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Abstract

Artificial intelligence (AI) platforms face distinct orchestra-

tion challenges in industry-specific settings, such as the

need for specialised resources, data-sharing concerns, het-

erogeneous users and context-sensitive applications. This

study investigates how these platforms can effectively

orchestrate autonomous actors in developing and consum-

ing AI applications despite these challenges. Through an

analysis of five AI platforms for medical imaging, we identify

four orchestration logics: platform resourcing, data-centric

collaboration, distributed refinement and application bro-

kering. These logics illustrate how platform owners can ver-

ticalize the AI development process by orchestrating actors

who co-create, share and refine data and AI models, ulti-

mately producing industry-specific applications capable of

generalisation. Our findings extend research on platform

orchestration logics and change our perspective from

boundary resources to a process of boundary processing.

These insights provide a theoretical foundation and practi-

cal strategies to build effective industry-specific AI

platforms.
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1 | INTRODUCTION

Artificial intelligence (AI) platforms provide organisations with tools and services to use existing or create new AI

applications (Geske et al., 2021). These platforms are particularly relevant in industry-specific settings, where firms

face structural innovation and market failures (Haki et al., 2024; Jacobides, Cennamo, & Gawer, 2024). AI platforms

address these problems by orchestrating autonomous actors in developing and consuming applications (Geske

et al., 2021; Jacobides et al., 2021). For instance, in manufacturing, AI platforms offer standardised interfaces for

integration with heterogeneous equipment providers (Pauli et al., 2021). In healthcare, they facilitate collaboration

among hospitals and experts to improve AI models for diagnosis. This collaborative approach leads to more accurate

and robust models for diagnosis—outcomes that organisations might struggle to achieve independently (Thrall

et al., 2018).

The success of AI platforms in industry-specific settings hinges on effective platform orchestration, defined as

the coordination of autonomous actors' efforts and resource contributions (Tiwana, 2014) to navigate the complex

challenges unique to these environments. For instance, developing an AI application to diagnose specific diseases

from medical scans requires unique datasets and domain-specific expertise (Rajpurkar et al., 2022). These resources

are typically scarce and dispersed among actors, with data privacy and intellectual property complicating resource

exchanges (Cohen & Mello, 2019). Additionally, industry-specific AI applications struggle to generalise to heteroge-

neous users without costly retraining (Brecker et al., 2023). For example, variations in production setups can nega-

tively impact the performance of applications trained in different manufacturing contexts (Weber et al., 2022). This

limited generalizability discourages producers and risks suboptimal performance of context-sensitive AI applications

(Brecker et al., 2023).

The literature on platform orchestration primarily focused on homogenous markets with standardised products

and services (De Reuver et al., 2018; Rietveld & Schilling, 2021). This literature highlights two dominant orchestra-

tion logics (Cusumano et al., 2019; Evans & Gawer, 2016): promoting third-party innovation through boundary

resources to extend the platform (Eaton et al., 2015; Ghazawneh & Henfridsson, 2013) and facilitating transactions

in multi-sided markets (Rochet & Tirole, 2003; Shi, 2023). While helpful in explaining orchestration in homogeneous

markets, this focus leaves a research gap regarding the challenges of industry-specific AI platforms, which must navi-

gate environments characterised by specialised resources, data-sharing concerns, high user heterogeneity and

context-sensitive applications. These challenges necessitate new orchestration strategies to realise the potential of

industry-specific AI platforms.

In light of these challenges, AI platforms like Hugging Face and Nvidia have developed novel orchestration logics

that could help better understand how industry-specific AI platforms can mitigate these problems. Hugging Face

employs a community-driven approach, orchestrating actors to build and share pretrained models for further refine-

ment, thus catering to a broad range of third-party developers' needs. In addition, Nvidia facilitates federated learn-

ing in specific industries, enabling multiple actors to build more generalizable models that can serve heterogeneous

users (Roth et al., 2022). Despite these practical advancements, we do not understand how these approaches miti-

gate the orchestration challenges, highlighting a significant gap in the current literature. Consequently, we investi-

gate how different platform orchestration logics can address orchestration challenges in industry-specific AI

development.

We employed a multiple-case study approach (Eisenhardt, 1989; Yin, 2018) in the medical imaging sector to

explore the orchestration logics of industry-specific AI platforms. A multiple case study allows us to compare differ-

ent orchestration logics and their impact on addressing the orchestration challenges in industry-specific AI develop-

ment. We selected this industry due to its maturity of AI platforms and the pronounced orchestration challenges,

such as the scarcity of specialised data and domain knowledge, strict data privacy regulations, and high user hetero-

geneity. The study encompassed five cases based on 38 interviews and archival data, analysed using inductive coding

methods (Gioia et al., 2013; Strauss & Corbin, 1990). Our selection criteria included AI platforms in medical imaging

with different orchestration logics, mature products, and an active user base.
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The results reveal four orchestration logics that AI platforms apply and combine: platform resourcing, data-

centric collaboration, distributed refinement, and application brokering. The logic of platform resourcing, exemplified

by the platform DataForge, provides foundational resources, such as developer services, to enable a broad spectrum

of actors to mobilise their data and expertise for AI development. The logic of data-centric collaboration, exemplified

by RadiaHub, facilitates multiple actors' co-creation of datasets and models, yielding more diverse datasets and

generalizable models. The logic of distributed refinement, exemplified by ModelCraft, describes actors' distributed

sharing and refinement of datasets and models via the platform, yielding increasingly specialised resources (e.g., fine-

tuned models). Last, the logic of application brokering, exemplified by MedConnect, facilitates matchmaking through

consumers' benchmarking of context-specific applications.

Our findings have implications for research on platform orchestration in general and AI platforms in particular.

While extant literature has focused on traditional innovation and transaction logics (Cusumano et al., 2019; Evans &

Gawer, 2016), our study suggests that platform orchestration can be more complex, requiring additional logics to

cope with the distinct challenges in industry-specific AI development. We also extend the concept of boundary

resources on AI platforms (Ghazawneh & Henfridsson, 2013), showing how autonomous actors process and refine

data and models as ecosystem resources at the boundary. This boundary processing requires decoupling data and

model resources from the platform, which platform owners should consider in their architecture design. Last, we pro-

vide practical implications, the limitations of this study, and avenues for future research.

2 | BACKGROUND AND RELATED WORK

This section introduces AI and outlines the necessary resources and challenges organisations face when developing

AI applications. Next, we present AI platforms and synthesise research on platform orchestration. By integrating

these insights, we highlight the orchestration challenges unique to industry-specific AI platforms, demonstrating how

our current understanding of platform orchestration falls short in addressing these complexities.

2.1 | AI development

AI represents a broad and continuously evolving research field that aims to make machines intelligent (Russell &

Norvig, 2021). AI comprises numerous techniques, such as machine learning (ML), reasoning, computer vision, and

natural language processing (Russell & Norvig, 2021; Stone et al., 2016). The current wave of AI centers largely

around applications that use ML techniques, particularly deep learning (Berente et al., 2021; Stone et al., 2016). ML

techniques allow systems to learn from experience and automatically improve their performance on a given task

(Jordan & Mitchell, 2015). In line with this outlook, we refer to AI development as the development of applications

based on ML.

For AI development, organisations typically engage in an iterative process of data management, model training,

model verification and model deployment (Figure 1). Throughout this process, organisations create a variety of arte-

facts, from training datasets to deployable applications (Table 1).

Data 
Management

Model
Training

Model 
Verification

Model 
Deployment

Business 
Requirements

F IGURE 1 Artificial intelligence development process (adapted from Ashmore et al. (2021)).
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AI development requires substantial resources, data and expertise, which most firms do not possess. First, orga-

nisations require data in sufficient quantity and quality for model training and verification. Most firms find this data

difficult to access, biased or unbalanced, or costly to prepare (Jöhnk et al., 2021; Pumplun et al., 2019). Second, orga-

nisations require expertise for data labeling and model training, which is typically scarce and costly (Jöhnk

et al., 2021; van den Broek et al., 2021). Third, training models require vast computational resources and access to a

dedicated infrastructure (Jöhnk et al., 2021; Lins et al., 2021). These resource requirements become especially rele-

vant for larger models that use deep learning techniques and require multiple rounds of training. Fourth, applications'

actual deployment and operation come with significant additional costs of integration into real processes and legacy

systems (Paleyes et al., 2022). These costs further increase due to required investments into the ongoing monitoring,

evaluation, and retraining of models, as their performance might change over time (Paleyes et al., 2022; Weber

et al., 2023).

Thus, organisations must access and integrate diverse resources to manage the intricacies of AI development.

Many organisations lack these resources and thus rely on collaboration with external actors to overcome these

challenges.

