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Abstract
Objectives: Healthcare providers employ heuristic and analytical decision-making to navigate the high-stakes environment of the emergency 
department (ED). Despite the increasing integration of information systems (ISs), research on their efficacy is conflicting. Drawing on related 
fields, we investigate how timing and mode of delivery influence IS effectiveness. Our objective is to reconcile previous contradictory findings, 
shedding light on optimal IS design in the ED.
Materials and methods: We conducted a systematic review following PRISMA across PubMed, Scopus, and Web of Science. We coded the 
ISs’ timing as heuristic or analytical, their mode of delivery as active for automatic alerts and passive when requiring user-initiated information 
retrieval, and their effect on process, economic, and clinical outcomes.
Results: Our analysis included 83 studies. During early heuristic decision-making, most active interventions were ineffective, while passive 
interventions generally improved outcomes. In the analytical phase, the effects were reversed. Passive interventions that facilitate information 
extraction consistently improved outcomes.
Discussion: Our findings suggest that the effectiveness of active interventions negatively correlates with the amount of information received 
during delivery. During early heuristic decision-making, when information overload is high, physicians are unresponsive to alerts and proactively 
consult passive resources. In the later analytical phases, physicians show increased receptivity to alerts due to decreased diagnostic uncertainty 
and information quantity. Interventions that limit information lead to positive outcomes, supporting our interpretation.
Conclusion: We synthesize our findings into an integrated model that reveals the underlying reasons for conflicting findings from previous 
reviews and can guide practitioners in designing ISs in the ED.
Key words: emergency medical services; clinical decision-making; information systems; computer-assisted decision-making; clinical decision support sys
tems; information overload. 

Background and significance
The emergency department (ED) is a critical yet volatile 
healthcare environment with varying patient volumes and 
acuity levels and a high density of decisions.1,2 Healthcare 
providers start with heuristic decision-making through pat
tern recognition and memorized checklists as tools for patient 
assessment and care.3,4 They then continue to a more analyti
cal hypothetico-deductive approach, iterating through diag
nostic hypotheses and treatment strategies1,5 (see Figure 1). 
However, this dual-model approach is susceptible to errors 
due to limited information,2 time pressure,6 interruptions 
and distractions,2 and multitasking.7

Information systems (ISs) have been posited as a potential 
solution to enhance clinical decision-making. ISs encompass 
any technical system that generates information enabling 
decision-makers to identify problems and needs, make 
evidence-based decisions, and allocate resources.8–10 Active 
and passive systems represent 2 distinct approaches within 
ISs.11–13 Active systems, such as Computerized Clinical Deci
sion Support Systems (CCDSS), can be incorporated into 
electronic health record (EHR) systems or function as sepa
rate applications. These systems proactively assist physicians 
by offering recommendations based on patient data. Passive 

systems facilitate access to patient medical records and the 
latest evidence-based guidelines without actively interpreting 
the information. This category includes EHRs, which docu
ment patient interactions within a hospital, and Health Infor
mation Exchange (HIE) systems, which share patient 
information across healthcare facilities.14–23

Although ISs have shown promise to improve care quality 
in general clinical settings,24–26 their impact in the ED has 
shown mixed results. While some studies report improved 
efficiency and faster, better-informed decision-making,27,28

others indicate low adoption rates among physicians, 
decreased productivity, and increased burnout.29–31 Despite 
the growing research body on ISs in healthcare, extant litera
ture lacks clarity regarding the contradictory impacts of ISs 
in the ED. Existing reviews focus on CCDSS and evaluate the 
methodological study quality without addressing the underly
ing reasons for the observed outcomes.32,33

Objective
Given the critical nature of decisions in emergency care, this 
research analyzes the impact of ISs on decision-making 
and why prior results are contradictory. The established 
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understanding of heuristic and analytical decision-making 
and its effect on medical reasoning34–38 contrasts sharply 
with the limited exploration of its relevance to decision sup
port systems. This gap persists despite IS research underscor
ing the importance of aligning the design of problem-solving 
aids with users’ mental representation to enhance problem- 
solving efficiency and effectiveness.39–41 Early evidence has 
identified passive summaries, graphics, and visual displays as 
advantageous for heuristic decision-making and active 
decision-support for analytical decision-making.42,43 Our 
study seeks to expand on these insights by testing 2 hypothe
ses (see Table 1).

