
A Taxonomy of Integration-Relevant Faults for
Microservice Testing

Lena Gregor
School of CIT

Technical University of Munich
Munich, Germany
lena.gregor@tum.de

Anja Hentschel
Siemens AG

Munich, Germany
anja.hentschel@siemens.com

Leon Kastner
School of CIT

Technical University of Munich
Munich, Germany

leon.kastner@tum.de

Alexander Pretschner
School of CIT

Technical University of Munich
Munich, Germany

alexander.pretschner@tum.de

Abstract—Microservices have emerged as a popular archi-
tectural paradigm, offering a flexible and scalable approach
to software development. However, their distributed nature
and diverse technology stacks introduce inherent complexities,
surpassing those of monolithic systems. The integration of
microservices presents numerous challenges, from communication
failures to compatibility issues, compromising system reliability.
Understanding faults in these distributed components is crucial
for preventing defects, devising test strategies, and implementing
robustness testing. Despite the significance of these software
systems, existing taxonomies are limited, as they primarily focus
on non-functional attributes or lack empirical validation. To
address these gaps, this paper proposes an extensive taxonomy of
the most common integration-relevant faults observed in large-
scale microservice systems in industry. Leveraging insights from
a systematic literature review and ten semi-structured interviews
with industry experts, we identify common integration-related
faults encountered in real-world microservice projects. Our final
taxonomy was validated through a survey with an additional set of
16 practitioners, confirming that almost all fault categories (21/23)
were experienced by at least 50% of the survey participants.

Index Terms—microservice systems, fault taxonomy, service
integration, software testing, real faults

I. INTRODUCTION

The microservice architectural style is a methodology for
developing an application as a collection of small services. Each
service runs in its own process and interacts with others through
lightweight mechanisms, such as REST APIs or message
queues. These services are built around specific business
functions and can be deployed independently, often using
automated deployment methods. Management and development
of the services is decentralized, allowing for flexibility in
choosing programming languages and data storage technologies
for each service. [1], [2]

Due to its advantages, microservice architecture has gained
widespread adoption in practice [3], [4]. However, the dis-
tributed nature of microservices, coupled with their diverse
technology stack, introduce inherent complexities for building
robust systems, often surpassing those encountered in mono-
lithic systems [5]. Integrating microservices with each other
introduces various potential pitfalls, ranging from communica-
tion failures to compatibility issues, which can compromise the
reliability and robustness of the system as a whole. Knowledge
about potential integration faults is thereby crucial for ensuring

the quality, security, and correct functioning of such systems.
Accordingly, this information would allow creating integration-
fault-aware test strategies or test cases (e.g., through defect-
based testing [6]), implement robustness testing through fault
injection, or create mutation operators to evaluate the quality
of existing test suites.

For other system types, such as cyber-physical systems or
object-oriented monoliths, research has already acknowledged
and acted on the need for integration fault taxonomies [7]–[10].
However, for microservice systems, knowledge about these
faults is still sparse. Integration fault taxonomies from those
other contexts are missing important aspects that come with
the distributed nature of microservice systems, e.g., having
components like message queues that realize the communica-
tion between services and can have constraints or malfunction.
Existing taxonomies pertaining to service-oriented architecture
(SOA) or web services [11], [12] rely on theoretical frameworks,
lacking empirical data and validation.

To the best of our knowledge, only one taxonomy has been
proposed in the literature for microservice-based systems by
Silva et al. [13]. It includes a mixture of integration faults
and faults that only affect the functionality of single services.
The taxonomy also primarily examines the impact of faults
on non-functional attributes such as maintainability. However,
testing predominantly focuses on functional aspects.

Additionally, knowledge about the severity of faults and
the effort that it takes to fix them can help with prioritization
during test strategy creation or testing. However, current fault
taxonomies do not provide this information.

To address these limitations and advance our understanding
of integration faults in microservice systems, this research
paper proposes the following approach: We conducted a
systematic literature review to leverage existing knowledge
related to integration faults in service-based systems. Then, we
conducted ten semi-structured interviews involving industry
experts and practitioners with knowledge from over 20 different
microservice projects from various domains to deepen our
understanding. Based on those two steps, we created a
taxonomy with integration-relevant faults encountered in real-
world microservice systems. We additionally validated the
resulting taxonomy through a survey with a bigger set of
practitioners and experts. We also collected information on the

979-8-3315-0814-2/25 © 2025 IEEE

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ICST 2025, Naples, Italy
Technical-Research Track

138

perceived severity and the effort to fix those faults.
Our main contribution to the state of the art in microservice

testing is the validated taxonomy of integration-relevant faults
for microservice systems commonly observed in practice. To the
best of our knowledge, this is the first taxonomy that focuses
on integration faults in microservice systems and includes
interviews with practitioners. The work presented in this paper
enables several important directions for future work, such as:

Systematic Fault Identification. Fault taxonomies cate-
gorize different types of software faults, making it easier to
systematically identify and categorize faults in software systems.
The works of Islam et al. [14] and Zheng et al. [15] have
shown how other fault taxonomies or classification schemes
were used to classify and analyze bugs and faults in software
systems, allowing insights into fault patterns and evaluating
fault detection approaches.

Creating Labeled Datasets. In addition to classifying and
categorizing software faults, a structured taxonomy can be
leveraged to create labeled datasets that are essential for
machine learning (ML) approaches. By organizing faults into
distinct categories, projects with similar fault patterns can
be mined to generate comprehensive datasets. These labeled
datasets can then be used to train ML models for bug prediction
and other tasks.

Test Case Design. Fault taxonomies can guide the creation
of test cases using the defect-based approach[6], ensuring that
tests are designed to cover a wide variety of fault types. By
aligning test cases with known categories of faults, testers can
better anticipate and detect issues in the software.

Risk Assessment. The information on perceived severity and
effort to fix certain fault categories allows testers to prioritize
testing efforts on fault categories with more problematic
implications. This can also help to prioritize efforts to mitigate
the risk of certain fault categories already at design time.

Enhancing Software Reliability. Our taxonomy can fur-
thermore be used for fault injection approaches [16]–[18] to
test the robustness and reliability of a microservice system.

Enhancing Manual Repair Processes. In the absence of
automated techniques, understanding the root causes of bugs
can significantly help developers in manually fixing programs.
By increasing their awareness of bug origins, developers can
better prioritize which potential causes to inspect, using the
relative importance of these causes as outlined in our taxonomy.

Mutation Testing. Taxonomies with common faults can
be used to create mutation operators for mutation testing
approaches to evaluate the quality of test cases [19].