2.2 | AI platforms and platform orchestration

Following Geske et al. (2021, p. 12), AI platforms present a specific type of platform that “provide[s] organisations with
access to AI technology to support them in creating or using AI applications through federating and coordinating constitu-

tive agents, leveraging value by enabling economies of scope, and entailing modular technological architecture.” As such,

AI platforms orchestrate autonomous actors by supporting them in developing custom AI applications and providing

access to readily usable applications (Geske et al., 2021; Lins et al., 2021).

Given the nascent development of research on orchestration in AI platforms (H. Li & Kettinger, 2021; Rai

et al., 2019), we first draw on general platform orchestration research to illustrate innovation and transaction as the

two dominant orchestration logics (Cusumano et al., 2019; Evans & Gawer, 2016). These two logics present struc-

tural solutions on how platforms guide autonomous actors' efforts and resource contributions to address innovation

and market failures (Jacobides et al., 2024). Based on these insights, we synthesise literature on AI platforms (Geske

et al., 2021).

TABLE 1 Artefacts of AI development (adapted from Duda et al. (2023)).

Artefact Definition

Training

dataset

A dataset that is used to train the model. In supervised learning tasks, training data typically needs to

be annotated by humans (i.e., assigned labels which are to be inferred).

Verification

dataset

A dataset that is used to verify trained models before deployment. The verification dataset should

mirror the data distribution of its intended usage context or allow testing for edge cases and

fairness.

Input data Data that is typically gathered in real-world processes and sent to the model to perform inferences

after deployment.

Trained model A model derived from ML that can infer an outcome based on input data (e.g., predict the weather

for the next day).

Pretrained

model

A trained model that is used as a foundation for model training in other contexts. For example, a

pretrained model can be fine-tuned on new training data to adapt to a different task.

AI application Comprises a deployable model alongside complementary software to integrate the model into

existing systems and handle model requests.

Abbreviations: AI, artificial intelligence; ML, machine learning.
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Innovation platforms such as Apple's iOS exemplify the orchestration logic of innovation where the platform

owner provides resources to stimulate third-party developments that extend the platform (Tiwana, 2014). These

platforms foster innovation by converging technological standards, facilitating knowledge exchanges, and

incentivising participation in the ecosystem (Jacobides et al., 2018; Jacobides et al., 2024). To support these activi-

ties, platform owners develop and offer boundary resources, including software development kits (SDKs) and appli-

cation programming interfaces (APIs) (Engert et al., 2023; Foerderer et al., 2019; Hein et al., 2019). The platform

owner provides and curates these boundary resources (Ghazawneh & Henfridsson, 2013), although being influenced

by distributive dynamics in the ecosystem (Eaton et al., 2015).

Innovation platforms ensure that the applications and modules developed by third parties are compatible with

the platform through standardisation and decoupling (Tiwana, 2014; Tiwana et al., 2010). By providing standardised

boundary resources, innovation platforms can ensure the interoperability of third-party applications and modules

with the platform (Baldwin & Woodard, 2009). Furthermore, decoupling modules from the platform core fosters

innovation through the combination and recombination of modules while ensuring the stability of the platform core

(Benlian et al., 2018; Tiwana et al., 2010).

Transaction platforms such as Airbnb exemplify the orchestration logic of transaction where the platform

orchestrates transactions between two or more market sides. These platforms are intermediaries, enabling efficient

exchanges between autonomous actors, reducing transaction costs, and enhancing market efficiency (Rochet &

Tirole, 2003; Shi, 2023). The key to their operation is managing and optimising the volume and quality of transac-

tions to ensure a seamless and value-adding experience for all participants (Eisenmann et al., 2006). To that end, plat-

form owners rely on algorithms to provide efficient search and matchmaking. Additionally, platform owners employ

governance mechanisms to assess the credibility and quality of products or services (Boudreau, 2010; Wareham

et al., 2014).

Literature on AI platforms primarily focused on delineating the different types of AI platforms and the boundary

resources they provide (Geske et al., 2021; Lins et al., 2021). While some AI platforms are industry-agnostic, other AI

platforms cater to industry-specific needs to support tailored applications within an industry (Geske et al., 2021). The

literature further highlights how AI platforms range from supporting AI development to offering ready-to-use appli-

cations (Geske et al., 2021; Jacobides et al., 2021). The support in AI development follows the innovation logic from

general platform research. Here, the platform owner provides software services (e.g., automated ML), developer ser-

vices (e.g., SDKs, data labeling tools), and infrastructure services (e.g., computing resources, data storage) to enable

autonomous actors to develop their own applications (Jacobides et al., 2021; Lins et al., 2021). In addition, some AI

platforms provide access to readily usable AI applications in homogenous markets (Brecker et al., 2023; Diaferia

et al., 2022), following the traditional transaction orchestration logic.

2.3 | Orchestration challenges for industry-specific AI platforms

However, beyond these initial insights into the general innovation and transaction logics, our understanding of how

AI platforms can orchestrate autonomous actors in more complex, industry-specific settings remains limited: These

settings face challenges related to specialised resources, data-sharing concerns, high heterogeneity of users, and

context-sensitive applications. Prior research on platforms with similar constraints, such as in the Industrial Internet

of Things (IIoT), demonstrates that without effective orchestration, these challenges can lead to endogenous plat-

form failure (Pauli et al., 2021; Wlcek et al., 2023).1 We detail these orchestration challenges of industry-specific AI

platforms below.

1Examples in the context of IIoT, such as GE's Predix and Siemens Mindsphere, illustrate that these industry-specific challenges still present unresolved

orchestration challenges for firms.

WEBER ET AL. 5
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The first industry-specific challenge is providing access to specialised resources to drive innovation (Haki

et al., 2024). For example, AI development in manufacturing requires highly specialised datasets for a broad spectrum

of use cases, such as predictive maintenance and machine optimization. Unlike traditional innovation platforms, the

platform owner cannot supply all the required datasets, labeling services or pretrained models (Haki et al., 2024). This

limitation restricts innovation to a few powerful actors who can provide these resources on their own (Jacobides

et al., 2021). As a possible solution, we observe how AI platforms such as HuggingFace employ a community-driven

approach, where third parties contribute pretrained models to the platform, which, in turn, could cater to a broad

range of specialised use cases.

The second industry-specific challenge is addressing data-sharing concerns, which hinder collaboration and inno-

vation on AI platforms. This issue is particularly prominent in industries where organisations are reluctant to share

data due to competition, security, privacy concerns, and legal compliance (Jussen et al., 2024). For example, in

healthcare, data is often subject to privacy concerns and strict regulations such as HIPAA (Cohen & Mello, 2019).

The reluctance to share data limits innovation and can result in biased or unbalanced datasets, reducing the plat-

form's overall value. While traditional innovation platforms do not account for these data-sharing challenges,

research on data platforms and ecosystems suggests mechanisms such as data security, encryption, decentralised

storage, and trust-building (Jussen et al., 2024; Otto & Jarke, 2019). However, if and how novel orchestration

approaches, such as Nvidia's federated learning approach (Roth et al., 2022), can potentially address data-sharing

concerns on industry-specific AI platforms remains to be understood.

The third industry-specific challenge is addressing the heterogeneity of user requirements on AI platforms. In

manufacturing, for instance, production setups and systems can vary significantly across users (Pauli et al., 2021).

This heterogeneity could disincentivize producers to extend the platform, as integration becomes costly and the

number of suitable consumers for standardised applications is limited. For example, an AI application optimised for

one specific machine might not generalise to users with different machines, production setups, or data distributions

(Weber et al., 2022). In addition, customising AI applications for varied contexts is often complex or even unfeasible,

as it requires retraining or significant adjustments to the model (Brecker et al., 2023; Diaferia et al., 2022). Traditional

innovation platforms typically cater to more homogeneous user groups with standardised products or services, mak-

ing them less equipped to handle the heterogeneity found in industry-specific settings (Pauli et al., 2021).

The fourth industry-specific challenge is the context sensitivity of AI applications (Brecker et al., 2023), which

complicates their universal quality assessment and hinders effective matchmaking in multi-sided markets. Determin-

ing an AI application's quality is not trivial and highly dependent on its fit with a consumer's unique data environment

(Paleyes et al., 2022). As producers typically aim to develop standardised applications, consumers risk unknowingly

accepting suboptimal performance given their unique data environments (Brecker et al., 2023; Diaferia et al., 2022).

This suboptimal performance, in turn, not only affects an organisation's operations but can also lead to ethical and

compliance issues (Lins et al., 2021). The transaction logic from general platform research proposes various mecha-

nisms, such as recommender algorithms, user ratings, and certification programs, to signal the quality of applications

and facilitate transactions (Haki et al., 2024). However, these generic mechanisms assume that the quality of an

application can be universally determined, not accounting for an AI application's performance in specific consumer

contexts.

