
Citation: Zhang, J.; Söpper, M.;

Holzapfel, F.; Zhang, S.

Four-Dimensional Generalized AMS

Optimization Considering Critical

Engine Inoperative for an eVTOL.

Aerospace 2024, 11, 990. https://

doi.org/10.3390/aerospace11120990

Academic Editor: Bosko Rasuo

Received: 31 October 2024

Revised: 22 November 2024

Accepted: 23 November 2024

Published: 29 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Four-Dimensional Generalized AMS Optimization
Considering Critical Engine Inoperative for an eVTOL
Jiannan Zhang 1, Max Söpper 1, Florian Holzapfel 1 and Shuguang Zhang 2,*

1 Institute of Flight System Dynamic, Technical University of Munich, 85748 Garching bei München, Germany;
jiannan.zhang@tum.de (J.Z.); max.soepper@tum.de (M.S.); florian.holzapfel@tum.de (F.H.)

2 School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
* Correspondence: gnahz@buaa.edu.cn

Abstract: In this paper, we present a method to optimize the attainable moment set (AMS) to increase
the control authority for electrical vertical take-off and landing vehicles (eVTOLs). As opposed to
3D AMSs for conventional airplanes, the hover control of eVTOLs requires vertical thrust produced
by the powered lift system in addition to three moments. The limits of the moments and vertical
thrust are coupled due to input saturation, and, as a result, the concept of the traditional AMS is
extended to the 4D generalized moment set to account for this coupling effect. Given a required
moment set (RMS) derived from system requirements, the optimization is formulated as a 4D convex
polytope coverage problem, i.e., the AMS coverage over the RMS, such that the system’s available
control authority is maximized to fulfill the prescribed requirements. The optimization accounts for
not only nominal flight, but also for one critical engine inoperative situation. To test the method,
it is applied to an eVTOL with eight rotors to optimize for the rotors’ orientation with respect to
the body axis. The results indicate highly improved coverage of the RMS for both failure-free and
one-engine-inoperative situations. Closed-loop simulation tests are performed for both optimal and
non-optimal configurations to further validate the results.

Keywords: eVTOL; AMS; optimization; OEI

1. Introduction
1.1. Background

The attainable moment set (AMS), initially proposed in Refs. [1,2], is an important
concept for an aircraft’s control authority. Given the limits of the actuators, the AMS is a
moment set producible by the effectors’ joint effort [3]. Consider an LTI system: its AMS is
a convex set described by [4]:

AM = {m|m = Bu, u ≤ u ≤ u}, (1)

where m ∈ Rk is the vector of k-dimensional generalized moments; u ∈ Rm is the vector
of m-dimensional inputs; B ∈ Rk×m is the effectiveness matrix; and u and u are the inputs’
lower and upper limits. The term “generalized moment” refers to all quantities that
have an arithmetic relationship with the inputs, such as moments, forces, rotational and
translational accelerations, or load factors [5].

For conventional airplanes, usually k = m = 3, with a one-to-one mapping between
three moments and three inputs. However, modern designs such as electrical vertical take-
off and landing vehicles (eVTOLs) pose a difference due to the utilization of distributed
electric propulsion (DEP) to provide VTOL ability [6–9]. During VTOL flight, the powered-
lift DEP provides both rotational and vertical translational trim and maneuver. As a
result, the maximum rotational and vertical translational maneuverability is also coupled
due to the limits of the rotors. To fully understand the control authority of eVTOLs, the
conventional AMS in R3 described in [2] should be naturally extended to R4, adding the
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vertical force on top of the three moments. Accordingly, the term “attainable moment set”
should be generalized to “attainable generalized moment set” to differentiate from the
conventional definition. For ease of description, the term “AMS” is kept in this article, but
is used to indicate the generalized concept.

The AMS has a substantial significance for an eVTOL’s control performance since
it directly confines the maximum amplitude of achievable states’ time derivatives, e.g.,
angular/translational accelerations, consequentially constraining its agility, disturbance
rejection capability, flight envelope, and, eventually, the mission profile. An inadequate
generalized AMS indicates hazard in off-nominal circumstances such as input failures.
Consequently, a larger margin of AMS with respect to the operation boundary means a
better safety margin against critical situations.

The AMS is a system’s inherent attribute, given its control effectors’ parameters, such
as size, position, orientation, and available power. For conventional aircraft, the design
freedom for the AMS is rather restricted under the constraint of preliminary parameters
such as stability and endurance. For novel configurations like eVTOLs, the situation is
the opposite given their high input redundancy: the number of inputs onboard an eVTOL
ranges from a dozen to as much as 30 plus [6,10–15], e.g., the Lilium Jet, as described in [6].
The level of redundancy allows for designers to exploit optimized control authority given
the limits in available design resources, such as mass and power penalty, without violating
preliminary design parameters, meanwhile increasing the system’s safety according to
certification standards, such as the single failure requirement for enhanced category eVTOLs
prescribed in EASA SC-VTOL [16,17]. For example, orientations of powered lift rotors
could have a minor influence on the overall weight and stability of the airplane, while it
exhibits a major impact on the moments’ production capability during VTOL flight. Owing
to the large design space, the only viable means to find the most advantageous combination
of all design parameters is to calculate via optimization.

