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Abstract

Due to the increasing demand for product individualization in recent years, the focus in
automation technology is increasingly shifting to flexibly applicable robots, as these can
also perform more complex tasks autonomously, such as loading a machine.
Instead of traditional industrial robots, which – due to the combination of high payload
and fast movements – are put in a stationary position, collaborative robots are increas-
ingly being used together with devices providing autonomous movement. This provides
a more flexibel use of one robot.
An extension of this idea are legged robots, which can also move autonomously in a less
familiar environment and uneven terrain [2, § 1, p. 2017].
Thereby large force peaks can occur. Inspired by the biomechanics of the human body
the dynamics of the system can be improved by adding elastic elements connecting the
links. This results in complex couplings, the exact e�ects of which are the subject of
current research [22, § 1, p. 2].
This gives rise to the need for e�cient simulation methods, a central component of which
is the numerical solution of the highly non-linear forward dynamics.
This thesis first describes two approaches from the literature that focus on the conserved
quantities of Hamiltonian systems, which are energy conservation and symplecticness [13,
§ 1.1.1, p. 1]. These can be used to identify non-physical behavior of the numerical so-
lution, which is of great relevance for simulation-based control designs.
Subsequently, the presented time integration methods are implemented for a planar, se-
rial manipulator with additional elastic couplings, whereby the structured derivation of
the equations of motion is treated.
Finally, the simulation is studied based on its behavior regarding the conserved proper-
ties of the Hamiltonian system, as well as its computational performance to determine
an e�cient simulation framework for such problem statements.
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Kurzfassung

Durch den steigenden Anspruch an Produktindividualisierung der letzten Jahre, verla-
gert sich der Fokus in der Automatisierungstechnik zunehmen auf flexibel einsetzbare
Roboter, da diese auch komplexere Aufgaben – wie bspw. das Bestücken einer Maschine
– autonom bewerkstelligen können.
Dafür werden anstelle von klassischen Industrierobotern, welche aufgrund der Kom-
bination von hoher Nutzlast und schneller Bewegungen stationär positioniert werden,
zunehmen kollaborative Roboter in Verbindung mit Vorrichtungen zur autonomen Fort-
bewegung eingesetzt.
Eine Erweiterung dieser Idee sind sogenannte Laufroboter, welche sich auch in einem
weniger gut bekannten Umfeld und auf unebenen Terrain autonom fortbewegen können
[2, § 1, p. 2017].
Dabei treten u.a. große Kraftspitzen auf, wobei – inspiriert durch die Biomechanik des
menschlichen Körpers – die Dynamik des Systems durch elastische Elemente verbessert
werden soll. Dabei ergeben sich komplexe Kopplungen, deren genaue Auswirkungen auf
die Dynamik Thema aktueller Forschung sind [22, § 1, p. 2].
Daraus leitet sich der Bedarf nach e�zienten Simulationsmethoden ab, wobei einen
zentralen Bestandteil dabei die numerische Lösung der hochgradig nicht-linearen Vor-
wärtsdynamik darstellt.
In dieser Arbeit werden zwei Ansätze aus der Literatur beschrieben, deren Fokus auf den
Erhaltungsgrößen Hamiltonscher Systeme – die Energie und die symplektischen Struk-
tur – liegt [13, § 1.1.1, p. 1]. Durch diese lässt sich unphysikalisches Verhalten der
numerischen Lösung identifizieren. Dies ist von großer Relevanz für simulationsbasierte
Regelungsentwürfe.
Anschließend werden die vorgestellten Zeitintegrationsverfahren für einen planaren, se-
riellen Manipulator mit elastischen Kopplungen implementiert, wobei die strukturierte
Herleitung der Bewegungsgleichungen behandelt wird.
Anschließend wird die Simulation auf der Grundlage ihres Verhaltens hinsichtlich der Er-
haltungseigenschaften eines Hamiltonschen Systems sowie ihrer Rechenleistung bewertet,
um ein e�zientes Simulationsframework für solche Problemstellungen zu bestimmen.
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Chapter 1

Introduction

1.1 The forward dynamic problem

The goal for the first part of the thesis is to obtain the equations of motion (EOM) for
a robot modeled by a rigid body system and subsequently carry out a time integration
which then yields the actual trajectory.
This problem statement is often referred to as the forward dynamics of a system and
can be used for the simulation of such, where the inputs are the control forces and the
output is the motion carried out as a result [8, § 6, p. 101]. Such a simulation has a wide
field of applications, including testing out new control strategies.
An important tool for constructing the EOM in a structured manner is the Lagrangian
framework, which – in contrast to the Newtonian viewpoint – allows using non-inertial
coordinates and their respective time derivatives for describing the state of a multi-body-
system (MBS). Such systems can also be represented in Hamiltonian form, where instead
of the coordinates time derivatives, the generalized momenta are used. The Lagrangian
and the Hamiltonian representation are related via the Legendre transformation [18,
§ 3.1, p. 89,90].
In the the considered case of a chain structure connected by rotational joints, a natural
choice for those so-called generalized coordinates (q, q̇) are the joint angles and their
time derivatives. As an arbitrary variation of a configuration q does not violate the
constraints of the system, these are also minimal coordinates and thus no constraint
forces appear in the resulting EOM [23, § 3.3, p. 45].
After restructuring the terms, the result is the following second order, non-linear ordinary
di�erential equation (ODE):

M(q)q̈ + C(q, q̇) + g(q) = · , (1.1)

containing the symmetric, positive definite mass-matrix M(q), the vector of Coriolis
forces C(q, q̇), the gravity forces g(q) and the non-conservative torques acting on the
joints · , which typically consist of the motor torques and friction terms [23, § 3.3.1,
p. 45, 46].
In robotics, this formulation (1.1) is predominantly used, due to its simple structure and
absence of unknown constraint forces. However, this choice of coordinates introduces
trigonometric terms into the EOM and thus makes it highly non-linear.

1



2 Chapter 1. Introduction

1.2 Time integration of the equations of motion

In general the EOM (1.1) cannot be solved analytically due to nonlinearities. Thus for
calculating the complete forward dynamics problem one must carry out a numerical time
integration. In this Section a brief overview of this concept and the associated numerical
properties are given.

1.2.1 The flow map and numerical time integration

The solution of an initial value problem (IVP) of the form:

ẋ = f(x), x(0) = x0, (1.2)

can be represented by a flow map, which maps an initial condition x0 to its corresponding
state x(t) at time t [1, § 3, p. 79, 80].

�t : x0 æ x(t) (1.3)

For numerically integrating an IVP the ODE is discretized in time and thus the real
solution is approximated by a discrete flow map. A common way for obtaining such a
numerical scheme is using the fundamental theorem of calculus (1.4) and approximating
the exact integral on the right hand side by numerical integration. This results in the
group of one-step-methods [1, § 3, p. 80].

f(b) ≠ f(a) =
⁄ b

a
f Õ(x)dx (1.4)

1.2.2 Numerical properties

When approximating the solution of an ODE, the error can be divided into two cat-
egories. The local error is the di�erence between the next value at ti+1 and the real
solution of the IVP with the initial value beeing the result of the last step xi. It can be
approximated by comparing the corresponding Taylor expansions. On the other hand,
the global error is the accumulation of local errors over the course of a complete trajec-
tory [1, § 2.1.2, p. 40–42].
As we deal with Hamiltonian systems, one can look at the local and global e�ects of dis-
cretization on the two fundamental properties. Even though the conservation of energy
and symplecticity do not guarantee a correct solution, these characteristics are essential
for e.g. ensuring passivity when selecting a simulation based control strategy.
It can be shown, that generally conserving both of those properties – the constant Hamil-
tonian and the symplectic structure – is not possible when numerically integrating the
ODE [13, § 1.1.3, p. 3]. Thus for finding an appropriate time integration scheme, the
aim is to either preserve one of those properties exactly and keeping the error for the
other one reasonably bounded.



Chapter 2

Serial manipulator

2.1 Geometry of the serial manipulator

Both approaches are implemented for the example of a planar kinematic chain with n
links, connected with rotational joints, as depicted in figure 2.1.
The links have the mass mi, the length Li and the moment of inertia around the z-axis
related to its center of mass (COM) Jcom

i . The gravitational acceleration g is acting in
the direction of negative y in inertial coordinates.
As a simplification for the further implementation of the simulation, we assume that the
COM of the ith link is located on the connecting axis between the ith and the (i + 1)th
joint, at the distance li. However with simple modifications of the implementations this
restriction can be avoided, which will be briefly shown in Section 3.4.1.
The COM positions of each link and the positions of the corresponding rotational axes
are denoted by

xi =

S

Uxi

yi

T

V and Xi =

S

UXi

Yi

T

V . (2.1)

The ith body coordinate systems origin is fixed at the (i+1)th rotational axis. Its x-axis
coincides with the connecting axis to the (i + 1)th joint and the z-axis is pointing in the
direction of the rotational axis. The relative angle between between the ith link and its
predecessor is denoted by �i.
The normalized attitude vectors qi are pointing in the direction of the ith x-axis.

2.2 Mono- and multi-articular springs

2.2.1 Background

In traditional industrial robotics the ability to carry out tasks in a short amount of
time while maintaining high positional accuracy and stability is of great importance.
Achieving this characteristics with an open chain manipulator is a di�cult task, as this
structure tends to be less sti� than parallel mechanisms. Thus the interface between
actuator and load is constructed to be as sti� as possible [21, p. 399].
However in more recent developments there are multiple approaches to use passive elas-
tic elements intentionally to modify the systems characteristics.

