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Abstract—Medical applications, such as telemedicine or smart
operation rooms, place stringent requirements on the underlying
network architecture. 6G as the next-generation communication
standard currently in research promises to satisfy the needs
of such applications by utilizing advances in technology and
networking concepts. One crucial concept for medical applica-
tions is the capability of using computing resources within the
network. By placing the applications on such processing nodes in
different locations within the Radio Access Network (RAN), the
performance metrics of a medical application, such as latency,
throughput, and availability can be optimized. However, problems
arise when the available processing capabilities are not sufficient
for all requested medical applications. In this paper, we formulate
an Integer Linear Program (ILP) to address the problem of
processing medical applications within the network when the
processing capabilities are not sufficient. We consider the priority
and different service levels of application functions and aim to
place as many applications as possible with the best possible
service quality. Additionally, we take into account that some
applications must run in the network even if their priority is low.
Furthermore, we propose a heuristic in order to obtain a good
solution quickly. The evaluation of our solution and comparison
to existing approaches shows an increase of accepted demands
in the network by up to 35%.

Index Terms—6G, Prioritization, Heuristic, In-Network Com-
puting, Medical Technology.

I. INTRODUCTION

The currently researched next generation of communica-
tion networks, 6G, addresses the networking requirements
of emerging applications such as virtual reality and con-
nected autonomous systems. In particular, 6G is envisioned
to tremendously increase data rates and availability and to
decrease the latency. This is achieved not only by technological
advances such as higher frequency ranges, but also through a
holistic design of applications, the underlying communication
network, and in-network computing capabilities [1], [2].

One area which will especially benefit from the new features
of 6G is the medical sector [3], [4]. Medical applications
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place a number of different performance demands on the
communication network. In-network computing plays a crucial
role in satisfying these demands [2]. In particular, modular
parts of a medical application, in this paper referred to as
Modular Application Functions (MAFs) as introduced in [5],
can be dynamically executed on various processing resources
within the network. Note that the concept of placing MAFs
extends the similar concept of VNFs by not only consider-
ing network-related functions, but also the applications. This
allows to take application-specific requirements into account,
enabling closer interaction between network and application.
The main challenge is the optimal placement of such MAFs
on processing nodes in a communication network. Existing
work [6], [7], and [8] already covers a large area of aspects for
placing VNFs. However, the existing literature does not take
into account the special requirements of medical applications.
In a first step, the authors in [9] combine the VNF placement
approach and the requirements of medical applications, opti-
mizing the placement costs.

In contrast, in this paper we consider a scenario where
the available networking and processing capabilities are not
sufficient to fulfill the demands of all requested medical
applications. For this purpose, we formulate an Integer Lin-
ear Program (ILP) with the focus on admitting as many
applications as possible to the network. Furthermore, for
each MAF we consider the priority and different levels of
service regarding the performance in terms of latency and
throughput. The strategy is to execute higher prioritized MAFs
with higher levels of service while lower prioritized MAFs
experience lower levels of service or are terminated com-
pletely. Additionally, we also consider that some MAFs are
non-terminable, i.e., they must be admitted to the network
even if their priority is low and once placed, their execution
cannot be terminated until their task is completed. That means
that higher prioritized MAFs may experience lower service
levels or are even terminated as the non-terminable MAF
must be placed with at least the lowest possible service level.
Examples of such non-terminable applications are logistics,



documentation or administrative tasks, etc. Since the time to
find an optimal placement solution is considerably large, we
furthermore propose a heuristic with reduced execution time.
Finally, we evaluate our approach and compare it with the
approach in [9] as a baseline. The main message of this paper
is that the co-design of MAFs and the network in terms of
available and required performance constraints and the priority
can significantly increase the overall number of admitted
applications within a network, especially in scenarios with
insufficient resources. Furthermore, the main contributions of
this paper are:

• We formulate an ILP to optimize the admittance ratio
of MAFs in the network considering different levels of
service, priorities and non-terminability of certain MAFs.

• We introduce a heuristic in order to obtain a near-optimal
solution in a more reasonable time.

• We evaluate our results and compare them to existing so-
lutions showing the capabilities of our proposed method.