II. METHODOLOGY

To create an extensive fault taxonomy including realistic
integration-relevant faults, we first started by analyzing the
existing knowledge from the literature. Through a systematic
literature review, which is reported in Sec. II-A, we found a
fault taxonomy for SOA which we used as a basis for our
taxonomy. We then adapted the existing top-level fault cate-
gories of this taxonomy to the microservice context (Sec. II-B).
To enrich and validate the taxonomy and also deepen our

understanding, we conducted semi-structured interviews with
practitioners (Sec. II-C). Lastly, we validated the resulting
taxonomy through a survey with another set of practitioners
(Sec. II-D). Through this survey, we also collected data on the
perceived severity of the faults and the effort to fix them. The
artifacts created in our studies are provided in a replication
package [20] for reference.

A. Systematic Literature Review

To find our initial taxonomy, we performed a systematic
literature review using three different search engines: Scopus,
IEEE Explore, and ACM Library. As a search for fault
taxonomies for microservice systems only resulted in one
publication, we decided to broaden our search to SOA systems
as well. The search string we used for all three search engines
is as follows: (“fault taxonomy” OR “fault ontology”) AND
(microservice* OR “micro-service*” OR “micro*service”
OR soa* OR “service-oriented*” OR “service*oriented*”).
For Scopus, we restricted the search to titles, keywords, and
abstracts, and for the document types “article” and “conference
paper”. For the ACM library, we restricted the document type
to “research article”. This resulted in 10 papers in Scopus, 1
in IEEE Explore, and 8 in ACM Library. References to all
publications found through the literature research and details on
the further selection are reported in the replication package [20].
After removing duplications, our search resulted in a total of
16 papers. Based on the abstracts of these papers, we applied
the following inclusion and exclusion criteria:

• Inclusion: Studies are considered if they propose a
taxonomy or ontology of faults in SOA or microservice
systems.

• Exclusion: Studies were excluded from further review
if they were focused on other system types or did not
propose a fault taxonomy.

This resulted in a total of 5 publications. Next, we applied
the same criteria to the full text of each of the papers. This
resulted in four publications: three including taxonomies for
SOA systems [11], [12], [21] and one including a taxonomy
for microservice systems [13]. Silva et al. [13] propose the
only existing fault taxonomy for microservice-based systems,
focusing on how faults influence non-functional attributes like
maintainability and performance. While this taxonomy provides
valuable insights, its variability in structure, granularity, and
generalizability poses challenges for directly using it to develop
fault injection techniques or test strategies. Additionally, the
taxonomy is not centered around integration-relevant faults and,
therefore, is not usable for evaluating integration or system-
level tests.

From the SOA-related publications, we chose the taxonomy
of Bruning et al. [11] as it is easy to understand, well described,
and provides a structured overview with multiple fault category
levels with mostly integration-relevant faults. Additionally,
according to Scopus, it has the highest number of citations in
our pool of papers. The taxonomy of Bruning et al. [11] was
published in 2007 and, therefore, might be outdated, which
may raise concerns about its alignment with the present-day

139

landscape of SOA. Since our work does not aim to explore the
differences between SOA and microservice systems but rather
uses this taxonomy as a basis in the absence of comparable
taxonomies for microservice-based systems, we believe this is
not a significant limitation.

B. Original Taxonomy and Adaptations

As the original taxonomy by Bruning et al. [11] was created
for SOA services and, therefore, also uses terminology specific
to the SOA context, we need to perform minor adaptations to
the top-level categories, to fit the microservice context1.

The original taxonomy [11] is built around the five steps that
a SOA service needs to undertake every time it is executed:
Publishing, Discovery, Composition, Binding, and Execution.
Each of these phases is used as a top-level fault category and is
subdivided into two to four more detailed sub-fault categories
in the original taxonomy. To derive our adapted taxonomy, we
analyzed each of the top-level fault categories’ relevance for the
microservice context based on knowledge from the literature.
The parts of the original taxonomy that are discussed in the
following, are shown in Fig. 1. All adaptations to the two first
layers of the taxonomy are shown in Fig. 2.

Publishing Fault. In their work, Bruning et al. [11] explain
that during the publishing phase, a service is deployed to a
server, and its description is made publicly accessible. They
emphasize that services must be self-descriptive, meaning that
the description should encompass all necessary syntactic and
semantic details about the service.

In the context of microservices, the term “publishing” is
often used interchangeably with “deploying”, which does not
align with how Bruning et al. define “publishing”. Additionally,
the sub-category Service Deployment Fault under the broader
Publishing Fault category implies that the authors distinguished
between service publishing and service deployment within the
SOA context. Although the Publishing Fault category does not
perfectly suit the microservice environment, the related faults
Service Description Fault and Service Deployment Fault and
their associated sub-categories remain relevant since we also
deal with service descriptions and deployments in this context.
Therefore, we remove the top-level Publishing Fault category
and elevate Service Description Fault and Service Deployment
Fault, along with their respective sub-categories, to top-level
faults in the adapted taxonomy.

Discovery Fault. In the SOA discovery phase, a consumer
dynamically searches for a service that offers the required
functionality [11]. To the best of our knowledge, this has not yet
been achieved in real-world microservice applications. Instead,
developers typically select the service they want to use, whether
internal or third-party. In the case of microservices, static ad-
dresses are uncommon, particularly when multiple instances of
the same service are deployed, and the communication between

1Parts of our preliminary adaptations were presented at the Microservices
2023 conference [22], a venue open for discussion of early-stage works with
experts in the field, helping to shape the direction of potential later publications.
We used this presentation to gather initial feedback on our efforts to develop the
taxonomy which, therefore, should not be confused with a formal publication.

them must be dynamically defined [23]. There are multiple
service discovery patterns mentioned in the literature and used
in practice (e.g., client-side or server-side discovery [23]) that
include a service registry component that helps identify the
correct IP address of a service or service instance [23]. In such
an architecture pattern, the faults No Service Found and Wrong
Service Found seem relevant, which will be tested through the
interviews reported in Sec. II-C. Therefore, we keep these fault
classes for now, although the Discovery phase in a microservice
context is slightly different than in a SOA context.

Composition Fault. In their fault taxonomy, Bruning et al.
assume that composition in a SOA system operates dynamically,
despite acknowledging in their paper that this has not yet been
implemented in practice [11]. To the best of our knowledge,
the dynamic composition of multiple microservices to deliver
a combined functionality is still not feasible in real-world
scenarios. However, since microservices typically rely on other
microservices to provide a combined functionality [2], we
believe that composition faults remain relevant in the context
of microservices.

Binding Fault. In SOA, the binding phase occurs when
the consumer binds itself to the service provider to initiate
execution [11]. In the context of microservices, the term
“binding” does not quite fit when using a REST API as a
communication mechanism between two or more services. As
a result, we rename this phase to “Connection”, leading to
the fault category Connection Fault with its sub-categories
Connection Denied and Connection to Wrong Service.

Execution Fault. In the execution phase, the consumer sends
input parameters to the provider, which processes the request
and returns the output parameters to the consumer [11]. This
phase is directly applicable to the microservice context without
modification.

C. Interviews with Practitioners

To get deeper insights into integration-relevant faults in
microservice systems in practice and enrich and further
adapt the original taxonomy for the microservice context, we
conducted semi-structured interviews with 10 practitioners.

