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Abstract: This research paper focuses on the application of a new method for the simultaneous
reconfiguration and the optimum placing of Soft Open Points (SOPs) in Radial Distribution Sys-
tems (RDS). The proposed Lévy Flight-based Improved Equilibrium Optimizer (LF-IEO) algorithm
enhances the standard Equilibrium Optimizer (EO) by integrating several techniques to improve
exploration and exploitation capabilities. SOPs are highly developed power electronics devices that
can enhance distribution utility networks in terms of reliability and effectiveness. However, iden-
tifying their optimum place along with network reconfiguration is a challenging task that requires
advanced computation techniques. The performance of the proposed LF-IEO algorithm has been
first verified on several benchmark functions. Subsequently, it is implemented on a IEEE 33-Bus,
69-Bus, 118-Bus, and Algerian 116-Bus distribution network to solve the problem of simultaneous
network reconfiguration and optimal SOP placement. For the Algerian 116-bus system case study, the
algorithm achieved a significant 14.89% reduction in power losses, improved the minimum voltage,
and generated substantial net annual savings of 74,426.40 $/year. To prove its superiority in terms of
solution quality and robustness, the proposed LF-IEO approach was compared with several newly
developed algorithms from the literature.

Keywords: soft open points; radial distribution systems; lévy flight-based improved equilibrium
optimizer; network reconfiguration; voltage profile; power loss reduction; optimization

1. Introduction

Electrical distribution systems are the last link in the power delivery chain and typically
operate radially to provide protection and maintain low fault currents. However, these
systems face several challenges, the most significant being active power losses that can
reach up to 20% of the total power [1]. It is crucial to address these losses to improve the
efficiency and reliability of the system. Several solutions have been proposed, including
shunt compensators, network reconfiguration, and Flexible AC Transmission Systems
(FACTS; see Appendix A for the List of Abbreviations). In addition to these classical
mitigations, a new and indeed promising one presumes simultaneous arrangement of
Soft Open Points (SOPs) along with network reconfiguration. Nevertheless, a robust
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optimization strategy is required, as any incorrectly arranged configuration may cause a
negative impact on the system.

Distribution System Reconfiguration (DSR) is a method to optimize Radial Distribution
Systems (RDS) by altering the network topology through switching actions. This process
rearranges the network topology to create a radial structure that meets specific objectives,
such as minimizing losses and improving voltage profiles. However, DSR is considered a
complex problem in mathematics and is classified as a mixed-integer non-linear problem [2].
Its complexity arises from two main challenges: first, solving power flow equations while
considering the discrete nature of switch operations; second, determining the optimal
status of switches to achieve the best possible reconfiguration.

SOPs represent an advanced power electronic device, and they find a useful appli-
cation within distribution systems [3]. As shown in Figure 1, SOPs provide significant
improvements in the reconfiguration and operation of RDS over conventional tie switches.
The key difference between the two is that the SOP can bidirectionally control the flow of
active and reactive power between the feeders, while a tie switch only acts as an on/off
switch. Figure 1a illustrates a simple configuration of a distribution system with SOP, while
Figure 1b shows the core circuit topology of the VSC-based SOP. This enhanced controlla-
bility places SOPs in a position to achieve optimal voltage levels across the network for
minimum loss of power through intelligent management and optimal distribution of power
transfer between feeders. When used in combination with other network equipment, SOPs
allow system operators to carry out network changes much more quickly and efficiently,
with a much wider range of flexible configurations. Tie switches, on the other hand, can
only permit improvements at a much slower rate. The introduction of SOPs helps in making
responsive modifications, at relatively shorter intervals, to the changes in load patterns and
significantly improves the overall performance of the system.

Energies 2024, 17, x FOR PEER REVIEW 2 of 38 
 

 

(FACTS; see Appendix A for the List of Abbreviations). In addition to these classical mit-
igations, a new and indeed promising one presumes simultaneous arrangement of Soft 
Open Points (SOPs) along with network reconfiguration. Nevertheless, a robust optimi-
zation strategy is required, as any incorrectly arranged configuration may cause a nega-
tive impact on the system. 

Distribution System Reconfiguration (DSR) is a method to optimize Radial Distribu-
tion Systems (RDS) by altering the network topology through switching actions. This pro-
cess rearranges the network topology to create a radial structure that meets specific objec-
tives, such as minimizing losses and improving voltage profiles. However, DSR is consid-
ered a complex problem in mathematics and is classified as a mixed-integer non-linear 
problem [2]. Its complexity arises from two main challenges: first, solving power flow 
equations while considering the discrete nature of switch operations; second, determining 
the optimal status of switches to achieve the best possible reconfiguration. 

SOPs represent an advanced power electronic device, and they find a useful applica-
tion within distribution systems [3]. As shown in Figure 1, SOPs provide significant im-
provements in the reconfiguration and operation of RDS over conventional tie switches. 
The key difference between the two is that the SOP can bidirectionally control the flow of 
active and reactive power between the feeders, while a tie switch only acts as an on/off 
switch. Figure 1a illustrates a simple configuration of a distribution system with SOP, 
while Figure 1b shows the core circuit topology of the VSC-based SOP. This enhanced 
controllability places SOPs in a position to achieve optimal voltage levels across the net-
work for minimum loss of power through intelligent management and optimal distribu-
tion of power transfer between feeders. When used in combination with other network 
equipment, SOPs allow system operators to carry out network changes much more 
quickly and efficiently, with a much wider range of flexible configurations. Tie switches, 
on the other hand, can only permit improvements at a much slower rate. The introduction 
of SOPs helps in making responsive modifications, at relatively shorter intervals, to the 
changes in load patterns and significantly improves the overall performance of the sys-
tem. 

  
(a) (b) 

Figure 1. (a) Simple configuration of a distribution system with SOP; (b) Core circuit design of the 
VSC-based SOP. 

Recently, numerous algorithms have been developed for the optimal placement and 
sizing of SOPs in RDS. These algorithms mainly use metaheuristic techniques, which are 
well known for their ability to find global solutions, avoid local minimum traps, and ef-
fectively explore vast solution spaces. Examples include Particle Swarm Optimization 
(PSO) [4], which simulates the social behavior of fish and birds; Artificial Rabbits Optimi-
zation (ARO) [5], inspired by the searching behavior of rabbits; Political Optimizer (PO) 
[6], which mimics political negotiations; Mixed-Integer Second-Order Cone Programming 
(MISOCP) [7], a mathematical method for non-linear optimization; Stackelberg Game (SG) 
[8], based on leader-follower dynamics; Modified Grey Wolf Optimization (MGWO) [9], 
which adapts the hunting strategies of grey wolves; Hybrid Simulated Annealing with 
Second-Order Cone Programming (Hybrid SA-SOCP) [10], combining probabilistic 
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VSC-based SOP.

Recently, numerous algorithms have been developed for the optimal placement and
sizing of SOPs in RDS. These algorithms mainly use metaheuristic techniques, which are
well known for their ability to find global solutions, avoid local minimum traps, and
effectively explore vast solution spaces. Examples include Particle Swarm Optimization
(PSO) [4], which simulates the social behavior of fish and birds; Artificial Rabbits Op-
timization (ARO) [5], inspired by the searching behavior of rabbits; Political Optimizer
(PO) [6], which mimics political negotiations; Mixed-Integer Second-Order Cone Pro-
gramming (MISOCP) [7], a mathematical method for non-linear optimization; Stackelberg
Game (SG) [8], based on leader-follower dynamics; Modified Grey Wolf Optimization
(MGWO) [9], which adapts the hunting strategies of grey wolves; Hybrid Simulated
Annealing with Second-Order Cone Programming (Hybrid SA-SOCP) [10], combining
probabilistic search with cone programming; Multi-Objective Particle Swarm Optimization
(MOPSO) [11,12], a variant of PSO for multiple objectives; Genetic Algorithm (GA) [13],
which uses evolutionary principles; Artificial Bee Colony (ABC) [14], modeled after the
foraging behavior of bees; Growth Optimizer (GO) [15], which simulates natural growth;
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Differential Evolution (DE) [16], a population-based algorithm; Adaptive Alternating Di-
rection Method of Multipliers (ADMM) [17], for large-scale optimization; Hyper-Spherical
Discrete-Continuous Search (HS-DCS) [18], which explores high-dimensional spaces; Im-
proved Powell’s Direct Set (IPDS) [19], an enhanced derivative-free technique; and Tunicate
Swarm Algorithm (TSA) [20], inspired by marine organisms. One noticeable trend is
that most of the recent research does not consider both the placement and reconfigura-
tion of SOPs simultaneously. In fact, a review of the latest studies shows that less than
10% address both elements. Additionally, most recent research primarily focuses on mini-
mizing power loss in the system. However, these studies often neglect to account for the
installation and maintenance costs of SOPs, as well as the power losses occurring within
these devices themselves.

This study introduces a novel Lévy Flight-based Improved Equilibrium Optimizer
(LF-IEO) algorithm for the simultaneous optimization of network reconfiguration and
SOPs placement in radial distribution systems. The LF-IEO algorithm incorporates several
key enhancements to address the limitations of the conventional Equilibrium Optimizer
(EO). These include a Good Point Set (GPS) initialization technique to improve initial
population diversity, a Lévy Flight strategy to enhance exploration capabilities, Fast Ran-
dom Opposition-Based Learning (FROBL) to accelerate convergence, and an Oscillating
Generation Probability (OGP) to balance exploration and exploitation strategies.

The major contributions of the present paper are:

• Proposing a new method for optimal reconfiguration of RDS, including SOPs based
on graph theory.

• Introducing the Lévy Flight-based Improved Equilibrium Optimizer (LF-IEO) algo-
rithm for solving the optimization problem. This algorithm incorporates several
enhancements to improve performance and convergence.

• Applying the proposed method to test networks, including the IEEE 33-bus, IEEE
69-bus, and IEEE 118-bus systems, and validating it on an Algerian power company’s
116-bus distribution system, demonstrating its scalability and real-world applicability.

Following this introduction, the remainder of the paper is organized as follows:
Section 2 discusses the methodology, detailing the LF-IEO algorithm and its enhancements.
Section 3 presents the problem formulation, including SOPs modeling, objective function,
and system constraints. Section 4 describes the application of LF-IEO to the proposed
problem, including encoding/decoding solutions and the algorithm’s flowchart. Section 5
presents the simulation results and discussion, analyzing the performance of LF-IEO on
various test systems and comparing it with other algorithms. Finally, conclusions are given
in Section 6.

2. Methodology
2.1. Equilibrium Optimizer (EO)

In 2020, Faramarzi et al. introduced the Equilibrium Optimizer (EO) as a new robust
metaheuristic optimization algorithm [21]. This algorithm attempts to achieve dynamic
equilibrium by balancing the mass in a control volume, mimicking the physical process.
Like other population-based optimization methods, the candidate solutions are adapted
based on the simulation of these states, guided by physical principles. A fitness func-
tion will have to balance between exploration and exploitation, driving the search space
toward optimal solutions. The EO has several advantages, including simplicity, being
parameter-free, derivative-free, and having a strong theoretical foundation and a compre-
hensive conceptual framework.