The remainder of the paper is structured as follows. In
Section II, existing related work is described. Then, we in-
troduce the proposed model in Section III. In Section IV, we
formulate an ILP for the problem, followed by a corresponding
heuristic algorithm in Section V. The results are presented in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

Recent work covers various aspects of the placement of
VNFs. The authors in [6] introduce an ILP for the joint VNF
chain placement and resource allocation, minimizing costs
and VNF migration frequency. The idea of VNF migration
is also used in [10], where the objective is to minimize the
overall power consumption. Liu et al. [11] investigate the
VNF reconfiguration problem with the focus on optimized
reconfiguration costs and resource consumption in IoT net-
works. Jointly optimizing radio and VNF resource allocation,
the authors in [12] propose an approach to minimize the
overall deployment costs while guaranteeing end-to-end delay
requirements. In [13], the authors aim to minimize the slice
performance degradation by optimizing VNF migration based
on traffic prediction. The authors in [14] and [15] further
optimize the resource usage while considering stringent time
constraints by leveraging parallel and shared VNF processing.
Akahoshi et al. [16] leverage dynamic VNF computation
resource usage to optimize the overall resource usage. The
authors in [17] introduce with Holu a fast heuristic framework
for solving the joint VNF placement and routing problem
considering power consumption and resource constraints in
the network in reasonable time.

Recently, some works such as [18], [19] started to leverage
Machine Learning (ML) and Artificial Intelligence (AI) in
their framework for the VNF placement. A further framework
for VNF placement and traffic prediction in a 5G O-RAN
architecture is introduced in [20]. Focusing more on the
reliability and availability, the authors in [7] formulate an opti-
mization problem for the placement of VNF chains in 5G net-
works. The authors in [21] target the dynamic VNF placement,

resource allocation, and traffic routing within 5G networks
considering various real-world parameters. Promwongsa et
al. [8] already target the next generation of networks, 6G, and
introduce a joint VNF placement and scheduling problem for
latency sensitive VNFs focusing on the optimal determination
of whether to reuse an existing VNF or to place a new one.

Very important for critical applications is prioritization. This
is especially the case for scenarios with insufficient processing
and networking resources. The placement of VNF chains with
priority has been investigated in [22]. In their work, the
authors formulate an optimization problem to minimize the
total deployment costs considering VNF sharing and two types
of service: priority and best-effort. In contrast to their work,
in this paper we propose an approach tailored to the specific
requirements of medical application scenarios.

Hentati et al. [9] take a first step to combine medical
applications and VNF placement for the scenario of a one-
to-one remote robotic surgery. Based on the requirements
of such a scenario, they formulate a joint placement and
scheduling optimization problem as ILP, considering haptic
and video traffic. In particular, they aim to minimize the
deployment costs constrained by end-to-end latency, reliability,
and throughput aspects. In contrast to their work, in this
paper we consider multiple medical use cases and therefore
cover additional aspects. Moreover, we focus on the scenario
when the available networking and in-network processing
capabilities are not sufficient to serve all demands of different
medical applications. In such a scenario, we aim to maximize
the number of served demands. Hereby, we consider the
priority of MAFs and different levels of service. Additionally,
we take into account that some applications must run in the
network even though their priority is low. We then compare
our approach to the one in [9] and show the improvements
our approach offers.

III. PROBLEM FORMULATION

In [5], we introduce the concept of MAFs as modular parts
of medical applications, which are executed on processing
units (PU) within the network. Additionally, we demonstrate
the MAF concept for several medical applications in [23], [3],
and [4]. In our model, this envisioned RAN architecture is
structured as a (logical) fully meshed graph G = (N,L),
where N consists of physical nodes, i.e., APs, PUs, and
switches, which are all linked together through connections
L. Note that real networks may not provide direct physical
connections between two nodes. In order to achieve a fully-
meshed graph in such a scenario, virtual links need to be
added to abstract the path between two nodes into a direct
connection. In the considered graph, only PUs can process
MAFs (N

′ ⊂ N ). Each processing unit n′ has a computational
resource capacity cn

′

cpu and an availability ϕn. Switches form
another subset of nodes, i.e., N

′′ ⊂ N . The connection (u, v)
between node u and node v can transmit a limited data rate,
c
(u,v)
π , and experience propagation delay, d(u,v). Each MAF,
a ∈ A, in the network has a terminability characteristic ka,
indicating whether an MAF is non-terminable, i.e., ka = 1,



or not, i.e., ka = 0. Additionally, the priority pa ranks the
importance on an ascending scale. Furthermore, each MAF
has a specific demand for computational resources γa to run
on a processing node, and an availability ϕIa . The required
data rate of an MAF is denoted as λh,a and represents the
maximum achieved traffic peak. The data rate and the latency
τh,a of an MAF correspond to a service level h of different
service levels h ∈ H . The different service levels represent an
upper and a lower bound of the performance of an MAF. The
level of service is given to an MAF by a network controlling
entity responsible for placing all MAFs. Varying the level of
service for each MAF based on its priority allows to accept
more demands within the network. An example for varying
service is the change of video encoding schemes to lower
resolution in order to reduce the required throughput. Note
that for the determination of MAF attributes different aspects,
such as ethical ones, need to be considered.