1. Participant Recruitment. We considered practitioners
with at least three years of working experience in projects with
microservice systems as the target group of our interview study.
To make our results as generalizable as possible, we opted
to have as many participants from different companies and
projects as possible. First, we contacted interview candidates
who fulfilled these criteria from the author’s personal contacts.
Second, we asked them to disseminate the study to interested
and qualified colleagues. In the end, this resulted in 10 success-
fully conducted interviews. The interviewees had between 4-32
years of work experience in software development (median =
17.5), with 3-8 years of experience in microservice projects
(median = 5). Each of them had worked in 2 to 10 different
microservice projects at the time of our interview. Their roles
within these projects included test manager, test architect, test
consultant, code quality consultant, DevOps consultant, DevOps
engineer, DevOps architect, senior developer, and project lead.

140

SOA
Fault

Publishing Fault

Discovery Fault

Composition
Fault

Binding Fault

Execution Fault

Service Description
Fault

Service Deployment
Fault

No Service Found

Wrong Service Found

Timed Out

Binding Denied

Bound to Wrong
Service

Timed Out

…
……
…
…
…
…
…

…
…
… …

…
…
…

…
…
…

Fig. 1. Relevant section from the original taxonomy for SOA faults [11]

Microservice
Fault

Discovery Fault

Composition
Fault

Connection Fault

Execution Fault

Service Description
Fault

Service Deployment
Fault

No Service Found

Wrong Service Found

Timed Out

Connection Denied

Connection to Wrong
Service

Timed Out

…
…
…
…

…
…
…
…

…
…
… …

…
…
…

…
…
…

Fig. 2. Relevant section from the adapted taxonomy for the microservice
context

The microservice projects they acquired knowledge from also
came from various domains, including energy distribution,
health care, the Internet of Things, industry automation, public
administration, retail, insurance, and finance.

2. Interview Process. Although we are not creating a
taxonomy from scratch, but on the basis of an existing
taxonomy for SOA systems [11], we still want the interview
questions to be as generic as possible. By doing this, we plan to
get unbiased data that helps to not only enrich but also validate
the adapted taxonomy. We opt for a semi-structured interview
and use the questionnaire of Holling et al. [24] as a guideline
for creating our interview questions as they have shown their
approach to be effective for the elicitation of defects [24]. Semi-
structured interviews demand the interviewer to formulate new
questions based on the interviewee’s responses, which might
be challenging. Therefore, having an additional interviewer
available to pose follow-up questions and support the primary
interviewer when necessary can be beneficial [25]. As a result,
our interviews are conducted by two authors simultaneously,
each assigned distinct roles: one author led the interview,
while the other author asked supplementary questions only
when relevant. Our interviews focus on getting information
about faults that can happen during the integration of multiple
services within a microservice system. To ensure that all
interviewees know the focus of our interviews and have the
same understanding of integration as we have, an invitation
with a description of the purpose and context of the interviews
was sent to each of the interviewees beforehand. Additionally,
we send them the three main questions of our interviews with
this invitation to give them the chance to prepare for the
interviews to get as much information from them as possible.
All interviews are recorded and later transcribed for the data
analysis.

3. Data Analysis. As it is commonly done in qualitative data
analysis [26], we use a hybrid approach that combines deductive

and inductive coding to analyze the data from our interviews.
Utilizing the fault categories from the adapted taxonomy as the
pre-defined set of codes or codebook, we first perform deductive
coding [27]. This is an analysis method where qualitative data
is labeled with existing codes. For text blocks that report faults
not represented by any of the pre-defined codes, we perform
inductive coding [28], [29] to create new fault categories for
our fault taxonomy. The two interviewers were assigned as
evaluators for each interview. Each evaluator proceeds with
the coding process individually. Then, after the deductive and
inductive coding of all interviews is completed, a meeting with
both evaluators is conducted where differences between the
coding are detected and resolved through discussions.

D. Taxonomy Construction

Each label created during the inductive coding phase is
sorted into the structure of the adapted taxonomy, ensuring that
the categories and sub-categories follow a “is a” relationship.
After evaluating all interviews, we delete fault categories from
the original taxonomy that are not represented in our interviews.
Wherever a fault category only has one sub-category left after
the construction and deletion process, it is deleted, and the
sub-category is set in its place.

E. Taxonomy Validation

To ensure that the final taxonomy is comprehensive and
representative of real faults in microservice integration, we
conducted a validation process utilizing a survey with a distinct
group of practitioners, separate from those engaged in the initial
interviews.

The target group of this survey were practitioners with a
minimum overall software development experience of three
years and a minimum experience in microservice projects of one
year. First, we invited selected practitioners who fulfilled these
criteria from our personal contacts. Second, we asked them to

141

disseminate the study to interested and qualified colleagues.
Third, we posted the invocation for the survey in a company
internal forum to attract qualified participants from as many
different projects and system domains as possible.

In total, 16 participants took part in our survey with a
minimal overall software development experience of 6 years
and a maximum of 35 years (median = 17.5). Regarding
experience in microservice systems, the minimum was 2
years and the maximum was 22 years (median = 7). The
participants have worked in microservice projects from various
different domains, including smart infrastructure, IOT, finance,
healthcare, energy distribution, tax and accounting, e-commerce,
and automotive. The job descriptions they reported included
software architect, software development, test architect, product
owner, tester, software development and operations, architecture
consulting, and consulting on continuous deployment.

We used Microsoft Forms2 to create our survey form. We
started the survey with the same background questions as in our
interviews. Then, we proceeded with questions regarding our
final taxonomy. Putting the whole taxonomy with all its leaves
into a single survey page would make the survey hard to read
and comprehend. Therefore, we partitioned it at the highest
categories (e.g., “Service Description Faults”). In order to keep
the time required to complete the survey to a reasonable level,
we did not ask about all possible subcategories individually.
Instead, we asked for the superordinate category for broad
subcategories and only mentioned the individual leaf faults as
examples. For example, for the “Service/ Description Mismatch”
category, we added the question, “Did you ever encounter a
mismatch between a service and its description?” and then
added its descendant categories as examples of this fault in
the description text. Additionally to the questions whether or
not the participants have ever encountered the respective fault
category in a project, we also added two more questions: (1) If
the problem occurred, how severe was it, and (2) if it occurred,
how much effort was required to fix it? With these additional
two questions, we want to investigate the perceived severity and
effort of the individual fault categories. This information can
help prioritize one category over another when, i.e., creating
a test strategy to efficiently direct resources. In the final part
of the survey, we added a free-text answer, where participants
could mention any other problems or faults related to the
integration of multiple microservices that they did not find
in the survey already. By doing this, we check whether our
taxonomy already includes all faults encountered by developers
in practice. If not, we find out what is still missing.

III. RESULTS

In the following, we describe and explain the final taxonomy
(displayed in Fig 3) as well as the results from our validation
study.