As with other metaheuristic algorithms, EO begins by randomly initializing a popula-
tion of particles within the search space. Mathematically:

Xinitial = LOB + rand(n, d)× (UPB − LOB) (1)
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where Xinitial corresponds to the initial positions of the particles, LOB to the lower bound
of the search space, and UPB to the upper bound. rand(n, d) is used to generate a matrix of
random numbers between 0 and 1, with dimensions n × d, where n represents the number
of particles and d represents the number of dimensions.

Each particle’s fitness is calculated by the objective function, which is problem-dependent;
the equilibrium pool contains the best individuals, forming a guide into the search process
carried on by the entire population. The equilibrium pool comprises the five members:

Eitr
pool =

{
Eitr

1 , Eitr
2 , Eitr

3 , Eitr
4 , Eitr

5

}
(2)

where Eitr
1 through Eitr

4 represent the four best solutions found in the current iteration itr.
The fifth member, Eitr

5 , is the arithmetic mean of the other four, calculated by averaging
their positions in the search space.

Particles update their concentrations (positions) towards the equilibrium state based
on a randomly selected equilibrium candidate Ei from the equilibrium pool as follows:

Xitr+1 = Ei + (Xitr − Ei)F +
G

λV
(1 − F) (3)

where Xitr represents the particle concentration (position) at the current iteration itr, F is
an exponential term controlling the balance between exploration and exploitation, G is the
generation rate for exploitation, λ is the turnover rate, and V is a constant unit volume.
The exponential term F is calculated as:{

F = a1 × sign(r − 0.5)
(
e−λt − 1

)
t = (1 − itr/itrmax)

a2(itr/itrmax) (4)

where a1 and a2 are constant coefficients that control the algorithm’s exploration and
exploitation capabilities. r is a random number between 0 and 1, itr represents the current
iteration number, itrmax represents the maximum number of iterations, and λ represents
the turnover rate. The generation rate G can be expressed as follows:

G =

{
−0.5r1

(
Ei − λXitr)F, if r2 ≥ GP

0, if r2 < GP
(5)

where r1, r2 are random numbers between 0 and 1, λ is a control parameter, and GP is the
generation control parameter usually taken as 0.5. Equations (2) through (5) work together
to guide the particles towards optimal solutions, balancing exploration of the search space
with exploitation of promising areas. The steps of the EO algorithm are presented in
Algorithm 1.

Since its introduction, EO has emerged as a promising metaheuristic technique for
addressing a variety of power system challenges. EO was used by Mansour et al. [22] to
improve the performance of automatic generation control (AGC) against renewable energy
disturbances. Zellagui et al. [23] used EO to determine the optimal location of photovoltaic
distributed generators in medium-voltage DC networks, considering both technical and
economic factors. In [24], Mohammedi et al. utilized EO to coordinate overcurrent relays,
ensuring fault protection. Korashy et al. [25] proposed an improved EO algorithm that
shows superior performance over traditional methods to coordinate directional overcurrent
and distance relays. For solving temperature-dependent optimal power flow problems,
Dao et al. [26] introduced a chaotic EO variant, demonstrating its efficacy across different
objective functions. In grid-tied PV systems, Chankaya et al. [27] applied EO to enhance
power quality and system dynamics.
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Algorithm 1: Equilibrium Optimizer (EO)
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10:  end 

11: 
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12: end 

13: Return The best solution from itr
poolE  

As a result of these diverse applications, EO has shown its versatility and effectiveness
in addressing a wide range of optimization challenges across many different aspects of
power system operation and control.

2.2. The Proposed Levy Flight-Based Improved Equilibrium Optimizer (LF-IEO)

This paper presents the LF-IEO as an improvement of the standard EO. Although the
EO presents a high convergence and good precision, it exhibits poor exploration capability,
unbalanced exploration-exploitation capabilities, a tendency to get entrapped into local
optima, and suboptimal initialization population creation. To overcome these limitations,
LF-IEO integrates several important improvements in the basic EO framework. These
improvements include an enhanced initialization technique, a better search strategy, a
modified learning approach, and dynamic parameter adjustment. The LF-IEO, through
these changes, tries to increase the exploration and exploitation power of the parent algo-
rithm so that better and more reliable optimization results can be achieved in wide areas
of application.

A. Good Point Set-based (GPS) initialization

The initialization of the population significantly influences the performance of meta-
heuristic optimization algorithms. A well-distributed initial population might enhance
diversity, help speed up the convergence process, and thus prevent premature convergence
to local optima. The usual EO algorithm employs random initialization with a lack of intel-
ligence in the distribution of solutions. The initialization of such a solution set might, by
chance, locate all solutions close to some of the optima while disregarding other promising
regions of the search space. This uneven coverage is prone to ineffective searching and
suboptimal performance. Consequently, a uniformly distributed initial population has to be
ensured. The GPS initialization process offers an efficient way to achieve a more uniformly
dispersed initial population [28]. This procedure is based on number theory concepts
and generates low-discrepancy points that achieve much better coverage of the search
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space than random initialization. Therefore, to enrich the exploration and convergence
capacities of the EO algorithm, GPS-based initialization is incorporated in the proposed
LF-IEO variant. This initialization strategy gives a variety and an even distribution in
the initial population, which will help in providing the base for further search processes.
Algorithm 2: Describe the GPS-based steps. Figure 2 compares population initialization
methods in two dimensions: (a) the standard random approach and (b) the GPS technique.
The GPS-based initialization technique gives rise to a more uniform population distribution
and a higher-quality population.

Algorithm 2: GPS-based Initialization
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Figure 2. Comparison of population initialization methods in two dimensions: (a) Standard random
approach; (b) GPS technique.

B. Levy Flight (LF) strategy

Lévy flight is a category of random walk behavior in which large jumps occur infre-
quently and lead to significant performance enhancement for algorithms in the domain of
metaheuristics [29]. This distinctive movement strategy is inspired by the foraging patterns
of various animals in nature and provides an effective mechanism for balancing exploration
and exploitation in optimization problems. In the framework of global optimization, the
heavy-tailed distribution of Lévy flight allows algorithms to escape local optima more
efficiently than traditional random walk methods. The diversification capability of the
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LF-IEO algorithm is greatly enhanced by incorporating Lévy flight, thereby preserving
population diversity over time. This attribute helps mitigate the common issue associ-
ated with metaheuristic techniques, such as premature convergence, observed in standard
EO. With the integration of Lévy flight, the search pattern consistently combines frequent
small-scale movements with occasional large jumps, broadening the exploration space
and thereby increasing the algorithm’s potential to efficiently locate optimal regions in the
search landscape.

The Lévy flight strategy can be mathematically written in the following form and
integrated into the LF-IEO algorithm:

Levy =
(

0.01 × µ/|υ|1/β
)

(6)

where: µ ∼ N(0, σ2
µ), and υ ∼ N(0, σ2

ν ), are drawn from normal distributions, and β is a
parameter between 1 and 2, typically set to 1.5.

σµ =

{
Γ(1 + β)× sin(πβ/2)

Γ(0.5 + β/2)× β × 2β/2−0.5

}1/β

, σν = 1 (7)

where σµ represents the standard deviation of the distribution for µ, while συ is set to 1.
Next, the new position of a search agent is calculated by applying:

X′ = X + rand1(d, 1)× sign(rand2 − 0.5)× Levy × (X − XTARGET) (8)

where rand1,2 are random numbers between 0 and 1, sign(·) is the sign function, and
XTARGET is the target position (best-known solution). The movement is made to perform
both small local displacements and occasional large jumps in the solution space, which
gives this form of formulation advantages in efficiently exploring search space against
being stuck at a single location (local minimum).

C. Fast Random Opposition-Based Learning FROBL

The FROBL technique is incorporated into the proposed LF-IEO algorithm to improve
both exploration and exploitation capabilities. FROBL generates solutions that are opposite
to the current population members, potentially discovering promising new regions of the
search space. As shown in Algorithm 3, FROBL utilizes a modified formulation of the origi-
nal opposition-based learning approach [30]. A sinusoidal function is introduced to create
controlled randomness when calculating opposite solutions. The sine term sin(2π × r)
oscillates between −1 and 1, allowing the opposite solutions to be generated within a
bounded region around the midpoint of the search space. This sinusoidal variation helps
maintain diversity while still focusing the search near promising areas. The algorithm
also introduces an adaptive factor k that decreases over iterations, gradually reducing the
magnitude of changes to facilitate convergence. By balancing exploration early on and
exploitation in later stages, FROBL aims to improve the algorithm’s ability to avoid local
optima and increase its convergence speed toward the global optimum.
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Algorithm 3: Fast random opposition-based learning

Energies 2024, 17, x FOR PEER REVIEW 8 of 39 
 

 

 
D. Enhancing EO with Oscillating Generation Probability. 

An important update in LF-IEO is the dynamic adjustment of the Generation Proba-
bility (GP parameter). In the standard EO, it has been assigned a constant value of 0.5, 
whereas the LF-IEO uses a sinusoidal variation of GP defined as: 

max

0.25 1 sin 2 itrGP
itr

π
  

= +      
 (9)

Such a sinusoidal formulation allows for a finer balance between exploration and 
exploitation throughout the optimization process. This approach allows the algorithm to 
switch between an intensive exploration and a focused exploitation phase during optimi-
zation, allowing for potentially highly extensive searches of the solution space and better 
convergence towards the global optima. This GP modification complements the other en-
hancements implemented in the LF-IEO, collectively addressing the limitations of the 
original EO and improving its overall optimization capabilities. 
E. Key Advantages of LF-IEO 

The proposed LF-IEO algorithm offers several distinct advantages over existing op-
timization techniques and variants of the EO method. These advantages can be summa-
rized as follows: 
• Enhanced Search Space Exploration: 

- The GPS initialization ensures a more uniform initial population distribution 
compared to random initialization, providing better coverage of the search 
space from the start. 

Algorithm 3: Fast random opposition-based learning 
Input: Population (Current population), n (Population size), d (dimension of the search 
space), itr (Current Iteration), itrmax (Maximum number of iterations), LOB (Lower Bound 
of search space), UPB (Upper Bound of search space) 
Output: Opposite (Opposite population) 

1: ( )10

1 maxk itr itr= +  

2: for i = 1 to n do 
3:  for j = 1 to d do 

4: 
  ( ) ( )0,1 , ( ) ( ) ( ) /r random mid j UPB j LOB j 2= = −  

5: 
  if ) , (Popu ilation i jj m d  <   then 

6: 
   ( )2,   ( )  2 , 2kOpposite i j mid j r sin r Population i jπ     = + × × ×  

7:   else 

8: 
   ( )2,   ( )  2 , 2kOpposite i j mid j r sin r Population i jπ     = − × × ×  

9:   end 
10:  end 
11: end 
12: Return Opposite 

D. Enhancing EO with Oscillating Generation Probability.

An important update in LF-IEO is the dynamic adjustment of the Generation Prob-
ability (GP parameter). In the standard EO, it has been assigned a constant value of 0.5,
whereas the LF-IEO uses a sinusoidal variation of GP defined as:

GP = 0.25
(

1 + sin
(

2π
itr

itrmax

))
(9)

Such a sinusoidal formulation allows for a finer balance between exploration and
exploitation throughout the optimization process. This approach allows the algorithm
to switch between an intensive exploration and a focused exploitation phase during op-
timization, allowing for potentially highly extensive searches of the solution space and
better convergence towards the global optima. This GP modification complements the
other enhancements implemented in the LF-IEO, collectively addressing the limitations of
the original EO and improving its overall optimization capabilities.

