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Abstract: Background: The exposome (e.g., totality of environmental exposures) and its role in
Alzheimer’s Disease and Alzheimer’s Disease and Related Dementias (AD/ADRD) are increasingly
critical areas of study. However, little is known about how interventions on the exposome, including
personal behavioral modification or policy-level interventions, may impact AD/ADRD disease bur-
den at the population level in real-world settings and the cost-effectiveness of interventions. Methods:
We performed a critical review to discuss the challenges in modeling exposome interventions on
population-level AD/ADRD burden and the potential of using agent-based modeling (ABM) and
other advanced data science methods for causal inference to achieve this. Results: We describe
how ABM can be used for empirical causal inference modeling and provide a virtual laboratory for
simulating the impacts of personal and policy-level interventions. These hypothetical experiments
can provide insight into the optimal timing, targeting, and duration of interventions, identifying
optimal combinations of interventions, and can be augmented with economic analyses to evaluate the
cost-effectiveness of interventions. We also discuss other data science methods, including structural
equation modeling and Mendelian randomization. Lastly, we discuss challenges in modeling the
complex exposome, including high dimensional and sparse data, the need to account for dynamic
changes over time and over the life course, and the role of exposome burden scores developed using
item response theory models and artificial intelligence to address these challenges. Conclusions:
This critical review highlights opportunities and challenges in modeling exposome interventions
on population-level AD/ADRD disease burden while considering the cost-effectiveness of different
interventions, which can be used to aid data-driven policy decisions.

Keywords: data science; agent-based modeling; exposome; Alzheimer’s disease; dementia; causal
inference

1. Introduction

Alzheimer’s Disease and Alzheimer’s Disease and Related Dementias (AD/ADRD)
are estimated to affect over 6.7 million Americans, and remains the fifth leading cause
of death among people aged 65 and older in the US [1]. Only 10–30% of AD/ADRD
risk is attributed to genetics [1]. For example, mutations in several genes (e.g., amyloid
precursor protein, presenilin 1, and presenilin 2) [2] are known causes of early onset AD,
while some genes and gene variants such as Apolipoprotein E (APOE) are associated
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with an increasing risk for developing late-onset AD [3–9]. Meanwhile, the environment
is estimated to contribute 70–90% to AD/ADRD disease risk [1]. The exposome, or the
totality of environmental exposures an individual encounters throughout their lifetime
from conception onward, is a paradigm that was created to describe lifetime exposure
risk [2,10,11]. The exposome encompasses all non-genetic factors that contribute to health
and disease, providing a more holistic view of the factors influencing human health than
genetic data alone. The exposome includes a myriad of environmental influences, ranging
from chemical agents in the air, water, and food to social, psychological, and lifestyle
factors [3–7]. These exposures interact dynamically with the human body, influencing
biological processes and contributing to disease risk [8,9,12–14].

The exposome that affects Alzheimer’s disease is diverse, including exogenous factors
(e.g., environmental toxicants, light and noise, climate, ecosystems, and economics/education),
endogenous factors (e.g., genes/epigenetics, pre-existing conditions, metabolism, micro-
biome, and xenobiotics), and behavioral factors (psychological effects, drugs/alcohol/tobacco,
lifestyle, sleep, and stress) [13]. Many studies have linked AD/ADRD with structural/social
determinants [14] such as food access [15,16], greenspace [17,18], recreation [19,20], trans-
portation [21,22], housing [23–25], poverty [26,27], policing and incarceration [28,29], neigh-
borhood deprivation [30,31], workplace/occupation [32,33], income [34,35], literacy [36,37],
education [38,39], health care [40,41], social networks, isolation, and loneliness [42,43].
Environmental biotoxins such as spirochetes, toxic molds, periodontitis, viral infection [44],
and environmental metal toxins [45–48] have also been found to be involved in AD devel-
opment and progression. Other environmental pollutants [49], including industrial and
commercial pollutants (e.g., dioxins [50–52], bisphenol [53,54], phthalates [55,56], bromi-
nated flame retardants [57–59], alkylphenol polyethoxylates [60,61]), air pollution (e.g.,
particulate matter [62], ozone [63], volatile organic compounds [64]), and pesticides [65–70]
were found to be directly or indirectly involved in AD pathogenesis. An increasing number
of studies [71] have found that light pollution influences AD [72–78].