3



4 Chapter 2. Serial manipulator

Figure 2.1: Geometry of the serial manipulator

This idea was first implemented in serial elastic actuators (SEA), where passive me-
chanical springs are built in between actuators and loads. Advantages of the SEA are
a better tolerance for force peaks – often arising during unplanned interaction with the
environment – and generally more stable force control [21, p. 399].
Inspired by the biomechanics of the human body, where movement is realized by the in-
teraction between tendons, ligaments and muscles, there is another approach for chang-
ing the dynamics of a robot. Additionally to the traditional actuated rotational joints,
passive or active elastic elements are attached to the system.
There are multiple areas of application, where the additional stored energy is useful.
Especially for bipedal robots which carry out jumping motion, this can help to absorb
heavy impact and stabilize the gait. Furthermore, the energy consumption of such a
robot can be lowered, as an interchange of potential and kinetic energy can take place
due to the elastic elements [3, p. 1217].
In this thesis only the latter case – attaching elastic elements to connect the links –
is considered. Thereby one generally di�erentiates between mono- and multi-articular
springs. While mono-articular springs only connect two neighbouring links, multi-
articular springs span over multiple links [15, p. 1], which leads to a more complex
force transmission between the bodies.
It is important to note, that in this thesis the concept of SEA is not considered, although
the ideas described in this Section can arise together. We restrict our view to passive
and linear mechanical springs spanned between the rigid links of the mechanism, which
is described in the following Section 2.2.2.

2.2.2 Attachment of the springs to the serial manipulator

Implementing this idea for the serial manipulator, each link has fastening options for
the springs at the end, which is depicted in Figure 2.2. The springs sti�ness is denoted
as ki > 0 for each element with its current length si.
We assume, that the springs are under tension for all configurations, meaning the di�er-
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ence between slackened and current length �si (2.2) is greater than zero for all times.
This later avoids case distinctions, as springs only transmit force under tension.

�si = si ≠ si,0 (2.2)

To simplify further calculation, the fastening is located orthogonal to the connection
axis of the rotational joints with the distance ri+1 at the end of the ith link. However, in
general the spring could be attached at an arbitrary point on the body. Here the point
for the attachment of the spring is denoted by Ri+1.
It is worth noting, that in the considered planar case, the springs can be attached with
an o�set in z-direction, which avoids collisions between the elastic elements and the
mechanism.

Figure 2.2: Attachment of the springs

In the case of mono-articular springs, each element is attached individually to the fas-
tenings, which is the case depicted in Figure 2.2.
Generally, there exist a multitude of di�erent constructions for multi-articular springs.
One possibility for attaching a multi-articular spring to such a mechanism, is to keep the
general structure but connect the springs at the fastenings in between the links which
they are spanned over, see Figure 2.3.
Thereby the elastic element runs through a cutout in the fastening construction. When
calculating the springs length, the exact geometry is neglected and approximated by a
bend, as in the mono-articular case.

2.2.3 Spring energy

The springs stored energy S now appears as an additional term in the potential energy
V of the system. Assuming linear behavior for the elastic elements, the change of length
appears quadratically in S, which leads to a partial derivative of V depending on the
configuration. This has to be considered when calculating the EOM and setting up the
time integration methods.
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Figure 2.3: Fastening for multi-articular springs

In the mono-articular case there is a spring attached between each link and its prede-
cessor. Thus each element individually leads to an additional potential term Si:

Smono-articular =
nÿ

i=1

1
2ki (�si)2

¸ ˚˙ ˝
Si

. (2.3)

The springs stored energy in the previously described multi-articular case di�ers slightly,
as instead of an individual contribution of each element, the sum of the length di�erence
for each segment has to be taken into account, which yields:

Smulti-articular = 1
2k

A
nÿ

i=1
�si

B2
. (2.4)

This is logical in the sense, that though following the same path as in the mono-articular
case example depicted in Figure 2.2, the spring now can not transmit force to a fastening
along its normal vector. Note that in the multi-articular case the length of the spring
segments is still treated individually, however the stored energy has to be calculated
collectively.
As in the later Sections 3.4 and 4.4 the derivatives of S w.r.t. the chosen coordinates are
required, the general equations are prepared in the following Section 2.2.4. Therefore
the configuration dependent length of the springs is calculated and then used for the
gradient of S.

2.2.4 Implementation

The current length of the spring segment si can be calculated via the norm of the vector
chain, depicted in Figure 2.4.
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Figure 2.4: Vector chain for calculating the length of the springs

The calculation of the vector connecting two neighboring rotational joints Li is straight
forward:

Li = Xi+1 ≠ Xi. (2.5)

Due to the orthogonal fastenings, the vector connecting Ri and Xi – the point where
the fastening is rigidly attached to its respective link with index i≠1 – can be calculated
by forming the cross product of the z-axis and Li.
Putting together the vector chain and taking its euclidean norm, yields the general
expression for si:

si = Î≠ri + Li + ri+1Î . (2.6)

The exact calculation depends on the choice of coordinates and is thus handled in the
Sections 3.4 and 4.4.
As the third entry of the vector si is always zero the last line can be omitted when cal-
culating the norm, which yields the spring length (2.7). Thereby the x and y component
of the vector si are denoted by si,x and si,y.

si =
Ò

s2
i,x + s2

i,y (2.7)

As only the length di�erence of the spring depends on the configuration the partial
derivatives of the springs potential energy arise to:

ÒqSmono-articular = ki

si
�si (si,xÒqsi,x + si,yÒqsi,y) , (2.8)

ÒqSmulti-articular = k

A
nÿ

i=1
�si

B
nÿ

i=1

1
si

(si,xÒqsi,x + si,yÒqsi,y) . (2.9)
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Chapter 3

An energy stable approach using
non-minimal coordinates

As a fundamental property of physical systems, achieving energy conservation over longer
simulation times is crucial in simulating multi body systems. In this chapter the idea of
modeling the system in terms of the COM positions xi, which are non-minimal, inertial
coordinates is used alongside an approach for energy stable time integration.
As xi and yi are linearly dependent, the choice of coordinates introduces holonomic
constraints, which can be represented by a set of algebraic equations. Thus constraint
forces are added into the EOM.
In the first Section 3.1, the class of Hamiltonian systems and their fundamental properties
is introduced, followed by an overview over the necessary modifications of the canonical
equations for mechanical systems in Section 3.2.
This provides the basics to then discretize the EOM for a mechanical system in an energy
stable manner, see Section 3.3. Thereby the approach presented in the Paper [5] is used.
Finally the implementation for the specific case of the serial manipulator presented in
the previous Chapter 2 is described in Section 3.4.

3.1 Hamiltonian systems

3.1.1 Structure of Hamiltonian systems

An important class of ODEs are Hamiltonian systems, which can be written in a canoni-
cal structure (3.1), with the skew-symmetric matrix J showing the anti-symmetric nature
of the ODE [19, § 3.1, p. 38]:

S

Uq̇
ṗ

T

V =

S

U 0 I

≠I 0

T

V

¸ ˚˙ ˝
J

S

UÒqH

ÒpH

T

V . (3.1)

The phase space variables q œ Rn and p œ Rn completely describe the current state of
the system and are subsequently summarized in the vector

u =

S

Uq
p

T

V œ R2n. (3.2)

9



10 Chapter 3. An energy stable approach using non-minimal coordinates

The function H : R2n æ R depending on u is the so-called Hamiltonian of the system
[19, § 3.1, p. 38].
It is important to note, that (qi, pi) are conjugated value pairs [16, § 45, p. 145], which will
become more clear when using this structure for the description of mechanical systems
later.

3.1.2 Conserved quantities

A function F (u) : R2n æ R, which is constant along all solutions of (3.1), is called a
first integral or a conserved quantity. The existence of such functions implies that the
system evolves on lower dimensional manifolds described by these level curves and thus
restricts the possible solution space [19, § 3.3, p. 44,45].
As F per definition does not change over time, calculating the time derivative of a first
integral has to always yield zero. Hence when exploiting the chain rule, one can observe
that the inner product of the gradient of F and u̇ vanishes:

Ḟ = ÈÒuF, u̇Í = 0. (3.3)

By inserting the Hamiltonian ODE for u̇ (3.1) into the previous equation (3.3), the
necessary condition for a conserved quantity expressed by the function F is obtained
[19, § 3.3, p. 45]:

(ÒuF )T JÒuH = 0. (3.4)

By identifying such first integrals and calculating the deviation from their initial values,
one can detect non-physical behavior of numerical solutions [19, § 3.3, p. 48].
This is a useful tool to evaluate numerical methods when a closed solution for the ODE
does not exist, which is the case for most real-world problems.

3.1.3 Fundamental properties of Hamiltonian systems

From the concept of first integrals, the two fundamental properties of Hamiltonian sys-
tems can be derived – the conservation of the Hamiltonian H and symplecticness [13,
§ 1.1.1, p. 1].
As J is skew-symmetric, setting F = H in (3.4) easily proves that H is a first integral
and thus constant along all possible solutions. It now becomes clear, that the skew-
symmetry of the structure matrix is closely connected to the property of a constant
Hamiltonian.
The second property – symplecticness of the Hamiltonian flow-map – and its interpre-
tation is not as straight forward.
The formal definition of a map � : R2n æ R2n depending on u œ R2n, which is symplectic
w.r.t J is given by [13, Eq. 1.2, p. 2]:

(Òu�)T JÒu� = J. (3.5)

This holds true for the Hamiltonian flow-map (3.1) and its structure matrix [19, § 3.5,p. 54].
Symplecticness implies the preservation of volume in the phase space and thus of the
underlying geometric structure, which is also referred to as Liouville’s theorem [16, § 46,
p. 146].
Therefore the conjugate phase space variables qi and pi evolve on a co-tangent bundle. In
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classical mechanics this can viewed as the direction of motion being part of the tangent
space of the configuration manifold. Thus it is a powerful tool to ensure the constraints
are not violated, when numerically solving the EOM of a mechanical system.