The MAFs are now placed on nodes within a demand. Each
demand d ∈ D consists of a source node sd, a destination
node td and a required MAF rd. It has specific performance
requirements such as a minimum data rate fπd

, a maximum
end-to-end delay ftod , and a required availability level ϕRd

, for
reliable service access. Note that even though PUs may differ
in their characteristics, in this paper we do not consider it in
the first step. In the medical context, the overall acceptance
ratio of demands is of interest. Thus, in this paper we aim to
maximize the acceptance ratio of demands within the network
considering the importance of each individual demand. In our
model, we make the following assumptions:

• In order to simplify the data flow modeling, we assume
fully meshed networks, where each node is directly
connected to all other nodes. Thus, if there is no physical
link between two nodes, the direct connection between
both is virtually added, abstracting the path between the
two nodes.

• There are enough computing resources available to at
least execute all non-terminable MAFs.

• The analysis method considers one MAF at a time,
excluding interactions between MAFs, i.e., MAF chains
are not considered and are deferred to future work.

• Multiple instances of the same MAF can be deployed
across the network for multiple demands.

• Each demand uses one instance of an MAF; sharing
MAFs is part of the future work.

• MAFs do not change the throughput, i.e., the incoming
throughput to each MAF is the same as the outgoing.

• The optimization model ignores task rescheduling or re-
source reallocation times, concentrating on static resource
allocation and immediate MAF performance. This implies
that MAFs are not terminated after the processing since
they potentially need to process data in the future.

• All MAFs comply to the performance limit given to them
by the placement controller. This ensures no unwanted
behavior within the network.

The optimization problem at hand is categorized as an ILP
problem, given that the decision variables must be integers

due to the discrete nature of resource allocation. Fractional
variables are impractical, emphasizing the requirement for
whole units in allocation decisions, ensuring that resources
are fully and effectively utilized.

IV. OPTIMIZATION PROBLEM

Based on the described model and assumptions, in the
following the optimization problem for medical applications
is formulated. The decision variables are as follows:

• xn′

a,d ∈ {0, 1}: Indicates whether MAF a is deployed
for demand d on processing node n′, with 1 meaning
deployed and 0 otherwise.

• y
(u,v)
d ∈ {0, 1}: Denotes whether demand d utilizes the

link between nodes u and v in the network, with 1 for
usage and 0 otherwise.

• zd ∈ {0, 1}: Indicates whether the traffic for the demand
d is admitted to the network, with 1 indicating admission
and 0 otherwise.

• mn′

h,a,d ∈ {0, 1}: Shows whether a specific service level
h is selected for MAF a in relation to demand d on
processing node n′, with 1 if selected and 0 otherwise.

The objective function, shown in (1), is designed to maxi-
mize the value of accepted demands, focusing on high-priority
healthcare services to ensure the most effective service amidst
an increased number of network demands. It incorporates
a penalty W for not accepted demands, to incentivize the
maximization of request acceptances in the network, and is

max
∑
d∈D

(
zd · prd ·

∑
n′∈N ′

∑
h∈H

mn′

h,rd,d
· λh,rd

−W · (1− zd)

)
.

(1)

This objective function is subject to various constraints, en-
suring that performance, placement, and routing requirements
are fulfilled. Next, we will formulate all of them.

Starting with the performance related constraints, constraint
(2) ensures that demands utilizing non-terminable MAFs are
always integrated into the network:

krd ≤ zd, ∀d ∈ D. (2)

Constraint (3) guarantees that the deployed MAFs meet the
minimum data rate requirements of the demands:

xn′

rd,d
· fπd

≤
∑
h∈H

mn′

h,rd,d
· λh,rd , ∀n′ ∈ N ′, d ∈ D. (3)

Constraint (4) caps the cumulative delay experienced by de-
mands, incorporating both processing and propagation delays:

zd·ftod ≥
∑

n′∈N ′

∑
h∈H

mn′

h,rd,d
· τh,rd+∑

u∈N

∑
v∈N,(u,v)∈L

(y
(u,v)
d + y

(v,u)
d ) · d(u,v), ∀d ∈ D.