E. Key Advantages of LF-IEO

The proposed LF-IEO algorithm offers several distinct advantages over existing opti-
mization techniques and variants of the EO method. These advantages can be summarized
as follows:

• Enhanced Search Space Exploration:

- The GPS initialization ensures a more uniform initial population distribution
compared to random initialization, providing better coverage of the search space
from the start.

- The LF strategy allows both small-scale local searches and random big jumps,
which allow the algorithm to break out of local optima faster than random walks.
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• Improved Local Optima Avoidance:

- The FROBL mechanism generates opposite solutions with controlled randomness
through a sinusoidal function, helping avoid local optima traps. Additionally,
an adaptive factor k in FROBL decreases over iterations, providing a natural
transition from exploration to exploitation.

• Balanced Exploration-Exploitation:

- The combination of the LF strategy and the FROBL mechanism provides an
effective balance between global exploration and local exploitation. This adaptive
balance helps avoid premature convergence while ensuring efficient convergence
to optimal solutions.

• Computational Efficiency:

- GPS initialization reduces the number of iterations needed to find high-quality
solutions, thereby considerably reducing the computation time required to reach
the optimal solution.

2.3. LF-IEO Performance Evaluation

To assess the performance of the proposed LF-IEO algorithm, eight benchmark func-
tions commonly used in the literature were utilized: Sphere, Schwefel, Beale, Ackley,
Rastrigin, Griewank, Shekel, and Penalized. The benchmark functions are divided into
two categories: unimodal and multimodal. Functions F1 and F2 fall under the unimodal
category, each possessing a single global optimum. The remaining functions, F3 through
F8, are multimodal, featuring multiple local optima. These allow us to evaluate LF-IEO’s
ability to find the global optimum in more complex landscapes. Table 1 presents the
mathematical formulations, dimensions, global optima, and search ranges for each of the
selected benchmark functions. The performance of the proposed LF-IEO is compared with
seven recently developed algorithms known for their effectiveness, namely the Grey Wolf
Optimizer (GWO) [31], the Butterfly Optimization Algorithm (BOA) [32], the Whale Opti-
mization Algorithm (WOA) [33], the Multi-Verse Optimizer (MVO) [34], the Salp Swarm
Algorithm (SSA) [35], the Ant Lion Optimizer (ALO) [36], and the Sine Cosine Algorithm
(SCA) [37], as well as the conventional EO. Moreover, Table 2 outlines the specific parameter
configurations for all algorithms in the comparison. Each algorithm runs for a maximum of
60 iterations. To ensure statistical reliability, every algorithm was executed 30 independent
times for each test function. Table 3 presents the results of these multiple runs, including the
minimum, average, maximum, and standard deviation values. The optimization methods
are then placed in order according to their average performance values. The average rank
for all benchmark tests is also calculated to determine the overall ranking. All algorithms
are implemented using MATLAB software installed on a PC with an Intel Core i9-14700K
processor, a 5.60 GHz clock frequency, and 64 GB of memory on OS Windows 11.

Based on the results presented in Table 3 and the convergence curves shown in
Figures 3–8, the Flight LF-IEO demonstrates superior performance compared to other
algorithms across various benchmark functions. For the Sphere function (F1), LF-IEO con-
sistently achieves the optimal solution with zero error, outperforming all other algorithms,
including the original EO. The convergence curve in Figure 3b shows that LF-IEO con-
verges rapidly to the global optimum, maintaining a significant lead over other algorithms
throughout the optimization process. Similar superior performance is observed for the
Schwefel function (F2), where LF-IEO again achieves zero error and exhibits the fastest
convergence, as seen in Figure 3b. For the Beale function (F3), LF-IEO ranks second, very
close to EO, but still outperforms other algorithms, with both showing rapid convergence
in Figure 4b. In the case of the Ackley function (F4), LF-IEO once again achieves the
best performance with zero error and the fastest convergence, as evident in Figure 5b.
These results consistently demonstrate LF-IEO’s enhanced ability to balance exploration
and exploitation, allowing it to efficiently navigate complex search spaces and avoid local
optima. The algorithm’s performance is particularly impressive in both unimodal and
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multimodal functions, indicating its versatility and robustness across different types of
optimization problems.

Table 1. Benchmark functions.

Function Mathematical Formulation Range n x* F(x*)

Sphere F1(x) = ∑n
i=1 x2

i [−5.12, 5.12] 30 [0, . . . , 0] 0

Schwefel F2(x) = max{|xi|, 1 ≤ i ≤ n} [−100, 100] 30 [0, . . . , 0] 0

Beale F3(x) = (x1x2 + 1.5 − x1)
2+(

x1x2
2 + 2.25 − x1

)2
+
(

x1x3
2 + 2.625 − x1

)2 [−4.5, 4.5] 2 [3, 0.5] 0

Ackley
F4(x) = −20 × exp

(
−0.2

√
1
n ∑n

i=1 x2
i

)
−

exp
(

1
n ∑n

i=1 cos(2πxi)

)
+ e + 20

[−32.768, 32.768] 30 [0, . . . , 0] 0

Rastrigin F5(x) = 10n + ∑n
i=1
[
x2

i − 10 cos(2πxi)
]

[−5.12, 5.12] 30 [0, . . . , 0] 0

Griewank F6(x) =
1

4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] 30 [0, . . . , 0] 0

Shekel

a =
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 5 1 2 3.6
4 1 8 6 3 2 3 8 6 7
4 1 8 6 7 9 3 1 2 3.6



F7 = −
10
∑

i=1

1
4
∑

j=1
(xj − aij)

2 + ci

c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5



[0, π] 4 [4, 4, 4, 4] −10.1532

Penalized

F8(x) =
(

n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
])

+

n
∑

i=1
u(xi, 10, 100, 4)

u(xi, a, k, m) =


k(−xi − a)m if xi < a
0 if − a ≤ xi ≤ a
k(xi − a)m if xi > −a

[−50, 50] 30 [0, . . . , 0] 0

Table 2. Parameter settings for optimization algorithms.

Algorithm Parameter Value

GWO Convergence factor Decreases linearly from 2 to 0
BOA Probability switch, sensory modality, power exponent 0.8, 0.01, 0.1
WOA Convergence factor (a) Decreases linearly from 2 to 0
MVO Minimum and maximum likelihood of wormholes existing 0.1, 1.0
SSA Exploration-Exploitation parameter Decreases exponentially from 2 to 0
ALO Parameter used in random walk of ants 2.0
SCA Exploration-Exploitation parameter Decreases exponentially from 2 to 0
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Table 3. Statistical results for benchmark functions.

Function Metrics GWO BOA WOA MVO SSA ALO SCA EO LF-IEO

Sphere

Best 1.31 × 10−12 1.87 × 10−9 4.02 × 10−36 1.34 × 10−2 2.32 × 10−2 6.71 × 10−2 6.29 × 10−2 5.35 × 10−18 0.00 × 100

Average 1.44 × 10−11 4.10 × 10−9 8.62 × 10−31 2.13 × 10−2 1.10 × 10−1 2.19 × 100 1.95 × 100 1.88 × 10−16 0.00 × 100

Worst 3.84 × 10−11 6.59 × 10−9 8.74 × 10−30 4.08 × 10−2 3.29 × 10−1 6.61 × 100 9.94 × 100 1.11 × 10−15 0.00 × 100

SD 1.82 × 10−11 4.28 × 10−9 2.31 × 10−30 2.20 × 10−2 1.28 × 10−1 2.73 × 100 2.79 × 100 2.98 × 10−16 0.00 × 100

Rank 4 5 2 6 7 9 8 3 1

Schwefel

Best 6.75 × 10−3 2.59 × 10−6 1.36 × 101 3.07 × 100 1.08 × 101 1.38 × 101 1.70 × 101 6.40 × 10−5 0.00 × 100

Average 4.06 × 10−2 4.25 × 10−6 5.83 × 101 6.99 × 100 1.66 × 101 2.22 × 101 5.61 × 101 1.10 × 10−3 0.00 × 100

Worst 9.23 × 10−2 5.22 × 10−6 9.00 × 101 1.39 × 101 2.31 × 101 3.21 × 101 8.18 × 101 3.25 × 10−3 0.00 × 100

SD 4.66 × 10−2 4.29 × 10−6 6.30 × 101 7.42 × 100 1.68 × 101 2.25 × 101 5.73 × 101 1.46 × 10−3 0.00 × 100

Rank 4 2 9 5 6 7 8 3 1

Beale

Best 7.73 × 10−9 5.12 × 10−5 1.29 × 10−12 1.20 × 10−7 8.47 × 10−16 1.37 × 10−15 1.29 × 10−6 6.87 × 10−30 2.03 × 10−12

Average 5.08 × 10−2 5.41 × 10−2 5.08 × 10−2 2.04 × 10−1 7.62 × 10−2 7.69 × 10−2 8.67 × 10−4 1.57 × 10−16 2.12 × 10−9

Worst 7.63 × 10−1 2.57 × 10−1 7.63 × 10−1 7.63 × 10−1 7.63 × 10−1 7.83 × 10−1 3.05 × 10−3 4.43 × 10−15 2.49 × 10−8

SD 1.96 × 10−1 8.77 × 10−2 1.96 × 10−1 3.94 × 10−1 2.42 × 10−1 2.43 × 10−1 1.09 × 10−3 8.10 × 10−16 5.39 × 10−9

Rank 5 6 4 9 7 8 3 1 2

Ackley

Best 6.48 × 10−6 2.58 × 10−6 3.55 × 10−15 2.10 × 100 3.21 × 100 1.14 × 101 2.35 × 100 4.89 × 10−9 0.00 × 100

Average 1.76 × 10−5 4.33 × 10−6 3.02 × 10−14 2.86 × 100 4.90 × 100 1.39 × 101 6.06 × 100 4.56 × 10−8 0.00 × 100

Worst 4.93 × 10−5 6.11 × 10−6 1.21 × 10−13 4.35 × 100 9.06 × 100 1.58 × 101 1.09 × 101 1.73 × 10−7 0.00 × 100