3.1.4 Example for symplectic time integration

The consequences of preserving symplecticness can be illustrated by looking at a simple
pendulum using non-minimal coordinates (x, y). When applying a non-symplectic nu-
merical time-integration method – such as the explicit Euler scheme – the solution then
doesn’t evolve on the circle the real solution is constricted to, see Fig. 3.1a. Solving
the IVP with the symplectic Euler scheme – also known as the implicit midpoint rule –
results in a solution which is confined to the correct manifold, see Fig. 3.1b.
This corresponds to the preservation of the underlying geometry, described at the end
of the previous section 3.1.3.

(a) explicit Euler (b) symplectic Euler

Figure 3.1: Time integration schemes

3.2 Hamiltonian systems in classical mechanics

The EOM of an unforced, conservative MBS in minimal coordinates can be transformed
into a system of the canonical form (3.1), which then means the phase space variables
u consist of the conjugated generalized coordinates q and the generalized momenta p
[12][§ 4.1, p. 165].
The systems Hamiltonian (3.6) is equivalent to its total stored energy – the sum of the
kinetic energy T and the potential energy V . This makes sense, as the property of a
constant Hamiltonian in that case corresponds to the property of energy conservation
[18][§ 3.4, p. 99].

H(q, p) = T (q, p) + V (q) (3.6)

However the consideration of such simplified systems does not su�ce for the purpose of
obtaining a suitable simulation for real world problems, as influences like input forces
or dissipation can not be modeled in a canonical Hamiltonian system. In addition using
non-minimal coordinates introduces constraint forces and changes the structure matrix.
Thus, for a certain application of that framework, suitable modifications to equation
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(3.1) are necessary. Hence the purpose of this section is to introduce these extensions
for our application.

3.2.1 Equations of motion in Hamiltonian form

In our case we consider a MBS with k holonomic constraints represented by algebraic
equations in terms of the generalized coordinates c(q) : Rn æ Rk and input forces
f(q) : Rn æ Rn.
The direction of the constraint forces, which are now present due to the choice of using
non-minimal coordinates, can be calculated by di�erentiation of c w.r.t q – denoted by
Cq œ Rk◊k for better readability –, while the unknown intensities are summarized in the
vector ⁄ œ Rk [6][§ 1.3.2, p. 18].
This yields the modified equations [5, § 4.3, eq. 4.1,4.2]:

q̇ = ÒpH, (3.7)
ṗ = ≠ÒqH + CT

q ⁄ + f . (3.8)

As ⁄ – the so-called Lagrange Multipliers – are unknown, an additional equation is
required to solve equation (3.7). Therefore the constraint equations are di�erentiated
w.r.t. time using the chain rule, which yields the missing condition [5, § 4.3, eq. 4.4]:

CT
q q̇ = 0. (3.9)

Rewriting the EOM and introducing the time integral of the Lagrange multipliers � œ Rk

yields the following equation:
S

WWWU

I ≠CT
q

≠I

Cq

T

XXXV

¸ ˚˙ ˝
modified structure matrix

S

WWWU

q̇
ṗ
�̇

T

XXXV = ≠

S

WWWU

Hq

Hp

H�

T

XXXV +

S

WWWU

0
f
0

T

XXXV . (3.10)

Note, that the phase space variables u are now expanded by �, which can again be
summarized by:

u =

S

WWWU

q
p
�

T

XXXV œ R2n+k.

The modified structure matrix is still skew-symmetric, but not invertible. Hence an
explicit flow-map for the ODE can not be set up. However, in the next Section 3.3 we
will see, that energy conservation and symplecticness still hold.

3.2.2 Equations of motion in Lagrangian form

Applying the Legendre-transform, the EOM expressed in the Hamiltonian framework,
see equation (3.10), can also be written in terms of the generalized coordinates q and
their time derivatives q̇ = v (3.12), with the Lagrangian

L(q, q̇) = T (q, q̇) ≠ V (q) (3.11)
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and the symmetric, positive definite mass-matrix M , which generally depends on the
configuration q [12, § 4.2, p.166, 167]:

S

WWWU

M ≠CT
q

≠M

CT
q

T

XXXV

S

WWWU

q̇
v̇
�̇

T

XXXV = ≠

S

WWWU

Lq

Lv

L�

T

XXXV . (3.12)

As the proposed energy stable integration method can be applied equally to both for-
mulations, we will use the EOM in Lagrangian form when calculating the entries for the
serial manipulator in section 3.4. It provides a more intuitive approach for the derivation
of the mass matrix, which only appears as its own inverse in the Hamiltonian form.

3.3 Energy stable time integration

3.3.1 Energy conservation of a continuous system

An energy stable time integration method is proposed by Egger et al. [5]. General
evolution problems, which can be expressed in the following gradient form (3.13), are
considered [5, § 1, eq. 1.1].

Eu̇ = ≠ÒuH + f (3.13)

Thereby E œ R2n◊2n is a square matrix depending on the vector of state space variables
u œ R2n. H and f are scalar, respectively vector valued functions, which also depend on
the state space.
When comparing the EOM of a mechanical system written in the Hamiltonian framework
(3.10) to this general evolution problem described in (3.13), it becomes apparent, that
those two equations coincide, with E being the modified structure matrix.
To proove that the energy is conserved in the continous model, one can derive the storage
function w.r.t. time using the chain rule and hence exploiting the fact that the evolution
problem is a gradient system. The resulting change of the total energy can then can be
broken down into two terms: the energy dissipation in the system and the energy change
from the external forces [5, § 1,p. 336]:

Ḣ = ÈÒuH, u̇Í = ≠ ÈEu̇, u̇Í
¸ ˚˙ ˝

energy dissipation

+ Èf , u̇Í
¸ ˚˙ ˝

external forces

(3.14)

As in our case of a conservative mechanical system E is skew symmetric, the first term
will be zero for all possible states (u, u̇). Thus without the application of external forces
H is conserved for all times. In other words, the stored energy can only be changed by
the in- and outputs of the system.
When non-conservative forces appear in the mechanical system, E is positive definite,
as then energy dissipates, i.e. by friction in the joints of the serial manipulator [5,
§ 1,p. 336].
The goal when deriving a suitable energy stable integrator is now to keep that property
in the discrete case, which is described in the following Section 3.3.2.
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3.3.2 Energy conservation of a discrete system

As a MBS is already naturally discretized in space, it is only necessary to discretize the
approximate solution of the states u in time.
There are multiple methods for deriving suitable integrators, one of which is to evaluate
the equation over a certain time integral. Thereby both sides are multiplied with an
arbitrary test function. The process of the discretization is then carried out by choos-
ing a discrete space for the test- and solution-functions, which produces the method of
weighted residuals [9, p. 735, 736].
Choosing di�erent function spaces for the solution and the test functions – also called
Petrov-Galerkin approach – the solution uN is discretized in time by piecewise polyno-
mial functions of degree k+1, while the space for the test functions is those of polynomials
of degree k [5, § 3, p. 338].
Choosing k = 0 yields a discrete gradient method, which is described in the following
based on [5, § 3, p. 339]. It is worth noting, that those integration schemes can also be
derived from other frameworks.
As the state space is discretized by linear functionals, u can be expressed by linear
interpolation between the consecutive sample points ti and ti+1:

u(t) = ui + t ≠ ti

�t
(ui+1 ≠ ui) , (3.15)

u̇(t) = 1
�t

(ui+1 ≠ ui) , for t œ [ti, ti+1]. (3.16)

With the test functions being constant, they can be pulled in front of the integral and
eleminated on both sides, hence do not play a role in the case of the chosen method
with k = 0. As in that case the time derivatives of the state space variables u̇ are also
constant, they can be pulled out of the respective integrals.
This ultimately leads to the following equation:

⁄ ti+1

ti

E dt
ui+1 ≠ ui

�t
= ≠

⁄ ti+1

ti

ÒuH dt +
⁄ ti+1

ti

f dt. (3.17)

With the some simplifications for better readability, denoted by:

ı̄ =
⁄ ti+1

ti

ıdt and ıÕ = Òuı, (3.18)

the non-linear discrete equation can be written as follows:

Ē
ui+1 ≠ ui

�t
= ≠H̄ Õ + f̄ . (3.19)

Depending on the underlying evolution problem and the approximation method, these
integrals can be evaluated exactly.
If E, H and f are polynomials of degree p in u, then the exact value can be obtained by
using Gauss-quadrature rule with p+1

2 points [24, § 3.6, p. 150]. On the other hand, if one
of the components is non-polynomial in u, then the numerical integration only produces
an approximation of the respective integral, which naturally a�ects the energy-stability
and the exact constraint conservation of the time integration method.
This is especially relevant when including elastic elements like springs, which leads to a
non-polynomial term in the gradient of the potential energy, see Section 2.2.
Finally – carrying out the actual time integration – the non-linear equation (3.19) has
to be solved for the next state un+1, which can be done via a line-search method, e.g.
the Newton-Raphson algorithm.
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3.4 Implementation

3.4.1 Geometry and constraints

The coordinates used for this approach are the COMs positions. However for the con-
straint relations also include the rotational axes, which consequently need to be calcu-
lated. This can be achieved in a recursive manner starting from the base.
Transforming the connection vector between the ith rotation axis and the ith COM and
then adding it said rotation axis, yields the following recursive formula:

Xi+1 = Xi + Ai (xi ≠ Xi) . (3.20)

Choosing a general linear transformation Ai allows for an arbitrary location of the COM,
meaning its position is not constricted to the connection between the joints, see Figure
3.2.