(4)

Constraint (5) is an approximation based on [24] and [25]. It
aims at ensuring that the network availability aligns with the
stringent availability requirements of the demand:



ϕRd
· zd ≤ 1−

(
(1− ϕsd) +

∑
m∈N

xm
rd,d
· (1− ϕIrd

ϕm)+

∑
n∈N

∑
v ̸=n∈N

(1− xn
rd,d

)y
(v,n)
d (1− ϕn)

)
, ∀d ∈ D.

(5)
More on the placement site, constraint (6) guarantees that the
required MAF for a demand is installed on a single processing
node within the network, provided the demand is accepted:

zd ≤
∑

n′∈N ′

xn′

rd,d
≤ 1, ∀d ∈ D. (6)

Constraint (7) mandates that exactly one MAF is activated for
each accepted demand, preventing any redundant activation
that could otherwise strain network resources:∑

n′∈N ′

∑
a∈A

xn′

a,d = zd, ∀d ∈ D. (7)

Constraint (8) limits CPU allocation per processing node to
prevent overloads:∑

d∈D

∑
a∈A

xn′

a,d · γa ≤ cn
′

cpu, ∀n′ ∈ N ′. (8)

Constraint (9) enforces a strict one-to-one correspondence
between an MAF and its service type for each demand:∑

h∈H

mn′

h,rd,d
= xn′

rd,d
, ∀n′ ∈ N ′, d ∈ D. (9)

Constraint (10) guarantees that the total data rate of de-
mands on link (u, v) must not exceed the capacity of the link:

c(u,v)π ≥
∑

n′∈N ′

∑
d∈D

∑
h∈H

zd · (y(u,v)d + y
(v,u)
d ) ·mn′

h,rd,d
· λh,rd ,

∀u, v ∈ N, u ̸= v, (u, v) ∈ L.
(10)

Constraint (11) controls the node activation by setting nodes
that cannot host MAFs, i.e., non-processing nodes, for the
demand to 0: ∑

n/∈N ′

xn
rd,d

= 0, ∀d ∈ D. (11)

In order to correctly route traffic flows, constraints (12)-(14)
ensure the flow conservation from source to destination node
for each demand:∑

u∈N,u̸=sd

y
(sd,u)
d = zd, ∀d ∈ D. (12)

∑
v∈N,v ̸=u

y
(u,v)
d −

∑
v∈N,v ̸=u

y
(v,u)
d = 0,

∀d ∈ D, u ∈ N\{sd, td}.
(13)

∑
u∈N,u̸=td

y
(u,td)
d = zd, ∀d ∈ D. (14)

Constraint (15) mandates that for any intermediate node in-
coming flows must match outgoing flows, ensuring network
flow conservation:

y
(v,u)
d ≤

∑
b∈N,b̸=u,v

y
(u,b)
d ,

∀d ∈D,u ∈ N\{sd, td}, v ̸= u ∈ N.

(15)

Constraint (16) requires that for any accepted demand with
MAF rd on node n′, the path must include n′, activated by at
least one incoming link:

zd · xn′

rd,d
≤

∑
u∈N,u̸=n′

y
(u,n′)
d , ∀d ∈ D, ∀n′ ∈ N ′. (16)

Constraint (17) prevents activating service levels on nodes
unable to host MAFs:∑

h∈H

mn
h,rd,d

= 0, ∀n /∈ N ′, ∀d ∈ D. (17)

Constraints (18) and (19) guarantee that a node with a de-
ployed MAF for a demand only exchanges traffic with its
source or destination node, while blocking other nodes:

xn
rd,d
· y(u,n)d = 0, ∀d ∈ D, n ∈ N, u ̸= sd /∈ N ′′. (18)

xn
rd,d
· y(n,u)d = 0, ∀d ∈ D, n ∈ N, u ̸= td /∈ N ′′. (19)

Constraint (20) deactivates the source-destination link if the
destination is not the selected MAF node:

y
(sd,td)
d ≤ xtd

rd,d
, ∀d ∈ D. (20)

Constraints (21) to (23) mandate that traffic from the source
to the destination passes only through switches and the node
activated for the required MAF:

y
(u,n)
d + y

(n,u)
d ≤ xn

rd,d
,

∀d ∈ D, n ̸= sd, td /∈ N ′′, u ̸= n, td ∈ N ′.
(21)

∑
u∈N

y
(u,sd)
d = 0, ∀d ∈ D. (22)

∑
u∈N

y
(td,u)
d = 0, ∀d ∈ D. (23)