SD 1.99 × 10−5 4.39 × 10−6 4.06 × 10−14 2.92 × 100 5.10 × 100 1.41 × 101 6.43 × 100 5.96 × 10−8 0.00 × 100

Rank 5 4 2 6 7 9 8 3 1

Rastrigin

Best 4.32 × 100 3.68 × 10−9 0.00 × 100 8.72 × 101 3.00 × 101 6.12 × 101 1.56 × 101 1.71 × 10−13 0.00 × 100

Average 1.65 × 101 4.07 × 101 2.27 × 10−14 1.41 × 102 5.85 × 101 9.04 × 101 9.88 × 101 6.65 × 10−2 0.00 × 100

Worst 4.60 × 101 2.20 × 102 2.84 × 10−13 2.10 × 102 9.00 × 101 1.39 × 102 2.18 × 102 9.99 × 10−1 0.00 × 100

SD 1.86 × 101 9.10 × 101 6.88 × 10−14 1.45 × 102 6.09 × 101 9.28 × 101 1.12 × 102 2.58 × 10−1 0.00 × 100

Rank 4 5 2 9 6 7 8 3 1

Griewank

Best 1.81 × 10−9 2.58 × 10−9 0.00 × 100 1.04 × 100 1.09 × 100 1.41 × 100 1.22 × 100 7.33 × 10−15 0.00 × 100

Average 6.44 × 10−3 8.07 × 10−9 4.14 × 10−2 1.08 × 100 1.59 × 100 9.42 × 100 6.98 × 100 1.97 × 10−3 0.00 × 100

Worst 3.71 × 10−2 1.46 × 10−8 7.21 × 10−1 1.12 × 100 4.22 × 100 2.62 × 101 2.70 × 101 5.93 × 10−2 0.00 × 100

SD 1.28 × 10−2 8.57 × 10−9 1.62 × 10−1 1.07 × 100 1.74 × 100 1.21 × 101 9.17 × 100 1.08 × 10−2 0.00 × 100

Rank 4 2 5 6 7 9 8 3 1
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Table 3. Cont.

Function Metrics GWO BOA WOA MVO SSA ALO SCA EO LF-IEO

Shekel

Best 2.59 × 10−3 5.60 × 100 7.92 × 10−3 4.71 × 10−5 -1.59 × 10−4 -1.59 × 10−4 4.06 × 100 -1.59 × 10−4 -1.57 × 10−4

Average 4.42 × 10−1 6.67 × 100 3.67 × 100 1.45 × 100 2.52 × 100 4.89 × 100 7.05 × 100 1.88 × 100 6.47 × 10−1

Worst 6.47 × 100 8.11 × 100 8.68 × 100 7.75 × 100 8.04 × 100 8.68 × 100 9.98 × 100 7.93 × 100 6.47 × 100

SD 1.67 × 100 6.70 × 100 4.83 × 100 3.04 × 100 4.18 × 100 5.91 × 100 7.18 × 100 3.46 × 100 2.04 × 100

Rank 1 8 6 3 5 7 9 4 2

Penalized

Best 2.91 × 100 0.00 × 100 0.00 × 100 1.76 × 102 3.19 × 102 7.50 × 102 5.20 × 102 1.94 × 10−12 0.00 × 100

Average 2.12 × 101 1.28 × 10−10 1.66 × 10−15 2.69 × 102 7.26 × 102 1.53 × 103 6.74 × 106 6.60 × 10−1 0.00 × 100

Worst 3.94 × 101 8.94 × 10−10 2.84 × 10−14 4.19 × 102 1.94 × 103 4.42 × 103 4.17 × 107 4.60 × 100 0.00 × 100

SD 2.28 × 101 2.55 × 10−10 5.37 × 10−15 2.74 × 102 8.09 × 102 1.68 × 103 1.32 × 107 1.41 × 100 0.00 × 100

Rank 5 3 2 6 7 8 9 4 1

Overall Ranking 3 4 3 5 6 8 7 2 1
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Integrating the GPS initialization, Lévy Flight strategy, FROBL, and the introduction
of an oscillating Generation Probability in the position update equation have significantly
enhanced LF-IEO’s ability to balance exploration and exploitation. This synergistic com-
bination allows LF-IEO to navigate the solution space efficiently, avoiding premature
convergence and consistently finding high-quality solutions. The improved performance
is particularly evident in functions with numerous local optima, demonstrating LF-IEO’s
enhanced capacity to escape local minima and continue exploring the search space effec-
tively. These results underscore LF-IEO’s competence in providing superior optimization
outcomes across a diverse range of problem landscapes, establishing it as a powerful and
versatile algorithm for complex optimization tasks.

3. Problem Formulation
3.1. SOPs Modeling

Distribution systems consist of two types of branches: sectionalizing switches (nor-
mally closed condition, NCC) and tie switches (normally open point, NOP). Optimal
network reconfiguration in these systems traditionally involves changing the open/closed
status of these switches to achieve objectives such as loss reduction and voltage profile
improvement while maintaining radial topology. However, an emerging alternative to
opening tie switches is the use of SOPs. First proposed in 2011 [38], SOPs are power elec-
tronic devices that provide flexible power flow control between feeders. Unlike mechanical
switches, SOPs allow continuous and independent control of active and reactive power
flows, enhancing operational flexibility. Various SOP topologies exist, such as Back-to-Back
Voltage Source Converters (VSCs), a Static Series Synchronous Compensator (SSSC), and
a Unified Power Flow Controller (UPFC) [18]. The Back-to-Back VSC configuration is
considered in this work due to its widespread application and operational advantages. The
back-to-back VSC topology, shown in Figure 1, consists of two VSCs connected via a DC
link. This arrangement enables four-quadrant power flow control between the connected
AC feeders, fault isolation, and voltage support.

The total active power output from the SOPs converters, along with their internal
power losses, must collectively sum to zero, as represented by [39,40]:

Pinj,I
SOP + Pinj,I I

SOP + PLoss,I
SOP + PLoss,I I

SOP = 0 (10)

where Pinj,I
SOP and Pinj,I I

SOP represent the injected active power at terminals I and II, respectively.
The power losses at terminals I and II of the SOP are defined by: PLoss,I

SOP = ASOP

√
Pinj,I

SOP + Qinj,I
SOP

PLoss,I I
SOP = ASOP

√
Pinj,I I

SOP + Qinj,I I
SOP

(11)

where Qinj,I
SOP and Qinj,I I

SOP represent the injected reactive power at terminals I and II of the
SOP, respectively, and ASOP denotes the loss coefficient of the two converters of the SOP at
nodes terminals I and II [41]. ASOP is taken in this paper as 0.01.

3.2. Objective Function

The economic objective of the simultaneous placement of SOPs and network reconfig-
uration in radial distribution systems is to maximize the Total Net Revenue (TNR) while
satisfying equality and inequality constraints. To achieve this using minimization-based
optimization algorithms, the objective function is formulated as follows:

min Fobj = 1/TNR (12)
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where TNR is defined as:

TNR = KP

(
T × PBe f ore

TLoss

)
−
{

KP

(
T × PA f ter

TLoss

)
+
(

CostINV
SOP

)
+
(

CostMNT
SOP

)}
($/year) (13)

Here, KP is the cost of power losses taken in this paper as 0.114 $/kWh [42], T is the
time period (equivalent to 8760 h annually), PBe f ore

TLoss and PA f ter
TLoss are power losses before

and after optimization, respectively, CostINV
SOP is the annual investment cost of SOPs, and

CostMNT
SOP is the annual maintenance cost of SOPs. Note that the power losses are calculated

based on the maximum load scenario.
Total power losses PTLoss within a distribution system may be calculated through the

following equation:

PTLoss =
Nbus

∑
i=1

Nbus

∑
j=1

Gij[V2
i + V2

j − 2ViVj cos θij] (14)

where Gij is the real part of the admittance matrix, Vi and Vj are the voltage magnitudes at
buses i and j, θij is the voltage angle difference between buses i and j, and Nbus is the total
number of buses in the network.

The investment cost of SOPs per year is computed below [8,12]:

CostINV
SOP =

(
(1 + B)n × B
(1 + B)n − 1

)
×

NSOP

∑
i=1

cSOP × SSOPi (15)

where cSOP is the cost per unit capacity of SOPs, SSOPi is the capacity of the ith SOP, NSOP
is the number of installed SOPs, n is the lifetime of the SOPs in years, and B is the rate of
return. In this paper: cSOP = 200 $/kVA, n = 30, and B = 0.05 [10].

The maintenance cost of SOPs per year:

CostMNT
SOP = η ×

NSOP

∑
i=1

cSOP × SSOPi (16)

where η is the coefficient of the annual maintenance cost of SOPs taken in this paper as
0.02 [10].

3.3. System Constraints

The proposed optimization problem is subject to several critical constraints. These
constraints ensure the feasibility and reliability of the proposed solutions while adhering
to the physical limitations of the power system. The key constraints can be categorized
into three main groups: power flow equations, voltage profile constraints, and branch flow
limits.

A. Power Flow Equations

The power flow equations represent the fundamental physical laws governing the
operation of electrical power systems. These equations ensure that the power injected into
each bus equals the power flowing out, accounting for losses and demand. For each bus in
the system, the following conditions must be satisfied:

(a) Net Active Power Balance:

PLi + Vi∑Nbus
j=1 Vj

(
Gij cos θij + Bij sin θij

)
= 0 (17)

(b) Net Reactive Power Balance:

QLi + Vi∑Nbus
j=1 Vj

(
Gij sin θij − Bij cos θij

)
= 0 (18)

where PLi and QLi are the active and reactive power load at bus i.
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B. Voltage Profile Constraints

Maintaining the proper voltage level is crucial for the operation of electrical equipment
connected to the distribution system. The voltage at each bus must remain within an
acceptable range, typically ±5% of the nominal voltage [1]:

Vmin ≤ Vi ≤ Vmax (19)

where Vmin is the lower voltage limit (0.95 per unit), and Vmax is the upper voltage limit
(1.05 per unit).

C. Branch Flow Limits:

To maintain the safety of the branches in a distribution system and prevent overloading,
which could lead to overheating, the current flowing through each branch must not exceed
its maximum permissible limit. This constraint is expressed as:

Ii,j =

√(
G2

ij + B2
ij

)(
V2

i + V2
j − 2ViVj cos θij

)
≤ Imax

i,j (20)

where Ii,j is the magnitude of the current flowing from bus i to bus j.

D. Operating constraints of SOPs

The apparent power flowing through the SOP must not exceed the SOP’s rated capacity
to prevent overloading and ensure safe operation [9,40,43]. The constraint is expressed as:

√
Pinj,I

SOP + Qinj,I
SOP ≤ SSOP√

Pinj,I I
SOP + Qinj,I I

SOP ≤ SSOP

(21)

where SSOP denotes the rated apparent power capacity of the SOP.