A. Final Taxonomy

1. Service Description Faults. This fault category includes
faults where either the description of a service (e.g., the

2https://forms.office.com

OpenAPI specification) is incorrect or it does not match the
related service. Both categories were divided into multiple
sub-categories:

1.1 Description Incorrect. An incorrect description can be
due to a Format Fault or a Content Fault. Faults caused
by an incorrect description can be detected by checking
the description of a service only. An example of a Format
Fault would be a syntactic fault in the JSON format in an
OpenAPI specification of a microservice. In the interviews,
the participants mentioned unclear or ambiguous descriptions
as a Content Fault. Those then led to misinterpretations and
incompatible interfaces of services.

1.2 Service/Description Mismatch. This fault category con-
siders faults where a service and its description do not match.
For the Description Incomplete fault, the service includes
some functionality or aspects that are not documented in the
description. The interviewees mentioned missing information
about the units and interpretation of response data here. This
causes issues in understanding all service functionalities and
can lead to misinterpretation and incompatible interfaces. The
description of a feature (e.g., the functionality of an endpoint or
the interpretation of a parameter or return type) can be wrong
(Wrong Feature Description), or a feature defined by a service
description can be incorrectly implemented (Wrong Feature
Implementation). When the client of a service misinterprets
the features of the used service, it is called a Wrong Feature
Interpretation. In the interviews, there were examples of corner
cases (e.g., empty lists) that one service expected the other
to handle suitably, which was not the case. Some interview
participants also mentioned that shared functionality of services
was outsourced to shared libraries to reduce duplicated code.
This Implicit Interface became problematic later when it was
unclear how many and which services were affected by changes
in these libraries.

2. Service Deployment Faults. These faults occur when a
service is not successfully deployed.

2.1 Required Resource Missing. First, the deployment of
a service can fail or be incorrect due to required resources
being missing. Examples of such resources from the interviews
were databases or configuration services. The service might be
deployed but will fail to perform.

2.2 Wrong Configuration. The configuration of a microser-
vice can be incorrect, so the deployment is not successful. The
interviewees described various different examples here, e.g.,
ports or access rights that are not set or incorrectly set.

2.3 Service/Environment Incompatible. The service and its
environment (e.g., the database, libraries, connection com-
ponents like a message queue, containerization, deployment
environment) are incompatible. The interviewees mentioned
examples where service and environment were incompatible
because they were not configured correctly from the start.
Additionally, they described situations where a third party (e.g.,
AWS) changed or updated the environment, making the service
and environment incompatixble, although it was compatible
before.

142

Microservice
Fault

Discovery Fault

Composition Fault

Connection Fault

Execution Fault

Service Description
Fault

Service Deployment
Fault

No Service Found

Wrong Service Found

Incompatible
Components

Parts of Composition
Missing

Connection Denied

Connection to Wrong
Service

Timed Out

Service Crashed

Incorrect Result

Timed Out

Description Incorrect

Service/Description
Mismatch

Required Resource
Missing

Required Service Not Existing

Not Listed in Lookup Service

Faulty Lookup Service

Authorization Denied

Authentication Failed

Wrong Configuration

Incorrect Input

Service State Faulty

Format Fault

Content Fault

Description Incomplete

Described Features Missing

Wrong Feature Description

Conversation Fault

Wrong Service Version

Wrong Service

Wrong Feature
Implementation

Wrong Version

Wrong Feature Interpretation
Wrong Configuration

Service/Environment
Incompatible

Connection Interrupted

Message Lost

Connection
Performance

Data Transmission Too Slow

Too Much Data

temporarily

permanently
Service Too Slow

syntactical

semantical

Service Faulty

Incompatible Context
Interpretation

Incompatible
Interfaces

Connection
Disruption

Time Restriction

Data Load Restriction

Too Many Messages

Too Much Data

Timed Out

Implicit Interface

Disruption by
Environment

Wrong Result Code

Required Service Not
Reachable

Data Incomplete

Execution
Performance

Combined
Functionality Faulty

Routing Faulty

Fig. 3. The final taxonomy

143

2.4 Timed Out. Deployment of a service can run into a time
out.

3. Discovery Faults. Faults during the discovery of another
service (e.g., through a service registry component) or in the
resulting service.

3.1 No Service Found. A required service cannot be found
either because the Required Service is Not Existing (e.g.,
because it was not deployed or the deployment failed) or
because it was Not (correctly) Listed in the Lookup Service.

3.2 Wrong Service Found. Not only no service can be found,
but also the wrong service. This fault can occur either due to a
Faulty Lookup Service which returns an entirely wrong service,
or the Wrong Version of a service can be returned. The wrong
(and therefore incompatible) version of another service can be
found, either because both service versions (e.g., for different
client/ consumer versions) are deployed in the system or only
the wrong version of the service is deployed.

3.3 Routing Faulty. A (error) message is not correctly routed
through a microservice system.

4. Composition Faults. Multiple microservices are often
composed to create a combined functionality. However, the
composition can be invalid.

4.1 Incompatible Components. Components can be incompat-
ible, e.g., because one component sends data in the XML format
and the other expects a JSON format (syntactic incompatibility),
or e.g., one component sends a value that should be interpreted
as dollars and the other expects a value in euros (semantic
incompatibility).

4.2 Parts of Composition Missing. E.g., an authentication
service that is needed to successfully use the services is missing.

4.3 Combined Functionality Faulty. When multiple services
provide a combined functionality but it was incorrectly im-
plemented. E.g., inter-connected data should be deleted from
multiple services but is only deleted from some.

5. Connection Faults. This category considers faults that
lie in the connection between two or more services, e.g., in
the message queue or in the network that is used to transport
messages from one service to another.

5.1 Connection Denied. According to our interviews, the
connection to another service can be denied either due to a
denied authorization (Authorization Denied), a failed authenti-
cation (Authentication Failed), or a Wrong Configuration of
the connection.

5.2 Connection to Wrong Service. A service can try to
connect itself to the Wrong (not intended) Service or a Wrong
Service Version (one that is not compatible with the service). If
a discovery mechanism is installed in the microservice system,
this fault might manifest as a Wrong Service Version Discovery
Fault. However, as a microservice system does not necessarily
need to have a discovery component, the connection of two
(or more) non-compatible services can also be a fault of the
connection.

5.3 Timed Out. The connection can time out if, e.g., the
connection component is not responding or is overloaded.

5.4 Connection Performance. The performance of the con-
nection between two services can suffer either because the

Data Transmission is Too Slow, Too Much Data is sent, or Too
Many Messages are sent.

5.5 Connection Disruption. The connection between two
services can be disrupted by the component that implements
the connection (e.g., a message queue). This component can
have its own Time Restriction or Data Load Restriction, which
may have disrupting side effects on the connection between
the services. The Connection itself can be Interrupted (e.g.,
through a failure in the network), or Messages can be Lost
(e.g., due to a faulty message queue).

6. Execution Faults. Execution faults occur when two or
more services are executed, but the result does not match the
expected outcome.