In summary, the optimization problem can be written as

max
∑
d∈D

(
zd · prd ·

∑
n′∈N ′

∑
h∈H

mn′

h,rd,d
· λh,rd

−W · (1− zd)

)
,

(P1a)

s. t. (2)− (23). (P1b)

V. PROPOSED HEURISTIC

The placement problem is classified as NP-hard, rendering
the brute-force method ineffective. This holds especially in
extensive scenarios. To overcome the issues of scalability,
we introduce a heuristic method, named Modular Application
Function Allocation Prioritization (MAFAP), that is efficient,
has a low complexity, and is therefore quick in providing solu-
tions close to the optimum. It unfolds in two stages: i) Sorted
by terminability and priority, it assigns the demands within
the network at the lowest possible service level as outlined in
Algorithm 1; ii) It enhances the service provided to the demand
as outlined in Algorithm 2. Note that by varying the number
of iterations in the second step, the execution time and the
acceptance ratio achieved by the heuristic can be adjusted for



each individual scenario. The overall time complexity of the
Local Search algorithm is given by O(D logD+DNS·p log p)
where D is the number of demands, N is the number of
demands nodes, S is the number services and p is the number
of paths. This complexity suggests that the algorithm operates
in polynomial time for common scenarios.

Algorithm 1 Place network demands

Require: G, demand info, app func, app serv, link info
Ensure: select node, select path, select serv if possible,

otherwise error
1: select node, select path, select serv ← None
2: for all nodes in G considering capacity do
3: if node does not have enough capacity then
4: Go to the next node
5: end if
6: for all services meeting demand do
7: for all paths through node do
8: if path meets delay and capacity constraints then
9: Calculate path availability

10: if path availability meets demand then
11: Update selection variables
12: if suitable service found then
13: Break loop
14: end if
15: end if
16: end if
17: end for
18: end for
19: end for
20: if no node selected then
21: return error
22: else
23: Deduct resources from G
24: end if
25: return select node, select path, select serv

VI. EVALUATION

In this section, we show results related to Section IV and the
corresponding heuristic presented in Section V. Additionally,
they are compared to state-of-the-art approaches.

TABLE I: Simulation parameters
Parameter Value

cn
′

cpu uniform(3, 6)

c
(u,v)
π randint(0.5, 1.5) Gbps
d(u,v) uniform(1, 8) ms
fπd uniform(0.5, 400) Mbps
ftod uniform(20, 60) ms
avRd

one 9 to five 9s

A. Setup Description

For the evaluation, we investigate the performance and
the impact of various parameters on it for the optimization
problem (Optimal), introduced in Section IV, and the corre-
sponding heuristic MAFAP, presented in Section V. The results
are compared to those of two other approaches:

Algorithm 2 Upgrade level of service for demand

Require: G, demand info, path, serv, app serv, link info
Ensure: Upgraded service identifier or None

1: Extract req af from demand info
2: select serv ← None
3: Restore capacity for current service along path
4: for all services matching req af do
5: if all links in path have enough capacity then
6: select serv ← serv-1
7: end if
8: end for
9: if select serv ̸= serv then

10: Deduct capacity for new service along path
11: return select serv
12: else
13: Restore original capacity if no upgrade is possible
14: return None
15: end if

TABLE II: MAF parameters
MAF Type ka pa γa ϕIa λ [Mbps] τ [ms]
MAF1 1 2 0.3 0.99999 [5, 600] [6, 55]
MAF2 0 3 0.5 0.9999 [10, 800] [3, 50]
MAF3 1 4 0.6 1 [15, 650] [9, 48]
MAF4 0 5 0.45 0.99995 [3, 700] [7, 45]
MAF5 1 1 0.28 0.9999 [1, 300] [6, 52]
MAF6 1 3 0.37 0.99998 [10, 580] [2, 48]
MAF7 0 2 0.33 1 [6, 550] [6, 52]

• Optimal Joint Placement and Scheduling Algorithm
(OJPSA): This approach is adapted from the optimization
problem presented in [9]. In particular, only one MAF and
not a chain is considered. In order to align their approach
with our optimization problem, we relax the assumptions
of time slots and instead add the routing constraints of
the optimization problem in this paper. Additionally, a
limited capacity for each link is added since the authors
in [9] assume unlimited possible traffic on each link in
contrast to the approach in this paper.

• Random: This simple strategy employs a method that
randomly places demands, adhering to constraints such
as minimum data rate, availability, and maximum end-to-
end delay. However, the terminability property or other
service levels than the optimal one are not considered.

