
with demonstrated and validated effects on the responses to high-fat/

high-carbohydrate diets, may better define fat- and carbohydrate-
responsive genetic predisposition scores.

The present RCT tested the hypothesis that participants assigned
to a diet corresponding to their a priori-determined (fat-responsive or
carbohydrate-responsive) genotype would lose more weight over
12 weeks than those assigned to a diet discordant with their genotype.
Further, we aimed to analyze those with a fat-responsive genotype
(subsequently “fat-responders”) and carbohydrate-responsive geno-
type (subsequently “carbohydrate-responders”) separately. We hypo-
thesized that (1) fat-responderswould losemoreweight on the high-fat
vs. high-carbohydrate diet and conversely (2) carbohydrate-
responders would lose more weight on the high-carbohydrate vs.
high-fat diet. A secondary objective of the present RCT was to test the
newly-developed genetic risk score to determine fat- and
carbohydrate-responsive genotypes that was based on the current

Completed study (n=68)

Completed web screen (n=1392)
Participants could bypass web 
screen and complete phone screen 
only. Web screen number is 
independent of the number of 
phone screens completed/reported.

Completed phone screen (n=690)

Completed orientation visit (n=305)

Completed baseline visit (n=152)

Randomized (n=145)

High-fat diet (n=73) High-carbohydrate diet (n=72)

Ineligible (n=850)
Weight instability (n=198)
Unable to contact (n=188)
Diabetes (n=186)
BMI (n=122)
Unwilling to follow diet (n=39)
Changed mind (n=36)
Smoker (n=36)
Medical/medications (n=25)
Multiple study criteria (n=16)
Pregnant/breastfeeding (n=4)

Ineligible (n=385)
Inclusion/exclusion (n=112)
COVID-19 suspension (n=94)
Changed mind (n=59)
Never scheduled (n=35)
Medical/medications (n=35)
Unable to contact (n=24)
Time commitment (n=20)
In another study (n=3)
Weight instability (n=3)

Excluded (n=153)
Genetic data (n=106)
Medical/medications (n=20)
No show/lost contact (n=13)
BMI (n=10)
Changed mind (n=4)

Excluded (n=7)
Elevated glucose (n=5)
Unable to contact (n=2)

Lost to follow-up (n=3)
Discontinued intervention (n=2)

Family emergency (n=1)
Medical reasons (n=1)

Lost to follow-up (n=6)
Discontinued intervention (n=5)

Family emergency (n=2)
Refused intervention (n=2)
Work conflict (n=1)

Completed study (n=61)

Included in primary analysis (n=65)
Excluded (n=3)

Genotyping error (n=3) a

Included in primary analysis (n=57)
Excluded (n=4)

Genotyping error (n=2) a

No EOS lab weight (n=2) b

Fig. 1 | CONSORT diagram illustrating the flow of participants through the
POINTS trial. aAn error in the algorithm to determine carbohydrate- and fat-
responsive genotypes led to the incorrect classification of these participants. These
participants were erroneously enrolled as they did not meet the eligibility criteria.

This was reported to the IRB, and, aspart of the resolution, their datawere removed
from the dataset. bThese participants were unable to attend theW12 visit in person
and only completed surveys and questionnaires remotely.
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state-of-the-art in nutrigenomics. We also aimed to determine asso-
ciations between baseline insulin levels and homeostatic model
assessment for insulin resistance (HOMA-IR) and differential WL
between the diets. These analyses were pursued as previous results
were mixed with some studies finding that insulin resistance12,13 and
glucose-stimulated insulin secretion14 influenced differential weight
loss between low-fat and low-carbohydrate diets. In contrast, others
foundno interaction between glucose-stimulated insulin secretion and
diet type on 12-month weight loss9. Finally, we examined the diet
effects on eating attitudes and behaviors to help elucidate the
mechanisms by which any observed differences in WL occurred. As
program adherence diminishes over time15, we chose a 12-week inter-
vention period, which generally has lower attrition (~19%) than 6-
(~35%) and 12-month (~54%) programs16, and short-term WL is asso-
ciated with long-term results17,18.

Results
Figure 1 shows the flow of participants through the study. Of the
2082 participants who screened for the study, 305 were eligible
following the web/phone screen and were invited to the orientation
visit. After eligibility verification based on medical history, medica-
tion inventory, and physical measures, 275 remained and completed
a genealogy test. Of these 275 individuals, 106 (~39%) were excluded
because they had a genotype that was classified as responsive to
neither a high-fat nor a high-carbohydrate diet or as responsive to
both diets. Of the remaining 169 individuals, 112 (~41%) were fat-
responders, and 57 (~20%) were carbohydrate-responders. Before the
baseline visit (completed by 152 participants), 17 participants were
excluded becausewe either lost contact between the orientation visit
and the baseline visit (n = 13) or because participants changed their
minds about willingness to participate (n = 4). Following the baseline
visit, 7 additional participants were excluded due to elevated glucose
levels (n = 5) or lost contact (n = 2). Of the 145 participants rando-
mized, 16 were lost to follow-up (W12), and 129 completed the trial.
Seven participants were excluded from the analyses because they
were incorrectly genotyped and erroneously enrolled (n = 5; removal
from dataset suggested by IRB) or failed to provide weight data at
W12 (n = 2). Baseline characteristics of all 122 included participants

(54.4 [SD: 13.2] years, BMI 34.9 [SD: 5.1] kg/m2, 84% women, 68%
White) are provided in Table 1. A comparison of baseline character-
istics between non-completers (n = 16) and completers (n = 122) is
provided in Supplementary Table 3.

Change in the primary outcome
Weight change did not differ between genotype-concordant (−5.3 kg
[SD: 1.0]) and genotype-discordant diets (−4.8 kg [SD: 1.1]; adjusted
difference: −0.6 kg [95% CI: −2.1, 0.9, p =0.50]; Table 2, Fig. 2). Among
fat-responders, weight change did not differ between the high-fat
(−5.5 kg [SD: 1.2]) and the high-carbohydrate diet (−5.3 kg [SD: 1.3];
adjusted difference: −0.2 kg [95% CI: −2.1, 1.6, p =0.78]; Table 2).
Similarly, among carbohydrate-responders, weight change did not
differ between the high-carbohydrate (−5.1 kg [SD: 1.6]) and high-fat
diet (−4.1 kg [SD: 1.7]; adjusted difference: −1.3 kg [95% CI: −3.9, 1.3,
p =0.49]; Table 2). Raw differences are presented in Supplementary
Table 5.

Percent weight change and change in body fat and body
composition
Similar to absolute weight change, percent weight change (adjusted
difference: −0.6% [95% CI: −2.1, 0.9, p =0.61]) and change in body
fat (adjusted difference: −0.5% [95% CI: −2.4, 1.4]) did not differ
between genotype-concordant and genotype-discordant diets
(Table 2, Fig. 2). Among fat-responders, percent weight change
(adjusted difference: −0.2% [95% CI: −2.1, 1.7, p =0.83]) and change in
body fat (adjusted difference: 0.9% [95% CI: −1.3, 3.0]) did not differ
between the high-fat and the high-carbohydrate diet (Table 2). Simi-
larly, among carbohydrate-responders, percent weight change
(adjusted difference: −1.2% [95% CI: −4.2, 1.7, p =0.57]) and change in
body fat (adjusted difference: −3.4% [95% CI: −7.5, 0.8]) did not differ
between the high-carbohydrate and high-fat diet (Table 2). Changes in
waist circumference (adjusted difference: −0.5 cm [95% CI: −2.3, 1.3]),
hip circumference (adjusted difference: −1.0 cm [95% CI: −3.6, 1.6]),
andwaist-hip ratio (adjusteddifference: 0.00 [95%CI:−0.02, 0.03]) did
not differ between genotype-concordant and genotype-discordant
diets (Table 2). Raw differences are presented in Supplementary
Table 5.

Table 1 | Participant characteristics

Fat-responders (n = 85) Carbohydrate-responders (n = 37)

All participants (N = 122) High-fat diet (n = 44) High-carbohydrate diet (n = 41) High-fat diet (n = 21) High-carbohydrate diet (n = 16)

Race, n (%)

White 83 (68.0) 30 (68.2) 31 (75.6) 12 (57.1) 10 (62.5)

Black/ African American 36 (29.5) 12 (27.3) 10 (24.4) 9 (42.9) 5 (31.2)

Other 3 (2.5) 2 (4.5) 0 (0.0) 0 (0.0) 1 (6.2)

Sex, n (%)

Female 102 (83.6) 37 (84.1) 35 (85.4) 17 (81.0) 13 (81.2)

Male 20 (16.4) 7 (15.9) 6 (14.6) 4 (19.0) 3 (18.8)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age, years 54.4 (13.2) 57.4 (11.5) 54.4 (14.2) 49.8 (14.1) 52.4 (13.0)

Weight, kg 94.3 (15.2) 94.2 (14.0) 93.5 (14.4) 95.2 (17.6) 95.6 (18.1)

BMI, kg/m2 34.9 (5.1) 35.1 (5.0) 34.3 (4.8) 35.8 (5.8) 34.8 (5.3)

Body fat, % 45.1 (9.3) 45.0 (9.4) 45.2 (8.5) 43.8 (11.6) 46.1 (8.4)

Waist circumference, cm 109.0 (12.2) 109.3 (11.8) 108.5 (12.3) 109.3 (11.8) 109.2 (14.8)

Hip circumference, cm 118.9 (12.2) 117.5 (10.7) 118.3 (12.1) 120.1 (12.5) 122.8 (15.8)

Waist-hip ratio 0.92 (0.08) 0.94 (0.09) 0.92 (0.08) 0.91 (0.06) 0.89 (0.10)

SBP, mmHg 121.7 (11.9) 120.5 (11.6) 124.1 (12.9) 121.7 (11.5) 119.4 (10.5)

DBP, mmHg 74.7 (7.4) 75.1 (7.0) 74.5 (7.9) 75.0 (6.1) 73.9 (9.3)

Data are mean (SD) for continuous and n (%) for categorical variables.
BMI body mass index, DBP diastolic blood pressure, SBP systolic blood pressure, SD standard deviation.
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Change in blood pressure
Changes in resting systolic bloodpressure (SBP) andDBPdid not differ
between genotype-concordant and genotype-discordant diets (SBP
adjusted difference: 4.7mmHg [95% CI: 0.5, 8.8]; DBP adjusted differ-
ence: −0.1mmHg [95% CI: −2.8, 2.5]; Table 2, Fig. 3). Similarly, changes
in SBP and DBP did not differ between the high-fat and the high-
carbohydrate diet among fat-responders (SBP difference: 6.9mmHg
[95% CI: 2.0, 11.8]; DBP difference: −0.5mmHg [95% CI: −3.8, 2.9]) or
between the high-carbohydrate and high-fat diet among carbohydrate
responders (SBP difference: 0.3mmHg [95% CI: −7.4, 8.0]; DBP dif-
ference: 0.9mmHg [95% CI: −3.7, 5.5]; Table 2). Raw differences are
presented in Supplementary Table 5.

Association between insulin levels andHOMA-IR andweight loss
Baseline insulin levels (β = −0.036 [95%CI: −0.125, 0.053, p =0.43]) and
HOMA-IR (β = −0.165 [95% CI: −0.505, 0.175, p =0.34]) were not asso-
ciatedwithweight change (Supplementary Figure 1). Therewas no diet
× baseline HOMA-IR interaction on weight change (p = 0.37). Similarly,
there was no significant diet × baseline HOMA-IR interaction among
carbohydrate-responders (p =0.62) or fat-responders (p =0.23; Sup-
plementary Fig. 2).

Change in food cravings, appetitive traits, and food preferences
Changes in food cravings did not differ between the genotype-
concordant and genotype-discordant diets (Table 3). Among
carbohydrate-responders, those on a high-fat diet decreased
cravings for carbohydrates/starches relative to those on the high-
carbohydrate dietwith an adjusteddifferenceof −0.7 (95%CI:−1.1,−0.4,
p =0.006, without Holm-Bonferroni adjustment p =0.001). Changes in
all other food cravings did not differ between diets among
carbohydrate-responders (Table 3). Among fat-responders, changes in
food cravings did not differ betweendiets (Table 3). Rawdifferences are
presented in Supplementary Table 6. Changes in restraint, disinhibition,
and hunger (via EI), and food preferences (FPQ) did not differ between
genotype-concordant and genotype-discordant diets (Table 4). Raw
differences are presented in Supplementary Table 7 and baseline scores
in these instruments are reported in Supplementary Table 4.

Diet personalization and intervention satisfaction
Diet preference (via Diet Personalization Survey, Table 5) and inter-
vention satisfaction (Table 6) did not differ between the genotype-
concordant and genotype-discordant diets. Raw differences are pre-
sented in Supplementary Table 8.

Table 2 | Change in weight (kg and %), percent body fat, body composition, and blood pressure during the 12-week inter-
vention in those assigned to a diet concordant vs. discordant with the genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Mean (SD) Mean (SD) Adjusted differencea (95% CI) p-value

Weight change, kg −5.3 (1.0) −4.8 (1.1) −0.6 (−2.1, 0.9) 0.501

Weight change, % −5.8 (1.0) −5.4 (1.1) −0.6 (−2.1, 1.0) 0.605

Change in body fat, %b −1.3 (1.2) −0.8 (1.3) −0.5 (−2.4, 1.4)

Waist circumference, cm −4.8 (1.1) −4.3 (1.2) −0.5 (−2.3, 1.3)

Hip circumference, cm −4.6 (1.7) −3.7 (1.8) −1.0 (−3.6, 1.6)

Waist-hip ratio 0.01 (0.00) 0.01 (0.00) 0.00 (−0.02, 0.03)

SBP, mmHg 1.2 (2.7) −2.9 (2.9) 4.7 (0.5, 8.8)

DBP, mmHg 0.4 (1.7) 1.0 (1.9) −0.1 (−2.8, 2.5)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Mean (SD) Mean (SD) Adjusted differencea (95% CI) p-value

Weight change, kg −5.5 (1.2) −5.3 (1.3) −0.2 (−2.1, 1.6) 0.779

Weight change, % −5.9 (1.3) −5.7 (1.4) −0.2 (−2.1, 1.7) 0.831

Change in body fat, %c −1.1 (1.4) −1.9 (1.6) 0.9 (−1.3, 3.0)

Waist circumference, cm −5.0 (1.4) −4.4 (1.5) −0.6 (−2.7, 1.5)

Hip circumference, cm −3.9 (1.5) −4.0 (1.7) 0.2 (−2.1, 2.6)

Waist-hip ratio 0.00 (0.00) 0.00 (0.00) −0.01 (−0.03, 0.02)

SBP, mmHg 4.5 (3.2) −1.2 (3.5) 6.9 (2.0, 11.8)

DBP, mmHg 1.7 (2.2) 2.9 (2.4) −0.5 (−3.8, 2.9)

Carbohydrate-
responders

High-carbohydrate diet (n = 16) High-fat diet (n = 21)

Mean (SD) Mean (SD) Adjusted differencea (95% CI) p-value

Weight change, kg −5.1 (1.6) −4.1 (1.7) −1.3 (−3.9, 1.3) 0.487

Weight change, % −5.7 (1.8) −4.8 (1.9) −1.2 (−4.2, 1.7) 0.565

Change in body fat, % d −1.9 (2.5) 1.4 (2.7) −3.4 (−7.5, 0.8)

Waist circumference, cm −4.4 (2.1) −4.2 (2.3) −0.3 (−3.9, 3.3)

Hip circumference, cm −6.4 (4.3) −2.7 (4.7) −3.9 (−11.1, 3.3)

Waist-hip ratio 0.00 (0.00) 0.00 (0.00) 0.03 (−0.02, 0.08)

SBP, mmHg −5.8 (4.6) −7.2 (5.0) 0.3 (−7.4, 8.0)

DBP, mmHg −2.0 (2.8) −3.0 (3.0) 0.9 (−3.7, 5.5)

CI confidence interval, DBP diastolic blood pressure, SBP systolic blood pressure, SD standard deviation.
aMixed-effect model, adjusted for sex, race, and baseline value of the outcome for all data.
bData available for 58 of 60 participants (genotype-concordant diet) and 60 of 62 participants (genotype-discordant diet).
cData available for 42 of 44 participants (high-fat diet) and 40 of 41 participants (high-carbohydrate diet).
dData available for 16 of 16 participants (high-carbohydrate diet) and 20 of 21 participants (high-fat diet).
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Diet adherence
Adherence to the assigned diets is shown in Fig. 4. We encountered
difficulties in obtaining the adherence data from participants due, in
part, to the pandemic and needing to move to remote intervention
delivery. Consequently, these adherence data are only available for 22
of 57 participants (39%) on the high-carbohydrate diet and for 43 of 65
participants (66%) on the high-fat diet (the discrepancy in the percent
complete/missing is noted, thoughwe have no reason to believe that it
was systematic). On average, participants on the high-carbohydrate
diet reported consuming 63.4% (SD: 2.3) of their energy from carbo-
hydrates (target 65%), 20.9% (SD: 2.4) from fat (target 20%), and 16.0%
(SD: 1.0) from protein (target 15%) in week 4, 63.3% (SD: 2.8) from
carbohydrates, 20.5% (SD: 1.7) from fat, and 15.9% (SD: 1.0) from pro-
tein in week 8, and 62.7% (SD: 4.0) from carbohydrates, 20.5% (SD: 2.5)
from fat, and 15.7% (SD: 1.8) from protein in week 12. Participants on
the high-fat diet reported consuming on average 45.4% (SD: 2.2) of
their energy from carbohydrates (target 45%), 39.4% (SD: 2.0) from fat
(target 40%), and 15.8% (SD: 1.2) from protein (target 15%) in week 4,
44.7% (SD: 2.2) from carbohydrates, 40.5% (SD: 2.1) from fat, and 15.7%
(SD: 2.3) from protein in week 8, and 44.5% (SD: 3.4) from carbohy-
drates, 39.9% (SD: 2.5) from fat, and 16.1% (SD: 3.3) from protein in
week 12.

Session attendance and adverse events
Weekly attendance was similar across the four genotype-diet groups
(Supplementary Table 9), with weekly session attendance ranging
from 85% to 100%. There were 4 adverse or serious adverse events in
total. Two adverse events occurred among fat-responders on a high-
carbohydrate diet (unrelated to the study), and there were 2 serious
adverse events (1 among fat-responders on a high-carbohydrate diet, 1

among fat-responders on a high-fat diet) that required hospitalization
(unrelated to study).

Discussion
The present RCT determined the participant’s (fat-responsive or car-
bohydrate-responsive) genotype a priori via a comprehensive genetic
risk score based on published and validated effects and tested the
effects of a genotype-concordant diet onWL over 12 weeks. We found
no difference in WL between individuals on the genotype-concordant
vs. genotype-discordant diet. Further, insulin levels or HOMA-IR were
not associated with WL. Food cravings tended to decrease among
carbohydrate-responders on a high-fat diet compared to those on a
high-carbohydrate diet. Finally, fat-responders on a high-carbohydrate
diet tended to decrease resting SBP.

The lack of significant and clinically meaningful differences in WL
(~0.6 kg) between genotype-concordant and genotype-discordant
diets aligns with the literature9,11. In contrast to the well-conducted
Gardner et al. study (non-significant difference in WL of 0.7 kg over
12 months)9, who defined fat vs. carbohydrate-responsive genotypes
based on 3 SNPs that were predictive in a preliminary retrospective
analysis8, we determined fat- or carbohydrate-responsive genotypes
based on an algorithm involving 10 SNPs. Supported by a recent-meta-
analysis (8 trials with 91 SNPs and 63 genetic loci)11, our results suggest
that with the current ability to genotype individuals as fat or carbo-
hydrate-responders, there is no evidence that genotype-concordant
diets result in greater WL.

Our sample consisted of substantially fewer carbohydrate-
responders (n = 37) than fat-responders (n =85). We did not limit
recruitment to achieve equal numbers of participants in each genotype-
diet group, and this distribution reflects the prevalence in our

Fig. 2 | Change inweight andpercent body fat during the 12-week intervention.
Results are presented as boxplots for all participants (a, d), as well as for fat-
responders (b, e) and carbohydrate responders (c, f) separately. a Genotype-con-
cordant group (n = 60, genotype-discordant group (n = 62);b high-fat diet (n = 44),
high-carbohydrate diet (n = 41); c high-carbohydrate diet (n = 16), high-fat diet

(n = 21); d genotype-concordant group (n = 58), genotype-discordant group
(n = 60); e high-fat diet (n = 42), high-carbohydrate diet (n = 40); f high-carbohy-
drate diet (n = 16), high-fat diet (n = 20). In the boxplots, the center line denotes the
median value (50th percentile), the bounds of the box represent the 25th and 75th
percentiles of the dataset, and the whiskers mark the 5th and 95th percentiles.
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population. As reported in the Results section, 275 individuals com-
pleted a genealogy test, of which ~39% had a genotype classified as
responsive to both or neither of the twodiets, ~41%were fat-responders
and ~20% were carbohydrate-responders. Notably, these numbers are
somewhat different from what we had estimated during the study’s
planning phase, as we expected 1/3 of people to be fat-responders, 1/3
carbohydrate-responders, and 1/3 to respond to neither or both of the
specified diets. Future studies with larger samples should verify if this
uneven distribution between carbohydrate-responders and fat-
responders is representative of the general population and further
investigate the potential effect onWL among carbohydrate-responders.

Future studies could also consider assigning participants to
genotype-concordant diets without specific energy intake targets and
examine the diet effects not only onWL but also on cardiovascular risk
factors. Previously, a low-carbohydrate diet without energy intake
target resulted in greater improvements in body composition, blood
lipids, and estimated 10-year coronary heart disease risk compared to a
low-fat diet19. It would be insightful to investigate whether genotype
plays a role in cardiovascular risk reduction following a low-
carbohydrate vs. low-fat diet without calorie restriction.

Fasting insulin levels and HOMA-IR did not predict WL. Previous
studies reporting a diet× fasting insulin interaction forWL found lower
carbohydrate diets to be superior for individuals with greater insulin
resistance13 and high baseline insulin secretion (30min after a 75 g oral
glucose tolerance test)20, presumably due to a reduced burden on
insulin-mediated glucose disposal. However, these studies involved
relatively small sample sizes, and findings of the influence of insulin
sensitivity21 and insulin secretion9,14 on WL via a low-fat vs. a low-
carbohydrate diet are inconsistent.

WL can reduce food cravings, particularly for foods restricted on
specific diets22, contributing to the hypothesis that food cravings are a
conditioned expression of hunger due to stimuli paired with eating
certain foods23. Consequently, cravings can be reduced by eliminating
or restricting the intake of craved foods. This hypothesis is partially
supported by our results as, among carbohydrate-responders, crav-
ings tended to decrease for high-carbohydrate foods on the high-fat
diet. Nonetheless, cravings alsodecreasedmodestly for high-fat foods,
which is to be expected as the amount of all foods was restricted, and
cravings for specific foods correlate with each other24.

Among fat-responders, a high-carbohydrate diet tended to
decrease resting SBP. Nonetheless, these individuals had the highest
mean SBP of the 4 genotype-diet groups at baseline. Thus, this effect
could be explained, in whole or partially, by regression to the mean.
Also, all 4 genotype-diet groups had relatively well-controlled
blood pressure, leaving little room for improvement through dietary
changes, making the non-significant improvements potentially more
meaningful.

This trial has some limitations. First, the genetic algorithm
to classify individuals as fat- or carbohydrate-responders was created
based on published literature25–38. However, these (mostly retro-
spective) studies generally had modest sample sizes, and some of
the genotype × diet interactions, which may be false positives, have
not been independently replicated. Further, WL is determined by
multiple modifiable and non-modifiable (e.g., genetic) factors,
and current knowledge accounts for a small percentage of the
variability. Further genotypes may have influenced participants’ WL
responses in directions different from those predicted from the
measured genotypes. More comprehensive knowledge of the role of

Fig. 3 | Change in systolic and diastolic blood pressure during the 12-week
intervention.Results are presented as boxplots for all participants (a,d; genotype-
concordant group, n = 60, genotype-discordant group, n = 62), as well as for fat-
responders (b, e; high-fat diet, n = 44, high-carbohydrate diet, n = 41) and

carbohydrate responders (c, f; high-carbohydrate diet, n = 16, high-fat diet, n = 21)
separately. In the boxplots, the center line denotes the median value (50th
percentile), the bounds of the box represent the 25th and 75th percentiles of the
dataset, and the whiskers mark the 5th and 95th percentiles.
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genetics in WL is needed and should be obtained from genome-wide
association studies; however, the sample size and experimental
design required to generate that essential information are beyond
reach at this time. Additional limitations of the present study include
the relatively small sample size, single-center design, and short time
frame. A longer timeframe (6–12-month follow-up) may have
increased the amount and differential weight loss between diets. A
larger sample size might have also allowed for detecting differences
in clinically important secondary outcomes such as changes in
body fat and SBP. Further, we did not provide meals in this
study, which may have affected dietary adherence (high-fat vs.
high-carbohydrate). However, this choice wasmade by design, as our
study was designed as a (pragmatic) effectiveness trial with real-
world conditions rather than an efficacy trial. Additionally, the
adherence data (albeit limited) suggests that diet adherence was
overall satisfactory. In addition to assessing diet adherence con-
tinuously throughout the study, future studies should also assess the
macronutrient composition of participants’ habitual diets to see
any differences in the magnitude of the shifts from baseline to the
high-fat or high-carbohydrate diet. Further, when assessing a
potential effect modification by insulin resistance status, using an
oral glucose tolerance test (AUC or INS-30) rather than HOMA-IR to
quantify insulin resistance might have been a better option, as

HOMA-IR has limited sensitivity due to its reliance on fasting insulin
and glucose levels and it does not reflect differences between tissues
(e.g., adipose, muscle) or postprandial physiology. Non-fasting
methods yield greater variability of the glucose/insulin dynamics
and may have been more suitable. Additionally, the assessment of
percent body fat via BIA is a limitation as BIA does not provide
information on body fat distribution. Finally, participation in “nutri-
genomics” studies generally induces improved diet adherence39–42,
independent of the specific recommendations. Therefore, in our
study, participantsmay have responded better to their assigned diets
regardless of their genotype matching, obscuring the specific nutri-
genomics effects.

In conclusion, in this 12-week RCT, there was no difference in WL
between individuals with an a priori determined fat- or carbohydrate-
responsive genotype on a high-carbohydrate vs. high-fat diet with
specific energy targets and the same level of energy restriction
across diets.

Methods
Design and participants
The PersonalizedNutrition Study (POINTS, ClinicalTrials.gov identifier:
NCT04145466) was a 12-week, single-site, parallel-armWL trial that was
approved by the institutional review board (IRB FWA00006218) of the

Table 3 | Changes in food cravings (via the FoodCraving Inventory) during the 12-week intervention in those assigned to adiet
concordant vs. discordant with the genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

High fatsb −0.3 (0.1) −0.4 (0.2) 0.1 (−0.1, 0.4)

Sweetsc −0.3 (0.2) −0.5 (0.2) 0.2 (−0.1, 0.4)

Carbohydrates/Starchesd −0.1 (0.2) −0.4 (0.2) 0.3 (0.0, 0.5)

Fast-food fatse −0.3 (0.2) −0.4 (0.2) 0.1 (−0.2, 0.4)

Fruits and vegetablesf −0.1 (0.2) −0.4 (0.2) 0.2 (−0.1, 0.5)

Total cravingsg −0.2 (0.1) −0.4 (0.1) 0.2 (−0.1, 0.4)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

High fatsb −0.4 (0.2) −0.3 (0.2) −0.1 (−0.3, 0.3)

Sweetsc −0.4 (0.2) −0.6 (0.2) 0.2 (−0.1, 0.5)

Carbohydrates/Starchesd −0.2 (0.2) −0.3 (0.2) 0.1 (−0.3, 0.4)

Fast-food fatse −0.4 (0.2) −0.3 (0.3) −0.1 (−0.4, 0.3)

Fruits and vegetablesf −0.3 (0.2) −0.4 (0.3) 0.1 (−0.3, 0.5)

Total cravingsg −0.3 (0.2) −0.3 (0.2) 0.0 (−0.3, 0.3)

Carbohydrate-responders High-carbohydrate diet (n = 16) High-fat diet (n = 21)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

High fatsb −0.2 (0.2) −0.7 (0.2) 0.5 (0.1, 0.9)

Sweetsc −0.1 (0.2) −0.3 (0.3) 0.2 (−0.2, 0.6)

Carbohydrates/Starchesd 0.1 (0.2) −0.7 (0.2) 0.7 (0.4, 1.1)

Fast-food fatse −0.1 (0.3) −0.5 (0.3) 0.5 (0.0, 1.0)

Fruits and vegetablesf 0.3 (0.3) −0.3 (0.3) 0.6 (0.1, 1.1)

Total cravingsg 0.0 (0.2) −0.5 (0.2) 0.5 (0.2, 0.9)

CI confidence interval, SD standard deviation.
aAdjusted for sex, race, and baseline value of the outcome.
bGenotype-concordant diet: 55/60 participants; genotype-discordant diet: 60/62 participants. Fat-responders: 41/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 14/16 participants (high-carbohydrate diet) and 20/21 participants (high-fat diet).
cGenotype-concordant diet: 59/60 participants; genotype-discordant diet: 60/62 participants. Fat-responders: 43/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 16/16 participants (high-carbohydrate diet) and 20/21 participants (high-fat diet).
dGenotype-concordant diet: 59/60 participants; genotype-discordant diet: 61/62 participants. Fat-responders: 44/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 15/16 participants (high-carbohydrate diet) and 21/21 participants (high-fat diet).
eGenotype-concordant diet: 58/60 participants; genotype-discordant diet: 61/62 participants. Fat-responders: 43/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 15/16 participants (high-carbohydrate diet) and 20/21 participants (high-fat diet).
fGenotype-concordant diet: 58/60 participants; genotype-discordant diet: 60/62 participants. Fat-responders: 43/44 participants (high-fat diet) and 40/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 15/16 participants (high-carbohydrate diet) and 20/21 participants (high-fat diet).
g Genotype-concordant diet: 54/60 participants; genotype-discordant diet: 67/62 participants. Fat-responders: 41/44 participants (high-fat diet) and 38/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 13/16 participants (high-carbohydrate diet) and 19/21 participants (high-fat diet).
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Pennington Biomedical Research Center (PBRC, Baton Rouge, LA).
Participants were enrolled between October 7, 2020 and September 8,
2021. Participants were identified a priori as carbohydrate-responders
and fat-responders based on their combined genotypes at 10 genetic
variant loci and randomized to either a high-carbohydrate or high-fat
diet, yielding the following groups: (1) fat-responders receiving a high-
fat diet, (2) fat-responders receiving a high-carbohydrate diet, (3)
carbohydrate-responders receiving a high-fat diet, and (4)
carbohydrate-responders receiving a high-carbohydrate diet.

Participants were recruited from the community. Eligible partici-
pants were 18–75 years old, had a BMI of 27.0–47.5 kg/m2, and had
completed orwerewilling to complete a genealogy test (e.g., Ancestry,
23andMe) and to share the raw data with the investigators. Finally, a
genetic profile indicating a predisposition to respond favorably to a
high-carbohydrate or high-fat WL diet based on specific SNPs (see
below) was required. Exclusion criteria included smoking, weight
change ≥10 lbs. in the last 3 months, being pregnant or breastfeeding,

conditions, diseases, or medications that affect body weight or meta-
bolism or could affect risk or study completion, and a genotype indi-
cating a predisposition to respond favorably to neither or both of the
specified diets. We estimated that approximately 1/3 of people would
be fat-responders, 1/3 carbohydrate-responders, and 1/3 would
respond favorably to neither or both of the specified diets.

The study included 1 orientation visit, 2 clinic visits (one before
and one after the intervention), and 12-weekly intervention sessions.
All participants provided written informed consent, and participants
who completed the study received a minor compensation of $150.

Genotype determination. Carbohydrate- and fat-responders were
identified a priori based on their combined genotypes at the following
genetic variants: (1) FGF21rs83814725, (2) TCF7L2rs1225537226,43, (3)
IRS1rs294364128, (4) APOA5rs66279930,31,44, (5) PLIN1rs89416027,32, (6)
APOA2rs508229,33, (7) FTOrs993960934,35, (8) PPARGrs180128236, (9)
GIPRrs1042392837, and (10) GYS2rs147829038. The genetic information

Table 4 | Change in restraint, disinhibition, and hunger and in food preferences during the 12-week intervention in those
assigned to a diet concordant vs. discordant with the genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

Restraint (EI)b 3.6 (0.9) 3.3 (1.0) 0.4 (−1.1, 1.9)

Disinhibition (EI)c −0.1 (0.6) 0.1 (0.7) 0.0 (−1.0, 0.9)

Hunger (EI)d −0.4 (0.5) −0.9 (0.6) 0.5 (−0.4, 1.4)

HF/HS (FPQ) −0.1 (0.3) 0.0 (0.4) 0.0 (−0.5, 0.5)

LF/HS (FPQ) 0.1 (0.3) 0.1 (0.3) 0.1 (−0.4, 0.5)

HF/HCCHO (FPQ) −0.3 (0.3) −0.3 (0.3) 0.0 (−0.4, 0.5)

LF/HCCHO (FPQ) −0.1 (0.3) 0.0 (0.3) −0.1 (−0.5, 0.4)

HF/LCHO/HP (FPQ) −0.4 (0.3) −0.4 (0.3) 0.0 (−0.5, 0.4)

LF/LCHO/HP (FPQ) 0.1 (0.3) 0.1 (0.3) 0.0 (−0.4, 0.4)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

Restraint (EI)b 3.5 (1.2) 2.7 (1.4) 0.8 (−1.3, 2.9)

Disinhibition (EI)c −0.3 (0.8) 0.2 (0.9) −0.4 (−1.6, 0.9)

Hunger (EI)d −0.9 (0.7) −1.3 (0.8) 0.4 (−0.8, 1.5)

HF/HS (FPQ) 0.0 (0.4) 0.0 (0.5) 0.1 (−0.6, 0.7)

LF/HS (FPQ) 0.2 (0.4) 0.3 (0.4) 0.0 (−0.6, 0.5)

HF/HCCHO (FPQ) −0.2 (0.4) −0.1 (0.4) 0.0 (−0.6, 0.5)

LF/HCCHO (FPQ) 0.0 (0.4) 0.2 (0.4) −0.2 (−0.7, 0.4)

HF/LCHO/HP (FPQ) −0.5 (0.4) −0.6 (0.4) 0.1 (−0.5, 0.7)

LF/LCHO/HP (FPQ) 0.2 (0.4) 0.1 (0.4) 0.1 (−0.4, 0.7)

Carbohydrate-
responders

High-carbohydrate diet (n = 16) High-fat diet (n = 21)
Mean (SD) Mean (SD) Adjusted differencea (95% CI)

Restraint (EI)b 3.4 (1.1) 4.6 (1.1) −0.7 (−2.6, 1.2)

Disinhibition (EI)c 0.7 (0.9) 0.0 (0.9) 0.8 (−0.8, 2.5)

Hunger (EI)d 0.8 (0.8) −0.1 (0.9) 1.0 (−0.4, 2.5)

HF/HS (FPQ) −0.2 (0.5) 0.0 (0.5) −0.1 (−1.0, 0.7)

LF/HS (FPQ) −0.1 (0.4) −0.4 (0.4) 0.3 (−0.3, 0.9)

HF/HCCHO (FPQ) −0.4 (0.5) −0.6 (0.5) 0.2 (−0.6, 1.0)

LF/HCCHO (FPQ) −0.2 (0.4) −0.5 (0.4) 0.3 (−0.3, 0.9)

HF/LCHO/HP (FPQ) −0.3 (0.4) 0.1 (0.5) −0.2 (−1.0, 0.5)

LF/LCHO/HP (FPQ) −0.1 (0.4) 0.1 (0.4) −0.2 (−0.8, 0.4)

CI confidence interval, EI Eating Inventory, FPQ Food Preference Questionnaire, HF/HS high fat/high simple sugar, LF/HS low fat/high simple sugar, HF/HCCHO high fat/high complex carbo-
hydrate, LF/HCCHO low fat/high complex carbohydrate, HF/LCHO/HP high fat/low carbohydrate/high protein, LF/LCHO/HP low fat/low carbohydrate/high protein, SD standard deviation.
aAdjusted for sex, race, and baseline value of the outcome.
bGenotype-concordant diet: 46/60 participants; genotype-discordant diet: 47/62 participants. Fat-responders: 34/44 participants (high-fat diet) and 29/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 12/16 participants (high-carbohydrate diet) and 18/21 participants (high-fat diet).
cGenotype-concordant diet: 49/60 participants; genotype-discordant diet: 49/62 participants. Fat-responders: 37/44 participants (high-fat diet) and 31/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 12/16 participants (high-carbohydrate diet) and 18/21 participants (high-fat diet).
dGenotype-concordant diet: 51/60 participants; genotype-discordant diet: 51/62 participants. Fat-responders: 37/44 participants (high-fat diet) and 33/41 participants (high-carbohydrate diet).
Carbohydrate-responders: 14/16 participants (high-carbohydrate diet) and 18/21 participants (high-fat diet).
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was accessed via the rawdata from the genealogy tests. Initially, only 6
SNPswere included and pilot tested, and the scoring criteria were then
modified as few participants were deemed carbohydrate- or fat-
responders. The original and updated scoring criteria, including a
specific example for 1 SNP, are provided in the Supplementary Meth-
ods, including Supplementary Tables 1 and 2. The final risk score
comprised 10 SNPs with demonstrated and validated effects on the
responses to high-fat/high-carbohydrate diets25–38,43,44, and validation
of this comprehensive and informative risk score was an objective of
this study.

Intervention
After enrollment (Week [W] 0 visit), participants were randomized to
either a high-carbohydrate diet (rich inwhole-grain foods) or a high-fat
diet (rich in unsaturated fats/oils). The high-carbohydrate diet con-
sisted of ~20% of energy from fat and ~65% from carbohydrates,
whereas the high-fat diet consisted of ~40% energy from fat and ~45%
from carbohydrates. Both diets provided 15% of energy from protein.
All participantswere assigned anenergy intake target thatwould result
in a dailydeficit of ~750 kcal andprovidedwith adiet-specificmeal plan
in 200 kcal increments from 1400 to 2800 kcal/day to self-prepare
meals during the intervention period. To facilitate meal plan adher-
ence when preparing or selecting meals, the meal plans included a list
of ingredients (and their amounts) for all meals of each day (breakfast,
lunch, dinner, and 1 daily snack) and instructions for meal preparation
and participants were provided a food scale. Baseline energy require-
ments were calculated with Mifflin-St. Jeor’s formulas45.

The PBRC biostatistics department created the randomization
sequenceusing SAS 9.4 statistical software forWindows (SAS Institute,
Cary, NC) and uploaded it to REDCap (Research Electronic Data
Capture). REDCapused strata for the inaction of genotype and gender.
To ensure a relatively equal baseline BMI between the 4 genotype-diet
groups, a 1:1 randomization scheme was devised that adjusted for
BMI, gender, and genotype. Gender and genotype were used as strata,
while BMI was used in an a-priori-created randomization equation.
Within each stratum, this equation used block sizes of 6 (for females)
and 4 (for males) at the start of the study and ended with block sizes
of 4 and 2, respectively, to ensure relative balance of group assign-
ments. Block sizes were assigned during the study by the biostatisti-
cian with access only to information about the enrolment progress
(percent enrolled).

Outcome assessors were blind to diet assignment and genotype
patterns. Interventionists administering intervention sessions were
blind to genotype patterns but not diet type. Participants were only
informedof their genotype (carbohydrate- or fat-responder) once they
completed the study.

The 12weekly intervention (group) sessionswerediet-specific and
had adifferent focus eachweek (SupplementaryMaterial). Participants
were provided a body weight scale and encouraged to weigh daily
throughout the intervention and to send pictures of their weights to
their interventionist before each intervention session. With very few
exceptions, the first intervention session was conducted in person.
Due to the COVID-19 pandemic, almost all subsequent sessions were
conducted virtually via webinar (Microsoft Teams).

Table 5 | Change in items of the Diet Personalization Survey during the 12-week intervention in those assigned to a diet
concordant vs. discordant with the genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

The assigned diet…

… fits my typical eating habits 0.9 (0.5) 1.3 (0.6) −0.3 (−1.2, 0.6)

… fits my lifestyle 0.4 (0.6) 0.2 (0.6) 0.2 (−0.7, 1.1)

… makes it easier to lose weight 0.6 (0.5) 0.7 (0.6) 0.1 (−0.8, 0.8)

I am confident that I can…

… successfully lose weight on the assigned diet 0.4 (0.5) 0.6 (0.5) −0.1 (−0.8, 0.7)

… follow the assigned diet −0.7 (0.4) −0.4 (0.5) −0.3 (−0.9, 0.4)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

The assigned diet…

… fits my typical eating habits 0.6 (0.6) 1.3 (0.7) −0.6 (−1.6, 0.4)

… fits my lifestyle 0.0 (0.7) 0.2 (0.8) −0.1 (−1.2, 1.0)

… makes it easier to lose weight 0.2 (0.7) 0.4 (0.7) −0.1 (−1.1, 0.9)

I am confident that I can…

… successfully lose weight on the assigned diet 0.1 (0.6) 0.4 (0.7) −0.1 (−1.1, 0.8)

… follow the assigned diet −0.9 (0.6) −0.5 (0.6) −0.4 (−1.2, 0.5)

Carbohydrate-responders High-carbohydrate diet (n = 16) High-fat diet (n = 21)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

The assigned diet…

… fits my typical eating habits 1.6 (1.1) 1.3 (1.2) 0.4 (−1.4, 2.2)

… fits my lifestyle 1.1 (1.0) 0.3 (1.1) 1.0 (−0.7, 2.7)

… makes it easier to lose weight 1.3 (0.7) 1.3 (0.8) 0.4 (−0.8, 1.6)

I am confident that I can…

… successfully lose weight on the assigned diet 0.9 (0.8) 1.1 (0.9) 0.2 (−1.1, 1.5)

… follow the assigned diet −0.3 (0.7) −0.2 (0.7) 0.0 (−1.1, 1.1)

… the degree to which the diet helped manage
hunger

6.8 (0.9) 6.6 (1.0) 0.3 (−1.3, 1.8)

aMean change during the 12-week intervention.
bAdjusted for sex and race.
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Outcome measures
Anthropometric data. At W0 and W12, fasting body weight and waist
and hip circumference were measured in the PBRC outpatient clinic.
Clinic weights were alsomeasured at all intervention visits (though not
fasting weights). Further, body fat (%, via bioelectrical impedance
analysis [BIA]; X-contact 365, Jawon Medical Co., Ltd, Seoul, South
Korea) and blood pressure (after 5min of seated rest) were measured
at W0 and W12.