Figure 3.2: Linear Transformation

Although in the following this special case is studied, the calculations for the more
general case are described here. Ai thus consists of a rotation and a subsequent scaling,
displayed in the equation:

Ai = Li

ls,i¸˚˙˝
scaling

S

Ucos –i ≠ sin –i

sin –i cos –i

T

V

¸ ˚˙ ˝
rotation

. (3.21)

To ensure that the length li of each link stays constant, the following condition needs to
be satisfied:

(xi ≠ Xi)2 + (yi ≠ Yi)2 = l2i . (3.22)

This yields the n constraint equations c, which can be written in a compact form like
so:

ci = (xi ≠ Xi)T (xi ≠ Xi) ≠ l2i , i = 1, . . . n. (3.23)

For the calculation of the constraint matrix Cq, the recursive formula (3.20) derived
w.r.t. x is used. From the quadratic form of (3.23), one can observe, that the resulting
Cq is linear in x, which will be relevant for the time integration later.
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3.4.2 Kinetic energy and mass matrix

For the special case of a planar serial manipulator described at the end of chapter 1, the
systems kinetic energy T can be written in terms of the inertial coordinates xi, yi and
Ïi:

T (ẋ, ẏ, Ï̇) =
nÿ

i=1

1
2miẋi

2 + 1
2miẏi

2 + 1
2Js

i Ï̇i
2. (3.24)

As only xi and yi are used for the generalized coordinates, we aim to substitute the abso-
lute angular velocities Ï̇i in (3.24). Each angle Ïi must satisfy the following trigonometric
identities:

�xi := xi ≠ Xi = ls,i cos Ïi, (3.25)
�yi := yi ≠ Yi = ls,i sin Ïi. (3.26)

After derivation w.r.t. time this results in a kinematic relation of quadratic form between
the angular and translational velocities (3.27), which then allows the substitution of Ï̇2

i

in (3.24).

Ï̇i
2 = ẋi

T ẋi + Ẋi
T Ẋi ≠ 2ẋi

T Ẋi

ls2
s,i

. (3.27)

Along with the translational velocities of the coms ẋi, the translational velocities of the
joints Ẋi also appear.
Xi can be obtained by di�erentiating the recursive formula (3.20) w.r.t. time, with the
first axis being fixed at the base.
Rearranging the terms and using the compact notation

Ãi = I ≠ Ai, (3.28)

yields the following equation:

Ẋi+1 = ÃiẊi + Aiẋi. (3.29)

With the particular structure of equation (3.29), Ẋi can be expressed in terms of the
generalized velocities ẋ (3.30). For obtaining a more clear structure, the matrices Bi,k

are introduced.

Ẋi =
i≠1ÿ

k=1
Ãi≠k . . . Ãk+1Akẋk :=

i≠1ÿ

k=1
Bi,kẋk. (3.30)

Putting all the above components together, the kinetic energy can be expressed in a
quadratic form:

T (ẋ) = 1
2

nÿ

i=1

Ë
ẋT

1 . . . ẋT
i≠1 ẋT

i

È
Mi

S

WWWWWWWU

ẋ1
...

ẋi≠1

ẋi

T

XXXXXXXV

, (3.31)
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with the mass matrices for each link Mi:

Mi =

S

WWWWWWWWWWU

BT
i,1Bi,1 . . . BT

i,1Bi,i≠1 ≠BT
i,1

... . . . ...
...

BT
i,i≠1Bi,1 . . . BT

i,i≠1Bi,i≠1 ≠BT
i,i≠1

≠Bi,1 . . . ≠Bi,i≠1

S

WU
mi + Js

i
l2i

0

0 mi + Js
i

l2i

T

XV

T

XXXXXXXXXXV

. (3.32)

Those matrices and thus also their allocated matrix M are configuration independent, as
the constraints between Ïi and xi are applied on a velocity level. This highly simplifies
setting up the EOM in Lagrangian form (3.12). While generally M is configuration
dependent, with our choice of generalized coordinates and due to the planar structure
the mass matrix is now constant. This also leads to a computational advantage, as M
only has to be calculated once at the start of a simulation run – just depending on the
geometric and inertial parameters of the system.
Assuming the COM lies on the connection axis between joints, the calculation of the
mass matrix can be simplified, as the linear transformation now is used purely to scale
the vector (xi ≠ Xi) and not rotate it. This leads to decoupled x- and y-coordinates for
the COMs and joint positions. Rearranging the vector of the generalized coordinates
like so:

x =
Ë
x1 . . . xn y1 . . . yn

ÈT
, (3.33)

gives the mass matrices a block diagonal structure (3.34), which further simplifies the
computation.

Mi =

S

UMi,x 0

0 Mi,y

T

V (3.34)

3.4.3 Potential energy

The use of the COMs coordinates in an inertial frame allows a straight forward calcula-
tion of the gravitational energy G:

G(x) =
Nÿ

i=1
migyi. (3.35)

Due to x appearing linear in G its derivative w.r.t. x is constant:

ÒxG =
Ë
0 . . . 0 m1g . . . mng

ÈT
. (3.36)

Using the vector-chain introduced in Equation (2.6), the springs potential energy S can
be calculated.
The entries of the vectors Li can simply be obtained by calculating the connection axis
between the links COM and the following rotational axis, similar to the method used
for the recursive formula (3.20):

Li = Li

li

S

WWWU

xi ≠ Xi

yi ≠ Yi

0

T

XXXV . (3.37)
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The vectors ri as described in Section 2.2.4 can be calculated by scaling the cross product
between Li and the z-axis to the correct length ri:

ri = ri

li

Q

ccca

S

WWWU

0

0

1

T

XXXV ◊

S

WWWU

xi ≠ Xi

yi ≠ Yi

0

T

XXXV

R

dddb = ri

Li

S

WWWU

≠(yi ≠ Yi)

(xi ≠ Xi)

0

T

XXXV . (3.38)

Putting the vector chain together leads to the following expression for the length of the
ith spring segment:

si =

......
≠ ri

Li

S

U ≠(yi ≠ Yi)

(xi ≠ Xi)

T

V + Li

li

S

Uxi ≠ Xi

yi ≠ Yi

T

V + ri+1
Li+1

S

U ≠(yi+1 ≠ Yi+1)

(xi+1 ≠ Xi+1)

T

V

......
. (3.39)

For obtaining the partial derivatives of S in the mono- and multi-articular case the
Equations (2.8) and (2.9) can now be used.
Expressing the length si in terms of the inertial coordinates yields a vector chain for
the ith body containing all the generalized coordinates from the predecessors, as the
positions of the joints Xi are calculated recursively from the base. This has to be taken
into account for the partial derivative of the springs potential energy.

3.4.4 Discrete equations of motion

With equations for the kinetic and potential energy in terms of the chosen coordinates
and their time derivatives, the gradient of the Lagrangian can be calculated. As xi

appears linear in V (xi), the resulting vector for Lq is constant and thus can also be
calculated in advance.

Lq = ÒxV = ÒxG + ÒxS (3.40)
Lv = Mv (3.41)
L� = 0 (3.42)

Using the Petrov-Galerkin approach with linear interpolation as proposed in [5, § 3,
p. 339] for the time discretization of the EOM, leads to the following non-linear, implicit
equation for each timestep:

1
�t

S

WWWU

M ≠C̃T
q

≠M

C̃q

T

XXXV

S

WWWU

qt+1 ≠ qt

vt+1 ≠ vt

�t+1 ≠ �t

T

XXXV +

S

WWWU

ÒxṼ

M

0

T

XXXV = 0. (3.43)

Thereby the numerical approximation of the integral is denoted by:

ı̃ ¥
⁄ ti+1

ti

ı d· (3.44)

With the components above, the energy stable time integration scheme described in the
previous Section 3.3.2, can now be implemented.
The structure of Equation (3.43) allows for the explicit calculation of the Jacobian needed
for the Newton-Raphson linesearch method, which can be used to reduce calculation
time.



Chapter 4

Variational integrators on Lie
groups

This chapter introduces a structure preserving time integration, which is achieved by
using variational integrators based on the Lie groups.
In Section 4.1 a brief introduction about Lie groups and Lie algebra is given. Thereby
the focus lies on the aspects, that are important, when using this concept to represent
rigid body motions.
Afterwards, in Section 4.2 the key concepts of Screw Theory – o�ering a natural appli-
cation for Lie groups – are presented. The Book [20], which o�ers a detailed insight into
the topic, is used.
Finally the theory is tied together by describing the development and implementation
of a variational integrator for the EOM, see Sections 4.3 and 4.4.

4.1 Lie groups and Lie algebra

If a matrix group G is a subset of all quadratic, real and invertible matrices GL(n) and in
addition satisfies closure under matrix multiplication - meaning that the product of two
elements remains in that group - G is a Lie Group [18, § 1.2.6, p. 25]. The exponential
map

exp : g æ G (4.1)

is the connection between such a Lie Group and its corresponding Lie algebra g [10,
§ 14.1, p. 367, 368]. This rather abstract mathematical concept, can be viewed as a
form of linearization of G, which then allows a parameterization of G by - in some cases
simpler - elements of g [10, § 14.2, p. 376, 377].
In the context of describing rigid body motions, there are two important Lie groups:
The first is the group of special orthogonal matrices SO(3) (4.2), which due to their
length and angle preserving properties can be used to represent rotations [20, § 2, p. 24].

SO(3) :
Ó

R œ Rn◊n -- RRT = I, det(R) = 1
Ô

(4.2)

The second is the group of homogenous matrices SE(3) consisting of a rotation matrix
R œ SO(3) and an additional vector p œ R3 for the translation. Elements of SE(3)

19
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are often used for representing an arbitrary rigid body motion without the drawbacks
of Euler angles. Formally this group can be represented like so [20, § 3, p. 35]:

SE(3) :

Y
]

[g =

S

UR p
0 1

T

V

------
R œ SO(3), p œ R3

Z
^

\ . (4.3)

The exponential maps with the corresponding Lie algebras so(3) and se(3) are surjective
[10, § 14.2, p. 377], [10, § 14.6, p. 387] and thus locally invertible. Note that surjectivity
of the exponential map does not generally hold true for all Lie groups.
It can be shown, that the elements of so(3) are skew symmetric matrices with zeros on
the diagonal. Hence, there are only three independent entries, which can be summarized
in a vector k œ R3. Hence a simpler representation of SO(3) is its Lie algebra. The
connection between such a matrix and its corresponding vector is given by the hat map
[7, § 1, p.1]:

k̂ :

S

WWWU

k1

k2

k3

T

XXXV æ

S

WWWU

0 ≠k3 k2

k3 0 ≠k1

≠k2 k1 0

T

XXXV . (4.4)

Looking at the corresponding rigid body rotation, the vector k is equivalent to the
rotation axis of the motion, and the norm |k| is the angle Ï by which the body is
rotated. With the Rodriguez-Formula an element of SO(3) can be directly computed
from its Lie algebra [4, § 2.2.1.4, p. 34, 35]:

R = I3◊3 + sin Ïk̂ + (1 ≠ cos Ï)k̂2 (4.5)

In the following Section 4.2, the concept of the screw theory is introduced, as it o�ers a
comprehensive approach to the Lie group of homogenous matrices SE(3).