All tests were conducted on a common KVM processor. The
CPU configuration includes 8 physical cores and 8 logical
processors, with the capability to utilize up to 8 threads. For
solving the optimization problem, the Gurobi Optimizer [26]
is used. In our optimization formulation, the weight W as-
sociated with rejecting a demand is set to 10. This weight
shows a balanced distribution of acceptance ratio and level of
service with respect to the data rates λh,a used in our scenario.
Higher values of W result in potentially more accepted MAFs
on the cost of lower level of service. Vice versa, lower values
of W lead to fewer accepted MAFs but with higher level of
service. The used parameters for the demands, links and nodes
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Fig. 1: Comparison of the results of the different approaches.

are summarized in Table I. We evaluate a varying number
of demands to be placed based on the considered topology.
Hereby, each demand uses one out of seven MAFs with
different characteristics (see Table II). We selected these values
deliberately to cover many possible medical applications with
various different requirements, as described in Section III.

All results are obtained for a scenario where the topology
consists of 12 nodes: 3 APs, 7 PUs, and 2 switches. 90 demand
requests are to be placed within the network, where 18%
include non-terminable MAFs, each offering 5 levels of data
rate and processing delay. MAFAP evaluates 60 configurations,
i.e., iterations, to enhance the acceptance ratio.

B. Evaluation

In the following, the obtained results for the described test
setup are presented and discussed. Hereby, we focus on the
overall performance and the impact of single parameters on it.

1) Acceptance Ratio: Fig. 1a displays the impact on the
acceptance ratio for the four allocation methods. The Optimal
method achieves 98.46%, closely followed by the MAFAP
method with 90.23%. The OJPSA method reaches 63.08%,
reflecting a decrease in demand fulfillment. The reason for
that significant difference lies in the various possible service
levels of our proposed approaches, whereas OJPSA always
assume the best possible service. Finally, the Random method
ranks lowest with an acceptance ratio of 52.31%.

2) Computation Time: Although the optimization method
scores the highest in acceptance ratio, it also requires more
resources and longer computation times, as shown in Fig. 1b.
Considering practicality, MAFAP presents the best balance,
offering a good compromise between performance and exe-
cution time. It lags slightly behind the optimization method
regarding the acceptance ratio but considerably cuts down on
resource use and processing time, making it preferable for
real-world scenarios where resources and time are limited.
Note that the execution time of MAFAP is almost 10× higher
than for OJPSA since more parameters are taken into account.
However, to the best of our knowledge the relevance of this in
medical use cases still needs to be investigated. In any case,
the number of iterations in the heuristic can be adapted for
faster execution time if needed.

3) Number of Accepted Non-Terminable Demands: Fig. 1c
shows the number of accepted non-terminable demands in the
network. It can be observed that OJPSA and Random do not
place all crucial demands in the network. The reason lies in
their design, which does not consider such a property. This
renders them ineffective for scenarios where continuous oper-
ation is essential. In contrast, Optimal and MAFAP approaches
place all of the non-terminable demands by design.

4) Summary: After evaluating the network performance,
it is clear that Optimal and MAFAP significantly outperform
OJPSA , improving request acceptance ratio by up to 35%.
This improvement stems from their ability to adapt service
levels to the available resources. Although MAFAP has a lower
acceptance ratio than the Optimal solution, its reduced execu-
tion time renders it more practical for real-world applications.
Additionally, our proposed methods adeptly accommodate
the non-terminability feature, crucial in healthcare settings.
Intuitively, the consumption of processing and networking re-
sources of Optimal and MAFAP should be improved compared
to OJPSA due to the more granular placement options provided
with the different service levels. A thorough analysis of the
resource consumption as well as the costs of the placement is
deferred to future work.

VII. CONCLUSION

In this paper, we propose a new approach for placing MAFs
within the network in medical scenarios, where the available
computing and networking resources are potentially not suffi-
cient to serve all requested demands. For this, we formulate
an optimization problem as an ILP, considering the priority
and different levels of service for each MAF. Additionally,
we take the MAF terminability into account to ensure the
placement of non-terminable MAFs regardless of their priority.
Furthermore, we introduce a heuristic to solve such a problem
faster. Our results show an increased acceptance ratio by up
to 35% compared to baseline approaches. In the future, we
will extend our approach by considering chains of MAFs with
different priorities. Furthermore, we will evaluate our approach
in a medical testbed and consider other scenarios with different
comparison approaches.
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