Fasting serumglucose and insulin. Fasting serumglucose and insulin
were measured at W0, and HOMA-IR was used to quantify insulin
resistance.

Appetitive traits, food cravings, and food preferences. Appetitive
traits were measured with the Eating Inventory (EI)46, food cravings
were measured with the Food Craving Inventory (FCI)24, and hedonic
food preferences were measured with the Food Preference Ques-
tionnaire (FPQ)47 at W0 and W12 (see Supplementary Methods for
details on outcome materials). Data for these questionnaires were
collected and managed using REDCap tools

Diet personalization and intervention satisfaction. The Diet Perso-
nalization Survey (SupplementaryMethods)was completed atW0 and

W12, as well as during the intervention session at W6, and the Inter-
vention Satisfaction Survey (Supplementary Methods) was conducted
at W12. Data for these surveys were collected and managed using
REDCap tools.

Diet adherence. As stated above, participants were provided with a
kitchen scale and could precisely weigh all ingredients specified
in the meal plans for the foods consumed at home. Additional
foods that were consumed were weighed and added as well. Adher-
ence to the macronutrient content of the assigned diets was assessed
for three 7-day periods throughout the intervention (W4, W8, W12).

Statistical analyses
The distribution of variables was evaluated by visual examination and
the Shapiro-Wilk test. The primary outcomewas weight change (kg) at
12 weeks. All other measures were secondary endpoints. Changes in
outcomes are presented asmeanand95%confidence intervals (CI).We
used linear mixed models to determine if changes in outcome vari-
ables differed among diets. Covariates in themodels included baseline
value of the outcome, sex, and race. The mixed-effect model accoun-
ted for the correlation of the subject over time, and least-squaremeans
based on the estimate from the mixed-effect model were used to test
for differences in weight change between diets. To evaluate whether

Table 6 | Change in intervention satisfaction (post-intervention) in those assigned to a diet concordant vs. discordantwith the
genotype

All participants Genotype-concordant diet (n = 60) Genotype-discordant diet (n = 62)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

I am satisfied with…

… the group format 6.9 (0.4) 7.4 (0.4) −0.5 (−1.0, 0.1)

… the support from interventionists 7.5 (0.3) 7.5 (0.3) 0.1 (−0.4, 0.5)

… the intervention materials 7.0 (0.3) 7.2 (0.3) −0.1 (−0.6, 0.4)

… the support from other participants 6.4 (0.4) 6.5 (0.4) −0.1 (−0.7, 0.6)

… the amount of food in my meal plan 6.5 (0.5) 6.4 (0.5) 0.1 ( −0.6, 0.8)

… the macronutrient content in my meal plan 6.1 (0.4) 5.8 (0.5) 0.3 (−0.4, 1.0)

… my progress toward weight management 6.4 (0.5) 6.3 (0.5) 0.3 (−0.5, 1.0)

… the degree to which the diet helped manage hunger 6.5 (0.5) 6.1 (0.5) 0.5 (−0.3, 1.2)

Fat-responders High-fat diet (n = 44) High-carbohydrate diet (n = 41)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

I am satisfied with…

… the group format 6.8 (0.4) 7.3 (0.5) −0.6 (−1.2, 0.1)

… the support from interventionists 7.6 (0.4) 7.8 (0.4) −0.1 (−0.7, 0.4)

… the intervention materials 7.1 (0.4) 7.4 (0.4) −0.3 (−0.9, 0.3)

… the support from other participants 6.1 (0.5) 6.5 (0.6) −0.4 (−1.2, 0.4)

… the amount of food in my meal plan 6.3 (0.6) 6.3 (0.6) 0.0 (−0.9, 0.9)

… the macronutrient content in my meal plan 6.0 (0.5) 5.6 (0.6) 0.3 (−0.5, 1.2)

… my progress toward weight management 6.5 (0.6) 6.2 (0.6) 0.4 (−0.5, 1.2)

… the degree to which the diet helped manage hunger 6.4 (0.6) 5.8 (0.6) 0.6 (−0.3, 1.4)

Carbohydrate-responders High-carbohydrate diet (n = 16) High-fat diet (n = 21)
Meana (SD) Meana (SD) Adj. differenceb (95% CI)

I am satisfied with…

… the group format 7.2 (0.7) 7.4 (0.7) −0.2 (−1.3, 0.9)

… the support from interventionists 7.5 (0.6) 6.9 (0.6) 0.5 (−0.4, 1.4)

… the intervention materials 7.1 (0.5) 6.6 (0.5) 0.4 (−03, 1.1)

… the support from other participants 7.1 (0.6) 6.4 (0.7) 0.8 (−0.3, 1.8)

… the amount of food in my meal plan 7.0 (0.7) 6.6 (0.8) 0.4 (−0.8, 1.6)

… the macronutrient content in my meal plan 6.3 (0.8) 5.9 (0.9) 0.4 (−1.0, 1.7)

… my progress toward weight management 6.2 (0.9) 6.4 (0.9) −0.1 (−1.5, 1.4)

… the degree to which the diet helped manage hunger 6.8 (0.9) 6.6 (1.0) 0.3 (−1.3, 1.8)
a Mean post-intervention value. The Intervention Satisfaction Survey was only assessed at Week 12.
bAdjusted for sex and race.

Article https://doi.org/10.1038/s41467-023-41969-1

Nature Communications | ��������(2023)�14:6321� 10
79



baseline insulin levels and HOMA-IR needed to be included as covari-
ates, their effects on WL were tested using a linear mixed model,
adjusted for diet group and other known covariates. Neither baseline
insulin levels nor HOMA-IRwas significantly associatedwithWL; hence
these variables were not included as covariates. The significance level
was set to 0.05 (2-sided). Multiple testing adjustment was performed
for secondary outcomes using the Holm-Bonferroni method48. All
analyses were conducted using SAS (Windows version 9.4; SAS Insti-
tute, Cary,NC) and the statistical programRversion4.0.2 (https://cran.
r-project.org/).

Power calculations. The present study planned to obtain data from up
to 154participants in total, andweaimed tocomplete32participants per
genotype-diet group (128 participants in total) though we did not limit
recruitment to achieve equal numbers of participants in each group.We
hypothesized that participants on a genotype-concordant diet would

lose more weight than those on a genotype-discordant diet. Based on
previous studies49,50, we assumed a standard deviation for between-
group differences in weight change of 2.8 kg. To detect a 2.0 kg differ-
ence in weight change between group 1 (fat-responders on a high-fat
diet) and group 2 (fat-responders on a high-carbohydrate diet) or
between group 3 (carbohydrate-responders on a high-fat diet) and
group 4 (carbohydrate-responders on a high-carbohydrate diet), with
the intended sample size and an alpha level of 0.05, the present study
would have 80% power. Further, based on the same assumptions, the
present study would have >95% power to test if WL differs between
participants on a genotype-concordant diet (groups 1 and 4 combined)
and those on a genotype-discordant diet (groups 2 and 3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Fig. 4 | Adherence to themacronutrient compositions of the respective diet at
week 4, week 8, and week 12. Boxplots showing adherence data for the high-
carbohydrate diet (a, c, e) and the high-fat diet (b, d, f). For the high-carbohydrate
diet (n = 22 at week 4 and 8 and n = 21 at week 12), target intakes were 65%
carbohydrates (a), 20% fat (c), and 15%protein (e) and for the high-fat diet (n = 40at

week 4, n = 38 at week 8, and n = 37 at week 12), they were 45% carbohydrates (b),
40% fat (d), and 15% protein (f). The dashed line shows the target intake with the
shaded area representing ±5%. In the boxplots, the center line denotes the median
value (50th percentile), the bounds of the box represent the 25th and 75th
percentiles of the dataset, and the whiskers mark the 5th and 95th percentiles.
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Data availability
All of the data needed to recapitulate the analysis found within this
study can be found in the manuscript, figures and supplementary
information. Source data are provided with this paper. Due to privacy
reasons, de-identified data from the study cannot be shared publicly
but will be available from the corresponding author (chris-
toph.hoechsmann@tum.de) immediately following the publication of
the paper upon reasonable request. The study protocol and statistical
analysis plan will also be available. Source data are provided with
this paper.
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Abstract
Accurately quantifying dietary intake is essential to understanding the effect of diet on health and evaluating the efficacy of
dietary interventions. Self-report methods (e.g., food records) are frequently utilized despite evident inaccuracy of these
methods at assessing energy and nutrient intake. Methods that assess food intake via images of foods have overcome many
of the limitations of traditional self-report. In cafeteria settings, digital photography has proven to be unobtrusive and
accurate and is the method of choice for assessing food provision, plate waste, and food intake. In free-living conditions,
image capture of food selection and plate waste via the user’s smartphone, is promising and can produce accurate energy
intake estimates, though accuracy is not guaranteed. These methods foster (near) real-time transfer of data and eliminate the
need for portion size estimation by the user since the food images are analyzed by trained raters. A limitation that remains,
similar to self-report methods where participants must truthfully record all consumed foods, is intentional and/or
unintentional underreporting of foods due to social desirability or forgetfulness. Methods that rely on passive image capture
via wearable cameras are promising and aim to reduce user burden; however, only pilot data with limited validity are
currently available and these methods remain obtrusive and cumbersome. To reduce analysis-related staff burden and to
allow real-time feedback to the user, recent approaches have aimed to automate the analysis of food images. The technology
to support automatic food recognition and portion size estimation is, however, still in its infancy and fully automated food
intake assessment with acceptable precision not yet a reality. This review further evaluates the benefits and challenges of
current image-assisted methods of food intake assessment and concludes that less burdensome methods are less accurate and
that no current method is adequate in all settings.

Introduction

Accurately quantifying food intake (FI) is crucial for
investigating the relationship between diet and health in
observational studies, understanding the effects of dietary
changes on the treatment and management of obesity and
obesity-related diseases, and informing public health poli-
cies based on empirical data [1]. To date, self-report
methods such as food records, food recalls, and food fre-
quency questionnaires are the mainstay of nutritional epi-
demiology research [2] and commonly used to assess FI in
clinical and research settings [3, 4]. While self-report
methods have helped to identify associations between

consumption of different foods or diet quality and eating
behaviors and diseases [1], evidence indicates that these
methods frequently inaccurately assess energy and nutrient
consumption [5], and their continued use in scientific set-
tings has consequently been questioned and criticized [5, 6].
Limitations of self-report methods and sources of their error
include: (1) unintentional underreporting of foods (for-
getfulness), (2) intentional underreporting of foods with
negative health images (high-fat/high-sugar foods), (3)
intentional overreporting of foods that are perceived as
healthy (fruits, vegetables), and (4) portion size estimation
errors [7, 8]. Further, reactivity due to awareness of being
measured can cause changes in eating behavior, resulting in
inaccurate reporting and the failure to capture habitual FI
data [9]. People also have been found to undereat and lose
weight when recording their FI [10]. The last limitation,
however, highlights a strength of using self-report methods,
as people become more aware of their FI and eating patterns
when attempting to manage their body weight, even though
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the FI data are not necessarily accurate. Thus, self-reported
FI remains a frequently used tool in the clinical delivery of
weight management services, with problems primarily
occurring when these data are used to quantify intake.

Image-assisted methods, which rely on images of foods
to estimate FI, are a promising approach to quantify FI that
can overcome many of the limitations of self-report. For
example, these methods can reduce user burden and elim-
inate the need for the user to estimate portion size. Addi-
tionally, many of these methods transmit food image data to
researchers or clinicians in real time or near real time,
providing a platform to adapt Ecological Momentary
Assessment (EMA) [11] and other methods to detect and
minimize missing data [12]. Over the past two decades,
several image-assisted methods have been developed that
include active or passive image capture and automated or
semi-automated analysis of food images. As a result, some
methods are better suited for certain conditions or popula-
tions vs. other methods. This review presents the strengths
and weaknesses of currently available image-assisted
methodologies for FI assessment and evaluates their valid-
ity in different settings and populations.

Methods

We conducted a literature search through the PubMed
electronic database for human studies from inception to
February 2020. We included articles published in English,
reporting image-assisted methods for FI assessment, asses-
sing their feasibility, and validating them against weighed
intake and doubly labeled water (DLW). The following
search terms were used individually and in combination:
diet*/food/energy intake, digital photography, valid*,
reliab*, food record, image-assisted, image-based, portion
size, wearable, food recognition. The references of articles
were also screened for potentially relevant studies. For this
review, methods were categorized as either primarily rely-
ing on human raters to estimate FI based on food images vs.
methods that claim to be automated or semi-automated. As
detailed herein, the term automated or semi-automated is
somewhat of a misnomer, however, and those methods still
require considerable effort from a human. Further, the
reader should be cognizant that the methods used to capture
food images can be distinct from the methods used to
analyze the images.

Results

The literature search identified 278 articles. Forty-seven
articles, reporting 12 distinct methods of image-assisted FI
assessment met the inclusion criteria. Table 1 provides an

overview of the included methods and their validation in
various settings. Figure 1 illustrates the strengths and lim-
itations of the different methodologies regarding their
accuracy, feasibility, and ability to detect food waste.

Analysis of food images by human raters

The Digital Photography of Foods Method (DPFM)

The Digital Photography of Foods Method (DPFM) was
developed to allow unobtrusive estimation of FI in cafeteria
or similar settings [13, 14], and this method or very similar
methods have been developed and utilized by many groups
[13–23]. These methods use digital video cameras or other
devices (e.g., smartphones) to quickly capture images of
participants’ food selection and plate waste and of precisely
weighed standard portions of the foods served on the day of
data collection. The images of the weighed standard por-
tions serve as reference images during the analysis of par-
ticipants’ food images, which can occur after data/image
collection. The foods in the reference images are linked to
foods in the United States Department of Agriculture’s
(USDA) Food and Nutrient Database for Dietary Studies
(FNDDS) [24], an alternative nutrition database, manu-
facturer’s information, or a custom recipe. This allows
estimation of energy and nutrient intake. Trained raters
analyze the images via computer software that simulta-
neously displays images of (1) the participant’s food
selection, (2) plate waste, and (3) the weighed standard
portion for each food consumed. The rater then estimates
the number of portions of the standard portion of food that
was selected and discarded. The software then calculates the
amount of food selected, plate waste, and FI, which is the
difference between food selection and plate waste.

Portion size estimates from this method have been shown
to strongly correlate with weighed portion sizes (r= 0.92)
[13] and mean overestimation of image-based estimates
compared to weighed foods is small, i.e., 5.2 g (standard
error [SE] 0.95) or 4.7% of the weighed value. The mean
deviation of individual food items such as entrées (17.5 g
[SE 4.3]; 6.9%), starches (−1.2 g [SE 1.1]; −1.7%), fruits/
vegetables (4.8 g [SE 1.8]; 5.9%), desserts (4.2 g [SE 2.6];
5.4%), and beverages (7.6 g [SE 3.1]; 4.3%) were likewise
small for image-based estimates of total intake compared to
weighed estimates; however, condiment intake tended to be
overestimated by 4.9 g (SE 4.6; 17%) [13]. This limitation
is not unique to this method, and condiments typically do
not account for a large proportion of daily FI. In school
children (N= 239), the mean difference between image-
based and weighed estimates of total intake (g) was likewise
very small, i.e., 3 g (standard deviation [SD] 20) or 1% [23]
and in preschool children (N= 22) digital diet estimates
were 4% lower than the actual weights [18]. Importantly,
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agreement among raters has been shown to be high (intra-
class correlation coefficients of 0.84 [14] and even 0.92 [16]
and 0.93 [25], and Cohen’s κ of 0.78 [23]).

The DPFM and similar methods have proven to be
adaptable and provide a comprehensive assessment of FI-
related behaviors, and the accurate quantification of plate
waste is a unique strength of this and other image-assisted
methods, particularly considering the goal of cutting food
waste by 50% in the United States by 2030 [26]. Further,
food selection/provision and waste data can be used to
determine if efforts to improve diet quality result in higher
plate waste due to people not eating the healthier foods, or if
food provision and waste systematically differ such that
dietary intake is more or less healthy [27]. Examples of the
feasibility and utility of digital photography include its
ability to estimate FI of large and diverse populations in
various settings, including soldiers (N= 139) during basic
combat training [15], elementary school children (N= 670)
during school lunches over 2 years [15], and >2000 children
from 38 schools over a 3-year period where intake was
quantified for 3 days at three different time points [17].
Further, digital photography methods have been used to (1)
characterize lunch meals served to preschoolers (N= 796)
enrolled in Head Start centers [20], (2) estimate FI at family
dinners of 231 minority preschool children [19], (3) com-
pare elementary school students’ food selection in the
school cafeteria to the Institute of Medicine’s recommen-
dations across 33 elementary schools, and (4) evaluate the
effectiveness of a 28-month school-based obesity preven-
tion intervention (LA Health) at reducing children’s selec-
tion and consumption of added sugars and sodium during
school lunches [22, 27]. Finally, digital photography has
been used to assess changes in energy and macronutrient
intake during a 16-month exercise trial (Midwest Exercise
Trial-2 [21]) in 91 participants over four 7-day periods of ad
libitum eating in a university cafeteria.

In summary, the validity and utility of the DPFM and
similar methods indicate that they have become the method
of choice for quantifying food selection, waste, and intake
in cafeteria settings.

Digital Photography+ Recall (DP+ R)

The Digital Photography+Recall (DP+R) method esti-
mates total daily energy intake (EI) by combining digital
photography (pre–post-meal images of food) for assessing
EI in a cafeteria setting with dietary recall to record foods
consumed outside of the cafeteria setting [28]. The DP+ R
method includes placing notes on the cafeteria tray to
describe any difficult-to-identify food/drink items. Addi-
tionally, typical measuring cups and spoons are included in
the images to facilitate the estimation of portion size.
Multiple-pass dietary recalls are performed at each cafeteriaTa
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meal to document any foods or drinks consumed outside of
the cafeteria setting that day [28]. The DP+ R method is
valid in estimating total EI (required minimum of two
cafeteria meals per day) in 91 young adults with overweight
or obesity over 7 days. The mean overestimation of EI was
264 kJ (SD 3138; 63 kcal [SD 750]) per day or 6.8% (SD
28) compared to DLW whereby 28.8% of the total esti-
mated daily EI occurred from foods consumed outside of
the cafeteria [28]. The implementation of smartphone-
captured images of foods consumed outside of the cafeteria
may further improve the accuracy of the DP+ R method
and at the same time reduce participant burden.

Remote Food Photography Method© (RFPM)

The Remote Food Photography Method© (RFPM) resulted
from the adaptation of DPFM methods for free-living
conditions [12, 25, 29]. When using the RFPM, participants
place a reference card next to their food and capture an
image of their food selection and plate waste using the
SmartIntake® app on a smartphone or other camera-enabled
device. For foods that cannot be identified by wrappers or
containers, participants briefly annotate the images (e.g.,
“chicken nuggets”). The annotated images are sent wire-
lessly to the laboratory via the app. Image information data

(date, time, geolocation) are recorded and stored for all food
images. In the laboratory, the images are analyzed to esti-
mate FI using methods similar to the DPFM [13, 14]: the
foods in the images are linked to a nutrient database via
computer software and compared to images of foods with
known portion size. The result is detailed data on food
selection, plate waste, and FI by difference.

A weakness of the RFPM is that it depends on partici-
pants’ ability to remember or not neglect to capture images
of all consumed foods and calorie-containing beverages. To
help address these concerns and ultimately improve data
quality and completeness, EMA methods [11] have been
incorporated. EMA methods prompt participants to capture
images by sending reminders (text messages, push notifi-
cations) around participants’ typical meal times [25, 29]. A
web-based computer system tracks the delivery of prompts
as well as participants responses to the prompts, allowing
study personnel to more easily detect missing data in near
real time. To capture FI data in the case of missing images
or phone/app malfunction, participants are asked to addi-
tionally use a back-up method.

The reliability and validity of the RFPM have been tested
in several different settings and populations [12, 25, 30–35].
First, the RFPM was validated against weighed lunch and
dinner meals over 3 days, which participants (N= 52)

Fig. 1 Overview of different
dietary assessment methods
concerning accuracy,
unobtrusiveness, analysis time,
participant burden, staff
burden, and food waste
detection. Methods that rely on
human rater-based analysis
where images are captured in
cafeteria settings (a), actively
captured by users in free-living
conditions (b), passively
captured in free-living
conditions (c), and passively or
actively captured and combined
with self-report methods (d).
e illustrates systems that
automatically or semi-
automatically analyze images
that are captured actively or
passively. It is recognized that
these methods differ widely and
that many of these systems have
not been validated, limiting the
information available to perform
the ratings displayed in the
figure. It is noted, however, that
the mFR is among the most
studied and validated methods in
this category. Each category was
rated based on a four-point scale
with ✖✖= poor; ✖= fair; ✔=
good; ✔✔= excellent.
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consumed either in the laboratory or in free-living condi-
tions [25]. The RFPM underestimated daily EI by only
151 kJ (SE 81; 36 kcal [SE 19]; 5.5%) in the laboratory and
by 406 kJ (SE 159; 97 kcal [SE 38]; 6.6%) in free-living
conditions [25]. Further, the mean difference in estimating
EI was stable over different levels of EI and did not differ
by body weight or age [25]. Second, the RFPM was vali-
dated in adults (N= 50) over 6 days in free-living condi-
tions against DLW [12], which is considered accurate for
quantifying EI over time in free-living individuals [36].
Total daily EI estimates from the RFPM did not differ
significantly from DLW with a mean daily underestimation
of 636 kJ (SD 2904; 152 kcal [SD 694]) (p= 0.16) or 3.7%
(SD 28.7) and a consistent error over different levels of EI
[12]. Further, the RFPM’s accuracy in estimating nutrient
intake was confirmed in two laboratory-based test meals, in
which intake of macronutrients and most micronutrients
(Calcium, Sodium, Iron, Fiber, Vitamin C) was not sig-
nificantly different from weighed values [12]. Assessing FI
with the RFPM also was not associated with reactivity or
changes in EI [12], and, similar to the DPFM, the RFPM
has proven feasible and effective at quantifying the plate
waste of adults in free-living conditions [37].

The RFPM and SmartIntake® app have proven accurate
at measuring infant formula in baby bottles at different
stages of preparation (dry powdered formula, prepared
formula, liquid waste). The RFPM was equivalent to all
weighed servings of formula within 7.5% equivalence
bounds and it underestimated EI by ~3% compared to
direct weighing [32, 33]. With preschool children who eat
solid foods, the RFPM’s validity is less consistent, how-
ever. Specifically, in preschool children (N= 54) who
lived in a research unit for 1 day, the RFPM overestimated
total intake in grams and kJ by 2.9% (SD 6.6) and 7.5%
(SD 10.0), respectively, compared to weighed intake, and
bias increased with higher levels of intake [30]. In free-
living conditions over 7 days, however, the method
underestimated total daily EI by 929 kJ (SD 1146; 222 kcal
[SD 274]; 15.6%) when compared to DLW [31]. Although
this level of error is in the adequate reporting range
identified by Burrows et al. in their review of FI assess-
ment methods in children [38], the results demonstrated
that, when the RFPM and SmartIntake® app are used by
children’s caregivers, the method and app require refine-
ment to obtain the desired level of validity in young
children. The authors noted that the biggest challenge in
this target group was providing sufficient training to all
caregivers (some were not disclosed by the families) and
ensuring that images of all meals, snacks, and beverages
were captured and sent to the laboratory [30, 31]. In
pregnant women with obesity, the RFPM similarly was not
able to accurately estimate EI, capturing only around 64%
(SE 2.3) of DLW-measured total daily EI [39], which

appeared to be due, at least in part, to participants failing to
capture images of snacks [39].

The lackluster validity data from the pediatric and
pregnancy studies highlighted challenges with the EMA
prompts that were used in the older version of SmartIntake®.
Specifically, the prompts were previously sent via e-mail,
while subsequent versions of the app utilize both push
notifications (pop-up messages that are received on one’s
smartphone, even if the app is not currently in use) and text
messages to deliver EMA reminders, improving their
effectiveness. Nonetheless, the data indicate that when
images are captured, an accurate estimate is typically
obtained. The RFPM and SmartIntake® app also have pro-
ven feasible and to produce clinically relevant data in
demanding conditions, including assessing meal timing,
location, level of preparation, and quality of dinner meals
among rural, low-income families (N= 31) over 1 week
(153 dinner meals) [34, 35]. Finally, the RFPM was a
feasible and acceptable method for parents of young chil-
dren (N= 9) with type 1 diabetes mellitus to assess break-
fast nutrition over 3 days [40].

In summary, the RFPM and SmartIntake® app have many
of the same benefits as the DPFM and similar methods,
including adaptability to various populations and settings.
Additionally, the reference card that is used with the RFPM
can facilitate portion size estimates but is not entirely
necessary. It does, however, provide a platform for com-
puter imaging algorithms to (1) standardize the images for
distance, angle, and color, and (2) attempt to identify and
estimate the portion sizes of the foods [41, 42].

Food Record App (FRapp)

The Food Record App (FRapp) uses a methodology similar
to the RFPM asking participants to capture and annotate
images of all foods and beverages before and after con-
sumption in free-living conditions and to include a fiducial
marker (reference card) in each image [43]. FRapp inte-
grates text entry, prompts predefined for eating occasions,
and real-time communication between the user and clin-
ician/researcher. The app also allows dietary intake
recording via methods other than food images, including
speech-to-text conversions with food item extraction, cap-
turing food label/nutrition facts/barcode photos, and
selecting from recently consumed food sets [43]. FRapp
was an accepted method for dietary intake assessment in
community-dwelling adolescents (N= 18) in a free-living
environment over 3 days; however, only 60% of all eating
events with images included the fiducial marker and only
40% included both a pre- and post-meal image, indicating
the need for further refinement of the method to improve
data completeness in this population [43]. The FRapp has
not yet been validated regarding its accuracy in estimating
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EI in either a laboratory or free-living setting. Validation of
the FRapp will be important to evaluate whether the various
options for dietary input, which could affect rater/analysis
and user burden, yield any additional benefit to the accuracy
of the method compared to methods that rely solely on food
images.

The Nutricam Dietary Assessment Method (NuDAM)

The NuDAM combines a phone-captured image of food
selection (with reference card) with a voice memo
describing the food selection and waste as well as location
and type of meal. In addition, on the following day, a brief
follow-up phone call is used to probe for commonly
underreported foods, and adjustments to the voice memos
are made accordingly [44]. The image and accompanying
voice recording are analyzed by trained professionals. In a
pilot study (N= 10) NuDAM was compared to DLW
regarding its accuracy in assessing total daily EI over
3 days. NuDAM (8.8 MJ [SD 2.0]; 2102 kcal [SD 478])
underestimated total daily EI compared to DLW (11.8 MJ
[SD 2.3]; 2819 kcal [SD 549]) by around 24%, likely due to
under- or non-reporting of consumed foods or sugary bev-
erages [44]. The accuracy of NuDAM has only been
assessed in a pilot study and further studies with larger
sample sizes are needed. However, it is noteworthy that the
average underestimation of 24% compared to DLW is rather
large compared to that of similar methods that are less
burdensome and do not require a follow-up phone call (e.g.,
the RFPM).

24 h Multiple-pass dietary recall+ SenseCam (MP24+ SC)

The MP24+ SC method combines multiple-pass 24 h
dietary recall with SenseCam images taken throughout the
day on the day before the recall [45]. SenseCam is a
wearable camera with a wide-angle lens and built-in
accelerometer, heat sensor, and light sensor. It is worn
around the neck on a lanyard and captures images
approximately every 20 s, as triggered by the sensors [46].
Participants wear the SenseCam continuously; however,
they have the option to remove it whenever they are in a
location or situation in which they deem photography
inappropriate. On the following day, after completion of the
dietary recall by trained dietitians, participants may review
all SenseCam images in private and delete any images they
prefer not to share. Following this, the researcher reviews
the SenseCam images with the participant, asking the par-
ticipant to confirm or modify the self-reported foods without
giving any suggestions. Gemming et al. [45] assessed EI
with the MP24+ SC method over three non-consecutive
24 h periods in free-living conditions (N= 40) and found
that on average, total daily EI as assessed by MP24+ SC

(13,196 kJ [SD 2529]; 3154 kcal [SD 604]) was under-
estimated by 9% compared to DLW (14,485 kJ [SD 2632];
3462 kcal [SD 2632]) in men (n= 20) and by 7%
(10,091 kJ [SD 1672]; 2412 kcal [SD 400] vs. 10841 kJ [SD
1639]; 2591 kcal [SD 392]) in women (n= 20). Compared
to MP24 alone, which underestimated average daily EI by
17% (men) and 13% (women) compared to DLW, the
addition of the SenseCam reduced the error in daily EI
estimation by almost 50%, as previously unreported
foods (often snacks) were identified [45]. These data are
impressive, though the method has considerable participant
and staff burden related to the participant identifying
situations/locations in which photography is inappropriate
and turning off the SenseCam, the need for the participant to
screen all images, and the participant reviewing the images
with a staff member.

Micro-camera

This method combines a lightweight, wearable micro-
camera, worn on the ear similar to a wireless earpiece for
cell phones, with a food diary [47]. The micro-camera has a
wide-angle lens (170°) and a microphone for audio
recordings during meal times. In a pilot study (N= 6), total
daily EI estimates from food diary entries over 2 days were
analyzed with and without the additional audiovisual micro-
camera recordings and compared to EI measured via DLW
[47]. The addition of the micro-camera improved the
accuracy in estimating total daily EI only slightly from a
34% underestimation (−3912 kJ [SE 1996]; 935 kcal [SE
477]) to a 30% underestimation (−3507 kJ [SE 2170];
838 kcal [SE 519]) compared to DLW. Much of the
underestimation was likely due to underreported foods/
snacks and the fact that participants forgot or chose not to
turn on the camera during meal times. Interpretation error in
estimating intake by the assessors likely further contributed
to the large underestimation [47]. Substantial refinement of
the method and studies with larger sample sizes are
necessary to justify the additional burden of wearing the
micro-camera, which in its current state, did not lead to
clinically meaningful improvements in EI estimation com-
pared to the food diaries alone.

Automated and semi-automated analysis of food
images

Mobile Food Record (mFR)

The Mobile Food Record (mFR) method has been exten-
sively studied and consists of a smartphone app-based food
record and a backend secure cloud-like image analysis
system [48, 49]. When using mFR, the user captures an
image of the food (including a fiducial marker in the image),
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which is then transmitted to a server for automatic analysis.
The analysis process is based on statistical pattern recog-
nition techniques, identifying food and drink items in the
image by comparing the image with those in the database.
Next, the labeled image is returned to the participant for
review, who then confirms or corrects the automatic labels
before sending the image back to the server for final iden-
tification and automatic volume estimation via 3D recon-
struction of the food items from the images [50]. Finally,
identified foods are matched to the USDA FNDDS for
nutrient analysis [48, 49].

In a first validation study in adolescents (N= 15), the
mean error in mFR-estimated weights of individual food
items compared to known weights ranged from a 38%
underestimation to a 26% overestimation, with 75% of all
analyzed foods being within 7% of the true value [50, 51].
In 45 community-dwelling adults, mFR-reported daily EI
over 7.5 days correlated significantly (r= 0.58) with DLW-
measured daily EI and underestimation of total EI was only
12% (SD 11) for men and 10% (SD 10) for women with no
systematic bias with increasing EI [52]. Most participants
rated the usability of mFR as easy and indicated willingness
to use the method for an extended period [52]. Further, the
general feasibility and acceptability of the mFR method
have been confirmed in 62 young children (3–10 years) [53]
and 41 adolescents (11–15 years) [54]; however, variations
according to sex and eating occasions in adolescents (higher
underreporting in boys and frequently unreported snacks)
highlight the need for increased training in the target group
to ensure complete data [54]. The mFR method has further
been used to characterize adolescents’ (N= 93) plate waste
over 3 days [55] and to assess if 6-month tailored dietary
feedback was effective in improving dietary intake of young
adults (N= 143) [56]. Recently, the automatic portion size
estimation of the mFR method was further refined, being
now able to estimate portion size and food energy without
the need to fit geometric models onto the food but rather by
using a complex algorithm that relies on learned energy
distribution images [57]. This method’s accuracy needs
improvement, however, as mean error in estimated EI was
874 kJ (209 kcal; 38%) compared to pre-weighed foods for
the 347 analyzed eating occasions. Although further
refinement is needed to improve accuracy and include
various eating styles and patterns, this development may
broaden the applicability of the mFR method to diverse
foods and populations.

GoCARB

GoCARB is a smartphone-based food recognition system
designed to support patients with type 1 diabetes mellitus in
carbohydrate counting [58]. When using GoCARB, the user
places a reference card next to their food and uses a

smartphone to capture two images of the food from two
different angles. The plate is detected via a series of com-
puter vision operations, which automatically segment and
recognize the different food items and reconstruct their 3D
shape. After food recognition, the carbohydrate content is
calculated by linking each food item’s volume to the
nutritional information provided by the USDA FNDDS
[24]. In a pilot study with 19 adults with type 1 diabetes and
114 test meals (one extreme outlier was removed), the mean
absolute estimation error of GoCARB compared to pre-
cisely weighed carbohydrate content was 26.9% (SD 18.9)
[58]. This was a significantly smaller error (−22%; p=
0.01) compared to self-report, which had a mean absolute
estimation error of 34.3% (SD 24.3) relative to the precisely
weighed carbohydrate content. Food recognition was cor-
rect for 85.1% or all food items and 90% of participants
found GoCARB easy to use and would like to continue to
use it in their daily life. GoCARB has to date not been
validated in free-living conditions.

FoodCam

FoodCam is a semi-automatic mobile food recognition
system. When using FoodCam, the user points a smart-
phone camera at the food plate and draws bounding boxes
around the plates on the smartphone screen to start the food
recognition and portion size estimation process. Next, the
system’s database populates a list of possible food items for
the highlighted foods by comparing the captured food items
with images stored in the database via a complex algorithm,
and the participant selects the best fit. The system does not
automatically recognize food volumes and it requires the
user to estimated food volumes by touching a slider on the
phone screen to adjust the bounding boxes around the food.
Finally, calorie and nutrition estimates of each of the
recognized food items are calculated based on the image
and the food selection from the database [59]. To date, the
validity of the FoodCam system has not been tested in
laboratory or free-living conditions.

Snap-n-Eat

Snap-n-Eat is designed to recognize foods and estimate the
energy and nutrient content of foods automatically [60]. The
analytical system recognizes the salient region (food item)
in the food image taken by the user and uses hierarchical
segmentation to segment the image into regions. Next, the
system classifies these regions into different food categories
using a linear support vector machine classifier. To estimate
portion sizes of the foods, the system counts the number of
pixels in each food segment, which then allows the esti-
mation of the energy and nutritional values of the foods. In
a feasibility study, the system achieved over 85% accuracy

Review of the validity and feasibility of image-assisted methods for dietary assessment 2367

94



when classifying 2000 images of food items of 15 different
categories [60]. To be a feasible tool for dietary assessment,
however, the system needs to be significantly up-scaled to
include far more than the 15 different food categories and
validity in free-living conditions needs to be established.
Additionally, it is unclear if a user can correctly identify
misclassified foods, as incorrectly identified foods neces-
sarily result in inaccurate FI estimates.

eButton

The eButton is a small, chest-worn camera, which auto-
matically captures images of consumed foods every 2–4 s.
The recorded images are analyzed by computer software to
estimate the food’s portion size semi-automatically. Speci-
fically, during analysis, food items are identified by the rater
and a particular 3D shape model is selected from the soft-
ware’s library and adjusted in location and size to cover the
food item in the image as closely as possible. The volume of
the food item is then estimated by the software using the
volume of the fitted model [61]. In a small pilot study (N=
7), eButton was used to capture images of 100 food samples
of Asian and Western foods (no liquids) and the software
was then used to estimate portion size [61]. The mean
relative error across all food samples was −2.8% (SD 20.4)
and the error for 85 out of 100 foods was between −30 and
30% compared to the reference method of seed displace-
ment, which is a commonly used method to objectively
quantify food volume [62]. The eButton has to date not
been validated in free-living conditions.

Discussion

The studies included in this review present image-assisted
methodologies to improve the assessment of FI in different
settings and populations. Many methods can reduce
underreporting observed with traditional self-report meth-
ods, though some methods, particularly those relying on
automated image analysis, inaccurately estimate FI. In
cafeteria settings, the DPFM and similar methods have
proven feasible, effective, and highly accurate at estimating
FI in large samples of diverse participants [13–23] and can
today be considered the method of choice. In free-living
conditions, smartphone apps can be used to capture food
images and to transfer the images and associated data to a
reading center in real time. These methods can produce
accurate estimates of energy and nutrient intake [12, 25, 30–33],
though accuracy relies on sound methods, such as EMAs, to
facilitate data quality and completeness.

A noted weakness of many of the reviewed methods is
their limited reliability and validity. For example, many
have only been tested in proof-of-concept and pilot studies

and laboratory settings and are lacking validation against
DLW in free-living conditions. Further, larger sample sizes
are needed to make results more generalizable and identify
the best method for specific settings and target groups. In
general, more accurate methods tend to be less burdensome
for the participant but can be more burdensome for the
image-analyzing staff. This limits the deployability of these
methods on a large scale.

Many of the reviewed methods, particularly those used
in free-living conditions, rely on smartphone-captured
images. These images are then sent to a reading center for
analysis by human raters (RFPM [12, 25, 30–33, 39],
FRapp [43], NuDAM [44]) or analyzed semi-automatically
via software and additional input by the user (mFR
[48, 49], GoCARB [58], FoodCam [59], or Snap-n-Eat
[60]). Smartphones are a logical choice for image-assisted
dietary assessment since ~3.2 billion people use smart-
phones daily [63] and most smartphone users carry their
phones with them throughout the day [64]. Smartphone
apps can reduce missing or incomplete data in free-living
conditions by incorporating EMAs and thereby accurately
estimate the EI of adults [11]. Failure to capture images of
foods consumed due to forgetfulness and/or due to
intentional misreporting (e.g., social desirability bias) is a
limitation of image-based methods that remains a chal-
lenge. Although this limitation applies to any FI assess-
ment method requiring participants to truthfully record all
consumed foods, it is still an important limitation that
should be considered when using methods with active
image capture by the participant. For this reason, passive/
automated image capture via wearable devices such as the
eButton [61], SenseCam [45], or Micro-camera [47] offer
significant advantages since missing food images should
occur less frequently and additional contextual informa-
tion about the eating event can be recorded and annotated
at a later date. Currently, however, passive image capture
also has limitations which might limit the ability to dis-
seminate these methods widely in the immediate term. For
example, the battery life and data storage capacity of the
wearable device needs to be sufficient to capture high-
quality images throughout the day. The large amount of
passively captured images throughout the day further
requires a time-consuming review by the participant
before images are transmitted to the laboratory for analysis
as some pictures may include other people and objects in
the participant’s environment that the participant does not
wish to share due to privacy concerns. While this review
process is inevitable and participants would likely have
reasonable concerns using systems without the option to
censor images, the censorship of certain (food) images
could affect the accuracy of these methods. Technological
advances promise to dramatically improve these methods
in the future.
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Many of the more accurate methods rely on the parti-
cipant or researcher to manage images, verify which
images to send, identify foods or verify automatic food
identification, and/or estimate or verify portion size. Thus,
while some approaches of automated analysis have pro-
mise for the future, to date, completely automated food
image analysis, including identification of foods, matching
of foods to a nutrient database, and estimation of portion
size and food waste with sufficient accuracy is not yet a
reality. Even with much more advanced recognition
technology in the future, the automatic image-based
identification and distinction between very similar look-
ing foods will likely remain a significant challenge and
may never be possible without at least some degree of user
verification. Additionally, the technology to support
automatic portion size estimation is still in its infancy and
not possible with acceptable precision without at least
some form of user feedback.

Because of the limitations of automated food image
recognition, many systems and studies in free-living con-
ditions (RFPM [12, 25, 30–33, 39], SenseCam [45],
NuDAM [44]) continue to rely on analysis by trained raters
who estimate portion sizes and calculate energy and macro-/
micronutrient content by matching the foods in the images
to a nutrient database. Currently, analysis by human raters is
more accurate and less variable than semi-automated image
analysis. Importantly, rater-based analysis can rely on
existing nutrient databases (USDA, etc.), whereas having to
create comprehensive databases for automated food recog-
nition systems can be burdensome and limits feasibility, at
least without further technological advances.

Regardless of the method by which portion size is esti-
mated, it is important to recognize the limits of the esti-
mation. For example, portion size estimation of foods with
amorphous shapes or higher energy densities tends to be
challenging [65]. Further, the correct identification of cer-
tain ambiguous foods (e.g., diet soda vs. regular soda),
preparation method (e.g., fried vs. baked), and the type and
amount of hidden ingredients in a dish (e.g., butter in
mashed potatoes) frequently require some form of image
annotation by the participant. The precise annotation of
images by the participant, of course, relies on self-report
with its known flaws, and participants will not always know
enough about the ingredients and preparation methods of
their food to precisely account for added fat, etc. This
problem is not unique to image-based methods, however,
and even when directly weighing FI, the recipe and precise
amount of ingredients used need to be carefully quantified
and recorded. Nevertheless, despite these issues that are
likely random [66], image-based methods that use trained
raters for image analysis are still far less problematic than
the systematic bias observed when food type and portion
size are entirely self-reported [1, 67, 68].