Methods
We followed the PRISMA guidelines for systematic 
reviews,44 including a forward search and a backward 
search.

Search strategy
We conducted a literature search across PubMed, Web of Sci
ence, and Scopus on April 26, 2023. The goal was to analyze 
the effects of the introduction of ISs in ED decision-making. 
Thus, our search string combined terms in 3 domains: tech
nological intervention, decision support, and emergency care. 
We based the keywords on prior literature reviews on ED 
CCDSS to facilitate comparison.32,33 As the focus on CCDSS 
would omit established ISs like EHRs, we expanded the terms 
to include broader concepts, eg, “electronic” and “techn�” 
(see Supplementary Material S1). To ensure the robustness of 
our results, we focused on the most reputable medical infor
matics, emergency care, and IS journals in the initial search 
(see Supplementary Material S2).

Inclusion and exclusion criteria
We included primary research on technology implementation 
in the ED that compared IS-supported care with usual care. 
We thus excluded interventions that were (1) reviews, editori
als, or perspectives, (2) nontechnological interventions, (3) 
outside the ED setting, or (4) did not compare outcome meas
ures to non-IS-supported care. We refined our definition dur
ing the selection process and excluded systems (5) timed 
before patient assessment or after the admission/discharge 
decision (see Figure 1). This restriction facilitates the 

classification of whether physicians are in heuristic or analyti
cal decision-making during delivery.

Study selection
Two authors independently screened titles and abstracts 
against the above criteria. If 1 author deemed an article rele
vant, we included it in the full-text screening. Two authors 
assessed publications for inclusion. Disagreements were 
resolved through discussion. One author performed forward 
and backward searches on the resulting publications. The eli
gibility of these articles was assessed similarly to the initial 
set, except that we did not filter on the predetermined 
journals.

Coding strategy
For each eligible study, we coded the intervention’s timing in 
the decision-making process, purpose, delivery mode, and 
effect on outcome variables. We started this process by 
extracting the verbatim descriptions for each variable, which 
we subsequently used for categorization. We assigned inter
ventions to the heuristic phase if they provided information 
before physicians reached a diagnosis, to the analytical phase 
if information was provided after this point, and to both 
phases if they supplied information throughout the care 
pathway.3 Next, we coded the intervention’s purpose within 
each phase to capture how the IS was used. For the mode of 
delivery, we categorized, eg, “alerts”45 as active and 
“voluntary”46 interventions as passive. Lastly, for the out
come variables, we drew on decision support literature13,47

and assigned them to either “process outcomes,” where the 

Figure 1. Dual model of decision-making in the ED (adapted from3)

Table 1. Hypothesized effect matrix of technological intervention in the 
ED depending on their timing in the decision-making process and mode 
of delivery.

Active mode of delivery
Passive mode of 

delivery

Delivered during 
heuristic phases of 
decision-making

H: Passive ISs enhance 
the effectiveness of 
heuristic decision- 
making.

Delivered during 
analytical phases 
of decision- 
making

H: Active ISs enhance 
the effectiveness of 
analytical decision- 
making.
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change promoted by the IS alters a behavior; “economic out
comes,” where the change impacts hospital financial expendi
tures; or “clinical outcomes,” where the change translates 
into an impact on patients (see Table 2). Two authors inde
pendently coded the articles, resolving conflicts through 
discussion.

Synthesis strategy
We first clustered similar purposes into groups by iteratively 
abstracting the verbatim descriptions.65 Supplementary 
Material S4 provides descriptions for every purpose group 
and outcome variable. We compared ISs carried out at the 
same phase and with the same purpose and timing to reveal 
what outcomes they affect. We summarized these effects 
across interventions to assess the consistency of the results. 
Finally, we synthesized the interventions across purposes to 

test how the timing and the mode of delivery affect the effi
cacy of IS interventions.

Results
Our initial search (left section in Figure 2) yielded 7766 hits, 
with 365 studies remaining after removing duplicates and fil
tering for relevant outlets. We identified 39 relevant studies 
through abstract and full-text screening. Forward and back
ward searches on these yielded 2387 articles (right section). 
Forty-four publications met the inclusion criteria, resulting in 
a total of 83 included studies. The main reasons for exclusion 
were nontechnological interventions (n¼ 388) and studies 
that did not compare outcome measures with non-IS- 
supported care (n¼248).

Table 2. Coding structure.

