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Abstract
Understanding the response of a transportation system to disruptive events is significant for evaluating the resilience of the
system. However, data collection during such events is always challenging, and the data volume is insufficient for building a
robust model. Transfer learning provides an effective solution to this problem. In this study, we propose a floating car data
(FCD) driven transfer learning framework for predicting the resilience of target transportation systems to similar disruptive
events to those that have ever occurred in the source systems. The core of the framework is an unsupervised pattern extrac-
tor that combines the k-Shape clustering and Bayes inference methods for extracting resilience patterns from the FCD col-
lected in the source systems during the disruption period. The extracted patterns can then be used to assist in the
prediction of the resilience of the target systems. We examine the effectiveness of the proposed framework by conducting a
case study under the context of the COVID-19 pandemic, in which the source domain cities include Antwerp and Bangkok,
and the target domain city is Barcelona. Results show that the extracted resilience patterns can improve the prediction per-
formance of transfer learning neural networks with less pre-event information and limited data volume.
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Large events such as concerts, sports events, pandemics,
and inclement weather can affect citizens’ travel beha-
vior, causing disturbance to transportation systems. For
example, under heavy rainstorms, the average vehicle
speed will reduce because of slippery road surfaces and
impaired visibility. During the COVID-19 pandemic, the
intervention policies and people’s awareness of self-
protection led to a reduction in traffic volume on the
road network. By leveraging the knowledge of transpor-
tation system resilience, governments are able to establish
more comprehensive recovery policies and containment
measures, which help build a robust transportation sys-
tem in the long run. Therefore, understanding the resili-
ence of transportation systems under such events to bring
systems back to their normal state in a timely manner
becomes imperative (1).

Estimating and predicting the resilience of transporta-
tion systems has been a challenge for researchers for
decades. Bruneau et al. (2) proposed a quantitative frame-
work to evaluate the seismic resilience of communities,

and the four associated four characteristics (robustness,
redundancy, resourcefulness, and rapidity) are soon trans-
ferred into the field of transportation systems. The ‘‘4R’’
framework describes the resilience patterns, including the
performance drop phase and performance recovery phase,
as well as the new state a system reaches. However, evalu-
ating the resilience of a transportation system using these
characteristics relies on the complete information of the
system functionality before, during, and after the event. In
addition, the description of the coarse-grained resilience
characteristics of a traffic road network could not provide
sufficient support for the establishment of preparedness
and recovery measures. To provide comprehensive infor-
mation on resilience patterns, collecting appropriate data
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and developing an effective method to predict resilience
patterns during the entire disruption period from pre-
event data becomes imminent.

The challenges of predicting resilience patterns are
three-fold. Firstly, the data used should reflect the fine-
grained performance of a transportation system and be
able to capture the features of the system’s reaction to
large events. Secondly, because of the lack of during and
post-event information in the target transportation sys-
tem, predicting a time series with the entire system func-
tionality trend requires a proven method to fully leverage
the additional information. Thirdly, a transfer learning
strategy for dealing with the data insufficiency problem is
necessary. However, to our best knowledge, the research
on resilience pattern prediction is still limited, and none
of the previous studies have focused on all three of these
issues at once.

To fill in the aforementioned gaps, we propose a trans-
fer learning framework for predicting transportation
demand resilience using floating car data (FCD), which
utilizes the learned knowledge and experiences of source
cities to facilitate the prediction for target cities. FCD is
collected by Global Positioning System (GPS)-equipped
vehicles, which play a vital role in traffic data mining (3).
Compared to traditional methods of collecting traffic
data, FCD are provided by various types of vehicles in a
city-wide road network in real-time and are more flexible
than fixed road sensors and traffic cameras (4), which
overcomes some technical and terrain limitations of cer-
tain areas. In addition, FCD usually contains multi-
dimensional information, such as positions, speed, time,
and traffic volume, which strongly support the research
on intelligent transportation systems (ITSs) (5).

The proposed framework consists of a resilience pat-
tern extractor and artificial neural networks, which can
alleviate the problem of low model performance caused
by inconsistent traffic volume distribution among differ-
ent systems/cities and enable effective transfer learning
for the target domain. The contributions of this study are
three-fold:

1. a transfer learning model is developed to address
the transportation demand resilience prediction
problem in the context of limited available data;

2. an unsupervised method combining k-Shape clus-
tering and Bayes inference is designed to extract
resilience patterns from the FCD;

3. we conduct case studies on three cities by using
the FCD before and after the occurrence of the
COVID-19 pandemic.

The rest of the paper is structured as follows. The
Related Literature section reviews previous research

focusing on transportation resilience estimation and pre-
diction as well as transfer learning methods in traffic pre-
diction tasks. The Methodology section presents the
FCD-driven transfer learning framework for transporta-
tion demand resilience. The Case Study and
Experimental Design sections introduce the study areas
and experimental setups. Then, the Results section dis-
cusses the experiment results. Finally, the Conclusions
section draws some conclusions and points out limita-
tions and future directions.

Related Literature

In this section, we first review the studies related to trans-
portation resilience estimation and prediction. Then, we
introduce the transfer learning methods and the applica-
tions of transfer learning in transportation prediction
tasks found in the existing literature.

For the past decades, a considerable amount of
research has been conducted to estimate the resilience of
transportation systems, and various indicators have been
selected. For example, topological measures based on
complex network theory, which can represent the struc-
tural properties (e.g., connectivity and accessibility) of
the network (6), have gained popularity as resilience indi-
cators in previous studies (7). On the other hand, traffic-
based indicators, such as network average travel time (8,
9), average speed (10), and demand served (11), have also
been adopted to overcome the drawbacks of the
topology-based ones.

To observe the trends in resilience patterns, some
researchers leveraged the power of regression models to
approximate the whole time series of the traffic represen-
tatives. For instance, Zhu et al. (12) scrutinized the num-
ber of taxi trips and subway ridership in New York City
before and after the impact of hurricanes and applied a
logistic function to model the recovery rate. Although
the regression models are computationally efficient and
can approximate resilience patterns, they fell short in
capturing the temporal dependencies of these patterns.
Mojtahedi et al. (13) developed a time-dependent recov-
ery rate regression model based on Cox’s proportional
hazards regression model, focusing on the post-event
reconstruction duration. However, their model only con-
sidered the overall recovery time, that is, the rapidity of
the system, thereby neglecting other resilience features
(e.g., robustness, resourcefulness, and redundancy).
Consequently, it failed to elucidate the specific event
impacts at various stages.