In conclusion, existing literature highlights that industry-specific AI platforms face orchestration challenges that

traditional platform logics cannot fully address. However, anecdotal evidence from platforms like Hugging Face and

Nvidia suggests that new orchestration strategies may offer solutions to these challenges.

3 | METHOD

To explore the specific aspects of platform orchestration in the context of industry-specific AI platforms, we follow a

multiple-case study focusing on five distinct AI platforms in medical imaging (Eisenhardt, 1989; Yin, 2018). This

6 WEBER ET AL.
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method is appropriate as it allows for an in-depth exploration of different orchestration logics that require context-

sensitive knowledge of a relatively unexplored phenomenon (Siggelkow, 2007). Furthermore, a cross-case analysis

allows us to examine orchestration logics across different platforms, thereby uncovering patterns and variations

(Eisenhardt & Graebner, 2007). Last, we have chosen the medical imaging sector due to its growing AI market (van

Leeuwen et al., 2021), diverse range of mature platforms for analysis, and rich context to examine the intricacies of

platform orchestration (Hosny et al., 2018; Thrall et al., 2018).

We collected and analysed 38 interviews and archival data, employing inductive coding methods (Gioia

et al., 2013; Miles et al., 2018). This rich data set, encompassing various actor roles, such as platform owners, com-

plementors and customers, was crucial in understanding how different AI platforms orchestrate autonomous actors'

efforts and resource contributions. Our results offer valuable insights into their orchestration logics based on an

inductive coding of each case and a subsequent cross-case analysis (Eisenhardt & Graebner, 2007; Strauss &

Corbin, 1990).

3.1 | Data collection

Our case sampling followed four selection criteria to answer the research question. First, we sampled AI platforms

with different motives and orchestration logics, initially guided by our pre-understanding of the two dominant

orchestration logics of innovation and transaction (Jacobides et al., 2024). Second, we only considered AI platforms

that facilitate AI development for medical imaging to ensure comparability between cases. Third, we only considered

AI platforms with mature products and an active user base to ensure the robustness of our results. Fourth, we only

considered AI platforms operating in Northern America and Europe to control for legal and cultural factors.

Based on these criteria, we conducted an initial round of data collection from 2019 to early 2020, conducting

17 interviews subject to the DataForge, RadiaHub and ClinDeploy AI platforms. We also collected archival data such

as website information, documentation, and whitepapers to ensure data triangulation (Yin, 2018). The first round

aimed to explore AI platforms in the field, focusing on the platform's offerings, the actors involved, and the key chal-

lenges to AI development. During this round, we found that AI platforms employ multiple orchestration logics, and

some aspects appeared to differ from non-AI platforms. For example, we found that AI platforms seemed to apply a

novel type of orchestration logic that involves peer-to-peer collaborations and aims to address challenges related to

data diversity.

Informed by the results of the first round, we engaged in a second round of data collection from 2021 to 2023,

where we collected additional data and added the cases ModelCraft and MedConnect. We did this to learn more

about the emerging orchestration logics and their motives, variations, and inherent challenges. During this stage, our

focus shifted to the AI-specific aspects of platform orchestration (e.g., the role of datasets, federated learning, and

the context sensitivity of AI applications). We selected the cases ModelCraft and MedConnect for theorization, as

they allowed us to study the emerging orchestration logics in different settings to capture contextual nuances and

increase the robustness of our findings. During this round, we collected 21 interviews and additional archival data.

After analysing the data, we realised the last five interviews did not provide novel insights relevant to our research

question. Hence, we were confident that theoretical saturation was reached, and we concluded our data collection

(Strauss & Corbin, 1990).

To conduct the interviews in both rounds, we used semi-structured interview guidelines and followed the sug-

gestions provided by Myers and Newman (2007). We conducted 33 interviews online using video conferencing tools

and five in person. We recorded and transcribed all interviews for the coding process. We sampled our interview

partners to cover different roles and perspectives of the platform owner as the central actor (e.g., management, engi-

neers and clinical experts). Furthermore, we aimed to cover the roles of platform users (e.g., hospitals, research insti-

tutes, vendors) to gain insights into how they interact with the platform and to address potential bias from the

WEBER ET AL. 7
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platform owner's perspective. Table A1 provides an overview of all interviews, and Table A2 and Table A3 show the

principal interview guidelines used for data collection.

Table 2 summarises the two rounds of data collection, the respective timeline, key activities, our sampling strat-

egy, and derived insights.

3.2 | Data analysis

Our data analysis comprised within- and cross-case analysis (Eisenhardt, 1989; Yin, 2018) and followed an iterative

coding procedure with increasing levels of abstraction (Gioia et al., 2013; Miles et al., 2018). We started data analysis

by familiarising ourselves with the cases and their context by repeatedly reviewing the interviews and archival data

sources. We then constructed case descriptions for each platform to understand its value proposition, offerings, rele-

vant actors and their motives for participation. We then discussed and refined these descriptions within the research

team until we understood each platform robustly. Table A4 gives a brief description of the AI platforms included in

this case study.

TABLE 2 Overview of the research process.

Round 1: In-field exploration of AI platforms and
orchestration logics

Round 2: Iterative data collection, analysis, and
theorising on orchestration logics

Timeline 2019–2020 2021–2023

Focus and

key

activities

Focus:

• Gain an overview of AI platforms

• Understand how AI platforms facilitate AI

development

Key activities:

• Basic research on context and platforms as the

unit of analysis

• Conduct and analyse the first set of interviews

• Within and cross-case analysis

Focus:

• Gain additional information on emergent

orchestration logics

• Theorise on orchestration challenges as

sources of innovation and market failures in

the context of industry-specific AI

• Theorise how orchestration logics address

orchestration challenges

• Reach theoretical saturation

Key activities:

• Conduct and analyse the second set of

interviews

• Within and cross-case analysis

• Constant comparison with literature

Sampling

Strategy

Sampling strategy:

• AI platforms with distinct orchestration logics

• AI platforms in medical imaging

• AI platforms with established market

Sampling strategy:

• Two additional AI platforms in medical

imaging to increase robustness and capture

contextual nuances

• AI platforms in North America and Europe

Interviews in Round 1:

• DataForge: 5 Interviews

• RadiaHub: 5 Interviews

• ClinDeploy: 7 Interviews

Interviews in Round 2:

• DataForge: 2 Interviews

• RadiaHub: 1 Interview

• ModelCraft: 7 Interviews

• ClinDeploy: 2 Interviews

• MedConnect: 9 Interviews

Insights • AI platforms employ multiple orchestration logics

to address challenges in AI development

• Peer-to-peer collaboration and the sharing of

data and models present conceptually distinct

types

• AI platforms apply four distinct orchestration

logics to address orchestration challenges in

industry- specific AI development

• Key orchestration challenges include the need

for specialised resources and the

heterogeneity of user requirements

Abbreviation: AI, artificial intelligence.
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We then systematically coded the interviews and archival data (Miles et al., 2018; Strauss & Corbin, 1990). Fol-

lowing our research question on platform orchestration, we initially sought to understand how the platform guides

different actors and how they engage with and through the platform. Therefore, two researchers started coding

instances of actors engaging with the platform. Guided by our conceptual understanding of platform orchestration,

we especially looked for instances of actors using platform resources for AI development, resource contributions to

the platform (e.g., third-party applications), and transactions mediated by the platforms. Along with that, we coded

the involved actor roles (including the platform owner), their drivers and motives (e.g., data access), the perceived

outcomes (e.g., more diverse datasets), and the perceived challenges of those platform engagements.

We then grouped the lower-level codes into categories (Gioia et al., 2013) to derive more general patterns of

platform engagements (e.g., contributing datasets to the platform). In line with our research goals, we decided to

focus our analysis on patterns of platform engagement that are immediately concerned with AI development

(e.g., datasets, model training). For example, we did not further consider more generic instances, such as requesting

platform features or providing feedback to the platform owner, as we would not expect to find novel facets in the

context of industry-specific AI development here. We sorted and clustered the categories to gain a robust under-

standing of each pattern, especially its mechanics, actors, motives, outcomes and challenges. At this stage, we started

comparing the categories across cases to refine the categories further and arrive at consistent meanings (Miles

et al., 2018). We further used the AI development process model (Ashmore et al., 2021) as a tool to understand bet-

ter how each emergent pattern relates to the process of AI development.

We then engaged in a theorising process to understand the overarching orchestration logics employed by AI

platforms and answer our research question. For this, we build on our theoretical understanding of platform orches-

tration as a theoretical lens, which suggests that platform orchestration coordinates autonomous actors' efforts and

resources to overcome orchestration challenges that can otherwise lead to innovation or market failures (Jacobides

et al., 2024). Hence, we looked at the different platform engagement patterns and analysed the underlying orches-

tration challenges they aim to solve in the context of industry-specific AI development. During this stage, we again

compared the emerging relations across cases to confirm, extend and sharpen our conclusions (Eisenhardt, 1989)

and constantly compared our findings with general platform research.