In conclusion, image-assisted methods to assess FI will
likely remain a provocative force in the literature. Despite
technological advances, the more accurate methods still rely
on human raters to estimate FI from food images, though
significant advances in passive image capture and auto-
mated/semi-automated image analysis have opened a new
frontier of development. As technology advances, the field
can move forward, but only with thorough and critical
evaluation of the strengths and weaknesses of the methods.
It is unlikely that a single method will be a panacea and
applicable to all data collection scenarios, populations, and
sample sizes. While the less accurate methods are not sui-
table to measure FI as an outcome variable, they may still
serve as important monitoring tools in behavioral inter-
ventions as they may mediate behavior change. In the
future, pairing image-based methods with other sensors
such as continuous glucose monitoring and using mathe-
matical modeling to integrate the multi-sensor data may
increase accuracy of the single methods and improve FI
assessment.
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Abstract: We conducted an online survey to examine the preference, expected burden, and willing-
ness of people to use four different methods of assessing food and alcohol intake such as food/drink
record, 24-h recall, Remote Food Photography Method© (RFPM, via SmartIntake® app), and a novel
app (PortionSize®) that allows the in-app portion size estimation of foods/drinks by the user. For
food (N = 1959) and alcohol (N = 466) intake assessment, 67.3% and 63.3%, respectively, preferred the
RFPM/SmartIntake®, 51.9% and 53.4% preferred PortionSize®, 48.0% and 49.3% the food records,
and 32.9% and 33.9% the 24-h recalls (difference in preference across all methods was p < 0.001 for
food and alcohol intake). Ratings of burden and preference of methods were virtually superim-
posable, and we found strong correlations between high preference and low expected burden for
all methods (all ⇢ � 0.82; all p < 0.001). Willingness (mean (SD)) to use the RFPM/SmartIntake®

(food: 6.6 (2.0); alcohol: 6.4 (2.4)) was greater than PortionSize® (food: 6.0 (2.2); alcohol: 6.0 (2.4);
all p < 0.001) and 24-h recalls (food: 6.1 (2.2); alcohol: 5.7 (2.7); p < 0.001), but not different from
food records (food: 6.6 (2.0); alcohol: 6.5 (2.3); all p � 0.33). Our results can be used in conjunction
with existing data on the reliability and validity of these methods in order to inform the selection of
methods for the assessment of food and alcohol intake.

Keywords: food intake; food records; RFPM; PortionSize; diet recall; alcohol

1. Introduction

Several factors affect the suitability of different methods of ingestive behavior assess-
ment in specific study designs, clinical settings, and populations. Validity, reproducibility,
usability, and feasibility of the selected method in the target population and data collec-
tion setting are indispensable for the collection of high-quality data on ingestive behavior.
However, participants’ preference as well as the acceptability and perceived burden of a
specific method can also play an important role in collecting high-quality data.

It has been reported that adherence to more burdensome self-report methods of
assessing dietary intake can be low and typically decreases over time, thereby influencing
data quality [1–3]. Furthermore, pen-and-paper food checklists to track food and beverage
intake have been reported to be preferred (46% of participants) and perceived as less
burdensome compared to both 24-h recalls (29%) and pen-and-paper food records with the
additional requirement of weighing all foods consumed (21%) [4]. In a cross-over study,
78% of participants preferred using the online version of a food record compared to 13%
who preferred the pen-and-paper record (9% had no preference) after having used each
method for 7 days. The online method was perceived as being quicker, more convenient,
and overall less burdensome than the paper version [5]. Collecting data online or via an
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app offers some additional advantages compared to pen-and-paper methods, including
the ability for data to be transferred in real time.

Some ingestive behavior assessment methods attempt to reduce participant burden
and improve accuracy by asking participants to capture images of food and drinks with
camera-enabled devices such as smartphones, and these images are then analyzed by a
trained rater, not the participant, to estimate intake. One such method is called the Remote
Food Photography Method© (RFPM), which involves participants capturing images of food
and drinks and annotating the images with descriptors in order to identify products that
are not readily identifiable by wrappers or logos in the image [6,7]. These images are then
sent to researchers or clinicians for analysis in near-real time. The collection of RFPM data is
streamlined by a custom-built smartphone app called SmartIntake®, which participants use
to capture images of their food/drink selection and plate/drink waste with a smartphone
or tablet; the app automatically sends the food images and related data wirelessly to the
laboratory for analysis [6,7]. This reduces errors in portion size estimation [6], the largest
source of error in self-reported food intake [8]; more importantly, because the burden of
estimating portion size is moved from the participant to the researcher or clinician, this
may help explain the large difference in preference for this method compared to traditional
self-report methods. For example, the RFPM/SmartIntake® has been found to be preferred
by 93.6% of participants for assessing food intake compared to pen-and-paper records [7],
and 93.3% of participants preferred the RFPM/SmartIntake® compared to online diet
recalls for assessing alcohol consumption [9] after using each method for 3 consecutive
days in free-living conditions. However, the preference for app-based methods that rely on
users to estimate portion size from food images has not been evaluated.

To date, a direct comparison of the perceived burden and preference across these
methods (food/drink record, 24-h recall, RFPM) that are commonly used to assess ingestive
behavior is lacking. The assumption that app- and image-based methods are perceived as
less burdensome and consequently preferred compared to traditional self-report methods
(food/drink record, 24-h recall) has not been thoroughly examined. To address this,
we conducted an online survey to assess participants’ preference, expected burden, and
willingness to use four different methods of food/drink intake assessment: (1) a food/drink
record; (2) a 24-h recall; (3) the RFPM/SmartIntake® app; and (4) a novel smartphone app
(PortionSize®) that allows the estimation of the portion size of foods and drinks by the user
directly in the app, which results in immediate food and drink intake feedback without
the need for external analysis by a trained clinician or researcher. We hypothesized that
for both food intake and alcohol consumption, the RFPM/SmartIntake® and PortionSize®

would be rated as more preferred than the traditional methods (food record and 24-h recall)
and that the RFPM/SmartIntake® would additionally be perceived as less burdensome
and more preferred compared to PortionSize®, which requires participants to estimate and
report their portion size.

2. Materials and Methods

2.1. Design and Participants
The Pennington Habits Survey was approved by the Institutional Review Board at

Pennington Biomedical Research Center (PBRC, 2019-052-PBRC) and registered at Clini-
calTrials.gov (NCT04150510) before the start of recruitment. The survey included a ques-
tionnaire assessing demographic and socioeconomic characteristics as well as: (1) the Food
Intake Assessment Preference Questionnaire, (2) the Alcohol Consumption Questionnaire,
(3) Alcohol Consumption Assessment Preference Questionnaire, (4) the Smoking Question-
naire, (5) the Smoking Assessment Preference Questionnaire, (6) the Vaping Questionnaire,
and (7) the Vaping Assessment Preference Questionnaire. A link to the anonymous survey
was distributed by paid advertisements on social media platforms, PBRC’s webpage, email
listservs, and word-of-mouth between February and November 2020. Adults between
18 and 85 years of age, residing in the United States, and with access to the internet were eli-
gible to participate in the Pennington Habits Survey. However, to complete the Assessment
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Preference Questionnaires for alcohol consumption, smoking, and vaping, participants
had to indicate that they were practicing the respective activities at the time of the survey.
Upon opening the survey link, interested individuals received instructions that detailed
the purpose of the study. Participants verified that they were adults and provided consent
to participate before proceeding with the survey. Data were collected using Research
Electronic Data Capture (REDCap) [10]. Participation in the survey was voluntary and the
participants had the option not to submit answers or to skip items if they did not wish
to complete them. Upon completion of the survey, participants had the option to enter a
lottery to win 1 of 10 checks worth USD 50. In this report, only the results from the Food
Intake Assessment Preference Questionnaire and the Alcohol Consumption Assessment
Preference Questionnaire as well as associated demographic data are presented.

2.2. Demographic and Socioeconomic Characteristics
Before continuing with the Food Intake and Alcohol Consumption Assessment Prefer-

ence Questionnaires, participants completed a questionnaire assessing demographic and
socioeconomic characteristics. The questionnaire captured data such as age, sex, race, edu-
cation level, and household income. In addition, household food security (assessed with
the 6-item Short Form of the United States Household Food Security Survey Module) [11]
and subjective social status (assessed with the MacArthur Scale of Subjective Social Status,
in which individuals place an “X” on the rung (1–10) of the “social ladder” on which
they feel they stand compared to other people in the United States) [12] were assessed.
Finally, participants self-reported body weight and height, and past or present diagnosis
of one or more of the following diseases: heart disease, type 2 diabetes, hypertension,
or dyslipidemia.

2.3. Food Intake and Alcohol Consumption Assessment Preference Questionnaires
Participants were provided with a description of the following 4 methods of food

intake and alcohol consumption assessment: (1) a food/drink record; (2) a 24 h recall;
(3) the RFPM and SmartIntake® app [7], which has also been used to assess alcohol
consumption [9]; and (4) a new smartphone app called PortionSize®. PortionSize® provides
immediate food and beverage intake feedback to the participant and researchers since the
participant estimates portion size in the app based on their food/drink images without the
need for external analysis by a trained clinician or researcher. The verbatim descriptions
and images, if applicable, for the 4 methods of food intake assessment that were provided
to the participants in the survey are outlined below and also provided as Supplementary
Methods. The descriptions for the 4 methods of alcohol consumption assessment were
very similar.

2.3.1. Food Record
“Food records are a way to record all of the foods and beverages that you consume.

You are usually asked to keep these records for 3–7 days. During this period, you would
need to carry the record with you and record all foods and beverages that you consume
right when you eat or drink them. The food record can be a paper form that you complete
by hand. Other ways to keep these records include using a smartphone to complete the
record electronically. To increase the accuracy of the record, you need to carefully estimate
or weigh how much food you eat, and how many beverages you drink and record those
amounts. Additionally, you need to record details about the food or beverage. Those details
include things like what cut of meat you are eating, what condiments you added, and how
much condiments you added. Finally, you need to record how the food was cooked or
prepared. For example, if the food was fried, baked, sautéed, etc.”

2.3.2. The 24-h Recall
“A 24 h recall is another method to track your food and beverage intake. This method

is like an interview that is usually conducted via phone or in person. Each interview
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takes 20 to 30 min. You would be asked to recall all of the foods and beverages that you
consumed over the previous 24 h. You also would need to recall and report how much of
each food and beverage you consumed. Finally, you would need to recall and report how
the foods were prepared (fried, baked, etc.). Because our food intake varies from day to
day, you would typically be asked to complete about 3 of these interviews.”

2.3.3. RFPM/SmartIntake®

“Smartphone-based methods can record food intake based on pictures of food that you
capture with a smartphone app. Specifically, you would use an app to take pictures of your
meals before and after you eat. If it is not clear what you are eating or drinking, you would
type in a brief description of those foods. The app then automatically sends the pictures and
information you entered to nutrition professionals. Those nutrition professionals can then
estimate how much you ate and drank based on the pictures. The app also automatically
reminds you to capture images of your meals. Those reminders are customized based on
your schedule and eating habits.”

2.3.4. PortionSize®

“More recently, smartphone apps have been developed that do not require the analysis
of the food images by a nutrition professional. Rather, you would estimate the portion size
of the foods directly in the app. You would take a picture of your meal before you ate. You
would then identify the foods and beverages in the meal via a drop-down list or with a
search function. To estimate the portion size of the foods in the picture, you would do one
of two things. First, you can enter in the amount of all food(s) consumed or the size of the
food if it is known (e.g., 4 Famous Amos cookies, one 12-ounce regular Coke). Second, you
can use templates that appear in the app. You can adjust the size of these templates and
move them within the picture of the foods. Hence, to estimate portion size, you would
change the size of the template and move it so it covers the food. Figure 1A illustrates an
example, in which a template that looks like a deck of cards was placed over scrambled
eggs. The app then uses this information to automatically and immediately estimate how
much food is on your plate. After the meal, you enter if you ate everything, left a certain
amount of the food on your plate, or you can use the templates again to estimate large
portions of leftovers. This allows the app to provide a more accurate estimate of how
much you ate. The app gives you real-time feedback about how many calories you ate and
the nutrient composition of your meal and overall diet.” An example of that feedback is
provided in Figure 1B.

2.4. Measures
2.4.1. Preference of Methods

Participants ranked the 4 methods for food intake and alcohol consumption from
most to least preferred, assuming they would use each method to record their food in-
take/alcohol consumption for 3 days as part of a clinical or study setting. The timeframe
of 3 days is commonly used in clinical studies that aim to assess food and (alcoholic) drink
intake [9,13–15].

2.4.2. Expected Burden of Methods
Similar to the preference of methods, participants further ranked the 4 methods for

food intake and alcohol consumption from least to most burdensome according to their
expected burden, assuming they would use each method to record food intake/alcohol
consumption for 3 days as part of a clinical or study setting.

2.4.3. Willingness to Use Methods
Furthermore, participants rated their willingness to use a food/drink record, the

RFPM/SmartIntake®, and PortionSize® to record their food intake and alcohol consump-
tion over a period of 3 days on an 8-point Likert scale from ‘not at all’ (rated as 1) to ‘very
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much’ (rated as 8). For the 24 h recall, participants rated their willingness to complete
3 separate recall interviews on the same Likert scale.
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Figure 1. Screenshots from the PortionSize® app illustrating an example in which a template that
looks like a deck of cards was placed over scrambled eggs to estimate their portion size (A) as well as
an example of the real-time feedback (calories and nut and nutrient composition of the meal and the
overall diet) provided by the PortionSize® app after the automatic portion size estimation (B).

2.5. Statistical Analyses
Data were cross-sectional and analyzed descriptively. We present categorical variables

as frequency (%) and continuous data, including Likert scale items, as mean (standard
deviation (SD)). For the main analysis, to simplify the presentation of results and allow for
a natural binary comparison, we categorized the ‘most preferred’ (1st choice) and ‘second-
most preferred’ (2nd choice) as ‘preferred’, and similarly, the ‘second-least preferred’ (3rd
choice) and ‘least preferred’ (4th choice) as ‘not preferred’, in addition to the individual
ranks (1st through 4th choice). We examined differences between ‘preferred’ and ‘not
preferred’ for each method as well as differences in ratings across methods with chi-
square statistics. In additional exploratory subgroup analyses, we assessed the effect
of age (categories: <25 years, 25–34 years, 35–44 years, 45–54 years, 55–64 years, and
�65 years), sex (male vs. female), race (categories: White, Black, Native American, Asian
or Pacific Islander, and other), education (categories: less than high school, high school or
equivalent, bachelor’s degree, master’s degree, doctorate, and other), household income
(categories: <USD 10,000, USD 10,000–50,000, USD 50,000–100,000, USD 100,000–150,000,
and >USD 150,000), household food security (categories: high food security, low food
security, and very low food security), subjective social status, BMI (categories: <25 kg/m2,
25.0–29.9 kg/m2, and �30.0 kg/m2, calculated from self-reported height and weight),
and cardiometabolic diseases (positive past or present diagnosis vs. no diagnosis) on the
preference of methods. For the expected burden of methods, similar to the preference of
methods, we categorized the ‘least burdensome’ (1st choice) and ‘second-least burdensome’
(2nd choice) as ‘low expected burden’, and the ‘second-most burdensome’ (3rd choice) and
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‘most burdensome’ (4th choice) as ‘high expected burden’, in addition to the individual
ranks (1st through 4th choice). We examined differences between ‘low expected burden’
and ‘high expected burden’ for each method as well as differences in ratings across methods
with chi-square analyses and ran the same subgroup analyses as for the preference of
methods. Correlations between preference (1st through 4th choice) and expected burden
(1st through 4th choice) of methods for food intake as well as alcohol consumption were
analyzed using Spearman’s rank correlation coefficient. Differences in willingness to use
each method to monitor food intake and alcohol consumption over 3 days were assessed by
analysis of covariance (ANCOVA), and we used a Tukey adjustment for post hoc pairwise
comparisons. Differences in willingness as examined by the Kruskal–Wallis test did not
differ meaningfully (not reported). All analyses were conducted in SPSS version 25. Due to
multiple comparisons, the significance level was set to 0.001.

3. Results

3.1. Participant Characteristics
A total of 3245 adults participated in the online Pennington Habits Survey, and

1959 participants completed the Food Intake Assessment Preference Survey and are in-
cluded in the main analyses. Participant characteristics are provided in Table 1. On average,
participants (78.5% women, 78.2% White) were 45.9 (SD: 16.4) years old and had a BMI
of 30.8 (SD: 8.8), with the majority of participants having either overweight (26.6%) or
obesity (45.0%). Most participants indicated a high school diploma or equivalent (29.9%)
or bachelor’s degree (34.7%) as their highest level of education, and two-thirds reported a
household income between USD 10,000 and USD 100,000. Three-quarters of the partici-
pants reported high household food security, and 64.8% of the participants saw themselves
on rung 5, 6, or 7 of the MacArthur Scale of Subjective Social Status.

Table 1. Characteristics of participants who completed the Food Intake Assessment Preference Survey
(N = 1959).

Sex, n (%)
Male 418 (21.3)
Female 1537 (78.5)
Other 4 (0.2)

Age Category, n (%)
<25 years 214 (10.9)
25–34 years 366 (18.7)
35–44 years 394 (20.1)
45–54 years 309 (15.8)
55–64 years 380 (19.4)
�65 years 296 (15.1)

Age (years), mean (SD) 45.9 (16.4)
Race

White 1532 (78.2)
Black 334 (17.0)
Native American 14 (0.7)
Asian or Pacific Islander 41 (2.1)
Other 38 (1.9)

Education, n (%)
Less than High School 15 (0.8)
High School or Equivalent 586 (29.9)
Bachelor’s Degree 680 (34.7)
Master’s Degree 396 (20.2)
Doctorate 108 (5.5)
Other 174 (8.9)

Household Income, n (%)
<USD 10,000 120 (6.1)
USD 10,000–50,000 633 (32.3)
USD 50,000–100,000 666 (34.0)
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USD 100,000–150,000 359 (18.3)
>USD 150,000 181 (9.2)

Household Food Security, n (%) a

High Food Security 1450 (74.0)
Low Food Security 227 (11.6)
Very Low Food Security 282 (14.4)

Subjective Social Status (1 = lowest, 10 = highest), n (%) b

10 27 (1.4)
9 55 (2.8)
8 175 (8.9)
7 407 (20.8)
6 455 (23.2)
5 408 (20.8)
4 237 (12.1)
3 131 (6.7)
2 41 (2.1)
1 23 (1.2)

BMI Category, n (%) c

<25 kg/m2 537 (27.4)
25.0–29.9 kg/m2 522 (26.6)
�30.0 kg/m2 881 (45.0)

BMI (kg/m2), mean (SD) c 30.8 (8.8)
Cardiometabolic Diseases d

�1 Disease 830 (42.4)
No Diseases 1129 (57.6)

a Assessed with the 6-item Short Form of the U.S. Household Food Security Survey Module. b Assessed with the
MacArthur Scale of Subjective Social Status. The scale presets a ‘social ladder’ and asks individuals to place an ‘X’
on the rung (1–10) on which they feel they stand compared to other people in the United States. c Data available
for 1940 of 1959 participants. BMI was calculated from self-reported height and weight. d Heart disease, type 2
diabetes, hypertension, or dyslipidemia.

A subsample of 466 participants reported consuming alcohol at the time of the survey
and completed the Alcohol Consumption Assessment Preference Questionnaire. Char-
acteristics of those participants are provided in Table 2. On average, participants had
been consuming alcohol regularly for 26.5 (SD: 15.9) years. Three-quarters of the par-
ticipants reported drinking no more than 1–2 times per week (34.3%) or only on special
occasions (40.3%), and 86.5% of the participants reported drinking  3 drinks per typical
drinking occasion.

Table 2. Characteristics of participants who completed the Alcohol Consumption Assessment
Preference Survey (N = 466).

Sex, n (%)
Male 116 (24.9)
Female 350 (75.1)

Age Category, n (%)
<25 years 33 (7.1)
25–34 years 81 (17.4)
35–44 years 103 (22.1)
45–54 years 79 (17.0)
55–64 years 101 (21.7)
�65 years 69 (14.8)

Age (years), mean (SD) 45.7 (15.6)
Race

White 387 (83.0)
Black 64 (13.7)
Native American 2 (0.4)
Asian or Pacific Islander 6 (1.3)
Other 7 (1.5)
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Table 2. Cont.

Education, n (%)
Less than High School 2 (0.4)
High School or Equivalent 101 (21.7)
Bachelor’s Degree 188 (40.3)
Master’s Degree 110 (23.6)
Doctorate 30 (6.4)
Other 35 (7.5)

Household Income, n (%)
<USD 10,000 18 (3.9)
USD 10,000–50,000 120 (25.8)
USD 50,000–100,000 156 (33.5)
USD 100,000–150,000 108 (23.2)
>USD 150,000 64 (13.7)

Food Security, n (%) a

High Food Security 361 (77.5)
Low Food Security 47 (10.1)
Very Low Food Security 58 (12.4)

Subjective Social Status (1 = lowest, 10 = highest), n (%) b

10 4 (0.9)
9 15 (3.2)
8 48 (10.3)
7 109 (23.4)
6 137 (29.4)
5 86 (18.5)
4 46 (9.9)
3 15 (3.2)
2 5 (1.1)
1 1 (0.2)

BMI Category, n (%) c

<25 kg/m2 113 24.2
25.0–29.9 kg/m2 119 25.5
�30.0 kg/m2 232 49.8

BMI (kg/m2), mean (SD) c 31.2 (8.5)
Cardiometabolic Diseases d

�1 disease 203 (43.6)
No diseases 263 (56.4)

Alcohol consumption history (years), mean (SD) 26.5 (15.9)
Average alcohol consumption frequency, n (%)

Everyday 24 (5.2)
3–5 times per week 94 (20.2)
1–2 times per week 160 (34.3)
Only on special occasions 188 (40.3)

Number of drinks on typical drinking days, n (%) e

1 drink 173 (37.1)
2–3 drinks 230 (49.4)
3–5 drinks 51 (10.9)
>5 drinks 12 (2.6)

a Assessed with the 6-item Short Form of the Food Security Survey Module. b Assessed with the MacArthur
Scale of Subjective Social Status. The scale presets a ‘social ladder’ and asks individuals to place an ‘X’ on the
rung (1–10) on which they feel they stand compared to other people in the United States. c Data available for 464
of 466 participants. BMI was calculated from self-reported height and weight. d Heart disease, type 2 diabetes,
hypertension, or dyslipidemia. e The following examples for a standard drink were given: 12 oz. regular beer, 5
oz. regular wine, 1.5 oz. distilled spirits.

3.2. Methods of Food Intake Assessment
3.2.1. Preference of Methods

Figure 2A shows the percentage of participants who rated each method as their
preferred method of food intake assessment. The RFPM/SmartIntake® was rated as the
preferred method by the largest percentage of participants (67.3%), while the 24 h recall
was rated as the preferred method by the smallest percentage of participants (32.9%). The
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food record and PortionSize® were rated as the preferred method by 48.0% and 51.9%,
respectively, with an overall difference in preference across all methods (p < 0.001). Pairwise
comparisons showed differences in preference ratings between all methods (p < 0.001),
except between the food record and PortionSize® (p = 0.06). Table 3 displays the frequencies
(%) for the individual ranks (1st through 4th choice) for the different methods. There was
an overall difference in preference ratings across all methods (p < 0.001), and pairwise
comparisons showed differences between all methods (p < 0.001), except between the food
record and PortionSize® (p = 0.35).
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Table 3. Preference, expected burden, and willingness to use the four methods of food intake
assessment (N = 1959).

Preference of Methods, n (%)
a

Food Record
Most preferred (first choice) 639 (32.6)
Second-most preferred (second choice) 301 (15.4)
Second-least preferred (third choice) 464 (23.7)
Least preferred (fourth choice) 555 (28.3)
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Table 3. Cont.

24-h Recall
Most preferred (first choice) 198 (10.1)
Second-most preferred (second choice) 446 (22.8)
Second-least preferred (third choice) 592 (30.2)
Least preferred (fourth choice) 723 (36.9)

Remote Food Photography Method via SmartIntake® App
Most preferred (first choice) 631 (32.2)
Second-most preferred (second choice) 687 (35.1)
Second-least preferred (third choice) 530 (27.0)
Least preferred (fourth choice) 111 (5.7)

PortionSize®

Most preferred (first choice) 491 (25.1)
Second-most preferred (second choice) 525 (26.8)
Second-least preferred (third choice) 373 (19.0)
Least preferred (fourth choice) 570 (29.1)

Expected burden of methods, n (%)
b

Food Record
Least burdensome (first choice) 580 (29.6)
Second-least burdensome (second choice) 326 (16.6)
Second-most burdensome (third choice) 477 (24.4)
Most burdensome (fourth choice) 576 (29.4)

24-h Recall
Least burdensome (first choice) 229 (11.7)
Second-least burdensome (second choice) 442 (22.6)
Second-most burdensome (third choice) 578 (29.5)
Most burdensome (fourth choice) 710 (36.2)

Remote Food Photography Method via SmartIntake® App
Least burdensome (first choice) 686 (35.0)
Second-least burdensome (second choice) 648 (33.1)
Second-most burdensome (third choice) 518 (26.4)
Most burdensome (fourth choice) 107 (5.5)

PortionSize®

Least burdensome (first choice) 464 (23.7)
Second-least burdensome (second choice) 543 (27.7)
Second-most burdensome (third choice) 386 (19.7)
Most burdensome (fourth choice) 566 (28.9)

Willingness to use method over 3 days, mean (SD)
c

Food Record 6.6 (2.0)
24-h Recall 6.1 (2.2)
Remote Food Photography Method via SmartIntake® App 6.6 (2.0)
PortionSize® 6.0 (2.2)

a Participants were asked to rank the four methods from the most to the least preferred. b Participants were asked
to rank the four methods from the least to the most burdensome. c Likert Scale: 1 = not at all willing, 8 = very
much willing.

We found a significant age effect on the preference ratings of the four methods
(p < 0.001). This effect was primarily driven by the difference between those <65 years and
those �65 years of age (Figure 3). A greater percentage of participants �65 years rated the
food record (61.4%) and 24 h recall (45.3%) as a preferred method compared to participants
<65 years (food record: 45.5%, 24 h recall: 30.6%, all p < 0.001). Conversely, a greater per-
centage of participants <65 years rated the RFPM/SmartIntake® (70.1%) and PortionSize®

(53.7%) as their preferred method compared to those �65 years (RFPM/SmartIntake®:
51.7%, PortionSize®: 41.6%, all p < 0.001). Supplementary Figure S1 shows the preference
ratings of the four methods for all age categories. Differences in ratings of the four methods
between two age categories were only significant when compared with those �65 years,
with the single exception of PortionSize®, which had a significantly higher preference
rating in those aged 35–44 (61.2%) compared to those aged 25–34 (46.7%, p < 0.001). All
other comparisons of methods across age categories were not significant (all p � 0.05).
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We also found a significant disease effect on the preference ratings of the four methods
(p = 0.001). However, pairwise comparisons of the preference ratings of the four methods
between those with a past or present diagnosis of cardiometabolic disease and those with
no such diagnosis were all not significant (all p � 0.06). We did not find any effects on the
preference ratings for the four methods by sex, race, education level, household income,
household food security, subjective social status, or BMI (all p � 0.07; data not shown).

3.2.2. Expected Burden of Methods
Figure 2B shows the percentage of participants who rated the expected burden of each

method of food intake assessment as low. The largest percentage of participants (68.1%)
rated the expected burden of the RFPM/SmartIntake® as low, followed by PortionSize®

(51.4%), the food record (46.2%), and the 24 h recall (34.3%), with an overall difference in
expected burden across all methods (p < 0.001). Pairwise comparisons showed differences
in preference ratings between all methods (p < 0.001), except between the food record and
PortionSize® (p = 0.06). Table 3 displays the frequencies (%) for the individual ranks (1st
through 4th choice) for the different methods. There was an overall difference in preference
ratings across all methods (p < 0.001), and pairwise comparisons showed differences
between all methods (p < 0.001), except between the food record and PortionSize® (p = 0.96).
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Figure 3. Percentage of participants who rated each method as their preferred method of food intake
assessment in those <65 years (Panel A) and those �65 years of age (Panel B). * Denotes a significant
difference in ‘not preferred’ for the respective method (p < 0.001) in the same panel. Letters (a–d) that
differ from each other indicate differences between methods (p < 0.001) in the same panel. RFPM,
Remote Food Photography Method.
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Similar to the preference of methods, we found a significant age effect on ratings
of the expected burden of the four methods (p < 0.001), and this effect appeared to be
driven by the difference between those <65 years and those �65 years of age. A greater
percentage of participants �65 years rated the expected burden of the food record (61.1%)
and 24 h recall (46.6%) as low compared to participants <65 years (food record: 43.6%, 24 h
recall: 32.0%, all p < 0.001). Conversely, a greater percentage of participants <65 years
rated the expected burden of the RFPM/SmartIntake® (71.3%) and PortionSize® (53.1%) as
low compared to those �65 years (RFPM/SmartIntake®: 50.3%, PortionSize®: 41.9%, all
p < 0.001). Differences in ratings of the expected burden of the four methods between all
other age categories were only significant when compared with those �65 years. All other
comparisons of methods across age categories were not significant (all p � 0.07). We did
not find any effects on preference ratings for the four methods by sex, race, education level,
household income, household food security, subjective social status, BMI, or diagnosis of
cardiometabolic disease (all p � 0.06; data not shown).

3.2.3. Correlation between Preference and Expected Burden of Methods
High preference was strongly correlated with low expected burden of the respective

method for all methods of food intake assessment, with coefficients of ⇢ = 0.85 (p < 0.001)
for the food record, ⇢ = 0.85 (p < 0.001) for the 24 h recall, ⇢ = 0.82 (p < 0.001) for the
RFPM/SmartIntake®, and ⇢ = 0.85 (p < 0.001) for PortionSize®.

3.2.4. Willingness to Use Methods
The willingness to use the method over 3 days to monitor food intake was rated

(8-point Likert scale) with a mean of 6.6 (SD: 2.0) for the food record, 6.1 (SD: 2.2) for the
24 h recall, 6.6 (SD: 2.0) for the RFPM/SmartIntake®, and 6.0 (SD: 2.2) for PortionSize®

(Table 3), with a significant main effect (p < 0.001). Post hoc comparisons showed that
willingness to use the food record differed from the 24 h recall (p < 0.001) and PortionSize®

(p < 0.001) but not from the RFPM/SmartIntake® (p = 0.96). Willingness to use the 24 h recall
differed from the RFPM/SmartIntake® (p < 0.001) but not from PortionSize® (p = 0.23), and
willingness to use the RFPM/SmartIntake® was greater than PortionSize® (p < 0.001).

3.3. Preference of Methods for Alcohol Consumption Assessment
3.3.1. Preference of Methods

Figure 4A shows the percentage of participants who rated each method as their
preferred method of alcohol consumption assessment. Similar to the food intake assessment,
the RFPM/SmartIntake® was rated as the preferred method by the largest percentage of
participants (63.3%), while the 24 h recall was rated as the preferred method by the smallest
percentage of participants (33.9%). The food record and PortionSize® were rated as the
preferred method by 49.3% and 53.4% respectively, with an overall difference in preference
across all methods (p < 0.001). Pairwise comparisons showed differences in preference
ratings between all methods (p < 0.001), except between the food record and PortionSize®

(p = 0.34). Table 4 displays the frequencies (%) for the individual ranks (1st through 4th
choice) for the different methods. There was an overall difference in preference ratings
across all methods (p < 0.001), and pairwise comparisons showed differences between all
methods (p < 0.001), except between the food record and PortionSize® (p = 0.26). We did not
find any effects on preference ratings for the four methods by sex, age, race, education level,
household income, household food security, subjective social status, BMI, or diagnosis of
cardiometabolic disease (all p � 0.13).
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Table 4. Preference, expected burden, and willingness to use the four methods of alcohol consumption
assessment (N = 466).

Preference of Methods, n (%)
a

Food Record
Most preferred (first choice) 173 (37.1)
Second-most preferred (second choice) 57 (12.2)
Second-least preferred (third choice) 128 (27.5)
Least preferred (fourth choice) 108 (23.2)

24 h Recall
Most preferred (first choice) 54 (11.6)
Second-most preferred (second choice) 104 (22.3)
Second-least preferred (third choice) 117 (25.1)
Least preferred (fourth choice) 191 (41.0)

Remote Food Photography Method via SmartIntake® App
Most preferred (first choice) 108 (23.2)
Second-most preferred (second choice) 187 (40.1)
Second-least preferred (third choice) 142 (30.5)
Least preferred (fourth choice) 29 (6.2)
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Table 4. Cont.

PortionSize®

Most preferred (first choice) 131 (28.1)
Second-most preferred (second choice) 118 (25.3)
Second-least preferred (third choice) 79 (17.0)
Least preferred (fourth choice) 138 (29.6)

Expected burden of methods, n (%)
b

Food Record
Least burdensome (first choice) 166 (35.6)
Second-least burdensome (second choice) 64 (13.8)
Second-most burdensome (third choice) 125 (26.8)
Most burdensome (fourth choice) 111 (23.8)

24 h Recall
Least burdensome (first choice) 56 (12.0)
Second-least burdensome (second choice) 106 (22.7)
Second-most burdensome (third choice) 118 (25.3)
Most burdensome (fourth choice) 186 (39.9)

Remote Food Photography Method via SmartIntake® App
Least burdensome (first choice) 124 (26.6)
Second-least burdensome (second choice) 170 (36.5)
Second-most burdensome (third choice) 140 (30.0)
Most burdensome (fourth choice) 32 (6.9)

PortionSize®

Least burdensome (first choice) 120 (25.8)
Second-least burdensome (second choice) 126 (27.0)
Second-most burdensome (third choice) 83 (17.8)
Most burdensome (fourth choice) 137 (29.4)

Willingness to use method over 3 days, mean (SD)
c

Food Record 6.5 (2.3)
24 h Recall 5.7 (2.7)
Remote Food Photography Method via SmartIntake® App 6.4 (2.4)
PortionSize® 6.0 (2.4)

a Participants were asked to rank the four methods from the most to the least preferred. b Likert Scale: 1 = not at
all willing, 8 = very much willing. c Participants were asked to rank the four methods from the least to the most
burdensome.

3.3.2. Expected Burden of Methods
Figure 4B shows the percentage of participants who rated the expected burden of

each method of alcohol consumption assessment as low. Similar to the food intake as-
sessment, the largest percentage of participants (63.1%) rated the expected burden of the
RFPM/SmartIntake® as low, followed by PortionSize® (52.8%), the food record (49.4%),
and the 24 h recall (34.7%), with an overall difference in expected burden across all methods
(p < 0.001). Pairwise comparisons showed differences in the ratings of expected burden
between all methods (p < 0.001), except between the food record and PortionSize® (p = 0.43).
Table 4 displays the frequencies (%) for the individual ranks for the different methods.
There was an overall difference in preference ratings across all methods (p < 0.001), and
pairwise comparisons showed differences between all methods (p < 0.001), except between
the food record and PortionSize® (p = 0.23). We did not find any effects on the ratings of the
expected burden of the four methods by sex, age, race, education level, household income,
household food security, subjective social status, BMI, or diagnosis of cardiometabolic
disease (all p � 0.06).

3.3.3. Correlation between Preference and Expected Burden of Methods
Similar to food intake, high preference was strongly correlated with a low expected

burden of the respective method for all methods of alcohol consumption assessment with
coefficients of ⇢ = 0.91 (p < 0.001) for the food record, ⇢ = 0.89 (p < 0.001) for the 24 h recall,
⇢ = 0.90 (p < 0.001) for the RFPM/SmartIntake®, and ⇢ = 0.91 (p < 0.001) for PortionSize®.
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3.3.4. Willingness to Use Methods
Willingness to use each method over 3 days to monitor alcohol consumption was an

average of 6.5 (SD: 2.3) for the food record, 5.7 (SD: 2.7) for the 24 h recall, 6.4 (SD: 2.4) for
the RFPM/SmartIntake®, and 6.0 (SD: 2.4) for PortionSize® (Table 4), with a significant
main effect (p < 0.001). Post hoc comparisons showed that the willingness to use the
food record differed from the 24 h recall and PortionSize® (all p < 0.001) but not from
the RFPM/SmartIntake® (p = 0.33). Willingness to use the 24 h recall differed from the
RFPM/SmartIntake® (p < 0.001) but not from PortionSize® (p = 0.50), and willingness to
use the RFPM/SmartIntake® was greater than PortionSize® (p < 0.001).

4. Discussion

The present study used an online survey to assess the preference for and the expected
burden of four different methods of food intake and alcohol consumption assessment (food
record, 24-h recall, RFPM/SmartIntake®, PortionSize®) as well as the willingness to use
these methods to record food intake and alcohol consumption over 3 days.

In line with our hypotheses for both food intake and alcohol consumption assess-
ment, the RFPM/SmartIntake® was rated more preferred and less burdensome than more
traditional methods (food record and 24-h recall), which is consistent with previous find-
ings [7,9]. Additionally, the RFPM/SmartIntake® was perceived as less burdensome and
more preferred compared to PortionSize®, as hypothesized. As illustrated in Figure 2;
Figure 4, the graphs depicting the preference for and expected burden of the methods
are virtually superimposable, and the strong correlations between high preference and
low expected burden for all methods (⇢ � 0.82; p < 0.001) support the hypothesis that
expected burden influences method preference. It has previously been reported that more
burdensome methods yield low adherence [1–3]. It is conceivable that methods that are
more preferred by participants (due to lower perceived burden) lead to better adherence
and consequently greater data quality over a longer period of time (or during repeated
assessment periods) compared to less preferred methods. The difference in ratings of
expected burden between the RFPM/SmartIntake® and PortionSize® could mean that the
participants recognized that the self-estimation of the portion size of foods in PortionSize®

would require more effort on their part, while this burden is shifted to a researcher or
clinician when using RFPM/SmartIntake®. Furthermore, our hypothesis that PortionSize®

would be rated more preferred than the traditional methods was only partially supported,
as PortionSize® was only rated more preferred and less burdensome compared to the 24-h
recall but not to the food record. This suggests that while mHealth technology certainly
holds promise in reducing the burden of dietary self-monitoring [16,17], some mHealth
methods are more burdensome than others, and differences in burden are detected by
prospective users. Additionally, some mHealth methods are likely to be perceived as more
burdensome in relation to streamlined self-report methods such as a checklist associated
with a structured meal plan. The overall low preference along with the relatively high
expected burden of the 24-h recall is somewhat surprising, particularly when compared
to the food record. The 24-h recall, as described to participants, requires three relatively
brief (20–30 min) recall interviews, whose de facto time burden is likely less than keeping a
detailed food record for 3–7 days [18], which in many studies requires participants to log
every eating occasion, preferably in real time and as comprehensively as possible, in order
to improve weight loss outcomes [19,20]. It can be conjectured that other factors of the 24-h
recall were unappealing to participants, such as the interview format, and that this influ-
enced the ratings of burden and preference for that method. Additionally, participants did
not use each method, and actual experience with the methods could influence the ratings.

The preference for and expected burden of methods was independent of sex, race,
education level, household income, household food security, subjective social status, BMI,
or diagnosis of cardiometabolic disease for both food intake and alcohol consumption
assessment. However, we must acknowledge that our participants were predominantly
women (78.5%), White (78.2%), food secure (74.0%), with overweight or obesity (71.6%),
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and had a college education (60.4%). A more heterogeneous sample might have led to
different results. Age affected the preference ratings of the methods for assessing food
intake but not alcohol consumption. While there was a clear pattern in those <65 years
with RFPM/SmartIntake® > PortionSize® > food record > 24-h recall (from the most to
the least preferred), in those �65 years, preferences were more evenly distributed across
the four methods. The food record (61.4%) was the method that was preferred by the
largest percentage in those �65 years, followed by the RFPM/SmartIntake® (51.7%; not
different from food record). The 24-h recall (45.3%) and PortionSize® (41.6%; no differ-
ence between the 2 methods) were less preferred compared to the food record. A recent
cross-sectional study (N = 364) that assessed older adults’ intention to use mHealth apps
showed that 49.7% of the participants (mean age 75 (SD: 7) years) had no intention to
use any such apps [21], which might explain why participants �65 in our study rated
app-based methods (RFPM/SmartIntake®, PortionSize®) as relatively less preferred than
traditional methods (food record, 24-h recall) compared to participants <65 years. How-
ever, while the food record was the most preferred method to assess food intake among
those �65 years, preference for the RFPM/SmartIntake® did not differ significantly and
more than half of those �65 years still rated the RFPM/SmartIntake® as their preferred
method. The RFPM/SmartIntake® is accurate and more accurate than food records [6,9,22];
hence, the RFPM/SmartIntake® remains a viable method for participants �65 years of age.
Nevertheless, the ability of older adults to reliably use apps needs to be evaluated before
data collection. Additional support from the study staff and an easy-to-use interface of
the apps may help overcome potential barriers of app-based methods and increase the
acceptability and comfort of these technologies [23], which would ensure reliable use and
high-quality data collection throughout the study period.