Coded variable Distinct values Description Exemplary indicators

Timing in the ED decision-making 
process

Heuristic Intervention provides information 
before the healthcare providers 
reach a diagnosis3, ie, phases (1) 
to (3) in Figure 1

“assessed the patient for the pres
ence of sepsis,”48 “diagnostic 
suggestions were displayed”49

Analytical Intervention provides information 
after the healthcare providers 
reach a diagnostic working 
hypothesis3, ie, phases (4) to (6) 
in Figure 1

“initiation of buprenorphine,”50

“promote take-home naloxone 
prescription”51

Both Intervention provides information 
across the care pathway3, ie, 
phases (1) to (6) in Figure 1

“real time virtual patient record 
available at all points of 
care,”52 “available [. . .] when 
diagnosing and admitting 
patients”53

Purpose Verbatim descriptions Aim of the technological 
intervention

“guides medication dosing for the 
elderly,”54 “automatically rec
ognizes systemic inflammatory 
response syndrome”45

Mode of delivery Active Information appears 
automatically11

“interruptive,”55 “alert,”45

“notification,”56 “pop-up”57

Passive Users must proactively seek out 
the information they need11

“voluntary,”46 “optional,”58 “at 
the clinician’s discretion”58

Type of outcome variable Process Variable measures a change in 
behavior13,47

Adherence to proposed Manage
ment Plan, Adherence to Medi
cation Guidelines13,47

Economic Variable measures an impact on 
financial expenditures13,47

Cost, Cost-effectiveness13,47

Clinical Variable measures an impact on 
patients13,47

Mortality, Length of Stay13,47

� Effect on measured primary 
outcome variables 

þ Intervention results in a significant 
increase on a certain outcome 
variable

“usage was increased,”59

“significant increase was 
achieved”60

⦁ Intervention has no significant 
effect on a certain outcome 
variable

“we did not observe such an 
effect,”61 “there was not a stat
istically significant change”62

— Intervention results in a significant 
decrease on a certain outcome 
variable

“reduces the amount,”63 “was 
associated with a decrease”64

� Desired effect on measured 
primary outcome variables 

" Intervention was aimed at a signif
icant increase

Decision Quality ", Adherence to 
Medication Guidelines "

# Intervention was aimed at a signif
icant decrease

Mortality #, Length of Stay #

� Alignment of effects with 
desired results 

Black Desired effect Measured effect in line with 
expected effect

Grey No effect Intervention has no significant 
effect (⦁)

White Undesired effect Measured effect not in line with 
expected effect
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Clustering of purposes
We assigned the 83 interventions to the heuristic, analytical, 
or both phases and detailed their purpose. We coded their 
delivery mode as active or passive and how the intervention 
affected process, economic, or clinical outcomes. Table 3 vis
ualizes how interventions affect outcomes at the purpose 
level. For example, the first row documents active interven
tions identifying medical conditions and recommending 
actions during heuristic decision-making. At the intersection 
with the outcome measure “adherence to proposed manage
ment plan,” we observe that 5 publications measure no sig
nificant impact, while 3 other ISs improve compliance. As 
less than 60% of the interventions have the desired effect 
(37.5%), we mark the cell grey. We used this granular analy
sis to prepare the test of our main hypotheses.

Interventions during heuristic decision-making
Twenty-seven interventions provided information while 
physicians mitigate threats to life and generate diagnostic 
hypotheses, ie, during heuristic decision-making. All aimed to 
support providers in (1.1) detecting a specific medical condi
tion and recommending measures for its management.

Purpose group 1.1: detection and management 
recommendations for medical conditions (32.5% of 
identified interventions)
The 27 ISs in this group suggested diagnoses and actions 
based on evidence-based guidelines usually listed in order sets 
that include, eg, laboratory tests. These ISs provided active or 
passive guidance before physicians make a diagnosis.