On the other hand, predicting event-free scenarios has
received increasing attention as it can reflect the impact
of large events more intuitively. Therefore, causal impact
analysis has become an important approach to the study
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of transportation system resilience, which is instrumental
in evaluating the causal effect of a particular intervention
on the outcome of an event. Statistical time series models
have been extensively applied in transportation resilience
causal impact analysis. Given the high efficiency of the
auto-regressive integrated moving average (ARIMA)
model in stable time series analysis and prediction, Zhu
et al. (14) applied the ARIMA model to predict the
short-term gross domestic product (GDP) of earthquake-
free scenarios by using pre-event time series, particularly
focusing on the post-event macroeconomic recovery
ratio. The Bayesian structural time series (BSTS) model
is another method for inferring causal impact attributed
to its capability of integrating multiple regression compo-
nents and separately estimating their potential contribu-
tions. Xiao et al. (15) applied the BSTS to infer the non-
event ridership of public transport and used a regression
tree to explore the relationship between the resilience of
the rail transit system and possible influencing factors,
such as the built environment, socioeconomic disparities,
and COVID-19 cases. Meng et al. (16) calculated the
dynamic time warping (DTW) distance to measure the
similarity between smooth historical data and shocked
serial data. They measured the resilience of the ecosystem
by using the disturbance magnitude, recovery strength,
and recovery rate.

However, these models are typically only valid for cer-
tain events. Moreover, they are non-transferable and can
hardly be applied in large-scale scenarios. Recently, deep
learning methods such as the recurrent neural network
(RNN), long short-term memory (LSTM), and temporal
convolutional network (TCN) have shown promising
results on time series prediction tasks. They also offer
opportunities to predict the entire duration cycle of resili-
ence patterns directly. For instance, Wang et al. (17) pro-
posed a bidirectional diffusion graph convolutional layer
to predict the transportation system resilience patterns
under extreme weather. Essien et al. (18) combined deep a
bidirectional LSTM network and autoencoder to predict
urban traffic flow using a traffic dataset, as well as event-
related tweets and weather datasets. However, training a
deep neural network is usually time-consuming, and the
scarcity of sufficient data always distances researchers
from applying these approaches. In addition, a challenge
for traffic forecasting is insufficient data (19), and using
past traffic data for a data imputation is always unreliable
(20). Therefore, finding a transfer learning strategy to uti-
lize inter-region knowledge to improve prediction perfor-
mance has become one of the most popular methods for
traffic prediction tasks in recent years.

The distributions of the traffic data are usually incon-
sistent among different cities, which is the so-called
domain shift. Transfer learning aims to improve the per-
formance of the target domain model using the

knowledge from the pre-trained model of the domain
task. Because of the great success achieved by the trans-
fer learning method, increasing research has been dedi-
cated to alleviating the issues of insufficient data and the
inter-city domain shift in traffic prediction tasks. Wan
et al. (21) pre-trained an LSTM model using traffic data
from the UK for traffic prediction and transferred the
model to predict the traffic of 11 European cities, which
outperformed the direct training model. Zhang et al. (22)
designed a ConvLSTM model by integrating a convolu-
tional neural network (CNN) and LSTM to predict the
cellular traffic volume of three different datasets. In addi-
tion, they tested the transfer learning models between dif-
ferent datasets and introduced an eigenvector centrality-
based clustering method for inter-cell transfer learning.
Mallick et al. (23) proposed a transfer learning strategy
for speed prediction by training the neural network in
the subgraphs of the highway network, which made the
previously proposed state-of-the-art model transferable.

The above literature provides evidence with respect to
the potential of transfer learning in transportation resili-
ence prediction tasks. Considering the common existing
issues, such as insufficient traffic data and domain shift
between different cities’ road networks, the following
section introduces a framework that leverages the cross-
city knowledge for transportation resilience pattern
prediction.

Methodology

In this section, we first describe the FCD-based transfer
learning framework designed for transportation demand
resilience prediction. Then, we introduce its components
sequentially.

Transfer Learning Framework for Transportation
System Resilience Prediction

System resilience can be quantified by integrating the
deviation of system functionality from its optimal value
(2). The measurement for system functionality should be
able to represent the mobility patterns of the concerned
area. Considering that FCD has wide coverage across
urban areas, the traffic volume of floating cars is used to
describe the system functionality in this study.
Accordingly, the traffic volume time series of floating
cars are used to monitor the changes in functionality
over time.

The proposed transfer learning framework integrates
a k-Shape clustering algorithm, a Bayes-based pattern
extractor, and neural network models, aiming to predict
the resilience patterns of the target domain by using
solely the pre-event FCD and the knowledge gained
from the source domain. Figure 1 presents the overall
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framework and the interrelations of the components
assembled.

It is worth noting that the concerned areas/systems
require prior division into numerous subsystems in
advance, which serve as the unit of analysis in this study.
With grid-wise systems as an example, each small system
can then be characterized by the respective time series of
the traffic volume of floating cars, such as the entering
and leaving flows in various directions. These time series
will be treated as different observations, recording the
development of the functionality of these systems. As
such, the time series containing the event period can be
used to estimate their resilience patterns in the face of a
certain type of event. Although such traffic volume time
series vary from city to city, substantial similarities are
anticipated among those much smaller grids. Moreover,
it is plausible to assume that grids exhibiting similar pre-
event characteristics would manifest comparable resili-
ence patterns in similar events. Here, resilience patterns
are defined as the changing patterns of the traffic volume
time series during the life cycle of the event. In addition,
we consider multiple cities in transfer learning models,
within which the cities with during-event data are treated
as source cities, and otherwise target cities.

To measure the similarities of different grid systems,
we applied the k-Shape time series clustering method to
cluster the pre-event time series. Note that in this step,
the raw grid traffic volume time series from different
source cities are mixed and inputted to the k-Shape
method. Then, the clusters identified are used to label
the corresponding during-event time series. Namely, the
resilience patterns of different grid clusters are defined
according to their pre-event functionality.