Building on the associations that have been identified thus far between the chemical
and non-chemical exposome and AD/ADRD, there is emerging interest in the influence
of the cumulative exposome burden on the onset and progression of AD/ADRD. To date,
it has been difficult to estimate the impact of the cumulative exposome in real-world
settings. In this critical review, we will use a rigorous quantitative perspective to discuss
the challenges inherent in modeling the exposome and its effects on AD/ADRD. We will
discuss the potential of advanced data science techniques such as agent-based modeling
(ABM) and other causal inference data science methods to simulate and measure the effects
of intervening on the exposome. Furthermore, we will describe the need to incorporate cost-
effectiveness evaluations of interventions aimed at reducing exposome burdens, thereby
considering their economic impact alongside their potential to mitigate disease burden.

2. Challenges in Modeling the Exposome over the Life Course and Its Impacts
on AD/ADRD

The onset and progression of AD/ADRD are complex and involve multiple suscepti-
bility genes and environmental factors [79]. Modeling environmental factors is challenging
because they evolve over time. Individuals can encounter different environmental factors
and exposures at various life stages, each with a unique impact. Prenatal exposure to
chemicals can have long-lasting developmental effects [34–37], while adulthood exposures
may impact disease progression [38–40].

Gene–environment interactions are also critical for understanding the AD/ADRD
mechanisms and developing personalized intervention strategies [80]. Precision environ-
mental health aims to understand the complex interactions between the exposome and
individual genetic susceptibility so that personalized interventions may be designed to
prevent adverse health effects [17]. By integrating environmental exposures with large
system-level (“omic”) datasets [81], precision environmental health can enhance our un-
derstanding of underlying environmental causes of AD/ADRD and develop personalized
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prevention and intervention strategies. Recognizing that an individual’s response to envi-
ronmental exposures is highly variable, the integration of an individual’s personal “omics”
data (i.e., metabolomics, proteomics, epigenomics, etc.) may improve the ability to iden-
tify specific disease risk factors so that interventions can be tailored to mitigate adverse
health outcomes.

Modeling methods to date have traditionally drawn on epidemiological data sources to
test targeted hypotheses about the association of independent exposures and outcomes [82].
The limitations of traditional approaches are that exposures frequently co-occur or are
collinear, making it difficult to isolate an independent effect within a complex, dynamic
network [83]. Exposures also often interact amongst themselves—for example, either
environment-by-environment or gene-by-environment. Another current challenge in
exposome-AD/ADRD research is the lack of data availability in which both the expo-
some and neurophenotyping data are well-characterized in the same study. The use of
complex systems approaches, such as ABM, can be a valuable tool that, through the simula-
tion of synthetic agents, can leverage comprehensive environmental data and longitudinal
neurophenotyping data from different data sources to capture the exposome and examine
its relationship with health measures.

3. Agent-Based Modeling for Modeling the Impact of Exposome Interventions on
Population-Level AD/ADRD Burden

Agent-based modeling (ABM) is a computational modeling approach that generates
population-level phenomena from simple rules governing individual behaviors (“agents”)
and interactions [84,85]. It is a useful tool for exploring the macro-level implications using
micro-level assumptions [86]. Agent-based approaches originated in ecology, social science,
and anthropology studies [87–89] and have been used in bioinformatic studies for ana-
lyzing the potential interactions of biological elements, understanding complex biological
processes, and predicting behaviors under various conditions [90]. In public health, ABM
was initially used to model the spread of infectious diseases in a population [91,92], and
is now increasingly used to investigate other health-related conditions, including chronic
diseases [93] and violence [94], as well as the context that gives rise to health behaviors
and outcomes, including the food retail environment [95] and socioeconomic inequali-
ties [96]. The defining feature of ABMs is their incorporation of individual heterogeneity,
meaning that each individual “agent” in the model has their own diverse characteristics
that influence their behaviors and experiences, which in turn produce population-level
behaviors and outcomes [97,98]. The individual heterogeneity captured in ABM is a major
strength in the era of personalized medicine and stands in contrast with other complex
systems modeling approaches, like system dynamics (SD) modeling, which focuses on
aggregate dynamics [99]. In addition to shedding light on the mechanisms that give rise to
population-level patterns, ABMs can be used as virtual laboratories, simulating potential
interventions at both the individual and population levels [100]. These hypothetical experi-
ments can provide insight into the optimal timing, targeting, and duration of intervention
conditions, as well as the optimal combination of interventions and policies, to address
the population health problem being studied. These models can also incorporate potential
costs [101] and anticipate unexpected consequences [102], thereby serving as the basis
for recommendations regarding resource allocation and the implementation of policies,
regulations [103], and interventions.