1.2. Literature Review

Several studies have already adopted optimization to design the effector-related
parameters for optimal AMS. In Ref. [18], a trim analysis is performed for a conventional
aircraft enhanced with DEP over its wingspan, showing that the size of the vertical tail can
be reduced by 45% by exploiting differential thrust without adversely affecting directional
stability. The idea is further explored in Ref. [19] together with a H∞ control methodology
in a sequential optimization process, resulting in the reduction of the vertical tail area by
60% and lowering the required actuator bandwidth, while maintaining the overall control
loop bandwidth. In Ref. [20], propeller optimization is applied to a DEP-enhanced airplane
configuration to determine the optimal propeller diameter, which shows a reduction in take-
off distance of up to 80% compared to the two-propeller conventional counterpart. As for
AMS optimization, a generic AMS framework is proposed in Ref. [21] to aid in visualizing
the AMSs of complex systems during the design phase, which is then conceptually applied
to the Max Launch Abort System escape vehicle to help decide the optimal orientation of
the thrust nozzles. In Ref. [22], a trim routine is developed for an unconventional box-wing
configuration to maximize local AMS at operation points. Although it does not directly
relate to the effector configuration of the system, it implements an optimization framework
to exploit the best control capability given the system redundancy.

1.3. Motivation and Objective

AMS optimization from a design perspective has been extensively discussed; however,
seldom previous works have linked the goal of such optimizations directly with design
requirements. In Ref. [23], a concept named “required moment set” (RMS) is developed
to relate flight performance requirements with the moments that are generated to fulfill
these requirements. As the name suggests, the RMS is the set of generalized moments that
are defined according to aircraft requirements, specifying generalized moments that are
required to achieve, e.g., required bandwidth of transient maneuvers, required ability to
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reject disturbances, or flying according to a required mission profile. Like the AMS, the
RMS is an inherent property of the system. The goal of optimizing the AMS is, therefore, to
ensure its enclosing of the RMS to a maximum degree. In Ref. [24], a framework is proposed
to optimize the coverage of the AMS over a given RMS. However, the work only considers
3D AMS during failure-free operation, meaning that for eVTOLs, one dimension in the
control space is compromised, and the results do not hold under failure situations, which
involve more critical situations compared to normal operations, especially for certifiable
applications. In Ref. [25], Lu et al. proposed an approach to evaluate and quantify the
controllability of an eVTOL lift–cruise configuration, which considers the 4D AMS. The
focus of this paper is to provide a unified framework to evaluate controllability, especially
addressing the issue of one-engine-inoperative, of this type of eVTOL for all flight phases
including hover, transition, and wing-borne flight. The outcome provides valuable insights
for the design of eVTOLs from a controllability perspective, yet it does not directly relate
the results to the configurational or parametric design of such a type of aircraft.

In this paper, we extend the framework developed in Ref. [24] to optimize the AMS
in R4 space, and additionally account for the critical situation of one-engine-inoperative
(OEI). In other words, the optimization maximizes the coverage of the AMS polytope over
the RMS polytope in R4 under a critical engine failure. The goal is to largely improve
the system’s reliability by increasing its controllability and, hence, its safety margin after
the failure of the critical engine. To intuitively address the polytope coverage issue, the
geometric problem in the 4D space is mathematically abstracted as distances between the
vertices of the inner polytope to the boundary of the outer polytope, and the cost function
is designed to punish the distances of a small margin. To test the proposed approach,
it is implemented for an eight-rotor lift–cruise eVTOL to optimize its rotors’ installation
orientations; in total, four different groups of optimizations are performed to present the
performance of the approach step-by-step by directly illustrating the resultant AMSs and
each corresponding margin metrics. It is worth noting that the considered airframe is the
same as the one analyzed in Ref. [25]. Then, to further validate the optimization results, the
optimized configurations are validated in a model-in-the-loop (MIL) closed-loop simulation
by comparing the command-tracking performances of the initial design and the optimized
configurations under the prescribed critical failure condition.

The following parts of this paper are arranged as follows. Section 2 introduces the
preliminaries and definitions to the problem under discussion. Section 3 describes the
optimization setup, including the mathematical formulation of the geometric polytope
coverage problem, the cost function, and the solution to evaluate the margins between the
polytopes. Section 4 introduces the airframe to be optimized, as well as the different groups
of tests to be implemented and their corresponding assumptions. Section 5 discusses the
optimization results by the direct illustration, quantification, and comparison of the AMSs
between the different test groups mentioned in Section 4. Section 6 elaborates the MIL
simulation and control performances of each optimized configuration. Section 7 briefly
concludes this paper and provides some prospects to further this study.

2. Preliminaries and Definitions

The concepts of AMS and RMS are elaborated in Refs. [1,2,23]. We briefly recall them
here and extend the definitions to the generalized moment space.

Admissible control set (AC): A set in the control space, which is a Cartesian system
in Rm with m as the number of effectors. AC consists of all possible combinations of
effector positions constrained by their respective limits. Since each effector is independently
actuated, it is a convex set resembling a cuboid or hyper-cuboid in the control space.

Attainable (generalized) moment set (AM): A set in the generalized moment space,
which is a Cartesian system in Rk with k as the number of generalized moments. For
traditional aircraft, k equals 3 with roll, pitch and yaw moments. For eVTOLs, k equals
4 by adding the vertical acceleration as another “generalized” moment. AM consists of
all possible combinations of generalized moments that can be produced by elements in
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AC. In this paper, we consider a linear mapping B ∈ Rk×m : AC → AM , also known as
the effectiveness matrix. Given the convexity of AC, AGM is also convex due to the linear
mapping of B [5]. As a result, AM is a convex polytope in Rk. B is principally determined
by the effector configuration.