3.4. Constraints Handling Techniques

Effectively managing these constraints is crucial for finding optimal solutions. In this
study, we employ a combination of methods to handle different types of constraints:

A. Equality Constraints

The power flow equations, which are equality constraints, are inherently satisfied
through the Backward-Forward Load Flow (BFLF) convergence [44]. This method offers
benefits such as implementation simplicity, high computational performance, stable con-
vergence, and minimal memory use. Most importantly, it efficiently handles networks
with high R/X ratios (resistance to reactance ratios). It iteratively solves the power flow
equations until a satisfactory level of convergence is achieved, ensuring power balance
throughout the network. Algorithm 4 presents a BFLF method that incorporates SOPs.
This algorithm employs the Branch Current to Bus Voltage (BCBV) and the Bus Injection to
Branch Current (BIBC) matrices, whose formulation and calculation are detailed in [45].
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Algorithm 4: Backward-Forward Load Flow Method with SOPs
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B. Inequality Constraints

In this paper, for handling inequality constraints, such as voltage profile constraints,
branch flow limits, and the operating limits of SOPs, the penalty function method is
adopted [46]. This approach incorporates the constraints into the objective function
by adding penalty terms for any violations. The modified objective function takes the
following form:

FP
obj = Fobj + ζ × (hV + hI + hSOP) (22)
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where FP
obj is the penalized objective function, Fobj is the original objective function defined

in Equation (12), ζ is a large penalty factor (set to 10,000 in this study), hI , hV , hSOP and are
penalty terms for constraint violations. The penalty terms are defined as follows:

hV = ∑Nbus
i=1

{
max(0, Vi − Vmax)2 + max

(
0, Vmin − Vi

)2
}

(23)

hI = ∑i,j max
(

0, Imax
i,j − Ii,j

)2
(24)

hSOP = ∑NSOP
i=1


max

(
0,
√

Pinj,I
SOP,i + Qinj,I

SOP,i − SSOP,i

)2
+

max
(

0,
√

Pinj,I I
SOP,i + Qinj,I I

SOP,i − SSOP,i

)2

 (25)

This formulation ensures that any violation of branch flow limits, voltage constraints,
or SOPs operating limits results in a significant increase in the objective function value,
steering the optimization algorithm away from infeasible solutions.

4. Application of LF-IEO in the Proposed Problem
4.1. Encoding/Decoding Solutions

A. Encoding process

The encoding process of solutions is a crucial component in solving optimization prob-
lems. Many previous studies focusing on metaheuristic approaches for reconfiguration in
distribution networks have typically employed two main encoding strategies for candidate
solutions: (a) a binary vector representing the status (open/closed) of each branch or (b) an
integer vector identifying the indices of open branches. While these methods have been
widely used, they often result in a significant number of infeasible solutions that violate the
fundamental radial structure requirement of distribution networks, known in graph theory
as a spanning tree. Such violations can manifest as loops or isolated buses. Consequently,
these encoding approaches may lead to slower convergence or even non-optimal solutions
due to the time spent evaluating and discarding infeasible configurations [47].

In contrast, this paper proposes an approach utilizing a continuous encoding scheme
with real numbers. This method represents potential solutions as a vector X, which contains
real numbers between 0 and 1 corresponding to the weights of all branches in the system,
as well as the SOPs parameters. Figure 9 illustrates an example of a randomly generated
solution for an 11-bus/13-branch network with one SOP, demonstrating the structure and
composition of this encoding scheme. In this method, both the branch weights and SOP
sizes are normalized within the 0 to 1 range.
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B. Decoding process

The decoding process, as detailed in Algorithm 5, is grounded in graph theory and
employs Kruskal’s method [48] for finding a minimum spanning tree. In graph theory, a
spanning tree refers to a subset of edges (branches in this context) that connects all vertices
(buses) without forming any loops. This concept is crucial for maintaining the radial
structure essential to distribution networks and the optimization process.
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The algorithm begins by constructing the spanning tree based on the weights encoded
in the solution vector X. Once this radial configuration is established, the remaining
branches are identified as “DeactiveBranches”, representing potential positions for SOPs
placement. SOP positions are then selected from among these “DeactiveBranches” based
on the lowest weights, optimizing their placement within the network. Finally, the SOP
sizes are extracted from the corresponding elements in the original solution vector X. This
step completes the decoding process, resulting in a fully specified radial configuration
with the corresponding SOP positions and sizes. Figure 10 illustrates the decoding process,
showing how the algorithm constructs the radial configuration and places SOPs for the
example presented in Figure 9. The solid lines depict the active branches forming the radial
configuration, while the dotted lines depict the deactivated branches.

Algorithm 5: Decoding Solutions
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9:  end 
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11:   Break the for loop 
12:  end 
13: end 
14: Identify remaining branches as "DeactiveBranches" as potential SOPs positions. 
15: Select SOPs positions among "DeactiveBranches" based on the lowest weights 
16: Extract SOPs sizes from the corresponding elements in X 
17: Return the radial configuration with SOPs positions and sizes 

It is worth mentioning that during the decoding process, each SOP sizing parameter
(Pinj,I

SOP , Qinj,I
SOP, and Qinj,I I

SOP ) is obtained directly from the solution vector. However, Pinj,I I
SOP

is calculated using a non-linear numerical method such as Newton-Raphson [49], from
Equations (10) and (11).

The advantages of this encoding/decoding technique are threefold: (a) the encoded
solutions are represented as vectors of real numbers between 0 and 1, which simplifies
the optimization process; (b) it ensures a unique configuration for each distinct potential
solution; and (c) it avoids invisible solutions by constructing the solution from a minimum
spanning tree, thus guaranteeing a radial network structure (no loops or isolated buses).
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4.2. Flowchart Description of the LF-IEO Algorithm Process

Figure 11 presents a comprehensive flowchart of the LF-IEO algorithm, illustrating
the step-by-step process designed for optimizing the simultaneous placement of SOPs and
network reconfiguration in radial distribution systems.
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The algorithm begins with the initialization of optimization parameters and the gener-
ation of an initial population using the GPS method. The main iterative process includes
key steps such as decoding solutions, executing load flow analysis, and evaluating the
fitness function with penalty terms for constraint violations. The flowchart highlights
the unique features of LF-IEO, including equilibrium pool selection, the calculation of
GP using an oscillating function, and the incorporation of the LF strategy for enhanced
exploration. Additionally, the FROBL method is applied to generate opposite solutions,
potentially improving the algorithm’s convergence. This iterative process continues un-
til termination criteria are met, ensuring an optimal or near-optimal solution for SOP
placement and network reconfiguration. Overall, the flowchart effectively captures the
algorithm’s structure, showcasing its capacity to balance exploration and exploitation in
complex optimization scenarios.

5. Simulation Results and Discussion

The efficacy of the LF-IEO algorithm was initially verified on various benchmark
functions, as detailed in a previous section. These benchmark tests demonstrated the algo-
rithm’s robustness and effectiveness across a range of optimization problems, establishing
a solid foundation for its application to more complex, real-world scenarios. Building on
these promising results, the LF-IEO algorithm was subsequently applied to the proposed
problem of simultaneous SOP placement and reconfiguration in radial distribution net-
works. The algorithm’s performance was rigorously evaluated on three distinct distribution
networks: the IEEE 33-bus, 69-bus, and 118-bus standard systems, along with an Algerian
116-bus system. In each case, a specific number of SOPs were considered: two for the
33-bus system, two for the 69-bus system, four for the 118-bus system, and three for the
Algerian 116-bus system. The simulations were conducted using MATLAB 2024a software
(24.1.0)on a PC equipped with an Intel Core i9-14700K processor (5.60 GHz clock frequency)
and 64 GB of memory, running on the Windows 11 operating system. Table 4 outlines the
key parameters employed in the LF-IEO algorithm for each test system. These parameters
were carefully tuned to balance computational efficiency with solution quality across the
different network sizes.

Table 4. Parameters of LF-IEO method.

Parameter 33-Bus 69-Bus 118-Bus Algerian 116-Bus

Population Size 200 500 1000 1000
Max Iterations of LF-IEO 500 1000 2000 2000

a1, a2, GP0 2.0, 1.0, 0.5 2.0, 1.0, 0.5 2.0, 1.0, 0.5 2.0, 1.0, 0.5
Maximum Load Flow Iterations 50 50 50 50

Load Flow Convergence Tolerance 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5

Number of SOPs 2 2 4 3
Minimum and Maximum SOP sizes 0.1, 1.0 MVAr 0.1, 1.0 MVAr 0.1, 1.0 MVAr 0.1, 1.0 MVAr

5.1. IEEE 33-Bus Test System

The initial tested network is a 33-bus radial distribution system composed of 37 branches,
32 switches in the closed position, and 5 switches in the open position corresponding to
branches {33, 34, 35, 36, 37}. This network operates at a base voltage of 12.66 kV and
an apparent power of 10 MVA. In the base case, without any reconfiguration or SOPs
installation, the system experiences an active power loss of 202.68 kW, resulting in an
annual cost of 202,401.48 $/year. The minimum voltage observed at bus 18 is 0.91309
p.u., which is substantially below the lower acceptable limit of 0.95 p.u. Detailed system
information can be found in [50]. It is assumed that the maximum permissible current of
all branches is 255 A [51].

Table 5 illustrates the results of applying the proposed LF-IEO algorithm to the IEEE
33-Bus System. The table compares three scenarios: the base case, optimal reconfiguration
without SOPs, and simultaneous optimal reconfiguration with SOPs placement. The most
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significant improvements are achieved when combining optimal reconfiguration with
strategic SOP deployment. This approach reduces power losses by 45.47% compared to the
base case, resulting in a total power loss of 110.52 kW, including SOP losses. Importantly,
the minimum voltage is raised to 0.95588 p.u., effectively addressing the low voltage
condition observed in the base case (below 0.95 p.u.).

Table 5. IEEE 33-Bus Network Results.

Outputs Base Case Optimal
Reconfiguration

Optimal
Reconfiguration with

SOPs Placement

Open switches 33, 34, 35, 36, 37 7, 9, 14, 32, 37 7, 9, 14
Optimal SOP locations (branches) - - 32, 37

Optimal SOP sizes:
{Pinj,I

SOP(kW), Qinj,I
SOP(kVAr),Pinj,I I

SOP (kW), Qinj,I I
SOP (kVAr)}

- - SOP1 {−148.70, 270.27, 142.09, 322.23}
SOP2 {−16.09, 214.90, 12.20, 172.98}

Total power loss (kW) 202.68 139.55 110.52

Minimum Voltage (p.u.) 0.91309
(Below limit)

0.93782
(Below limit)

0.95588
(Within limit)

Maximum Voltage (p.u.) 1.00000 1.00000 1.00000
Cost of total loss ($/year) 202,401.48 139,360.43 110,367.10

SOPs investment and maintenance cost ($/year) - - 12,699.00

Net Saving ($/year) - 63,041.05 79,335.38

Furthermore, this optimal configuration yields substantial economic benefits. Even
after accounting for the annual SOPs investment and maintenance costs of 12,699.00 $/year,
a net annual saving of $79,335.38 is realized. The simultaneous optimization of SOPs
placement and open switch selection via the LF-IEO method not only minimizes power
losses but also significantly enhances voltage quality and the overall capacity of the dis-
tribution network. This net saving reflects the favorable balance between reduced total
loss costs and the expenditures associated with SOPs integration, thereby underscoring
the economic viability and effectiveness of the LF-IEO method in optimizing distribution
network performance.