4.2 Screw theory

4.2.1 The exponential map

Chasles Theorem states, that every rigid body motion can be described as a rotation
about a line in space and a translation parallel to that line. This kind of description
is referred to as a screw motion, due to its resemblance to the helical line of a screw.
The infinitesimal version of such a motion is called a twist, which is a parameterization
of the instantaneous velocity of a rigid body. Although somewhat non-intuitive, this
viewpoint supports a global understanding of a systems kinematics. Thus - in contrast
to e.g. Euler angles - it doesn’t su�er from singularities due to the parameterization. It
is worth noting that the concept of using screw coordinates is not unique to twists, but
can also be applied to describe force-moment pairs acting on a body.[20, § 2, p. 19, 20].
For obtaining the twist, we look at the velocity of a point ṗ(t) undergoing such a screw
motion:

ṗ(t) = Ê ◊ (p(t) ≠ r) + hÊ. (4.6)

Thereby Ê is the rotational velocity vector pointing in the direction of the twists axis,
r is an arbitrary point on that axis and h is the so called pitch relating the magnitudes
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of the translational and rotational motion [20, § 3.2, p. 19, 20].
With the skew symmetric matrix Ê̂ denoting the cross-product with Ê◊ – which is
equivalent to the hat map (4.4) discussed before – and the vector for the translational
component of the twist v := ≠(Ê ◊ r) + hÊ, the equation (4.6) can be written in a
compact matrix-vector notation:

S

Uṗ(t)

0

T

V =

S

UÊ̂ v
0 0

T

V

¸ ˚˙ ˝
twist ›̂

S

Up(t)

1

T

V . (4.7)

With the use of homogenous coordinates p̄ the following first order ODE results:

˙̄p = ›̂p̄. (4.8)

The matrix ›̂ is called the twist and the six independent entries

› =

S

UÊ

v

T

V (4.9)

are called the twist coordinates [20, § 3.2, p.40].
When a constant twist is applied, (4.8) can be solved by [20, § 23.2, p. 40]:

p̄(t) = e›̂tp̄(0). (4.10)

As this is a valid solution for any point p̄ on the rigid body, the matrix exponential
exp(›̂t) is equal to the homogenous transformation between the configuration of the
body at time 0 and time t, thus corresponding to a parametrization of the body-fixed
coordinate system. Using unit twists, we can apply them for a given magnitude instead
of a time interval. Such a twist can also be applied to a homogenous transformation
g(0) œ SE(3).
Looking now back to the definition of the exponential map (4.1), the connection to the
previously introduced concept of Lie groups becomes obvious: The twists ›̂ œ se(3) are
the Lie algebra to the Lie group of homogenous transformations SE(3). The inverse of
the corresponding exponential map can be calculated by a closed formula described in
[20, Eq. 2.36, p.42], which can be viewed as an extension of the previously introduced
Rodriguez-Formula, see Equation (4.5).

4.2.2 Serial kinematics

In our case of a serial manipulator with rotational joints, the magnitude is equivalent
to the relative angles Ï between the links. Sequentially applying constant twists for a
kinematic chain up until the jth link – of which we want to calculate the new homogenous
transformation gj(Ï) from the initial transformation gj(Ï = 0) – yields [20, § 2.2, p. 87]:

gj(Ï) = e›̂1Ï1 . . . e›̂jÏj gj(0). (4.11)

This way the motion between a link and its previous counterpart is not directly repre-
sented. Instead the twists are specified w.r.t. the same reference configuration. With
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Figure 4.1: Screw motion of a point p

j = n and gn = gtcp, we can calculate the position and orientation of the tool center
point (TCP) of a serial manipulator from equation (4.11), which is equivalent to solving
the forward kinematics of the mechanism.
The relative unit twist for two links connected by a rotational joint ›rot can be calculated
with ||Ê|| = 1 [20, § 3.3, p. 50]:

›rot =

S

U≠r ◊ Ê

Ê

T

V . (4.12)

4.2.3 Velocity

The calculation of the instantaneous velocity of a point on a link is more complicated.
As g(t) œ SE(3) is not an element of the euclidian space and consequently ġ(t) /œ SE(3),
g can not simply be derived w.r.t. time to obtain the velocity [20, § 4.2, p. 53,54].
Instead the spatial velocity V̂ s œ se(3) in inertial coordinates corresponding to a rigid
motion g(t) is defined as V̂ s in the following equation [20, Eq. 2.53, p. 54]:

V̂ s = ġg≠1 =

S

UÊ̂s vs

0 0

T

V . (4.13)

V̂ s has the form of a twist and thus maps a point on the rigid body to its respective
velocity measured in an inertial frame. The associated screw gives the instantaneous
axis, pitch and magnitude of the rigid motion described by g(t).
Respectively the spatial velocity V̂ b œ se(3) w.r.t. a body-fixed coordinate system can
be calculated as follows [20, Eq. 2.55, p. 55]:

V̂ b = g≠1ġ =

S

UÊ̂b vb

0 0

T

V . (4.14)

It is important to note, that V̂ b still represents an absolute velocity, expressed in the
instantaneous body coordinates and not a motion relative to the body.
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4.2.4 Manipulator Jacobian

We are now interested in how the spatial velocity of a point on our multi body system
is related to the rotational velocity of the joints Ï̇, which we can directly control with
the input torques.
Calculating the spatial velocity of the TCP from equation (4.13) by using the relation
(4.11), yields the following linear mapping [20, Eq. 3.54, p. 116]:

V s
tcp = Js

tcpÏ̇ , (4.15)

with:

Js
tcp =

Ë
›1 ›Õ

1 . . . ›Õ
j

È
, (4.16)

›Õ
i = Ad(e›̂1Ï1 . . . e›̂i≠1Ïi≠1)›i. (4.17)

Such a linear relation between the velocity of the TCP and the joint velocities is tradi-
tionally obtained by derivation of a local, vector-valued parameterization of the forward
kinematics. This Jacobian su�ers from singularities due to the parameterization and
thus fundamentally di�ers from the manipulator Jacobian Js

tcp described above. It can
be shown, that the ith column of Js

tcp is the ith joint twist, transformed to the current
manipulator configuration [20, § 4, p. 115].
In the same way, the body manipulator Jacobian Jb

tcp can be defined [20, Eq. 3.55,
p. 117]:

V b
tcp = Jb

tcpÏ̇ , (4.18)

with:

Jb
tcp =

Ë
›̄1 . . . ›̄n

È
, (4.19)

›̄i = Ad≠1(e›̂iÏi . . . e›̂nÏngtcp(0))›i. (4.20)

Here the columns represent the joints twists w.r.t. the current configuration of the tcp
frame.
As twists in di�erent coordinate systems are related via a similarity transformation,
the adjoint transformation of a homogeneous transformation matrix g œ SE(3) can be
defined as follows [20, Eq. 2.58, p.55]:

Ad(g) =

S

UR p̂R

0 R

T

V . (4.21)

4.3 Variational integrators

4.3.1 Background

The general idea for deriving a suitable variational integrator for the a multi body system
is to directly discretize Hamilton’s principle of stationary action instead of the continous
equations of motions. Thereby restricting the motion to the Lie groups described in
Section 4.1 when deriving such an integrator, ensures that the variations still lie in the
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appropriate configuration space, thus preserving the variational of the system [17, § 2.1,
p. 2908, 2909].
In general, dynamical systems evolve on di�erentiable manifolds embedded in the eu-
clidian space R3 [18, § 1.2, p. 11,12]. The manifold for a specific system is created by its
linearly independent kinematic couplings between the links, which – in the considered
case of holonomic constraints – can be represented by a set algebraic equations, depend-
ing on the generalized coordinates, which are equivalent to those introduced in Section
3.4.1. Hence this is a partial formalization of the restricted solution space due to the
Hamiltonian structure, which we touched on at the beginning of Section 3.1.2.

4.3.2 Obtaining the continuous Euler-Lagrange equations

Considering the special case of a serial manipulator with rotational joints, the geometry
of the solution space can be described by a chain of circles, the so called one-spheres S1,
see Equation (4.22). A natural choice of coordinates are the normalized attitude vectors
qi between the com of a body and its previous joint. As the considered revolute joints
only have one degree of freedom, qi - if measured in a suitable body-fixed coordinate
system associated with the previous link - evolves on a plane and thus can be chosen
from R2 instead of R3 [18, § 4.1, p. 131,132].

S1 = {xi œ R2 : ||xi||2 ≠ 1 = 0} (4.22)

Intuitively, the tangent space of such a sphere is the tangent of the circle at each point.
Thus, with the skew-symmetric matrix

S =

S

U0 ≠1

1 0

T

V , (4.23)

which rotates a vector qi œ R2 orthogonal to its previous configuration, the following
globally valid kinematic equations can be formulated [18, § 4.2, p. 132,133]:

ẋi = ÊiSxi (4.24)

By restricting the possible time derivatives, where now only the scalar factor Êi can be
chosen, every motion of the system evolves on the chain of one-spheres

!
S1"n.