Furthermore, and in line with the overall findings on preference and expected burden
of methods, the willingness to use the RFPM/SmartIntake® was greater than that for the
24-h recall and PortionSize® for assessing both food and alcohol intake. However, despite
the overall greater preference and lower expected burden of the RFPM/SmartIntake®

compared to the food record, the willingness to use each method for 3 days did not differ.
This is interesting and suggests that while a low expected burden of a method is strongly
correlated with a high preference for that method, the willingness to use the method to
record food intake or alcohol consumption over 3 days is not necessarily affected by a
higher expected burden in the same way as the preference for the same method. Over a
longer time frame, this may be different. Nevertheless, the relatively high willingness to
use the food record may have been influenced by a greater familiarity with the method
compared to other methods. Food records are similar to popular diet-tracking apps such
as MyFitnessPal (50 million downloads for Android in 2017 [24]) and are likely better
known to the majority of the participants than the 24-h recall and especially a new, image-
based app that requires the self-estimation of the portion size of foods (PortionSize®).
Furthermore, while willingness differed statistically between several methods, it needs to be
acknowledged that the range between the method with the highest willingness (6.6 points
for food intake and 6.5 points for alcohol consumption on a 1–8 Likert scale) and the lowest
willingness (6.0 points for food intake and 5.7 points for alcohol consumption) was less
than 1 point and may be of little practical value. The small difference between methods
along with the relatively high willingness ratings across all methods (�6.0 points for food
intake and �5.7 points for alcohol consumption) suggests that participants generally seem
willing to use all four methods for study/research purposes, even if they rate one method
to be relatively more burdensome and less preferred than another. This is encouraging as
more frequent engagement with (digital) food logging methods in behavioral interventions
has been reported to be associated with greater weight loss over 3 [25] and 12 [26] months.
Nonetheless, the actual usage of self-report methods to assess food intake decreases over
time, even when efforts are made to reduce burden by, for example, using photographic
food records [27].
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The findings of the study have implications in clinical research. First, when assessing
food/drink intake as an outcome variable in a research study, the same assessment method
must be used for all participants. Based on the results of the present study, the demo-
graphic characteristics of the study sample (e.g., older vs. younger participants) should
be considered when selecting an assessment method since preference and the perceived
burden of methods differed by age. This can facilitate the selection of a method that is most
preferred by the majority of the study sample. Researchers might also choose to provide
standardized training to participants prior to data collection in order to increase comfort
with the assessment method; additionally, the need for or the intensity of the training
may be influenced by the demographics of the sample. Researchers might also conduct
a pilot study or needs assessment in the target population prior to starting a study to
determine preferences, feasibility, and training needs. Second, the study has implications in
the selection of methods for assessing food/drink intake when delivering an intervention
during a clinical study. In this case, it is feasible for different participants to use different
methods since the information is primarily used to facilitate intervention delivery and is
not used as an outcome variable. Allowing participants to use their preferred method may
increase the use of the method over time and further enhance intervention delivery.

A limitation of this analysis is that in the online survey, participants were only pre-
sented with descriptions (and illustrations) of the four methods but did not use any of the
methods for the suggested period of 3 days to record food intake and alcohol consumption.
While the assessment of participants’ general preference and willingness to use certain
methods to record food intake and alcohol consumption is important and can inform the
choice of method for clinical and study settings, it is conceivable that participants’ prefer-
ence and willingness to use these methods might change after hands-on use for a given
period. However, it has been shown that the participants who tracked their food intake
with their preferred method (as indicated by the participants before the intervention) were
approximately 50% more adherent to tracking food intake over 12 weeks compared with
those who tracked with their non-preferred method [28]. It is therefore unlikely that the real-
life use of the methods would change the pattern observed with the RFPM/SmartIntake®

as the method has been found to be preferred compared to pen-and-paper records and diet
recalls in two studies where participants used the methods [7,9]. Finally, we only included
adults residing in the United States in this survey. While adults from all geographic regions
in the United States participated (85.8% Louisiana), this limits the generalizability to only
similarly developed and high-income nations.

5. Conclusions

For both food intake and alcohol consumption, the greatest percentage of participants
rated the expected burden of the RFPM/SmartIntake® as low, followed by PortionSize®

and food/drink records, and then the 24-h recall. Preference for these methods mirrored
the ratings of expected burden, and correlations between low expected burden and high
preference were strong for all methods. Because the participants’ preference for a specific
method as well as their expected burden of the method likely affect their compliance
over time and thereby data quality, our results can be used in conjunction with existing
data on the reliability and validity of these methods in order to inform the selection of
assessment methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13103340/s1, Supplementary Methods: Food Intake Assessment Preference Questionnaire,
Alcohol Consumption Assessment Preference Questionnaire; Supplementary Figure S1: Percentage
of participants who rated each method as their preferred method of food intake assessment in those
<25 years (Panel A), 25–34 years (Panel B), 35–44 years (Panel C), 45–54 years (Panel D), 55–64 years
(Panel E), and �65 years of age (Panel F). * Denotes a significant difference in ‘not preferred’ for the
respective method (p < 0.001) in the same panel. Letters (a–d) that differ from each other indicate
differences between methods (p < 0.001). RFPM, Remote Food Photography Method.
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Background: Accurate dietary assessment remains a challenge, particularly 
in free-living settings. Continuous glucose monitoring (CGM) shows promise 
in optimizing the assessment and monitoring of ingestive activity (IA, i.e., 
consumption of calorie-containing foods/beverages), and it might enable 
administering dietary Just-In-Time Adaptive Interventions (JITAIs).

Objective: In a scoping review, we aimed to answer the following questions: (1) 
Which CGM approaches to automatically detect IA in (near-)real-time have been 
investigated? (2) How accurate are these approaches? (3) Can they be used in the 
context of JITAIs?

Methods: We systematically searched four databases until October 2023 and 
included publications in English or German that used CGM-based approaches 
for human (all ages) IA detection. Eligible publications included a ground-truth 
method as a comparator. We synthesized the evidence qualitatively and critically 
appraised publication quality.

Results: Of 1,561 potentially relevant publications identified, 19 publications 
(17 studies, total N  =  311; for 2 studies, 2 publications each were relevant) were 
included. Most publications included individuals with diabetes, often using 
meal announcements and/or insulin boluses accompanying meals. Inpatient 
and free-living settings were used. CGM-only approaches and CGM combined 
with additional inputs were deployed. A broad range of algorithms was tested. 
Performance varied among the reviewed methods, ranging from unsatisfactory 
to excellent (e.g., 21% vs. 100% sensitivity). Detection times ranged from 9.0 to 
45.0  min.

Conclusion: Several CGM-based approaches are promising for automatically 
detecting IA. However, response times need to be faster to enable JITAIs aimed 
at impacting acute IA. Methodological issues and overall heterogeneity among 
articles prevent recommending one single approach; specific cases will dictate 
the most suitable approach.
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meal detection, continuous glucose monitoring, dietary assessment, healthcare 
technology, closed loop, sensors, meal timing
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1 Introduction

Nutrition has a major impact on people’s health and well-being 
(1–8). However, accurately assessing nutrition and dietary intake 
remains challenging, with the most precise tools often involving high 
costs, participant and staff burden, or privacy issues (9–14). Yet, valid 
and reliable measurement of dietary behavior is essential to accurately 
detect changes in research settings and guide patient counseling in 
clinical practice (e.g., weight loss programs). Technological advances 
in recent years have led to new approaches for accurately assessing 
dietary intake that try to overcome some of the shortcomings of 
traditional dietary assessment methods (9, 15–18).

An attractive technology-based option for assessing the 
consumption of calorie-containing foods and beverages (ingestive 
activity, IA) is continuous glucose monitoring (CGM). CGM involves 
using a sensor that measures glucose concentrations in the interstitial 
fluid (19, 20) as a proxy for blood glucose levels (20, 21). CGM has 
become an important tool in diabetes care (19, 22–25). For instance, 
it is an integral component of artificial pancreas (AP) systems 
designed to automate and improve blood glucose regulation in 
individuals with type 1 diabetes mellitus (T1DM) via the utilization of 
CGM, an insulin infusion pump, and a control algorithm (26). Beyond 
diabetes management, CGM is gaining popularity for use in healthy 
individuals and athletes (20, 27). Several CGM devices show 
satisfactory accuracy data (20, 28, 29).

The automatic and (near-)real-time detection of IA via CGM 
could offer benefits in (clinical) practice, including a reduced 
participant and staff burden. In addition, interventionists could 
monitor meal plan adherence more closely and detect deviations from 
intervention goals as they occur. Consequently, targeted and 
personalized countermeasures could be deployed proactively. One 
particularly useful approach would be CGM-based detection of IA in 
the context of Just-In-Time Adaptive Interventions (JITAIs). JITAIs 
aim to exploit the full potential of remote monitoring combined with 
delivering intervention content in the moment/context when it is most 
needed and the patient is likely to be (most) receptive (30). Preliminary 
results show promising effects of JITAIs on predicting and preventing 
dietary lapses (31). If detection times of the CGM-based approaches 
in question were extremely short (e.g., less than a few minutes), JITAIs 
could aim at acutely impacting IA (e.g., sending a prompt asking a 
person to terminate a meal). If detection times were relatively short 
(e.g., less than an hour), JITAIs could aim at altering subsequent IA 
(e.g., a dinner meal). In both cases, information on IA would be much 
more readily available than with traditional dietary assessment 
methods (e.g., 24-h recalls).

However, there may also be challenges associated with the use of 
CGM for the automatic monitoring of IA. On the one hand, there are 
system-inherent challenges. For example, postprandial rises in blood 
glucose vary in timing and extent depending on meal composition, 
meal quantity, inter-individual variability, and many other factors 
(32–40). Further, there is a delay between interstitial fluid and blood 
glucose concentrations (20, 41, 42). On the other hand, blood glucose 
levels are not only influenced by IA but also by other factors such as 
physical activity, stress, and diurnal fluctuations (20, 41, 43–55). Thus, 
false positive detections (e.g., erroneously flagging a meal due to 
glucose increases caused by stress) and false negative detections (e.g., 
erroneously not flagging a meal because other factors render the 
glucose response too flat) might occur.

In the past years, research examining the use of CGM for the 
automatic detection of IA has accumulated. Recent publications 
reviewed options for the automatic detection of IA using wearable−/
sensor-based methods (15–18), but they did not specifically address 
CGM. The present article aims to close this research gap and answer 
the following guiding questions:

 1 Which approaches using CGM for the automatic detection of 
IA in (near-)real-time have been investigated, and have these 
approaches relied solely on CGM or also used other data (e.g., 
sensors/wearables)?

 2 How accurate are these approaches in detecting IA?
 3 Can these approaches be used in the context of JITAIs?

2 Methods

The reporting of this review is based on the updated Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses Extension 
for Scoping Reviews (PRISMA-ScR) guideline (56).

2.1 Search strategy

The primary systematic literature search was conducted on 09 
September 2022, using the IEEE Xplore, PubMed, Scopus, and Web of 
Science databases. An identical supplementary search was conducted 
on 02 October 2023. The search term was developed and refined by 
two authors (JB, CH) to capture all relevant publications, and the 
search term contained: (intake OR uptake OR eating OR ingest* OR 
meal OR drink* OR beverage OR consum* OR oral) AND (monitor* 
OR assess* OR detect* OR estimat* OR measur* OR sens*) AND 
(“continuous glucose monitoring” OR “real time continuous glucose 
monitoring” OR “real-time continuous glucose monitoring” OR “flash 
glucose monitoring” OR “intermittently scanned continuous glucose 
monitoring” OR CGM OR rtCGM OR isCGM OR “artificial pancreas” 
OR “artificial beta cell*” OR “artificial beta-cell*” OR “artificial β-cell*” 
OR “artificial β cell*”) AND (algorithm OR “deep learning” OR 
“machine learning” OR “neural network*” OR AI OR “artificial 
intelligence“). Because a fully-closed-loop AP system must first detect 
meals to adequately manage the following increases in glucose by 
delivering insulin to the patient (57), the search also included 
AP systems.

JB conducted the database searches and removed duplicates for 
the primary and supplementary searches. Two authors (JB, CH) 
screened the titles and abstracts against the predefined eligibility. In 
discrepancies, a consensus was reached via discussions and ineligible 
publications were discarded. For the primary search, JB screened the 
full texts of the remaining publications for eligibility and consulted 
with CH, who then independently screened these full texts in cases of 
uncertainty. In addition, one other author (SHF) conducted 
independent cross-checks for a randomly selected 20% of the full 
texts. For the supplementary search, two authors (JB, CH) 
independently screened the full texts of the remaining publications. 
Again, in case of discrepancies, a consensus was reached via 
discussions, and subsequently, ineligible publications were discarded. 
Another author (CG) was consulted for her technical/mathematical 
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expertise during the screening process. JB hand-searched the reference 
lists of eligible publications for any additional relevant literature. In 
several cases, the corresponding authors of articles were contacted, 
e.g., to receive full texts or raw data or to clarify results.

2.2 Eligibility criteria

We included publications if the following inclusion criteria were 
met: (1) publications were written in English or German and 
published until 2 October 2023; (2) publications are original articles 
published in peer-reviewed scientific journals or conference papers; 
(3) at least one performance measure of the automatic detection of 
IA is reported explicitly. For example, the accuracy was calculated 
by comparing the CGM-based (did not have to exclusively rely on 
CGM as input) approach against a ground-truth method (e.g., self-
reported or observed IA); (4) a CGM-based approach was used to 
detect IA in vivo in free-living, semi free-living, or laboratory 
settings. This also included trials of AP systems if criterion 3 was 
met; (5) only the most recent publication on a specific approach by 
a particular research group was included if it supersedes 
preceding publications.

We excluded publications for the following exclusion criteria: (1) 
the approach was not tested in human participants (e.g., in silico 
studies); (2) no outcome results were reported (e.g., study protocol 
publications); (3) outcomes did not include an explicit performance 
measure describing the results of the automatic detection of IA (e.g., 
only figures showcasing the CGM trends over time); (4) the 
methodology was described without sufficient detail. We did not apply 
restrictions regarding publication date or participant age.

2.3 Data extraction

The following information was extracted: (1) first author and 
publication year; (2) a summary of the study; (3) sample size and, if 
available, sex and age of participants; (4) participants’ diabetes status 
[no diabetes, prediabetes, T1DM or type 2 diabetes mellitus (T2DM)]; 
(5) scope of the study (duration/number of IA events) and, if available, 
information on the IA events (e.g., meal composition); (6) ground-
truth/criterion method(s); (7) performance measure(s); (8) details on 
the CGM device and if applicable other relevant devices used in 
the study.

JB extracted relevant information from the original publications, 
and in cases of uncertainty, the respective publications were double-
checked by CH. Two other authors (CG, SHF) also double-checked 
the extracted information. One other author (CG) further extracted 
technical details of the tested approaches.

2.4 Data synthesis

We synthesized the evidence qualitatively, focusing on answering 
the three research questions outlined above. Although using an 
explicit cutoff (e.g., ≥80% F1-score or accuracy) is desirable for 
performance evaluation and has been used in a related review (16), 
this approach was not feasible, as only a few publications reported 
accuracy and/or F1-score values.

Furthermore, we appraised the included publications critically. 
We considered the following aspects of being of concern: (1) error-
prone methods for identifying the ground truth of IA [e.g., self-
reported IA (58) or retrospective identification from CGM data, 
whereas inpatient settings with observed IA were generally assumed 
to be  less error-prone]; (2) a sample consisting exclusively of 
individuals with diabetes as this might limit generalizability to 
non-diabetic populations; (3) meal announcement/meal-
accompanying insulin boluses, as there might be an interference with 
the (early) postprandial blood glucose levels that are relevant for the 
automatic detection of IA; (4) algorithm inputs other than CGM since 
ultimately a CGM-only approach would be desirable to minimize 
costs and effort.

3 Results

The literature search identified a total of 1,561 potentially relevant 
publications. Nineteen publications reporting data from 17 studies 
(for 2 studies, 2 publications each were relevant, see Table 1), including 
311 participants, met the inclusion criteria (59–66, 68, 70, 71, 73–75, 
82–85, 87). Figure  1 shows the process of the literature search, 
screening, and selection in a PRISMA-style flow diagram (88).

Many of the screened publications were excluded from the present 
review because they did not include details on the detection of IA but 
instead focused on measures of glycemic control (e.g., time in specific 
glucose ranges). Further, some publications were excluded because 
they included graphic CGM data with IA marked as such but did not 
provide quantitative data on the detection of IA. Another common 
reason for exclusion was investigation in silico, often using virtual 
patients with T1DM.

We were unable to retrieve the full text of one publication despite 
several efforts to contact the authors directly. This publication was 
excluded; however, it was considered likely ineligible based on 
its abstract.

3.1 Study characteristics

The included publications were published between 2008 and 2023 
and reported an average sample size of 18.3 (SD = 15.1) participants. 
Table 1 provides an overview of the included publications and the 
extracted information. The publications covered a wide age range, 
including pediatric (62, 73), adolescent (62, 64, 65), and adult (59–61, 
63, 66, 68, 70, 71, 74, 75, 82–85, 87) populations. Fourteen publications 
included participants with T1DM (59, 62–66, 68, 70, 71, 73, 74, 84, 85, 
87), one publication included a sample of participants with T1DM or 
T2DM (75), one publication included participants with prediabetes or 
moderately controlled T2DM (83) and three publications included 
participants without diabetes (60, 61, 82). Publications included both 
controlled/inpatient (59, 62–65, 68, 74, 82, 85) and free-living settings 
(60, 61, 66, 70, 71, 73, 75, 83, 87).

In several aspects, there was substantial heterogeneity among the 
included publications. First, the number and type of performance 
metrics reported for the tested approaches differed substantially. 
Commonly reported performance metrics included the number of 
true and/or false positives and/or negatives (including frequencies per 
day and rates) (64, 66, 68, 70, 73, 75, 84, 85, 87), sensitivity (60, 61, 70, 
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73–75, 84, 87), specificity (60, 61, 70), accuracy (61, 70), precision (60, 
61, 66), F1-score (60, 61, 66), Matthew’s correlation coefficient (60, 
61), Pearson’s correlations (83), detection time or time until an insulin 
bolus was delivered (59, 62–66, 70, 73–75, 84), change in glucose 
concentrations (62, 65, 84, 85), and area under the curve (82). 
However, even when the same metrics were reported, their definition 
was sometimes inconsistent across publications. For instance, the 
detection window for true positive detections ranged from 60 to 
180 min, depending on the publication (66, 73, 75). In addition, the 
general study setup varied between publications, including differences 
in the sample composition, the use of meal announcement/meal-
accompanying insulin boluses, the ground-truth method used for 
identifying IA, the devices used, and the scope of the data collection 
(Table 1).

Table 2 shows the result of the critical appraisal of all included 
publications. There were some concerns regarding the applied 
methodology for all publications; these concerns were substantial for 
most publications. In 16/19 (84.2%) publications, the sample consisted 
exclusively of individuals with (pre)diabetes (59, 62–66, 68, 70, 71, 
73–75, 83–85, 87). Further, 9/19 (47.4%) publications used error-
prone methods for measuring the ground truth of IA, mostly self-
reported IA (60, 61, 66, 70, 71, 73, 75, 83, 87). Moreover, 7/19 (36.8%) 
publications used meal announcements and/or meal-accompanying 
insulin boluses (66, 68, 70, 71, 73, 75, 87). Finally, 8/19 (42.1%) 
publications utilized other inputs besides CGM, e.g., heart rate or the 
insulin sensitivity factor (59–61, 63, 64, 70, 74, 82). Overall, 15/19 
(78.9%) publications elicited methodological concerns in two or more 
appraised domains (59–61, 63, 64, 66, 68, 70, 71, 73–75, 83, 84, 87), 
and all publications had methodological concerns in at least one of the 
appraised domains (59–66, 68, 70, 71, 73–75, 82–85, 87).

3.2 Overview of detection approaches

Our review identified a wide range of methods to automatically 
detect IA, including fuzzy logic (59, 63), model predictive control (74), 
support vector machine (60), random forest (60, 61, 82), (extreme) 
gradient boosting trees (60, 61, 82), backward difference (62), Kalman 
filter estimation (62), second derivative of glucose (62), Kalman filters 
(64, 68), switching signal generator (68), simulation-based explanation 
(83), classification of horizons (73), analysis of the glucose trajectory 
(84), pattern recognition using linear discriminant analysis (73), and 
threshold violation-based approaches (73). Further, adaptive model-
based (64), super-twisting-based (66, 71), feedback scheme-based 
(70), and physiological parameter-invariant-based (87) meal detection 
approaches were applied.

The reviewed approaches used different inputs to automatically 
detect IA. As summarized in Table 2, some methods relied solely on 
CGM as an input (62, 65, 66, 68, 71, 73, 75, 83–85, 87). Others also 
included data from insulin treatment or other sensor systems (e.g., 
accelerometry, photoplethysmography, temperature sensors; see 
Table 1) (59–61, 63, 64, 70, 74, 82).

3.3 Performance of the approaches

We identified several CGM-based approaches for the automatic 
detection of IA that achieved high values in the respective performance 

metrics (Table  1). However, the substantial heterogeneity in the 
applied methodology and reporting of results needs to be considered.

For instance, Godoy and colleagues achieved 98.9% sensitivity, 
96.7% specificity, and 97.6% accuracy with their feedback scheme-
based algorithm (70). Notably, the algorithm uses certain patient-
specific parameters, such as the insulin sensitivity factor derived from 
participants’ usual diabetes treatment (70). Similarly, the algorithm by 
El Fathi et al. successfully detected 12/12 meals without any false 
positives and a detection time of 35 min (64). In two publications 
using the same dataset, Bertrand et al. investigated several IA detection 
approaches in individuals without diabetes (60, 61). A range of 
performance metrics is reported in both publications. In the first 
publication, the highest achieved mean sensitivity was 66.8%, and the 
highest achieved mean specificity was 77.3%, for example (60). In the 
second publication, the highest achieved mean sensitivity was 66.8%, 
and the highest achieved mean specificity was 97.7% (61). Importantly, 
in both publications, the models did not exclusively rely on CGM as 
input (60, 61). Similarly, Palacios et al. had a sample of individuals 
without diabetes (82). However, their models, too, did not exclusively 
rely on CGM as input, but also utilized other physiological variables 
such as heart rate and skin temperature (82). Palacios et al. reported 
the area under the receiver operating characteristic curve (AUC-ROC) 
and the area under the precision-recall curve (AUC-PR) (82). For 
cold-start cases with a window size of k = 110 min, they reported an 
AUC-ROC of 89.1% and an AUC-PR value of 80.3% (82). For 
non-cold-start cases and k = 20 min, the AUC-ROC was 99.6%, and 
the AUC-PR was 96.4% (82).

The performance of CGM-only approaches, which hold 
particularly great value for practical applications, varied substantially. 
Sensitivities varied between 20.8% (73) and 96.8% (85). Where 
reported, average false positive detections ranged from 0.4 (75) to 2.8 
(73) IA events per day. Selected publications further reported a false 
positive rate of 20.8% (84), a false discovery rate of 16.6% (74), and a 
median precision value of 73.0% (66). Moreover, publications reported 
detection times between 11.8 min (mean) (73) and 45.0 min (median) 
(66). Importantly, all CGM-only approaches were tested on samples 
consisting exclusively of individuals with (pre)diabetes, some of which 
also used meal announcements/insulin boluses. A detailed description 
of the performance metrics for each of the included publications is 
provided in Table 1.

3.4 Detection times

The detection time is the relevant metric to evaluate whether the 
identified CGM-based IA detection approaches could be used in the 
context of JITAIs.

A detection time measure was reported in 11/19 (57.9%) 
publications (59, 62–66, 70, 73–75, 84). The detection time was 
commonly defined as the time between the start of the IA (i.e., 
typically a meal) and its (automatic) detection by the CGM-based 
approach. Mean (59, 62, 64, 70, 73–75, 84) and median detection 
times (65, 66, 84) were reported, thus impeding direct comparisons. 
One publication reported the median time of the delivered prandial 
insulin boluses (63).

Overall, the reported detection times varied between 9.0 min 
(mean) (70) and 45.0 min (median) (66), with most values falling into 
the 20-to-40-min range (Table 1).
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4 Discussion

The primary objective of this review was to examine whether 
CGM can be used to automatically detect IA in (near-)real time. In 
sum, there are various promising approaches that show satisfactory to 
excellent performance on measures such as sensitivity and specificity. 
However, the performance of CGM-based methods for automatically 
detecting IA varies. Similarly, detection times vary, but currently, they 
appear too long to administer JITAIs for acutely altering 
IA. Methodological issues and overall heterogeneity among 
publications make it difficult to recommend the best-
performing approach.

4.1 Which approaches using CGM for the 
automatic detection of IA in (near-)
real-time have been investigated, and have 
these approaches relied solely on CGM or 
also used other data (e.g., sensors/
wearables)?

Our results indicate that both CGM-only approaches and those 
supplemented with other input data (e.g., accelerometry, 
photoplethysmography, temperature sensors) have been tested. 
Moreover, various algorithms have been used to detect IA. Since 
approaches using different sensor modalities and/or programming 
methods were successful at automatically detecting IA, it is evident 
that various solutions can be  used for automated, CGM-based 
IA detection.

4.2 How accurate are these approaches in 
detecting IA?

Our review showed that the performance evaluation of any single 
approach depends on the respective case and priorities. For example, 
if the goal is to combine a CGM-based approach with smartphone 
prompts to enable comprehensive diet logs, the method should have 
high sensitivity to avoid missing a potential IA (false negative). In this 
case, specificity would only play a minor role as nothing is lost by 
sending a prompt in response to a false positive detection – the 
prompt can remain unanswered by the patient/participant. In 
contrast, when the goal is to use the CGM-based approach as a stand-
alone IA assessment tool, high specificity would be critical to avoid 
artificial inflation of the number of daily meals, for example. Thus, a 
single best approach for all scenarios could not be identified. The 
substantial heterogeneity of the applied methods and reporting of 
results, including the broad range of the number and type of reported 
performance metrics and their varying definitions, made it difficult 
to compare the performance of the different approaches.

However, collectively, our results demonstrate that there are 
indeed several relatively well-performing CGM-based approaches for 
the automatic detection of IA. One example is the feedback scheme-
based algorithm by Godoy et  al., which achieved near-perfect 
sensitivity, specificity, and accuracy (70). However, this algorithm 
relies on several patient-specific parameters as input that are derived 
from participants’ usual diabetes treatment (70). Thus, it remains to 
be  determined whether this approach could be  adapted to work 
equally well in individuals without diabetes, for whom these data are 
not routinely assessed. Similarly, methodological issues further 
limiting studies’ internal and/or external validity pertain to using meal 

FIGURE 1

PRISMA Flow diagram (88). aIn some cases, more than one reason led to the exclusion of a publication; here, only the primary reason is listed for each 
publication. bIn two cases, two publications of the same study were included. CGM, continuous glucose monitoring; IA, ingestive activity.
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announcements or insulin boluses and focusing on samples with 
diabetes in the reviewed studies. All included publications suffered at 
least one such methodological limitation (Table 2).

Several reviewed articles reported solutions that relied solely on 
CGM as input for their IA detection algorithms. Performance among 
these approaches varied, but sensitivities ≥90% were achieved by 
several groups (73, 84, 85), and false positive occurrences < 1 per day 
were reported (75). This suggests that inputs other than CGM are not 
necessary to achieve excellent performance in automatically 
detecting IA.

Of note, some algorithms that incorporated inputs other than 
CGM might also work with CGM as their only input for the specific 
goal of IA detection. For example, in Bertrand et al.’s machine-learning 
algorithms, data from two wrist-worn activity trackers were 
incorporated in addition to the CGM data (61). However, the 20 most 
important features were derived from the CGM data (61). Hence, it is 
likely that an adaptation of their algorithm that relies exclusively on 
the CGM data as input might also achieve good – albeit likely 
somewhat worse – IA detection performance. Similar cases can 
be made for other publications in which insulin data were used as 
input in addition to the CGM data (59, 63, 64). These results suggest 
that it is possible to automatically detect IA using CGM-based and 
even CGM-only algorithms.

4.3 Can these approaches be used in the 
context of JITAIs?

Generally, to successfully administer a dietary JITAI, IA must 
be detected in (near-)real-time. However, precisely how short the 
detection would have to be depends on the specific goal, as outlined 
before. Detection times as fast as 9.0 min were reported (70), but most 
approaches needed 20 to 40 min to detect IA (Table  1). This can 
generate feedback on IA much faster than traditional dietary 
assessment methods, such as 24-h recalls, thus creating opportunities 
for earlier intervention. For instance, detecting deviations from a 
standardized study procedure (e.g., when IA is detected in a fasting 
window) is likely possible. Further, when deviations from a specific 
meal plan (e.g., low carbohydrate) are detected, the plan could 
be adjusted for the subsequent meals on the same day. Automated 
meal detection could further trigger behavioral intervention prompts 
regarding portion size and eating rate (i.e., reminders to eat more 
slowly) for future meals. However, in most cases, detection times are 
too long to modify/influence IA truly in the moment it occurs (e.g., a 
participant on a ketogenic diet has likely already finished a 
carbohydrate-rich meal by the time it is detected). Regardless, it is 
debatable if that is really the goal and what intervening during an 
eating event would look like.

TABLE 2 Critical appraisal of included publications.

Publication Error-prone IA 
ground-truth 

method

Sample with 
(pre)diabetes

Meal announcement/
insulin boluses

Other inputs in 
addition to 

CGM

Overall rating

Atlas et al. (59) x ✓ x ✓ ★★☆☆

Bertrand et al. (60) ✓ x x ✓ ★★☆☆

Bertrand et al. (61) ✓ x x ✓ ★★☆☆

Dassau et al. (62) x ✓ x x ★★★☆

Dovc et al. (63) x ✓ x ✓ ★★☆☆

El Fathi et al. (64) x ✓ x ✓ ★★☆☆

Faccioli et al. (66) ✓ ✓ ✓ x ★☆☆☆

Fushimi et al. (68) x ✓ ✓ x ★★☆☆

Godoy et al. (70) ✓ ✓ ✓ ✓ ☆☆☆☆

Hoyos et al. (71) ✓ ✓ ✓ x ★☆☆☆

Kölle et al. (73) ✓ ✓ ✓ x ★☆☆☆

Mosquera-Lopez et al. (74) x ✓ x ✓ ★★☆☆

Ornetzeder et al. (75) ✓ ✓ ✓ x ★☆☆☆

Palacios et al. (82) x x x ✓ ★★★☆

Palisaitis et al. (65) x ✓ x xa ★★★☆

Popp et al.(83) ✓b ✓ x x ★★☆☆

Samadi et al.(84) ? ✓ x x ★★☆☆

Turksoy et al. (85) x ✓ x x ★★★☆

Weimer et al. (87) ✓ ✓ ✓ x ★☆☆☆

x, no; ✓, yes;?, no information available; CGM, continuous glucose monitoring; IA, ingestive activity. “x” in all columns would signal minimal methodological concerns and thus an overall 
rating of four stars in the rightmost column; the more “✓,” the greater the methodological concerns, and consequently, the fewer stars are awarded in the rightmost column. Note that for the 
overall rating, no available information (“?”) was treated as eliciting methodological concerns (“✓”). aWhile insulin pump data were also used in this paper, the meal detection algorithm relies 
only on glucose data as input. bThe authors state that self-reported IA is not seen as the ground-truth method in their work; however, in the absence of direct observation of IA in this study, 
herein, we assume self-reported IA as the ground-truth.
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4.4 Implications for clinical and research 
practice

Our review shows that several CGM-based options for the 
automatic detection of IA exist. Ultimately, the specific use case will 
dictate the most suitable approach. Different approaches might 
be appropriate depending on factors such as the budget, population, 
targeted level of wearing comfort, and goal of the automatic 
IA detection.

Notably, other innovative methods for the automatic detection of 
IA, such as those using wearable-, sensor-, and image-based methods 
(9, 15–18), are also promising. These methods may even be superior 
to CGM-based approaches regarding detection times. Wang and 
colleagues identified several devices that can quickly detect IA (16), 
such as a headband device that can detect eating events via chewing 
sounds within only 3 min (16, 90). Similarly, a pilot study by Kumar 
and colleagues investigating the use of abdominal sounds to detect IA 
found an average detection time of only 4.3 min (91). It has even been 
demonstrated that eating events can be predicted ahead of time (16, 
92). Yang et al. used a camera, a GPS device, and an accelerometer to 
predict eating and food-purchasing events up to 4 min in advance 
(92). The authors found that a trained gradient-boosting model 
achieved a mean accuracy of 72.9% in predicting eating events 
0–4 min in advance (92). This highlights that different methodologies 
might have inherent strengths and limitations. The suboptimal 
detection times might be  considered an inherent limitation of 
CGM-based approaches. Recent advances have tried to solve the 
CGM-inherent lag time issue (93), but more research is needed. It 
remains to be seen whether these limitations inherent to using CGM 
for automatically detecting IA can be overcome. On the other hand, 
one key benefit of using CGM might be its unobtrusiveness, which 
could facilitate its acceptance in practice. This unobtrusiveness 
contrasts many other, more obtrusive approaches such as glasses and 
camera-based methods (9, 16, 18).

A promising prospect might be to use a sensitive CGM-based 
approach that sends a prompt to the patient/participant asking them 
to log IA in case of a true positive detection. Thus, the CGM-based 
approach would serve as an automated reminder. That way, a false 
positive detection does not automatically lead to erroneous IA 
information but needs to be verified by the person. In this context, the 
suboptimal detection times also likely would be acceptable.

4.5 Limitations and directions for future 
research

4.5.1 Sample characteristics
Unsurprisingly, most publications included samples with diabetes, 

as the primary use case for automated IA detection is AP systems. 
However, to examine the potential of CGM-based approaches for 
detecting IA in various populations, more research in more diverse 
populations, including healthy individuals, should be conducted. This 
is particularly important as the generalizability of previous findings to 
non-diabetic individuals is likely limited, for instance, due to the 
usually far lower variations in blood glucose levels in persons without 
diabetes (77) as compared to persons with diabetes (78). Thus, there 
may likely be  systematic differences in the performance of such 
approaches in individuals with diabetes compared to those without 

diabetes. Moreover, in many studies, meals were announced to the 
system, and/or manual insulin boluses accompanied the registered 
meals. For example, Ornetzeder and colleagues evaluated the 
detection performance of three previously published algorithms (79–
81) using meals accompanied by insulin boluses (75). While the 
resulting performance metrics of this publication and similar others 
are promising, they need to be interpreted considering the applied 
insulin boluses. Ornetzeder et al. argue that this potential distortion 
was deemed acceptable due to a lack of alternative, insulin bolus-free 
datasets and the time it takes for the administered insulin to achieve 
its peak action (75). However, it is still possible that the results of 
CGM-based IA detection approaches might differ in scenarios without 
exogenous insulin infusions. Specifically, the administered insulin 
might flatten the blood glucose excursions from the meal’s start, 
making its automatic detection less likely. In line with this, Faccioli 
et al. state that some of their false negatives might have been related to 
the attenuated postprandial CGM curves following the administration 
of meal-accompanying insulin therapy (66). At the same time, it 
should be  considered that the postprandial glucose excursions of 
individuals with insulin-dependent diabetes would be much more 
pronounced without insulin treatment than in non-diabetic 
individuals (82). As such, it could be argued that by administering 
meal boluses, the postprandial glucose excursions of individuals with 
diabetes more closely approximate those of individuals without 
diabetes. Direct evidence is, of course, still necessary to increase 
confidence in any conclusions. Thus, future studies should ultimately 
enroll more individuals without diabetes.

4.5.2 Research focus
Moreover, it also needs to be considered that for the initialization 

of closed-loop systems, background information (e.g., treatment 
management, physical characteristics of the patient) is typically 
provided to the system (59). This information may only sometimes 
be  readily available in other contexts. In addition, the goals of 
algorithms geared toward use in closed-loop/AP systems might differ 
from approaches aimed at the use for automatic detection of IA in 
general. For instance, in their AP-oriented work, Kölle et al. focused 
on glucose excursions caused by larger meals because smaller meals 
or snacks, which do not cause a substantial increase in blood glucose 
levels, do not necessarily need to be detected and trigger an insulin 
bolus to ensure adequate glucose control (73). Yet, in a scenario where 
the automatic detection of IA via CGM is meant to provide 
information on any IA – irrespective of its size – this argument does 
not hold up. This example highlights the potential differences in the 
setup of algorithms depending on the goal.

Taken together, fundamentally different circumstances and goals 
may be pursued, and thus, algorithms may be constructed differently, 
depending on the research question. Consequently, it might 
be possible to further optimize algorithms to automatically detect IA 
in research or clinical settings other than closed-loop/AP systems.

4.5.3 Comparability of approaches
There was substantial heterogeneity in how the performance of 

the investigated approaches was evaluated across the reviewed 
publications. Thus, as noted by others (66), a direct comparison 
between the approaches is difficult due to differences in the utilized 
datasets, preprocessing, and evaluation methods. Differences like 
these ultimately hamper the search for the best-performing 
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approaches. Performance metrics reported in publications should 
include at least the following measures: the number of true positives, 
false positives, and false negatives, which can be used to calculate 
important metrics such as sensitivity and precision; the detection 
time, defined as the time from the start of the IA to the time the 
algorithm detects the IA, whose reporting allows researchers and 
practitioners to judge whether a specific approach could be used to 
administer JITAIs, for example. A short detection time followed by a 
prompt could also allow for more immediate self-reported IA. More 
accurate self-reports could be the consequence due to diminished 
recall bias.

4.5.4 Future avenues
In general, more research should be dedicated to using CGM for 

the specific goal of automatically detecting IA in a broad range of 
populations, particularly in individuals without diabetes. Such 
approaches have several potential benefits, but prior research has 
mainly focused on using CGM for diabetes care and AP systems. 
However, as explained, algorithms will likely be constructed differently 
for the specific goal of automatically detecting IA. Moreover, previous 
findings will have to be  replicated and extended in non-diabetic 
samples to overcome the currently limited generalizability.

Depending on the use case, several advancements would 
be necessary to rely exclusively on a CGM-based/CGM-only approach 
for the remote monitoring of IA. To fully automate the logging of IA 
times in a reliable manner, most systems would have to be even more 
accurate than they currently are.

If the goal is to further automate IA timing and effectively log 
macronutrient intake, approaches would have to incorporate specific 
algorithms for this task. Several publications explored whether 
estimating macronutrients from CGM data is possible. For instance, 
Samadi et al. estimated the carbohydrate content of meals (84). Results 
were promising, with 64.1% of the detected IA events having an 
absolute carbohydrate estimation error of less than 25 g (84).

Similarly, if the goal is to administer JITAIs to impact acute 
IA, detection times would have to decrease further. However, as 
mentioned above, the lag time-caused suboptimal detection times 
might have to be considered an inherent limitation of CGM-based 
approaches. Only if future studies succeed at further reducing 
detection times will the application of CGM-based approaches for 
dietary JITAIs aiming to alter IA in the moment in the truest sense 
of the word become possible. This is especially true for cases in 
which meals are followed by only small and/or delayed 
postprandial glucose excursions (e.g., after high-fat meals) or 
when meals contain only a small amount of carbohydrates, as 
(timely) detection appears difficult here (66, 74). It would also 
be necessary to explicitly test the detection performance in cases 
of such challenging IA (e.g., ketogenic diets). Empirical data on 
such cases might enable the prediction of in which settings 
CGM-based approaches can be used for successfully detecting IA 
(e.g., only in contexts where at least moderate amounts of 
carbohydrates are consumed).

We advise that future studies use different approaches on the same 
dataset, providing comprehensive CGM and objective IA data, and 
then compare their performance using the abovementioned metrics. 
A starting point could be  to compare the CGM-only approaches 
highlighted in Table 2. Such a fair and standardized comparison could 
further illuminate the currently most promising approach(es).

While CGM-only approaches are highly attractive because they 
only necessitate one single sensor (i.e., the CGM), multi-sensor 
solutions also hold great potential and should thus be  further 
investigated. Specifically, combining the strengths of different sensors 
(e.g., CGM and wristbands) may yield superior results as compared to 
relying on only one sensor, although this remains to 
be determined empirically.

Lastly, similar to others (10), we strongly advise that researchers 
use interdisciplinary collaborations to develop new CGM-based 
dietary monitoring tools to combine technological and biological/
nutritional expertise. Interdisciplinary collaborations should ensure 
that the resulting tools are useful and optimized from 
both perspectives.

4.6 Conclusion

Based on an exhaustive and systematic literature search, this 
scoping review shows that it is possible to automatically detect IA 
using CGM-based approaches. Despite methodological issues and 
substantial overall heterogeneity among publications, CGM-based 
dietary monitoring might complement clinical and research practice.
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BACKGROUND: Intensive lifestyle interventions (ILIs) are the first-line approach 
to effectively treat obesity and manage associated cardiometabolic risk factors. 
Because few people have access to ILIs in academic health centers, primary 
care must implement similar approaches for a meaningful effect on obesity and 
cardiometabolic disease prevalence. To date, however, effective lifestyle-based 
obesity treatment in primary care is limited. We examined the effectiveness of a 
pragmatic ILI for weight loss delivered in primary care among a racially diverse, 
low-income population with obesity for improving cardiometabolic risk factors 
over 24 months.

METHODS: The PROPEL trial (Promoting Successful Weight Loss in Primary Care 
in Louisiana) randomly allocated 18 clinics equally to usual care or an ILI and 
subsequently enrolled 803 (351 usual care, 452 ILI) adults (67% Black, 84% 
female) with obesity from participating clinics. The usual care group continued 
to receive their normal primary care. The ILI group received a 24-month high-
intensity lifestyle-based obesity treatment program, embedded in the clinic 
setting and delivered by health coaches in weekly sessions initially and monthly 
sessions in months 7 through 24.

RESULTS: As recently demonstrated, participants receiving the PROPEL ILI 
lost significantly more weight over 24 months than those receiving usual care 
(mean difference, −4.51% [95% CI, −5.93 to −3.10]; P<0.01). Fasting glucose 
decreased more in the ILI group compared with the usual care group at 12 
months (mean difference, −7.1 mg/dL [95% CI, −12.0 to −2.1]; P<0.01) but 
not 24 months (mean difference, −0.8 mg/dL [95% CI, −6.2 to 4.6]; P=0.76). 
Increases in high-density lipoprotein cholesterol were greater in the ILI than in 
the usual care group at both time points (mean difference at 24 months, 4.6 mg/
dL [95% CI, 2.9–6.3]; P<0.01). Total:high-density lipoprotein cholesterol ratio 
and metabolic syndrome severity (z score) decreased more in the ILI group than 
in the usual care group at both time points, with significant mean differences 
of the change of −0.31 (95% CI, −0.47 to −0.14; P<0.01) and −0.21 (95% CI, 
−0.36 to −0.06; P=0.01) at 24 months, respectively. Changes in total cholesterol, 
low-density lipoprotein cholesterol, triglycerides, and blood pressure did not differ 
significantly between groups at any time point.