6.1 Incorrect Result. The execution gives back an incorrect
result, either because the input was incorrect (Incorrect Input),
the data that the other service (instance) had stored and used
for the execution was incorrect (Service State Faulty), or the
other service was faulty (Service Faulty). An incorrect result
can also happen because both services have an Incompatible
Context Interpretation. A typical example is services that are
executed in different time zones and, in consequence, interpret
time data differently. In, e.g., a REST-API, the result code of
the response can also be incorrect (Wrong Result Code), and
the resulting data can be incomplete (Data Incomplete), e.g.,
due to pagination.

6.2 Timed Out. The service execution can time out because
the other Service Crashed either temporarily or permanently,
because of a Communication Failure, or because the other
Service is Too Slow.

6.3 Incompatible Interfaces. The services’ interfaces can
be incompatible, resulting in either a syntactic or semantic
Conversation Fault. An example of syntactic incompatibility
would be when one service sends data in the XML format while
the other expects data in the JSON format. With a semantic
conversation fault, the interpretation of the exchanged data
differs between the services. For example, one interprets an
int value in dollars while the other interprets it in euros. The
interfaces of two or more services can also be incompatible
because one service sends more data than the other service
can handle (Too Much Data).

6.4 Disruption by Environment. The execution of a request
can also be disrupted by the environment (e.g., hardware
components that stop working or do not work as intended).

6.5 Execution Performance. The interviewees described
performance problems with the execution of requests that
involved multiple services. In contrast to the Service Too Slow
fault, this did not completely hinder the system’s functionality
but only resulted in a bad user experience.

B. Validation Results

The results of the validation survey are summarized in Table I.
For each fault category, we report the percentage of participants
who have encountered such a fault in one of their projects
before (“Yes”) and those who did not (“No”). We furthermore
show the perceived severity of the faults and the perceived
effort to fix such faults in a microservice system.

144

TABLE I
SURVEY RESULTS

Fault Category Sub Category Response Severity Effort to Fix
Yes No Low Moderate High Low Moderate High

Description Fault
Format Fault 75% 25% 44% 19% 13% 56% 19% 0%
Content Fault 88% 13% 19% 44% 19% 19% 44% 25%
Service/ Description Mismatch 88% 13% 0% 50% 31% 0% 38% 50%

Service Deployment Fault

Required Resource Missing 94% 6% 13% 25% 56% 44% 44% 6%
Wrong Configuration 100% 0% 19% 6% 75% 56% 13% 31%
Service/Environment Incompatible 56% 44% 0% 6% 50% 13% 6% 38%
Deployment Timed Out 88% 13% 25% 19% 44% 31% 25% 31%

Discovery Fault
No Service Found 69% 31% 6% 25% 38% 19% 31% 19%
Wrong Service Found 19% 81% 0% 0% 19% 0% 13% 6%
Routing Faulty 50% 50% 13% 19% 19% 31% 25% 6%

Composition Fault
Incompatible Components 94% 6% 13% 50% 31% 19% 31% 44%
Parts of Composition Missing 50% 50% 0% 6% 44% 19% 13% 19%
Combined Functionality Faulty 88% 13% 0% 44% 38% 0% 19% 63%

Connection Fault

Connection Denied 88% 13% 13% 44% 3% 31% 31% 19%
Connection to Wrong Service 19% 81% 0% 0% 19% 6% 6% 6%
Connection Timed Out 94% 6% 19% 50% 25% 19% 38% 38%
Connection Performance 88% 13% 0% 44% 44% 0% 6% 81%
Connection Disruption 69% 31% 6% 13% 50% 6% 31% 31%

Execution Fault

Incorrect Result 75% 25% 6% 38% 31% 6% 50% 19%
Execution Timed Out 88% 13% 25% 38% 25% 0% 25% 56%
Incompatible Interfaces 69% 31% 6% 6% 56% 6% 31% 31%
Disruption by Environment 69% 31% 0% 13% 56% 19% 19% 31%
Execution Performance 94% 6% 0% 56% 38% 6% 0% 88%

There is no fault category that none of the participants
have ever encountered in their projects, which confirms that
all the categories in the taxonomy are relevant. Most of the
fault categories were experienced by at least 50% of the
participants before. The most approved fault category is Wrong
Configuration with 100% of “Yes” answers. Only the two fault
categories Wrong Service Found and Connection to Wrong
Service were encountered by less than 50% but still by nearly
20% of all participants. Wrong Configuration was perceived
as the most critical regarding the severity, with 75% of all
participants indicating the severity as “High”. The fault category
Execution Performance was indicated with the highest effort
to fix as 87% of participants perceived the effort as “High”.
Some participants suggested missing faults in the taxonomy.
One relates to a process fault, but its system consequences are
covered. Another increases workload without causing system
errors, so it is excluded. The remaining five fit under “Required
Resource Missing”, “Combined Functionality Faulty”, and “Too
Much Data”. We believe participants could not find the correct
category because the survey descriptions lacked examples
specific to their experiences. Those results give us confidence
that we did not miss any significant faults in our taxonomy.
Additionally, given that most fault categories were experienced
before by at least 50% of all participants, we conclude that
the fault categories in our taxonomy are relevant.

IV. DISCUSSION WITH RELATED WORK

In the following, we discuss our results and compare our
taxonomy with integration faults taxonomies and taxonomies
for (micro-)service systems in related work.

A. Final Taxonomy vs. Integration Fault Taxonomies
A vast amount of work regarding recurring faults for different

system types exists in the literature. Some of these works
include integration-relevant faults considering various aspects
of integration, among them integration faults in monolithic
(e.g., [7]), cyber-physical (e.g., [9], [30]), or object-oriented
(e.g., [10]) systems. Those taxonomies are insufficient for the
microservice context, as they do not include aspects that come
with the infrastructure and distributed nature of microservice
systems. Our taxonomy includes a multitude of fault categories
that relate to faults in the deployment of services, discovery
mechanisms, or connection components, which can not be
found in those taxonomies for other system types.

Taxonomies with faults in the composition of SOA services
(e.g., [11], [12]) and web services (e.g., [31]) do include some
faults that are also important for the microservice context, as,
e.g., one service not being able to find a specific another service.
However, unlike our work, they are not based on empirical
research. Therefore, it is unclear how realistic the faults in
these taxonomies are. To the best of our knowledge, our work
is the first integration-relevant fault taxonomy for microservice
systems that includes the experience and knowledge from
practice.

145

B. Final Taxonomy vs. Fault Taxonomies for (Micro-)Service
Systems

Several fault taxonomies exist for SOA systems [11],
[12], [32], with one specifically tailored for microservice
systems [13]. The SOA fault taxonomy proposed by Bruning et
al. [11] served as our starting point in developing the taxonomy
presented in this paper. However, it is important to note a
significant contrast: Bruning et al.’s [11] taxonomy lacks an
empirical foundation and is not designed for microservice
systems, which is in contrast to ours, which specifically targets
this context.