Several recent studies have explored the potential of ABM for modeling the exposome.
These studies, aimed at creating a framework to model the totality of human exposures
based on daily activity patterns, take advantage of many of the strengths of ABM, including
explicitly modeling individual heterogeneity in a synthetic population and embedding
individuals in a virtual physical environment that can vary from a simple abstract grid to a
hyper-realistic representation of specific locations, using geographic information systems
(GIS). Two such examples, the SpatioTemporal Human Activity Model (STHAM) and
the Agent-Based Model of Human Activity Patterns (ABMHAP), have generated realistic
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longitudinal human activity patterns for different demographic groups (e.g., working
adults, non-working adults, school-age children, and preschool-aged children) [104–106].
These patterns have been validated against daily activity survey data [105] and traffic
patterns [104]. Although these models can be extended to map activities and locations
to specific indoor and outdoor exposures, current versions include a limited range of
activities and do not consider interactions between people when generating activity pat-
terns [104,105]. Another ABM by Chapizanis and colleagues combined data from a variety
of sources, including population, time-use, road network, and air quality data, to create
a model of urban Thessaloniki, Greece, including longitudinal trajectories of human be-
havior that were validated against data from wearable sensors [107]. This model identified
population sub-groups with the highest exposure to PM2.5 concentrations and highlighted
variability in exposure levels between people, even those living near each other. Similarly,
Novak and colleagues developed an illustrative ABM to reproduce patterns of PM2.5 expo-
sure based on data collected through personal monitors, using an abstract representation of
the environment and simple activity rules [108]. These and other recent models extend tra-
ditional applications of ABM investigating pathogen exposure in healthcare facilities [109]
and during hypothetical bioterrorist events [110] to consider broader environmental expo-
sures, including exposure to fine particulate matter [111] and contaminants in the water
distribution system [112]. Together, this work has provided insights into prevention and
management strategies for exposure threats, as well as the important role of individual
decisions and behaviors.

Currently, however, few ABMs have evaluated the human health effects of the expo-
some or the role of environmental exposures on the onset and progression of AD/ADRD.
An ABM of traffic-related air pollutants developed by Hyesop Shin connected a fairly
detailed representation of commuting patterns in Seoul, South Korea, to a fairly abstract
measure of health risks associated with non-exhaust PM10 emissions, operationalized as a
nominal health index with a cut-off to identify individuals “at-risk” of poor health [113].
Separately, some recent ABMs have been used to examine the development of AD/ADRD,
highlighting the role of microbial initiation of late-onset Alzheimer’s disease via the ol-
factory system [114], cellular pathways that contribute to neurodegeneration [115], and
the potential for blood pressure-management strategies to prevent or delay AD/ADRD
development [116]. These findings hint at the potential for ABM to uncover key exposures
and processes related to the development of AD/ADRD. However, no ABM studies to date
have connected the exposome with AD/ADRD onset or progression.

In order to take full advantage of ABM approaches for models of the exposome and
its effects on AD/ADRD burden in the population, these models need to capture dynamic
exposures and substitutions in exposures that may occur over the life course, including
because of interactions with other people and in response to changing regulations and
industrial practices. ABM also explicitly models adaptations in behavior in response
to environmental changes, social norms and peer influence, and past experiences [117].
Although sensitivity analyses can be used to test different assumptions about unknown
parameters and dynamics, some reliable empiric data about the longitudinal processes
under study are helpful to calibrate and validate these models, especially when promoting
their use for policy recommendations [100,117]. ABM can incorporate data from a variety of
different sources to represent the underlying system in question, which can be particularly
useful when well-characterized exposome and neurophenotyping data are not available
in the same study. Further, ABMs are highly flexible, enabling representations of non-
linear dynamics, non-additive relationships, latent constructs of cumulative exposure, and
interactions across multiple levels of influence, including gene–environment interactions.
However, models can quickly become quite complex, necessitating careful deliberation
about the critical aspects of the system that must be included [102,118].