Required (generalized) moment set (RM): A set in the generalized moment space,
which contains all generalized moments that the system must produce to fulfill its require-
ments. RM is determined by the requirements such as disturbance rejection capability, as
well as preliminary parameters of the system such as mass and moment of inertia. RM is
considered fixed after the preliminary design phase once the concepts of operations and
requirements are frozen.

3. Optimization Setup
3.1. Problem Definition

The problem is defined as below:

given a fixed RMS RM ∈ R4, search for an optimal set of effector-related parame-
ters p within their constraint limits, to maximize the margin between AM∈ R4

and RM.

Geometrically, the polytope of the generalized AMS is shaped and sized such that it
maximally encloses the polytope of the RMS. Note that the RMS is fixed once the system’s
requirements are validated and, hence, will not change according to p. To reduce the
dimension and complexity of the optimization, it is assumed that parameters p must be
chosen to make a major impact on the size and shape of the AMS, while only affecting
other design requirements with negligible consequences.

Since the AMS and the RMS are convex polytopes, the margin from the RMS to the
AMS can be checked by the distance of the RMS vertices towards the AMS boundary. The
concept can be illustrated by a 2D example, as in Figure 1.
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Figure 1. Two-dimensional example of AMS, RMS, and the margin in between.

If a certain RMS vertex draws too near to the AMS boundary or, in a worse case,
exceeds it, then the system would be limited or unable to fulfill the requirements in
this direction. Given this intuition, the task could be summarized as follows: search
for an optimal set of effector-related parameters popt, such that the resultant AM has its
boundary farthest away from the RM vertices. As mentioned earlier, p should be chosen
and constrained in a way to mainly affect the system’s control authority instead of other
preliminary design parameters. For eVTOLs, one such parameter could be orientations of
the powered-lift rotors, which presents inconsequential effects on mass and CG but can
largely change the moment generation due to forces, i.e., the AMS.
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3.2. Optimization Formulation

The distance between AMS and RMS can be represented by a positive margin factor,
λ, as shown in Figure 1. To punish RMS vertices that are close to, or even exceed the AMS
boundary, that is, when λ is close to 1 or smaller than 1, the optimization is formulated as [24]:

min
p

J = ∑nV,RMS
i=1

1
λi

, subject to,
{

p ≤ p ≤ p
c(p) ≤ c

, (2)

where

• nV,RMS is the total number of vertices on RMS;
• λi is the margin factor of the ith RMS vertex;
• p is the vector of variables to optimize, with p and p its lower and upper limits;
• c is the vector of additional constraints, e.g., structural or spatial restriction;
• c is the upper limits of c.

The selection of variables p presents a major influence on the effectors’ effectiveness.
Typical parameters can be, e.g., the orientation angles and rotational direction of the rotors,
or they can also be the dimensions and positions of the rotors or other dominant control
surfaces. The limits to p guarantee that changes in p do not lead to major coupling effects
to other preliminary design parameters.

3.3. Optimization to Account for Critical Engine Failure

Equation (2) describes, in general, the coverage problem between two polytopes.
For a system operating under nominal conditions, it is straightforward to simply apply
Equation (2) for the optimization. However, failure cases would drastically degrade the
AMS, and each single failure or combination of different failures would result in a different
AMS. According to Refs. [16,17], a manned eVTOL in the enhanced category will be able
to continue safe flight and landing after any single failure, with minor influence on the
handling quality. This means that the control authority still presents enough margin for the
prescribed performance after the loss of an effector. To account for this requirement, the
cost function includes failure conditions and aims to optimize the case of the most critical
single failure.

To achieve the goal of critical failure optimization, Equation (2) is extended for all
single failure cases in each optimization step, and then among all failure cases, the worst-
case cost function value (i.e., the highest one) among all is taken as the critical case to
optimize with, leading to the following argument:

min
p

J = max
j

(
∑nV,RMS

i=1
1

λ
j
i

)
, subject to,


p ≤ p ≤ p
c(p) ≤ c

j = 1, 2, . . . , m
(3)

where

• m is the total number of inputs;

• λ
j
i is the margin factor of the RMS vertex of index i to the AMS given the failure of the

input of index j.

3.4. Solving for λ

The key to the problem in Equation (3) is to calculate λ for each RMS vertex ri. Consider
the 2D example in Figure 1: the relationship between v1, v2, and ri is:

ai = λiri = αv1 + (1 − α)v2, (4)

Equation (4) is a linear system with two equations and two unknowns. Since the AMS is
convex, there is only one intersection between the direction of ri and the AMS boundary,
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which occurs on one boundary cell of the AMS among others. For a 2D AMS, its boundary
cell is a line segment, while the counterpart for a 3D AMS is a facet, and for 4D is a
tetrahedron. Given the cell of intersection, the solution will automatically guarantee that
0 ≤ α ≤ 1.

The concept could be generalized to 4D. The smallest boundary cell of a 4D polyhedron
is a tetrahedron with four vertices. Assume the query direction ri intersects with a cell of
vertices v1, v2, v3, v4; then, the relationship between v1, v2, v3, v4, and ri is:

α1v1 +α2v2 +α3v3 +α4v4 = λri
α1 +α2 +α3 +α4 = 1

, (5)

with five equations and five variables to solve for. To find the right λ for ri, one way is
to solve this equation for all of the boundary tetrahedral of the AMS, and the only valid
solution is found when 0 ≤ α1,2,3,4 ≤ 1 is satisfied.