Among the 27 articles, 18 had an active mode of delivery, 
ie, they alerted physicians to at-risk patients. Six reported 

positive effects. Three studies aimed to improve the timeliness 
of countermeasures for sepsis or acute coronary syndrome 
and found significant decreases in the time-to-interven
tion.56,66,67 Three studies improved guideline adherence by 
focusing on a single countermeasure, ie, lactate testing,45

blood culture collection,68 and child services reporting.69

The remaining 12 papers with active guidance failed to 
demonstrate positive results. Seven publications did not find 
significant effects on LOS,55,70–72 mortality,48,55,73,74 and 
hospital admission.73 Five studies on improving guideline 
adherence did not yield significant positive outcomes.75–79 In 
contrast to the successful studies above, these interventions 
proposed multiple measures. For example, Rosenthal et al78

demanded multiple tests, scans, and consultations.
Nine studies had a passive mode of delivery, ie, they pro

vided information for physicians when experiencing diagnos
tic uncertainty. Eight reported positive effects. Five studies 
improved guideline adherence through antibiotic prescribing 
guidelines46,80–82 or medical calculators.83 Masica et al84

embedded voluntary medical calculators and showed a 
decrease in hospital admissions. Ramnarayan et al49 improve 
documentation quality through a diagnostic support system. 
Nam et al85 decreased time-to-thrombolysis when physicians 
proactively notified a stroke team.

One study with a passive delivery mode reported no signifi
cant results. Fargo et al58 provided a voluntary order set that 
did not improve time-to-antibiotics.

Interventions during analytical decision-making
Forty interventions provided information while physicians 
treat patients according to their diagnosis and decide whether 
to admit, monitor, or discharge patients, ie, during analytical 

Figure 2. Study selection process.
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decision-making. This phase is further subdivided into (2.1) 
risk-stratification for imaging, (2.2) proposal of substitute 
medication or dosage adjustment, and (2.3) standardization 
of the admission and discharge process.

Purpose group 2.1: risk-stratification for imaging (22.9%)
This group includes 19 studies that facilitated risk- 
stratification for imaging. These interventions supported 
clinicians actively or passively in deciding whether a patient 
requires imaging based on clinical guidelines.

Seventeen studies had an active mode of delivery, ie, they 
alerted physicians that an ordered imaging study is unneces
sary. Each intervention, except one, improved outcome varia
bles. The authors focused on head injury,86–92 pulmonary 
embolism,93–95 headache,96 ankle97 or wrist63 injury, or renal 
colic.98 Three studies introduced multiple guidelines.59,64,99

All 16 studies either decreased utilization rates,63,64,86– 

89,92,94,98 increased diagnostic yield,59,92,93,99 or improved 
documentation quality.89–91,95,97 Royuela et al96 found only 
decreased utilization but no effect on yield. Raja et al’s94

intervention impacted neither.
The remaining 2 studies had a passive mode of delivery, ie, 

they provided voluntary education on risk factors, but imag
ing utilization rates and yield were unaffected.61,62

Purpose group 2.2: proposal of substitute medication or 
dosage adjustment (16.9%)
The second group during analytical decision-making encom
passes 14 interventions that actively or passively suggested 
medication substitution or dosage adjustment.

Among the 14 studies, 11 had an active mode of delivery, 
ie, they alerted physicians to reconsider their order place
ment. All 11 interventions had a positive effect on the out
come variables. Four studies improved naloxone prescription 
for opioid-related overdose.51,60,100,101 Griffey et al54 and 
Terrell et al102 reduced inappropriate medication for elderly 
patients. Two studies increased ketorolac prescribing103 or 
decreased excessive dosing104 in renal impairment. Dutta 
et al105 alerted physicians of duplicate vaccines. Bernstein 
et al106 reduced the use of proprietary antibiotics by display
ing patients’ insurance status. Green et al107 demanded 
patient reverification and decreased wrong-patient orders.

The 3 remaining studies had a passive mode of delivery, ie, 
they provided decision support only when launched at the 
physician’s discretion. One study demonstrated positive 
effects. Holland et al50 increased the rate of buprenorphine 
prescription. The other 2 publications showed no or mixed 
effects. The authors50 above could not replicate the results on 
a larger scale.108 Horng et al’s109 study highlighted that pre
vious prescriptions did not decrease duplicate medication 
orders.

Purpose group 2.3: standardization of admission and 
discharge process (8.4%)
Seven studies expedited the execution of the admission or dis
charge process by digitizing substeps. All interventions deliv
ered content actively.

Five studies showed positive effects. Mahler et al110 and 
Stoypra et al57 computerized the HEART pathway to identify 
low-risk patients for discharge, reducing hospital admission. 
Cho et al111 and Kim et al112 reduced LOS by automating 
specialty consultations. Desai et al113 implemented a review 
loop after the admission decision, decreasing admission.

