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Abstract
Mode choice modeling is imperative for predicting and understanding travel behavior. For this purpose, machine learning
(ML) models have increasingly been applied to stated preference and traditional self-recorded revealed preference data
with promising results, particularly for extreme gradient boosting (XGBoost) and random forest (RF) models. Because of
the rise in the use of tracking-based smartphone applications for recording travel behavior, we address the important and
unprecedented task of testing these ML models for mode choice modeling on such data. Furthermore, as ML approaches
are still criticized for leading to results that are hard to understand, we consider it essential to provide an in-depth inter-
pretability analysis of the best-performing model. Our results show that the XGBoost and RF models far outperform a
conventional multinomial logit model, both overall and for each mode. The interpretability analysis using the Shapley addi-
tive explanations approach reveals that the XGBoost model can be explained well at the overall and mode level. In addi-
tion, we demonstrate how to analyze individual predictions. Lastly, a sensitivity analysis gives insight into the relative
importance of different data sources, sample size, and user involvement. We conclude that the XGBoost model performs
best, while also being explainable. Insights generated by such models can be used, for instance, to predict mode choice
decisions for arbitrary origin–destination pairs to see which impacts infrastructural changes would have on the mode
share.
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In the field of transportation, mode choice behavior has
been researched for many years (1, 2). There are two
main objectives in developing models that reflect this
behavior. They can be used to predict the anticipated
individual choices and mode share, and they help one to
explain and understand the factors influencing such
behavior. In recent years, this field has seen many contri-
butions that use machine learning (ML) approaches (3–
6) instead of conventional discrete choice models
(DCMs). While ML approaches typically perform well
at predicting mode choice behavior, they have long been
referred to as a ‘‘black box.’’ Their immense complexity
(compared to DCMs) makes it difficult to infer, back-
track, and explain individual predictions. Nonetheless,
these approaches have increasingly become explainable
and interpretable.

Aside from new modeling approaches for mode choice
behavior, we see a gradual rise of a new form of travel

data: (semi-)passive travel diaries, that is, automated
tracking-based revealed preference (TRP) data (7).
Typically, participants’ behavior is recorded in a smart-
phone app and travel diaries are automatically gener-
ated. Previously, the following two survey types were the
norm. In stated preference (SP) surveys, participants
report their typical behavior or respond to hypothetical
scenarios. In self-reported conventional revealed prefer-
ence (CRP) travel diaries, each trip is noted down in a
travel diary. Both survey types are known to face issues
such as an underreporting of trips, user manipulation,
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bias, or error (e.g., wrong starting time) (8, 9), and are
inferior in quality, resolution, and granularity compared
to tracking-based travel diaries. TRP data has exact and
generally reliable start and end times of trips, as well as
precise start and end locations. These aspects enable the
precise consideration of a wide range of potential addi-
tional influencing factors for mode choice, such as
infrastructure-related features, accurate weather data, or
information about unchosen modes. A downside of TRP
data is the inability to explicitly ask users about their
mode choice behavior or perceived stress. However, the
ability to generate and obtain a high number of high-
quality features renders ML a promising modeling
approach for this type of data.

In the context of ML for mode choice modeling,
promising results have been achieved for SP and CRP
data (10–12). Thus far, while these have been found to
be viable and accurate, only a few studies have consid-
ered the explainability of the ML models. In this paper,
we will address two aspects that are yet to be explored.
Firstly, we apply an extreme gradient boosting
(XGBoost) model (often the best performing among
SP/CRP studies) to the emerging TRP data to predict
mode choice behavior. Secondly, we conduct an in-
depth analysis of the explainability of such an
approach. As shown in Figure 1, these are applied to
unique long-duration semi-passive tracking-based
travel diary data. The Mobilität.Leben study comprises
data from May 2022 to June 2023 and a heterogeneous
user base, most of which travel in the Greater Munich
area of around 6000 km2.

The outline of this paper is as follows. Firstly, the cur-
rent literature is reviewed and the research gap is identi-
fied, on which the case study data is introduced. In the
methodology, three models are selected and described,
and the data preparation and model calibration are
detailed. Next, the results are presented both at the over-
all and mode-specific level. The best-performing model is
analyzed in detail concerning its explainability, and the

most important features contributing to each mode of
transport are discussed in depth. Lastly, a sensitivity
analysis sheds light on how data availability and quality
constraints can affect model performance.

Background and Literature Review

When dealing with TRP data, it is important to note that
there are fully passive and semi-passive travel diaries. For
semi-passive travel diaries, the user has the option to vali-
date and correct the draft travel diaries that are generated
by the smartphone application. The benefit of this is that
in addition to having data that is precise in space and
time, given a reliable and committed user, it is also accu-
rate with respect to travel behavior, mode, and purpose
detection. Therefore, both types of data are equally suit-
able for ML models, yet user involvement increases the
data quality. We anticipate that TRP data will become
increasingly common in travel survey design.