Hamiltonians principle of stationary action states, that the infinitesimal variation of
the action integral along any motion is zero. Calculating those variations by using the
exponential map, such that the structural properties remain, ultimately leads to the
continous Euler-Lagrange equations on the configuration manifold (4.25). With the
kinematic relation (4.24), the scalar rotational velocity for each joint Êi instead of the
time derivative of the generalized coordinates q̇i can be used [18, Eq. 4.12, p. 140].

d

dt

3
ˆL

ˆÊi

4
+ qT

i S
3

ˆL

ˆqi

4
= 0 (4.25)

4.3.3 Discretization of the Euler-Lagrange equations

To now obtain the discrete Lagrangian map Ld, which by definition is a variational inte-
grator for the Euler-Lagrange equations, first the Lagrangian is approximated between
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two consecutive sample points qk, qk+1, with the time in between denoted as �t [17,
§ 2.1, p. 2909].

Ld(qk, qk+1) ¥
⁄ �t

0
L(qk,k+1(t), q̇k,k+1(t)) dt (4.26)

In the discrete case the variation of an action sum instead of action an integral is taken,
which yields the discrete Euler-Lagrange equations:

D2Ld(qk≠1, qk, �t) + D1Ld(qk, qk+1, �t) = 0, (4.27)

with D1 and D2 denoting the discrete derivatives taken at the start respectively at
the end of the corresponding interval [17, § 2.1, p. 2909]. For both approximations
appropriate numerical methods can be chosen.
With the choice of the rectangle rule for approximating the Lagrangian and the implicit
midpoint rule for its derivative, the discrete EOM for the unforced system result in the
following equation, as presented in [14, § 4, p. 233, 234]:

Md(qk≠1, qk)ÊÕ
k≠1 + �t

4 Cd(qÕ
k≠1, ÊÕ

k≠1) ≠ �t

2 G(qÕ
k≠1)

≠ Md(qk, qk+1)ÊÕ
k + �t

4 Cd(qÕ
k, ÊÕ

k) ≠ �t

2 G(qÕ
k) = 0. (4.28)

Thereby the attitude vectors and rotational velocities in the middle of a time interval
(k, k + 1) are denoted with with a prime ıÕ

k. The resulting nonlinear equation contains
the unknown values of ıÕ

k and ık, which are dependant through the kinematic equation
(4.24). For the discrete updates compatible with those structural constraints, a matrix
rotating the attitude vector F Õ

i,k œ SO(2) used [14, Eq. 10, 11, p. 233]:

qÕ
i,k = F Õ

i,kqi,k , (4.29)
qi,k+1 = F Õ

i,kqÕ
i,k , (4.30)

ÊÕ
i,k = 1

�t
qT

i,kST qi,k+1. (4.31)

Hence equation (4.28) together with (4.29) can be solved for the scalar values f Õ
i,k œ so(2),

which are connected to F Õ
i,k by the Rodriguez formula. After obtaining the solution for

each time step the values for qi and Ê can be updated.

4.4 Implementation

4.4.1 Geometry

To ensure the motion of the system is compatible with the constraints of (S1)n, we use
the normalized attitude vectors

q =
Ë
q1 q2 . . . qn

È
(4.32)

as our position coordinates.
Thereby each attitude vector qi is measured in the coordinate system of its predecessor
(i ≠ 1). Thus there is a direct relation between each attitude vector qi and the relative
angle Ïi between link i and link (i ≠ 1).

qi =

S

Ucos(Ïi)

sin(Ïi)

T

V (4.33)
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4.4.2 Kinetic energy and mass matrix

To derive the equations of motion from Hamiltons Principle of stationary action, we first
need to calculate the kinetic energy of the system. As the generalized inertia-matrix

Mi =

S

WWWWWWU

mi

mi

mi

Jcom
i

T

XXXXXXV
œ R6x6 , (4.34)

is constant when measured in the body coordinates of the respective link, we exploit the
following relationship between the absolute translational and rotational velocity in body
coordinates and the body manipulator Jacobian

V b
com,i = Jb

com,iÏ̇i , (4.35)

to write the kinetic energy T as follows [14, § 3.1, p. 232]:

T = 1
2

nÿ

i=1
(V b

com,i)T MiV
b

com,i = 1
2

nÿ

i=1
Ï̇i(Jb

com,i)T MiJ
b
com,iÏ̇i. (4.36)

Using this quadratic form, the kinetic energy is expressed w.r.t. the angular velocities
of the rotational joints, which are denoted as the vector

Ê =

S

WWWU

Ï1
...

Ïn

T

XXXV (4.37)

in the following. With defining the now configuration dependant mass-matrix M(q) as

M(q) =
nÿ

i=1
(Jb

com,i)T MiJ
b
com,i, (4.38)

we can rewrite the kinetic energy in the more compact form [14, § 3.1, p. 232]:

T = 1
2ÊT M(q)Ê. (4.39)

This strongly resembles the classical approach discussed in Section 1.1, as the mass
matrix M(q) is exactly the same. We now however express M in terms of the atti-
tude vectors and use screw theory with the resulting body-manipulator Jacobian for its
construction:

Jb
com,i =

Ë
›̄i,1 . . . ›̄i,i 0 . . . 0

È
, (4.40)

›̄i,j = Ad≠1(e›̂jÏj . . . e›̂iÏigcom,i(0))›j . (4.41)

Note that the later links don’t have an e�ect on the Jacobians of the previous links,
hence the (i + 1)th - nth column are zero.
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4.4.3 Potential energy

The gravitational potential energy G of the system can be written with the vectors to
the COM rcom,i measured in an inertial coordinate system. As the chosen coordinates
are written w.r.t the coordinate system of the previous link, applying a transformation
from body to inertial coordinates is necessary. This is achieved by applying equation
(4.11) to the COM coordinates of the initial configuration.
The gravitational potential energy can thus be calculated as follows [14, § 3.1, p. 233]:

G(q) =
nÿ

i=1
migeT

g rcom,i. (4.42)

For the calculation of the springs potential energy S, the length of the elastic elements
si has to be expressed w.r.t. the attitude vectors, analogous to the calculations for the
energy stable approach in Section 3.4.3.
This way the springs length result in

si =

.........

≠

S

WWWU

0

ri≠1

0

T

XXXV + Li

S

WWWU

qi,x

qi,y

0

T

XXXV + ri

Q

ccca

S

WWWU

0

0

1

T

XXXV ◊

S

WWWU

qi,x

qi,y

0

T

XXXV

R

dddb

.........

, (4.43)

which – by omitting the third vector entry – yields:

si =

......

S

U Liqi,x ≠ riqi,y

≠ri≠1 + Liqi,y + riqi,x

T

V

......
. (4.44)

These results for si can be inserted into the Equations (2.3), (2.4), (2.8) and (2.9) to
calculate the springs stored energy respectively its gradient.
Furthermore, it is interesting to note, that the attitude vectors are written in the co-
ordinate system of the previous body and normalized, which simplifies the calculation
compared to the use of the COMs positions in an inertial coordinate system, as each
springs length only depends on the corresponding attitude vector. This allows an indi-
vidual calculation of the partial derivatives of Si in the mono-articular case.

4.4.4 Continuous equations of motion

With the chosen coordinates q and Ê and the total potential energy V , the Lagrangian
for the system can be written as [14, Eq. 3, p. 232]:

L(q, Ê) = T (q, Ê) ≠ V (q) = 1
2ÊT M(q)Ê ≠ V (q). (4.45)

While calculating the partial derivative of the Lagrangian w.r.t. Ê is straight forward,
as the only term depending on Ê is the vector itself, the derivation w.r.t. q is more
complicated due to the configuration dependent mass matrix M(q).
For this calculation the construction of the mass matrix - the quadratic form with a
constant part in the middle (4.38) - can be exploited [11, § 2, p. 2365]:

ˆM(q)
ˆı

=
nÿ

i=1

A
ˆJb

com,i

ˆı

BT

MiJ
b
com,i +

1
Jb

com,i

2T
Mi

A
ˆJb

com,i

ˆı

B

. (4.46)
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Thus the only component need is the partial derivative of the body manipulator Jacobian
w.r.t. the x and y components of the attitude vectors, denoted by qi,x and qi,y.
Hence it is useful to express the matrix exponential of the rotational twists we use
to describe the serial kinematic (4.11) in terms of qi. With using the abbreviation
L̃i =

qi≠1
k=1 Lk the twist of the ith joint can be written like so:

e›̂iÏi =

S

WWWWWWU

cos(Ïi) ≠ sin(Ïi) 0 L̃i(1 ≠ cos(Ïi))

sin(Ïi) cos(Ïi) 0 ≠L̃i sin(Ïi)

0 0 1 0

0 0 0 1

T

XXXXXXV
=

S

WWWWWWU

qi,x ≠qi,y 0 L̃i(1 ≠ qi,x)

qi,y qi,x 0 ≠L̃iqi,y

0 0 1 0

0 0 0 1

T

XXXXXXV
. (4.47)

As the body manipulator Jacobian consists of the joints twists written in their respective
body frame, the adjoint transformation is needed.

Ad(e›̂iÏi) =

S

WWWWWWWWWWWWWU

qi,x ≠qi,y 0 0 0 ≠L̃iqi,y

qi,y qi,x 0 0 0 L̃i(qi,x ≠ 1)

0 0 1 L̃iqi,y L̃i(qi,x ≠ 1) 0

0 0 0 qi,x ≠qi,y 0

0 0 0 qi,y qi,x 0

0 0 0 0 0 1

T

XXXXXXXXXXXXXV

. (4.48)

Calculating the inverse numerically for each timestep is computationally expensive, thus
the inverse is calculated analytically beforehand.