CONCLUSIONS: A pragmatic ILI consistent with national guidelines and 
delivered by trained health coaches in primary care produced clinically 
relevant improvements in cardiometabolic health in an underserved 
population over 24 months.
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In 2017 to 2018, the prevalence of obesity among US 
adults was an estimated 42.4%, with severe, class 
III obesity being 9.2%.1 Obesity is associated with 

serious chronic health risks such as cardiovascular dis-
ease (CVD), type 2 diabetes, several cancers, depres-
sion, and premature mortality,2 presenting substantial 
public health and economic burden in many countries.3 
Certain sociodemographic groups are particularly af-
fected by the obesity epidemic and consequently are 
at the highest risk for deleterious health effects. Black 
adults had an estimated prevalence of obesity as high 
as 49.6% in 2017 to 2018; among all adults, those 40 
to 59 years of age had the highest prevalence of severe 
obesity (body mass index ≥40 kg/m2; 11.5%).1 Along 
with race/ethnicity, other social determinants of health 
such as lower levels of education, income, and food 
security intersect to increase risk of obesity and related 

comorbidities.4–6 Such inequities are further sustained 
by policies (eg, health care access and affordability), 
systems (eg, racism, discrimination, segregation), and 
environments (eg, community, neighborhood), which 
also lead to higher obesity levels in racial/ethnic minori-
ties.7,8 Such health disparities are particularly apparent 
in states such as Louisiana, where the median house-
hold income and food security rates are among the 
lowest in the United States.9,10

Intensive lifestyle interventions (ILIs) are the first-line 
approach to promote weight loss and to effectively 
treat obesity and manage associated health risks, as 
outlined in the 2013 AHA [American Heart Associa-
tion]/ACC [American College of Cardiology]/TOS [The 
Obesity Society] Guideline for the Management of 
Overweight and Obesity in Adults.11,12 Large trials such 
as the DPP (Diabetes Prevention Program)13 and Look 
AHEAD (Action for Health in Diabetes)14 have shown 
that high-intensity lifestyle interventions conducted 
in academic health centers can induce weight loss of 
5.8% and 6.4% over 2 years, respectively, and that 
these weight reductions are accompanied by health-
beneficial changes in blood pressure (BP), glucose con-
trol, and dyslipidemia.15–17

However, only a small proportion of the population 
has access to ILIs in academic health centers. Therefore, 
uptake of similar approaches by primary care, the cor-
nerstone of medical care in the United States, is impera-
tive for a meaningful effect on the global obesity preva-
lence and for achieving public health goals to reduce 
health inequities.18 Despite recommendations by the US 
Preventive Services Task Force that physicians offer in-
tensive multicomponent behavioral interventions to in-
dividuals with obesity,19 to date, effective lifestyle-based 
obesity treatment in primary care is often lacking, and 
long-term success for weight loss and improvement in 
cardiometabolic risk factors is consequently limited.20 
This is attributable in part to infrequent treatment con-
tacts, time constraints during visits, and primary care 
practitioners’ lack of training in behavior therapy and 
nutrition education.20,21 Weight loss interventions based 
in primary care have produced a range of weight loss 
(1−2 kg in low-intensity interventions to 4−7 kg in 
higher-intensity interventions).20,22 For example, in the 
POWER trials (Practice-Based Opportunities for Weight 
Reduction), greater weight loss was experienced in the 
Baltimore (5.2%) and Philadelphia (4.7%) trials com-
pared with the Boston trial (1.7%).23–25 The Boston 
sample consisted predominantly of Black participants 
with low annual income, and the intervention consisted 
of monthly counseling telephone calls in the first 12 
months, followed by bimonthly calls in the remaining 
12 months (18 total calls), in addition to self-monitor-
ing through a website or through an interactive voice 
response system.25

Clinical Perspective

What Is New?
• The PROPEL trial (Promoting Successful Weight 

Loss in Primary Care in Louisiana) trial examined 
the effectiveness of an intensive lifestyle interven-
tion for weight loss delivered by trained health 
coaches in primary care among a racially diverse, 
low-income population with obesity for improving 
cardiometabolic risk factors over 24 months.

• Although pragmatic, the PROPEL intensive lifestyle 
intervention is consistent with national guidelines 
and demonstrated clinically relevant improvements 
in high-density lipoprotein cholesterol, total:high-
density lipoprotein cholesterol ratio, metabolic 
syndrome severity (12 and 24 months), and fasting 
glucose (12 months only).

• The PROPEL model is a viable option to deliver 
effective obesity and cardiometabolic risk factor 
treatment in primary care.

What Are the Clinical Implications?
• The present results underline the cardiometabolic 

effectiveness of a comprehensive weight loss inter-
vention model delivered by trained health coaches 
in a primary care setting.

• The collaborative care approach of the PROPEL 
model likely offers more successful primary care–
based obesity treatment than the existing Centers 
for Medicare and Medicaid Services–supported 
model, which relies solely on primary care practi-
tioners for obesity treatment with, to date, limited 
success.

• Broader implementation of the PROPEL model 
would particularly allow underserved populations 
to receive effective obesity and concomitant car-
diometabolic disease risk treatment and thereby 
potentially contribute to reducing health inequities.
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We conducted a 24-month cluster-randomized trial in 
which a high-intensity lifestyle intervention was delivered 
face to face by trained health coaches embedded within 
primary care clinics among an underserved population 
with obesity.26 The primary outcome measure of the trial 
was percentage change in body weight from baseline to 
month 24. The ILI group lost significantly more weight 
than the usual care group, with a mean difference of 
−4.51% (95% CI, −5.93 to −3.10) between the groups 
(P<0.01).27 Similar to the demonstrated effectiveness for 
weight loss of the trial, we hypothesized that participants 
receiving the ILI would show improvements in cardiomet-
abolic risk factors relative to those receiving usual care.

METHODS
Design and Participants
The PROPEL trial (Promoting Successful Weight Loss in Primary 
Care in Louisiana) was a 24-month high-intensity lifestyle inter-
vention delivered within primary care clinics among a racially 
diverse, low-income population with obesity. The PROPEL trial 
was conducted between April 2016 and September 2019, 
and the study protocol and all procedures were approved by 
Pennington Biomedical Research Center’s Institutional Review 
Board. The data that support the findings of this study are avail-
able from the corresponding author on reasonable request. 
Study materials and the statistical analysis plan are available as 
supplementary material associated with the PROPEL primary 
outcome article.27 The trial design and rationale have been pub-
lished in detail.26 In brief, 18 primary care clinics across Louisiana 
were randomly allocated in equal numbers to either an ILI group 
or a usual care group. Participants were recruited from the par-
ticipating clinics and deemed eligible if they were 20 to 75 
years old, had a body mass index of 30 to 50 kg/m2, and were 
patients at a participating clinic. Participants were excluded if 
they were currently participating in a weight loss program, had 
used weight loss medication, had undergone bariatric surgery 
within the last 2 years, or had lost >10 lb of weight within the 
last 6 months. The complete list of eligibility criteria is given 
elsewhere.26 All participants provided written informed consent 
before enrollment in the study.

Intervention
Participants at clinics allocated to the ILI group received a 
comprehensive, high-intensity lifestyle intervention program26 
based on DPP,28 Look AHEAD,29 and CALERIE30 (Comprehensive 
Assessment of Long-Term Effects of Reducing Intake of Energy 
Phase) and consistent with the 2013 AHA/ACC/TOS guidelines.12 
The regimen was adapted to be literacy and culturally appropri-
ate for a low-income target population; as reported previously, 
31% of PROPEL participants scored ≤6 on the Rapid Estimate of 
Adult Literacy in Medicine Short Form health literacy assessment 
at baseline, corresponding to less than a ninth-grade education 
and indicating limited health literacy.26 The ILI program was 
embedded in the primary care clinics and consisted of weekly 
sessions with trained health coaches (16 face-to-face sessions 
and 6 via phone) during the first 6 months and at least monthly 
sessions for the remaining 18 months, alternating between 
face-to-face and phone sessions. All health coaches had higher 

education degrees in nutrition, physical activity, or behavioral 
medicine and received further training in the management of 
obesity and related comorbidities, fundamentals of health liter-
acy, and patient communication and education before the start 
of the intervention. During the intervention, the health coaches 
worked with participants to meet the predefined individual goal 
of 10% weight loss by coaching them to develop and adhere to 
personalized action plans focusing on changes in eating, diet, 
and physical activity behavior. To monitor weight loss progress 
and to promote intervention fidelity, participants were encour-
aged to measure their weight daily with the provided BodyTrace 
scale (BodyTrace Inc, Palo Alto, CA), which transmitted weight 
data wirelessly and in real time to a computer tracking system. 
This system plotted the weight data onto a personalized weight 
graph, which was available via a website at any time, and 
allowed participants and health coaches to detect deviations 
from the intended weight loss progress quickly.31,32 If deviations 
occurred, the personalized action plans were adjusted, using 
additional components of the toolbox approach (ie, tailored 
behavioral, nutritional, and physical activity strategies) that has 
been shown to improve intervention efficacy in previous clinical 
trials.28–30 Primary care providers in ILI clinics received a series of 
webinars on lifestyle weight management practices, lipid man-
agement, and ways to improve communication with patients 
with low health literacy or obesity throughout the intervention 
period.

Participants at clinics allocated to the usual care group 
continued to receive their normal care from their primary care 
provider during the 24-month intervention period. In addi-
tion, they received several newsletters on topics such as the 
importance of sleep for health, tips for limiting sitting time, 
brain and memory health, and smoking cessation. Primary 
care providers in usual care clinics received information on 
the Centers for Medicare & Medicaid Services approach for 
intensive behavioral therapy for obesity33 via a presentation 
by PROPEL staff at baseline and an informational brochure on 
the same topic annually.

Outcome Measures
Fasting Blood Glucose and Lipids
Fasting blood glucose (FBG) and lipids (total cholesterol, high-
density lipoprotein cholesterol [HDL-C], low-density lipoprotein 
[LDL] cholesterol [LDL-C], and triglycerides) were measured at 
baseline, month 12, and month 24 using fingerstick blood 
samples and the Cholestech LDX Analyzer (Alere Inc, Waltham, 
MA). Participants were instructed to arrive at each study visit 
after an overnight fast (≥10 h), and the Cholestech Analyzer 
was calibrated daily before analyzing participant blood samples 
using standard controls. Furthermore, we calculated non–HDL-
C (total cholesterol−HDL-C) levels and the total:HDL-C ratio, 
with the former representing a good surrogate measure of apo-
lipoprotein B because it includes all atherogenic lipoproteins 
such as LDL, very-low-density lipoprotein, and intermediate-
density lipoproteins.34 Both non–HDL-C and the total:HDL-C 
ratio have previously been shown to be strongly associated 
with long-term risk of atherosclerotic CVD.35,36

Blood Pressure
Resting systolic BP (SBP) and diastolic BP (DBP) were measured 
with a validated automated BP monitor (Model HEM-907XL, 
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OMRON Corp, Kyoto, Japan) at baseline and all follow-up 
visits after 5 minutes of seated rest. At each time point, 2 
measurements were taken with 1 minute between measure-
ments. If the 2 measurements differed by >20 mm Hg (SBP) or 
10 mm Hg (DBP), a third measurement was obtained, and the 
mean of the 2 closest measurements was used for analysis. 
In addition, mean arterial pressure (MAP) was calculated as 
MAP=DBP+⅓(SBP−DBP).

Metabolic Syndrome Severity z Score
In addition to the prespecified outcome measures, we cal-
culated metabolic syndrome severity z score (MetS-Z) values 
for all assessment visits, as described previously.37 In con-
trast to the traditional binary metabolic syndrome (MetS) 
classification, a continuous MetS severity score allows better 
detection of a worsening or improving condition over time.37 
In brief, the MetS-Z was derived from the 5 traditional com-
ponents of the MetS (waist circumference, SBP, FBG, fasting 
HDL-C, and fasting triglycerides) using the 1999 to 2010 
NHANES (National Health and Nutrition Examination Survey) 
data for adults 20 to 64 years of age via a factor analy-
sis approach.37 To take differences in MetS criteria by race/
ethnicity into account, different equations for computing 
the MetS-Z were generated for each of 6 subgroups (non-
Hispanic White, non-Hispanic Black, and Hispanic men and 
women).37 The resulting MetS-Z acts as a continuous bio-
marker of MetS severity38 that correlates with other estab-
lished MetS risk markers such as insulin and adiponectin.39 
In addition, MetS-Z is associated with long-term type 2 dia-
betes39–41 and CVD risk,39,42,43 even when the individual com-
ponents of MetS are included in the model.40,43

Statistical Analyses
The PROPEL trial was powered for the primary outcome 
(mean percent weight loss from baseline to month 24), and 
the total sample size provided at least 97% power to detect 
a mean difference of 3.5% in the primary outcome between 
the ILI group and the usual care group at 24 months.26 The 
cardiometabolic risk factors reported herein are secondary 
outcomes. All outcomes were analyzed at all available time 
points in the context of repeated-measures linear mixed-
effects multilevel models, which included random cluster 
(clinic) effects. Covariates in the models included study arm, 
assessment time point, and their interaction, as well as age, 
sex, and race. Furthermore, binary medication use variables 
for hypertension, diabetes, and high cholesterol (use versus 
no use) at each time point were entered into the respective 
models as additional covariates. Clinic-level covariates (total 
number of patients, percentage of participants who were 
Black, percentage of patients on Medicaid) were nonsignifi-
cant, and results of analyses that included these additional 
covariates did not differ meaningfully; therefore, the mod-
els without these clinic-level covariates are reported. We 
conducted intention-to-treat analyses that included all par-
ticipants as randomized, regardless of the number of assess-
ments obtained, and used restricted maximum likelihood 
incorporating all available data. Missing values were assumed 
to be missing at random. To examine the heterogeneity of 
treatment effects, we conducted 3 prespecified subgroup 
analyses (Black versus other races, women versus men, and 

younger [21–42 years] versus middle-aged [43–56 years] and 
older [57–74 years] adults), as well as 2 explorative subgroup 
analyses (participants with diabetes versus without diabetes 
and with hypertension versus without hypertension).

In additional analyses, including only participants allocated 
to the ILI group, we used mixed linear regression models to 
estimate the effect of percent weight change (the primary 
outcome of the PROPEL trial26,27) on change in cardiometa-
bolic risk factors. The random clustering effects of clinics were 
taken into account. Changes in weight and cardiometabolic 
risk factors at all available time points were entered into the 
models, allowing for different slopes at each time point. The 
regression model of predicted cardiometabolic risk factors for 
the ith ILI participant in clinic j at time k can be expressed as 
∆cardiovascular risk factor percent weighijk k k

ˆ ˆ ˆ= + ×α β tt changeijk j .+γˆ

Furthermore, we analyzed change in cardiometabolic out-
comes in the ILI group by categories of weight loss (<5%, 
5%−<10%, ≥10%).

All analyses were conducted with SAS version 9.4 (SAS 
Institute Inc, Cary, NC) for Windows with the significance 
level set to 0.05 (2 sided).

RESULTS
Participants
The PROPEL trial enrolled a total of 803 (67% Black; 
84% female) adults with a mean age of 49.4 years (SD, 
13.1 years) and a mean body mass index of 37.2 kg/m2 
(SD, 4.7 kg/m2) into the ILI (n=452) and the usual care 
(n=351) groups. Baseline characteristics are displayed 
in Table 1. There was a greater proportion of Black in-
dividuals, women, and participants with diabetes in the 
ILI group, and participants in the ILI group had signifi-
cantly lower FBG, total:HDL-C, and MetS-Z values and 
higher HDL-C values at baseline compared with those 
in usual care (all P≤0.03). One hundred thirty-three par-
ticipants (16.6%) were lost to follow-up at 24 months 
for various reasons. Eighteen clinics (9 in each group) 
and 803 participants (452 in ILI and 351 in usual care) 
were included in the primary analysis (Figure 1).

Change in Outcome Measures
As recently demonstrated,27 the ILI group (−4.99% [95% 
CI, −6.02% to −3.96%]) lost more weight than the usu-
al care group (−0.48% [95% CI, −1.57% to 0.61%]), 
with a mean difference of −4.51% (95% CI, −5.93% to 
−3.10%) between the groups (P<0.01). Table 2 shows 
the change in cardiometabolic risk factors over 2 years. 
FBG decreased from baseline to 12 months (−4.5 mg/
dL [standard error (SE), 2.1 mg/dL]; P=0.04) but not 24 
months (−0.8 mg/dL [SE, 2.1 mg/dL]; P=0.70) in the ILI 
group. In the usual care group, FBG did not change sig-
nificantly at either time point (all P>0.20), leading to a 
significant mean difference of −7.1 mg/dL (SE, 2.4 mg/
dL; P<0.01) at 12 months and −0.8 mg/dL (SE, 2.5 mg/
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dL; P=0.76) at 24 months in favor of the ILI group. HDL-
C increased in the ILI group by 4.7 mg/dL (SE, 0.6 mg/dL; 
P<0.01) at 12 months and by 4.3 mg/dL (SE, 0.7 mg/dL; 
P<0.01) at 24 months but did not change in the usual 
care group at either time point. The mean difference in 
HDL-C between the 2 groups was 4.1 mg/dL (SE, 0.8 
mg/dL; P<0.01) at 12 months and 4.6 mg/dL (SE, 0.8 
mg/dL; P<0.01) at 24 months, both in favor of the ILI 
group. Similarly, we found a significant mean difference 
in total:HDL-C ratio between the 2 groups at both time 
points with a reduction in the ILI group relative to the 
usual care group of −0.29 (SE, 0.07 mg/dL; P<0.01) at 
12 months and of −0.31 (SE, 0.08 mg/dL; P<0.01) at 24 
months. Furthermore, MetS-Z values were decreased in 
the ILI group at 12 months (−0.35 [SE, 0.06]; P<0.01) 
and 24 months (−0.20 [SE, 0.06]; P<0.01), whereas they 
did not change in the usual care group at either time 
point. The mean difference of the change in MetS-Z 
between the groups was −0.40 (SE, 0.07; P<0.01) at 
12 months and −0.21 (SE, 0.07; P=0.01) at 24 months, 
both in favor of the ILI group. There were no signifi-
cant differences in total cholesterol, LDL-C, non–HDL-C, 
triglycerides, SBP, DBP, or MAP between the 2 groups 
at any time point (all P≥0.11). We conducted 2 sensi-
tivity analyses: (1) excluding all data for time points at 
which participants reported not having taken their BP 
or diabetes medication before the study visit (Table I in 
the Data Supplement) and (2) excluding all outliers (±3 
SD of the change in the respective outcome) from the 
analysis (Table II in the Data Supplement). For BP and 
FBG, only those outliers who also reported not having 
taken their respective medication before the study visit 
were excluded. In general, the results for the 2 sensitiv-
ity analyses did not differ meaningfully from the main 
analysis (Table 2); however, in contrast to the main anal-
ysis, sensitivity analysis 2 yielded a significant increase in 
total cholesterol in the ILI group relative to the usual care 
group with a mean difference of 6.6 mg/dL (SE, 2.0 mg/
dL; P<0.01) at 24 months.

Subgroup Analyses
A potential race effect was found for FBG at 12 months 
in that a significant difference between usual care and 
ILI was shown for Black participants but not for other 
races (Table III in the Data Supplement). Women and 
men responded overall similarly to the intervention; 
however, for HDL-C, the difference between usual care 
and ILI was nearly twice as large in men compared with 
women (both time points), and for FBG at 12 months, 
the difference between groups was 5 times larger in 
men than in women (Table IV in the Data Supplement). 
For total:HDL-C ratio and Mets-Z (both at 24 months), 
a significant difference between groups was found 
for women but not for men. When these sex-based 

Table 1. Participant Characteristics at Baseline

 UC ILI All

Participants, n (%) 351 (43.7) 452 (56.3) 803

Race, n (%)

    Black 208 (59.3) 332 (73.5)* 540 (67.3)

    White 113 (32.2) 95 (21.0)* 208 (25.9)

    Other 30 (8.5) 25 (5.5) 55 (6.8)

Sex, n (%)

    Male 71 (20.2) 54 (11.9)* 125 (15.6)

    Female 280 (79.8) 398 (88.1)* 678 (84.4)

Diabetes, n (%) 104 (29.6) 103 (22.8)* 207 (25.8)

Hypertension, n (%) 196 (55.8) 237 (52.4) 433 (53.9)

Hypercholesterolemia, 
n (%)

257 (73.2) 306 (67.7) 563 (70.1)

Age, y 50.2±13.6 48.8±12.7 49.4±13.1

Body weight, kg 102.7±17.0 101.6±16.4 102.1±16.7

Body mass index, 
kg/m2

37.2±4.8 37.3±4.6 37.2±4.7

Waist circumference, 
cm†

113.9±12.6 113.1±12.4 113.4±12.5

FBG, mg/dL‡ 112.3±40.2 106.4±31.9* 109.0±35.8

Total cholesterol, 
mg/dL§

180.0±36.7 179.6±37.5 179.8±37.1

LDL-C, mg/dL‖ 106.7±31.5 105.7±32.8 106.2±32.2

HDL-C, mg/dL# 47.8±14.4 50.5±14.4* 49.3±14.4

Non–HDL-C, mg/dL** 132.0±35.6 128.5±37.1 130.1±36.4

Total:HDL-C ratio†† 4.04±1.40 3.80±1.38* 3.91±1.39

Triglycerides, mg/dL‡‡ 131.6±69.4 125.2±72.8 128.0±71.3

SBP, mm Hg 122.6±16.5 123.1±16.3 122.9±16.4

DBP, mm Hg 78.4±10.6 79.7±10.6 79.1±10.6

MAP, mm Hg 93.1±11.4 94.2±11.4 93.7±11.4

MetS-Z§§ 1.05±1.18 0.87±0.96* 0.95±1.06

Values are mean±SD when appropriate.
DBP indicates diastolic blood pressure; FBG, fasting blood glucose; HDL-C, 

high-density lipoprotein cholesterol; ILI, intensive lifestyle intervention; LDL-C, 
low-density lipoprotein cholesterol; MAP, mean arterial pressure; MetS-Z, 
metabolic syndrome z score; SBP, systolic blood pressure; and UC, usual care.

*Significantly different from UC (P<0.05). We used χ2 to test for differences 
among the groups on categorical variables and t test to test for differences 
between ILI and UC on baseline values of continuous variables.

†Data available for 349 of 351 participants (UC), 451 of 452 participants 
(ILI), and 800 of 803 total.

‡Data available for 344 of 351 participants (UC), 439 of 452 participants 
(ILI), and 783 of 803 total.

§Data available for 340 of 351 participants (UC), 434 of 452 participants 
(ILI), and 774 of 803 total.

‖Data available for 328 of 351 participants (UC), 402 of 452 participants (ILI), 
and 730 of 803 total.

#Data available for 343 of 351 participants (UC), 438 of 452 participants 
(ILI), and 781 of 803 total.

**Data available for 339 of 351 participants (UC), 432 of 452 participants 
(ILI), and 771 of 803 total.

††Data available for 339 of 351 participants (UC), 432 of 452 participants 
(ILI), and 771 of 803 total.

‡‡Data available for 333 of 351 participants (UC), 411 of 452 participants 
(ILI), and 744 of 803 total.

§§Data available for 306 of 351 participants (UC), 393 of 452 participants 
(ILI), and 699 of 803 total.
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subgroup analyses are interpreted, the markedly smaller 
sample of men (20.2% men in usual care, 11.9% men 
in ILI, 15.6% men overall) should be noted, which likely 
contributed to the substantial variability in the data for 
men for all outcomes. Furthermore, there was a poten-
tial age effect for FBG with a significant reduction in ILI 
compared with usual care only in older adults (Table V 
in the Data Supplement), noting that FBG in younger 
participants in both groups increased substantially by 
≈20 mg/dL (P<0.01 for all) at both time points (data not 
shown). Similarly, only older adults in ILI had decreased 
total:HDL-C ratio and MetS-Z significantly at both time 
points compared with those in usual care, showing a 
substantial reduction in MetS-Z compared with the oth-
er age groups. A potential diabetes-dependent treat-
ment effect was found; only participants with diabetes 

showed a significant difference in FBG between usual 
care and ILI at 12 months (Table VI in the Data Supple-
ment), which was likely driven by a substantial decrease 
of 15.6 mg/dL (SE, 7.5 mg/dL; P=0.05; data not shown) 
in the ILI group. At 24 months, the mean difference 
in FBG between usual care and ILI among those with 
diabetes was no longer significant. Furthermore, signifi-
cant reductions in total:HDL-C ratio and MetS-Z in the 
ILI group compared with the usual care group at both 
time points were found only for individuals without 
diabetes. A significant difference in SBP, DBP, and MAP 
between usual care and ILI was found only for individu-
als without hypertension and only for some but not all 
of the time points (Table VII in the Data Supplement).

The regression models revealed significant direct 
associations between percent weight change and 

Figure 1. Participant flow through the PROPEL trial (Promoting Successful Weight Loss in Primary Care in Louisiana).
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change in FBG (month 12: B=0.59, SE=0.20, P<0.01; 
month 24: B=0.80, SE=0.19, P<0.01; Figure 2A), MetS-
Z (month 12: B=0.04, SE=0.01, P<0.01; month 24: 

B=0.05, SE=0.01, P<0.01; Figure 2C), and total:HDL-C 
ratio (month 12: B=0.02, SE=0.01, P<0.01; month 24: 
B=0.03, SE=0.01, P<0.01; Figure 2D). Furthermore, we 

Table 2. Change in Cardiometabolic Risk Factors Over 2 Years

 UC ILI Difference  P value

FBG, mg/dL

    At 12 mo 2.6 (−1.5 to 6.7) −4.5 (−8.9 to −0.1) −7.1 (−12.0 to −2.1) <0.01*

    At 24 mo 0.0 (−4.4 to 4.3) −0.8 (−5.4 to 3.7) −0.8 (−6.2 to 4.6) 0.76

Total cholesterol, mg/dL

    At 12 mo 0.8 (−3.2 to 4.9) 2.9 (−1.2 to 7.0) 2.0 (−3.0 to 7.0) 0.40

    At 24 mo 0.8 (−3.6 to 5.1) 5.2 (0.8 to 9.5) 4.4 (−1.1 to 9.8) 0.11

LDL-C, mg/dL

    At 12 mo 1.3 (−2.2 to 4.7) 1.2 (−2.5 to 4.9) −0.1 (−4.4 to 4.2) 0.97

    At 24 mo 1.9 (−1.9 to 5.7) 3.5 (−0.4 to 7.4) 1.6 (−3.2 to 6.4) 0.49

HDL-C, mg/dL

    At 12 mo 0.6 (−0.7 to 1.9) 4.7 (3.3 to 6.0) 4.1 (2.4 to 5.7) <0.01*

    At 24 mo −0.3 (−1.7 to 1.1) 4.3 (2.9 to 5.7) 4.6 (2.9 to 6.3) <0.01*

Non–HDL-C, mg/dL

    At 12 mo 1.0 (−3.0 to 5.0) −0.5 (−4.5 to 3.6) −1.4 (−6.4 to 3.6) 0.55

    At 24 mo 1.7 (−2.7 to 6.1) 1.9 (−2.5 to 6.2) 0.2 (−5.4 to 5.8) 0.95

Total:HDL-C ratio

    At 12 mo 0.01 (−0.11 to 0.13) −0.28 (−0.41 to −0.16) −0.29 (−0.44 to −0.14) <0.01*

    At 24 mo 0.11 (−0.03 to 0.24) −0.20 (−0.34 to −0.06) −0.31 (−0.47 to −0.14) <0.01*

Triglycerides, mg/dL

    At 12 mo −0.2 (−11.2 to 10.8) −7.8 (−18.9 to 3.3) −7.6 (−21.4 to 6.3) 0.26

    At 24 mo −3.6 (−14.5 to 7.4) −9.3 (−20.2 to 1.7) −5.7 (−19.4 to 8.0) 0.39

SBP, mm Hg

    At 6 mo 1.2 (−1.5 to 4.0) −0.2 (−2.8 to 2.4) −1.4 (−4.1 to 2.2) 0.42

    At 12 mo 2.1 (−0.7 to 4.9) 0.4 (−2.3 to 3.0) −1.8 (−4.4 to 2.0) 0.33

    At 18 mo 1.1 (−1.8 to 4.0) −0.2 (−2.9 to 2.5) −1.3 (−4.1 to 2.5) 0.48

    At 24 mo 0.4 (−2.5 to 3.3) 1.9 (−0.8 to 4.7) 1.6 (−1.3 to 5.3) 0.41

DBP, mm Hg

    At 6 mo 0.2 (−1.6 to 2.1) −0.9 (−2.7 to 0.8) −1.2 (−3.5 to 1.2) 0.32

    At 12 mo 0.2 (−1.7 to 2.1) −1.3 (−3.1 to 0.4) −1.5 (−3.9 to 0.9) 0.21

    At 18 mo −0.7 (−2.6 to 1.1) −1.8 (−3.6 to 0.0) −1.1 (−3.5 to 1.4) 0.37

    At 24 mo −0.6 (−2.5 to 1.3) −0.6 (−2.4 to 1.2) 0.0 (−2.4 to 2.5) 0.97

MAP, mm Hg

    At 6 mo 0.6 (−1.5 to 2.6) −0.7 (−2.6 to 1.3) −1.2 (−3.9 to 1.4) 0.35

    At 12 mo 0.8 (−1.3 to 2.9) −0.8 (−2.8 to 1.2) −1.6 (−4.3 to 1.1) 0.24

    At 18 mo −0.1 (−2.3 to 2.0) −1.3 (−3.3 to 0.7) −1.2 (−3.9 to 1.6) 0.40

    At 24 mo −0.3 (−2.5 to 1.9) 0.3 (−1.8 to 2.3) 0.6 (−2.2 to 3.4) 0.69

MetS-Z

    At 12 mo 0.05 (−0.07 to 0.17) −0.35 (−0.48 to −0.23) −0.40 (−0.54 to −0.26) <0.01*

    At 24 mo 0.01 (−0.12 to 0.13) −0.20 (−0.33 to −0.07) −0.21 (−0.36 to −0.06) 0.01*

Values are mean (95% CI). 
DBP indicates diastolic blood pressure; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; ILI, intensive lifestyle 

intervention; LDL-C, low-density lipoprotein cholesterol; MAP, mean arterial pressure; MetS-Z, metabolic syndrome z score; SBP, systolic 
blood pressure; and UC, usual care.

*Statistically significant (P<0.05).
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found a significant inverse association between per-
cent weight change and the change in HDL-C (month 
12: B=−0.30, SE=0.07, P<0.01; month 24: B=−0.42, 
SE=0.06, P<0.01; Figure  2B). The significant associa-
tions were consistent across time. To improve readabil-
ity, the random clustering effects of the clinics, yielding 
9 regression lines (1 for each clinic) for each time point, 
are not incorporated into Figure 2. For completeness, 
Figure I in the Data Supplement illustrates the associa-
tions presented in Figure 2 with the inclusion of the 
random clustering effects of the clinics. Associations 
between percent weight change and changes in DBP, 
MAP, and triglycerides were not consistent across time, 
and changes in SBP, total cholesterol, LDL-C, and non–
HDL-C were not predicted by percent weight change 
at any time point. Table  3 additionally shows the 
change in cardiometabolic risk factors in the ILI group 
over 2 years by categories of weight loss. Although 
participants with <5% weight loss showed no signifi-
cant changes in any of the outcomes at any time point 

(except HDL-C at 12 months), weight loss ≥5% and 
particularly ≥10% was associated with significant im-
provements in FBG, HDL-C, total:HDL-C ratio, triglyc-
erides, and Mets-Z, with changes in outcomes seen at 
≥10% weight loss generally exceeding those at ≥5%−  
<10% weight loss. Effects for other outcomes were 
not consistent across time.

DISCUSSION
The present results show that a high-intensity lifestyle-
based obesity treatment program, consistent with the 
2013 AHA/ACC/TOS guidelines and delivered in prima-
ry care among an underserved population, elicits sig-
nificant improvements in several cardiometabolic out-
comes, highlighting the clinical relevance of the PROPEL 
intervention. Specifically, the PROPEL intervention led to 
reductions in FBG over 12 months, which were, howev-
er, not sustained over 24 months. Furthermore, the ILI 
group showed beneficial increases in HDL-C at 12 and 

Figure 2. Association between percent weight change and change in fasting glucose levels (A), high-density lipoprotein (HDL) cholesterol (B), meta-
bolic syndrome severity z score (C), and total:HDL cholesterol ratio (D).
Mixed linear regression models included weight change and change in the respective cardiometabolic risk factor for all available time points, producing different 
slopes and 95% CIs (shaded area) of the regression lines at each time point. To improve readability, the random clustering effects of the clinics are not incorpo-
rated into the graphs because this would yield 9 regression lines (1 for each clinic) for each time point.
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24 months compared with the usual care group that 
remained relatively unchanged at both time points. This 
increase in HDL-C likely drove the significant beneficial 

decrease in total:HDL-C ratio in the ILI group compared 
with the usual care group at both time points, particu-
larly because total cholesterol, LDL-C, and non–HDL-C 

Table 3. Change in Cardiometabolic Risk Factors in the ILI Group Over 2 Years, by Categories of Weight Loss

 <5% Weight loss 5%−<10% Weight loss ≥10% Weight loss

FBG, mg/dL

    At 12 mo −0.5 (−6.5 to 5.5) −10.5 (−16.0 to −5.1)* −7.2 (−11.3 to −3.0)*

    At 24 mo 3.4 (−2.1 to 8.9) −5.1 (−11.2 to 1.0) −10.9 (−15.7 to −6.0)*

Total cholesterol, mg/dL

    At 12 mo 1.0 (−4.4 to 6.4) 5.6 (−0.4 to 11.6) 3.7 (−2.3 to 9.6)

    At 24 mo 3.7 (−1.1 to 8.5) 4.7 (−1.9 to 11.4) 8.1 (1.1 to 15.0)*

LDL-C, mg/dL

    At 12 mo −0.3 (−5.3 to 4.7) 4.6 (−0.5 to 9.7) −0.5 (−7.4 to 6.4)

    At 24 mo 3.7 (−0.7 to 8.1) 1.9 (−3.7 to 7.6) 1.0 (−6.8 to 8.9)

HDL-C, mg/dL

    At 12 mo 2.1 (0.2 to 3.9)* 4.4 (2.7 to 6.2)* 7.5 (5.7 to 9.4)*

    At 24 mo 1.6 (−0.1 to 3.3) 4.3 (2.4 to 6.3)* 9.4 (7.2 to 11.6)*

Non–HDL-C, mg/dL

    At 12 mo −0.7 (−5.6 to 4.3) 1.9 (−3.3 to 7.0) −4.1 (−9.9 to 1.8)

    At 24 mo 3.0 (−1.5 to 7.5) 0.0 (−5.8 to 5.7) −4.0 (−11.1 to 3.0)

Total:HDL-C ratio

    At 12 mo −0.13 (−0.30 to 0.05) −0.18 (−0.33 to −0.03)* −0.48 (−0.65 to −0.31)*

    At 24 mo −0.02 (−0.18 to 0.14) −0.25 (−0.42 to −0.08)* −0.52 (−0.72 to −0.31)*

Triglycerides, mg/dL

    At 12 mo −1.6 (−19.6 to 16.5) −7.8 (−18.3 to 2.7) −19.5 (−33.5 to −5.6)*

    At 24 mo −0.7 (−17.4 to 16.0) −12.0 (−23.4 to −0.5)* −25.3 (−41.0 to −9.7)*

SBP, mm Hg

    At 6 mo 2.0 (−1.2 to 5.1) −0.5 (−3.2 to 2.2) −2.1 (−6.2 to 1.9)

    At 12 mo 1.0 (−2.1 to 4.2) 0.4 (−2.4 to 3.2) −0.6 (−4.8 to 3.5)

    At 18 mo 0.2 (−2.8 to 3.2) 0.2 (−2.7 to 3.1) −2.3 (−6.6 to 2.0)

    At 24 mo 2.9 (0.0 to 5.7) −1.1 (−4.2 to 1.9) 1.6 (−2.9 to 6.1)

DBP, mm Hg

    At 6 mo 1.2 (−0.8 to 3.2) −1.5 (−3.5 to 0.6) −3.0 (−5.4 to −0.6)*

    At 12 mo −0.5 (−2.5 to 1.6) −1.5 (−3.6 to 0.6) −2.3 (−4.8 to 0.2)

    At 18 mo −1.2 (−3.1 to 0.8) −1.2 (−3.4 to 1.0) −3.9 (−6.5 to −1.3)*

    At 24 mo 0.6 (−1.2 to 2.5) −2.9 (−5.2 to −0.6)* −1.4 (−4.1 to 1.3)

MAP, mm Hg

    At 6 mo 1.4 (−0.8 to 3.7) −1.1 (−3.3 to 1.0) −2.7 (−5.6 to 0.1)

    At 12 mo 0.0 (−2.3 to 2.3) −0.9 (−3.1 to 1.3) −1.8 (−4.7 to 1.2)

    At 18 mo −0.7 (−2.9 to 1.5) −0.8 (−3.0 to 1.5) −3.4 (−6.5 to −0.4)*

    At 24 mo 1.4 (−0.7 to 3.5) −2.3 (−4.7 to 0.0) −0.4 (−3.6 to 2.7)

MetS-Z

    At 12 mo −0.07 (−0.20 to 0.06) −0.49 (−0.63 to −0.34)* −0.67 (−0.80 to −0.54)*

    At 24 mo 0.11 (−0.01 to 0.23) −0.41 (−0.57 to −0.24)* −0.79 (−0.94 to −0.64)*

Values are mean (95% CI).
DBP indicates diastolic blood pressure; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; ILI, intensive 

lifestyle intervention; LDL-C, low-density lipoprotein cholesterol; MAP, mean arterial pressure; MetS-Z, metabolic syndrome z 
score; and SBP, systolic blood pressure.

*Significant (P<0.05) change from baseline.
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did not change during the intervention in either group. 
The PROPEL intervention yielded improvements in spe-
cific disease risk over time, as demonstrated by the sig-
nificant decrease in MetS-Z in the ILI group compared 
with the usual care group at 12 and 24 months. Partici-
pants in the ILI group with more weight loss during the 
24-month intervention period showed greater improve-
ments in FBG, HDL-C, total:HDL-C ratio, triglycerides, 
and MetS-Z than those with less weight loss, as shown 
by the regression model and the analysis of change in 
cardiometabolic outcomes by weight loss category.

Similar to our results, the primary care–based be-
havioral lifestyle intervention of the POWER-UP trial 
(Improving the Management of Obesity in Primary 
Care Practice), which showed a mean weight loss of 
4.7% at 24 months (PROPEL, 5.0% at 24 months27), 
found a significant difference in FBG between the en-
hanced lifestyle intervention group and the control 
group at 12 but not 24 months.23 However, POWER-
UP found a decrease in FBG in the intervention group 
at both time points, whereas we saw significant re-
ductions in the ILI group at 12 months only. FBG in the 
control groups of both trials remained relatively stable 
throughout the entire study.

The lack of change in FBG from baseline to 24 months 
as observed for the ILI group in PROPEL is comparable 
to the DPP (mean weight loss of 5.8% at 24 months13), 
which was conducted in academic health centers. DPP 
likewise did not find changes in FBG from baseline to 24 
months in the lifestyle intervention group (baseline val-
ues, ≈106 mg/dL, comparable to PROPEL); however, the 
DPP found a significant mean difference of ≈5 mg/dL 
between the groups at 24 months.15 Look AHEAD, also 
conducted in academic health centers (mean weight 
loss, 6.4% at 24 months14), found decreases in FBG at 
12 months in both the lifestyle intervention group and 
control group, with a significantly greater decrease in 
the intervention group (mean difference, ≈14 mg/dL), 
however.44 It is noteworthy that Look AHEAD specifi-
cally enrolled individuals with type 2 diabetes who were 
≈10 years older than PROPEL participants on average. 
Further, improvements in HDL-C in the ILI group relative 
to the usual care group in PROPEL were approximately 
twice as large compared with the observed increases in 
Look AHEAD at 12 and 24 months (≈2 mg/dL for both 
time points)17,44; the DPP and POWER-UP trials did not 
find a significant difference between the intervention 
and respective control groups at any time point.16,23 The 
improvements in HDL-C are of particular interest be-
cause HDL-C is less affected by statins and nonstatin 
cholesterol-lowering drugs than LDL-C and all apolipo-
protein B-containing lipoproteins,45,46 and changes in 
HDL-C are consequently more likely to be attributable 
to the ILI program.47 Although these results are unde-
niably positive, it has to be emphasized that HDL-C is 
more a marker than a mediator of cardiovascular risk. 