The benefits of the LF-IEO method are further illustrated in Figure 12. This graph
shows the voltage profiles across different bus numbers for the three scenarios. It clearly
demonstrates that in the base case (blue line), several buses experience voltages below the
acceptable minimum limit of 0.95 p.u., indicating significant voltage regulation issues. This
problem is particularly severe in buses 6–18 and 26–33, where voltages drop well below the
limit. In contrast, the reconfiguration with SOPs placement (green line) maintains voltages
consistently above the 0.95 p.u. threshold across all buses, effectively addressing this
voltage drop issue. The reconfiguration without SOPs (orange line) shows improvement
over the base case but still struggles to maintain voltages above the limit for all buses.

Figure 13 illustrates the topology of the IEEE 33-bus distribution system, showing the
bus connections and the locations of the switches and SOPs in the optimal configuration.
The results provide clear evidence of the proposed LF-IEO algorithm’s ability to optimize
the overall system performance, both technically and economically. This is achieved by
reducing power losses, balancing loads more effectively, mitigating potential stress points
in the distribution network, and maximizing the net saving.
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Figure 13. Optimal configuration of the IEEE 33-bus distribution system with SOPs placements.

5.2. IEEE 69-Bus Test System

The IEEE 69-bus system [52] was further used as a medium-scale radial distribu-
tion system to test the proposed LF-IEO algorithm. This test system includes 69 buses,
73 branches, and 68 sectionalizing switches, along with 5 tie switches. The initial configura-
tion has open switch positions at branches {69, 70, 71, 72, 73}. System parameters include
a capacity base of 1 MVA and a voltage base of 12.66 kV. The network carries a total load
demand of 3.80 MW and 2.69 MVAR, with initial total losses of 224.76 kW, equating to an
annual cost of 224,451.37 $/year. The voltage profile ranges from a minimum of 0.90919 p.u.
at bus 65 to a high of 1.0 p.u. at the source bus.
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Table 6 presents a comparison between the base case and optimized configuration
of the IEEE 69-bus system, revealing significant improvements across various metrics.
The simultaneous optimal network reconfiguration with SOPs location has changed open
switches from {69, 70, 71, 72, 73} to {14, 69, 70}, with optimal SOPs locations identified
at buses 56 and 61. Power losses decreased dramatically by 63.19%, from 224.76 kW to
82.74 kW, with this final value including SOPs losses. The voltage profile improved, with
the minimum voltage rising from 0.90923 p.u. to 0.95445 p.u. Economically, the annual
cost of total losses reduced from 224,451.37 to 82,626.54 $/year. Despite additional costs for
SOPs investment and maintenance costs of 9712.15 $/year, a substantial net annual saving
of 132,112.69 $/year was achieved.

Table 6. IEEE 69-Bus Network Results.

Outputs Base Case Optimal
Reconfiguration

Optimal
Reconfiguration with

SOPs Placement

Open switches 69, 70, 71, 72, 73 14, 58, 61, 69, 70 14, 69, 70
Optimal SOP locations (branches) - - 56, 61

Optimal SOP sizes:
{Pinj,I

SOP(kW), Qinj,I
SOP(kVAr), Pinj,I I

SOP (kW), Qinj,I I
SOP (kVAr)}

- - SOP1 {−127.31, 60.45, 124.17, 120.07}
SOP2 {33.53, 259.27, −38.38, 220.16}

Total power loss (kW) 224.76 99.61 82.74

Minimum Voltage (p.u.) 0.90923
(Below limit)

0.94276
(Below limit)

0.95445
(Within limit)

Maximum Voltage (p.u.) 1.00000 1.00000 1.00000
Cost of total loss ($/year) 224,451.37 99,475.61 82,626.54

SOPs investment and maintenance cost ($/year) - - 9712.15

Net Saving ($/year) - 124,975.76 132,112.69

Figure 14 illustrates the voltage profiles for the IEEE 69-bus network under different
scenarios. In the base case, voltage levels show a significant drop below the 0.95 p.u. limit,
particularly in the remote areas of the network. The reconfiguration with SOPs placement
effectively addresses these voltage issues, maintaining all bus voltages above the minimum
threshold. This improvement is more pronounced compared to the reconfiguration without
SOPs, which shows moderate enhancements but still struggles with voltage regulation
in some areas. Figure 15 depicts the topology of the IEEE 69-bus distribution system,
showcasing the optimal network configuration and SOPs locations determined by the
LF-IEO algorithm.
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5.3. IEEE 118-Bus Test System

The IEEE 118-bus system represents a large-scale distribution network that was used
to further validate the robustness and scalability of the proposed LF-IEO algorithm. This
test system consists of 118 buses and 132 branches, including 117 sectionalizing switches
and 15 tie switches. In its initial configuration, switches {118–132} are maintained in open
positions. The system operates at a base voltage of 11 kV with a base power of 100 MVA,
serving a total load demand of 42.18 MW and 28.14 MVAr. The base case analysis reveals
significant operational challenges, with total power losses of 1298.09 kW, translating to
an annual cost of 909,698.35 $/year. The voltage profile in the base configuration shows
considerable degradation, with the minimum voltage dropping to 0.86880 p.u. at bus 77,
well below the acceptable limit of 0.95 p.u., indicating severe voltage regulation issues.

As shown in Table 7, the application of the LF-IEO algorithm for simultaneous opti-
mization of network reconfiguration and SOP placement yielded remarkable improvements.
The optimal configuration identified by the algorithm involves new open switch positions
at {23, 25, 34, 37, 42, 52, 125, 126, 127, 128, 130} and strategic placement of four SOPs at
branches 122, 109, 73, and 95. This configuration achieved a substantial reduction in power
losses to 700.34 kW, representing a 46.05% improvement over the base case.
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Table 7. IEEE 118-Bus Network Results.

Outputs Base Case Optimal
Reconfiguration

Optimal
Reconfiguration with

SOPs Placement

Open switches

118, 119, 120,
121, 122, 123,
124, 125,126,
127, 128, 129,
130, 131, 132

21, 26, 33, 38, 42, 48,
51, 61, 71, 73, 76, 82,

109, 125, 130
23, 25, 34, 37, 42, 52, 58, 70, 76, 82, 130

Optimal SOP locations (branches) - - 122, 109, 73, 95

Optimal SOP sizes:
{Pinj,I

SOP(kW), Qinj,I
SOP(kVAr), Pinj,I I

SOP (kW), Qinj,I I
SOP (kVAr)}

- -

SOP1 {−368.33, 619.34, 351.19, 929.69}
SOP2 {−159.04, 987.22, 139.07, 987.22}
SOP3 {−107.17, 333.43, 95.43, 817.61}
SOP4 {−221.04, 428.81, 209.28, 661.54}

Total power loss (kW) 1298.09 888.36 700.34

Minimum Voltage (p.u.) 0.86880
(Below limit)

0.93212
(Below limit)

0.95208
(Within limit)

Maximum Voltage (p.u.) 1.00000 1.00000 1.00000
Cost of total loss ($/year) 909,698.35 622,560.21 490,798.85

SOPs investment and maintenance cost ($/year) - - 39,394.81

Net Saving ($/year) - 287,138.14 379,504.69

The voltage profile enhancement is particularly noteworthy, as illustrated in Figure 16.
The base case (blue line) shows multiple buses experiencing voltages significantly below
the 0.95 p.u. threshold, particularly in the range of buses 65–85. The implementation of
optimal reconfiguration with SOPs (green line) successfully raises the minimum voltage to
0.95208 p.u., ensuring all bus voltages remain within acceptable limits. This improvement
is more significant than what was achieved through reconfiguration alone (orange line),
which still showed some voltage violations.
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From an economic perspective, the optimized configuration demonstrates compelling
benefits. The reduction in power losses translates to a decrease in annual loss costs
from 909,698.35 $/year to 490,798.85 $/year. While the installation and maintenance
of four SOPs incurs an annual cost of 39,394.81 $/year, the net annual saving achieved
is 379,504.69 $/year, representing a substantial improvement in the system’s economic
performance. These results further validate the effectiveness of the LF-IEO algorithm in
managing large-scale distribution networks while balancing technical and economic objec-
tives. Figure 17 illustrates the topology of the IEEE 118-bus distribution system, showing
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the bus connections and the locations of the switches and SOPs in the optimal configuration.
The detailed system data and parameters for the IEEE 118-bus system are provided in
Appendix B.
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5.4. Real 116-Bus Distribution System in Algeria

The proposed LF-IEO algorithm was further validated on a real-world 116-bus dis-
tribution system from Touggourt City, Algeria. This large-scale network operates at a
base voltage of 10 kV with a base power of 100 MVA with a total load of 31.05 MW and
23.29 MVAr. The system comprises 116 buses and 124 branches, including 115 section-
alizing switches and 9 tie switches. In its initial configuration, switches {116, 117, 118,
119, 120, 121, 122, 123, 124} are open. The base case exhibits significant power losses of
687.28 kW, translating to an annual cost of 686,341.77 $/year. The voltage profile ranges
from a minimum of 0.96021 p.u. to a maximum of 1.0 p.u.

Application of the LF-IEO algorithm resulted in substantial improvements, as detailed
in Table 8. The optimal configuration with SOPs placement reduced power losses by 14.89%
to 584.92 kW, with new open switch positions at {21, 28, 41, 65, 99, 123} and three SOPs
optimally located at branches 54, 8, and 113. This reconfiguration significantly enhanced
the voltage profile, raising the minimum voltage to 0.97108 p.u. The results show that while
optimal reconfiguration alone provides some benefits, the addition of SOP placement leads
to more significant improvements. The reduction in power loss translates to a decrease
in the annual cost of total loss from 686,341.77 $/year to 584,121.17 $/year. Despite a
yearly SOPs investment and maintenance cost of 27,794.20 $/year, the optimized system
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achieves a notable net annual saving of 74,426.40 $/year, demonstrating the algorithm’s
effectiveness in improving both technical and economic aspects of this complex, real-world
distribution network.

Table 8. Algerian 116-Bus Network Results.