Two studies measured mixed or negative effects. While Liu 
et al114 confirmed the positive impact of the HEART path
way on hospital admission, they measured no difference in 
LOS. Driver et al115 implemented a “hard stop”115 when 
clinicians discharged patients without reviewing all lab 
results. However, this led to an increase in test results after 
discharge.

Interventions during both heuristic and analytical 
decision-making
The remaining 16 publications describe (3.1) accessing 
patients’ medical history or facilitating the extraction of 
information from these records through (3.2) emphasis fram
ing or (3.3) graphical representation. Although the publica
tions did not specify the timing, usage patterns indicate that 
medical records are consulted during both heuristic and ana
lytical decision-making.28,52,53,116–119

Purpose group 3.1: access to patients’ medical history 
(12.0%)
This group encompasses 10 publications investigating the 
impact of access to medical records from previous encoun
ters. Access to this data was either limited to visits at the des
ignated hospital (EHRs) or extended to nearby hospitals 
(HIE). All interventions passively provided access.

Eight studies show positive effects on LOS,120,121 hospital 
admission,52,53,121,122 hospital readmission,52,53,119 and 
guideline adherence.123 Everson et al121 additionally reported 
a decrease in imaging utilization. Saef et al124 approximated 
a reduction in costs.

The remaining 2 studies reported mixed or no effects. Bai
ley et al125 found improvements in imaging utilization and 
yield, but these did not translate to cost reductions. von 
Wedel et al126 found no impact on mortality.

Purpose group 3.2: emphasis framing (4.2%)
Four studies focused on emphasis framing, ie, highlighting 
aspects of information to make it easier or more likely to be 
processed.127,128

All 4 interventions in this group had a passive mode deliv
ery, ie, they highlighted certain information without alerts. 
Three author groups reported positive outcomes. Hwang et 
al129 and Kim et al130 highlighted radiographic abnormal
ities, improving their detection. Munigala et al131 retained 
only 1 test in the “frequently ordered” section, decreasing 
urine culture utilization. One study demonstrated mixed 
results. Laker et al132 emphasized the most critical informa
tion and summarized a patient’s EHR. They improved deci
sion quality, but the time-to-decision also increased.

Purpose group 3.3: graphical representation (2.1%)
Two publications described interventions that visualize tex
tual or tabular information to enhance information compre
hension, as quantified, eg, by the NASA Task Load Index.

Both interventions had a passive delivery mode and 
reported positive effects. Kim et al133 converted the textual 
results of microbiological cultures into a visual representa
tion, enhancing information comprehension. Thayer et al134

developed an asthma timeline, increasing information com
prehension and reducing task time.
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Summary
Summarizing the interventions across purpose groups and 
outcome types, we observe that active interventions failed to 
achieve the desired effects on 70% of the outcome variables 
during the heuristic phase. In contrast, passive interventions 
achieved the desired effects on 89% of the outcome variables. 
During the analytical phase, active interventions achieved 
desired effects on 87% of outcome variables, while passive 
interventions did not affect 80%. Passive EHR- and HIE- 
related interventions achieved positive results 88% of the 
time in both phases (Table 4).

Discussion
This review evaluated 83 IS interventions designed to support 
decision-making in the ED based on their timing in the 
decision-making process, ie, heuristic or analytical, and their 
mode of delivery, ie, active or passive. In the heuristic phase, 
active interventions did not achieve the desired effect in 70% 
of the measured outcome variables, whereas passive interven
tions met 89% of intended outcomes. Conversely, active 
interventions realized 87% of desired outcomes in analytical 
decision-making, while passive ISs had no impact on 80%. 
Across both phases, passive interventions that facilitate the 
extraction of information achieved positive outcomes 88% of 
the time.

Two systematic reviews paved the way for our exploration. 
Bennet and Hardiker’s32 and Patterson et al’s33 reviews 
assessed the impact of CCDSS and the researchers’ methodo
logical rigor. Our active interventions have substantive over
lap with the included studies. Bennet and Hardiker found 
that half of the studies reported positive outcomes, but their 
review did not categorize the interventions or examine the 
reasons for these results. Patterson et al highlighted positive 
effects in 83% of the included investigations. Their findings 
corroborate our own, emphasizing that improvements 
predominantly center around imaging and medication 
interventions.

Our study extends beyond CCDSS to encompass a broader 
spectrum of technological interventions. We explicitly 
included EHRs and HIEs in our search string and identified 
interventions that facilitate information extraction.