After several rounds of going back and forth, this process led us to derive four theoretically distinct orchestra-

tion logics that AI platforms apply (in isolation or combination): platform resourcing, data-centric collaboration, dis-

tributed refinement, and application brokering. We then described the orchestration logics and relevant variations.

Our descriptions focus on the solutions provided by the platform, the actors involved, and the respective outcomes.

Last, we contrasted the empirically derived orchestration logics with conventional insights on platform orchestration

(e.g., the traditional innovation logic) to derive theoretical implications.

Figure 2 provides an overview of the coding procedure.

4 | EMPIRICAL FINDINGS

We identified four distinct orchestration logics for AI platforms in medical imaging: platform resourcing, data-centric

collaboration, distributed refinement and application brokering. This section details the orchestration logics and the

challenges they address. Table 3 provides a more comprehensive cross-case comparison, illustrating how the cases

apply the orchestration logics.

4.1 | Platform resourcing

As part of the orchestration logic of platform resourcing, AI platforms provide a modular technological core and

supporting resources that enable individual actors to create new datasets, models, and applications that extend the

WEBER ET AL. 9
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platform. The supporting resources provided by the platform owner comprise a range of software, developer, and

infrastructure services for AI development. Whereas platforms like DataForge, RadiaHub, and ModelCraft focus on

providing resources for the data management and model training phases, platforms like ClinDeploy and MedConnect

focus on model verification and deployment. A broad range of actors engage through this logic, including hospitals,

radiology centers, individual developers, researchers, and commercial vendors. Consequently, the motives range from

experimenting with AI to conducting scientific research and developing internal and commercial applications.

AI platforms aim to lower the cost and expertise required for AI development through this orchestration logic.

Platforms aim to achieve this by providing domain-specific tools that automate resource-intensive steps and abstract

Developing datasets using 
platform

Platform 
resourcing

Training models using 
platform

Developing AI applications 
using platform

Sharing and refining
models over platform

Data-centric 
collaboration

Co-creating datasets over 
platform

Federated learning over 
platform

1st Order Codes:
Instances of platform engagement, motives, 

outcomes, and challenges (excerpt)

2nd Order Categories:
Patterns of platform 

engagement

Aggregate Dimensions:
Overarching orchestration 

logics of AI platforms

• Lack of data availability

• Enable data sharing on platform

• Integrate open-source datasets

• Refine datasets for specific use cases

•…

• Combining datasets from multiple hospitals

• Collaborative data labelling

• Enhance data quantity and diversity

•…

• Curated marketplace by platform owner

• Contribute third-party AI applications

• Access installed userbase

•…

• Collaborate through federated learning projects

• Distributed verification at different sites

• Enhance robustness of models

• Address data privacy concerns

•…

• High burdens of dataset creation

• Use tools for data discovery and extraction

• Use AI-based semi-automated annotations

•…

• High expertise requirements for ML

• Use platform libraries and SDKs

• Easy-to-use interfaces and automated ML

• Engage in community of practices

•…

• High deployment and integration costs

• Use standardized interfaces and SDKs

• Simplified verification of AI models

•…

Sharing and refining 
datasets over platform

Application 
brokering

Listing AI applications on 
curated marketplace

• Sharing models on model repositories

• Tools and libraries for transfer learning

• Reduce data required for training

• Fine-tune pretrained models with local data

•…

Distributed 
refinement

• Uncertainty related to local performance

• Prepare local verification data

• Benchmark competing producers

•…

Benchmark competing
AI applications

F IGURE 2 Stylized illustration of coding procedure (according to Gioia et al. (2013)). AI, artificial intelligence; ML,
machine learning; SDKs, software development kits.
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complexities. Furthermore, platforms offer seamless integration and connectivity with medical information systems

to reduce deployment costs. Thereby, AI platforms also enable more resource-constrained actors to mobilise their

data and expertise and develop applications. Besides, platforms emphasise interoperability with external developer

tools to provide full flexibility for AI development.

For example, platforms like DataForge provide data management services that facilitate data collection, retrieval,

analysis, and preparation needed in model training and verification. DataForge provides tools to sample, import, and

anonymize medical images from medical information systems. Once imported, DataForge provides tools that allow

domain experts to label medical data, emphasising usability and convenience. Furthermore, interfaces to other devel-

oper tools (e.g., Python libraries) provide full flexibility for subsequent model training and deployment. Stakeholders

from DataForge's platform report how the platform addresses some important barriers in AI development, specifi-

cally those tied to data management:

“It is common sense in data science that 80% of the time you spend curating data, like cleaning and anno-

tating, and just 20% of the time, you are training models, right? So, if most of the effort and time is spent

working on the data before training the models, we must have very good tools to do that. […] So, I hadn't

yet found an annotation tool to do [multi-level annotation] specifically for medical images that could han-

dle DICOM images. In my opinion, the one with almost everything you need to annotate radiology images

is [DataForge].”
(AI engineer and radiologist, DataForge user)

“The annotation process is obviously very critical, but we also have tools where engineers can access the

annotations in real-time, and then they can either build an algorithm or, what's becoming more popular is,

let's say, you have a huge data set of 100,000 x-rays, and you want to annotate all 100,000 now. Ideally,

you don't have to get a human expert to do all that. That's very time-consuming and expensive. So, what

some of our users do is they can see the annotations and build an algorithm to help annotate the rest of

the dataset. You can bootstrap it and then accelerate the annotation.”

(Medical advisor, DataForge)

As another example, platforms like ClinDeploy focus on resources for model deployment and verification that

facilitate the development of AI applications. Specifically, ClinDeploy provides a cloud-based operating system and

SDKs that facilitate model deployment, serving, and monitoring. The operating system provides a standardised inter-

face that integrates with existing medical workflows and information systems, significantly reducing deployment

complexity and effort. Actors can flexibly develop applications by combining several models simultaneously within

more complex workflows. The stakeholders from ClinDeploy's platform report on the perceived benefits and how it

enables AI development on the platform:

“[We offer] complete integration, and that [integration] is really complicated for someone who wants to

develop models. She doesn't really want to worry about the integration; it is not interesting what kind of

images, where, when, and how they are sent. She wants a fixed interface with an input and an output.”
(CTO, ClinDeploy)

“I believe that [a platform] solution is probably the only sensible one in the end because when I see how

difficult it is for us to make all these installations [for model deployment] and then tell some practice, well,

they need ten different systems now, […] and then next year comes the eleventh or so, that's not manage-

able.”
(Radiologist and researcher, ClinDeploy user)

12 WEBER ET AL.
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In conclusion, AI platforms apply the logic of platform resourcing to provide the modular technological core and

supporting resources that enable the development of compatible datasets, models and applications. This logic

emphasises reducing the cost and effort required for AI development, allowing a broad spectrum of otherwise

resource-constrained actors to mobilise their own data and expertise and participate in AI development.

4.2 | Data-centric collaboration

In the orchestration logic of data-centric collaboration, AI platforms facilitate the collaboration between multiple

actors regarding the co-creation of datasets and models through merging datasets, federated learning, and distrib-

uted verification. In contrast to the logic of platform resourcing, data-centric collaboration involves multiple actors

combing their data for AI development, yielding more diverse and balanced datasets and, ultimately, more generaliz-

able models. While platforms like DataForge, RadiaHub, and ModelCraft support all identified forms of collaboration,

platforms like ClinDeploy and MedConnect only support applications' distributed verification and monitoring. The

participating actors are mostly peer organisations with access to data, such as hospitals and research institutions,

and often aim to achieve mutual benefits from their collaboration. Hence, we label these actors as peer collaborators

in AI development.

Through this orchestration logic, AI platforms aim to address the lack of data diversity caused by siloed data and

strong data-sharing concerns. To that end, AI platforms aim to reduce the friction from such collaborative engage-

ments, allowing more actors to participate and reap the mutual benefits. AI platforms facilitate collaboration by pro-

viding the necessary boundary resources (e.g., federated learning frameworks), promoting standardised interfaces

and formats (e.g., model type, data labeling conventions), and facilitating coordination (e.g., acting as a mediating

entity). Beyond possible knowledge spillovers within these collaborations, combining multiple actors' diverse data

creates a more tangible benefit. Actors create more diverse and balanced datasets based on this collective

data diversity and achieve higher generalizability in the resulting models. Such a lack of data diversity could other-

wise critically reduce the value of the resulting models and applications.

For example, platforms like DataForge support the merging and preparing of datasets between multiple collabo-

rators. DataForge provides the necessary tooling to import, deanonymize, and merge datasets from multiple actors.