Given the stochastic nature of FCD, extracting the
average resilience pattern for each grid cluster is neces-
sary. To this end, we applied the Bayes method for each
cluster to infer the posterior distribution of the during-
event traffic volume time series. Thus, traffic volume dis-
tributions at every time step can be obtained for grids
that belong to the same cluster. We denote the mean val-
ues of the distributions as the extracted prompt features.
The extracted prompt features’ sequence represents each
cluster’s average resilience pattern.

As presented in Figure 1, the clustered pre-event time
series and their corresponding average resilience patterns
are joined together and fed into neural networks to pre-
dict the actual resilience patterns. In this way, the pre-
trained models are obtained. For the test set, only pre-
event data is given. The pre-event data of the test set are
first matched to the corresponding cluster identified using
the source data. Then, by joining the pre-event data and
the average resilience patterns of the matched cluster, one
can obtain the same format of input as those used to
train the source model. The joined sequences are then fed
into the pre-trained neural networks with frozen para-
meters. Each pre-trained neural network is stacked with
a multi-layer perceptron (MLP) for parameter learning.
It follows that the transfer learning model can predict the
resilience patterns for the target cities with only the pre-
event data.

Time Series Clustering

We applied time series clustering to categorize grids with
similar pre-event patterns. We denote the traffic volume
time series dataset of an n-grid city as G = fg1, g2, :::, gng,

Figure 1. Transfer learning framework for transportation demand resilience prediction.
Note: FCD = floating car data; MLP = multi-layer perceptron.
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with gi indicating the time series of grid i. The entire
dataset is divided into a pre-event partition
P= fp1, p2, :::, png and a resilience pattern partition
R= fr1, r2, :::, rng.

We apply the k-Shape algorithm to identify grids
with similar resilience patterns. The k-Shape algorithm
is a k-means-based clustering method with shape-based
distance (SBD) as the distance measure. Figure 2 illus-
trates the application of the k-Shape algorithm in this
problem. Firstly, the algorithm is implemented on the
partition of pre-event time series, P, to categorize grids
with similar pre-event patterns. According to the afore-
mentioned assumption, grids showcasing similar pre-
event patterns tend to manifest comparable resilience
patterns when confronted with similar events.
Consequently, resilience patterns are classified based
on the clusters ascertained from the pre-event data par-
tition. The reader is referred to Paparrizos and
Gravano (24) for more details about the implementa-
tion of the k-Shape algorithm.

Bayes-Based Shape Extractor

Assume that for a resilience pattern cluster c, the number
of grids is Nc and the duration of the resilience phase is d

days. The Bayes inference method is implemented to esti-
mate the posterior distribution for the traffic volume at
each time step of the resilience pattern. Denote the vector
of traffic volume of grids in cluster c at time t by ct.
Denote the distribution parameters by ut. The Bayesian
method is used to infer the posterior distribution as
follows:

p utjctð Þ= p ctjutð Þ � p(ut)

p ctð Þ
}p ctjutð Þ � p(ut) ð1Þ

where

P ctjutð Þ=P c
(1)
t , . . . , ct

Ncð Þ
n o

jut

� �
=

QN
j= 1

P ct
(j)jut

� � ð2Þ

For each time step t in cluster c, p(ctjut) represents the
likelihood function, p(ct) is a normalizing constant, and
p(ut) is the prior distribution for parameter ut. Here, we
apply Gaussian distribution as posterior distribution and
use uniform priors for m and s. In the case of k clusters,
k � d posterior distributions are estimated. An example of
Bayes resilience pattern extraction is presented in Figure 3.
The average resilience pattern of a cluster of grids will be
defined as the time series of the mean value of those pos-
terior distributions.

Neural Networks

The application of k-Shape clustering and the Bayes
method enables the extraction of prior knowledge about
resilience patterns, thus enriching the feature set for the
transfer learning dataset. To acquire deep embedding of
the features and accomplish prediction tasks, deep learn-
ing models are applied to learn the model parameters.
This study considers two kinds of deep learning models:
MLP and RNNs. For RNNs, we consider a conven-
tional RNN and an LSTM network.

Multi-Layer Perceptron. The MLP is a basic type of feed-
forward neural network (FNN). The nodes of a FNN
are connected in a directed graph without a circular
structure. The inputs of a FNN only flow from the input
layer through hidden layers to the output layer in one
direction. In this study, the inputs of the MLP are the
joined sequences comprising the pre-event time series
and the corresponding resilience patterns derived by the
Bayes method. The outputs are the predicted resilience
patterns.

Recurrent Neural Network. In contrast to FNNs, RNNs
share parameters across various time steps, enabling the
model to handle the variable-length sequence. The RNN
model processes one input at a time, and for each layer,
the inputs are not only the features of the current time
step but also the hidden features from the last time step,
thereby enabling the RNN to capture the temporal
dependency of the time series. In this study, the inputs of
the RNN are also the joined sequences comprising the

Figure 2. The k-Shape time series clustering for grid floating car
data.
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pre-event time series and the corresponding Bayes resili-
ence patterns. Only the outputs from the last few layers
are optimized to predict the resilience patterns.

Long Short-Term Memory. The LSTM is a variant of the
RNN, which is designed to solve the gradient problem to
capture more information from the past. In the RNN,
the outputs can only be optimized through hidden fea-
tures. Once the weights are smaller than zero or larger
than one, based on the backward propagation through
time (BPTT) and the chain rule, the successive deriva-
tions of the latest outputs can result in their gradients to
the previous inputs converging to either zero or infinity
when predicting for a long sequence. Therefore, the pre-
vious information is challenging to propagate to distant
future units. An LSTM unit contains a memory cell, an
input gate, a forget gate, and an output gate. The mem-
ory cell is introduced to aggregate the past and current

information, the flow of which is adjusted by the gate
units so that the information can be selectively trans-
mitted to the following LSTM units to keep a long-term
temporal dependency.

Case Study

In this section, we introduce the case study for the fol-
lowing experiments, which are conducted in the context
of the COVID-19 pandemic. We first analyze the impact
of COVID-19 on urban transportation systems. Then,
we describe the situation of the study areas and the FCD
used in the experiments.