Although higher HDL-C is generally strongly associ-
ated with a lower CVD risk in epidemiological stud-
ies, in intervention trials, increases in HDL-C through 
pharmacological means or because of weight loss or 
exercise do not consistently lead to improvements in 
hard CVD end points.48,49 It has been suggested that the 
total:HDL-C ratio may be a superior predictor of CVD 
event risk compared with classic lipid parameters,50,51 
and the beneficial decreases in this important cumula-
tive index of the atherogenic risk in our study therefore 
underline the clinical relevance of the present findings. 
The significant reductions in MetS-Z at both time points 
in the ILI group compared with the usual care group 
additionally demonstrate the cardiometabolic risk re-
duction that was achieved by the high-intensity lifestyle 
intervention in PROPEL. The effect was comparable, 
albeit slightly attenuated, compared with the lifestyle 
intervention group in DPP, which showed decreases of 
0.40 (PROPEL, 0.35) and 0.31 (PROPEL, 0.20) at 12 and 
24 months, respectively.38 Decreases of the magnitude 
reported for the DPP lifestyle intervention group are 
associated with a significantly reduced 5-year risk of 
diabetes (hazard ratio, 0.57),38 and a similar or slightly 
blunted protective effect can consequently be assumed 
for the PROPEL ILI group. Although the demonstrated 
improvements in cardiometabolic risk factors speak to 
the success of the PROPEL ILI program and sustained 
improvements in these risk factors are likely beneficial 
for long-term CVD risk, it has to be acknowledged that, 
to date, defacto reductions in CVD events through ILIs 
have not yet been shown.16,17

It is further noteworthy that despite the clinically 
relevant weight loss and accompanying improvements 
in metabolic parameters in PROPEL, there were no sig-
nificant improvements in BP (SBP, DPB, or MAP) at any 
time point. This is different from large trials conducted 
in academic health centers such as Look AHEAD (aver-
age baseline BP, 129/70 mm Hg)17,44 and DPP (average 
baseline BP, 124/78 mm Hg),16 which both showed sig-
nificant reductions in SBP and DBP between the life-
style intervention group and control group at 12 and 
24 months. Similar to our results, POWER-UP (average 
baseline BP, 121/76 mm Hg), which likewise was con-
ducted in primary care clinics, did not find significant 
changes in BP between the intervention group and 
the respective control group. The specific reason for 
this lack of effect in PROPEL is of course conjecture; 
however, >50% of participants were prescribed antihy-
pertensive medication at baseline and throughout the 
trial. The concurrent drug treatment, along with the 
relatively normal mean BP values at baseline (123/80 
mm Hg in ILI, 123/78 mm Hg in usual care), indicating 
a predominantly well-controlled BP, possibly masked 
any BP-lowering effect achieved by the PROPEL inter-
vention. It is further surprising that we did not find 
any improvements in LDL-C and non–HDL-C after the 
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24-month intervention, especially because ≈70% of 
participants had hypercholesterolemia at baseline. Akin 
to BP, however, a substantial proportion of participants 
(≈30%) was prescribed cholesterol-lowering medica-
tion at baseline and throughout the trial. This likely con-
tributed to relatively stable values in all apolipoprotein 
B–containing lipoproteins that may have overshadowed 
any potentially cholesterol-lowering effect elicited by 
the PROPEL intervention.

There were no race differences in the change in car-
diometabolic risk factors over 24 months. This is inter-
esting because the main outcomes article showed less 
weight loss in Black individuals compared with individu-
als of other races,27 and an attenuated response in car-
diometabolic risk factors would consequently be con-
ceivable. Similarly, in this pragmatic trial, there were no 
notable differences in outcomes between women and 
men, participants with diabetes and without diabetes, 
or participants with hypertension and without hyper-
tension over 24 months.

We did, however, find an age effect for FBG and 
Mets-Z with significant improvements in the ILI group 
compared with the usual care group at both time points 
only in older adults. This is congruent with findings 
from DPP52 and suggests that the effectiveness of the 
ILI of the trial in preventing the deterioration of glucose 
tolerance is enhanced in older adults (≥60 years).

There is a gap between obesity management guide-
lines and what is currently implemented in primary 
care. Treatment models based on the AHA/ACC/TOS 
guidelines adapted to real-life settings that add effec-
tive delivery methods for obesity treatment in primary 
care are needed. Results from our trial demonstrate 
that significant weight loss in primary care is possible 
by the addition of a health coach to the collaborative 
care team. The PROPEL approach is scalable and likely 
achievable in most primary care settings. However, for 
broad implementation of such approaches and to al-
low underserved populations in particular to receive ef-
fective obesity and concomitant disease risk treatment 
more easily, the Centers for Medicare & Medicaid Ser-
vices reimbursement regulations need to be extended 
to include coverage of health coach–delivered obesity 
treatment in primary care, as used in PROPEL. To date, 
the Centers for Medicare & Medicaid Services reim-
burses intensive behavioral therapy for obesity only if 
delivered by a primary care practitioner in the context 
of a hospital, clinic, or physician’s office,33 making the 
implementation of approaches to reduce health inequi-
ties unnecessarily difficult.

Strengths and Limitations
A major strength of PROPEL is its sample, consisting of 
a racially diverse, low-income population that typically 
lacks access to effective weight loss treatment in clinical 

research or primary care. The minimal inclusion/exclu-
sion criteria of the trial allow broad generalizability to 
other underserved populations across the United States. 
Furthermore, the present results underline the effec-
tiveness of a comprehensive and scalable weight loss 
and cardiometabolic risk factor treatment model that 
applies to many primary care settings. Last, the cluster-
randomized design of the trial minimized contamina-
tion effects between the 2 study arms. A limitation of 
the trial, as is often the case in lifestyle interventions,53 
is that the sample was mostly women, which limits the 
generalizability of the present results for both sexes. A 
further limitation is that although the Cholestech LDX 
Analyzer measures glucose, total cholesterol, HDL-C, 
and triglycerides, the LDL-C levels are calculated from 
the total cholesterol, HDL-C, and triglyceride test re-
sults. To address this limitation, we calculated non–HDL-
C, which represents the cholesterol concentration of all 
atherogenic lipoproteins.36 Although we accounted for 
BP, glucose, and cholesterol medication use (use versus 
no use) at each time point, we were unable to measure 
changes in dose over time and medication adherence. 
These shortcomings may have influenced our results.

Conclusions
A pragmatic high-intensity lifestyle-based obesity treat-
ment program, consistent with the 2013 AHA/ACC/
TOS guidelines and delivered by trained health coaches 
in primary care, yielded significant improvements in 
several cardiometabolic risk markers in an underserved 
population over 24 months, which could translate into 
long-term reduction in CVD risk.
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Abstract
Context: Exercise can decrease central adiposity, but the effect of exercise dose and the relationship between central adiposity and exercise- 
induced compensation is unclear.
Objective: Test the effect of exercise dose on central adiposity change and the association between central adiposity and exercise-induced 
weight compensation.
Methods: In this ancillary analysis of a 6-month randomized controlled trial, 170 participants with overweight or obesity (mean ± SD body mass 
index: 31.5 ± 4.7 kg/m2) were randomized to a control group or exercise groups that reflected exercise recommendations for health (8 kcal/kg/ 
week [KKW]) or weight loss and weight maintenance (20 KKW). Waist circumference was measured, and dual-energy X-ray absorptiometry 
assessed central adiposity. Predicted weight change was estimated and weight compensation (weight change – predicted weight change) 
was calculated.
Results: Between-group change in waist circumference (control: .0 cm [95% CI, −1.0 to 1.0], 8 KKW: −.7 cm [95% CI, −1.7 to .4], 20 KKW: −1.3 cm 
[95% CI, −2.4 to −.2]) and visceral adipose tissue (VAT; control: −.02 kg [95% CI, −.07 to .04], 8 KKW: −.01 kg [95% CI, −.07 to .04], 20 KKW: −.04 kg 
[95% CI, −.10 to .02]) was similar (P ≥ .23). Most exercisers (82.6%) compensated (weight loss less than expected). Exercisers who compensated 
exhibited a 2.5-cm (95% CI, .8 to 4.2) and .23-kg (95% CI, .14 to .31) increase in waist circumference and VAT, respectively, vs those who did not 
(P < .01). Desire to eat predicted VAT change during exercise (β = .21; P = .03).
Conclusion: In the presence of significant weight compensation, exercise at doses recommended for health and weight loss and weight 
maintenance leads to negligible changes in central adiposity.
Key Words: physical activity, weight loss/reduction, abdominal obesity, visceral fat, energy intake, body composition
Abbreviations: ANCOVA, analysis of covariance; BMI, body mass index; DXA, dual-energy X-ray absorptiometry; E-MECHANIC, Examination of Mechanisms of 
Exercise-Induced Weight Compensation; ES, effect size; KKW, kcal/kg/week; VAT, visceral adipose tissue.
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More than two-thirds of the US population lives with over-
weight or obesity, which are characterized by an elevated 
body mass index (BMI) (1). Overweight and obesity are key 
risk factors for cardiometabolic disease development (2), 
and an established link between BMI and cardiometabolic dis-
ease risk exists (3). However, central adiposity, primarily vis-
ceral adipose tissue (VAT), is strongly associated with 
metabolic disease risk factors (eg, high blood glucose (4) 
and dyslipidemia (5)), cardiometabolic conditions (eg, meta-
bolic syndrome, type 2 diabetes (6), and cardiovascular dis-
ease (5)), and mortality (7). Additionally, some have shown 
central adiposity is more strongly related to metabolic diseases 
such as type 2 diabetes than fat stored in other regions (3, 6). 

Interventions that reduce central adiposity are therefore 
needed to prevent and treat metabolic disease and improve 
health span.

Aerobic exercise training can decrease central adiposity in 
individuals with overweight or obesity, regardless of age, 
sex, and ethnicity (8). However, the influence of aerobic exer-
cise dose on central adiposity is equivocal, with some showing 
that greater doses do not decrease markers of central adiposity 
(9, 10) and others suggesting that reductions in VAT are im-
proved at higher exercise doses (11, 12). Understanding the in-
fluence of exercise dose on central adiposity is crucial to help 
design optimal aerobic exercise regimens that enhance central 
adiposity outcomes. Thus, considering the conflicting 
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findings, large randomized controlled trials are needed to test 
the effect of exercise dose on change in central adiposity 
markers, including VAT, in individuals with overweight and 
obesity.

Exercise-induced weight compensation, which is actual 
weight loss lower than weight loss predicted based on the en-
ergy expenditure of exercise, is common (13, 14). Weight 
compensation can occur because of multiple behavioral and 
physiological factors, although substantial weight compensa-
tion during exercise is primarily caused by elevations in energy 
intake (13). The relationship between compensation and cen-
tral adiposity change during aerobic exercise is poorly under-
stood. Some have demonstrated that reductions in VAT 
during high volumes of exercise are attenuated when compen-
sation occurs through increased energy intake (15, 16), but the 
association between compensation and changes in central adi-
posity during exercise at doses similar to that recommended 
for health (700 to 1000 kcal/week) and weight loss and weight 
loss maintenance (∼2000 kcal/week) (17) has not been thor-
oughly studied. Moreover, the associations between central 
adiposity change and the mechanisms related to compensa-
tion—namely, increased energy intake, reduced energy ex-
penditure and physical activity, and maladaptive eating 
attitudes and behaviors—during exercise training are not 
well understood. Assessing the compensation-related predic-
tors of central adiposity change during exercise could pinpoint 
factors and/or constructs that may be targeted to enhance im-
provements in central adiposity.

This ancillary analysis had 2 primary aims. First, we tested 
the effect of aerobic exercise dose on changes in central adipos-
ity in individuals with overweight or obesity. Second, we exam-
ined the associations between central adiposity changes and 
compensation during exercise training at guidelines akin to 
those recommended for health and weight loss and weight 
loss maintenance. As an exploratory aim, we assessed if mech-
anisms related to exercise-induced compensation predict VAT 
change during exercise.

Methods
Study Design
The methods of the Examination of Mechanisms of 
Exercise-Induced Weight Compensation (E-MECHANIC) 
study (ClinicalTrials.gov: NCT01264406) have been detailed 
elsewhere (13, 18). Briefly, the study was a 6-month random-
ized controlled trial that took place at Pennington Biomedical 
Research Center after institutional review board approval. 
After the provision of written informed consent, participants 
recruited to the study were randomized (N = 198) to 1 of 3 
groups: a no-exercise control group, an exercise group that 
aimed to expend 8 kcal/kg/week (KKW) through exercise, or 
an exercise group that aimed to expend 20 KKW through ex-
ercise. The 8-KKW group reflected recommendations for gen-
eral health (∼700 kcal/week), whereas the 20-KKW group 
reflected recommendations for weight loss and weight loss 
maintenance (∼1760 kcal/week) (13, 17). A biostatistician de-
vised a 1:1:1 randomization ratio, and sex was stratified so 
that an equal number of males and females were randomized 
to each group. Randomization was concealed in an envelope 
until an interventionist or the study manager opened it with 
the participant. The participants and interventionists super-
vising exercise sessions were not blinded to group allocation, 
but the study investigators and the assessment team were 

because group allocation was not disclosed by the study man-
ager or interventionists. Recruitment and data collection oc-
curred from November 2010 to March 2015 (first 
participant enrolled 2011). Recruitment finished when the tar-
get sample size was recruited (13, 18).

Participants
Sedentary (not exercising >20 minutes on ≥ 3 days/week) in-
dividuals living with overweight or obesity (body mass index 
[BMI], ≥ 25 kg/m2-≤ 45 kg/m2) who were otherwise healthy 
were recruited for the trial. Further details on the participant 
exclusion criteria have been reported (13).

Intervention
Aerobic exercise training was conducted on a treadmill at an 
intensity that maintained participants within a heart rate range 
equivalent to 65% to 85% of baseline peak oxygen uptake. 
Participants in the 8-KKW group performed their complete ex-
ercise dose from the start. To acclimatize participants in the 
20-KKW group, participants expended 8 KKW through exer-
cise in week 1 and 14 KKW through exercise in week 2 before 
completing their complete dose (20 KKW of energy expend-
iture through exercise) from week 3 until the cessation of the 
study.

Exercise training was fully supervised and monitored. 
Participants were weighed weekly with a Tanita scale 
(Tanita Corporation, Arlington Heights, IL) and selected their 
exercise frequency (3, 4, or 5 sessions per week) to aid compli-
ance. The energy expenditure target of each session was calcu-
lated by dividing the prescribed exercise dose (8 KKW or 20 
KKW) by the exercise frequency. To meet the energy expend-
iture targets, the length of the exercise sessions varied. 
Real-time estimations of energy expenditure were calculated 
based on intensity and participant weight, and energy expend-
iture was measured periodically via a metabolic cart. 
Participants’ adherence to their exercise regimen was calcu-
lated as attained exercise energy expenditure divided by pre-
scribed exercise energy expenditure.

The control group received health information (eg, stress 
management, benefits of healthy foods), although they were 
instructed to maintain their baseline physical activity.

Outcome Measures
Body weight and waist circumference were measured at base-
line and follow-up. Assessments of body composition were 
performed by dual-energy X-ray absorptiometry (DXA) at 
baseline and follow-up using Lunar iDXA with Encore soft-
ware version 13.60 (GE Healthcare, Madison, WI, USA). 
DXA and Encore software quantified fat mass and body fat 
percentage for the whole body, trunk, arms, and legs, as well 
as VAT. The trunk-fat-to-limb-fat ratio (19) and VAT-to- 
total-fat ratio (20) were calculated as further assessments of 
central adiposity.

Compensation was calculated as actual weight change mi-
nus predicted weight change. Predicted weight at the end of 
the intervention was estimated using a validated dynamic en-
ergy balance model, which is a differential equation based on 
the first law of thermodynamics and accounts for metabolic 
adaptation and body composition changes during aerobic ex-
ercise training, overcoming the drawbacks of traditional pre-
dictions of weight during lifestyle regimens (21, 22). Predicted 
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change in body weight and body composition are in response 
to the change in energy expenditure resulting from an increase 
in physical activity expenditure, as derived from the literature 
(22). Compensation was not included in the dynamic energy 
balance model. Indeed, the predicted body weight and body 
composition changes represent changes without compensa-
tion, and hence the difference between model body weight 
predictions and observed body weight reflects the degree of 
weight compensation.

Several measures were conducted at baseline and follow-up 
to assess mechanisms related to compensation (13). Energy in-
take was determined through doubly labeled water. In the pri-
mary outcome manuscript, change in energy intake with 
doubly labeled water was adjusted for resting metabolic rate, 
although estimates were also made without adjustments and 
with adjustments for body composition (13, 23). Results in 
the present analysis were similar with all estimates of energy in-
take; thus, change in energy intake with adjustment for resting 
metabolic rate is reported. Resting metabolic rate was exam-
ined via Max II metabolic carts (AEI Technologies), and steps 
per day were measured with SenseWear armbands (Body 
Media). The Eating Inventory assessed dietary restraint, disin-
hibition, and hunger (24). The Food Craving Inventory as-
sessed intense desires to consume certain foods irrespective 
of hunger (only total score was used in the present analysis) 
(25). The Food Preference Questionnaire determined food 
preferences for certain food groups, as well as a fat preference 
score (only fat preference score was used in the current ana-
lysis) (26). Further, retrospective visual analogue scales as-
sessed perceptions of appetite (27), the Compensatory 
Health Beliefs Scale measured compensatory health-related 
beliefs (eg, justifying eating because of exercise) (28), and the 
Activity Temperament Questionnaire examined participants’ 
tendency to move (29).

Statistical Analysis
The current analysis assesses secondary endpoints of the 
E-MECHANIC trial. Because our secondary endpoints ana-
lysis requires follow-up data and adherence to the exercise 
intervention, participants assessed in the main analysis of 
the primary manuscript (ie, individuals with baseline and fol-
low up data and ≥75% adherence to their exercise regimen) 
were considered (13). Including individuals with ≥75% ad-
herence negated the influence of adherence as a possible con-
founder during between-group comparisons. In total, 171 
participants satisfied the follow-up and adherence criteria, 
but 1 of the 171 participants did not have a baseline DXA 
measurement. As a result, our reference dataset for this study 
was restricted to 170 participants (Supplemental Figure 1 
(30)).

All statistical analyses were performed in SPSS version 28, 
with the significance level set to α = .05. Differences in change 
scores among the 3 study groups were examined by 1-way ana-
lysis of covariance (ANCOVA), with adjustments for sex and 
age. Subgroup analyses were performed to examine variations 
in study group differences between: (1) those with high waist 
circumference (≥102 cm for males,  ≥ 88 cm for females) (31) 
and healthy waist circumference (<102 cm for males, 
<88 cm for females) at baseline; (2) males and females; and 
(3) Black participants and participants of other races. These 
subgroup analyses were conducted via 2-way ANCOVA ad-
justed for sex (except for the male vs female subgroup analysis), 

age, and baseline values. Adjusted post hoc comparisons 
(Holm-Bonferroni) were performed when ANCOVA omnibus 
tests were significant to ascertain where differences lay. In exer-
cisers, percent compensation (percentage compensation = [actual 
weight change – predicted weight change]/predicted weight 
loss) was calculated (13). Differences in waist circumference 
change, VAT change, VAT-to-total-fat ratio change, and 
trunk-fat-to-limb-fat ratio change were examined between 
those who showed positive compensation (percent compensa-
tion > 0%) and those with zero or negative compensation (per-
cent compensation ≤ 0%) via 1-way ANCOVA adjusted for 
age, sex, and baseline values. Multiple linear regression models 
adjusted for sex, age, and baseline values also assessed the as-
sociation between change in central adiposity indices and per-
cent compensation. Pearson correlations tested the 
relationship between change in VAT and change in mecha-
nisms related to compensation, and significant variables were 
then entered into a multiple linear regression model along 
with age, sex, and VAT at baseline to assess the predictors of 
VAT change in exercisers. We calculated absolute Cohen’s d 
effect size (ES) values to supplement between-group compari-
sons (32). Comparisons were considered negligible, small, me-
dium, and large when ES values were <.20, .20 to .49, .50 to 
.79, and ≥.80, respectively, based on previous literature (32). 
Unless noted otherwise, values from inferential tests are esti-
mated marginal mean (95% CI), whereas descriptive data 
are mean (SD).

Results
Descriptive
Descriptive characteristics of the participants included in the 
present analysis are shown in Table 1. Characteristics were 
similar when the full recruited sample (N = 198) was observed 
(data not shown). Most of the participants were female 
(N = 123; 72.4%) and White (N = 113; 66.5%). The mean 
age, weight, and BMI of the participants was 48.8 (±11.4) 
years, 88.6 (±15.4) kg, and 31.5 (±4.7) kg/m2, respectively.

Intervention Data
The 8-KKW group completed 101.0% (±6.3%) of prescribed 
exercise energy expenditure and the 20-KKW group completed 
98.1% (±6.0%) of prescribed exercise energy expenditure, 
demonstrating the high adherence in both groups. Total energy 
expended by the 8-KKW group and 20-KKW group during ex-
ercise was 17 114 (±3175) kcal and 38 992 (±7308) kcal, re-
spectively. On average, 680 (±123) kcal/week were expended 
by the 8-KKW group and 1521 (±263) kcal/week were ex-
pended by the 20-KKW group. Additional training data are 
shown in Supplemental Table 1 (30).

The average percent compensation shown by the 8-KKW 
group and the 20-KKW group was 70.0% (±129.2%) and 
58.0% (±61.7%), respectively, and overall, 90 exercise par-
ticipants (82.6%) showed positive compensation (ie, lost 
less weight than expected). Those who displayed positive 
compensation and those who displayed zero or negative com-
pensation showed similar baseline characteristics (P ≥ .17; 
Supplemental Table 2 (30)).

Weight and Total Body Composition Change
A difference between groups was identified for weight and 
BMI change (P = .02), with the 20-KKW group exhibiting a 
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decrease compared with control (P < .03; ES ≥ .51; Table 2). 
Akin to results reported in the primary outcomes manuscript 
(13), total fat mass and body fat percent was reduced in the 
20-KKW group compared with other groups (P < .05; 
ES ≥ .44), whereas no differences were seen for total lean 
body mass (P = .51; ES ≤ .22).

Regional Adiposity Change
No significant between-group difference was observed for 
change in waist circumference (P = .23), despite confidence 
interval data indicating a within-group reduction in the 
20-KKW group (Table 2). Changes in VAT, the 
VAT-to-total-fat ratio, and the trunk-fat-to-limb-fat ratio 
were similar in all groups, with negligible ES values seen (all 
P ≥ .65; all ES ≤ .17). In spite of CI data showing reductions 
in trunk fat mass and trunk percent fat in the 20-KKW group, 
between-group differences were not significantly different and 
small to negligible ES values were revealed (all P ≥ .06; all 
ES ≤ .43). Arm percent fat, leg fat mass, and leg percent fat 
were statistically different between groups (all P ≤ .04). Post 
hoc tests for leg fat mass and leg percent fat indicated a greater 
reduction in leg fat in the 20-KKW group compared with other 
groups (P ≤ .04), although no significant between-group varia-
tions were observed for arm percent fat following adjustment 
(P > .08: Table 2). Results from subgroup analyses are shown 
in Supplemental Tables 3-5 (30). The effect of study group on 
changes in weight, BMI, waist circumference, and DXA end-
points was not modified by waist circumference at baseline 
or race (all P for interaction ≥ .07). There was a 2-way inter-
action between study group and sex for VAT-to-total-fat ratio 
change and trunk-fat-to-limb-fat ratio change (P for inter-
action < .05), but following adjustments for multiple compar-
isons, no significant between-group differences were seen 
when males and females were analyzed separately (P > .05).

Individuals with positive weight compensation displayed a 
2.5-cm (95% CI, .8-4.2; ES = .76), .23-kg (95% CI, .14-.31; 
ES = 1.31), .0033 (95% CI, .0017-.0050; ES = 1.02), and .06 

(95% CI, .01-.10; ES = .60) increase in waist circumference, 
VAT, the VAT-to-total-fat ratio, and the trunk-fat-to-limb-fat 
ratio, respectively, compared with individuals with zero or 
negative weight compensation (all P ≤ .02; Fig. 1). Multiple 
linear regression analyses showed greater weight compensa-
tion during exercise training was associated with increases in 
waist circumference, VAT, the VAT-to-total-fat ratio, and 
the trunk-fat-to-limb-fat ratio (all β ≥ .24; P ≤ .01; 
Supplemental Table 6 (30)).

In Pearson correlation analyses, change in compensatory 
health beliefs (r = .20; P = .04) and retrospective desire to 
eat (r = .23; P = .02) were related with VAT change during ex-
ercise (Supplemental Table 7 (30)); hence, these variables were 
entered into the multiple linear regression analysis. This re-
gression analysis revealed that retrospective desire to eat 
was a positive predictor of VAT change (β = .21; P = .03; 
Table 3). This model also suggested that compensatory health 
beliefs was not a significant predictor of VAT change, al-
though a similar standardized β was observed (β = .16; 
P = .09).

Discussion
Overall, in this ancillary analysis of a large, 6-month random-
ized controlled trial in individuals with overweight and obes-
ity, we showed negligible differences in central adiposity 
change between a no-exercise control group and 2 aerobic ex-
ercise groups—1 similar to guidelines recommended for health 
and 1 similar to guidelines recommended for weight loss and 
weight loss maintenance. We also showed that exercisers 
who displayed positive weight compensation (ie, lost less 
weight than predicted) showed reduced improvements in cen-
tral adiposity relative to those who did not compensate. These 
results indicate that exercise dose has no significant impact on 
central adiposity, and that significant compensation is likely to 
negate central adiposity improvements during exercise at 
guidelines for health and weight loss and weight loss 
maintenance.

Table 1. Descriptive characteristics of participants included in the per protocol analysis at baseline

Control (N = 61) 8 KKW (N = 59) 20 KKW (N = 50) All (N = 170)

Age, y 49.5 (10.8) 48.3 (11.1) 48.5 (12.5) 48.8 (11.4)

Sex

Male 16 (26.2) 16 (27.1) 15 (30.0) 47 (27.6)

Female 45 (73.8) 43 (72.9) 35 (70.0) 123 (72.4)

Race

White 38 (62.3) 39 (66.1) 36 (72.0) 113 (66.5)

Black 21 (34.4) 20 (33.9) 12 (24.0) 53 (31.2)

Other 2 (3.3) 0 (.0) 2 (4.0) 4 (2.4)

Income

<$30 000 10 (16.4) 8 (13.6) 3 (6.0) 21 (12.4)

$30 000-$49 999 9 (14.8) 7 (11.9) 7 (14.0) 23 (13.5)

$50 000-$79 999 15 (24.6) 13 (22.0) 15 (30.0) 43 (25.3)

$80 000-$99 999 12 (19.7) 10 (16.9) 9 (18.0) 31 (18.2)

≥$100 000 14 (23.0) 20 (33.9) 15 (30.0) 49 (28.8)

Don’t know or missing 1 (1.6) 1 (1.7) 1 (2.0) 3 (1.8)

Continuous data are mean (SD); categorical data are number (%). 
Abbreviation: KKW, kcal/kg/week.
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Greater energy expenditure during aerobic exercise training 
leads to increased weight loss because of a higher energy def-
icit (33), but the influence of aerobic exercise dose on central 
adiposity is equivocal over 6 months or more. Although 
Recchia and colleagues demonstrated that greater energy ex-
penditure through aerobic exercise leads to small yet signifi-
cant improvements in central adiposity (12), a smaller trial 
showed that increasing exercise dose does not lead to im-
provements in VAT (9), and others have demonstrated no dif-
ferences in waist circumference between individuals 
performing exercise at 50%, 100%, and 150% of guidelines 
(10). Results from our trial displayed no significant differences 
in central adiposity changes over 6 months between a control 
group and 2 groups exercising at doses resembling that recom-
mended for health (680 kcal/week) and for weight loss and 
weight loss maintenance (1521 kcal/week). We did observe 
significant reductions in total fat and adiposity in other non-
central regions in the 20-KKW group, which could provide 
metabolic benefits for individuals with overweight and obesity 
(34). Confidence intervals also indicated that the 20-KKW 
group demonstrated a reduction in some central adiposity in-
dices (eg, waist circumference, trunk fat), and between-group 
significance levels for trunk fat mass and trunk percent fat 
were close to the significance threshold. However, estimated 
marginal mean and effect size data show variations in central 
adiposity between groups are negligible or small at best. The 
20-KKW group, for example, exhibited a 1.3-cm and .7-cm 
decrease in waist circumference compared with the control 
group and the 8-KKW group, respectively, and these differen-
ces are considered clinically unimportant (35, 36) based on as-
sociations between waist circumference change and metabolic 
disease (37) and mortality (38). Thus, on balance, though rela-
tively small levels of physical activity can improve central adi-
posity (10, 39), we believe exercise doses that expended ∼700 
kcal/week and ∼1500 kcal/week induced clinically trivial 
changes in central adiposity during this trial. Doses with 
even greater differences in exercise-induced energy expend-
iture may be required to detect clinically meaningful improve-
ments in central adiposity.

A reason why exercise groups exhibited negligible changes 
in central adiposity compared with control in our study could 
be the compensation displayed by exercise groups. The major-
ity (82.6%) of exercisers exhibited positive weight compensa-
tion (ie, lost less weight than expected) and these participants 
displayed a 2.5-cm and .23-kg increase in waist circumference 
and VAT, respectively, compared with those who did not 
show positive weight compensation. Although few have ex-
amined the link between compensation and changes in central 
adiposity, 2 studies in individuals with high waist circumfer-
ence showed that aerobic exercise without weight loss (ie, 
with compensation) led to attenuated reductions in central 
adiposity relative to exercise with weight loss (ie, without 
compensation) in males (15) and females (16), supporting 
our findings. Nonetheless, contrary to our results, these stud-
ies still found significant central adiposity improvements in 
exercisers who compensated (15, 16). That these earlier stud-
ies solely recruited individuals with high waist circumference 
is unlikely to explain why the previous studies saw improve-
ments in central adiposity in individuals who compensated 
and we did not, as we found no exercise-induced differences 
in central adiposity change between those with high and 
healthy waist circumference at baseline. Rather, the discrep-
ancies could occur because the previous studies were only 3 T
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months and/or they implemented far greater exercise energy 
expenditures of 3500 kcal/week in women (16) and 4900 
kcal/week in men (15). These findings could collectively indi-
cate that exercise in the presence of significant weight compen-
sation improves central adiposity during short interventions in 
which exercise volumes are high, but not during medium to 
long-term regimens in which exercise performed is similar to 
that recommended for health and weight loss and weight 
loss maintenance.

By highlighting the compensatory mechanisms that predict 
central adiposity change during exercise, effective strategies 
can be developed to improve central adiposity outcomes dur-
ing exercise. Several mechanisms could drive positive weight 
compensation during exercise training: an increase in energy 
intake, maladaptive changes in eating behaviors and physical 
activity patterns, and reductions in exercise and nonexercise 
energy expenditure (13). In this analysis, an increase in desire 
to eat positively predicted change in VAT. A similar associ-
ation between change in VAT and compensatory health be-
liefs (eg, justifying an eating episode because of exercise) 
was also observed, albeit the coefficient was smaller and 
tended to be significant. Along with findings from the primary 
outcome manuscript that showed exercise-induced elevations 
in energy intake (13), these results may indicate that changes 
in eating habits attenuated reductions in central adiposity 
during exercise. This is in line with previous studies (15, 16) 
and implies that strategies targeting desire to eat and compen-
satory behaviors during exercise could enhance central 

adiposity outcomes. Akin to other regimens (40), such strat-
egies could include behavioral sessions that help manage ap-
petite by encouraging participants to increase consumption 
of foods with low energy density (41). Additional strategies 
and sessions focussing on meal planning and portion and 
stimulus control could also decrease compensatory meals 
and/or snacking during exercise training (40). Nevertheless, 
it should be acknowledged that more work is needed to eluci-
date the role of compensatory behaviors in modifying central 
adiposity changes during exercise because most compensatory 
behaviors (including energy intake) were not related to VAT 
and our models explained a small proportion of VAT 
variance.

A strength of the present analysis is that it comprises energy 
intake, energy expenditure, and physical activity outcomes as-
sessed with gold-standard techniques, as well as question-
naires examining eating attitudes and behaviors. One 
limitation is that we did not use computed tomography or 
magnetic resonance imaging, which are considered gold 
standard tools for VAT assessment. Although VAT assess-
ments via DXA are linked to computed tomography-derived 
measurements (42) and our primary findings were consistent 
among several indices related to VAT, future studies using 
computed tomography or magnetic resonance imaging are 
warranted. Additionally, because we did not assess potential 
physiological mediators, further studies are needed to exam-
ine the mechanisms underpinning our findings. Another limi-
tation is that most of the sample were female and white, so it is 

Figure 1. Change in waist circumference (A), VAT (B), VAT-to-total-fat ratio (C), and trunk-fat-to-limb-fat ratio (D) in individuals who displayed zero or 
negative weight compensation (ie, those who lost more or equal weight to that which was predicted) (N = 19) and individuals who displayed positive 
weight compensation (ie, those who lost less weight than predicted) (N = 90) during exercise. Abbreviations: ANCOVA, analysis of covariance; VAT, 
visceral adipose tissue. Black bars are individuals who showed zero or negative compensation; white bars are individuals who showed positive 
compensation. Data are estimated marginal means (95% CI) adjusted for age, sex, and baseline values. *Significant ANCOVA omnibus comparison 
between those who displayed zero or negative compensation and those who displayed positive compensation (P < .05).

The Journal of Clinical Endocrinology & Metabolism, 2024, Vol. 109, No. 3                                                                                          e1003
D

ow
nloaded from

 https://academ
ic.oup.com

/jcem
/article/109/3/e997/7454811 by guest on 20 February 2024

163



possible we were underpowered to detect consistent and sig-
nificant interactions in our subgroup analyses. It is also note-
worthy that this manuscript reports an ancillary project, 
though it should be acknowledged that it used data from a 
large, randomized control trial where exercise adherence 
was excellent and exercise dose was fastidiously supervised 
and monitored.

Taken together, the present study indicates that in the pres-
ence of significant weight compensation, there are negligible 
differences in central adiposity change during aerobic exercise 
at doses similar to that recommended for health and weight 
loss and weight loss maintenance in individuals with over-
weight or obesity. Moreover, higher weight compensation 
was associated with reduced improvements in central adipos-
ity, and exercisers with increased subjective desire to eat ex-
hibited poorer change in central adiposity. During exercise 
at guidelines for health and weight loss and weight loss main-
tenance, exercise-induced compensation should be treated 
and reduced in individuals with overweight or obesity to en-
hance central adiposity reductions, potentially through strat-
egies that manage appetite and compensatory food behaviors.

Acknowledgments
The late Conrad P. Earnest, Texas A&M University, College 
Station, TX, is duly recognized by the authors for his contribu-
tion to the organization and execution of the E-MECHANIC 
study. The authors thank Sultan Alenezi, University of 
Glasgow, for feedback and comments on the results of the 
study; he received no financial support for his participation.

Funding
Study supported by National Institutes of Health (NIH) (grant: 
HL102166); Nutrition Obesity Research Center (NORC) 
grant P30 DK072476, titled “Nutritional Programming: 
Environmental and Molecular Interactions” sponsored by the 
National Institute of Diabetes and Digestive and Kidney 
Diseases; the National Institute of General Medical Sciences 
grant U54 GM104940; and the American Heart Association 
(AHA) (grant: 20POST35210907). The sponsor had no input 
in the study’s design, data collection, data analysis, interpret-
ation, or publication write up.

Disclosures
All authors declare no relevant conflicts of interest.

Data Availability
Some or all datasets generated during and/or analyzed during 
the current study are not publicly available but are available 
from the corresponding author on reasonable request.

Clinical trials registration: NCT01264406.

References
1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of child-

hood and adult obesity in the United States, 2011-2012. JAMA. 
2014;311(8):806-814.

2. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS 
guideline for the management of overweight and obesity in adults: 
a report of the American College of Cardiology/American Heart 
Association task force on practice guidelines and the obesity soci-
ety. J Am Coll Cardiol. 2013;63(25):2985-3023.

3. Ohlson LO, Larsson B, Svardsudd K, et al. The influence of body fat 
distribution on the incidence of diabetes mellitus. 13.5 years of 
follow-up of the participants in the study of men born in 1913. 
Diabetes. 1985;34(10):1055-1058.

4. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and 
subcutaneous adipose tissue compartments: association with meta-
bolic risk factors in the Framingham heart study. Circulation. 
2007;116(1):39-48.

5. Mathieu P, Poirier P, Pibarot P, Lemieux I, Després JP. Visceral 
obesity: the link among inflammation, hypertension, and cardiovas-
cular disease. Hypertension. 2009;53(4):577-584.

6. Neeland IJ, Ayers CR, Rohatgi AK, et al. Associations of visceral 
and abdominal subcutaneous adipose tissue with markers of car-
diac and metabolic risk in obese adults. Obesity. 2013;21(9): 
E439-E447.

7. Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, 
Ross R. Visceral fat is an independent predictor of all-cause mortal-
ity in men. Obesity. 2006;14(2):336-341.

8. Ross R, Soni S, Houle SA. Negative energy balance induced by ex-
ercise or diet: effects on visceral adipose tissue and liver fat. 
Nutrients. 2020;12(4):891.

9. Cowan TE, Brennan AM, Stotz PJ, Clarke J, Lamarche B, Ross R. 
Separate effects of exercise amount and intensity on adipose tissue 
and skeletal muscle mass in adults with abdominal obesity. 
Obesity. 2018;26(11):1696-1703.

10. Church TS, Martin CK, Thompson AM, Earnest CP, Mikus CR, 
Blair SN. Changes in weight, waist circumference and compensa-
tory responses with different doses of exercise among sedentary, 
overweight postmenopausal women. PLoS One. 2009;4(2):e4515.

11. Slentz CA, Aiken LB, Houmard JA, et al. Inactivity, exercise, and 
visceral fat. STRRIDE: a randomized, controlled study of exercise 
intensity and amount. J Appl Physiol. 2005;99(4):1613-1618.

12. Recchia F, Leung CK, Yu AP, et al. Dose-response effects of exercise 
and caloric restriction on visceral adiposity in overweight and obese 

Table 3. Multiple linear regression analysis for association between retrospective desire to eat and compensatory health beliefs, and change in 
VAT

R2 B 95% CI β P

VAT (kg) .115

Retrospective VAS, desire to eat .0023 (.0002 to .0045) .21 .03a

Compensatory health beliefs .0047 (−.0007 to .0101) .16 .09

Age .0011 (−.0023 to .0046) .07 .51

Sexb −.0868 (−.1939 to .0202) −.20 .11

VAT at baseline −.0001 (−.0001 to .0000) −.23 .07

Abbreviations: VAS, visual analogue scale; VAT, visceral adipose tissue. 
aStatistically significant (P < .05). 
bMale = 1, female = 2.

e1004                                                                                          The Journal of Clinical Endocrinology & Metabolism, 2024, Vol. 109, No. 3
D

ow
nloaded from

 https://academ
ic.oup.com

/jcem
/article/109/3/e997/7454811 by guest on 20 February 2024

164



adults: a systematic review and meta-analysis of randomised con-
trolled trials. Br J Sports Med. 2023;57(16):1035-1041.

13. Martin CK, Johnson WD, Myers CA, et al. Effect of different doses 
of supervised exercise on food intake, metabolism, and non- 
exercise physical activity: the E-MECHANIC randomized con-
trolled trial. Am J Clin Nutr. 2019;110(3):583-592.

14. Blundell JE, Stubbs RJ, Hughes DA, Whybrow S, King NA. Cross 
talk between physical activity and appetite control: does physical 
activity stimulate appetite? Proc Nutr Soc. 2003;62(3):651-661.

15. Ross R, Dagnone D, Jones PJH, et al. Reduction in obesity and re-
lated comorbid conditions after diet-induced weight loss or 
exercise-induced weight loss in men: a randomized, controlled trial. 
Ann Intern Med. 2000;133(2):92-103.

16. Ross R, Janssen I, Dawson J, et al. Exercise-induced reduction in 
obesity and insulin resistance in women: a randomized controlled 
trial. Obesity Res. 2004;12(5):789-798.

17. West Suitor C, Kraak V. Institute of Medicine. Adequacy of 
Evidence for Physical Activity Guidelines Development: 
Workshop Summary. National Academies Press; 2007.

18. Myers CA, Johnson WD, Earnest CP, et al. Examination of mecha-
nisms (E-MECHANIC) of exercise-induced weight compensation: 
study protocol for a randomized controlled trial. Trials. 
2014;15(1):212.

19. Imboden MT, Welch WA, Swartz AM, et al. Reference standards 
for body fat measures using GE dual energy x-ray absorptiometry 
in Caucasian adults. PLoS One. 2017;12(4):e0175110.

20. Redman LM, Heilbronn LK, Martin CK, Alfonso A, Smith SR, 
Ravussin E. Effect of calorie restriction with or without exercise 
on body composition and fat distribution. J Clin Endocrinol 
Metab. 2007;92(3):865-872.

21. Thomas DM, Martin CK, Lettieri S, et al. Can a weight loss of one 
pound a week be achieved with a 3500-kcal deficit? Commentary 
on a commonly accepted rule. Int J Obesity. 2013;37(12): 
1611-1613.

22. Thomas DM, Bouchard C, Church T, et al. Why do individuals not 
lose more weight from an exercise intervention at a defined dose? 
An energy balance analysis. Obes Rev. 2012;13(10):835-847.

23. Dorling JL, Höchsmann C, Fearnbach SN, et al. Initial weight 
change and long-term changes in weight and compensation during 
supervised exercise training. Med Sci Sports Exerc. 2021;53(8): 
1675-1684.

24. Stunkard AJ, Messick S. The three-factor eating questionnaire to 
measure dietary restraint, disinhibition and hunger. J Psychosom 
Res. 1985;29(1):71-83.

25. White MA, Whisenhunt BL, Williamson DA, Greenway FL, 
Netemeyer RG. Development and validation of the food-craving in-
ventory. Obes Res. 2002;10(2):107-114.

26. Geiselman PJ, Anderson AM, Dowdy ML, West DB, Redmann SM, 
Smith SR. Reliability and validity of a macronutrient self-selection 
paradigm and a food preference questionnaire. Physiol Behav. 
1998;63(5):919-928.

27. Womble LG, Wadden TA, Chandler JM, Martin AR. Agreement 
between weekly vs. Daily assessment of appetite. Appetite. 
2003;40(2):131-135.

28. Knäuper B, Rabiau M, Cohen O, Patriciu N. Compensatory health 
beliefs: scale development and psychometric properties. Psychol 
Health. 2004;19(5):607-624.