Furthermore, DataForge's tools allow multiple actors to work on data labeling collaboratively while ensuring con-

trolled and trusted access to the data. Moreover, DataForge promotes standardised formats that facilitate data inte-

gration and processing. Stakeholders from DataForge's platform report how the platform addresses some of the

barriers when collaborating on datasets and the benefits it enables:

“Our platform also supports the upload of multiple datasets. For example, when a few hospitals collabo-

rate, they can easily organize their data and select what they want to work on. But of course, security and

safety are always a concern, so we allow project managers to control user access very flexibly.”
(Business manager, DataForge)

“If you pick your institutions properly, if they're diverse enough across the country and diverse enough in

terms of the scanner hardware they have, and really if you have 5 or 6 or let's say 5 to 8 institutions that

have enough intrinsic data diversity, I think, you would have something that would then work at, you know,

maybe upwards of 90 percent or 95 percent of places across the country”

(Professor of radiology, DataForge user)

As another example, platforms like RadiaHub support federated learning and the distributed verification of

models involving multiple collaborators. RadiaHub provides the software and standardised interfaces that participat-

ing actors need to install locally to train, verify, and exchange models. Furthermore, RadiaHub actively develops and

WEBER ET AL. 13
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suggests standards for certain AI use cases that facilitate consensus formation (e.g., output formats and labeling con-

ventions). The main benefit of federated learning is that no data needs to be shared, alleviating data-sharing concerns

and incentivising participation. On the other hand, federated learning raises new challenges, such as setting up infra-

structure at each site or fairly distributing the value from the jointly created outcome. Stakeholders from RadiaHub

report on their experiences with federated learning and distributed verification involving multiple actors:

“It turns out everybody's […] anxious to give up their data. So, that was one reason why we developed this

federated idea that you bring the algorithm to the [hospital] site rather than the site giving you their data.

And that way we can still have the diversity from all over the country […] but without having to pull the

data into one place”
(Vice president data science, RadiaHub)

“[…] we think the strength of [RadiaHub] is our connectivity for federated learning, and we've already done

a number of federated learning projects. We've built several models through federated learning that have

been tested locally where the sites that built them were held out. Now we're using that same network to

evaluate those at sites where they didn't participate in the experiment.”
(Chief medical information officer, RadiaHub)

“You have test data at each site, and you train this algorithm, move it around, and view its performance at

each site […]. But the more interesting thing is getting test data from an institution that the model wasn't

even trained at. […] I think that's the real test because the entire point of building a model trained at multi-

ple sites is […] to get to the point where you have [a model] that will be generalizable and work at sites it

hasn't been to before because that's how you achieve scale.”
(Professor of radiology, RadiaHub user)

In conclusion, AI platforms apply the logic of data-centric collaboration to enable actors to combine their data in

a trusted way, creating more diverse and balanced datasets and more generalizable models across heterogeneous

users.

4.3 | Distributed refinement

As part of the orchestration logic of distributed refinement, AI platforms allow actors to share and further refine the

previously created datasets and models. Actors thus cultivate specialised resources for AI development that go

beyond the platform-provided resources (e.g., pretrained models for specific diseases). Platforms like DataForge,

RadiaHub and ModelCraft, which focus on the data management and model training phases, apply this logic. The

participating actors vary in type and motive depending on the resource transacted. For example, these actors include

data owners and domain experts (e.g., hospitals and medical imaging centers) and model developers (e.g., research

institutions, hospitals and commercial vendors). As these actors both consume and produce resources, we refer to

these as prosumers in AI development.

Through this orchestration logic, AI platforms incentivise and facilitate the sharing of datasets and models and

their subsequent reuse in AI development. AI platforms aim to achieve this through proposing and enforcing

standardised formats and interfaces (e.g., defining data specifications), creating transparency of the resources avail-

able (e.g., providing repositories), and making external resources reusable and refinable (e.g., using transfer learning

frameworks). Through the specialised contributions of external prosumers (e.g., curated datasets for specific modali-

ties), AI platforms can support AI development for a broader range of industry-specific use cases. While the provided

datasets address barriers related to data availability, pretrained models significantly reduce the data and computing

power required to train a model.

14 WEBER ET AL.
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For example, platforms like DataForge facilitate the sharing and distributed refining of datasets through multiple

prosumers. To that end, DataForge provides an infrastructure to anonymize and share datasets publicly or with

selected actors. Other actors can then search for suitable datasets and use DataForge's tools to annotate the data

further, enrich the data with their own data sources, or train new models with the data. Given the sensitive nature of

patient data, the shared data often represents open data. While not always perfectly fitting, those open datasets can

serve as a valuable starting point for further refinement:

“We're using our public datasets. Most of it is from the [public data archive], which is just an amazing

resource, and we have quite a lot of it hosted on our site. […] Mostly, we're using it just to give people a

way to access that data and look through it, but we're also annotating on it.”
(Project manager, DataForge)

“I would say that we have used some open data from some competitions to build models. Surprisingly,

these models generalized very well in our own data without the need for transfer learning or fine-tuning

[…]. We also have a model to segment and give the volume of [organ], and for this one, the first training

was done with public images, but then we annotated our own images to improve the accuracy.”

(AI engineer and radiologist, DataForge user)

As another example, platforms like ModelCraft facilitate the sharing and distributed refinement of pretrained

models. To that end, ModelCraft provides an open, community-driven model repository and a standard model format

that allows prosumers to share and reuse those pretrained models. Actors can leverage ModelCraft's libraries to

apply transfer learning and fine-tune the models using their data and expertise to fit their context-specific needs.

Transfer learning allows only using a fraction of the training data and computational workload typically required. In

contrast to sharing datasets, pretrained models do not require actual data sharing, alleviating possible data-sharing

concerns. Stakeholders of ModelCraft share how the platform facilitates the sharing and refinement of models and

the perceived benefits:

“So [the model repository] is a vehicle for academic teams to publish their models without sharing the data

[… It is] for others to start with a pretrained model to accelerate the development process […] I don't know,

for a startup for a company, for another academic center, and fine-tune it on their data. […] Whatever

goes there, I would say the idea is not that this is a certified model that fulfills certain accuracy require-

ments that you can take and put in your product. Absolutely not. The idea is to share interesting models

and allow the community to move faster. Because think what happened with the ImageNet pretrained

backbones. It just speeds up everything.”

(AI engineer, ModelCraft)

“On the transfer learning side, it's been pretty positive. We have proof points where you can, with about a

fifth of the data, get your model up to the same accuracy. What he had was an example where at (site 1)

they built a model, they sent it to (site 2) […] and they were able to add a few of those [previously unseen]

cases to the model, and then the model performed to the accuracy (site 1) had seen.”

(Product manager, ModelCraft)

In conclusion, AI platforms apply the logic of distributed refinement to cultivate increasingly specialised datasets

and models available for AI development on the platform. Through continuously refining resources by third parties,

AI platforms can support AI development for a broader range of industry-specific use cases.

WEBER ET AL. 15
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4.4 | Application brokering

In the orchestration logic of application brokering, AI platforms facilitate the transactions between distinct sides of

producers and consumers of readily usable AI applications. Specifically, platforms like ClinDeploy and MedConnect,

which focus on the model deployment and verification phases, facilitate the search and matchmaking of these appli-

cations. The producing side includes vendors of AI applications seeking to access the platform's user base and com-

mercialise their products. The consuming side includes end-users such as hospitals and radiology centers seeking to

access readily trained applications that fit their individual context and data environment.

Through this orchestration logic, AI platforms facilitate the transactions of AI applications in the market through

matchmaking and reducing transaction costs. AI platforms aim to achieve this through curating third-party applica-

tions (e.g., verifying their generalizability), creating transparency of the applications available (e.g., on a marketplace),

and proposing and enforcing standardised formats and interfaces (e.g., defining model specifications). A key chal-

lenge lies in estimating the true performance of external applications on local data, which can vary significantly in

practice. Therefore, AI platforms make those applications comparable and triable, allowing consumers to benchmark

competing products and make informed decisions.

For example, platforms like MedConnect provide an operating system and curated marketplace with over

50 external applications. MedConnect engages in a detailed analysis to review and preselect the applications offered

on the platform (e.g., regulatory clearance). Consumers only need to contract and integrate with the platform once,

thus considerably reducing transaction costs. Furthermore, MedConnect enables consumers to try and compare dif-

ferent applications to see how they perform on their local data before purchasing. Producers benefit from the

installed user base, as the platform provides trusted access to potential customers. Stakeholders from MedConnect

report how this orchestration logic facilitates transactions:

“The idea behind a platform is that you can reduce a lot of that overhead by just contracting once for the

platform […] and then once you have that platform in place, you'll have access to all these different appli-

cations. […] Apart from the resources saved on the procurement aspects, it's also the value behind the inte-

gration and natural deployment, so typically what's called the last mile challenges.”