The Impact of COVID-19 on Transportation

Unlike general events, the COVID-19 pandemic did not
destroy the transportation infrastructure directly but
rather affected travel behaviors and limited the travel

Figure 3. Example of Bayes resilience patterns extraction. Here we mark an example of resilience pattern extraction for a single time
step. The samples of each time step form a dataset. For each cluster c, the resilience pattern extraction process is repeated d times.
Note: FCD = floating car data.
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opportunities of citizens. To protect the health of citizens
and mitigate the economic fallout caused by the pan-
demic, governments of different countries and regions
have taken a series of emergency measures. Among them,
the lockdown of event venues, short-term travel control
of citizens, and quarantine policies are the most com-
monly used measures. According to Engle et al. (25), the
mobility of the population is sensitive to the govern-
ment’s stay-at-home announcement, which alters travel
behavior and restricts citizen mobility, thereby substan-
tially reducing traffic demand over a certain period.

Under the pandemic control policies, the traffic
volumes of many cities showed a sharp decline and then
gradually recovered as the control measures were relaxed.
Although ‘‘resilience triangles’’ showed in most of the city
road networks, the impact of COVID-19 varied greatly
in different cities because of their unique topologies and
response policies (26). Therefore, learning from the expe-
rience of other cities and studying how to transfer the
knowledge of resilience patterns play essential roles. In
the following experiments, we applied the proposed
method to the grid traffic volume FCD from three cities:
Antwerp, Bangkok, and Barcelona. We used the data of
Antwerp and Bangkok for source domain model training
and the FCD from Barcelona for transfer learning.

Study Areas

Antwerp is the largest city in Belgium, which is located in
the Antwerp Province in the Flemish region. As pre-
sented in Figure 4a, the road network of Antwerp has a
radial structure with a relatively dense road network in
the city center and a sparse road network on the out-
skirts. To combat the spread of the COVID-19 virus,

Belgium implemented lockdown policies on March 18,
2020. The lockdown measures affected schools, restau-
rants, and workplaces across the entire nation. The traffic
volume decreased sharply under the pandemic interven-
tion measures until May 4, 2020, when the lockdown
measures were gradually eased, some urban amenities
were allowed to reopen, and the traffic volume started to
recover.

Bangkok, situated in the country’s center, is the capi-
tal of Thailand. As presented in Figure 4b, the road net-
work of Bangkok exhibits a ring structure, with the
roads within the ring demonstrating a mix of grid and
radial layouts. The pandemic intervention measures in
Bangkok were initiated on January 3, 2020, when the
Thai Ministry of Public Health started to screen the tem-
perature and issue health declaration cards to travelers.
From March 3, 2020, the Thai government commenced
prohibitions on large gatherings and closures of schools
and entertainment venues. Shortly after the closures, the
government imposed a curfew from March 26 to May
17, 2020, when entertainment places were allowed to
reopen. Because of the timely implementation of pan-
demic intervention policies, the transportation system of
the Bangkok road network was relatively less affected by
the pandemic and showed more resilient patterns.

Barcelona, the city for the transfer learning experi-
ment in this study, is located on the northeast coast of
Spain. As presented in Figure 4c, Barcelona has a com-
prehensive network structure that consists mainly of ring
and radial roads, and some blocks in the city center have
a grid structure. The government of Spain implemented
lockdown measures on March 14, 2020, and extended the
measures until April, 26. Following that, the prevention
measures began to ease, and on May 11, 2020, citizens

Figure 4. Study areas and networks. (a) Antwerp network. (b) Bangkok network. (c) Barcelona network.
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were incrementally permitted to resume social activities.
During the pandemic, the traffic volume in Barcelona
experienced a sharp decline and then gradually recovered
at an unstable rate.

Floating Car Data Description

The grid traffic volume FCD is provided by HERE (27)
and was used for NeurIPS Traffic4cast competitions
(28). The data from each city is split into two halves: the
first half, ranging from January 2, 2019, to June 30,
2019, before the COVID pandemic, and the second half
from January 2, 2020, to June 30, 2020, during the first
outbreak of the pandemic. Therefore, the data contains
180days of pre-COVID patterns and 181days during
and after the first outbreak patterns. As shown in
Figure 5, the raw data for our experiment is a (288, 495,
436, 4) tensor for one day. The first three dimensions
encode the number of 5-min time intervals per day and
the number of 100m 3 100m grids for each city, and
the four channels encode the traffic volume of four dif-
ferent directions of each grid. In our experiment, we
merged the time interval into one day to avoid multiple
seasonality.

Experimental Design

Data Preprocessing

Since the spatial partitioning of the raw data is based on
image pixels rather than the road network structure,
grids without roads typically do not contain traffic vol-
ume, and grids with small traffic volume exhibit unstable
trends in time series. Consequently, data preprocessing
was conducted to remove the grids where traffic volume
was either unavailable or abnormal.

Data preprocessing involves the following steps: (1)
aggregating the traffic volume into one-day intervals; (2)

folding the data into four dimensions (cities, total sam-
ples of four directions, time steps, traffic volume); (3) set-
ting a threshold to eliminate part of the abnormal data,
that is, the average traffic volume per day of each grid
should be greater than M vehicles; (4) running a k-Shape
clustering for each city and further delete the abnormal
cluster; (5) after data cleaning, the remaining time series
is normalized by its maximum of the absolute traffic vol-
ume and reshaping the data for source domain cities to
the shape (samples, time steps) and shuffling the data;
(6) shuffling the data of the target domain city. Note, for
both the source domain and target domain, 60% of the
data are used for training, 20% are used for testing, and
the rest 20% for validation.

We first pre-trained the neural networks using the
180-day pre-pandemic FCD traffic volume for the source
domain cities to predict the 181-day resilience patterns.
Then, the pre-trained models were fine-tuned to predict
181-day resilience patterns for the target domain with
only 50 days of its pre-pandemic data. Therefore, the
total input sequence lengths of the source domain and
target domain time series are 361 and 231, respectively.

For a 100m 3 100m grid size, each city contains
495 3 436 grid cells, and each grid contains the traffic
volume time series from four different directions, which
means that for each city, a maximum of 863,280 traffic
volume time series can be extracted. The threshold M

was set to 10 vehicles for the first step of data cleaning.
After the data preprocessing, a total of 170,947 time
series from three cities were selected for model building
and transfer learning.

Model Evaluation

The architectures of the neural networks are shown in
Table 1. We employed the rectified linear unit (ReLU)
activation function for more effective learning. The ini-
tial learning rate is set to 0.001, and we applied the step
decay schedule with the decay rate of 0.75 per 50 steps.
The batch size for all models is taken as 64.