Ad≠1(e›̂iÏi) =

S

WWWWWWWWWWWWWU

qi,x qi,y 0 0 0 L̃iqi,y

≠qi,y qi,x 0 0 0 L̃i(qi,x ≠ 1)

0 0 1 ≠L̃iqi,y L̃i(qi,x ≠ 1) 0

0 0 0 qi,x qi,y 0

0 0 0 ≠qi,y qi,x 0

0 0 0 0 0 1

T

XXXXXXXXXXXXXV

(4.49)

The di�erentiation w.r.t qi,x and qi,y of these matrices is now straightforward and results
in constant matrices only depending on the geometry of the system. These matrices then
can be used for the di�erentiation of the body manipulator Jacobian w.r.t. the attitude
vectors.
As the forward kinematics equation (4.11) appearing in the Jacobian consist of the
sequential application of transformations - each only depending on the corresponding
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attitude vector - the derivation of its columns respectively the twists is straightforward:

ˆ›̄i,j

ˆqk
=

Y
]

[
Ad≠1(e›̂jÏj . . . ˆe›̂kÏk

ˆqk
. . . e›̂iÏigcom,i(0))›j , j < k < i,

0, else.
(4.50)

This allows the calculation of the continous EOM in the same form as (1.1). Due to
the use of Lie groups when constructing the variational integrator, the attitude vectors
– which are non-minimal coordinates – can be used for expressing the EOM without
explicit constraint forces appearing in the resulting equation.
Although this way of obtaining the EOM seems more complicated than the classical way
using minimal coordinates, it holds some significant advantages. There is no need for
the explicit di�erentiation of a local map from joint to cartesian space. The calcula-
tion of that local Jacobian either causes a complicated di�erentiation of trigonometric
functions or the need for a recursive approach beginning from the base, a method used
for constructing a reference model, see Section 5.1.6. With using the body manipulator
Jacobian, the complex trigonometry is hidden in the exponential map.

4.4.5 Discrete equations of motion

The discretization of the Hamiltonian principle of stationary action yields the non-linear
equation (4.28). With continous mass-matrix and Coriolis vector obtained in the pre-
vious section, this equation can now be solved w.r.t the matrices rotating the attitude
vectors for each timestep.
As the attitude vectors are rotated on a plane, those matrices F Õ

i,k are elements of SO(2)
and thus can be parametrized by just one independent value.
Using the simplified Rodriguez formula for such a case (4.51) [14, § 4.3, p. 234], allows
solving the equation w.r.t. the linearily independent scalars. This ensures that the at-
titude vectors keep their unit length, which is equivalent to conserving the symplectic
property.

F Õ
i,k = I2◊2 cos f Õ

i,k + S sin f Õ
i,k (4.51)

The non-linear solver ’fsolve’ implemented in the optimization toolbox of MATLAB [25]
is then used.
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Chapter 5

Results and discussion

In this chapter the two approaches for the time integration described in the previous
Chapters 3 and 4 are evaluated. For comparing the results with a more traditional
approach, a reference simulation in minimal coordinates is implemented.
First a short overview of the methodology is given in Section 5.1, where the criteria
for the following evaluation of the two methods are given, as well as the simulation
parameters. The evaluation is treated in Section 5.2, divided into the described criteria.
Afterwards the results are discussed in the last Section 5.3 of this chapter.
In the following, when referring to the method using a variational integrator on Lie
groups presented in Chapter 4, the approach is shortened to ’variational integrator’.

5.1 Methodology

5.1.1 Simulation parameters

For comparing the two methods described in the previous sections, a three-link mecha-
nism is chosen. Table 5.1 displays the set of geometric and inertial parameter used – if
not specified otherwise –, see Figures 2.1 and 2.2 for referencing the displayed symbols.
A standard simulation run to check the validity of both methods, as well as their energy
and symplecitc behavior, is defined for a duration of 50 seconds with a time step of
�t = 0.01s, under the influence of the gravitational acceleration g = 1 m

s2 .
If not specified otherwise, mono-articular springs are used, when studying the e�ects of
additional elastic elements on the time integration schemes.

5.1.2 Symplecticness

As mentioned in Section 3.1.4, evaluating the symplecticness of a time integration
method when using non-minimal coordinates can be done by checking if the systems
geometric structure is preserved. This requires evaluating if the constraints – coupling
our chosen set of coordinates – are fulfilled.
For the energy stable approach, explicit configuration dependent constraint equations
are used, see Equation (3.23). Hence those can simply be evaluated for each time step,
which results in the following error for each link:

econstraint,i = (xi ≠ Xi)T (xi ≠ Xi) ≠ l2i , i = 1, . . . n. (5.1)

31
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1 2 3

m in kg 1.0 1.0 1.0

Js in kg · m2 1.0 1.0 1.0

L in m 1.0 1.0 1.0

l in m 0.5 0.5 0.5

r in m 0.4 0.4 0.4

s0 in m 0.2 0.2 0.2

k in N/m 1.0 1.0 1.0

Table 5.1: Parameters for the standard simulation run

In the case of the variational integrator, the structure preservation is fulfilled by the
attitude vectors qi being normal vectors. Thus the deviation of the norm is checked,
which results in the following error for each link:

enorm,i = |ÎqiÎ ≠ 1| . (5.2)

The errors introduced in this Section can be interpreted as the deviation of the current
link length from its starting length. Explicit time integration schemes using non-minimal
coordinates typically su�er from an increasing deviation in link length, which is referred
to as the drift-o� phenomenon [6, § 5.2, p. 151].

5.1.3 Energy conservation

To evaluate the property of energy conservation for both time integration schemes, the
deviation of the systems total energy from its energy at the start of the simulation t = 0s
is measured, which yields the following energy-error:

eenergy = E ≠ Estart. (5.3)

In contrast to the error arising due to constraint violation described in the previous
Section 5.2.1, when looking at the energy error the whole system has to be considered
as opposed to the single links.

5.1.4 Computational performance

Another important criterion is the computational time required for carrying out the
time integration. Thereby the calculation time is compared to the time passing in the
simulation, leading to the following equation:

trealtime = tcomputation
tsimulation

, (5.4)

by which the real-time capabilities of the methods can be determined. If trealtime < 1,
then in theory the time integration can be carried out in real time, which means that
a simulation-based control strategy could be realized. In practice trealtime should be
significantly smaller than 1, leaving a margin for other processes.
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The simulation is carried out on a commercial PC with the Intel(R) Core(TM) i5-7200U
CPU @ 2.50GHz. For the timing the built-in ’timeit’-function in MATLAB [25] is used,
averaged over 10 identical simulation runs.
It is important to note, that though these considerations are a good indication for the
computational performance, the implemented solvers are not fully optimized and thus
the exact results have to be viewed carefully.

5.1.5 Influence of the time step

To study the influence of the time step on the criteria presented in the sections above,
otherwise identical simulation runs are carried out with di�erent time steps.
Thereby the sum of the currently considered error eı is saved per simulation run and
averaged by the number of time steps N , which yields:

eavg = 1
N

Nÿ

t=0
ÎeıÎ . (5.5)

This yields a relation between said error and the chosen time step. It is important to
note, that Equation (5.5) yields a global error, which naturally di�ers from the local
error arising with each time step.
An approximation for this relation can be obtained from a so-called order-plot. A simple
polynomial relation of the form

eavg ≥ �tk (5.6)

can be detected by using a double logarithmic scale and identifying the slope of the
resulting line, which then correspond to the exponent k. In some instances not the whole
range of the plot can be used, as for small time steps rounding errors often dominate
and for larger time steps instabilities may arise. In that case, the line is then only fitted
into the linear part of the plot.
For obtaining the order-plots the following equidistant range for the time steps is chosen
subsequently:

�t =
Ë
0.001s 0.002s . . . 0.2s

È
. (5.7)

5.1.6 Reference simulation

For comparison a reference simulation using a classical method with minimal coordinates
– which are naturally the relative rotation angles – is implemented. Thereby the chain
structure is used to recursively calculate the positions and orientations of the links, as
well as the respective velocities and the local Jacobi matrices, relating the movements of
the rotational joints to the absolute velocities of the links. The EOM are then obtained
by the application of the projective Newton-Euler equations, where the Jacobi matrices
are used to project the general rigid body motion onto the minimal coordinates. This
algorithm is described in [8, § 6.1, p. 102–104].
The implicit midpoint rule is then applied for solving the resulting second order ODE.
As the state space variables are minimal coordinates and thus compatible with the con-
straints, naturally the structure of the mechanism is conserved for all time. Thus the
criteria of interest regarding the reference simulation are the energy conservation and
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the computational performance in comparison to the other approaches.
For the reference model, the mono- and multi-articular springs are not implemented.
Furthermore it is worth noting, that due to the use of minimal coordinates, the imple-
mentation of linear springs is rather complicated compared to the other methods using
non-minimal coordinates respectively attitude vectors.

5.2 Results

5.2.1 Symplecticness

For evaluating if the time integration schemes conserve the geometric structure, the
standard simulation run specified in Section 5.1.1 is used.
Both methods show excellent symplectic properties, as the maximum error lies in the
region of 10≠14, which can be explained by rounding errors due to the floating point
precision, see Figure 5.1. This result is logical for the variational integrator, as by

(a) energy stable time integration (b) Variational integrator

Figure 5.1: Constraint error for the standard simulation run under gravitational influ-
ence, with t = 50s and �t = 0.01s

definition its design is symplectic. For the energy stable time integration, the result can
be explained due to the linearity of the constraint matrix Cq, which leads to an exact
approximation of its value using the implicit midpoint rule. As the elastic elements have
no influence on Cq, it also makes sense, that the addition of springs to the mechanism
does not change the structure preserving behavior of the integrator, see Figure 5.2.
An increase in step-size also has no influence on the structure preservation.