(Clinical lead, MedConnect)

“We have a curated marketplace, which means really selected applications and not every lung nodule

detection module that is available on the market. […] We have physicians in our team who look at the

study results and talk to the manufacturers. What speaks for the evidence, how does the whole thing

work? […] Medical evidence is one thing, but also requirements for data protection, data security, etc., in

other words, that it really works in the relevant markets.”

(Business manager, MedConnect)

“[We] harness [the customer's] data, make sure it's anonymized and ready for trial purposes, process that

through any given algorithm, and present the results back to [the customer]. […] Here's how it works on

your data to then allow that customer to have a very level playing field assessment of each one of those

applications. What has become very apparent is that all the algorithms that are out in the market work

very well. But you can see massive changes in their performance as you move them in different geographi-

cal territories across the world.”

(Director of partnerships, MedConnect)

In conclusion, AI platforms apply the logic of application brokering to address the high burdens and uncertainties

involved in transacting context-sensitive AI applications, enabling consumers to select applications that match their

local data needs.

16 WEBER ET AL.
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5 | DISCUSSION

Industry-specific AI platforms are confronted with distinct orchestration challenges, including the need for spe-

cialised resources, data-sharing concerns, heterogeneous user requirements, and context-sensitive AI applications

(e.g., Hosny et al., 2018; Thrall et al., 2018). The failure to address these orchestration challenges hinders the scalabil-

ity and effectiveness of industry-specific AI platforms, ultimately resulting in structural innovation and market fail-

ures (Jacobides et al., 2024).

The results reveal four orchestration logics that can build on each other to address these challenges. The first

logic, platform resourcing, provides resources to individually curate data, train models and develop applications,

mobilising the specialised data and expertise of otherwise resource-constrained actors. Data-centric collaboration

builds on this logic by facilitating trusted collaboration, where dispersed data can be combined into diverse datasets

and generalizable models, alleviating data-sharing concerns and overcoming heterogeneous user requirements. The

third logic, distributed refinement, primarily enables co-specialised actors to share and refine datasets and models,

producing increasingly specialised resources. This process yields context-specific applications ready for consumption

or distribution. Building on these logics, application brokering matches competing third-party applications with con-

sumers, who benchmark the performance based on their specific data and context.

Figure 3 illustrates this interplay of orchestration logics, highlighting how the platform coordinates autonomous

actors' efforts and resource contributions to pass certain thresholds (e.g., generalizability of models). In the following,

we discuss more thoroughly how the logics can address the challenges of specialised resources, data-sharing con-

cerns, heterogeneous user requirements, and context-sensitive applications (see Table 4). We further elaborate on

the generalizability of the orchestration logics to other industries, such as finance, healthcare, and manufacturing.

First, providing access to specialised resources (e.g., training data) to facilitate innovation in industry settings can

be challenging and presents a threshold for specialised resource availability (Haki et al., 2024). Therefore, the logic of

platform resourcing describes how platform owners provide software, developer, and infrastructure services such as

developer tools and AI frameworks (Jacobides et al., 2021; Lins et al., 2021). Actors with access to unique data and

specialised expertise use these services to mobilise their resources and develop datasets, models and applications

(Geske et al., 2021). We see a similar logic in enterprise systems, where platform owners offer APIs and SDKs,

Platform ecosystem

Platform 
Resourcing

Platform core

Distributed 
Refinement

Data-centric 
Collaboration

Application 
Brokering

Distributed 
Refinement

Data-centric 
Collaboration

Context-specific 
performance threshold

Curated
data

Raw
data

Context-specific 
applications

Public

Private

Third-party
applications

Generalizability
threshold

Data privacy
threshold

F IGURE 3 Four orchestration logics of industry-specific artificial intelligence platforms.
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enabling actors to develop specialised applications that meet their industry-specific requirements (Ceccagnoli

et al., 2012).

This logic can be extended through distributed refinement, where platform owners use repositories, data man-

agement tools, and approaches such as transfer learning (Pan & Yang, 2009) to enable prosumers to share and refine

datasets and models. These shared resources act as boundary resources provided by the ecosystem, going beyond

the traditional wisdom that the platform owner provides these resources and then tuned by the ecosystem (Eaton

et al., 2015). In an ongoing process, other prosumers refine these resources using their unique expertise and data,

resulting in highly curated datasets and fine-tuned models. These specialised resources can cater to a broad range of

industry-specific use cases, passing the threshold for specialised resource availability (Haki et al., 2024).

Second, data-sharing concerns present ongoing challenges in many industries, such as finance, healthcare and

manufacturing (Jussen et al., 2024; Li et al., 2021). The findings show how—building on platform resourcing—data-

centric collaboration allows actors to become trusted peer collaborators that publicly or privately integrate data from

multiple sites. For example, in healthcare, several actors join forces to co-create open datasets for various occasions

(Willemink et al., 2020). In other industries, such as manufacturing, we see data spaces as more formalised, dec-

entralised infrastructures that govern the trusted data-sharing between autonomous actors (Möller et al., 2024;

Otto & Jarke, 2019).

Alternatively, AI platforms can leverage federated learning as a computationally driven, privacy-preserving

approach to combine peer collaborators' data (Agahari et al., 2022). In federated learning, the platform owner orches-

trates actors to collaborate on training models without publicly sharing the curated data (Bi et al., 2023; Li

et al., 2021). This approach is more suited for industries with stringent data privacy regulations. For example, finan-

cial institutions can use federated learning to develop models for loan prediction, training a model on their local data

while only sharing model updates in the federation (Li et al., 2021).

Platform owners can further address data-sharing concerns through the logic of distributed refinement. Instead

of sharing actual data, prosumers can share models as “processed data,” passing the threshold of data privacy con-

cerns. To enable this decoupling of models, platform owners provide model repositories, transfer learning tools, and

federated learning frameworks (Q. Li et al., 2021). Reusing external models addresses the need for large datasets

while reducing the required computing power, two significant constraints in AI development (Jacobides et al., 2021;

TABLE 4 Addressing orchestration challenges on industry-specific AI platforms.

Orchestration challenge Platform orchestration logics

Providing access to highly

specialised resources

Platform resourcing simplifies the initial creation of specialised resources for AI

development, allowing otherwise constrained actors to mobilise their resources (e.g.,

data and domain expertise).

Distributed refinement allows co-specialised actors to share and refine the

resources in a distributed manner, stimulating innovation and providing increasingly

specialised resources (e.g., pretrained models).

Data-sharing concerns Data-centric collaboration facilitates the trusted integration of data resources from

multiple actors (e.g., through federated learning).

Distributed refinement allows actors to share and reuse models instead of actual

data to alleviate data-sharing concerns (e.g., using transfer learning).

Heterogeneity of user

requirements

Platform resourcing offers standardised interfaces for applications to integrate with

users' heterogeneous up- and downstream systems.

Data-centric collaboration facilitates the creation of more diverse datasets, yielding

models that better generalise over heterogeneous users.

Context-sensitive AI

applications

Distributed refinement facilitates the cost-efficient forking of context-specific

applications, building on specialised datasets and models.

Application brokering allows consumers to benchmark and select from competing

third-party applications using their local data.

Abbreviation: AI, artificial intelligence.
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Jöhnk et al., 2021). However, building on external models may not offer the same flexibility as working with actual

datasets, indicating a possible trade-off (Pan & Yang, 2009).

Third, the large heterogeneity of user requirements limits the scope of applications, reducing incentives for

third-party producers to innovate and extend the platform (Rietveld & Eggers, 2018). To that end, platform

resourcing can offer standardised interfaces with seamless integration to users' up- and downstream business sys-

tems. For example, industrial platforms can provide standardised integration with devices and production equipment

to develop applications in manufacturing (Hein et al., 2019; Pauli et al., 2021). Through these standardised boundary

resources, AI platforms can facilitate third-party innovation despite heterogeneous markets (Haki et al., 2024).

Beyond these integration issues, producers in AI development face heterogeneous data environments across

users, which must be reflected in the training data (Brecker et al., 2023; Diaferia et al., 2022). For example, these

data environments comprise different patient populations in healthcare (Hosny et al., 2018; Willemink et al., 2020)

or different production setups in manufacturing (Weber et al., 2022). Therefore, AI platforms engage in data-centric

collaboration to guide the co-creation of more extensive and diverse datasets. Sharing these datasets publicly or pri-

vately enables producers to create applications that can better generalise over heterogeneous user environments,

allowing them to pass the threshold of generalizability (e.g., Willemink et al., 2020).

Last, AI applications are highly context-sensitive based on the data they are trained on (Brecker et al., 2023;

Diaferia et al., 2022), challenging the matchmaking of producers and consumers. The findings show that platform

owners support the distributed refinement of resources using additional data and expertise to fork several context-

specific applications. For example, prosumers can build on a pretrained model specialised for the safety monitoring

of construction workers and fine-tune it to fit different production contexts (e.g., Weber et al., 2022). This approach

reduces the effort required for AI development (Diaferia et al., 2022), fostering the cost-efficient production of

context-specific applications.