ISs in the heuristic decision-making phase
We hypothesize that information overload in the early stages 
of patient encounters, and the mismatch between heuristic 
thinking patterns and alerts explain the contrasting effective
ness of active and passive interventions. Decision theory sug
gests that increasing information quality improves decision 

quality. However, the relationship between information 
quantity and decision quality follows an inverted U-curve. 
Information overload occurs when the information quantity 
impedes decision quality more than the quality of informa
tion enhances it.135,136

Upon encountering a patient in the ED, physicians are met 
with abundant information, which they process under time 
pressure and high diagnostic uncertainty. To navigate this 
complexity and expedite care, clinicians revert to pattern rec
ognition and algorithms, ie, heuristic decision-making.34–38

ISs add to this information in quality and quantity. 
However, active systems, eg, automatic sepsis 
detection,45,48,55,58,67,74,76 represent another information 
stream that doctors must process alongside diagnosing and 
treating patients. For most active interventions, the adverse 
impact of increased information quantity overshadows the 
benefits of enhanced information quality, leading to mixed 
outcomes in process measures and no discernible effect on 
clinical outcomes. The few successful interventions focused 
on a single recommendation,45,68,69 minimizing information 
quantity. In contrast, physicians consult passive systems, eg, 
databases with pneumonia treatment advice,46,80,82 when 
experiencing diagnostic uncertainty, ie, information deficit. 
Thus, there is no information overload, and the interventions 
consistently improve outcomes.

Several factors inherent to the environment and tasks dur
ing heuristic decision-making contribute to the reduced effec
tiveness of active systems. The complexity of diagnosing 
patients from EHR data causes false positives, leading to alert 
fatigue.55 Addressing immediate life threats requires direct 
interaction with patients, while alerts are generated on 
nearby PCs.70,71 Alerts may be triggered after treatment has 
already been administered due to the reliance on outdated 
information.55 These factors, ie, alert fatigue mitigation and 
decision support at the appropriate place and time, correlate 
with improved clinical practice.137,138 The drawbacks of the 
difficulty of their implementation in the ED are exacerbated 
by the heuristic thinking patterns, characterized by passive 
responsiveness, low cognitive awareness, and high automatic
ity.34–38 This can lead to notifications being viewed as noise.

ISs in the analytical decision-making phase
We hypothesize that the reason for the overwhelmingly posi
tive effects of active interventions in analytical decision- 
making is the significant reduction in information overload. 
In contrast, physicians are reluctant to use passive resources 
because they do not perceive an information deficit in their 
tasks.

Table 4. Effects of technological intervention in the ED on outcome measures depending on their timing in the decision-making process and mode of 
delivery.

Active mode  
of delivery

Passive mode  
of delivery

Delivered during heuristic phases of decision-making 6 Desired effect (30%),  
14 No effect (70%)

8 Desired effect (89%),  
1 No effect (11%)

Delivered during analytical phases of decision-making 35 Desired effect (87%),  
4 No effect (10%),  
1 Undesired effect (3%)

1 Desired effect (20%),  
4 No effect (80%)

Delivered during both phases — 22 Desired effect (88%),  
2 No effect (8%),  
1 Undesired effect (4%)
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At this point in the care pathway, clinicians have managed 
immediate threats. They now want to confirm their diagnos
tic hypothesis and treat patients accordingly. The stability of 
patients allows providers to engage in more time-consuming 
but less error-prone analytical decision-making using the 
commonly employed hypothetico-deductive model.4,5,139,140

The identified interventions ask clinicians to reconsider 
their imaging, medication, or admission orders if they contra
dict evidence-based guidelines. We hypothesize that the rea
son for the consistently positive effects of active interventions 
is the significant decrease in diagnostic uncertainty and, thus, 
information quantity after physicians reach a working 
hypothesis.4,141–144 Clinicians do not seem to experience 
information overload from the IS-generated information, and 
the studies demonstrate a significant increase in guideline 
adherence. In contrast, the low adoption rates62,108 suggest 
physicians are reluctant to engage with passive resources. We 
attribute this reluctance to clinicians not perceiving an infor
mation deficit. They have already derived a decision, even if 
it diverges from the latest guidelines.