As noted above, a major strength of applying ABM to the exposome and AD/ADRD is
the opportunity to evaluate potential intervention and treatment effects, including compar-
ing strategies targeted to the individual vs. policy level, as well as different combinations
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of interventions. ABM studies of hypothetical policy scenarios have shed light on industry
responses to water-management policies [119]; the dynamics of air emissions cap and trade
programs [120]; and the relative impacts of different policies, including education and eco-
nomic incentives, on urban residents’ PM2.5-reduction behavior [121]. ABM studies have
also been used to inform optimal resource allocation, including in the event of bioterrorism
threats [110,122] and contamination of the water supply [112]. These models have also
demonstrated how much intervention effects may vary according to the environmental con-
text and individual characteristics [119,123,124], highlighting the importance of capturing
this individual and environmental heterogeneity to make informed predictions.

Figure 1 illustrates how we can use these models to simulate the impacts of different
interventions on population-level AD/ADRD burden. A population of synthetic agents is
developed using known information about the exposome, including chemical exposure
burden, neighborhood pollution burden, social and dietary/lifestyle behaviors, as well
as socio-demographic characteristics, co-morbidities, and genetic risk factors from the
literature or from existing data. For example, the synthetic agents can represent the overall
US population, characterized using nationally representative exposome biomonitoring and
census data. After calibrating and validating the dynamics of exposome changes and health
outcomes in this synthetic population, we can then test interventions to identify the impact
on the population-level AD/ADRD burden in the US. The status quo scenario is based
on projections by Rajan et al. [125], with nearly 7 million people living with AD/ADRD
in the US in the present day, which is projected to be 13 million by 2050. We can then
test interventions across our population of synthetic agents to determine if they would
result in reductions in the national AD/ADRD burden. These interventions may take place
on the individual level (e.g., personal behavior modifications) or at the population level
(e.g., policy changes). An example of an individual-level intervention may be to make
dietary modifications or behavioral changes that reduce a person’s systematic exposure
to plasticizers and other synthetic organic pollutants, for example, through increased
home cooking and the use of personal filtration systems for drinking water. An example
of a population-level intervention may be to set federal standards for drinking water
contamination in municipal water systems, such as the standards currently proposed
for per- and polyfluoroalkyl substances (PFAS). The cost-effectiveness of these potential
interventions could also be considered by incorporating the cost of interventions (e.g.,
installing filtration systems) vs. their economic benefits on the population level.

Although ABM holds promise for providing insight into the potential effects of ex-
posome interventions on population-level AD/ADRD, several challenges exist. First,
harmonizing existing data, including data on environmental exposures, individual behav-
iors and activities, and intervention effects, across multiple time scales as inputs to an ABM
is a major challenge [119]. Second, the best representation of the full range of interacting
exposures that humans face throughout their lifetime, accounting for gene–environment
interactions, remains unknown [126]. Third, the scalability of successful ABMs of the
exposome to other locations will depend on the availability of similarly granular data
on population activities and environmental exposures, as the exposome can be expected
to vary greatly across locations and times [127]. Efforts to overcome these current lim-
itations include novel approaches to measuring cumulative exposures that can inform
ABM implementation [128], as well as the development of a model architecture that can
represent different aspects of human–environment interaction [117]. Ongoing large-scale
projects aimed at quantifying the exposome and its health effects, including the European
Union-based HEALS project [129] and EXposome Powered tools for healthy living in
urbAN Settings (EXPANSE) [130], may fill some data gaps and will likely be important
resources for future ABM work. These approaches will complement other causal modeling
approaches like structural equation modeling and g-computation in developing a more
robust body of evidence about the effects of the exposome on health over the life course.
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Figure 1. A conceptual diagram of agent-based models used to determine exposome impacts on
population-level AD/ADRD burden.