Building on the previous logics, application brokering provides access to competing third-party applications, wid-

ening the list of potentially suitable applications for consumers. These applications present standardised products for

industry-specific use cases, offering opportunities for specialisation in different contexts (e.g., applications for spe-

cific machines) (Boudreau, 2012). The platform owner curates these applications through governance mechanisms

that ensure regulatory conformity and sufficient generalizability (e.g., on independent data). In addition, the platform

facilitates benchmarking competing applications using local consumer data, enhancing transparency over their

contextual performance (Brecker et al., 2023). Thereby, consumers only select applications that cross their context-

specific performance threshold. This logic allows platform owners to match producers and consumers of AI applica-

tions (Jacobides et al., 2021), despite their context sensitivity.

6 | IMPLICATIONS, LIMITATIONS AND FUTURE RESEARCH

Our findings have theoretical implications for the literature on platform orchestration in general and AI platforms in

particular. In addition, we illustrate the practical implications of our results for platform owners and platform users.

Last, we present the limitations of this study and provide suggestions for future research.

6.1 | Theoretical implications

The literature on platform orchestration has primarily focused on homogeneous, less complex markets (De Reuver

et al., 2018; Rietveld & Schilling, 2021), centering on two orchestration logics: fostering third-party innovation

through boundary resources (Eaton et al., 2015; Ghazawneh & Henfridsson, 2013) and facilitating transactions in

multi-sided markets (Rochet & Tirole, 2003; Shi, 2023). However, industry-specific AI platforms face more complex

challenges that these traditional logics do not fully address. To fill this gap, we introduce two additional orchestration

logics and illustrate their interplay in overcoming industry-specific orchestration challenges.
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More specifically, our study complements the established logics of innovation and transaction (Cusumano

et al., 2019; Evans & Gawer, 2016) by proposing data-centric collaboration and distributed refinement. These two

new logics actively guide autonomous actors in co-creating and refining datasets and models for AI development.

This stands in contrast to leaving such between-actor interactions to the self-organisation of the ecosystem (Engert

et al., 2024; Haki et al., 2024). The interplay of these orchestration logics enables platform owners to manage spe-

cialised resources better, facilitate collaboration despite data-sharing concerns and ensure that applications can

adapt to heterogeneous, context-sensitive environments. By identifying and elaborating on these additional logics,

our study offers a more comprehensive framework for understanding platform orchestration in complex settings,

such as industry-specific AI development.

Furthermore, the literature on AI platforms has focused on delineating different types of AI platforms and the

boundary resources they provide, such as AI software, developer, and infrastructure services (Geske et al., 2021;

Jacobides et al., 2021; Lins et al., 2021). Despite noting a novel data layer (Li & Kettinger, 2021), this literature

focused on providing traditional boundary resources to support the development and consumption of AI applications

(Geske et al., 2021; Jacobides et al., 2021). We extend this line of research by shifting the perspective of boundary

resources toward a process of boundary processing enabled through the decoupling of data and models.

Extant literature conceptualises boundary resources like AI developer tools as being provided by platform

owners (Ghazawneh & Henfridsson, 2013) and adjusted through distributed actions within the ecosystem (Eaton

et al., 2015). However, in complex markets like industry-specific AI development, platform owners cannot provide all

the necessary resources (Haki et al., 2024). Therefore, our findings show that platform owners do more than provide

predefined resources—they orchestrate a dynamic, iterative process of boundary processing, combining four orches-

tration logics to enable actors to co-create and refine data and models at the boundary (cf. Figure 3). This ongoing

refinement allows for the flexible adaptation of models to meet heterogeneous user requirements and contextual

settings. By shifting the perspective from platform-provided boundary resources to ecosystem-driven boundary

processing, we offer a refined understanding of how data and models function as boundary resources in AI platforms

(Geske et al., 2021; Jacobides et al., 2021; Rai et al., 2019).

Boundary processing requires decoupling data and model resources from the platform, which platform owners

should consider in their architecture design. This finding extends the traditional view of decoupling for platforms,

where the platform owner controls the infrastructure and decouples it from the applications provided by third

parties (Benlian et al., 2018; Tiwana et al., 2010). Within AI platforms, we see that platform owners additionally

decouple data and model resources to enable collaboration and innovation on these layers. Platform owners can

actively enable this decoupling by providing repositories, data management tools, transfer learning, and federated

learning (Li et al., 2021; Pan & Yang, 2009). However, the decoupling of models yields trade-offs: while actors can

interact through models to alleviate data-sharing concerns and computing demands, these models offer less flexibil-

ity for innovation (Pan & Yang, 2009). These findings suggest that the decoupling of resources is more complex in AI

platforms and requires platform owners to balance inclusiveness and flexibility in industry-specific AI development.

6.2 | Practical implications

The findings also have practical implications for platform owners and platform users. First, platform owners should

proactively address the orchestration challenges unique to their industry, such as the need for specialised resources

or strict data-sharing constraints. Our study highlights how the strategic use of orchestration logics can help over-

come these barriers (see Table 4). For instance, in manufacturing, AI platforms can mobilise highly curated datasets

for predictive maintenance by facilitating distributed refinement and data sharing. Trusted consortia are already

advancing this by sharing specialised data (Möller et al., 2024), and expanding these efforts to include pretrained

models could further stimulate innovation. In sectors like finance, where data-sharing is regulated, privacy-preserving

mechanisms like federated learning can enable data-centric collaboration without compromising privacy (Bi
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et al., 2023; Li et al., 2021). Platform owners integrating these strategies into their platform design can effectively

orchestrate AI development and drive innovation in industry-specific contexts.

Second, actors should explore deeper engagement with AI platforms beyond passive service consumption. Dis-

tributed refinement, for instance, demonstrates the value of contributing datasets or models to the ecosystem,

enabling co-specialised actors to enhance and refine these resources. Although this may not yield immediate, direct

returns, it creates long-term ecosystem benefits, such as improved models and applications for all participants. Simi-

larly, engaging in data-centric collaboration with other actors enhances the generalizability and robustness of models

(Thrall et al., 2018), offering benefits that isolated service consumption cannot achieve. Active participation thus

unlocks the collective potential of the platform and its ecosystem.

Third, producers of AI applications must weigh the advantages and challenges of joining industry-specific plat-

forms. Data-centric collaboration allows producers to leverage diverse datasets from heterogeneous users, resulting

in more robust and generalizable applications. However, this collaboration introduces complexities, such as managing

ongoing partnerships and incentivising cooperation (Bi et al., 2023). Application brokering offers access to an

established consumer base, which is particularly valuable for smaller vendors and startups, but it also intensifies com-

petition by enabling direct benchmarking of competing applications (Boudreau, 2012). Careful assessment of these

trade-offs can help producers make informed decisions about participating in industry-specific AI platforms.

6.3 | Limitations and future research

Our study is not free from limitations regarding its internal and external validity. Regarding internal validity, our case

study research approach is inherently tied to subjective interpretations and researcher bias. We aimed to address

TABLE 5 Future research areas and exemplary questions.

Research area Exemplary research questions

Platform orchestration for industry-

specific AI platforms

• What are the long-term implications of the orchestration logics, such as the

impact of data-centric collaboration on application quality?

• How can more nuanced orchestration logics inform other types of data-

driven platforms, such as industrial platforms (Pauli et al., 2021)?

Data and AI models as boundary

resources

• Which characteristics enhance or restrict the generative potential of data and

models as boundary resources?

• Compared to data, how do models as privacy-preserving and computationally

efficient boundary resources impact collaboration and innovation?

• How can federated data concepts, such as data spaces (Möller et al., 2024),

support using data as boundary resources on AI platforms?

Platform governance for industry-

specific AI platforms

• How can industry-specific AI platforms sustain third- party application

contributions despite intensified competition and individual benchmarking

(Engert et al., 2023)?

• Given constantly changing data, how can platform owners effectively govern

the long-term performance and evolution of applications (Paleyes

et al., 2022)?

• How should platform owners govern boundary processing of data and

models, and should those two resources be governed differently?

Platform competition of industry-

specific AI platforms

• How do industry-specific AI platforms co-evolve with other AI platforms and

key players (e.g., AWS, Google AI) and adapt to the fast progress of AI

technology?

• Given the foundational role of data contributions, do industry-specific AI

platforms also inhibit data-driven network effects based on their installed

base (Gregory et al., 2021)?