Building upon the work of Bruning et al. [11], Bhandari
and Gupta [12] extended the taxonomy but remained within
the domain of SOA systems. As we have described in more
detail in Sec. II-B, there are differences between “textbook”
SOA systems and microservice systems, which also manifests
in the fault taxonomies. They conducted a systematic literature
analysis to gather knowledge about faults in SOA systems
from the literature. In contrast, we conducted interviews with
practitioners to get a more practical point of view.

Marculescu et al. [32] analyzed and classified the faults found
in REST APIs of web services by automated test generation
with EvoMaster [33]–[35]. Their taxonomy focuses on faults in
REST APIs, while we opted to include different communication
mechanisms as well (e.g., message queues). Additionally, they
focus on all faults found through automatic test generation
while we focus on integration-relevant faults without a specific
test creation strategy.

To the best of our knowledge, the taxonomy by Silva et
al. [13] is the only taxonomy of faults in microservice systems.
However, it focuses on the impact of faults on non-functional
attributes, such as maintainability or performance. Despite
this contribution, the taxonomy poses challenges for usage
in the context of testing, e.g., creating a systematic fault
injection approach or test strategies, as many aspects of testing
are rather focused on functional attributes. Additionally, their
taxonomy is based on 28 studies from academia and 3 from
grey literature. Our work instead emphasizes insights from
the industry through interviews and surveys with practitioners.
Moreover, our taxonomy revolves around integration-relevant
faults, making it suitable for evaluating or creating integration-
level tests and test strategies within a microservice system.

In the following, we will compare the two taxonomies
in more detail: Silva et al. [13] group their fault categories
into six different categories: performance, security, reliability,
maintainability, compatibility, and functionality. The categories
with the most fault types are maintainability, security, and
performance. Unfortunately, Silva et al. only explain the higher
level categories regarding non-functional attributes but do not
describe the individual fault types in their paper. However,
they provided a replication package [36], that does include
descriptions of the examples that lead them to form those
fault types. Therefore, we used those descriptions for our
comparison and will quote excerpts of those directly for ease
of comprehensibility.

Maintainability Faults. Many of their maintainability faults,
e.g., “Invalid User Input Fault”, “Missing User Input Fault”,
“Expired Request Data Fault”, and “Invalid Parameter Query”
align or fall under our broader “Incorrect Input” category. Some
of those fault categories are highly specific to certain platforms
or technologies. E.g., “Invalid Parameter Query” pertains to
AWS query strings, while “Incomplete Signature” relates to
AWS signature mechanisms. We have intentionally opted for a
higher level of abstraction in our taxonomy to maximize its
comprehensibility and adaptability across diverse microservice
environments rather than tying them to specific technologies.

Security Faults. Most security-related faults such as “Inse-
cure Data Exposure”, “Missing Authorization”, and “Missing
Authentication” are not represented in our taxonomy. This is
where the key difference between our two taxonomies becomes
apparent: while Silva et al. focused on non-functional attributes,
we focus on functionality. Therefore, we only consider faults
where existing authorization or authentication mechanisms mal-
function, which are represented by the categories “Authorization
Denied” and “Authentication Failed”. The complete absence
of authorization or authentication mechanisms in a system lies
outside of our testing focus.

Performance Faults. We did not set a clear focus on
performance faults for our taxonomy, yet they can be found
in multiple parts. E.g., a time out in the connection to
another service or just a bad connection performance. Still,
Silva et al. provide much more fault types here. Many of
those are not relevant to the integration context, among them
“CPU Allocation Fault”, “Memory Allocation Fault”, and
“Memory Usage Fault”. Those are faults in single microservices
that should already be targeted and detected during unit or
component testing and not during testing the integration of
multiple services. Therefore, they are not relevant to our
taxonomy of integration faults. Fault categories relevant to
the integration of microservices (as they either lie in the
connection or affect the communication between services),
such as “Increased message size”, or “Increased number of
Users” can also be found in our taxonomy: “Too Much Data”
and “Too Many Messages”.

Functional Faults. Silva et al.’s “Functional Faults”
category only consists of two different fault types, namely
“Functional Fault” and “Internal Fault”. They describe the
“Functional Fault” as “Result in malfunctioning of system
services by raising errors or producing incorrect results”,
which is relatively vague. Our taxonomy includes multiple
different sources/reasons why a service might produce an
incorrect result (see the six fault types under “Incorrect
Result”). Here, again, the different focuses of those two
taxonomies become prevalent. “Internal Fault” is described
as “The root causes of Internal faults lie in the internal
implementation of individual microservices”. Due to this
definition, we consider this fault category as faults that should
be targeted and detected during unit or component testing and
not relevant for the integration testing context.

In summary, the overall structure and focus of the two

146

taxonomies are vastly different, as they were built for two
different purposes: Silva et al.’s taxonomy was built to reflect
the influence of fault types on different non-functional attributes.
Our taxonomy was built to provide a structured overview of
integration faults to facilitate the test strategy and test case
creation of integration-level tests in microservice systems.

For many of the fault categories in our taxonomy, we could
not find a matching fault type in Silva et al.’s taxonomy.
We have two inner categories and eight leaf fault types in
our “Service Description Faults” category. Yet, we could not
find any indication of fault types regarding the description or
specification of a service in Silva et al.’s work. Our taxonomy
consists of four deployment fault types, out of which only two
are represented in the taxonomy of Silva et al. Furthermore,
our taxonomy holds six discovery faults, yet we could not
find any faults in service discovery mechanisms in Silva et
al.’s taxonomy. Two of our “Connection Faults” (regarding
authorization and authentication) can also be found in Silva
et al.’s taxonomy. We also found an example for a “Wrong
Configuration” fault in their taxonomy, however, our fault type
is more broad and does include more aspects than an “[...]
incorrect configuration of the API consumer account”. For
“Connection to Wrong Service” and “Connection Time Out”,
we could not find resembling fault types in the other taxonomy.
Our four “Connection Disruption” faults fall under their “API
Internal Fault” fault type. However, we provide four different
root causes for such a fault in contrast to them. As already
mentioned above, we also provide six different root causes for
when the result of a request to another service is incorrect,
whereas Silva et al. summarize this under one, broader fault
type, namely “Functional Fault”. We also provide six more
fault types (two of them having two more specializations each)
that can occur during the execution of a request to another
service which we could not find in Sila et al.’s taxonomy.

C. Summary

Our proposed taxonomy fills a research gap, providing a
structured overview specifically targeting integration-relevant
faults in microservice systems and catering to the needs
of microservice testing. In addition, we provide insights
into the perceived severity and effort to fix individual fault
categories that are not provided in existing literature. This
information can further facilitate the prioritization of specific
fault categories when creating test strategies or test cases,
as well as testing the robustness of a system, which can
help to allocate resources more efficiently. Therefore, our new
taxonomy provides valuable insights and contributions in the
context of microservice integration testing.