29. Anderson SE, Bandini LG, Dietz WH, Must A. Relationship be-
tween temperament, nonresting energy expenditure, body compos-
ition, and physical activity in girls. Int J Obesity. 2004;28(2): 
300-306.

30. Dorling J. Supplemental Material: “Exercise-induced changes in 
central adiposity during an RCT: Effect of exercise dose and asso-
ciations with compensation”. Figshare. Online resource. https:// 
doi.org/10.6084/m9.figshare.24648183.v2

31. Lean MEJ, Han TS, Morrison CE. Waist circumference as a meas-
ure for indicating need for weight management. BMJ. 
1995;311(6998):158-161.

32. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 
Lawrence Erlbaum Associates; 1988.

33. Donnelly JE, Blair SN, Jakicic JM, et al. Appropriate physical activ-
ity intervention strategies for weight loss and prevention of weight 
regain for adults. Med Sci Sports Exerc. 2009;41(2):459-471.

34. Agrawal S, Klarqvist MDR, Diamant N, et al. BMI-adjusted adi-
pose tissue volumes exhibit depot-specific and divergent associa-
tions with cardiometabolic diseases. Nat Commun. 2023;14(1): 
266.

35. Bonafiglia JT, Swinton PA, Ross R, et al. Interindividual differences 
in trainability and moderators of cardiorespiratory fitness, waist 
circumference, and body mass responses: a large-scale individual 
participant data meta-analysis. Sports Med. 2022;52(12): 
2837-2851.

36. Hammond BP, Stotz PJ, Brennan AM, Lamarche B, Day AG, Ross 
R. Individual variability in waist circumference and body weight in 
response to exercise. Med Sci Sports Exerc. 2019;51(2):315-322.

37. Vazquez G, Duval S, Jacobs DR, Silventoinen K. Comparison of 
body mass index, waist circumference, and waist/hip ratio in pre-
dicting incident diabetes: a meta-analysis. Epidemiol Rev. 
2007;29(1):115-128.

38. Cerhan JR, Moore SC, Jacobs EJ, et al. A pooled analysis of waist 
circumference and mortality in 650,000 adults. Mayo Clin Proc. 
2014;89(3):335-345.

39. Dorling JL, Höchsmann C, Tudor-Locke C, Beyl RA, Martin CK. 
Effect of an office-based intervention on visceral adipose tissue: 
the WorkACTIVE-P randomized controlled trial. Appl Physiol 
Nutr Metab. 2021;46(2):117-125.

40. Rickman AD, Williamson DA, Martin CK, et al. The CALERIE 
study: design and methods of an innovative 25% caloric restriction 
intervention. Contemp Clin Trials. 2011;32(6):874-881.

41. Rolls BJ. The relationship between dietary energy density and en-
ergy intake. Physiol Behav. 2009;97(5):609-615.

42. Micklesfield LK, Goedecke JH, Punyanitya M, Wilson KE, Kelly 
TL. Dual-energy X-ray performs as well as clinical computed tom-
ography for the measurement of visceral fat. Obesity. 2012;20(5): 
1109-1114.

The Journal of Clinical Endocrinology & Metabolism, 2024, Vol. 109, No. 3                                                                                          e1005
D

ow
nloaded from

 https://academ
ic.oup.com

/jcem
/article/109/3/e997/7454811 by guest on 20 February 2024

165

https://doi.org/10.6084/m9.figshare.24648183.v2
https://doi.org/10.6084/m9.figshare.24648183.v2


166 

Publication 13 

Challenges in defining successful adherence to calorie 

restriction goals in humans: Results from CALERIE™ 2. 

Corby K Martin 1, Christoph Höchsmann 1,2, James L Dorling 1,3, Manjushri Bhapkar 4, Carl 

F Pieper 4, Susan B Racette 5, Sai Krupa Das 6, Leanne M Redman 1, William E Kraus 4, Eric 

Ravussin 1 for the CALERIE™ Phase 2 Study Group 

1 Pennington Biomedical Research Center, Baton Rouge, LA, USA 

2 Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany  

3 Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK 

4 Duke University School of Medicine, Durham, NC, USA 

5 Washington University School of Medicine, St. Louis, MO, USA 

6 Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA 

 

Author contribution: 

Second author; co-developed the research question and statistical model, co-drafted the 

manuscript, and created tables and figures.

Journal Year DOI Impact Factor SCImago Citations to date 

Experimental 

Gerontology, 

162: 111757 

2022 10.1016/j.exger.2022.

111757 

3.9 (2022) Q2 Scopus: 4 

Google Scholar: 4 

https://www.sciencedirect.com/science/article/pii/S0531556522000651?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0531556522000651?via%3Dihub


Experimental Gerontology 162 (2022) 111757

Available online 28 February 2022
0531-5565/© 2022 Elsevier Inc. All rights reserved.

Challenges in defining successful adherence to calorie restriction goals in 
humans: Results from CALERIE™ 2 
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A B S T R A C T   

Background: The Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) 
phase 2 trial tested the effects of two years of 25% calorie restriction (CR) on aging in humans. CALERIE 2 was 
one of the first studies to use a graph of predicted weight loss to: 1) provide a proxy of dietary adherence, and 2) 
promote dietary adherence. Assuming 25% CR, each participant's weight over time was predicted, with upper 
and lower bounds around predicted weights. Thus, the resulting weight graph included a zone or range of body 
weights that reflected adherence to 25% CR, and this was named the zone of adherence. Participants were 
considered adherent if their weight was in this zone. It is unlikely, however, that the entire zone reflects 25% CR. 
Objectives: To determine the level of CR associated with the zone of adherence and if the level of CR achieved by 
participants was within the zone. 
Methods: Percent CR associated with the upper and lower bounds of the zone were determined via the Body 
Weight Planner (https://www.niddk.nih.gov/bwp) for participants in the CALERIE 2 CR group (N = 143). 
Percent CR achieved by participants was estimated with the intake-balance method. 
Results: At month 24, the zone of adherence ranged from 10.4(0.0)% to 19.4(0.0)% CR [Mean(SEM)], and 
participants achieved 11.9(0.7)% CR and were in the zone. 
Conclusion: The results highlight the challenges of: 1) setting a single CR goal vs. a range of acceptable values, 
and 2) obtaining real-time and valid measures of CR adherence to facilitate adherence.   

1. Introduction 

1.1. Few methods exist to accurately quantify dietary adherence in real- 
time, particularly over the long-term 

Promoting adherence to calorie-restricted diets has been very diffi-
cult due to the challenges of accurately quantifying energy intake. 

Traditional self-report methods to assess energy intake (e.g., food re-
cords, dietary recall) are commonly used, though the accuracy of these 
methods has been questioned (Beaton et al., 1997; Tran et al., 2000; 
Schoeller et al., 1990; Bandini et al., 1990) and it is difficult for par-
ticipants to use them over the long term. The doubly labeled water 
(DLW) method can be used to estimate energy intake accurately over the 
short term (e.g., two weeks) and long-term when changes in body 

Abbreviations: AL, ad libitum; CALERIE™, Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy; CTS, Computer Tracking System; CR, 
calorie restriction; DLW, doubly labeled water; DXA, dual energy X-ray absorptiometry; IBM SPSS, International Business Machines Statistical Package for the Social 
Sciences; kJ, kilojoules; NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases; PAL, Physical Activity Level; RMR, resting metabolic rate; SEM, 
standard error of the mean; SD, standard deviation; TDEE, total daily energy expenditure. 
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composition are measured.(Racette et al., 2012) This approach requires 
repeated DLW and body composition measurements, as well as isotope 
analyses; therefore, it is not practical for many studies and cannot pro-
vide real-time estimates of calorie restriction (CR) to inform interven-
tion delivery. 

1.2. Estimating dietary adherence in real-time by using body weight as a 
proxy for dietary adherence 

An alternative method for estimating adherence to a calorie- 
restricted diet is to calculate expected body weight for study partici-
pants based on the prescribed level of CR. This allows the participant's 
actual weights to be compared to expected weights over time and, if the 
participant's actual body weight reflects the expected weight, adherence 
to the CR goal can be inferred. If the participant's actual body weight 
deviates from the expected weight, then it can be inferred that the 
participant is not adhering to the CR goal. One challenge to developing 
and deploying this approach is the erroneous assumption that human 
participants can control their body weight precisely enough to closely 
mirror a single body weight at any point in time. A second challenge is 
inherent error in calculations of expected body weight. One way to 
address these limitations is to provide participants with a range of 
acceptable body weights that reflects CR adherence. 

To develop and facilitate this approach, a mathematical model was 
developed by Pieper et al. (2011) that predicted the distribution of 
percent weight change over 12 months assuming 25% CR. The output 
from the model was used to create weight graphs for participants that 
reflect the goal weight, which is represented by the green line in Fig. 1 
(the green line reflects the 50th percentile of expected weight change 
from the model). Upper and lower bounds around this goal weight are 
represented by the yellow and light blue lines in Fig. 1 (the yellow and 
light blue lines reflect the 80th and 10th percentiles of weight change 
from the model, respectively). The result is a weight graph that includes 
a zone or range of body weights that reflects adherence to 25% CR. 

Hence, this zone of acceptable weights is called the zone of adherence. A 
participant's measured body weights are plotted over time on the weight 
graph and the participant is considered adherent to 25% CR if his/her 
weight is within the zone. Because the Pieper et al. (2011) model was not 
designed to predict body weight beyond 12 months, the zone of 
adherence is flat between months 12 and 24, as depicted Fig. 1. 

1.3. Using a weight graph and zone of adherence to personalize 
intervention delivery and promote CR adherence 

The model and weight graphs from Pieper et al. (2011) were inte-
grated into the intervention (Rickman et al., 2011) for the Compre-
hensive Assessment of Long-term Effects of Reducing Intake of Energy 
(CALERIE™) phase 2 trial (CALERIE 2), which tested the effects of two 
years of CR on biomarkers of aging in humans. As detailed by Rickman 
et al. (2011) the model and weight graph were central in directing the 
delivery of the intervention by assessing if a participant was adherent or 
nonadherent in real time and adjusting treatment delivery accordingly. 
Participants were weighed at each intervention session and their 
weights were plotted onto their weight graph. Participants were 
considered adherent to the 25% CR goal if their weight was within the 
zone of adherence. When weight was above the zone, participants were 
considered nonadherent to 25% CR and intervention strategies were 
deployed to help participants better restrict energy intake. Conversely, a 
weight below the zone indicated that the participant had been too 
restrictive and efforts were needed to increase energy intake. 

1.4. Current objectives 

The use of the model and weight graphs to foster adherence during 
CALERIE 2 was novel and provided a much-needed real time metric of 
adherence. The approach also provided a framework to personalize 
intervention delivery and to guide deployment of treatment strategies 
(Rickman et al., 2011). Nonetheless, the utility of the weight graphs and 
the success of the CALERIE 2 intervention require further analysis. To 
that end, the objectives of this analysis were twofold. First, determine 
the level of CR associated with the zone of adherence by utilizing a 
validated weight loss calculator that was not used during CALERIE 2 
(Hall et al., 2011; Hall and Chow, 2011). Second, determine if partici-
pants' actual level of CR was within the zone by using the intake-balance 
method, which is considered accurate (Ravussin et al., 2015), but cannot 
provide data in real time and thus necessitates a post-hoc analysis. It was 
hypothesized that the upper bound of the zone at months 12 and 24 
would be less than 25% CR. It was further hypothesized that the level of 
CR achieved by participants would be within the zone at months 12 and 
24. 

2. Methods 

The CALERIE™ phase 2 randomized controlled trial was a multi-site 
study conducted at Pennington Biomedical (Baton Rouge, LA, USA), 
Washington University School of Medicine (St. Louis, MO, USA), and 
Tufts University (Boston, MA, USA). The coordinating center was Duke 
Clinical Research Institute (Durham, NC, USA). The clinicaltrials.gov 
registration number is NCT00427193. All sites received Institutional 
Review Board approval and all participants provided written informed 
consent. The CALERIE 2 study aimed to test the effects of two years of 
25% CR on aging biomarkers in comparison to an ad libitum (AL) con-
trol group. The study design (Rochon et al., 2011), screening and 
recruitment procedures (Stewart et al., 2013), and intervention (Pieper 
et al., 2011; Rickman et al., 2011) have been described extensively. 

2.1. Participants and randomization 

CALERIE 2 recruited participants who were 20–50 years old (men) or 
20–47 years old (women) and had body mass index ≥22.0 and < 28.0 

Fig. 1. A sample weight graph is displayed for a hypothetical participant in the 
Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy 
(CALERIE™) phase 2 trial (CALERIE 2), which tested the effects of two years of 
CR on biomarkers of aging in humans. The light blue, green, and yellow lines 
correspond to the 10th, 50th, and 80th percentiles of expected weight trajec-
tories, respectively. The dark blue line depicts the hypothetical participant's 
measured weight trajectory. The participant's starting weight was 70.7 in ki-
lograms. From months 12 to 24, the yellow, green, and light blue lines represent 
62.5, 60, and 55.7 kg, respectively. Reprinted from Contemporary Clinical 
Trials, Vol 32, Issue 6; Amy D. Rickman, Donald A. Williamson, Corby K. 
Martin, Cheryl H. Gilhooly, Richard I. Stein, Connie W. Bales, Susan Roberts, 
and Sai Krupa Das; The CALERIE Study: Design and methods of an innovative 
25% caloric restriction intervention; Page No. 880, 2011, with permission 
from Elsevier. 
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kg/m2. Exclusion criteria included significant medical conditions (e.g., 
cardiovascular disease, diabetes, hypertension), psychological disor-
ders, high levels of physical activity (≥ 30 mins ≥5 days/week), and 
women who were pregnant or planning to become pregnant during the 
trial. 

Participants were randomized into the CR or AL group in a 2:1 ratio 
favoring CR. A permuted block randomization approach was used to 
stratify by study site, sex, and BMI category (normal weight: BMI 
22.0–24.9 kg/m2 and overweight: BMI 25.0–27.9 kg/m2). 145 partici-
pants were randomized to the CR group and 75 participants were ran-
domized to the AL group. The AL group was asked to continue eating 
their habitual diet and did not receive any intervention; they are not 
included in the analyses reported herein. 

2.2. Description of the CR intervention 

The goal of the CR intervention was to promote 25% CR for two 
years. As described in Rickman et al. (2011) the CR participants received 
an intensive lifestyle intervention to foster adherence, including indi-
vidual sessions with an interventionist once per week for the first month, 
twice per month from month 2 through 12, and once per month from 
month 13 through 24. Additional sessions were scheduled as needed. 
Finally, participants attended group sessions twice per month from 
month 1 through 6, and once per month from month 7 through 24. 

As noted earlier, the model and weight graphs developed by Pieper 
et al. (2011) were central to guiding intervention delivery throughout 
the two-year intervention, which was deployed via an Internet-based 
Computer Tracking System (CTS) that was created for the project 
(Rickman et al., 2011). Briefly, the CTS facilitated intervention fidelity 
and provided structure to how the intervention was deployed over time, 
across interventionists, and across participants. A central feature of the 
CTS was tracking weight as a proxy of CR adherence. Participants' de-
mographic information was entered into the CTS, as well as their 
starting body weight and their energy intake target, which reflected 25% 
CR. A personalized weight graph was then generated for each partici-
pant based on the Pieper et al. (2011) model. Participants were weighed 
at each session and the interventionist entered the measured body 
weight into the CTS, which plotted the participant's weight onto his/her 
graph. Adherence was considered acceptable if the participant's weight 
was within the zone. A sample weight graph is provided in Fig. 1 and 
illustrates that this hypothetical participant was in the zone and 
adherent in the early period of the intervention. The participant's weight 
was above the zone, however, from around month 6 to month 11, 
indicating non-adherence to the CR prescription. During this period, the 
CTS would automatically suggest toolbox options or specific interven-
tion strategies (e.g., use of portion-controlled foods) to support the 
participant in achieving their prescribed energy intake level and re- 
entering the zone. This also helped standardize the delivery of treat-
ment options among participants when they presented with similar 
challenges (e.g., difficulty adhering their prescribed energy intake level, 
weight being above or below the zone, poor attendance to sessions, etc.). 
As indicated in Fig. 1, this hypothetical participant re-entered the zone 
around month 12 and maintained adherence throughout the rest of the 
trial. 

2.3. Percent CR calculations 

The purpose of the analyses reported in this paper were to: 1) 
determine the level of CR associated with the zone of adherence in 
CALERIE 2, and 2) examine the level of CR achieved by participants in 
relation to the percent CR values from the zone of adherence. 

2.3.1. Percent CR associated with the zone of adherence 
To calculate the percent CR associated with the zone of adherence, a 

model was needed that was both valid and different from the model that 
was used in CALERIE 2 (i.e., the Pieper et al. (2011) model). The NIDDK 

Body Weight Planner (Hall et al., 2011; Hall and Chow, 2011) was 
selected since the models used in the planner have been validated (Hall 
et al., 2011; Hall and Chow, 2011) and the models were found to 
accurately quantify change in energy intake over two years in the 
CALERIE 2 study when compared to the intake-balance method 
(Sanghvi et al., 2015). Additionally, the NIDDK Body Weight Planner 
provides the ability to adjust each participant's physical activity level 
(PAL) to match participants' baseline energy requirements with the en-
ergy requirement measured in CALERIE 2. Thus, the NIDDK Body 
Weight Planner provided: 1) a valid method to quantify the percent CR 
associated with the zone of adherence, 2) a model that was not used to 
generate the zone of adherence during CALERIE 2, and 3) the ability to 
adapt PAL such that energy requirements were most accurate for each 
individual participant. 

The percent CR associated with the zone of adherence, specifically, 
the upper bound of the zone (80th percentile), the lower bound of the 
zone (10th percentile), and the 50th percentile line, was calculated with 
the NIDDK Body Weight Planner. To do so, the following procedures 
were followed, and the example provided is to determine the percent CR 
associated with the 80th percentile or the upper bound of the zone at 
month 12. First, each participant's weight, sex, age, height, and baseline 
weight from CALERIE 2 were entered into the planner. The physical 
activity level (PAL) was adjusted in the planner until each participant's 
baseline energy requirement in the planner matched the energy 
requirement measured in CALERIE 2 (each participant's PAL was also 
measured during CALERIE 2, and agreement between this measure and 
the value entered into the planner was evaluated). Second, each par-
ticipant's predicted weight at the 80th percentile from the weight graph 
at month 12 was entered into the planner as the goal weight, and the 
duration to achieve the goal was set to 12 months. Third, the planner 
then produced the energy intake value needed to achieve this goal. 
Fourth, this energy intake value was used in conjunction with the 
baseline energy requirements to calculate the percent CR reflective of 
the 80th percentile at month 12. This process was repeated for the 80th 
percentile at month 24, and for the 10th and 50th percentiles at months 
12 and 24. 

Once percent CR was calculated for the zone of adherence for each 
participant, the mean (and standard error of the mean or SEM) percent 
CR values for the zone of adherence were calculated across all of the CR 
participants. 

2.3.2. Percent CR achieved by participants in CALERIE 2 
The second purpose of the analyses reported herein was to examine 

the level of CR achieved by participants in relation to the percent CR 
values from the zone of adherence. This process determined if the par-
ticipants were adherent to the CR goal, as defined by the zone of 
adherence, even if the level of CR that they achieved failed to reach 25%. 

The previous section outlined the methods to calculate the percent 
CR associated with the zone of adherence, and these calculations relied 
on the NIDDK Body Weight Planner. As detailed in the following para-
graphs, determining each participant's percent CR required different 
methods, namely, the intake-balance method (Ravussin et al., 2015), 
which relied on state-of-the art measures that were collected during 
CALERIE 2. 

The intake-balance method (Ravussin et al., 2015) relies on measures 
of total daily energy expenditure (TDEE) and, if weight is not stable 
during the TDEE assessment, a measure of change in body energy stores, 
which can be determined by measuring change in body composition 
during the TDEE assessment. During energy balance or weight stability, 
energy intake is equal to TDEE. Hence, measured TDEE is equal to en-
ergy intake during weight stability. If weight is not stable, then TDEE is 
not equal to energy intake. In this case, TDEE must be corrected for the 
energy cost of the change in body composition during the period of 
TDEE assessment. Hence, energy intake is calculated as the difference 
between energy expenditure (TDEE) and the energy cost of changes in 
body composition. 
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During CALERIE 2, TDEE and body composition were assessed at 
several time points, allowing our team to calculate the percent CR that 
each participant achieved for different intervals in the study (e.g., from 
baseline to month 12, and baseline to month 24). Specifically, partici-
pants' TDEE was measured with doubly labeled water over four weeks at 
baseline to establish baseline energy requirements. Doubly labeled 
water was also used to measure TDEE for two weeks at months 6, 12, 18, 
and 24. To quantify change in body composition during the TDEE as-
sessments, fat mass and fat-free mass were measured with dual energy X- 
ray absorptiometry (DXA; Hologic QDR 4500A; Hologic, Bedford, MA) 
before and after each TDEE assessment. 

The TDEE and body composition measures outlined above allowed 
the mean energy intake of each participant to be estimated with the 
intake-balance method. Specifically, each participant's mean daily en-
ergy intake from baseline to month 12, and baseline to month 24, was 
calculated. The calculation for energy intake was: mean TDEE for each 
interval plus changes in body energy stores. Change in energy stores was 
calculated assuming 9300 kcal/kg (38,893 kJ/kg) for the energy content 
of fat mass change and 1100 kcal/kg (4602 kJ/kg) for fat-free mass 
change (Racette et al., 2012). The mean daily energy intake values were 
then used to calculate percent CR in relation to each participant's 
baseline energy requirements. 

Once percent CR at months 12 and 24 were calculated for each 
participant, mean (and SEM) percent CR at months 12 and 24 were 
calculated across all CR participants. 

2.4. Physical activity level (PAL) 

Physical activity level was calculated as TDEE from DLW divided by 
resting metabolic rate (RMR). RMR was measured via indirect calo-
rimetry using a Vista-MX metabolic measurement system (Vacumed, 
Ventura, CA). 

2.5. Data analytic plan 

Measured PAL from CALERIE 2 and the PAL used in the Body Weight 
Planner were compared with Pearson correlation coefficients. As noted 
earlier, mean percent CR across all CR participants was calculated for 
the 80th, 50th, and 10th percentiles at months 12 and 24. These values 
were graphed and participants' actual percent CR was plotted in relation 
to these values. Independent sample t-tests and analysis of variance 
(ANOVA) were used to determine if participants' actual percent CR, and 
the percent CR values for the 80th, 50th, and 10th percentiles at months 
12 and 24, differed by sex, BMI category, or race. Alpha was set at 0.05. 
All analyses were conducted using IBM SPSS, Version 27 (Armonk, NY, 
IBL Corp). 

3. Results 

3.1. CALERIE 2 results 

The CALERIE 2 results have been reported extensively but, in brief, 
indicated that two years of CR was safe, resulted in significantly 
improved aging and longevity biomarkers, and reduced risk factors for 
age-related diseases (Ravussin et al., 2015; Kraus et al., 2019; Dorling 
et al., 2021; Romashkan et al., 2016; Kebbe et al., 2021). Additionally, 
CR was found to have no detrimental, and some positive effects, on 
health-related quality of life (Martin et al., 2016a). 

3.2. Participant characteristics 

The descriptive characteristics of the sample are provided in Table 1. 
The sample was predominantly female (69.2%) with a slightly higher 
proportion of participants in the overweight (52.4%) vs. normal weight 
(47.6%) BMI stratum. The sample was comprised of 143 CR participants 
who started the intervention, as reflected in Table 1, though data were 

available for 128 participants at month 12, the first time point of interest 
for this analysis. Table 2 includes the sample sizes at each time point in 
total and by grouping variable (i.e., sex, race, and BMI stratum). 

3.3. Physical activity level (PAL) 

Overall, PAL entered into the Body Weight Planner [1.66 (0.02)] 
correlated significantly with measured PAL [1.75 (0.02)] from CALERIE 
2 (n = 127, r = 0.60, p < 0.001). 

3.4. Percent CR associated with the zone of adherence 

As hypothesized, the upper bound of the zone of adherence (the 80th 
percentile) reflected less than 25% CR (Fig. 2, Table 2). At months 12 
and 24, the mean CR levels for the upper bound of the zones were 
approximately half (13.7% CR) and less than half (10.4% CR) of the 25% 
CR goal, respectively. The lower bound of the zone (the 10th percentile) 
essentially reflected 25% CR (24.9% CR) at month 12 only, with the CR 
value decreasing to 19.4% at month 24. Moreover, the 50th percentile, 
which many participants considered their body weight target, reflected 
17.8% and 13.6% CR at months 12 and 24, respectively. 

The percent CR associated with the zone of adherence was greater for 
women and participants in the overweight BMI stratum; only the sex 
effect for the 10th percentile at month 24 was non-significant (Table 2 
includes the sex and BMI effects; Fig. 3 illustrates the BMI effect). Race 
effects for percent CR associated with the zone of adherence were pre-
sent at month 12 only, with African Americans have greater percent CR 
than Whites and Asians at the 80th percentile (Table 2). African 
Americans and Whites had greater percent CR values than Asians at the 
50th and 10th percentiles at month 12. 

3.5. Percent CR achieved by participants 

As hypothesized, the actual level of CR achieved by participants, 
assessed with the intake-balance method, was within the zone of 
adherence at both month 12 (15.2% CR) and month 24 (11.9%) (Table 2 
and Fig. 2). Percent CR did not differ by sex or race at month 12 or 24, 
though the race effect at month 24 had a p-value of 0.057. Inspection of 
the means suggests that participants who identified as Asian and Other 
had lower percent CR, although the sample sizes in these cells are small 
(Table 2). Participants in the overweight BMI stratum achieved higher 
percent CR at month 12; this effect was not statically significant at 
month 24 (p = 0.056) (Table 2). 

4. Discussion 

The hypotheses of the study were supported. First, the upper bound 
of the zone of adherence reflected a percent CR that was well below the 
25% CR goal at months 12 and 24. Second, the average level of CR 

Table 1 
Baseline characteristics of participants in the calorie restriction group (N = 143).  

Sex, n (%)  
Male  44 (30.8) 
Female  99 (69.2) 

Race, n (%)  
White  111 (77.6) 
African American  15 (10.5) 
Asian  11 (7.7) 
Other  6 (4.2) 

Age (years), mean (SD)  38.2 (7.3) 
Weight (kg), mean (SD)  73.7 (9.9) 
BMI (kg/m2), mean (SD)  25.8 (1.9) 
BMI Category, n (%)   

Normal weight (22.0–24.9 kg/m2)  68 (47.6) 
Overweight (25.0–27.9 kg/m2)  75 (52.4) 

Abbreviations: BMI, body mass index; kg, kilogram; SD, standard deviation. 
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Table 2 
Percent CR at the 80th, 50th, and 10th percentile, and the percent CR achieved by participants at months 12 and 24 during CALERIE 2.   

All participants* 

Mean (SEM) 

% CR at 80th percentile   
M12  13.7 (0.1) 
M24  10.4 (0.0) 

% CR at 50th percentile   
M12  17.8 (0.1) 
M24  13.6 (0.0) 

% CR at 10th percentile   
M12  24.9 (0.1) 
M24  19.4 (0.0) 

Actual % CR   
M12  15.2 (0.7) 
M24  11.9 (0.7)    

Men† Women† t df p 

Mean (SEM) Mean (SEM) 

% CR at 80th percentile        
M12  13.3 (0.1)  13.8 (0.1)  − 2.9  126  0.004 
M24  10.3 (0.0)  10.5 (0.0)  − 3.1  116  0.002 

% CR at 50th percentile        
M12  17.4 (0.2)  18.0 (0.1)  − 3.2  126  0.002 
M24  13.4 (0.0)  13.6 (0.0)  − 2.9  116  0.004 

% CR at 10th percentile        
M12  24.3 (0.2)  25.2 (0.1)  − 3.5  126  <0.001 
M24  19.3 (0.1)  19.4 (0.1)  − 1.4  116  0.156 

Actual % CR        
M12  15.4 (1.2)  15.2 (0.8)  0.1  123  0.904 
M24  11.7 (1.2)  12.0 (0.8)  − 0.2  113  0.845    

Normal Weight‡ Overweight‡ t df p 

Mean (SEM) Mean (SEM) 

% CR at 80th percentile        
M12  13.3 (0.1)  14.0 (0.1)  − 4.3  126  <0.001 
M24  10.3 (0.0)  10.5 (0.0)  − 2.7  116  0.008 

% CR at 50th percentile        
M12  17.4 (0.1)  18.1 (0.1)  − 4.2  126  <0.001 
M24  13.5 (0.0)  13.6 (0.0)  − 2.7  116  0.009 

% CR at 10th percentile        
M12  24.4 (0.2)  25.4 (0.2)  − 4.2  126  <0.001 
M24  19.3 (0.1)  19.5 (0.1)  − 2.7  116  0.008 

Actual % CR        
M12  13.8 (1.0)  16.5 (0.8)  − 2.1  123  0.036 
M24  10.5 (1.0)  13.1 (0.9)  − 1.9  113  0.056    

White§ African American§ Asian§ Other§ F df p 

Mean (SEM) Mean (SEM) Mean (SEM) Mean (SEM) 

% CR at 80th percentile            
M12  13.7 (0.1) a  14.2 (0.4) b  13.1 (0.2) a  13.3 (0.3) a,b  3.5  3  0.018 
M24  10.4 (0.0)  10.4 (0.1)  10.3 (0.1)  10.4 (0.1)  1.2  3  0.315 

% CR at 50th percentile            
M12  17.8 (0.1) a  18.3 (0.3) a  17.0 (0.3) b  17.3 (0.3) a,b  3.4  3  0.020 
M24  13.6 (0.0)  13.5 (0.1)  13.3 (0.1)  13.5 (0.1)  1.7  3  0.167 

% CR at 10th percentile            
M12  25.0 (0.1) a  25.5 (0.4) a  24.0 (0.4) b  24.4 (0.4) a,b  2.7  3  0.047 
M24  19.4 (0.1)  19.3 (0.2)  19.1 (0.2)  19.3 (0.2)  1.4  3  0.238 

Actual % CR            
M12  15.7 (0.7)  16.0 (2.1)  11.8 (2.3)  10.6 (2.3)  1.6  3  0.186 
M24  12.5 (0.8)  12.7 (1.9)  6.3 (1.9)  6.8 (2.7)  2.6  3  0.057 

Data are mean (SEM). Superscripts that differ from each other within a row indicate significant differences between subgroups (P < 0.05). 
Abbreviations: BMI, body mass index; CR, calorie restriction; df, degrees of freedom; F, F-value; M, month; SEM, standard error of mean; t, t-value 
Significant p-values are represented in bold text. 

* Percent CR at the 80th, 50th, and 10th percentiles are available for 128 (M12) and 118 (M24) participants. Actual percent CR is available for 125 (M12) and 115 
(M24) participants. 
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achieved by participants was within the zone at months 12 and 24. The 
lower bound of the zone nearly reflected 25% CR only at month 12 and, 
by month 24, the lower bound of the zone reflected ~19% CR. This 
highlights a problem that CALERIE 2 faced when using a model designed 
to predict weight loss over 12 months in a 24-month trial. The predicted 
weight loss trajectory was flat between months 12 and 24 because the 
model was not designed to predict weight loss past 12 months. This is 
problematic since different levels of CR are required to produce the same 
amount of weight loss over two different periods of time and body 
weight was used as a proxy measure of CR. Specifically, more severe CR 
is necessary to produce the same level of weight loss over a shorter 
duration, resulting in different levels of CR for the same goal weights at 
months 12 and 24. 

Based on the weight graph and the definition of adherence used 
during the CALERIE 2 trial to inform intervention delivery, participants 
were, on average, adherent. Moreover, participants would need to have 
achieved a weight loss below the lower bound of the zone to achieve 
25% CR between months 12 and 24. While it cannot be confirmed if 25% 
CR is feasible for most participants, the interpretation that the 25% CR 
intervention was a relative failure, and that participants could only 
achieve 12% CR on average over the two years, is confounded by the 
accuracy of the tool used to guide participants toward the prescribed 
goals. Indeed, the present analyses uncovered a discrepancy between the 
adherence metric that was obtained in real-time to guide intervention 
delivery with adherence calculations computed post hoc from state-of- 
the-art techniques, such as the intake-balance method. This highlights 
challenges with quantifying the success of a study or an intervention. 
When the intake-balance method is used to estimate participants' 
percent CR, it is noted that the level of achieved CR is below the 25% CR 
target; hence, the CALERIE 2 intervention is interpreted as failing to 
achieve its goal. Conversely, when a zone of adherence is used to 
determine adherence, as it was during delivery of the CALERIE 2 
intervention, participants were considered adherent, on average, by 
virtue of their weights being in the zone of adherence. This discrepancy 
is noteworthy since a measure of percent CR from the intake-balance 
method cannot be obtained in real time to modify intervention de-
livery. Moreover, determining adherence with the intake-balance 
method creates a conundrum since any deviation from 25% CR techni-
cally reflects non-adherence, unless there is an a priori decision to 
consider a range of percent CR (e.g., 22% to 28% CR) as adherent. 

The results of the study also indicate that the percent CR associated 
with the zone of adherence varied by sex, BMI stratum, and race. Spe-
cifically, the zone of adherence resulted in greater percent CR for women 
and for participants in the overweight BMI stratum. Nonetheless, due to 
the low variability of these measures, relatively small differences in 
percent CR were significant. The percent CR achieved did not differ by 
sex, but it did differ by BMI stratum. Specifically, the participants in the 
overweight BMI stratum achieved higher percent CR compared to those 
in the normal weight BMI stratum at month 12. Finally, Asians had 
lower percent CR associated with the zone of adherence compared to 
African Americans and sometimes Whites, though the percent CR ach-
ieved did not vary by race. These results highlight the need to: 1) build 
and validate models on representative samples of participants, and 2) 
build and validate models that better model the effects of sex and body 
mass on energy balance, which has been the focus of recent efforts (Hall 

et al., 2011; Thomas et al., 2011). The effects of race likely require 
further investigation, as body composition (Wagner and Heyward, 
2000) and metabolism may differ among races (DeLany et al., 2005), 
even after adjusting for fat-free mass. Lastly, the results indicate that 
different groups of participants inadvertently may be held to different 
standards of adherence, which will affect the delivery of their inter-
vention. This is an important area of study, particularly given the 
challenges of applying models and techniques to individual participants 
when they were validated at the group level. 

The primary aim of the CALERIE 2 trial was to determine if CR 
favorably slowed biomarkers of aging, as it does in animal models, 
among human participants without obesity, including normal weight 
participants. A lower BMI limit of 22.0 kg/m2 was established to allow 
investigation of the anti-aging effects of CR among participants of 
normal weight, specifically avoiding a study of obesity treatment, which 
has been the focus of many prior studies (Rochon et al., 2011). A 
rigorous safety plan was established that included monitoring bone 
mineral density and BMI, and CR was discontinued temporarily or 
permanently if participants' values went below predefined limits (e.g., 
BMI < 18.5 kg/m2) (Romashkan et al., 2016). The level of CR achieved 
in CALERIE 2 was found to be generally safe and well-tolerated, with no 
significant differences in adverse events between the CR and control (ad 
libitum) group (Romashkan et al., 2016). Within the CR group, however, 
participants of normal weight had a significantly higher incidence of 
nervous system, musculoskeletal, and reproductive system adverse 
events compare to the CR participants in the overweight BMI stratum at 
baseline (Romashkan et al., 2016). Bone mineral density decreases with 
weight loss, and the CR group experienced expected levels of decreased 
bone mineral density, though the increase in predicted osteoporotic 
fracture risk over 10 years was minimal (0.2%). Loss of fat free mass also 
occurs during weight loss and, as expected, this was the case in CALERIE 
2. Nonetheless, the CR participants, compared to the ad lib control, 
experienced an increase in the percent of body weight that was fat free 
mass, and a decrease in the percent of body weight that was fat mass 
(Das et al., 2017), and CR did not negatively affect aerobic capacity 
(Racette et al., 2017). 

The findings from CALERIE 2 indicate that CR is feasible and 
generally safe in adults without obesity. The lower level of CR achieved 
by participants in the normal weight BMI stratum compared to those in 
the overweight stratum at baseline suggests that leaner individuals may 
have experienced more difficulty adhering to CR, though this conclusion 
is confounded by the fact that the zone of adherence resulted in a greater 
percent CR for participants in the overweight BMI stratum. Further 
research is needed to evaluate the influence of weight status and BMI on 
adherence to a CR regimen. 

This study has many strengths, including frequent TDEE and body 
composition assessments, which were necessary to estimate percent CR 
using the intake-balance method. An additional strength was the use of 
individualized weight graphs and a mathematical model to guide 
intervention delivery by estimating adherence to the 25% CR goal in real 
time throughout the two-year trial. The study also has limitations, 
including the inherent limitations in estimating percent CR with both 
the intake-balance method and a mathematical model and weight graph. 
Regarding estimation of percent CR with the intake-balance method, the 
method requires an accurate estimate of TDEE and changes in energy 

† For men, percent CR at the 80th, 50th, and 10th percentile are available for 39 (M12) and 35 (M24) participants, and actual percent CR is available for 38 (M12) 
and 35 (M24) participants. For women, percent CR at the 80th, 50th, and 10th percentile is available for 89 (M12) and 83 (M24) participants, and actual percent CR is 
available for 87 (M12) and 80 (M24) participants. 

‡ For the low BMI category, percent CR at the 80th, 50th, and 10th percentile is available for 61 (M12) and 57 (M24) participants, and actual percent CR is available 
for 57 (M12) and 54 (M24) participants. For the high BMI category, percent CR at the 80th, 50th, and 10th percentile is available for 67 (M12) and 61 (M24) par-
ticipants, and actual percent CR is available for 68 (M12) and 61 (M24) participants. 

§ For Whites, percent CR at the 80th, 50th, and 10th percentile is available for 99 (M12) and 92 (M24) participants, and actual percent CR is available for 97 (M12) 
and 90 (M24) participants. For African Americans, percent CR at the 80th, 50th, and 10th percentile is available for 14 (M12 and M24) participants, and actual percent 
CR is available for 13 (M12 and M24) participants. For Asians, percent CR at the 80th, 50th, and 10th percentile and actual percent CR are available for 10 (M12) and 7 
(M24) participants. For other races, percent CR at the 80th, 50th, and 10th percentile and actual percent CR are available for 5 (M12 and M24) participants. 
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stores throughout the period of interest. It is not possible to obtain ac-
curate estimates of TDEE throughout the intervention without frequent 
DLW measurements, which is impractical in most trials. Rather, mean 
TDEE was determined from DLW assessments at baseline and months 6, 
12, 18, and 24, with the assumption that changes in TDEE were linear 
over time. Linear change in TDEE is unlikely since change in body 
weight, which is tightly associated with TDEE, is curvilinear, and 
changes in physical activity between DLW assessments will not be 
detected. Similarly, change in body composition requires repeated as-
sessments with DXA or other techniques, and these measurements 
include inherent error, in addition to the error associated with the 
estimated energy costs of changes in fat mass and fat-free mass (Racette 
et al., 2012). A final limitation is the application of mathematical models 
of energy balance, as well as other techniques, to individual participants 
since the models are typically validated at the group level. Importantly, 
the mathematical model used in this study (Hall et al., 2011; Hall and 
Chow, 2011) provides valid estimates of energy intake (Sanghvi et al., 
2015) and was different from the model used to direct intervention 
delivery in CALERIE 2 (Pieper et al., 2011). 

5. Conclusions 

The mathematical model and zone of adherence used in CALERIE 2 
were novel and represent a pragmatic approach for estimating and 
promoting adherence to CR goals in real time. The clinical significance 
of the approach is exemplified by its integration into adaptive in-
terventions that can be deployed remotely via mobile devices, such as 
smartphones and tablets (Martin et al., 2016b). Such interventions have 
been found to promote clinically significant weight loss of 9.4% among 
healthy adults when delivered remotely (Martin et al., 2015) and to 
decrease the proportion of pregnant women who exceed gestational 
weight gain guidelines (Redman et al., 2017). The zone of adherence in 
CALERIE 2, however, considered CR far less than the 25% goal as being 
adherent. This must be considered in designing CR interventions and 
strategies to promote adherence. For example, by structuring adherence 
zones that are lower, which would result in higher levels of CR being 
achieved when participants' weights were in the zone of adherence. The 
results also demonstrate the need to better understand the effects of sex, 
BMI, and race on zones of adherence, as well as intervention delivery. 
Specifically, research is needed to determine if the widths of adherence 
zones are sufficient to account for error in the models and to not hold 
some participants to a more stringent (or lenient) adherence metric. 

Finally, the way in which intervention success is evaluated after a trial 
requires further exploration since even state-of-the-art techniques, 
including the intake-balance method, have limitations and will not al-
ways align with measures of adherence used during intervention 
delivery. 
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Actual percent CR achieved by participants at months 12 and 24 is depicted by 
the dark blue squares and was measured with the intake-balance method. 
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dark blue squares and was measured with the intake-balance method. 
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Initial Evidence of the Acute Effect of Electronic Nicotine
Delivery System Use on Energy Intake

Gabrielle T. Maldonado1, 2, Christoph Höchsmann3, 4, Akansha Anbil2, Karissa Neubig3,
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Previous work has aimed to disentangle the acute effects of nicotine and smoking on appetite with mixed
findings. Electronic nicotine delivery systems (ENDS) have yet to be examined in this regard despite
evidence of use for weight control. The present study tested the influence of an ENDS on acute energy intake
and associated subjective effects. Participants (n = 34; 18–65 years) with current ENDS use completed two
randomly ordered clinical lab sessions after overnight abstinence from tobacco/nicotine/food/drinks (other
than water). Sessions differed by the product administered over 20 min: active (20 puffs of a JUUL ENDS
device; 5% nicotine tobacco-flavored pod) or control (access to an uncharged JUUL with an empty pod).
About 40 min after product administration, participants were provided an ad lib buffet-style meal with
21 food/drink items. Subjective ratings were assessed at baseline, after product use, and before/after themeal.
Energy intake (kcal) was calculated using pre–post buffet item weights. Repeated measures analyses of
variance and pairwise comparisons were used to detect differences by condition and time (α < .05). Mean ±
standard error of the mean energy intake did not differ significantly between active (1011.9 ± 98.8 kcal) and
control (939.8 ± 88.4 kcal; p = .108) conditions. Nicotine abstinence symptoms significantly decreased after
the active condition, while satiety significantly increased. Following the control condition, satiety remained
constant while hunger significantly increased relative to baseline. Findings indicate that acute ENDS use did
not significantly impact energy intake, but there was an ENDS-associated subjective increase in satiety and
relative decrease in hunger. Results support further investigation of ENDS on appetite.