4. Other Causal Inference Methods to Quantitatively Model the Impact of
Exposome Interventions

Several causal approaches may have particular relevance to modeling the exposome
and gene–environment interactions. These include Mendelian randomization (MR) design,
which exploits genetic variants as instrumental variables to estimate the causal effects of a
wide array of risk factors on outcomes and can maximize big data sources [131,132]. Causal
mediation analyses can shed insight into causal pathways through effect decomposition
into direct and indirect effects and can accommodate exposure–mediator interaction [132].
Issues such as time-varying confounders that are affected by prior levels of exposure can
also be addressed by using inverse probability weighting [133]. A recent study has applied
the MR approach in evaluating the impacts of environmental exposomes on neurodegener-
ation and reported a higher risk of AD in people with lower educational attainment, higher
weekly beer and cider intake, lower strenuous sports or other exercises, higher cigarette
consumption per day, lower diastolic blood pressure, and lower body fat percentage [134].

Another approach is to use a structural equation model (SEM) framework to model
complex systems and allow for reciprocal causation. This method estimates structural
relationships between latent variables, which are inferred from one or more observed
(measured) variables. SEM models allow investigators to test whether an underlying
theoretical model is supported by model fit and the magnitude, direction, and statistical
significance of specified pathways [135]. SEM has been applied in psychiatric research to
study multifactorial models of cognitive disorders in complex systems, including early life
exposures, behavioral factors, and neuro-imaging markers [136]. A limitation of SEM is
that while this is a multivariable approach, data reduction may be warranted in the event of
high amounts of exposome information. Approaches such as factor analysis, principal com-
ponents analysis, or item–response theory can be used to reduce dimensionality and to map
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observed indicator variables onto latent exposome variables [137]. Several studies [138,139]
have applied SEM in assessing the relationships between air pollution exposure and cogni-
tive decline and reported associations between higher PM2.5 and increased AD risk [138],
higher PM2.5 and poorer memory [139], and higher NO2 and poorer memory [139].

SEM approaches are primarily designed to model linear relationships. Newer ad-
vances in SEM, however, can accommodate non-linear relationships using latent growth
curve modeling (LGCM). LGCM is a specialized version of SEM, which summarizes trajec-
tories of exposome indicators into latent variables (i.e., “growth factors”). LGCM models
use longitudinal data with indicator variables measured over time to estimate two types
of latent variables—the intercept, or initial status of exposure, and its slope or rate of
change over time. Pathways from the intercept to the intercept and slope at a subsequent
time point can capture stability or change in growth parameters, providing insight into
how variables evolve and interact within complex systems [140]. To leverage the correla-
tion between growth factors, g-computation methods can be used to estimate the overall
effect of the mixture of growth factors on neurocognitive outcomes [141]. Using these
approaches, the significance of growth trajectories and their magnitude and direction of
influence can contribute to understanding the underlying features of the exposome that are
driving change.

5. Considerations of Economics and Cost-Effectiveness in Studying the Impact of
Exposome Interventions

Economic evaluations help stakeholders and decision makers such as policymakers,
healthcare providers, and payers to make informed choices about how to allocate limited
resources to achieve the best possible health outcomes. The overarching purpose of an
economic evaluation is to provide a structured analysis of the costs and outcomes of
specific diseases and conditions. Most often, these are comparative analyses (such as cost-
effectiveness analyses [CEA] and cost–benefit analyses [CBA]) that measure disease costs
and outcomes under different healthcare interventions, but analyses can also be absolute
and stand-alone (such as intervention cost, return on investment, and economic burden
and budget impact analyses) [142].

Despite the growing economic literature on AD/ADRD, there have been few economic
evaluations on the exposome. Very recently, Li et al. quantified the economic impact of
ozone pollution on AD in China [143]. They found that ozone pollution contributed
to almost 110,000 more new cases of AD in China in 2023 compared to 2015, imposing
an economic cost of about US USD 1.2 billion. They also offer a threshold for ozone
concentrations (70 µg/m [11]) that could prevent 210,000 new AD cases, potentially saving
USD 2.2 billion. Of note, they do not use any economic modeling in their analysis, instead
relying on a systematic review of the literature to determine the concentration–response
coefficient and thus the change in AD and mild cognitive impairment costs from a decreased
ozone concentration. In a similar analysis, Yang et al. [144] looked at daily exposure to
airborne particulate matter in China and its impact on hospitalizations for AD, including
the economic costs of such hospitalizations. Economic burden analyses such as these, which
measure the financial impact of exposomic elements on AD/ADRD patients and thus to
society, are valuable because they communicate the potential economic value of intervening
in these factors. Thus, they can help inform decision making and resource allocation.