Initially, we applied a Bayes patterns extractor to gener-
ate the average resilience patterns for each cluster, the
sequence length of which is 181. Therefore, the input
sequence length of each neural network is the sum of the
pre-pandemic sequence length and the average resilience
pattern length, which is 361. To demonstrate the effective-
ness of the proposed Bayes resilience patterns extractor, we
performed an ablation experiment, that is, comparing the
case with and without the extractor. Without the extractor,
the average resilience patterns in Figure 3 are unable to be
extracted, and therefore we directly fed the pre-pandemic
sequence into the neural network with the same architecture
as our proposed model. For each RNN, we added a feed-
forward network as the prediction head to generate the

Figure 5. Grid floating car data.
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output. For transfer learning, the parameters of all models
were frozen, and their outputs were fed into an FNN for
fine-tuning.

For model performance evaluation, we employed the
mean absolute error (MAE), root-mean-squared error
(RMSE), and DTW as metrics, which are defined as
follows:

MAE=
1

n 3 t

Xn

i= 1

Yi � Ŷ i

�� �� ð3Þ

RMSE=
1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i= 1

Yi � Ŷ i

� �T
Yi � Ŷ i

� �s
ð4Þ

DTW =
1

n

Xn

i= 1

Wij j ð5Þ

where Yi refers to the ground truth, Ŷi represents the pre-
dictions, n denotes the number of samples, t is the total
prediction length, and Wi is the warping path length
between the ground truth and predictions. Both the

MAE and root mean square error (RMSE) measure the
difference between the prediction and actual daily traffic
volume at the grid level. Since the RMSE squares the dif-
ference values, the results of the RMSE are more sensi-
tive to outliers. DTW measures the difference between
the entire predicted and actual traffic volume time series
at the grid level, which can handle the unequal length
and unaligned time series. The unit of the MAE and
RMSE is vehicles per day (vpd), and for DTW, it is vehi-
cles per predicted length.

Results

Macroscopic Traffic Volume Resilience Patterns

The total traffic volume time series of the three cities are
presented in Figures 6–8, respectively. Compared with their
pandemic intervention timeline, it can be observed that they
have different patterns before and during the pandemic.

As shown in Figure 6, the trend of Antwerp’s traffic
volume time series was relatively stable before the pan-
demic. In the first half year of 2019, the values showed a
slightly increasing trend and remained at the same level
in the first three months of 2020. Subsequently, the gov-
ernment of Antwerp implemented pandemic preventive
measures in March 2020, leading to a sharp decline in
traffic flow, reaching its minimum point. It was only half
of the pre-pandemic level by the end of March and main-
tained a low level afterward. As the preventive policies
were eased in early May, the traffic volume gradually
recovered with a slightly accelerating trend. By the end
of June, the overall traffic volume in Antwerp had recov-
ered to its pre-pandemic level.

Figure 7 shows that the traffic volume trend in
Bangkok was relatively stable before April 2019, fol-
lowed by a slight decline. In early 2020, because of the

Table 1. Model Architecture

Model # Layers Hidden size RNN prediction head Input length Output length

Bayes+MLP 3 Layer 1 = 256 na 361 181
Layer 2 = 128 na
Layer 3 = 181 na

Bayes+RNN 3 Layer 1 = 16 Layer 1 = 256 361 181
Bayes+ LSTM Layer 2 = 16 Layer 2 = 128
Bayes+BiLSTM Layer 3 = 16 Layer 3 = 1
Bayes+MLP 3 Layer 1 = 256 na 180 181

Layer 2 = 128 na
Layer 3 = 181 na

RNN 3 Layer 1 = 16 Layer 1 = 256 180 181
LSTM Layer 2 = 16 Layer 2 = 128
BiLSTM Layer 3 = 16 Layer 3 = 1

Note: MLP = multi-layer perceptron; RNN = recurrent neural network; LSTM = long short-term memory; BiLSTM = bi-directional long short-term

memory; na = not applicable.

Figure 6. Antwerp traffic volume time series.
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timely prevention measures, the traffic volume had a
slightly decreasing trend and declined to the minimum
point at the beginning of April. In March 2020, the curve
recovered gradually but failed to reach its original state.
The traffic volume in Bangkok did not experience a
sharp decrease during the pandemic. Instead, it exhibited
an overall decreasing trend.

Figure 8 shows the traffic volume patterns in
Barcelona. Unlike the previous two cities, its traffic vol-
ume increased gradually before 2020 and was relatively
stable in early 2020. Then a plunge showed in the curve
because of the implementation of the lockdown policies
in March and remained at a low level. After the lock-
down, the traffic volume trended upward and recovered
to the pre-pandemic level.

From the macro level, the overall traffic volume in
each of the three cities has distinct trends and resilience
patterns. However, from a microscopic view, the grids of
each city contain various patterns, and for different cit-
ies, some of their grids may contain the same patterns.

Results of the Source Domain Model

Average Resilience Patterns. We utilize the elbow method to
determine the optimal number of clusters. The elbow

method plots the within-cluster sum of squares (WCSS)
against the number of clusters. The WCSS represents the
total squared distance between each point and the cen-
troid within its cluster, and the point of inflection on the
WCSS curve, often referred to as the ‘‘elbow,’’ is selected
as the number of clusters.

Based on the WCSS curve given in Figure 9, the num-
ber of clusters can either be set to three or four.
Although more clusters could lead to high inter-cluster
similarities, the pre-pandemic time series were segmented
into four clusters by the k-Shape method for extracting
more resilience patterns. Figure 10 presents each cluster’s
clustering centroids of the pre-pandemic time series. To
verify our assumption presented in the Methodology sec-
tion that grids exhibiting similar pre-event patterns
would manifest comparable resilience patterns in the face
of similar events, the k-Shape method was also applied
to the entire traffic volume time series, which includes
both pre-pandemic and during-pandemic time series. The
grids within the clusters that were generated based on the
entire time series have high similarity across the entire
time series, and the pre-pandemic part of these also
exhibited high similarities with the clustering centroids
generated by using only the pre-pandemic time series,
except cluster 0. This validates our assumption.
According to Paparrizos and Gravano (24), the cluster
centroid is computed by maximizing the cross-correlation
similarity between a given sequence and the time series
within the cluster. Thus, the cluster centroid intuitively
reflects the time series shape within the cluster. Note that
the magnitude deviation is caused by normalization, and
the offset in the time dimension does not affect the clus-
tering results as the k-Shape method aligned the time
series automatically when calculating the SBD between
time series. Figure 10, a and b, shows that the first two

Figure 8. Barcelona traffic volume time series.