3.5. Solving the Optimization

The formulation in Equation (3) is highly nonlinear and might be subject to multiple
local minimums. To robustly solve the optimization, a global optimization tool should be
considered. For our application in this paper, we used “surrogateopt” provided by the
MATLAB global optimization toolbox [26].

4. Test Implementation
4.1. Airframe Under Consideration

The airframe considered in this paper is a lift–cruise type eVTOL with eight non-
tiltable, fixed-pitch rotors for hover lift and control, and a wing to provide aerodynamic
lift for cruise. Its approximate preliminary design parameters are listed in Table 1. The
conceptual prototype and its layout of the rotors and the wing is presented in Figure 2.
Given the large wingspan, the aircraft exhibits a considerably large moment of inertia in the
yaw axis, which is a common characteristic of eVTOLs compared to normal multi-copters.
Owing to this property, eVTOLs of this category often show limited yaw control authority.
For the system under discussion, the rotors are fixed on two booms parallel to the fuselage,
leading to the design freedom of installation orientation around the body longitudinal
axis. Hence, improvements to the yaw control authority can be addressed by adjusting this
design freedom of each rotor, i.e., changing the fixation orientation of the rotors around
the body longitudinal axis. This allows the rotors to produce larger lateral forces and,
consequently, a larger yaw moment due to the lever arms, with a certain level of sacrifice to
the lift, pitch, and roll capability.

The forces and torques of rotors in steady-state hover flight can be assumed to be lin-
early dependent on the squared rotational speed of the rotors [27,28]. Since the generalized
moments directly show an arithmetic relationship with the rotor forces and torques [29],
the AMS of this system is defined by:

AM =
{

m
∣∣∣m = B(ϕP)ω

2, 0 ≤ ω ≤ ωmax

}
, (6)

where

• ϕP are the orientations of rotors around the longitudinal axis, positive is defined by
the right-hand rule;

• m =
[ .
p;

.
q;

.
r; nz

]
B is the generalized moments vector of rotational accelerations and

vertical load factor in the body-fixed axis;
• B is the effectiveness matrix [29], as a function of ϕP;
• ω and ωmax are the rotational speed of the propellers and their upper limit.

By this definition, we can compute, change, and optimize the AMS by changing ϕP. A
detailed derivation of the AMS by this definition can be found in Ref. [24]. Figure 3 shows
the initial design of the rotors and their corresponding tilt orientations in a simplified
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sketch (where the sizing and positioning of the rotors are not precise). The rotors are each
numbered Rotor 1–8, starting from the left column forward to backward to the right column
forward to backward. The initial number of ϕP is designed by engineering tinkering based
on simulation and flight experiences, which takes symmetrical value in the degree of
ϕP = [−5, 5,−5, 5, 5,−5, 5,−5]T, where positive is defined by the right-hand rule around
the positive xB axis. For our test, the RMS of this A/C is derived from [23], which considers
maneuverability and disturbance rejection requirements. It is directly used as a priori
information. Figure 4 shows how the AMS changes when the magnitude of values in
ϕP changes from 5◦ to 15◦ and 25◦, respectively, and their comparison with the a priori
RMS. Since the problem is inherently 4D, the 4D objects are projected into the 2D plane
for presentation, resulting in six 2D figures. It can be seen that the initial design largely
fulfills the RMS requirement (by a large percentage of coverage), but with a trivial margin
for the yaw control authority. Simply increasing the tilt angles to 25◦ already leads to
well-improved yaw control authority with slightly degraded pitch and roll effectiveness,
yet also leads to noticeable loss in the available vertical thrust (vertical load factor). To
exploit the optimal solution, especially for the critical OEI circumstances, manual tinkering
is replaced by rigorous optimization procedures.
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Table 1. Approximate preliminary design parameters.

Preliminary Design Parameters Values

Take-off Weight 250 kg
Wingspan 10 m

Motor Diameter 1–2 m
Moment of Inertia Ixx Approx. 250 kgm2

Moment of Inertia Iyy Approx. 300 kgm2

Moment of Inertia Izz Approx. 550 kgm2

4.2. Assumptions

Often in the process of aircraft design, decisions on the control authority are made
along with other preliminary parameters such as MTOW, lift-to-weight ratio, and power
consumption required. With the proposed method described in Section 3, we can integrate
the limits of other preliminary parameters in the constraints c and guarantee that the
changes in the controls will not violate the design decisions on other preliminary parameters.
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To do this, a relatively high-fidelity model is used that accounts for other design domains,
such as structural, motor, and battery models. However, in this paper, as a proof of concept,
such constraints are not directly accounted for, and it is assumed that the change in tilt
angles will not lead to major changes in the preliminary design parameters such as weight
and power consumption. It is a valid assumption, since the range of change in tilt angles is
confined and leads to negligible lift and power penalty and requires little structural or mass
adaptation. In Section 5, an analysis of lift and power penalty are addressed to validate this
assumption. Nevertheless, it should be noted that, in a real application, considering other
preliminary design parameters in the constraints can result in more realistic outcomes.