V. THREATS TO VALIDITY

Internal Validity. A threat to the validity of the taxonomy
is biased coding of the interview transcripts. To mitigate this
threat, each of the interviews was labeled by two evaluators.
Additionally, it is possible that questions asked during the
interviews might have been affected by the initial taxonomy
for SOA systems. However, we have intentionally kept the

questions as generic as possible, following a generic framework
for the elicitation of defects proven effective before [24].
Furthermore, in our validation study, we did not fully validate
the structure of the taxonomy. This was a conscious choice as
we needed to keep the effort of the survey to a manageable
time frame to acquire as many participants as possible. As
we did not invent the structure of the taxonomy but used the
structure of an existing taxonomy for SOA systems that is
well-established, we do not see this as a great limitation to
our validation study. Additionally, to make sure that our first
adaptation of the original SOA taxonomy into the microservice
context is correct, we presented preliminary adaptations to the
microservice community [22] and incorporated their feedback
into our final adaptations. Finally, the possibility that survey
participants might have misinterpreted the fault categories
poses a significant threat to our validation. To mitigate this
threat, we conducted multiple test runs of the survey and the
fault descriptions with participants who were familiar with the
overall topic and practitioners in the same field. We used their
feedback to improve the fault and survey descriptions.

External Validity. As microservice-based systems can be
used in many different domains or setups, including mere
software systems, connections to hardware, legacy systems,
etc., it is hard to decide whether our results are generalizable
to all other microservice systems. An additional potential
threat to external validity arises from the limited number of
interview participants, as the findings are based on insights
from only ten individuals. However, to get diverse perspectives,
we interviewed practitioners from multiple companies with a
combined experience from more than 20 projects in 9 different
project domains.

VI. CONCLUSION

We have built a taxonomy of integration-relevant faults in
microservice systems based on an existing taxonomy for SOA
and interviews with 10 practitioners. The taxonomy consists of
6 main categories containing 61 lower-level fault categories on
up to three levels of detail. To validate our taxonomy and enrich
it with information regarding the perceived severity and effort
of the respective fault categories, we performed a survey with
16 practitioners. The results of this validation survey showed
that most of the fault categories (21/23) were experienced by
at least 50% of all participants in at least one project before.

To the best of our knowledge, this is the first fault taxonomy
focusing on integration-relevant faults in microservice systems
including insights from practice. The resulting taxonomy can
be used for the systematic identification and classification
of faults in microservice systems, test case design, risk
assessment, improving the communication between different
development teams, and stakeholders, enhancing software
reliability through fault injection approaches, and to create
new mutation operators.

VII. DATA -AVAILABILITY STATEMENT

To strengthen transparency and facilitate replication, we
provide a replication package [20].

147

REFERENCES

[1] J. Lewis and M. Fowler, Microservices, https : / /
martinfowler.com/articles/microservices.html, Mar. 2014.
(visited on 08/25/2022).

[2] S. Newman, What are microservices? 1st edition.
O’Reilly Media, Inc., 2016.

[3] Software AG, Do you utilize microservices within
your organization? In Statista. https : / /www.statista .
com / statistics / 1236823 / microservices - usage - per -
organization-size/, Apr. 2021. (visited on 09/19/2024).

[4] IBM, Applications using microservices worldwide in
2021, In Statista. https://www.statista.com/statistics/
1236542/applications - using- microservices - list/, Apr.
2021. (visited on 09/19/2024).

[5] G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, and Z. Li,
“Microservices: Architecture, container, and challenges,”
in 2020 IEEE 20th International Conference on Software
Quality, Reliability and Security Companion (QRS-C),
2020, pp. 629–635. DOI: 10.1109/QRS-C51114.2020.
00107.

[6] A. Pretschner, Defect-based Testing (NATO science
for peace and security series - d: information and
communication security v. 50), en. Amsterdam: IOS
Press, 2017.

[7] H. Leung and L. White, “A study of integration testing
and software regression at the integration level,” in Proc.
Conf. on Software Maintenance, 1990, pp. 290–301. DOI:
10.1109/ICSM.1990.131377.

[8] B. Beizer, Software system testing and quality assurance.
Van Nostrand Reinhold Co., 1984.

[9] A. M. Madni and M. Sievers, “Systems integration:
Key perspectives, experiences, and challenges,” Systems
Engineering, vol. 17, no. 1, pp. 37–51, 2014. DOI: https:
//doi.org/10.1002/sys.21249.

[10] M. Winter, M. Ekssir-Monfared, H. M. Sneed, R. Seidl,
and L. Borner, Der Integrationstest: Von Entwurf und
Architektur zur Komponenten-und Systemint. 2012.

[11] S. Bruning, S. Weissleder, and M. Malek, “A Fault
Taxonomy for Service-Oriented Architecture,” in 10th
IEEE High Assurance Systems Engineering Symposium
(HASE’07), ISSN: 1530-2059, Nov. 2007, pp. 367–368.
DOI: 10.1109/HASE.2007.46.

[12] G. P. Bhandari and R. Gupta, “Extended Fault Taxonomy
of SOA-Based Systems,” en, CIT. Journal of Computing
and Information Technology, vol. 25, no. 4, pp. 237–257,
Jan. 2018, Number: 4. DOI: 10.20532/cit.2017.1003569.

[13] F. Silva, V. Lelli, I. Santos, and R. Andrade, “Towards a
Fault Taxonomy for Microservices-Based Applications,”
in Proceedings of the XXXVI Brazilian Symposium on
Software Engineering, ser. SBES ’22, New York, NY,
USA: Association for Computing Machinery, Oct. 2022,
pp. 247–256. DOI: 10.1145/3555228.3555245.

[14] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A com-
prehensive study on deep learning bug characteristics,”
in Proceedings of the 2019 27th ACM joint meeting on

european software engineering conference and sympo-
sium on the foundations of software engineering, 2019,
pp. 510–520. DOI: https://doi.org/10.1145/3338906.
3338955.

[15] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P.
Hudepohl, and M. A. Vouk, “On the value of static anal-
ysis for fault detection in software,” IEEE transactions
on software engineering, vol. 32, no. 4, pp. 240–253,
2006. DOI: 10.1109/TSE.2006.38.

[16] Z. Long, G. Wu, X. Chen, C. Cui, W. Chen, and J. Wei,
“Fitness-guided Resilience Testing of Microservice-based
Applications,” in 2020 IEEE International Conference
on Web Services (ICWS), Oct. 2020, pp. 151–158. DOI:
10.1109/ICWS49710.2020.00027.

[17] K. Meinke and P. Nycander, “Learning-Based Testing of
Distributed Microservice Architectures: Correctness and
Fault Injection,” in Software Engineering and Formal
Methods, ser. Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer, pp. 3–10. DOI: 10.1007/978-3-
662-49224-6 1.

[18] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter,
and V. Sekar, “Gremlin: Systematic Resilience Testing
of Microservices,” in 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS),
Jun. 2016, pp. 57–66. DOI: 10.1109/ICDCS.2016.11.