Figure 7. Bangkok traffic volume time series.

Figure 9. Within-cluster sum of squares (WCSS) of different
numbers of clusters.
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clusters comprised the normalized traffic volume pre-
pandemic time series with overall stable trends. The cen-
troid of cluster 0 shows smaller amplitudes and some
unstable amplitudes, and the reason is that cluster 0 cap-
tured more grids containing smaller traffic volumes,
which generally exhibit less stable trends, but the fluctua-
tions are limited in range. On the other hand, the cen-
troids of the last two clusters each exhibit different
declining trends at different time steps. In addition, the
centroid of each cluster shows similar seasonality and
amplitudes through time, which means the elements
within the same cluster have high similarity.

According to the clustering results of the pre-
pandemic time series, the resilience patterns can likewise
be segmented into four clusters. Figure 11 presents the
samples of during-pandemic time series and the extracted
average resilience patterns from all elements in each clus-
ter. Consistent with pre-pandemic clusters, an apparent
bolded trend curve can also be observed among the sam-
ples of each cluster. The average resilience patterns
reflect the possible normalized traffic volume with the
highest degree of confidence in each cluster. As shown in
Figure 11a, the average resilience pattern of cluster 0
showed a slightly downward trend in mid-March 2020
and a slow upward trend since April 2020. In contrast,
the average resilience pattern of cluster 1 (see Figure
11b) presented a more distinct ‘‘resilience triangle’’ shape.

The extracted time series in Figure 11, c, and d had an
overall downward trend and slight resilience patterns.

Results of Neural Networks. Table 2 summarizes the perfor-
mance of different models under different metrics when
predicting traffic volume resilience patterns at the grid
level.

In the source domain, it is unequivocally demon-
strated that the MLP model underpinned by a Bayes
patterns extractor (BMLP) exhibits superior perfor-
mance across all three metrics. In contrast, the Bayes
pattern extractor-based RNN (BRNN) model per-
formed worst. Both the LSTM model and the bi-direc-
tional long short-term memory (BiLSTM) model,
equipped with Bayes pattern extractors (BLSTM and
BBiLSTM, respectively), demonstrated comparable
performance to the BMLP. For DTW, the performance
of the BMLP, BLSTM, and BBiLSTM was almost
identical, while the performance of the BRNN was
worse. Apparently, the BRNN model failed to capture
the similarity of the traffic volume time series. For the
MAE, the BLSTM and BBiLSTM models achieved
similar performance to the BMLP model, while the
MAE of the BRNN model was significantly lower than
that of the other models, indicating its relatively poor
prediction accuracy. With respect to the RMSE, the

(a) (b)

(c) (d)

Figure 10. Clustering centers of pre-pandemic clusters. (a) Cluster 0 (pre-disaster). (b) Cluster 1 (pre-disaster). (c) Cluster 2 (pre-
disaster). (d) Cluster 3 (pre-disaster).
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BMLP and BLSTM models had relatively low values
of around 40, significantly lower than the value of the
BRNN model. The recorded RMSE values show that
significant errors less influenced the predictions of the
BMLP and BLSTM models compared to the BiLSTM
and BRNN models.

Moreover, it can be observed that the resilience pat-
terns extracted by the Bayes patterns extractor can
improve the overall performance of RNN-based models
but fail to improve the performance of the MLP.
However, in RNN-based models, the improvement of

the BRNN compared to the traditional RNN was mar-
ginal. In contrast, both the BLSTM and BBiLSTM sig-
nificantly outperformed the LSTM and BiLSTM across
all measured metrics. A possible explanation for this
could be that the memory capability of the RNN for
pre-pandemic information is inferior to those of the
LSTM and BiLSTM over longer prediction lengths.

It can be noticed that the BMLP model exhibited
more robust prediction performance than RNN-based
models in the source domain. The possible reason could
be the cumulative error caused by the long prediction

Table 2. Source Domain Ablation Experiment

Model & input features DTW (veh) MAE (vpd) RMSE (vpd)

MLP (180) 258.456 17.290 39.888
BMLP (180+ 181) 260.607 (+ 0.8%) 17.223 (20.4%) 40.049 (+ 0.4%)
RNN (180) 275.614 19.371 44.916
BRNN (180+ 181) 273.541 (20.8%) 19.134 (21.2%) 44.745 (20.4%)
LSTM (180) 273.553 18.884 44.033
BLSTM (180+ 181) 262.951 (23.9%) 17.498 (27.3%) 40.882 (27.2%)
BiLSTM (180) 266.648 17.963 42.597
BBiLSTM (180+ 181) 261.848 (21.8%) 17.747 (21.2%) 41.504 (22.6%)

Note: DTW = dynamic time warping; MAE = mean absolute error; RMSE = root mean square error; MLP = multi-layer perceptron; RNN = recurrent

neural network; LSTM = long short-term memory; BiLSTM = bi-directional long short-term memory; BMLP = Bayes pattern extractor-based multi-layer

perceptron; BRNN = Bayes pattern extractor-based recurrent neural network; BLSTM = Bayes pattern extractor-based long short-term memory;

BBiLSTM = Bayes pattern extractor-based bi-directional long short-term memory. veh = vehicles; vpd = vehicles per day.

(a) (b)

(c) (d)

Figure 11. During-pandemic clusters and average resilience patterns. (a) Resilience patterns of cluster 0. (b) Resilience patterns of
cluster 1. (c) Resilience patterns of cluster 2. (d) Resilience patterns of cluster 3.
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length. In RNN-based models, the BLSTM and BiLSTM
outperformed the BRNN because the gate mechanism
can strengthen the ability of the LTSM-based model to
capture the long-term temporal dependencies, thereby
achieving similar performance to the BMLP model.