4.3. Test Setup

Due to the symmetry of the system considered, the design degree of freedom is 4.
Here we start with two-variable optimization by ganging corner rotors in one group and
central rotors in another group. This allows us to visually check whether the optimizer has
reached the global optimum. In total, four sets of tests are set up and the results are given
in the next section. Recalling that we use p as tunable parameters in Equations (2) and (3),
and the four tests are defined as:

1. Two-variable failure-free test as Equation (2), with

p1 = −ϕ1 = −ϕ4 = ϕ5 = ϕ8, p2 = −ϕ2 = −ϕ3 = ϕ6 = ϕ7, (7)

2. Two-variable failure-free test as Equation (2), with

p1 = −ϕ1 = ϕ5, p2 = −ϕ2 = ϕ6, p3 = −ϕ3 = ϕ7, p4 = −ϕ4 = ϕ8, (8)

3. Same grouping as Test 1, including critical OEI according to Equation (3);
4. Same grouping as Test 2, including critical OEI according to Equation (3).

Limits on ϕ are chosen to be [−30◦, 30◦]. For the assumptions elaborated in the
previous part, no constraints as c, which appear in Equations (2) and (3), are included in
the optimization.

5. Optimization Results
5.1. Optimization Results—Failure-Free Cases

In this part, two groups of results for the failure-free optimization according to
Equation (2) are presented: one group for two-variable and the other for four-variable opti-
mization.

Test 1: Failure-free two-variable optimization, as described by Equation (7). The reason
for this method of grouping is that the corner rotors have longer lever arms and can better
produce moments, while the ability of the inner rotors produce moments is relatively weak.
The intuition is, therefore, to use the corner rotors to produce larger moments and use the
inner ones as major lift producers. This two-variable test enables us to check whether the
optimization finds the actual global optimum by directly plotting the cost function over the
two variables.

The optimization results for this test are shown in Figures 5–8. Firstly, the rotor
arrangement of the optimal solution is shown in Figure 5. The optimization result aligns
well with the intuition behind the method of grouping, with the corner rotors more tilted
for larger moments and the inner ones relatively vertical as a major vertical thrust producer.

A direct comparison of the RMS and the initial and optimal AMS is depicted in
Figure 6. The optimal configuration presents twice as much yaw authority as the initial
design, with minor sacrifices in the other axes. Figure 7 shows the cumulative count of the
margin factor λ, as defined in Equations (2) and (3). On the left, a comparison of λ for the
initial and optimal AMS is provided; on the right, the figure is zoomed in to show the most
critical cases, e.g., the points with the smallest margins. Considering that a margin of 1.5 is
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sufficient from an engineering rule of thumb, the optimal case only presents 2 points with
its margin less than 1.5, while the initial design presents more than 10 cases.

To show that the optimization converges to the global minimum, Figure 8 plots the
cost function as a function of the two optimization variables. It can be clearly seen that the
global optimum has been reached by optimization, as shown by the red marker. What is
also obvious in Figure 8 is that, when both variables are 0, the system shows a singularity
in the cost function, indicating a complete loss of control in at least one direction in the
generalized moment space. For this failure-free case, good overall control authority can be
achieved when both angles’ absolute values are between 5◦ and 30◦.
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Figure 5. Test 1 optimized rotor layout.
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Figure 6. Test 1 comparison: Optimized AMS, initial AMS, and RMS.

Test 2: Failure-free four-variable optimization, as in Equation (8), in which the four
variables represent the angles of the two symmetric rotors in each row. The results are
given in Figures 9–11. Similar outcomes can be drawn from the results produced by Test 1.
It can be observed that the resultant rotor configuration is not symmetric with respect to
the CG (otherwise four-variable optimization would be meaningless).
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Figure 10. Test 2 comparison: Optimized AMS, initial AMS, and RMS.
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5.2. Optimization Results—Critical Failure Case

In this part, the results of the critical failure optimization according to Equation (2) are
presented; one for two-dimensional and the other for four-dimensional optimization.

Test 3: A repeat grouping of Test 1, but considers a critical rotor failure according to
Equation (3). The results are displayed in Figures 12–15. Rotor 1 is found to be critical,
which leads to the highest punishment in the cost function, and is therefore marked “Failed”
with the dotted line in Figure 12. Major differences could be observed when compared
to the failure-free case of Test 1. Firstly, the corner rotors, instead of being tilted more
than the centric rotors, are positioned almost vertically with just a slight angle of 1.6◦.
The rationale behind this is that, as a critical rotor whose failure can lead to worst-case
reduced control authority, it is essential to balance out the authority and avoid reliance
on the critical rotor in all four axes; positioning the critical rotor vertically reduced its
contribution on the yaw axis, which is a relatively “weak” axis. As a result, the yaw control
authorities are all allocated to the inner ones, whose pitch and roll authorities are lower
due to the shorter lever arms. In other words, this layout averages out the criticality of the
corner rotors by allowing the center rotors to take over more yaw responsibility. Although,
in this case, the system does not present optimal authority as compared to the failure-free
Test 1 results (Test 1’s optimization delivers a lower value of the cost function according to
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Equation (2)), the optimized configuration in this test shows better controllability once a critical
failure occurs.
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Figure 13. Test 3 comparison: Optimized AMS, initial AMS, and RMS. The AMSs are degraded by
removing the critical rotor from the control set.
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Figure 13 compares the initial AMS, optimal AMS, and RMS for this test. The AMSs
are different from those of Figure 10, since the critical rotor (Rotor 1) is removed from
the control set, therefore leading to deteriorated AMSs compared to failure-free AMSs.
While the initial configuration exhibits major degradation in the yaw moment with the
critical failure, the optimized configuration largely compensates for this drawback, and the
authorities in the other axes are preserved with minor differences.