Outputs Base Case Optimal
Reconfiguration

Optimal
Reconfiguration with

SOPs Placement

Open switches
116, 117, 118,
119, 120, 121,
122, 123, 124

8, 21, 28, 41, 54, 65,
99, 113, 123 21, 28, 41, 65, 99, 123

Optimal SOP locations (branches) - - 54, 8, 113

Optimal SOP sizes:
{Pinj,I

SOP(kW), Qinj,I
SOP(kVAr), Pinj,I I

SOP (kW), Qinj,I I
SOP (kVAr)}

- -
SOP1 {74.02, 238.35, −106.70, 236.74}

SOP2 {12.85, 176.57, 14.57, 176.28}
SOP3 {−19.08, 773.27, 6.88, 773.50}

Total power loss (kW) 687.28 627.86 584.92

Minimum Voltage (p.u.) 0.96021
(Within limit)

0.96628
(Within limit)

0.97108
(Within limit)

Maximum Voltage (p.u.) 1.00000 1.00000 1.00000
Cost of total loss ($/year) 686,341.77 627,003.92 584,121.17

SOPs investment and maintenance cost ($/year) - - 27,794.20

Net Saving ($/year) - 59,337.85 74,426.40

Figure 18 illustrates the voltage profiles for the Algerian 116-bus system under different
scenarios. In the base case, while voltage levels are within acceptable limits, there is still
room for improvement. The reconfiguration with SOPs placement effectively addresses
these voltage issues, maintaining all bus voltages at higher levels and improving the overall
voltage profile of the network. This improvement is more pronounced compared to the
reconfiguration without SOPs, which shows moderate enhancements but doesn’t achieve
the same level of voltage regulation across all areas of the network. Figure 19 depicts the
topology of the Algerian 116-bus distribution system, showcasing the optimal network
configuration and SOPs locations determined by the LF-IEO algorithm.
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Figure 19. Optimal configuration of the Algerian 116-bus distribution system with SOPs placements.

The application of the LF-IEO algorithm to the Algerian 116-bus system proves its
effectiveness in optimizing large-scale, real-world distribution networks. The algorithm
successfully reduced power losses, improved voltage profiles, and achieved significant
economic benefits, even when accounting for the investment and maintenance costs of
the SOPs. This case study, along with the results from the IEEE 33-bus and IEEE 69-bus
systems, demonstrates the scalability and robustness of the proposed algorithm across
different network sizes and configurations.

Across all tested cases, the optimal SOP parameters obtained through the proposed
LF-IEO algorithm have demonstrated a significant impact on the performance of distribu-
tion networks. The optimal placement of SOPs, along with their optimal size parameters,
enables effective power flow control between feeders. The positive and negative active
power parameters facilitate bi-directional power flow, while reactive power parameters
ensure localized voltage regulation. This optimal configuration directly reduces power
losses and improves voltage profiles. Optimal location of SOPs, coupled with their opti-
mal power parameters, improves load balancing and voltage regulation throughout the
feeder, yielding significant annual cost savings. These technical and economic benefits
underscore how well-configured SOP parameters enhance the overall performance of
distribution networks.

5.5. Comparative Study

The performance of the proposed LF-IEO method for simultaneous reconfiguration
and allocation of SOPs in radial distribution systems is illustrated through a comparative
study against other algorithms, including GWO, BFO, WOA, MVO, SSA, ALO, and SCA.
This comparison, conducted on the Algerian 116-bus system, involved 20 trials for each
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methodology, with all techniques aiming to maximize net profit using 1000 iterations and
200 particles.

Table 9 presents a comparative analysis of the algorithms’ efficiency indicators, includ-
ing the best solution achieved, the worst-case scenario, and the standard deviation. The
LF-IEO algorithm outperforms the other methods, achieving the highest best solution of
74,426.4 $/year, significantly higher than the next best performer, GWO, at 72,687.6 $/year.
The LF-IEO also demonstrates robust performance with the highest worst-case scenario of
67,150.99 $/year and a relatively low standard deviation of 2558.35, indicating consistent
high-quality solutions across multiple runs.

Table 9. Comparative Results of Different Optimization Algorithms for the Algerian 116-Bus System.

Alg. BEST MEAN WORST SD
Best Solution

Branches Off SOPs Branches SOPs Sizes

GWO 72,687.6 66,046.8 60,354.88 4203.12 20, 41, 54, 65,
98, 123 29, 113, 8

SOP1 = {11.18, 0.76, −12.30, 99.40},
SOP2 = {−25.29, 857.37, 8.14, 857.71},
SOP3 = {2.19, 299.02, −8.17, 298.96}

BFO 48,960.07 28,535.23 12,549.76 13,841.46 8, 30, 41, 63,
98, 114 20, 123, 54

SOP1 = {−23.59, 62.51, 21.90, 99.42},
SOP2 = {−20.40, −49.65, 18.80, 104.76},
SOP3 = {−31.65, 181.20, 28.03, 175.93}

WOA 59,349.94 37,264.18 12,130.4 16,829.43 21, 31, 98,
118, 122, 123 54, 44, 113

SOP1 = {141.55, 332.04, −148.76, 327.74},
SOP2 = {−124.13, 332.26, 117.04, 334.73},
SOP3 = {22.83, 756.52, −37.97, 755.88}

MVO 74,133.66 61,492.54 34,233.77 14,265.32 8, 20, 29, 41,
122, 123 54, 113, 99

SOP1 = {99.19, 362.10, −106.70, 359.88},
SOP2 = {−27.23, 632.28, 14.57, 632.69},
SOP3 = {−11.56, 233.85, 6.88, 233.91}

SSA 63,484.37 44,259.62 14,310.69 18,260.07 7, 20, 41, 64,
99, 123 29, 119, 113

SOP1 = {28.58, 183.96, −32.30, 183.35},
SOP2 = {−184.05, 384.71, 175.52, 388.68},
SOP3 = {−66.09, 750.50, 51.02, 751.68}

ALO 54,762.2 46,404.58 36,867.59 6972.1 21, 28, 41, 54,
65, 123 100, 113, 8

SOP1 = {−20.55, 248.41, 11.75, 630.81},
SOP2 = {−76.64, −14.27, 66.67, 916.63},

SOP3 = {4.85, 267.35, −9.98, 245.59}

SCA 50,260.08 35,863.24 1913.17 17,250.61 30, 41, 65,
116, 120, 123 119, 121, 124

SOP1 = {23.45, 64.93, −25.39, 122.30},
SOP2 = {−170.99, 684.04, 156.67, 709.77},

SOP3 = {7.37, 471.35, −16.74, 466.01}

LF-IEO 74,426.4 72,082.52 67,150.99 2558.35 21, 28, 41, 65,
99, 123 54, 8, 113

SOP1 = {74.02, 238.35, −79.01, 236.74},
SOP2 = {12.85, 176.57, −16.39, 176.28},
SOP3 = {−19.08, 773.27, 3.61, 773.50}

The optimal configuration determined by the LF-IEO algorithm involves switching off
branches 21, 28, 41, 65, 99, and 123 and placing SOPs at branches 54, 8, and 113. This config-
uration, along with the specific SOP sizes provided, results in the highest net saving among
all tested algorithms. The detailed SOP sizes for LF-IEO are SOP1 = {74.02, 238.35, −79.01,
236.74}, SOP2 = {12.85, 176.57, −16.39, 176.28}, and SOP3 = {−19.08, 773.27, 3.61, 773.50}.

Figure 20 presents box plots comparing the outcomes of various algorithms on both
the IEEE 69-bus (a) and Algerian 116-bus (b) systems. These plots provide a visual represen-
tation of the distribution of solutions provided by each algorithm across multiple runs. For
both systems, the LF-IEO algorithm consistently demonstrates superior performance, with
higher median values and smaller interquartile ranges compared to other methods. This is
particularly evident in Figure 20b for the larger 116-bus system, where the LF-IEO box is
positioned notably higher than the others. The higher position of the LF-IEO boxes in both
Figure 20a,b underscores its ability to consistently achieve higher net savings compared
to other algorithms, regardless of the system size or complexity. The smaller box size for
LF-IEO, especially in Figure 20b, further indicates its more consistent performance across
different runs.
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This comprehensive comparison demonstrates that the proposed LF-IEO algorithm not
only achieves better results in terms of maximizing net profit but also provides more con-
sistent and reliable solutions across different distribution system sizes [53–55]. Its superior
performance in simultaneously optimizing network reconfiguration and SOPs allocation
suggests its promising application in improving the efficiency and economical operation
of modern distribution networks of varying complexities. The proposed algorithm can be
used in other systems as well [56–58].

6. Conclusions

This study introduced a novel Lévy Flight-based Improved Equilibrium Optimizer
(LF-IEO) algorithm for the simultaneous optimization of network reconfiguration and Soft
Open Points (SOPs) placement in radial distribution systems. To overcome the drawbacks
of the traditional Equilibrium Optimizer (EO), the LF-IEO incorporated several key en-
hancements. These included a Good Point Set (GPS) initialization technique to improve
initial population diversity, a Lévy Flight strategy to enhance exploration capabilities, Fast
Random Opposition-Based Learning (FROBL) to accelerate convergence, and an oscillating
generation probability to maintain a balance of exploration and exploitation. Validation
of this optimization technique’s effectiveness was achieved through testing on the IEEE
33-bus, IEEE 69-bus, IEEE 118-bus, and a real Algerian 116-bus radial distribution net-
work. The proposed LF-IEO method demonstrated its effectiveness in decreasing active
power losses, enhancing the overall voltage quality, and maximizing the net annual savings.
Across all test systems, the algorithm achieved significant reductions in power losses, raised
minimum voltages above the acceptable threshold, and generated substantial net annual
savings. These results underscore the capability of the algorithm to significantly enhance
the overall efficiency and reliability of distribution systems while effectively managing the
integration of SOPs. Furthermore, the LF-IEO algorithm was evaluated against other widely
used optimization techniques, including GWO, BFO, WOA, MVO, SSA, ALO, and SCA.
Across multiple runs and different network sizes, the LF-IEO consistently outperformed
these methods, demonstrating its robustness and reliability. This superior performance
was particularly evident in the large-scale, real-world 116-bus distribution system from Al-
geria, where the LF-IEO achieved the highest net annual saving, surpassing all other tested
algorithms. In conclusion, the LF-IEO algorithm presents a powerful and versatile tool for
optimizing radial distribution systems. Its demonstrated ability to simultaneously address
network reconfiguration and SOP placement while achieving significant improvements
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in system performance makes it a valuable contribution to the field of power system op-
timization. Further research opportunities include the consideration of data processing
under uncertainty environments for network reconfiguration and SOP configuration op-
timization [59], as well as exploring two-layer optimization approaches to enhance the
performance of radial distribution systems [60].
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Appendix A

Table A1. List of Abbreviations.

Abbreviation Definition Abbreviation Definition

LF-IEO Levy Flight GWO Grey Wolf Optimizer
EO Equilibrium Optimizer BOA Butterfly Optimization Algorithm
GPS Good Point Set WOA Whale Optimization Algorithm

FROBL Fast Random Opposition-Based Learning MVO Multi-Verse Optimizer
SOP Soft Open Point SSA Salp Swarm Algorithm
BFLF Backward-Forward Load Flow ALO Ant Lion Optimizer
BCBV Branch Current to Bus Voltage SCA Sine Cosine Algorithm
BIBC Bus Injection to Branch Current BFO Bacterial Foraging Optimization
VSC Voltage Source Converter NOP Normally Open Point
OGP Oscillating Generation Probability NCC Normally Closed Condition

Appendix B

Table A2. Bus Data and Branch Data for the IEEE 118-Bus System.