Figure 12 presents the performance of the proposed
models as well as the Bayes ablated models. It can be
observed that the predictions of the Bayes-based model
are almost consistent with the ground truth. As shown in
Figure 12a, the BMLP exhibited strong robustness over
the entire forecasting interval, but a noticeable bias is evi-
dent when predicting the peak value for the initial month.
In addition, it possessed relatively low precision at the
time steps marked by substantial changes in trends,
which indicates that the BMLP struggled to capture the
dependency between adjacent time steps but can learn
the overall shape of the resilience patterns. On the other
hand, Figure 12b illustrates that the BRNN performs
well in the prediction from January to March but fails to
predict accurately during April and May when clear frus-
tration presents. This implies that the BRNN has limita-
tions in capturing the long-term dependencies of the
sequence and is not sensitive enough to the changes in
the trends of the time series. The BLSTMmodel was rela-
tively robust throughout the entire prediction interval, as

displayed in Figure 12c. Compared to the BMLP, the
BLSTM performs better in peak values and is also capa-
ble of capturing significant changes in trends. However,
the BLSTM is unstable in predicting the valley values of
each period in our experiment. As shown in Figure 12d,
the BBiLSTM performs better in predicting peak-to-peak
values in the first few months. However, for the predic-
tion from mid-March to the end of May, the BiLSTM
continuously overestimated the traffic volume.

To quantify and compare the performance of different
models in different experiments for the macro-level pre-
diction, we further introduced the MAPE as the metric.
The bar charts of Figure 12 present the MAPE of differ-
ent neural networks for each time step.

Results of the Target Domain Model

In the target domain, the input was only 50 days of the
Barcelona pre-pandemic traffic volume time series, and
an FNN was stacked to each pre-trained model for fine-
tuning. Table 3 lists the prediction performance compari-
son of different models under different metrics at the grid
level.

In general, similar to the results of the source domain
models, the BMLP showed the strongest robustness across

(a) (b)

(c) (d)

Figure 12. The macro-level prediction and true values in the source domain. (a) Multi-layer perceptron (MLP) model. (b) Recurrent
neural network (RNN) model. (c) Long short-term memory (LSTM) model. (d) Bi-directional long short-term memory (BiLSTM) model.
Note: BMLP = Bayes pattern extractor-based multi-layer perceptron; MAPE = mean absolute percentage error; BRNN = Bayes pattern extractor-based

recurrent neural network; BLSTM = Bayes pattern extractor-based long short-term memory; BBiLSTM = Bayes pattern extractor-based bi-directional long

short-term memory.
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all three metrics, whereas the BRNN delivered the poorest
performance. The BLSTM and BBiLSTM exhibited simi-
lar performance. The DTW results were consistent
between the target and source domains. The BMLP-based
transfer learning model continued to exhibit the most pro-
minent performance in capturing the similarity between
traffic volume time series. The BLSTM and BBiLSTM
exhibited comparable DTW performances, which were
close to that of the BMLP. However, the BRNN still per-
formed poorly in learning time series similarity. The MAE
results show that the BLSTM and BMLP achieved high
accuracy in our traffic volume prediction task, while the
BBiLSTM and BRNN had approximately 4% lower pre-
diction accuracy. With respect to the RMSE, the BMLP
yielded significantly lower errors than other models.
Although the BLSTM exhibited the highest accuracy in
MAE error, the BBiLSTM and BRNN models were less
affected by significant errors.

Compared to the source domain tasks, the perfor-
mance of the BRNN was closer to that of other models.
In the source domain, the performance of the BRNN and
other models differs by approximately 5% with respect to
the DTWmetric. However, in the transfer learning experi-
ment, the gap had reduced to approximately 2%–2.5%.
With respect to the MAE, the performance of the BRNN
was even closer to the BBiLSTM and exhibited better per-
formance than in the source domain. With respect to the
RMSE, the BRNN’s performance surpassed that of the
BLSTM and was close to that of the BBiLSTM. This
result suggests that although RNN models have a rela-
tively poor ability to capture the similarity of traffic vol-
ume time series at the micro level, they exhibited good
generalization ability in predictive accuracy.

Moreover, the proposed models showed stronger
robustness in transfer learning. Compared to the Bayes
component ablated models for DTW, the BMLP,
BRNN, BLSTM, and BBiLSTM models performed
more robustly in capturing time series similarity by
3.1%, 4.4%, 6.5%, and 5.8%, respectively. The accuracy
of the proposed models also improved by 5.6%, 3.7%,
8.4%, and 4.6% with respect to the MAE. Moreover, for
the RMSE, the accuracy of our models increased by
0.6% to 3.7%.

From a macro perspective, all four models achieved
robust prediction performance for relatively stable trends
but exhibited particular bias in predicting the valleys of the
overall resilience pattern, as shown in the line charts of
Figure 13. Figure 13a illustrates the prediction results of
the BMLP model in the target domain. It can be observed
that the BMLP model delivered a generally robust perfor-
mance, particularly during periods with significant trend
changes. Figure 13b shows that although the BRNNmodel
could capture the overall trend of the time series, its predic-
tive ability for the valleys of the resilience patterns is lim-
ited. Compared to the BRNN model, as shown in Figure
13c, the BLSTM model better captured the downward
trend of the resilience patterns, although it overestimated
the robustness and resourcefulness of the transportation
systems. Figure 13d shows the prediction results of the
BBiLSTM, which showed a more robust performance in
predicting the traffic volume during the recovery phase of
the time series than the BLSTM.

However, Figure 13 suggests that all models experi-
enced large MAPE when the traffic volume was rela-
tively low. Because of the inconsistency of traffic volume
distribution between the source domain cities and

Table 3. Target Domain Ablation Experiment

Model & input features DTW (veh) MAE (vpd) RMSE (vpd)

MLP (50) 319.442 21.679 83.732
BMLP (50+ 181) 309.585 (23.1%) 20.458 (25.6%) 82.508 (21.5%)
RNN (50) 332.087 22.401 85.213
BRNN (50+ 181) 317.416 (24.4%) 21.580 (23.7%) 84.702 (20.6%)
LSTM (50) 333.436 22.745 87.104
BLSTM (50+ 181) 311.488 (26.5%) 20.830 (28.4%) 85.225 (22.2%)
BiLSTM (50) 330.359 22.547 87.788
BBiLSTM (50+ 181) 311.215 (25.8%) 21.501 (24.6%) 84.558 (23.7%)
MLPref (50) 320.902 (+ 0.5%) 20.938 (23.4%) 83.296 (20.5%)
RNNref (50) 353.696 (+ 6.5%) 26.297 (+ 17.4%) 89.271 (+ 4.8%)
LSTMref(50) 336.000 (+ 0.8%) 23.821 (+ 4.7%) 87.854 (+ 0.9%)
BiLSTMref (50) 328.773 (20.5%) 22.578 (+ 0.1%) 86.721 (21.2%)