However, a more nuanced approach to informing the viability of exposome interven-
tions would be to use a comparative approach, whereby multiple options are compared to
determine which provides the best value for the money. This can include comparing new
treatments to usual care or assessing different strategies for disease diagnosis [145] or man-
agement. Usually, CEAs use a standardized metric for effectiveness—a quality-adjusted life
year or QALY—to facilitate comparison across interventions (for example, see Ross et al.’s
study [146] on the cost-effectiveness of two anti-amyloid monoclonal antibodies in slowing
the progression of AD). The use of QALYs enables comparison not only with alternative
AD/ADRD treatments but also with interventions for other diseases or societal ailments.
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Findings can inform whether the health sector and society would do better allocating
resources to other places [147].

The use of models is already fundamental in economic evaluations such as CEAs
for simulating the trajectory of diseases (including AD/ADRD) over time and helping to
predict costs and outcomes under different scenarios, especially where longer-term data
are lacking [148]. These models may incorporate disease states, patient demographics,
treatment efficacy, and healthcare resource utilization. Several types of models can be used
in economic evaluations, including decision trees [149], survival partition models [150],
Markov models [151], discrete event simulations (DES), microsimulation models [152],
and ABMs [153]. These models vary in complexity and are chosen based on the nature of
the disease, the intervention being evaluated, and the available data. One study [154] of
the literature on pharmacological treatments for AD/ADRD found that Markov models,
DES, and microsimulation were the most common. They concluded that insofar as all
models were limited by their abilities to conceptualize and reproduce the course of AD,
the key element was translating changes in cognition, function, and behavior into mean-
ingful outcomes (e.g., QALYs, time to institutionalization, full-time care, and costs) for
decision makers.

Currently, to our knowledge, there are no analyses incorporating ABMs into economic
evaluations of AD/ADRD interventions. This is likely because ABMs, which overcome
the limitations of other economic evaluation models [153], have not yet been needed. The
literature so far has focused only on simple interventions and treatments, such as those in-
volving single drugs or non-pharmaceutical protocols of limited duration. However, ABMs
will be needed to evaluate potential exposome interventions and their associated effects,
including cost impacts. ABMs can accommodate greater dynamism, higher dimensions,
and greater individual variability than models of simpler disease interventions and their
effects. This is necessary given the exposome’s multifaceted nature, the complex gene–
environment interactions at play for AD/ADRD, and the longer time scales of exposome
effects throughout the life course.

The estimation of costs and QALYs have previously been integrated into other micro-
simulation models of dementia [155]. Representative population-level data from national
health surveys (e.g., the Health and Retirement Survey, Medicaid Expenditure Panel Sur-
vey) or from claims data (e.g., Centers for Medicare and Medicaid Services data, MedStat,
and MarketScan data) can help integrate costs and QALYs into an ABM of AD/ADRD.
Developing an ABM that outputs costs and QALYs would enable apples-to-apples compar-
isons to other health or even non-health interventions. Decision makers need a uniform
comparison metric to be able to know how to best allocate resources across competing
interventions or policies.

6. Future Directions and Big Data Considerations of Modeling the Exposome and
Impacts of Interventions on Disease Burden: Innovative Use of Exposome Burden
Scores and Artificial Intelligence

As the exposome is complex and changing over time, future work in modeling inter-
ventions necessitates a harmonized metric of quantifying cumulative exposome burden.
Precision environmental health has proposed the use of “multi-omic burden scores” of
exposure burden for primary prevention of disease so that the interventions can be tailored
to subgroups of the population with the highest exposure burden and/or the greatest
vulnerability for the disease. However, quantifying the exposome burden into a single
metric or set of summary metrics is challenging for multiple reasons: (1) the data are
highly dimensional and often sparse, meaning that data on various facets of the exposome
may not be available for all people due to the high cost of comprehensive data collection;
(2) different subpopulations may have different dietary habits and behaviors that may
systematically expose them more to different facets of the exposome; and (3) over time, the
exposome may change due to both a person’s changing habits over their life course, as well
as changes in the external environment (e.g., due to regrettable substitution, with different
chemicals being phased out of production by industry and replaced by others, which are