Figure 14 shows the cumulative count of the margin factors λ for this test. Due to a lack
of consideration of a critical failure in the initial design, almost half of the margin factors
are reduced to less than 1 after the same failure, leaving the system largely uncontrollable,
while the optimized layout from Test 3 guarantees that 90% of the directions are still
achievable, i.e., with their margins bigger than 1.

Figure 15 shows that the global minimum is achieved again. Compared to Figure 8,
the singularities occur along the diagonal of the variable plane. Given the highly nonlinear
property of the cost function, the optimal design would be very hard to achieve by using
the “rule-of-thumb guesstimate” without the proposed optimization techniques.

Test 4: Repeats the grouping of Test 2 and considers the critical failure. Again, the
corner rotors are positioned almost vertically, while the center four rotors are more tilted.
Detailed results are shown in Figures 16–18. Similar intuitions and explanations to Test 3
can be drawn.
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removing the critical rotor from the control set.
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5.3. Validation and Comparison of Optimization Results

While the proposed approach aims to improve the control authority, the higher values
in the rotor tilt angles will lead to inevitable losses of the total available vertical thrust,
therefore leading to greater power consumption during the hover trim condition. Since
these parameters are not chosen as constraints to the optimization, in this section, we
check that the optimization does not induce major deterioration to these parameters, and
therefore our assumptions in Section 4 would remain valid.

Considering the tilt angles of the rotors, the ratio between the total available vertical
force and the total amount of thrust available from the rotors is defined by:

β =
∑8

i=1 cos(ϕ i)

8
, (9)

β is a measurement of lift thrust penalties due to the tilt angles. To trim the A/C
during the hover condition, an additional percentage of thrust that must be produced is
consequently 1

β − 1. According to [22], the force of a rotor is linearly dependent on the
square of its rotational rates, and the power produced by the rotor is linearly dependent on
the third power of its rotational rates. As a result, power consumption is linearly dependent
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on the 3
2 power of the forces produced. Consequently, additional power consumption to

account for the tilt angles can be represented by β as
(

1
β

) 3
2 − 1.

To compare the results between the initial design and the resultant configurations
from the optimizations, the rotor angles of each case, their cost function values according
to Equations (2) and (3), and the lift thrust and power consumption penalties are compared
in Table 2.

Table 2. Comparison between different configurations.

Initial
Value Test 1 Test 2 Test 3 Test 4

P1 tilt angle (◦) −5 −17.94 −13.98 −1.64 −6.09
P2 tilt angle (◦) 5 9.25 8.90 19.04 10.20
P3 tilt angle (◦) −5 9.25 9.23 19.04 29.20
P4 tilt angle (◦) 5 −17.94 −23.15 −1.64 −1.90

Failure-free cost function: J = ∑
nV,RMS
i=1

1
λi

33.06 29.22 29.12 30.29 30.28
Critical failure cost function: J = ∑

nV,RMS
i=1

1
λ1

i
61.31 67.85 59.58 47.39 45.6667

Total force available in the vertical direction (%): β = ∑8
i=1 ϕi
8

99.6% 96.92% 96.62% 97.24% 96.27%
Additional force to trim (%): 1

β − 1 0.40% 3.18% 3.50% 2.84% 3.87%

Additional power to trim (%):
(√

1
β

)3
− 1 0.6% 4.8% 5.3% 4.3% 5.9%

Firstly, regarding the control authority optimization, let us check the cost functions
for each case. While the failure-free optimizations (Test 1 and 2) produce the lower failure-
free cost functions, their performances are worse under the critical failure condition than
Test 3 and 4. In particular, Test 1 turns out to be even worse than the initial design in
this metric (marked red in Table 2). On the other hand, the critical failure optimizations
(Test 3 and 4), although producing slightly worse results in the failure-free case, present
major improvements in the cost function when the failure is considered. In this sense, the
results from critical failure optimizations win over the failure-free optimal results.

Secondly, regarding the penalties, the losses in the vertical force due to optimization
range between 3 and 4% and the losses in power compensation range between 4% and
6%. Among the four groups of results, Test 3, that is, the two-variable critical failure
optimization, requires the least additional lift and power to compensate for the losses,
which are 2.8% and 4.3%, respectively (marked by highlights). On the other hand, Test 4
presents the worst performance in these two metrics (marked red).

To summarize, Test 3 shows the best overall results, given its good performance in
the control authority for both failure-free and critical failure conditions, as well as the
minimum penalties on the available lift and power consumption. It is worth mentioning
that there might also be weight penalties due to structural strengthening for the larger tilt
angles according to the optimization results. However, the discussion in this paper, as a
proof of concept for the proposed method, ignores such effects. Once again, towards real
applications, such effects can be considered as additional constraints in the optimization,
given a higher-fidelity aircraft model that includes the coupling effects between the effector
parameters and their structural impacts.