N
Branch Load at Destination Bus Branch Parameters

Status
From To PL (MW) QL (MVAr) R (p.u.) X (p.u.) Imax (A)

1 1 2 0.133840 0.101140 0.0002975 0.0001074 1200 1
2 2 3 0.016214 0.011292 0.0002727 0.0000983 530 1
3 2 4 0.034315 0.021845 0.0003719 0.0001339 1200 1
4 4 5 0.073016 0.063602 0.0001240 0.0004463 530 1
5 5 6 0.144200 0.068604 0.0001240 0.0004463 530 1
6 6 7 0.104470 0.061725 0.0001240 0.0001033 530 1
7 7 8 0.028547 0.011503 0.0001488 0.0001157 530 1
8 8 9 0.087560 0.051073 0.0001736 0.0005207 530 1
9 2 10 0.198200 0.106770 0.0013719 0.0011107 530 1

10 10 11 0.146800 0.075995 0.0009256 0.0006521 530 1
11 11 12 0.026040 0.018687 0.0015455 0.0025868 530 1
12 12 13 0.052100 0.023220 0.0011736 0.0012496 530 1
13 13 14 0.141900 0.117500 0.0014876 0.0009752 530 1
14 14 15 0.021870 0.028790 0.0012397 0.0003719 530 1
15 15 16 0.033370 0.026450 0.0013223 0.0014876 530 1
16 16 17 0.032430 0.025230 0.0012975 0.0014132 530 1
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Table A2. Cont.

N
Branch Load at Destination Bus Branch Parameters

Status
From To PL (MW) QL (MVAr) R (p.u.) X (p.u.) Imax (A)

17 11 18 0.020234 0.011906 0.0018017 0.0023554 530 1
18 18 19 0.156940 0.078523 0.0009752 0.0015289 530 1
19 19 20 0.546290 0.351400 0.0013223 0.0016198 530 1
20 20 21 0.180310 0.164200 0.0009917 0.0015620 530 1
21 21 22 0.093167 0.054594 0.0009917 0.0006521 530 1
22 22 23 0.085180 0.039650 0.0116529 0.0059752 530 1
23 23 24 0.168100 0.095178 0.0024215 0.0011140 530 1
24 24 25 0.125110 0.150220 0.0010992 0.0008595 530 1
25 25 26 0.016030 0.024620 0.0014711 0.0011074 530 1
26 26 27 0.026030 0.024620 0.0014711 0.0011074 530 1
27 4 28 0.594560 0.522620 0.0001240 0.0002446 530 1
28 28 29 0.120620 0.059117 0.0000992 0.0002281 530 1
29 29 30 0.102380 0.099554 0.0009917 0.0022860 530 1
30 30 31 0.513400 0.318500 0.0017355 0.0020083 530 1
31 31 32 0.475250 0.456140 0.0009917 0.0004463 530 1
32 32 33 0.151430 0.136790 0.0014711 0.0019339 530 1
33 33 34 0.205380 0.083302 0.0014711 0.0019339 530 1
34 34 35 0.131600 0.093082 0.0012727 0.0013388 530 1
35 30 36 0.448400 0.369790 0.0015455 0.0021570 530 1
36 36 37 0.440520 0.321640 0.0010992 0.0008182 530 1
37 29 38 0.112540 0.055134 0.0027273 0.0016033 530 1
38 38 39 0.053963 0.038998 0.0025620 0.0016033 530 1
39 39 40 0.393050 0.342600 0.0010744 0.0016033 530 1
40 40 41 0.326740 0.278560 0.0023140 0.0012397 530 1
41 41 42 0.536260 0.240240 0.0097521 0.0070248 530 1
42 42 43 0.076247 0.066562 0.0034711 0.0020132 530 1
43 43 44 0.053520 0.039760 0.0022314 0.0008033 530 1
44 44 45 0.040328 0.031964 0.0028017 0.0010091 530 1
45 45 46 0.039653 0.020758 0.0022314 0.0014702 530 1
46 35 47 0.066195 0.042361 0.0017355 0.0011430 530 1
47 47 48 0.073904 0.051653 0.0009917 0.0006521 530 1
48 48 49 0.114770 0.057965 0.0012397 0.0008157 1200 1
49 49 50 0.918370 1.205100 0.0012397 0.0008157 530 1
50 50 51 0.210300 0.146660 0.0019835 0.0013066 530 1
51 51 52 0.066680 0.056608 0.0009917 0.0006521 530 1
52 52 53 0.042207 0.040184 0.0033471 0.0012050 530 1
53 53 54 0.433740 0.283410 0.0033471 0.0012050 530 1
54 29 55 0.062100 0.026860 0.0032314 0.0011653 530 1
55 55 56 0.092460 0.088380 0.0033554 0.0012074 530 1
56 56 57 0.085188 0.055436 0.0033554 0.0012074 530 1
57 57 58 0.345300 0.332400 0.0058347 0.0045132 530 1
58 58 59 0.022500 0.016830 0.0027934 0.0010066 530 1
59 59 60 0.080551 0.049156 0.0027934 0.0010066 530 1
60 60 61 0.095860 0.090758 0.0017107 0.0006174 530 1
61 61 62 0.062920 0.047700 0.0020413 0.0073736 530 1
62 1 63 0.478800 0.463740 0.0002314 0.0003455 440 1
63 63 64 0.120940 0.052006 0.0009669 0.0016661 440 1
64 64 65 0.139110 0.100340 0.0021074 0.0007587 440 1
65 65 66 0.391780 0.193500 0.0017355 0.0006273 530 1
66 66 67 0.027741 0.026713 0.0031653 0.0011405 530 1
67 67 68 0.052814 0.025257 0.0041653 0.0027298 530 1
68 68 69 0.066890 0.038713 0.0033554 0.0012074 530 1
69 69 70 0.467500 0.395140 0.0079504 0.0062893 530 1
70 70 71 0.594850 0.239740 0.0013636 0.0004959 530 1
71 71 72 0.132500 0.084363 0.0025041 0.0009025 530 1
72 72 73 0.052699 0.022482 0.0025041 0.0009025 530 1
73 73 74 0.869790 0.614775 0.0017025 0.0011901 440 1
74 74 75 0.031349 0.029817 0.0019256 0.0006942 530 1
75 75 76 0.192390 0.122430 0.0048843 0.0014653 530 1
76 76 77 0.065750 0.045370 0.0010413 0.0003744 530 1
77 64 78 0.238150 0.223220 0.0046198 0.0030471 530 1
78 78 79 0.294550 0.162470 0.0015372 0.0010140 530 1
79 79 80 0.485570 0.437920 0.0015372 0.0010140 530 1
80 80 81 0.243530 0.183030 0.0021488 0.0011488 530 1
81 81 82 0.243530 0.183030 0.0012727 0.0012231 530 1
82 82 83 0.134250 0.119290 0.0019008 0.0010579 440 1
83 83 84 0.022710 0.027960 0.0020826 0.0008760 530 1
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Table A2. Cont.

N
Branch Load at Destination Bus Branch Parameters

Status
From To PL (MW) QL (MVAr) R (p.u.) X (p.u.) Imax (A)

84 84 85 0.049513 0.026515 0.0014876 0.0012231 530 1
85 79 86 0.383780 0.257160 0.0013223 0.0015041 530 1
86 86 87 0.049640 0.020600 0.0016529 0.0019008 530 1
87 87 88 0.022473 0.011806 0.0013223 0.0032479 530 1
88 65 89 0.062930 0.042960 0.0055289 0.0019934 530 1
89 89 90 0.030670 0.034930 0.0021983 0.0010140 530 1
90 90 91 0.062530 0.066790 0.0021983 0.0010140 530 1
91 91 92 0.114570 0.081748 0.0021983 0.0010140 530 1
92 92 93 0.081292 0.066526 0.0021983 0.0010140 530 1
93 93 94 0.031733 0.015960 0.0019256 0.0009504 530 1
94 94 95 0.033320 0.060480 0.0040992 0.0011405 530 1
95 91 96 0.531280 0.224850 0.0016198 0.0014876 530 1
96 96 97 0.507030 0.367420 0.0016198 0.0014876 530 1
97 97 98 0.026390 0.011700 0.0015421 0.0010083 530 1
98 98 99 0.045990 0.030392 0.0006165 0.0026281 530 1
99 1 100 0.100660 0.047572 0.0005165 0.0002190 530 1
100 100 101 0.456480 0.350300 0.0012405 0.0019339 530 1
101 101 102 0.522560 0.449290 0.0011132 0.0007339 530 1
102 102 103 0.408430 0.168460 0.0019066 0.0009942 530 1
103 103 104 0.141480 0.134250 0.0036942 0.0013289 530 1
104 104 105 0.104430 0.066024 0.0013488 0.0004860 530 1
105 105 106 0.096793 0.083647 0.0027273 0.0008182 530 1
106 106 107 0.493920 0.419340 0.0012893 0.0004636 530 1
107 107 108 0.225380 0.135880 0.0031562 0.0011355 530 1
108 108 109 0.509210 0.387210 0.0013438 0.0004835 530 1
109 109 110 0.188500 0.173460 0.0031562 0.0011355 530 1
110 110 111 0.918030 0.898550 0.0020207 0.0007264 530 1
111 110 112 0.305080 0.215370 0.0017256 0.0006223 530 1
112 112 113 0.054380 0.040970 0.0019017 0.0006843 530 1
113 100 114 0.211140 0.192900 0.0050430 0.0018149 530 1
114 114 115 0.067009 0.053336 0.0015421 0.0010496 530 1
115 115 116 0.162070 0.090321 0.0030843 0.0020331 530 1
116 116 117 0.048785 0.029156 0.0033471 0.0030331 530 1
117 117 118 0.033900 0.018980 0.0040413 0.0036198 530 1
118 46 27 - - 0.0043455 0.0024174 530 0
119 17 27 - - 0.0043455 0.0024099 530 0
120 8 24 - - 0.0035306 0.0012719 530 0
121 54 43 - - 0.0039669 0.0014281 530 0
122 62 49 - - 0.0029752 0.0010711 530 0
123 37 62 - - 0.0047107 0.0047273 530 0
124 9 40 - - 0.0043802 0.0027669 530 0
125 58 96 - - 0.0032702 0.0011777 530 0
126 73 91 - - 0.0056198 0.0053554 530 0
127 88 75 - - 0.0033570 0.0012099 530 0
128 99 77 - - 0.0038231 0.0013835 530 0
129 108 83 - - 0.0053802 0.0019339 530 0
130 105 86 - - 0.0067149 0.0024174 530 0
131 110 118 - - 0.0058587 0.0021099 530 0
132 25 35 - - 0.0041322 0.0041322 530 0
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