5.2.2 Energy conservation under gravitational influence

As expected, when using the energy stable time integration method described in Chapter
3 on the serial manipulator without elastic elements, the energy of the system is conserved
very well, especially considering the simulation is carried out for a total time of 50s. The
maximum deviation lies in the region 10≠14, which again can be explained by the floating
point precision, see Figure 5.3a.
It is worth noting, that an increase in step size also has no influence on the energy
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(a) energy stable time integration (b) Variational integrator

Figure 5.2: Constraint error for the standard simulation run with mono-articular springs,
with t = 50s and �t = 0.01s

error. This excellent energy behavior can be explained by the exact approximation
of the constant gradient of the potential energy – similar to the structure preserving
properties explained in the previous Section 5.2.1.
In contrast – when using the variational integrator on the same mechanical system – the
maximum energy error is significantly higher in the range of 10≠3. The error occurs in
spikes throughout the simulation run, but appears to be bounded, see Figure 5.3b.
Carrying out the standard simulation with the classical reference model described in
Section 5.1.6, yields a bounded energy error in the range of 10≠4, see Figure 5.3c.
When using the variational integrator or the classical method, the error depends on the
step-size. The linear section of the logarithmic order-plots for both methods show, that
the energy error scales with �t2, see Figure 5.4a and 5.4b. Thereby the linear parts used
to calculate the slope are marked with a dashed line. As for both instances the implicit
midpoint rule – a second order method – is used, this is logical.
For the classical reference model an instability of the global energy error above a time
step of �t = 0.01s can be observed, marked by the ellipse in Figure 5.4b.
For the variational integrator one can also observe, that the section where the global
energy error is dominated by the order of the implemented time integration scheme, goes
approximately up to a time step of �t = 0.01s.

5.2.3 Energy conservation with elastic elements

It can be observed, that adding the elastic elements to the mechanism fundamentally
changes the energy error for the energy stable implementation, where the maximum error
now ranges around 10≠5, however is still bounded, see Figure 5.5a. The reason thereby
is an inexact approximation of the now non-linear gradient of the potential energy.
As the implementation allows for an easy substitution of this approximation by a higher
order method, the same simulation is carried out using the Gauss-Legendre quadrature
rule with 3 collocation points, leading to a significantly lower energy error, which now
lies in the range of 10≠13, see Figure 5.6. As now the energy error for both methods
depends on the chosen time step, we are interested in the order-plots. For the variational
integrator, the plot – depicted in Figure 5.7b – yields approximately the same results as
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(a) Energy stable time integration (b) Variational integrator

(c) Reference model

Figure 5.3: Energy error for the standard simulation run under gravitational influence,
with t = 50s and �t = 0.01s

(a) Variational integrator (b) Reference model

Figure 5.4: Order plots for the average energy error, using the standard simulation run
under gravitational influence, with t = 10s
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(a) Energy stable time integration (b) Variational integrator

Figure 5.5: Energy error for the standard simulation run with mono-articular springs,
with t = 50s and �t = 0.01s

Figure 5.6: Energy error for a standard simulation run with mono-articular springs,
using the updated energy stable method with Gauss-Integration (3 points), with t = 50s
and �t = 0.01s

for the simulation run under gravitational influence only, studied in the previous section.
This makes sense, as due to the use of local coordinates, the approach yields a non-linear
gradient of the potential energy with and without the presence of elastic elements.
The order-plot for the energy stable approach using the implicit midpoint rule, also
yields a scaling of �t2, see Figure 5.7a. This is again logical, as the approximation via
midpoint rule is a second order method.
Updating the time integration scheme by using the mentioned Gauss quadrature with 3
points for the non-linear potential energy of the springs leads to a relation of �t6 for the
energy error, see 5.8. This relation is expected, as the implemented Gauss quadrature
yields a 6th order method. Thereby one can observe that the linear part of the plot is
bounded by rounding errors for small time steps, as the energy error nears the range of
floating point precision.
Furthermore, it can be observed, that for the energy stable time integration, the method
behaves consistently for the whole proposed time step range, defined in Equation (5.7).
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(a) Energy stable time integration (b) Variational integrator

Figure 5.7: Order plots for the average energy error, using the standard simulation run
with mono-articular springs, with t = 10s

Figure 5.8: Order plot for for the average energy error, using the standard simulation
run with elastic elements and the updated energy stable method with Gauss-integration,
with t = 10s

5.2.4 Computational performance

The absolute duration for carrying out the time integration of the standard simulation
runs with respectively without the presence of elastic elements is subsequently summa-
rized in Table 5.2 and 5.3.
As the energy stable approach already has excellent conserving properties when the sim-
ulation is run only under gravitational influence, the higher order integration method
is not studied in that case. Furthermore as elastic elements are not implemented in
the reference model, for this approach only the case without mono-articular springs is
considered.
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tcomputation in s trealtime in %

energy stable (midpoint rule) 2.35 4.70

Variational integrator 140.42 280.84

Reference model 47.20 90.40

Table 5.2: Computational performance of the solvers only under gravitational influence,
averaged over 10 simulation runs, with t = 50s and �t = 0.01s

tcomputation in s trealtime in %

energy stable (midpoint rule) 3.36 6.72

energy stable (Gauss-integration, 3 points) 3.53 7.06

Variational integrator 147.68 295.36

Table 5.3: Computational performance of solvers in the presence of elastic elements,
averaged over 10 simulation runs, with t = 50s and �t = 0.01s

5.3 Discussion

5.3.1 Use of non-minimal coordinates

A significant di�erence between the presented algorithms and the classical approach is
the use of non-minimal coordinates. As thus structure-preservation becomes an issue,
the behavior of the time integration schemes concerning this topic was studied in Section
5.2.1. The results yield, that both approaches do not violate the constraints and thus
the choice of coordinates does not lead to a disadvantage regarding a possible drift-o�
phenomenon.
The constant mass-matrix of the energy stable approach, as described in Section 3.4.2,
is a direct consequence of the use of non-minimal coordinates, which is beneficial for the
energy conserving behavior of the integration scheme, which will be further discussed in
the next Section 5.3.2.
Furthermore, the description in positional coordinates instead of using the rotation-
angles, allows for a rather straightforward integration of the additional linear elastic
elements. Especially the use of an inertial reference frame facilitates the implementation
of more complex multi-articular systems, as once the fastening points are expressed in
the chosen coordinates, they can be almost arbitrarily interconnected.
The approach using the variational integrator can be easily expanded to 3d, as the
description in local coordinates allow the use of a constant moment of inertia – which
in the 3d case becomes a tensor instead of a scalar – in body coordinates. This is a
significant advantage over the described energy stable approach, as there the inertial
reference frame does not allow a straight forward expansion to the 3d case.
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5.3.2 Energy conservation

Especially for more complex systems with di�erent form of energy-storage, conserving
the property of energy-conservation is crucial.
The approach using a variational integrator conserves the energy well with no significant
di�erence between a simulation with and without elastic elements up to a step size of
�t = 0.01s. In both cases the maximum error ranges around 10≠3 for the standard time
step and scales with �t2. Thus – especially when implementing a higher order method
– this approach is feasible for long-time simulation of the proposed mechanical system.
However compared to the classical and the energy stable approach, the energy error is
significantly higher. With a maximum error of around 10≠5, the described energy stable
method performs best in that regard. A modification with a higher order integration
method, yields excellent results. It is worth noting, that – due to the specific structure of
this approach – one can only us this modification for the non-linear part of the potential
energy. This leads to a better computational performance, subsequently discussed in the
next Section 5.3.3.
Furthermore the energy stable method is in all considered scenarios consistent concerning
the global energy error, as a decrease in step size always decreases said error in the
considered time step range – going up to �t = 0.2s – which is an important result.

5.3.3 Computational performance

As a last aspect, the computational performance is discussed. When looking at the
relation between the duration of the simulation and computation, it becomes clear, that
the energy stable approach is the fastest by a rather large margin.
The elastic elements naturally increase the computation time, however the integration
scheme is applicable for real-time calculations for both scenarios. Furthermore, the
higher order integration methods influence on the performance is relatively small. The
most time-consuming scenario yields trealtime = 7.06%, which makes it applicable for
real-time calculations.
In contrast the approach using variational integrator is the slowest, almost requiring
triple the simulation time for the computations, which is a strong indication, that this
method is not applicable for real-time calculations. The result for the reference model
yield trealtime = 90.40% in the case of only gravitational influence, which is sorted in
between the two other approaches regarding its performance.

5.4 Summary and outlook

After introductory remarks about the forward-dynamics problem statement in Chapter
1, the system considered in this thesis – a planar, serial manipulator with rotational joints
and linear, elastic elements between the links – was described in Chapter 2. Thereby a
background on elastic elements in robotics was given in Section 2.2.1.
In the next part a comprehensive overview over conserved quantities in Hamiltonian
systems was given. Thereby the energy stable method was used to treat the aspect of
conserving the Hamiltonian, see Chapter 3. Afterwards the idea of symplectic integra-
tors was introduced on the basis of a variational integrator constructed on Lie Groups,
see Chapter 4.
In those two chapters, the respective implementation of the presented serial manipulator
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was described in the Sections 3.4 and 4.4. Thereby computations where carried out in
MATLAB [25].
In the last Chapter 5.2, first the evaluation criteria where determined, see Section 5.1.
This provided the basis for the following discussion of the presented time-integration
schemes in Section 5.3.
The described energy stable method was shown to be have excellent properties for study-
ing the e�ects of mono- and multi-articular springs on such a system, with its structure
and energy-preserving behavior as well as real-time capabilities. Due to its excellent
energy conservation, this approach is could be interesting for modeling and possibly
realizing passivity-based control strategies. Furthermore, the choice of non-minimal co-
ordinates proved advantageous, as it facilitated the implementation of the linear elastic
elements.
For the energy stable method the challenge of implementing this approach for the 3d
case arises. Thereby also the e�ects on the simulation properties are of interest.
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