6. Closed-Loop Verification
6.1. Closed-Loop Simulation Framework

To further test the performance of the optimized configurations, closed-loop model-
in-the-loop simulations are carried out. The airframe under consideration is modeled as
a 6-DoF rigid body with each propulsion system (motor and rotor together) modeled as
a first-order linear system. A baseline incremental nonlinear dynamic inversion (INDI)
attitude and vertical load factor controller is designed to perform the control task of the
system. The performance of INDI controllers has been extensively discussed [30–34]. In
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Refs. [35–37], a unified INDI controller was implemented for a tilt-rotor transition aircraft
and performed actual flight tests with a COTS BeagleBone Black development board at a
200 Hz sampling rate. The unified INDI is able to stabilize and provide control through the
entire flight envelope (hover, transition, and wing-borne flight) without changing the inner
loop structure. Further details can be found in Refs. [35–37].

The control design in this paper utilizes a similar baseline structure as in Refs. [35–37].
For the control allocation, the redistributed pseudo inverse (RPI) method [38] is used
to handle redundancy and reallocate pseudo control commands once saturation occurs.
RPI might fail to deliver the optimal input commands as compared to other optimization
methods, such as weighted least square (WLS), as found in Refs. [3,34]; however, it is still
chosen due to its simplicity and advantage in predictable and low worst-case execution time
(WCET), which is important for a certifiable implementation. To handle the redundancy-
related wind-up issues of incremental controllers, a null space technique is applied to
always bring the inputs back to trim states once the system is in steady state [35]. In the
performed simulations, the controller runs at a sampling rate of 50 Hz.

Both failure-free and critical-failure cases are simulated. In simulations with failures,
Rotor 1 is injected with a complete loss of power, whose rotational rate decays to zero over
time. In the simulation model, the FCC command to the failed motor is bypassed and
replaced by 0, and the rotational rate of the corresponding rotor reduces according to a
first-order behavior. Failure is assumed to be known to the flight control system one second
after the failure takes place. Overall, four groups of simulations were carried out, and the
results are elaborated in the following sections. For the controller design, the only difference
between the simulations is the effectiveness matrix B, which is calculated according to
configurational parameters (rotor angles according to initial design or optimization results).

6.2. Initial Configuration: Failure-Free Simulation

Firstly, the initial configuration was tested to produce baseline results, with all the
rotors in their nominal, non-failed states (no failures injected). The commands are designed
to simulate a typical take-off process, composed of vertical climb, yaw towards a specified
direction (

.
Ψ command), and then acceleration by nose-down pitch (Θ command). The

tracking performance is shown in Figure 19 for the controlled variables, where Φ is the bank
angle, Θ is the pitch angle,

.
Ψ is the yaw rate, and ( fZ)C is the vertical specific force. Small

cross-axis transient errors can be seen, but steady-state errors are minor. Figure 20 shows
the control efforts for this maneuver, in which the rotational speeds are well bounded
within the rotors’ saturation limits. To facilitate understanding, Rotors 1–8 are marked in
Figure 20 as L01–L04 and R01–R04.
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Figure 19. Tracking performance for the initial configuration.
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Figure 20. Control efforts (as rotor speeds in rad/s) of the initial configuration.

6.3. Initial Configuration: Simulation with Injected Failure

To test the control performance under failure, another test was carried out for the
initial configuration with the injected failure of Rotor L01 at t = 10 s. The command tracking
is shown in Figure 21. When the failure takes place at t = 10 s, the system starts to diverge
in pitch and roll attitude. Given the knowledge of failure at t = 11 s, the system undergoes
a transient phase of around 10 s and stabilizes at t = 20 s with a large steady-state error in
the bank angle. Steady-state errors in the pitch and yaw rate are also observed. It can be
reasonably assumed that it is unsafe to continue the mission, and any further maneuvers
can introduce hazardous or catastrophic outcomes to the aircraft.
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Figure 21. Tracking performance of the initial configuration. Failure injected @ t = 10 s; failure known
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The control efforts for this simulation are presented in Figure 22. The failure of L01 is
injected at t = 10 s. From then on, L01 starts to ramp down slowly towards 0 rad/s with
its own dynamics, and the commands to L01 are no longer followed. At t = 11 s, the flight
control system is aware of the failure and starts to redistribute the controls. Shortly after
the failure, Rotors L02, R02, and L04 are commanded to their respective upper saturation
limit, while Rotor R04 is drawn to the lower limit. This is because L01 and R04 are installed
in opposite positions with respect to the CG, and therefore produce opposing moments.



Aerospace 2024, 11, 990 19 of 24

Given the loss of L01, the control efforts undertaken by R04 are also unloaded in order
to keep the aircraft balanced and trimmed. This leads to the loss of control effectiveness
of two rotors despite the failure of only one actual rotor. As a result, the remaining
rotors must take over all of the control efforts, and both the maximum available lift and
control margin are highly degraded. Hence, the system cannot maintain stable flights and
safe landing.
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@ t = 10 s; failure known to the flight control system @ t = 11 s.

6.4. Failure-Free Optimized Configuration: Simulation with Injected Failure

In this case, the optimized configuration of Test 2 in Section 4, namely, the four-
variable failure-free optimization, was simulated using an injected failure @ t = 10 s. This
test allowed us to check whether the failure-free optimization improves overall performance
compared to the baseline layout under failure scenarios. In Figure 23, a large transient
error is observed after failure injection; however, given the failure knowledge @ t = 11 s,
the system recovers to a controlled safe state, with small steady-state errors compared to
the failure-injected baseline simulation described in Section 6.3.
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Figure 23. Tracking performance of the non-failure-optimized configuration. Failure injected
@ t = 10 s; failure known to the flight control system @ t = 11 s.
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The control efforts are shown in Figure 24. The redistributed control efforts after
failure are very different from that of Figure 22. Instead of R04, L04 reaches its lower limit,
and only R04 reaches the upper limit. This means that the loss of L01 also leads to the
equivalent degradation of two rotors (L01 and L04), but the remaining control margin after
failure is better than the initial configuration (with less saturated controls).
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Figure 24. Control efforts (as rotor speeds in rad/s) of the non-failure-optimized configuration.
Failure to L01 injected @ t = 10 s; failure known to the flight control system @ t = 11 s.