Genes 2024, 15, 1457 9 of 16

just as harmful to health). For example, we hypothesize that intervening on a specific
aspect of the exposome, e.g., by using “BPA-free” water bottles, may reduce someone’s
exposure to a specific plasticizer but not have a measurable impact on their overall exposure
burden to plasticizers due to regrettable substitution. Regrettable substitution, which is the
replacement of a toxic chemical with one that is later proven to be equally or more harmful,
highlights a significant challenge in managing the exposome [31]. As another example,
a proposed policy intervention on a specific air pollution component may not have the
desired impact on the AD/ADRD disease burden if it is replaced or the levels of another
harmful constituent increase.

Future work in this direction necessitates harmonized summary metrics that are
interpretable across studies. Recognizing these challenges, Liu et al. [156,157] proposed
novel applications of item response theory (IRT) to quantify exposome burden scores. Liu
et al. demonstrated how IRT can be used to create a common exposure burden scale across
studies, such that the summary metrics retain the same meaning and can be used for cross-
study harmonization [128,156–160]. This is often necessary for studying the exposome
because different studies may measure different aspects of the exposome, and the authors
demonstrated that IRT can be used to make full use of all data, even if studies do not
measure the exact same set of features, by using the common features as “anchors” to set a
common scale. Meanwhile, using a proxy (e.g., monitoring a single chemical contaminant to
represent cumulative impacts of an entire chemical class) may not be as informative because
they do not account for the changing landscape of population-level exposure to chemical
contaminants due to the phasing out and introduction of other chemical contaminants
by the industry. With summary metrics, combinations of interventions, or interventions
across an entire chemical class, can be tested, and impacts on subgroups, for example, those
at greater genetic risk, can be modeled for studying gene–environment interactions at a
population level.

New methods of artificial intelligence (AI) pose further innovative directions for the
study of the exposome and their interventions. AI can detect relevant patterns in data
that reflect a certain condition. Many of the above-mentioned studies employ stochastic
models, rule-based models (simulations), and classical machine learning techniques such
as supervised learning (e.g., regression) or unsupervised learning (e.g., clustering). In these
scenarios, the confounding factors (i.e., the exposome) are directly related to a particular
outcome (e.g., AD/ADRD), and the model learns the relationship between the input and
the outcome. This approach requires historical experience via training data to learn the
relationship. However, a new and largely unexplored field for exposome research is self-
supervised learning (SSL) [161]. In SSL, deep neural networks learn intrinsic structures
of the given data by differentiating between similar and non-similar data (contrastive
learning) or by reconstructing data from noisy versions of themselves (non-contrastive
learning). In both ways, the goal is not to solve a particular task, such as risk prediction, but
to enable the model to capture and generate relevant information. For example, if a model
can complete masked parts of a medical image, we assume the model has learned about the
medical domain or the underlying disease. SSL has been used in the medical domain in a
wide range of applications [162], mainly in tasks involving medical images [163], electronic
health records [164], RNA/DNA Network data [165–167], or time series [168]. It is only
natural that SSL will also lead to innovative studies in exposome research. SSL requires
large-scale data sets to be trained, which poses the largest challenge in medical applications.
But we are confident that soon, this will be solved, e.g., by merging the increasing number
of available data sets and studies, thus reaching hundreds of thousands of participants. Like
other generative models (ChatGPT, Gemini, Llama, or others), these generative exposome
models could be used to predict probable hotspots for high-risk AD/ADRD disease or to
explain the contribution of individual confounder factors to a given AD/ADRD prevalence
with attention-based techniques.

In this critical review, we highlighted opportunities and challenges in modeling ex-
posome interventions on population-level AD/ADRD disease burden while considering
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the cost-effectiveness of different interventions. There is a dearth of research in this field;
thus, we showed how we can use novel combinations of approaches across data science,
causal inference, and artificial intelligence to develop these research goals. We focused on
describing how a unique combination of tools integrating empirical causal inference model-
ing using ABMs with economic analyses and contemporary machine learning methods for
studying exposome–outcome associations, including exposome burden scores, can allow us
to holistically simulate the impacts of exposome interventions. We believe these tools will
be important for informing data-driven policy decisions and encourage interdisciplinary
researchers to work together to advance this field.
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