Public Health Significance
Perceptions that electronic nicotine delivery systems (ENDS) assist with appetite suppression and
weight loss have been linked to initiation and may present challenges to ENDS cessation. The present
results suggest that acute ENDS use did not significantly affect energy intake relative to the control
condition. ENDS use was associated with increased satiety and lower subjective hunger. These findings
can be used to develop prevention/intervention messaging related to ENDS use for weight control.

Keywords: electronic nicotine delivery systems, weight control, hunger, satiety, nicotine
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Weight control is a common motive for initiation and continued
smoking, and fear of postcessation weight gain is cited as an
important barrier to smoking cessation and/or relapse (Beebe &
Bush, 2015; Pinto et al., 1999; White, 2012). The relations among
smoking, appetite, and body weight are complex and incompletely
understood, but evidence supports the hypothesis that nicotine
delivered alone or via cigarettes reduces appetite, and ultimately
body weight, by acting upon brain and hormonal mechanisms
(Audrain-McGovern & Benowitz, 2011). Whether these effects
extend to other tobacco products such as electronic nicotine delivery
systems (ENDS or e-cigarettes) is unknown. Nonetheless, marketing
for ENDS has included weight control messages (Lyu et al., 2022),
and ENDS are being used for this purpose among people who smoke
cigarettes and use ENDS (Jackson et al., 2019; Piñeiro et al., 2016;
Strong et al., 2015). Better understanding of the effects of ENDS on
appetite and weight-related factors could inform prevention and
intervention efforts and considerations for people who use ENDS,
including those who use ENDS as a harm reduction or smoking
cessation aid (Hartmann-Boyce et al., 2021; National Academies of
Sciences, Enginering, and Medicine, 2018).
Nicotine use for appetite suppression is complex, and there are

multiple mechansims by which nicotine likely exerts this effect
(Audrain-McGovern & Benowitz, 2011). For example, nicotine
delivered via cigarettes or other methods is thought to act on the
hormone leptin found in adipose tissue by increasing its quantity and
regulating feelings of hunger and inducing satiety (Jo et al., 2002).
Another potential hypothesis is that nicotine triggers a response in
the propiomelanocortin cells in the hypothalamus, which play a
critical role in food inhibition and increased energy expenditure
(Picciotto & Mineur, 2013). Although much previous research has
tried to disentangle these effects including preclinical rodent models
(e.g., Grunberg et al., 1984; Rupprecht et al., 2016), acute clinical
designs represent one means to better understand how nicotine use
in various forms immediately impacts appetite, energy intake, and
related subjective effects.
One of the earliest clinical studies on the effects of cigarette smoking

on food intake found that cigarette smoking reduced consumption of
and preference for sweet-tasting foods while abstinence from cigarette
smoking increased sweet consumption and preference for sweets.
Consumption of salty and bland foods was not significantly affected
(Grunberg, 1982). Subsequent clinical lab work has revealed mixed
effects of acute nicotine administration on appetite with some evidence
of nicotine-associated supression of food/energy intake under certain
conditions (Bulik et al., 1991; Perkins et al., 1991; Yannakoulia et al.,

2018) and no effect or the opposite effect in others (Perkins et al., 1992,
1994). For example, in one examination, among 20 males (10 who
smoked and 10 who did not) who abstained from food/smoking
overnight, the hunger-reducing effects of nicotine only occurred
following a simulated breakfast but not after water consumption.
Nicotine also reduced energy intake during a test meal, with no effect of
the type of food (sweet vs. high fat; Perkins et al., 1991). During a more
recent study involving 14 males who smoked cigarettes, a significant
reduction in energy intake was observed following a seven-item ad lib
test meal when preceded by cigarette smoking (two cigarettes over
15 min) compared to a sham condition (holding an unlit cigarette), but
no differences between conditions were observed for appetite-related
subjective effects or hormones (Yannakoulia et al., 2018). This prior
work highlights the potential influence of nicotine delivered via ENDS
to impact acute energy intake and related subjective effects, and other
forms of evidence reinforce this premise among people who use ENDS.

Among adolescents, ENDS use has been associated with intentions
to lose weight (Mantey et al., 2020; Sanchez et al., 2021), and among
young adults, higher weight concerns were associated with greater
ENDS use frequency (Bennett & Pokhrel, 2018). The idea that ENDS
can prevent weight gain after quitting smoking and their use for other
weight control purposes has been endorsed by adults who use tobacco
(Jackson et al., 2019). There is a subset of people who use ENDSwho
endorse use for weight management (Morean & Wedel, 2017).

Given previous mixed literature on the acute effects of nicotine
on appetite and current trends in motivation for ENDS use and
behavior, a well-controlled clinical laboratory study to assess the
impact of ENDS on energy intake and associated subjective effects
is warranted. Here, we tested the effect of an ENDS capable of a
cigarette-like level of nicotine delivery (JUUL; Prochaska et al.,
2022) as compared to a control condition (no nicotine or aerosol
exposure) on energy intake during a buffet meal and associated
subjective effects. Building on previous literature, we hypothesized
there would be less energy intake following ENDS use compared to
control. Further, we hypothesized that subjective feelings of hunger/
food craving would decrease and satiety would increase following
ENDS use compared to control.

Method

Overview

This study employed a two-condition randomized cross-over
design with an active condition (20 puffs of a 5% nicotine Virginia
Tobacco flavor JUUL pod) and a control condition (access to anT

hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

University Undergraduate Research Symposium on April 26, 2023, and at
the International Conference for Eating Disorders in Washington, D.C. on
June 1–2, 2023. This study was preregistered at https://ClinicalTrials.gov
(No. NCT04219189).
All authors have contributed to the article in a significant way, and all have

read and approved the article.
Gabrielle T. Maldonado played a lead role in data curation, formal analysis,

investigation, methodology, project administration, validation, and writing–
original draft. Christoph Höchsmann played a lead role in conceptualization and
methodology and a supporting role inwriting–review and editing. AkanshaAnbil
played a supporting role in project administration. Karissa Neubig played a
supporting role in conceptualization and methodology. Rabia Imran played a
supporting role in project administration andwriting–review and editing. Bernard

F. Fuemmeler played a supporting role in conceptualization and writing–review
and editing. Thokozeni Lipato played a supporting role in project administration.
Vineela Rachagiri played a supporting role in formal analysis andwriting–review
and editing. Andrew J. Barnes played a supporting role in formal analysis,
methodology, supervision, and writing–review and editing. Corby K. Martin
played a supporting role in conceptualization, methodology, supervision, and
writing–review and editing. Caroline O. Cobb played a lead role in supervision
and a supporting role in conceptualization, formal analysis, investigation, project
administration, writing–original draft, and writing–review and editing.

Correspondence concerning this article should be addressed to Caroline
O. Cobb, Department of Psychology, Virginia Commonwealth University,
100 West Franklin Street, Room 234, Richmond, VA 23220, United
States. Email: cobbco@vcu.edu

2 MALDONADO ET AL.

178

https://ClinicalTrials.gov
mailto:cobbco@vcu.edu


empty JUUL-compatible pod and uncharged JUUL battery with the
option to take up to 20 puffs). The criterion of 20 puffs (nicotine
exposure estimated to be equivalent to ∼1.5 cigarettes; Digard et al.,
2013; Goniewicz et al., 2019) was chosen to increase the likelihood
of nicotine-related effects on energy intake (similar to some prior
research; Yannakoulia et al., 2018). Following screening for
eligibility and obtainment of informed consent, participants took
part in two sessions, about 1 week apart, in which theywere randomly
assigned the control or active condition followed by access to an ad lib
test meal. No condition blinding was used, but participants were not
informed of their condition order/assignment prior to sessions.

Participants

Thirty-four adult participants who reported either everyday ENDS
usewith a liquid concentration of at least 0.3% (3mg/mL) nicotine or
ENDS use at least three times a week at a liquid concentration of at
least 3% (30 mg/mL) nicotine for the past 30 days completed both
study sessions. Prior to participation, participants were screened for
medical and psychological conditions that may have interfered with
participant safety and their ability to successfully complete the study.
Participants were also screened for any food allergies that could limit
them from consuming any items provided in the buffet meal portion
of the session. Participants also could not report alcohol use >25
days, cannabis use >20 days, or any illicit drug use in the past 30
days. Participants whowere pregnant or breastfeeding were excluded
using self-report and urinalysis. Participants who used progestin
intrauterine devices, birth control injections (Depo-Provera, etc.), or
had received a hysterectomy and still had ovaries were not eligible to
participate; these criteria were used to ensure that cycle phase did
not interfere with energy intake, as progesterone only intrauterine
devices/birth control pills do not mimic a natural cycle. Informed
consent from all participants was obtained prior to enrollment and
full institutional review board approval of the study was approved
prior to initiation of participant recruitment (IRBNo. HM20018382).

Power Analysis

The target sample of 34 study completers was determined utilizing
data from Yannakoulia et al. (2018) in which mean 152 (standard
deviation [SD]= 190) kcal lower food intake was observed following
the active cigarette condition versus the sham condition 45 min
after the 15-min condition administration. Here, we assumed a more
conservative mean difference of food intake between the active and
control condition of 100 (SD = 200) kcal (Cohen’s d effect size of
0.50) with power at 80% and a two-sided α level of 0.05.

Procedures and Materials

Prior to each session, participants abstained from any nicotine
products, beverages (other than water), and food for 12 hr. All
sessions occurred before 11:00 a.m. to help control for time of day,
and for biologically female participants, sessions were scheduled
during the luteal phase of their cycle (days 16–28 for an average
cycle) to help control for hormonal effects on appetite. Presession
abstinence was confirmed by obtaining participant exhaled carbon
monoxide (CO) levels (must be half or lower of baseline CO level
observed) and having participants sign an attestment form to affirm
abstinence. Participants’ blood pressure (BP) and heart rate were

also obtained prior to the beginning of the session to ensure that they
were within the appropriate safety limits (BP < 140/90). Participants
also completed a presession questionnaire which inquired about any
changes to their medical history since their last visit. Following the
administration of the presession questionnaire, participants were
asked to sit in the study room for an hour, during which they had
access to researcher-approved reading items and puzzles to control for
content that may influence appetite. This waiting period was used to
ensure at least some abstinence from nicotine-containing products, as
CO only measures exposure to combustible tobacco products.

After the waiting period, participants were provided the
condition-specific product (active or control) and completed a
subjective effect questionnaire at four time points during the session.
Participants also completed the Food Craving Questionnaire–State
(FCQ-state) at one time point during the session. Following a
35–40-min lapse after condition administration, participants partook
in an up to 30-min ad lib meal.

Test Meal

The ad lib buffet meal consisted of a total of 21 food items in which
each portion was set up identically across sessions and participants.
Standard plate sizes (10.5”; ∼23–26.2 g) and bowls (∼15.6–16.2 g)
were used for each session. Food items consisted of commercially
available and ready-to-eat items. A mixture of salty (popcorn, nuts),
savory (chicken tenders), sweet (M&Ms, swiss rolls), and fatty
(cheese, cheese dip). All food items were provided at once with the
average total calories provided ∼4,228 kcal; which is in excess of a
standard 2,000 kcal diet. Food items during Yannakoulia et al. (2018)
were fewer in number (i.e., seven items vs. 21 items). Food items
chosen were high in fat and in sugar content in order to promote
consumption and were sized appropriately (0.5–1.5 cups) as to allow
for repeated servings and to ensure that participants did not remember
the exact consumption amount they consumed between sessions.
Participants were instructed to eat until they felt comfortably full. Of
note, previous work has shown that emulating a normal eating
environment using a test buffet meal design is a suitable means for
measuring intervention effects (Allirot et al., 2012). During the test
meal, participants were in a room by themselves with unobtrusive
monitoring via Zoom to ensure protocol compliance.

Baseline Measures

Participants’ height and weight were measured at baseline and
participants completed self-report items including gender, sex
assigned at birth, race and ethnicity, current health conditions, and
other measures not described here. The E-cigarette Dependence
Scale (Morean et al., 2019) and Patient-Reported Outcomes
Measurement Information System scale among participants who
reported smoking cigarettes in the past 30 days (Shadel et al., 2014)
were used to assess nicotine dependence. The Power of Food Scale
was used to assess the psychological influence of existing in a food
abundant environment (Lowe et al., 2009). Feelings toward appetite
were assessed utilizing the Eating Inventory which was scored using
a standardized method resulting in three domains: cognitive
restraint, disinhibition, and hunger (Stunkard & Messick, 1985).
To assess participant endorsement of ENDS use for body image
concerns and as a way to control appetite an adapted version of the
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Smoking-related Weight and Eating Episode Test was administered
(adapted SWEET; Adams et al., 2011).

Energy and Macronutrient Intake

Energy (kcal) and macronutrient intake (total fat, saturated fat,
cholesterol, etc.) were the primary outcomemeasures. These outcomes
were measured by directly weighing the food provision and waste for
each food item. Intake was calculated by taking the difference of pre
and post-plate weights. Macronutrient details per gram for each food
item were abstracted from food packaging and/or publicly available
nutritional information found online.

Subjective Measures

Subjective questionnaires included questions that were targeted
toward nicotine abstinence symptoms and related side effects using the
adaptedMinnesota NicotineWithdrawal Scale (Hughes &Hatsukami,
1986; nine items) and theDirect Effects of Nicotine Scale (Evans et al.,
2006; Perkins et al., 1993; 10 items). All items used a 100-point visual
analog scale ranging from 0 = not at all to 100 = extremely.
Eleven appetite domains were rated via Visual Analog Scale

items using the same 100-point line and the same or similar anchors
as above (Flint et al., 2000; Parker et al., 2004; Stubbs et al., 2000).
To measure the overall intensity of food craving, the FCQ-State was
administered once, about 30 min after the condition administration
and 5–10 min before the buffet meal. The scale consisted of 15
multiple choice items on a 5-point Likert scale ranging from 1
(strongly disagree) to 5 (strongly agree) inquiring around the
intensity of cravings for food. Questions included but were not
limited to asking about intensity of desire to eat a certain food item,
satiety around eating a specific food item, craving one or more
specific foods, and so forth. Scoring of the FCQ–State involved
utilizing the five-factor technique which is outlined by Cepeda-
Benito et al. (2000): an intense desire to eat; anticipation of positive
reinforcement that may result from eating; anticipation of relief from
negative states and feelings as a result of eating; lack of control over
eating; and craving as a physiological state (Cepeda-Benito et al.,
2000; Meule, 2020).

Statistical Analysis

We characterized the sample descriptively using baseline mea-
sures. Then relevant coding and/or scale-specific calculations were
performed. Statistical assumptions were reviewed and tested with
appropriate transformations as needed. There were no missing data for
energy intake. Missing data across subjective items ranged from 0% to
2.9% and on average was 1.5%. Due to the low proportion of missing
data, we used mean replacement to correct relevant subjective items to
ensure their inclusion in subsequent statistical analyses. We initially
performed a mixed analysis of variance (ANOVA) to examine the
effect of condition (active, control; within-subjects) and condition order
(active then control, control then active; between-subjects) on energy
intake. The main effect of condition order and the interaction of
condition order and condition were not statistically significant for
energy intake: condition order, df(1, 32)= 0.795, p= .373; Condition×
Condition Order, df(1, 32) = 0.411, p = .526); subsequent analyses
excluded condition order as a between-subjects factor for parsimony
and power-related reasons, resulting in a repeated measures ANOVA.

For energy and macronutrient intake indices and the FCQ-state,
a repeated measures ANOVA was used to detect differences by
condition (active, control). For all other subjectivemeasures, a two-way
repeated measures ANOVA was used to test differences by condition
(active, control) and time (1, 2, 3, 4). For all ANOVAs, adjustments for
sphericity violations were assessed, and Huynh–Feldt correction values
were reported. Post hoc testing with a Bonferroni corrected repeated
measures t test was used to evaluate significant model results (McHugh,
2011). All data, study materials, and analysis code are available by
request. We report how we determined our sample size, all data
exclusions (if any), all manipulations, and all measures in the study.

Results

Participant Characteristics

A total of 52 participants provided informed consent, and of
those, 34 successfully completed the study. The remaining 18 were
determined ineligible due to failure to meet specific study criteria
(i.e., food allergies, hormonal therapy/birth control that would
interfere with food intake, and specific medical criteria), or self-
withdrew due to scheduling conflicts (n = 6).

Detailed demographic and psychosocial characteristics of the 34
completers can be found in Table 1. In terms of sex assigned at birth,
58.8% were male and 41.2% were female, with gender distributions
being similar in proportion of sex assigned at birth with the exception
of one individual listed as nonbinary and two individuals identifying
as men who were female at birth. Our sample consisted primarily of
young adults with the average age of 25.7 years (SD = 8.4). The
sample was relatively diverse in race/ethnicity with 14.7% identifying
as Black or African American, 11.8% identifying as Middle Eastern,
44.1% identifying as White, and 8.8% identifying as more than one
race. Additionally, 14.7% of participants identified as Hispanic/
Latino or of Spanish origin. The majority of the sample (61.8%)
reported a household income of equal to or greater than $50,000 and
reported some college or higher education (82.4%) and were either
currently employed (38.2%) or a student (44.1%).

The Supplemental Table S1 describes alcohol, cannabis, and tobacco
use characteristics in further detail. Relevant to our study, a little over
1/3 of the sample preferred JUUL (35.3%) and most preferred
nontobacco flavored ENDS (91.2%). Other baseline characteristics
related to eating behavior and physical characteristics are displayed in
the Supplemental Table S2. The majority of participants (67.6%) were
not concerned about weight gain if they were to stop using ENDS. Of
those that did express a concern (n = 11), 63.6% reported that weight
gain concerns influenced their decision to quit ENDS. The Power of
Food scale demonstrated that there was only a minimal to moderate
effect of the influence of food on appetite despite living in a food
abundant environment (M = 2.7, SD = 0.8). The adapted SWEET test
scale indicated that there were minimal concerns around ENDS use for
weight control purposes (M = 1.1, SD = 0.8). The Pearson Eating
Inventory indicated that on average participants scored within the low
to average range for cognitive restraint, disinhibition, and hunger.

Energy and Macronutrient Intake

Analysis of energy intake (kcal) revealed no significant main
effect of condition (p = .108) and a partial η-squared effect size of
medium (η2p = 0.076; see Table 2). Descriptive examination by
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condition indicated a slightly higher mean (±standard error of the
mean) energy intake during the active condition (1011.9 ± 98.8 kcal)
compared to the control condition (939.8 ± 88.4 kcal). Relatedly,
descriptive examination of overall food intake in grams was similar
to between active (741.9 ± 61.1 g) and control (737.9 ± 56.7 g)
conditions. No significant main effects of condition were observed
for any macronutrient examined (F < 3.6, p > .069) with effect sizes
ranging from small to medium (see Table 2).
Exploratory analyses evaluated the influence of sex assigned at birth

and past 30-day cigarette use on energy intake. Therewere no significant
main effects or interactions involving either factor (all p > .13).

Subjective Effects

Tobacco/Nicotine Abstinence Symptoms and
Nicotine-Related Effects

Across the adaptedMinnesotaNicotineWithdrawal Scale andDirect
Effects of Nicotine Scale there were 12 items that had a significant

condition by time interaction (F > 2.9, p < .05; see Table 3): urges to
use an e-cigarette, irritability/frustration/anger, difficulty concentrating,
restlessness, impatient, craving an e-cigarette, urges to smoke a
cigarette, craving a cigarette, nauseous, dizzy, lightheaded, and heart
pounding. Effect size estimates for these items were medium to large.
These items were examined between conditions at each time point and
by time point within condition (changes relative to time 0 or baseline)
using paired sample t tests with a Bonferroni correction (10 total
comparisons: p < .005).

Urges to use an e-cigarette was the item with the largest F-value
for the interaction (F = 30.9; see Figure 1A). Relative to baseline
(65.2 ± 4.8), mean urges decreased significantly following condition
administration (29.4 ± 4.0; p < .001) and remained significantly
decreased for the remainder of the session (p < .001). No significant
changes relative to baseline were observed for the control condition.
Between conditions, urges to use an e-cigarette were significantly
lower for active compared to control immediately following
condition administration (29.4 ± 4.0 vs. 73.3 ± 4.0; p < .001)
and for the remainder of the session. Similar patterns to urges to use
an e-cigarette were observed for the craving an e-cigarette item.

For irritability/frustration/anger in the active condition, relative to
baseline (25.9 ± 4.2), mean scores decreased significantly following
the condition administration n (10.6 ± 2.3; p < .001) and after the
buffet meal (9.4 ± 3.4; p < .001; see Figure 1B). No significant
changes relative to baseline were observed in the control condition.
At every time point following condition administration, scores for the
active condition were significantly lower than control (all p < .001)
with the largest difference at 20 min (control 35.0 ± 5.3 vs. active
10.6 ± 2.3). A relatively similar pattern of responding was observed
for difficulty concentrating, restlessness, impatient, urges to smoke a
cigarette, and craving a cigarette with lower scores for the active
condition relative to control following condition administration.

Dizziness had the largest F-value for the interaction (F = 6.3)
among the Direct Effects of Nicotine Scale items, and the only
significant difference observed was directly following the condition
administration, with higher mean values for the active condition
compared to control (20.5 ± 3.9 vs. 8.0 ± 2.1; p = .002); no
other significant differences between conditions were observed. A
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Table 1
Sample Demographics

Characteristic Sample size n = 34

Age (years), M (SD) 25.7 (8.4)
Gender identity, n (%)
Female/woman/she/her 11 (32.4)
Male/man/he/him 21 (61.8)
Nonbinary 1 (2.9)
Missing 1 (2.9)

Sex assigned at birth, n (%)
Male 20 (58.8)
Female 14 (41.2)

Race, n (%)
Asian 5 (14.7)
Black or African American 5 (14.7)
Middle Eastern 4 (11.8)
More than one race 3 (8.8)
White 15 (44.1)
Preferred to self-describe 2 (5.9)

Hispanic/Latino/of Spanish origin, n (%)
No 29 (85.3)
Yes 5 (14.7)
Ancestry n (%) n = 5
Cuban/Cuban American 2 (40.0)
Mexican/Mexican American 1 (20.0)
Central/South American 2 (40.0)

Annual Income, n (%)
Below $50,000 9 (26.5)
$50,000 or greater 22 (61.8)
Do not know 4 (11.8)

Education, n (%)
High school graduate/GED 6 (17.6)
Some college or higher 28 (82.4)

Employment status, n (%)
Working now 13 (38.2)
Not working 6 (17.6)
Student 15 (44.1)

Note. For employment status, working (includes full-time, part-time, and
military), not working (includes only temporarily laid off/sick leave,
nonworking disabled permanent or temporary, looking for work/
unemployed, keeping house, retired, and nonworking student, full-time
student is an additional category). For education, GED corresponds to
General Education Development diploma.

Table 2
Statistical Analysis Results for Energy Intake

Outcome

Condition

F p η2p

Kilocalories 2.7 .108 0.076
Total fat 1.4 .251 0.040
Saturated fat 1.3 .260 0.038
Cholesterol 0.2 .632 0.007
Sodium 1.9 .180 0.054
Carbohydrate 1.3 .259 0.038
Fiber 0.5 .506 0.014
Sugars 2.4 .134 0.067
Added sugar 2.7 .107 0.077
Protein 3.5 .070 0.096
Vitamin D <0.1 .950 <0.001
Iron 0.4 .556 0.011
Calcium <0.1 .858 0.001
Potassium <0.1 .998 <0.001

Note. df(1, 33). Used Huynh–Feldt Correction.
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relatively similar pattern was observed for nausea, lightheadedness,
and heart pounding.

Hunger/Satiety/Appetite-Related Effects

Of the 11 Pennington Visual Analog Scale items, four items had a
significant condition by time interaction with a medium to large
effect size: “How anxious do you feel at themoment?,” “Howhungry
do you feel at the moment?,” “How satisfied do you feel at the
moment?,” and “Would you like to eat something salty?” The item
assessing hunger had the largest F-value for the interaction (F = 7.4;
see Figure 1C). Regarding feelings of hunger in the control
condition, ratings significantly increased relative to baseline (56.9 ±
4.3) following condition administration (64.8 ± 4.3) and remained
high before the buffet meal (71.0 ± 3.8; all p < .001); there was less
change in the active condition during this same time period. Hunger
ratings for both conditions significantly decreased relative to baseline
following the buffet meal (p < .001), and there were no significant
between-condition differences at any time point.
For feelings of satiety, relative to baseline, there was a significant

increase directly after active condition administration (26.6 ± 3.4–39.3 ±
3.4; p < .001) but not for the control condition (see Figure 1D).

After administration of the buffet meal, there was a significant increase
in satiety relative to baseline for both conditions to a similar extent
(p < .001). Between conditions, the active condition resulted in
significantly higher satiety ratings than the control, immediately
following condition administration (39.3 ± 3.4 vs. 21.2 ± 3.4; p< .001)
and directly before the buffet meal (33.8 ± 3.6 vs. 19.5 ± 3.6, p< .001).
A relatively similar pattern of responding was observed for feelings of
anxiety at the current moment. Relative to baseline, there was a
significant decrease in cravings of something salty (n= 30) in the active
and control conditions directly after the buffet meal administration (p<
.001). There were no other significant differences relative to baseline or
between conditions.

For the FCQ-state overall score and five individual factors, there
were no significant main effects of condition (F < 2.7, p > .112) and
small to medium effect sizes were observed (see Table 4).

Discussion

This study examined the acute effect of an ENDS capable of
cigarette levels of nicotine delivery when used by people
experienced with ENDS use (Prochaska et al., 2022) on energy
intake during an ad lib buffet meal and associated subjective effects
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Table 3
Statistical Analysis Results for Subjective Measures

Outcome

Condition (C) Time (T ) C × T

F p η2p F p η2p F p η2p

Adapted Minnesota Nicotine Withdrawal Scalea

Urges to use an e-cigarette 63.6 <.001 0.658 8.6 <.001 0.206 30.9 <.001 0.483
Irritability/frustration/anger 21.7 <.001 0.397 10.5 <.001 0.241 7.5 <.001 0.185
Difficulty concentrating 4.9 .034 0.129 21.0 <.001 0.389 5.3 .002 0.138
Restlessness 3.2 .085 0.087 12.4 <.001 0.273 3.1 .036 0.086
Impatient 13.1 <.001 0.285 14.4 <.001 0.304 5.6 .002 0.145
Craving an e-cigarette 71.3 <.001 0.684 8.5 <.001 0.204 29.3 <.001 0.470
Drowsiness 1.6 .212 0.047 25.1 <.001 0.432 2.5 .077 0.071
Urges to smoke a cigarette 11.7 .002 0.261 6.9 <.001 0.172 3.3 .036 0.090
Craving a cigarette 11.4 .002 0.257 10.2 <.001 0.237 4.6 .011 0.122

The Direct Effects of Nicotine Scalea

Nauseous 0.2 .630 0.007 4.3 .008 0.114 3.0 .045 0.084
Dizzy 2.4 .133 0.067 11.6 <.001 0.261 6.3 .002 0.160
Lightheaded 0.0 .885 0.001 14.6 <.001 0.307 4.2 .008 0.113
Nervous 1.7 .196 0.050 2.7 .076 0.075 0.2 .871 0.007
Sweaty 2.2 .145 0.063 3.2 .055 0.087 2.1 .119 0.060
Headache 4.1 .051 0.110 10.9 <.001 0.248 2.4 .086 0.067
Excessive salvation 1.0 .317 0.030 0.8 .449 0.023 1.8 .151 0.053
Heart pounding 0.1 .810 0.002 5.5 .003 0.143 4.8 .004 0.126
Confused 0.1 .743 0.003 0.9 .418 0.027 0.7 .500 0.021
Weak 0.3 .575 0.010 15.2 <.001 0.315 0.2 .792 0.007

Pennington Visual Analog Scale
How sad do you feel at the moment?a 1.1 .293 0.034 7.4 <.001 0.184 1.0 .374 0.030
How happy do you feel at the moment?a 2.9 .099 0.080 14.6 <.001 0.307 0.4 .698 0.013
How anxious do you feel at the moment?a 0.0 .975 <0.001 12.7 <.001 0.278 5.6 .001 0.145
How hungry do you feel at moment?a 3.8 .060 0.103 125.7 <.001 0.792 7.4 <.001 0.184
How full do you feel at the moment?a 2.0 .170 0.056 162.2 <.001 0.831 0.8 .482 0.024
How satisfied do you feel at the moment?a 25.6 <.001 0.437 90.5 <.001 0.733 4.3 .011 0.115
How much do you think you can eat right now?a 2.8 .106 0.077 95.2 <.001 0.743 2.4 .081 0.067
Would you like to eat something sweet?a 2.9 .097 0.081 36.6 <.001 0.526 1.3 .277 0.038
Would you like to eat something salty? (n = 30)b 1.2 .279 0.040 59.8 <.001 0.674 2.8 .045 0.088
Would you like to eat something savory? (n = 30)b 1.0 .333 0.032 76.1 <.001 0.724 1.4 .264 0.045
Would you like to eat something fatty? (n = 30)b 0.9 .352 0.030 45.3 <.001 0.610 1.5 .238 0.048

Note. Bold indicates p < .05.
a Condition (C) df(1, 33), Time (T) df(3, 31), C × T df(3, 31). bC df(1, 29), T df(3, 27), C × T df(3, 27); Used Huynh–Feldt Correction.
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using a randomized cross-over design. To our knowledge, this is the
first clinical lab study examining this effect with acute ENDS use;
and there are mixed findings from similar work using cigarettes
and nicotine nasal spray (Bulik et al., 1991; Grunberg, 1982; Perkins
et al., 1991, 1992, 1994; Yannakoulia et al., 2018).
Our hypothesis that relative to the control condition, the active

nicotine-containing ENDS condition would result in a significant
decrease in energy and macronutrient intake during the ad lib meal

was not supported; there was not a significant difference in energy or
macronutrient intake. The lack of difference is consistent with
results from some previous literature performed with cigarettes
and nicotine nasal spray under various conditions (Grunberg, 1982;
Perkins et al., 1992, 1994). However, these findings were inconsistent
with smoking-related energy intake suppression observed in two
previous studies examining the acute effects of smoking two own
brand cigarettes in 15 min (Yannakoulia et al., 2018) and smokingT

hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 1
Mean ± SEM for the Subjective Items Urges to Use an e-Cigarette (Panel A), Irritability/Frustration/Anger
(Panel B), Hunger (Panel C), and Satiety (Panel D)

Note. Filled symbols represent a significant difference relative to −5 min, and asterisks represent a significant difference
between conditions at that time point (all p < .005). SEM = standard error of the mean.

Table 4
Statistical Analysis Results and Descriptives for Food Craving Questionnaire–State

Food Craving Questionnaire (FCQ)–State Condition F p η2p Active M ± SEM Control M ± SEM

FCQ–state total score <0.1 .861 0.001 49.0 ± 1.6 49.5 ± 2.1
An intense desire to eat 1.1 .308 0.032 10.4 ± 0.5 9.6 ± 0.6
Anticipation of positive reinforcement that

may result from eating
0.5 .472 0.016 10.7 ± 0.4 10.2 ± 0.5

Anticipation of relief from negative states
and feelings as a result of eating

2.6 .113 0.074 10.2 ± 0.4 11.0 ± 0.5

Lack of control over eating 0.8 .369 0.024 6.9 ± 0.5 7.2 ± 0.4
Craving as a physiological state 1.4 .239 0.042 10.9 ± 0.4 11.4 ± 0.4

Note. df(1,33). SEM = standard error of the mean.
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eight own brand cigarettes over a 4-hr period (Bulik et al., 1991).
Compared to the more recent report (Yannakoulia et al., 2018), we
observed slightly higher levels of energy intake (900–1,000 kcal vs.
700–900 kcal) and more variability (as indexed by SD; 500–600 kcal
vs. 200–300 kcal) between participants. Based on our estimated effect
size (0.5) from Yannakoulia et al. (2018), the condition-related effect
observed in this study was lower than expected (0.28). Of note, our
sample was 2.4 times larger and diverse in race/ethnicity and sex (e.g.,
38% nonmale vs. 0% nonmale) which likely increased variability.
Although JUUL was among the most preferred ENDS brands among
our participants, more than 60% preferred other brands, and more
than 90% preferred ENDS flavors other than tobacco. Condition
instructions attempted to ensure equivalent ENDS use and associated
nicotine delivery between participants, but it is possible that
participants altered their puff topography (as in Hiler et al., 2017)
and/or found the active condition aversive. Future work should
consider the use of an own brand ENDS condition. Even considering
these limitations, results of the present study suggest acute nicotine-
containing ENDS use does not suppress energy intake relative to no
ENDS use, and these effects may not be comparable to those observed
with cigarette smoking under similar conditions.
In contrast to the energy intake effects observed in this study,

consistent with our hypothesis, there was a significant increase in
feelings of hunger following the control condition administration but
not the active condition and a significant increase in satiety following
the active condition administration but not the control condition.
Interestingly, food-related cravings (indexed by the FCQ-state)
measured immediately prior to the buffet meal indicated no significant
differences between conditions across multiple factors. The FCQ-state
focuses specifically on the intensity of food craving, especially around
certain food deprivations, cues to certain foods, and food intake
(Meule, 2020). Higher scores on the FCQ-state have been correlated
with increased caloric consumption (Ng & Davis, 2013), but this
measure also has been shown to be influenced by environmental
factors that contribute to cravings of certain foods, such as deprivation
of a particular food item (i.e., sweet or savory item; Meule et al.,
2014). Some consider specific food cravings (i.e., feelings directed
toward a certain food item, flavor, or texture) to be differentiated from
physiological feelings of hunger encompassing stomach growling,
irritability, and dizziness associated with not eating (Meule, 2020).
This ideamay help explain the discrepancy between subjective ratings
of hunger and food-related cravings in this study.
Compared to six prior studies in this area (Bulik et al., 1991,

Grunberg, 1982; Perkins et al., 1991, 1992; Perkins et al., 1994;
Yannakoulia et al., 2018), our subjective assessments are among the
most comprehensive to date with the inclusion of eating-related items
as well as nicotine abstinence symptomology and nicotine-related side
effects. Among the four studies that included a subjective measure of
hunger, there was only one where nicotine-related suppression was
observed (Perkins et al., 1991) as in the present study. In the three
previous studies that measured condition-related effects on subjective
satiety, there were no condition-related differences, unlike the present
study. Taken together, this work highlights a dearth of prior evidence
indicating acute nicotine administration suppresses subjective feelings
of hunger and food craving and increases satiety.
Other findings more consistent with prior work indicated that the

active condition was effective in reducing nicotine abstinence-
related symptoms including urges and craving, irritability, and
difficulty concentrating. The scope of this suppression is consistent

with studies evaluating the acute effects of JUUL and other ENDS
following acute administration (Hiler et al., 2017; Maloney et al.,
2020). Similar findings in cigarette-related craving relief has been
observed in four previous acute studies following the administration
of nicotine-containing products (Bulik et al., 1991; Perkins et al.,
1992, 1994; Yannakoulia et al., 2018). Consistent with a previous
acute evaluation of nicotine delivered via nasal spray (Perkins et al.,
1993) but not two prior acute ENDS evaluations (Hiler et al., 2017;
Yingst et al., 2019), small increases in subjective ratings for several
nicotine-related side effects were observed following the active
condition administration in this study. These effects are likely due to
the stimulant properties associated with nicotine (Benowitz, 2009)
and might have been enhanced due to overnight nicotine/tobacco
and food abstinence.

In summary, the active condition suppressed subjective feelings
of hunger and nicotine abstinence symptoms, and increased satiety
and nicotine-associated side effects. As seen in this study, subjective
effects may not be directly driving energy intake, but these
effects may belie other self-reports of ENDS use for weight control
purposes (Ganson & Nagata, 2021; Morean et al., 2020; Morean &
Wedel, 2017). These findings could lead to actionable approaches
toward enhancing ENDS cessation efforts, with a particular focus on
addressing perceptions of ENDS-related appetite control and/or
weight management. Further research is needed to identify what
drives these perceptions and how to best implement strategies to
counteract them.

Limitations

In terms of limitations, we recruited a convenience sample of
individuals who currently use ENDS from the Greater Richmond
Area; thus, our findings may not generalize to different populations
and regions. In addition, only 1/3 of participants expressed fear
regarding weight gain post-ENDS cessation. Findings may differ for
these individuals or those who use ENDS for appetite/weight control.
Participants were asked to maintain overnight abstinence from food
and drinks (other than water) and nicotine-containing products
which was confirmed by imperfect measures. Thus, it is possible that
participants may not have adhered to protocol instructions. A study
that involves an in-person and/or monitored abstinence period may
be a more effective way to deal with this concern. The present study
attempted to provide some control in this respect by using a 1-hr rest
period at the start of each session.

Another limitation in our study were the conditions utilized.
Due to the nature of the conditions, blinding was not possible and
condition-related expectancies may have influenced responding.
In addition, although ∼35% of participants in our study preferred
JUUL, the remainder preferred another ENDS brand and may have
lacked experience with JUUL. These product characteristics may
have influenced participant use behavior and the amount of nicotine
that was absorbed. Given that we did not collect puff topography or
blood nicotine levels, the extent of this limitation is difficult to
conclude.

Another limitation common to controlled eating paradigms was
that participants received the buffet meal in a lab environment while
being observed by the researcher. While we took steps to minimize
this effect (i.e., unobtrusive monitoring), the disclosure of
monitoring and the lab setting may have influenced participants’
eating behavior. Future work could consider assessing participant
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perceptions of the buffet environment and the influence of the
setting on their behavior as well as the impact of varying meal sizes
(i.e., modest snack). Meal size and timing may be critical in
understanding nicotine’s ability to potentially suppress appetite (see
Perkins et al., 1991).

Conclusions

This clinical lab study examined the acute effects of nicotine-
containing ENDS use on energy intake and associated subjective
effects. Findings indicate that acute ENDS use following overnight
abstinence did not significantly impact energy intake relative to a
control condition, but there was an ENDS-associated decrease in
feelings of hunger and increase in feelings of satiety. Other subjective
effects suggested ENDS use was effective in reducing nicotine
abstinence symptoms and produced mild nicotine-related side effects.
Building from this work, future research is needed to explore

perceptions of and reasons for ENDS use as an appetite and/or weight
control method as well as examine other features of ENDS including
liquid nicotine concentration and flavor and their impact on appetite
and hunger. Considering recent increases in ENDS use among
younger populations, lack of tailored ENDS cessation programs, and
rapidly changing regulatory environment, this information can help
guide tobacco prevention/intervention efforts and tobacco policy
aimed to decrease negative health consequences associated with
ENDS use.
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CONCLUDING REMARKS 

The overall focus of my habilitation research was on factors that can improve weight and 

health outcomes in exercise- and diet-based lifestyle interventions and our findings can be 

used to inform future behavioral weight loss interventions. For example, our research showed 

that behavioral factors such as habitual exercise behavior predict acute energy compensation 

after a single bout of exercise as well as weight loss and compensation during an exercise-

based weight loss intervention. We also showed that fasting appetite hormones are strong 

predictors of post-exercise energy intake after acute exercise in men (but not women), and 

these effects should be further examined more longitudinally. In general, baseline predictors 

are particularly attractive, as they identify individuals who may struggle with weight loss at the 

earliest possible time (i.e., even before these individuals engage in a behavioral weight loss 

program). However, our research also showed that more dynamic, intervention-specific factors 

such as initial weight loss and adherence to calorie targets can substantially improve the 

prediction beyond these baseline variables and should be additionally incorporated in future 

weight loss interventions to identify when treatment modifications are necessary. Using a 

personalized weight graph that plots daily weights in relation to the expected weight loss 

trajectory when adherent to the prescribed calorie targets (“zone of adherence”) has proven 

very effective in many lifestyle interventions. It allows real-time feedback to patients and 

interventionists, puts the patient in control to improve their weight loss-related self-efficacy and 

motivation, and predicts long-term weight loss success, as shown in our research. Our 

research also addressed critical challenges when defining adherence to calorie restriction 

goals via the weight-graph approach, namely that the zone of adherence often considers 

calorie restriction far less than the prescribed goal as being adherent. We suggest lower 

adherence zones in future studies, which would result in higher levels of calorie restriction 

being achieved when participants' weights are in the zone of adherence. In addition to 

behavioral and endocrine factors, we also considered specific genotypes (individuals more 

likely to lose more weight on a high-carbohydrate or high-fat diet based on their genetic profile) 

and their effect on weight loss via diets with different macronutrient compositions (high-

carbohydrate vs. high-fat diet). Our findings of no differences in weight loss or secondary 

endpoints such as body fat and blood pressure between genotype-concordant and genotype-

discordant diets represent an important contribution to the field, demonstrating that with the 

current ability to genotype individuals, there is no evidence for a genotype-diet interaction on 

weight loss. Finally, my habilitation highlighted the importance of accurate methods for food 

intake assessment to determine diet-health interactions and examine and monitor the effects 

of dietary changes on obesity treatment. To date, image-based approaches with human rater-

based analysis remain the state-of-the-art approach for objective food intake assessment in 

many settings, though mathematical modeling and the integration of multi-sensor data (e.g., 

CGM) have the potential to further improve the accuracy and allow automated in-the-moment 

feedback to patients and researchers in the near future. 