6.5. Critical-Failure-Optimized Layout Simulation with Injected Failure

Finally, the four-variable critical-failure-optimized configuration (optimal result as
of Test 4) was simulated. The tracking performance is shown in Figure 25. Compared
to Figure 23, the failure-free optimal configuration tracking performance, the system
responses after failure in Figure 25 exhibit fewer transient dynamics, especially for the
yaw axis. The maximum pitch angle during the transient reduces to −12◦ compared to
−15◦ as in Figure 23. The steady-state error in Φ is also reduced. After 5 s, the system
restores a controlled steady state, enabling the system to continue safe flight after a critical
rotor failure.
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Figure 25. Tracking performance of the critical-failure-optimized configuration. Failure injected
@ t = 10 s; failure known to the flight control system @ t = 11 s.
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Major improvements in control efforts can be seen in Figure 26. Compared to Figure 24
and all previous results, the variance between the remaining rotors’ RPMs is much smaller,
with no saturations encountered in both upper and lower limits. In particular, apart from
the failed rotor L01, no other rotors are driven down to the lower limit to balance the failed
rotor. This preserves the lift generation and the control margin, and consequently allows
the system to perform continued safety flight.
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Figure 26. Control efforts (as rotor speeds in rad/s) of the critical-failure-optimized configuration.
Failure to L01 injected @ t = 10 s; failure known to the flight control system @ t = 11 s.

6.6. Summary of Simulation Results

The simulation results are briefly summarized and compared in this section. For the
initial, unoptimized configuration, when testing without failures (Figure 19), the system
smoothly tracks the commanded values with rotors well bounded in the limits (Figure 20).
When testing with injected failures (Figure 21), the system shows clear departure and large
steady-state errors compared to the commands, with three rotors commanded to their
upper limit (Figure 22), indicating a lack of enough of a control margin to stabilize the
system after failure. For the optimized configuration without considering critical failure
(Figure 23), the system can recover to steady state after a noticeable transient, but Rotors
L02, R02, and R04 in steady state after recovery are still close to the upper limits, and L04
reaches the lower limit (Figure 24), indicating that the system does not have sufficient
controllability to perform further maneuvers and reject disturbances after the failure. For
the last configuration, which is optimized by taking into account critical failure (Figure 25),
the transient at the time of failure is improved, with the maximum attitude smaller than
that shown in Figure 23, and much smaller yaw disturbances are observed. In Figure 26,
the control efforts among the rotors are utilized in a more balanced manner, with no rotor
operating at their hard limits, indicating much larger control margins to stabilize and
maneuver the aircraft, which enables the aircraft to continue safe flight.

It is worth noting again that the only difference between the simulations is the ro-
tor angles according to the initial design and optimization results. The control perfor-
mances with injected failures for different configurations are compared and quantified in
Table 3 below.
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Table 3. Comparison and quantification of control performances for different configurations.

Initial Unoptimized Config.
(Figures 21 and 22)

Non-Failure-Optimized
Config. (Figures 23 and 24;
Figure 23; Figure 24)

Critical-Failure-Optimized
Config. (Figures 23 and 24)

Continued Safe Flight after
Failure (Y/N) N Y Y

Max. Attitude Transient after
Failure (Degrees) 20 15 12

Number of Saturated Rotors
(Non-Failed) @t = 30 s 4 (L02, R02, L04, R04) 2 (L04, R04) 0

Difference between Max. and
Min. Rotational Speed
(Non-Failed) @t = 30 s (Rad/s)

288 (btw. L04 & R04) 288 (btw. L04 & R04) 158 (btw. L03 & R03)

7. Conclusions

In this paper, a method to optimize the generalized AMS in 4D space is proposed,
which maximizes eVTOL’s control authority over a prescribed RMS from performance
requirements. In particular, the failure of a critical rotor is considered. Closed-loop model-
in-the-loop simulations are designed to compare the performances of the baseline con-
figuration and optimized configurations. Major improvements can be observed for the
optimized configurations, especially the two optimized with critical failure criteria, with
respect to the margin factors as well as closed-loop tracking performance after failure.
While the baseline configuration exhibits large attitude deviations from commands after
the critical failure, the optimized configurations present the ability to perform continued
safe flight, which fulfills the single point of failure criteria according to EASA SC-VTOL.
Although the optimization does not directly account for the loss in total lift or power con-
sumption, a validation analysis shows that only slight penalties are found regarding these
two aspects. Further work could focus on integrating the philosophy into a multi-objective
optimization framework, given sufficient modeling fidelity, to directly address constraints
such as structural strength penalties, aerodynamic properties, weight penalties, and power
consumption penalties. Additionally, other failure modes might be considered, such as
the loss of a battery pack or cascaded rotor failures due to rotor plane intersections, which
might introduce the simultaneous loss of more than one propulsion system.
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