Note: DTW = dynamic time warping; MAE = mean absolute error; RMSE = root mean square error; MLP = multi-layer perceptron; RNN = recurrent

neural network; LSTM = long short-term memory; BiLSTM = bi-directional long short-term memory; BMLP = Bayes pattern extractor-based multi-layer

perceptron; BRNN = Bayes pattern extractor-based recurrent neural network; BLSTM = Bayes pattern extractor-based long short-term memory;

BBiLSTM = Bayes pattern extractor-based bi-directional long short-term memory; veh = vehicles; vpd = vehicles per day.
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Barcelona, as well as data instability arising from the
small grid size, the models may show subpar prediction
performance for the grids and periods characterized by
low traffic volumes.

From the ablation experiments, it can be inferred that
Bayes pattern extractor-based models primarily contrib-
uted to the model’s robustness in predicting peak and
valley values. Although the Bayes component ablated
models (MLP, RNN, LSTM, BiLSTM) could learn tem-
poral dependencies between different patterns, they all
continuously overestimated or underestimated the traffic
volume in predicting the overall city resilience patterns.
The reason could be the over-capturing of the local
unstable traffic trends, which made them fail to express
the global traffic volume trends. In long-term prediction
tasks, the accumulative error also was a limitation for
RNN-based models (RNN, LSTM, and BiLSTM).
However, introducing the Bayes pattern extractor can
provide global information to the neural networks and
make the input grid time series more stable, which could
enhance the models’ robustness in predicting the overall
traffic volume at the macro level. On the other hand, the
quality of traffic volume FCD is highly contingent on
the number of vehicles connected, which can increase the
instability of data with a small grid size. However, the

extracted resilience patterns might prevent the models
from learning such unstable trends. Therefore, some
models did not show significant improvements at the
grid level.

Effectiveness of Transfer Learning

The bottom partition of Table 3 shows the performance
of transfer learning by comparing the neural networks
trained directly (MLPref, RNNref, LSTMref, BiLSTMref)
and those trained by transfer learning.

The input of all neural networks was the time series
with only a 50-day pre-event traffic volume. While trans-
fer learning improved the performance of most models,
it led to lower predicted performance for the MLP and
BiLSTM, which indicates a negative transfer issue. For
the RNN and LSTM, the predicted performance of all
metrics was improved by transfer learning, and the
improvement of the RNN was particularly significant, as
the RNN is less robust and more sensitive to data scar-
city. In contrast, the LSTM benefited only marginally
from transfer learning. In addition, Table 3 demonstrates
that all neural networks supported by the Bayes resili-
ence patterns extractor outperformed both Bayes compo-
nent ablated models and models trained directly, which

(a) (b)

(c) (d)

Figure 13. The macro-level prediction and true values in the target domain. (a) Multi-layer perceptron (MLP) model. (b) Recurrent
neural network (RNN) model. (c) Long short-term memory (LSTM) model. (d) Bi-directional long short-term memory (BiLSTM) model.
Note: BMLP = Bayes pattern extractor-based multi-layer perceptron; MAPE = mean absolute percentage error; BRNN = Bayes pattern extractor-based

recurrent neural network; BLSTM = Bayes pattern extractor-based long short-term memory; BBiLSTM = Bayes pattern extractor-based bi-directional long

short-term memory.
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evidences that the proposed transfer learning strategy
not only enhances the robustness of neural networks but
also mitigates the negative transfer problem.

Conclusions

This study built a transferable model for capturing and
predicting transportation demand resilience patterns
using FCD. The framework integrates an unsupervised
resilience patterns extractor and different kinds of neural
networks. By conducting a case study under the context
of the COVID-19 pandemic, we demonstrated the effec-
tiveness of our model.

We applied grid traffic volume as model inputs and
sought to capture the transportation resilience patterns.
The proposed framework combines unsupervised
machine learning methods and supervised deep learning
methods. The unsupervised machine learning methods
include time series clustering and Bayes inference meth-
ods. We developed prompt features for grid-wise systems
with homogeneous resilience patterns and derived the
average resilience patterns as an additional input to the
neural networks. In addition, the average resilience pat-
terns enable the models to learn the experience from
other systems. Unlike the existing literature, in which the
inputs to models for resilience pattern prediction are
mostly the traffic data at the local level or only the
macro-level data, we augmented the feature set by incor-
porating the extracted resilience patterns from different
cities, providing macro-level information for the deep
learning models. More importantly, we explored and
analyzed the performance and transferability of the mod-
els with diverse neural network components.

Despite the satisfactory performance of our proposed
method in the case study, certain limitations persist. The
extracted resilience patterns enabled the proposed method
to learn experiences from different grids and cities.
However, the COVID-19 pandemic lasted for a relatively
consistent duration globally. Consequently, the effective-
ness of the proposed method across time series with vary-
ing event durations remains unproven. In reality, most
events have different durations, and collecting data with
the same event duration requires considerable effort and
is not always applicable. Besides, the proposed framework
relies on the widespread availability of FCD, but the spar-
sity of the data or the necessity to quantify system resili-
ence using other indicators could lead to more efforts in
data collection and exploration of the temporal character-
istics of different indicators. We assumed cities with simi-
lar pre-event traffic volume patterns would exhibit similar
resilience patterns during the pandemic. Therefore, we
applied time series clustering to capture the similarity
between grids. However, the performance of time series
clustering depends on how similar the pre-event patterns

between different grids and cities are. In this study, we
only used the FCD from two cities for resilience patterns
extraction, which could not guarantee that each grid from
the target city could have the right category to corre-
spond. In addition, because of the variability in socioeco-
nomic resources and event response measures among
different cities, the reaction of citizens from different cities
to large events could be different, even if they have similar
driving patterns. Therefore, the proposed method should
be more predictive within a single country or region.
Furthermore, this paper only considered the similarity of
the data itself but neglected the spatial similarity between
grids. Therefore, introducing spatial features could poten-
tially enhance grid clustering and accuracy in resilience
pattern extraction.
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