Abbreviation: AI, artificial intelligence.
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researcher bias by following structured data analysis techniques (Miles et al., 2018), constantly comparing our emer-

gent findings with literature (Strauss & Corbin, 1990), and critically reflecting our presumptions within the research

team (Walsham, 2006). Furthermore, we aimed to increase internal validity by capturing the views of multiple plat-

form stakeholders in our interviews and by grounding our findings in five empirical cases of AI platforms to enhance

the robustness of our findings (Eisenhardt, 1989).

Regarding external validity, our study is limited to applications that build on deep learning techniques, specifi-

cally supervised learning (Russell & Norvig, 2021). Other AI techniques, such as generative AI, may be subject to

other challenges and potentially require different approaches to platform orchestration. Furthermore, our study

draws on insights from the medical imaging sector, which has unique characteristics, such as the high sensitivity of

patient data (Hosny et al., 2018; Thrall et al., 2018). However, we are confident that the derived orchestration logics

are abstract enough to generalise to other industry contexts. For example, as discussed earlier, the finance and

manufacturing industries face similar challenges, such as the need for specialised resources and pronounced data-

sharing concerns (e.g., Bi et al., 2023; Li et al., 2021).

Beyond addressing these limitations, the implications of our study point to additional future research avenues.

First, there is a need to further investigate data and models as distinct types of resources processed at the boundary.

Second, we propose to examine effective platform governance for industry-specific AI platforms, given the unique

orchestration logics and challenges identified in this study (see also Li and Kettinger (2021)). Last, future research

could examine how AI platforms compete and adapt over time, given their important role in orchestrating industry-

specific AI development and the dynamic evolution of the AI ecosystem (Jacobides et al., 2021). We provide exem-

plary future research questions in Table 5.

7 | CONCLUSION

Industry-specific AI platforms face orchestration challenges related to specialised resources, data-sharing concerns,

heterogeneous user requirements, and context-sensitive applications. Our theoretical understanding has been lim-

ited in addressing these challenges due to a research focus on more homogeneous and less complex markets. Our

study of five AI platforms in medical imaging reveals four orchestration logics to address these challenges: platform

resourcing, data-centric collaboration, distributed refinement and application brokering. These logics illustrate how

platform owners can verticalize the AI development process by orchestrating autonomous actors who co-create,

share and refine data and models, eventually producing context-specific applications capable of generalisation. The

resulting applications can be offered as standardised products but require competitive benchmarking by consumers.

As AI technology evolves and its applications become increasingly tailored to industry-specific needs, AI plat-

forms will likely play a key role in orchestrating the journey from raw data to industry-specific applications. This

study's insights advance our theoretical understanding of platform orchestration for AI platforms and offer practical

guidance to platform owners and platform users. Effectively orchestrating complex ecosystems will be essential to

realising AI platforms' full potential and creating value within specific industries.
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APPENDIX A

TABLE A1 List of interviews.

ID Case Perspective Role description Round 1 (min) Round 2 (min)

1 DataForge Platform Medical Advisor 57

2 DataForge Platform Project Manager 28

3 DataForge Platform Platform AI Engineer 43

4 DataForge Platform Business Manager 29

5 DataForge User AI Engineer and Radiologist 41

6 DataForge User Professor of Radiology 41

7 DataForge User Radiologist and Data Annotator 33

8 RadiaHub Platform Vice President Data Science 23

9 RadiaHub Platform Platform AI Engineer 33

10 RadiaHub Platform Director of Platform 51 49*

11 RadiaHub Platform Chief Medical Information Officer 49*

12 RadiaHub User Medical Director of Radiology Informatics 32

13 RadiaHub User AI Engineer and Researcher 35

14 ModelCraft Platform Product Manager 39

15 ModelCraft Platform Account Manager 49

16 ModelCraft Platform AI Engineer 73

17 ModelCraft Platform Product Manager and Radiologist 38

18 ModelCraft User Radiologist and Project Manager 66

19 ModelCraft User Researcher, Radiologist, and Entrepreneur 39

20 ModelCraft User Medical Director 31

21 ClinDeploy Platform Chief Executive Officer 47

22 ClinDeploy Platform Chief Partnerships Officer 36

23 ClinDeploy Platform Chief Technology Officer 28

24 ClinDeploy Platform Chief Operations Officer 38

25 ClinDeploy Platform Business Development 34

26 ClinDeploy User Radiologist and Researcher 26 32

27 ClinDeploy User Professor for Radiology 23

28 ClinDeploy User Senior Radiologist 15

29 MedConnect Platform Head of Medical Affairs 36

30 MedConnect Platform Vice President Partnerships 38

31 MedConnect Platform Business Manager 36

32 MedConnect Platform Developer Program Lead 32

33 MedConnect Platform Clinical Lead 29

34 MedConnect User Chief Commercial Officer 31

35 MedConnect User AI Engineer and Product Manager 27

36 MedConnect User Chief Innovation Officer 30

37 MedConnect User Sales Manager 32

Total no. of interviews 17 21

*Interview with both interviewees.
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TABLE A3 Interview guidelines for the second round of data collection.

Interview guidelines for the second round of data collection

General questions (everyone):

• Major barriers to AI development

• Role of platforms to address barriers

Platform owner questions:

• Relevant partners and collaborators for the platform

• Supporting AI development

� Detailed functioning of key offerings

� Design challenges (e.g., integration, interoperability)

• Marketplaces/repositories for transactions

� Functionality and expected value

� Experiences (e.g., volume and perceived quality of transactions)

� Incentive and control of third-party contributions

• Facilitating collaboration (e.g., federated learning, merging datasets)

� Functionality and expected value (e.g., diversity of data)

� Experiences (e.g., past projects)

� Remaining challenges

Platform user questions:

• Other relevant partners and collaborators for AI development

• Experienced benefits and challenges with the platform (e.g., exemplary projects) for

� Application development

� Providing/consuming datasets and pretrained models

� Providing/consuming applications (e.g., issues of transferability)

� Collaborating with peers through the platform (e.g., the value of data diversity)

TABLE A2 Interview guidelines for the first round of data collection.

Interview guidelines for the first round of data collection

General questions (everyone):

• Major barriers to AI development

• General strategies to cope with development barriers

• Own participation in AI development (e.g., exemplary projects)

Platform owner questions:

• Motives and offerings of the platform

� Functionality of platform

� Role of data on the platform

• Role and engagement of external actors

Platform user questions:

• Engagement with platform

� Motives, expectations and alternatives

� Experienced benefits and challenges

28 WEBER ET AL.
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TABLE A4 Description of AI platform cases.

ID Pseudonym Case description

1 DataForge DataForge is a commercial platform operated by a small firm in Northern America. DataForge

strives to support AI research and development through high-quality data management. To that

end, DataForge offers various services facilitating data preparation and annotation. Users can

collaborate by sharing and combing datasets and collectively annotating data. In addition,

DataForge allows users to share models to verify their performance on different datasets.

DataForge's ecosystem comprises research institutions, hospitals, IT firms, AI vendors and

annotators.

2 RadiaHub RadiaHub is a non-profit platform operated by a research institute in Northern America.

RadiaHub strives to democratise AI and support AI research and development. To that end,

RadiaHub offers easy-to-use services that facilitate data management, model training and model

verification. Users can collaborate by exchanging pretrained models, conducting federated

learning and collaboratively working on datasets. RadiaHub further develops services for

independent model verification and monitoring across different users. RadiaHub's ecosystem

comprises research institutions, hospitals and IT firms.

3 ModelCraft ModelCraft is an open-source platform backed by renowned IT firms and research institutions

from Northern America and Europe. ModelCraft strives to support AI research and development

and adopt AI applications in clinical practice. To that end, ModelCraft offers SDKs and libraries to

support data management, model training, and model deployment. ModelCraft supports state-of-

the-art concepts, such as active learning and federated learning, to drive the performance of AI

applications. ModelCraft further hosts a repository for sharing and reusing pretrained models.

ModelCraft's ecosystem comprises research institutions, hospitals, IT firms and AI vendors.

4 ClinDeploy ClinDeploy is a commercial platform operated by a small-sized firm in Europe. ClinDeploy strives

to support the adoption of AI applications in clinical practice. To that end, ClinDeploy offers an

operating system and supporting services to facilitate application development, verification and

deployment. ClinDeploy further provides a curated marketplace with third-party applications that

users can benchmark and integrate into their clinical processes. ClinDeploy's ecosystem comprises

hospitals, radiology service providers, research institutions and AI vendors.

5 MedConnect MedConnect is a commercial platform operated by a large medical firm in North America and

Europe. MedConnect strives to support AI research and development and adopt AI applications in

clinical practice. To that end, MedConnect offers an operating system and supporting services to

facilitate application development, verification and deployment. MedConnect further provides a

curated marketplace with third-party applications. In addition, MedConnect offers selected actors

access to their partner network as well as internal data and training infrastructure to support the

development of new applications. MedConnect's ecosystem comprises hospitals, radiology

service providers, research institutions, startups and AI vendors.
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