[19] N. Humbatova, G. Jahangirova, and P. Tonella, “Deep-
crime: Mutation testing of deep learning systems based
on real faults,” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Anal-
ysis (ISSTA), 2021, pp. 67–78. DOI: 10.1145/3460319.
3464825.

[20] Replication Package., 2025. DOI: 10.6084/m9.figshare.
27046156.v1.

[21] J. Hu, I. Khalil, S. Han, and A. Mahmood, “Seamless
integration of dependability and security concepts in
SOA: A feedback control system based framework
and taxonomy,” en, Journal of Network and Computer
Applications, vol. 34, no. 4, pp. 1150–1159, Jul. 2011.
DOI: 10.1016/j.jnca.2010.11.013.

[22] L. Gregor, A. Pretschner, A. Hentschel, H. Sauer, and
M. Saft, “The Fault in Our Services: Investigating
Integration-Relevant Faults in Microservices,” 2023.

[23] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural Pat-
terns for Microservices: A Systematic Mapping Study:”
in Proceedings of the 8th International Conference on
Cloud Computing and Services Science, SCITEPRESS -
Science and Technology Publications, 2018, pp. 221–232.
DOI: 10.5220/0006798302210232.

[24] D. Holling, D. M. Fernández, and A. Pretschner, “A
Field Study on the Elicitation and Classification of
Defects for Defect Models,” en, in Product-Focused
Software Process Improvement, ser. Lecture Notes in
Computer Science, Cham: Springer International Pub-
lishing, 2015, pp. 380–396. DOI: 10.1007/978-3-319-
26844-6 28.

148

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
https://www.statista.com/statistics/1236542/applications-using-microservices-list/
https://www.statista.com/statistics/1236542/applications-using-microservices-list/
https://doi.org/10.1109/QRS-C51114.2020.00107
https://doi.org/10.1109/QRS-C51114.2020.00107
https://doi.org/10.1109/ICSM.1990.131377
https://doi.org/https://doi.org/10.1002/sys.21249
https://doi.org/https://doi.org/10.1002/sys.21249
https://doi.org/10.1109/HASE.2007.46
https://doi.org/10.20532/cit.2017.1003569
https://doi.org/10.1145/3555228.3555245
https://doi.org/https://doi.org/10.1145/3338906.3338955
https://doi.org/https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/ICWS49710.2020.00027
https://doi.org/10.1007/978-3-662-49224-6_1
https://doi.org/10.1007/978-3-662-49224-6_1
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.6084/m9.figshare.27046156.v1
https://doi.org/10.6084/m9.figshare.27046156.v1
https://doi.org/10.1016/j.jnca.2010.11.013
https://doi.org/10.5220/0006798302210232
https://doi.org/10.1007/978-3-319-26844-6_28
https://doi.org/10.1007/978-3-319-26844-6_28

[25] S. Hove and B. Anda, “Experiences from conducting
semi-structured interviews in empirical software engi-
neering research,” in 11th IEEE International Software
Metrics Symposium (METRICS’05), 2005, 10 pp.–23.
DOI: 10.1109/METRICS.2005.24.

[26] V. Ligurgo, T. Philippette, P. Fastrez, A.-S. Collard, and J.
Jacques, “A method combining deductive and inductive
principles to define work-related digital media literacy
competences,” in Information Literacy in the Workplace,
Cham: Springer International Publishing, 2018, pp. 245–
254. DOI: https://doi.org/10.1007/978-3-319-74334-
9 26.

[27] B. F. Crabtree and W. F. Miller, “A template approach
to text analysis: Developing and using codebooks,” in
Doing qualitative research, ser. Research methods for
primary care, Vol. 3. Thousand Oaks, CA, US: Sage
Publications, Inc, 1992, pp. 93–109.

[28] R. E. Boyatzis, Transforming qualitative information:
Thematic analysis and code development. sage, 1998.

[29] D. R. Thomas, “A general inductive approach for
analyzing qualitative evaluation data,” American journal
of evaluation, vol. 27, no. 2, pp. 237–246, 2006.

[30] N. G. Leveson, “Role of software in spacecraft accidents,”
Journal of spacecraft and Rockets, vol. 41, no. 4,
pp. 564–575, 2004.

[31] K. S. M. Chan, J. Bishop, J. Steyn, L. Baresi, and S.
Guinea, “A Fault Taxonomy for Web Service Composi-
tion,” in Service-Oriented Computing, 2009, pp. 363–375.
DOI: 10.1007/978-3-540-93851-4 36.

[32] B. Marculescu, M. Zhang, and A. Arcuri, “On the Faults
Found in REST APIs by Automated Test Generation,”
ACM Transactions on Software Engineering and Method-
ology, vol. 31, no. 3, 41:1–41:43, Mar. 2022. DOI: 10.
1145/3491038.

[33] A. Arcuri, “Evomaster: Evolutionary multi-context au-
tomated system test generation,” in 2018 IEEE 11th
International Conference on Software Testing, Verifica-
tion and Validation (ICST), IEEE, 2018, pp. 394–397.
DOI: https://doi.org/10.1109/ICST.2018.00046.

[34] A. Arcuri, “Restful api automated test case generation
with evomaster,” ACM Transactions on Software En-
gineering and Methodology (TOSEM), vol. 28, no. 1,
pp. 1–37, 2019. DOI: 10.1145/3293455.

[35] A. Arcuri, J. P. Galeotti, B. Marculescu, and M. Zhang,
“Evomaster: A search-based system test generation tool,”
2021.

[36] Replication Package for ”Towards a Fault Taxonomy for
Microservices-Based Applications”. https://github.com/
Gutenbergf/Fault-Taxonomy-for-Microservice-Based-
Applications, 2022.

149

https://doi.org/10.1109/METRICS.2005.24
https://doi.org/https://doi.org/10.1007/978-3-319-74334-9_26
https://doi.org/https://doi.org/10.1007/978-3-319-74334-9_26
https://doi.org/10.1007/978-3-540-93851-4_36
https://doi.org/10.1145/3491038
https://doi.org/10.1145/3491038
https://doi.org/https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.1145/3293455
https://github.com/Gutenbergf/Fault-Taxonomy-for-Microservice-Based-Applications
https://github.com/Gutenbergf/Fault-Taxonomy-for-Microservice-Based-Applications
https://github.com/Gutenbergf/Fault-Taxonomy-for-Microservice-Based-Applications

	Introduction
	Methodology
	Systematic Literature Review
	Original Taxonomy and Adaptations
	Interviews with Practitioners
	Taxonomy Construction
	Taxonomy Validation

	Results
	Final Taxonomy
	Validation Results

	Discussion with Related Work
	Final Taxonomy vs. Integration Fault Taxonomies
	Final Taxonomy vs. Fault Taxonomies for (Micro-)Service Systems
	Summary

	Threats to Validity
	Conclusion
	Data -Availability statement