The effectiveness of active systems is enhanced by provid
ing recommendations immediately after order placement 
based on if-then rules. This temporal and contextual immedi
acy ensures high accuracy and workflow integration.137,138

The increased receptivity to alerts also indicates the shift to 
analytical thinking, characterized by active responsiveness, 
high cognitive awareness, and low automaticity.34–38

ISs in both decision-making phases
The overwhelmingly positive effects of providing passive access 
to patients’ medical histories and passively facilitating informa
tion extraction support our hypotheses above. Discharge sum
maries and previous lab reports offer valuable information to 
guide diagnosis and treatment. Physicians access EHRs and 
HIEs from a desire to incorporate historical patient information 
into their decision-making, ie, from a perceived information 
deficit. Interventions that prepare information through empha
sis framing or visual representation, eg, removing all but 1 
order set from the “frequently ordered” section,131 show favor
able outcomes because they reduce information quantity or 
increase comprehension through visualization.137,138,145

Future work
Our research suggests that the under-researched concept of 
information overload strongly influences the effectiveness of ISs. 
Only 1 prior study explicitly examined its perception and 
impact. Most physicians surveyed agreed that information over
load is a severe problem and impairs decision-making.146 Other 
studies briefly mention information overload as a by-product of 
overcrowding.147,148 Beyond the ED, information overload due 
to the electronic availability of patient information is gaining 
traction in the discourse. Several publications find an association 
between EHR use and provider burnout.149–151 Nijor et al152

suggest that information overload may result in more medical 
errors and negatively impact patient safety.

We suggest researchers tackle information overload in the 
ED through the lens of the systems’ timing and delivery 
mode. In heuristic decision-making, physicians consult pas
sive systems to reduce their diagnostic uncertainty. Research
ers could identify and visualize the most contextually relevant 
information by timing and user group based on established 
guidelines and usage patterns.28,52,53,116–119 Another angle 
for future research is to investigate automatic data 

aggregation and visualization techniques to address informa
tion quantity and comprehension in passive systems, building 
on studies outside the ED context.153–155 An intriguing 
method for implementing these avenues is the cooperative 
delivery mode—an iterative “back and forth” of requesting 
and modifying information.156 For example, recent studies 
have demonstrated the ability of large language models to 
generate diagnosis lists for common chief complaints.157,158

In the analytical phase, clinicians are receptive to active alerts 
issued at the time and place of the decision. Most analyzed IS 
are integrated into the medication or imaging ordering sys
tems.51,86 Future research could explore methods to maintain 
this workflow integration when clinicians are away from their 
workstations, potentially through wearables or augmented real
ity. Ensuring that only the most important information is 
relayed through these devices, future research should prevent 
sensory overflow and integrate rest periods away from the PC 
for recovery.146 For example, the alerts’ appropriateness could 
be derived from clinicians’ physiological measures and environ
mental factors such as overcrowding.

Last, future research should strengthen the robustness of 
our results. We suggest empirically testing our hypothesis 
that passive interventions are more effective than active inter
ventions during heuristic decision-making. We propose an 
RCT where EDs will be randomly assigned to implement a 
clinical guideline passively (databases), actively (alerting), or 
to control groups. A similar design is also suitable for testing 
the superiority of active over passive interventions in the ana
lytical phase, eg, when prescribing medication.

Limitations
Our search strategy initially filtered studies based on decision 
support keywords and predetermined outlets, which could 
potentially miss relevant studies. We coded interventions as 
either heuristic or analytical, while physicians typically blend 
these strategies, with the dominant approach being influenced 
not only by the timing but also, eg, experience. Our analysis 
does not account for several factors that contribute to the 
effectiveness of interventions, such as the accuracy, time, and 
place of decision support. We did not assess the quality of the 
study design, considering all studies to contribute equally to 
the evidence base. The imbalance of delivery modes during 
the heuristic (9 passive/20 active) and analytical phases (5/40) 
affects the generalizability of our conclusions.

Conclusion
ISs have shown great promise in improving decision quality in 
general clinical settings,24–26 but their impact in the ED has 
shown mixed results. We assessed 83 studies from 2 angles: 
their timing during heuristic or analytical decision-making 
and their active or passive mode of delivery. We synthesize the 
findings into an integrated model (Tables 3 and 4), which we 
provide as a printable tool (Supplementary Material S5). It 
reveals underlying reasons for the mixed results of prior 
reviews and can serve as a reference tool for practitioners 
involved in designing ISs in the ED (see Supplementary Mate
rial S6 for practical implications).
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