Conventional approaches in the field of mode choice
modeling, in brief, include multinomial logit regression
(MNL), nested, and mixed logit models. These have fre-
quently been used as benchmarks for novel ML
approaches. The ML approaches for SP data have con-
sistently achieved higher accuracy when compared to
conventional models (13). For instance, Zhao et al. (10)
observed more than 20% and Garcı́a-Garcı́a et al. (4)
more than 15% difference between the best ML classifier
(XGBoost) and MNL or mixed logit. Wang et al. (14)
made an extensive comparative review including 86 ML
classifiers. Among these studies, the XGBoost and ran-
dom forest (RF) approaches consistently performed best
(if either was considered) with few exceptions. They out-
perform DCMs, including MNL, naive Bayes, linear
regression, and so forth, and other ML approaches, such
as support vector machines and artificial and convolu-
tional neural networks. The reader is referred to Wang
et al. (14) for an extensive overview. It will later be
observed that the price of public transport (PT) is an

Figure 1. Overview of the structure of the paper.
Note: XGBoost = extreme gradient boosting.
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important factor in our case study, yet it is often not
considered in these ML models. With regards to revealed
preference (RP) data, there is literature about CRP data
(4, 11, 12, 15, 16). However, for TRP data very few stud-
ies have been made. To the best of the authors’ knowl-
edge, only Buijs et al. (17) has performed mode choice
modeling on TRP data using a ML approach (artificial
neural network); however, the interpretability of the
results is not investigated.

Overall, the area of mode choice modeling in trans-
portation has increasingly observed that ML approaches
may be explainable, to an extent. Pineda-Jaramillo and
Arbeláez-Arenas (11) and Tamim Khashifi et al. (13)
used so-called SHapley Additive exPlanations (SHAP)
values and explored their interaction effects. The SHAP
values essentially measure the relative contribution of
each variable to the model output. Zhao et al. (10) and
Richards and Zill (15) assessed feature importances and
partial dependencies. The study of explainability is of
great importance when using ML models for mode
choice modeling to avoid implausible mode choice beha-
vior. If one cannot explain a mode prediction for a given
trip, then one cannot interpret the reasons for such beha-
vior; however, this is crucial for transportation planners,
for example, to improve infrastructure.

Based on the identified gap of ML models for TRP
data, this paper will apply two such models (and a DCM
benchmark model) to TRP data. Only three models are
selected, in contrast to Wang et al. (14), to leave room
for discussion and extended analysis. We consider it
imperative to assess the explainability of the results in
depth; this involves an analysis of the individual modes,
which has thus far only been done by Bhuiya et al. (18)
for data recorded in Bangladesh. Furthermore, a sensi-
tivity analysis will give insight into the impact of limited
data and feature availability.

Case Study Area and Data

Case Study Area

The study area for this research is the city of Munich,
located in southern Germany, and its surrounding area.
Munich is the third largest city in Germany and has the
highest population density. A well-developed road net-
work spreads out from the city center. The transporta-
tion system in the city includes major arterial roads,
residential streets, a comprehensive PT system, and a
developed pedestrian and bicycle network. Figure 2 pro-
vides a visual representation of the city’s layout and the
trajectory data used here, where the darker shades of
blue correspond to a higher density of recorded trips.
The area considered for this study includes the entire
operating area of Greater Munich’s PT service provider

(MVV), which comprises the subway, bus, S-Bahn, and
tram network.

Dataset

The selected models were applied to data from a unique
long-duration TRP study: Mobilität.Leben (19), which
translates to ‘‘mobility.life.’’ To study the impact of the
three-month 9-Euro ticket in Germany (and later on its
successor, the Deutschlandticket) on travel behavior, a
series of survey waves with 2569 participants was con-
ducted. The surveys inquired about mobility behavior
and sociodemographic data, which are in part used here.
Of these survey participants, 1192 additionally installed a
smartphone application, which automatically generated
draft travel diaries based on trajectories recorded by their
smartphone. The app users were able to accept (validate)
and, if necessary, correct these draft travel diaries.

The travel diaries were processed to reduce noise and
low-quality recordings stemming from unreliable users
or erroneous Global Positioning System (GPS) tracking.
In brief, the data was cleansed (e.g., removing abnor-
mally short tracks/stays or speed outliers), processed
(merging of sequential tracks/stays of the same mode/
purpose, trip detection), and enriched (incorporating
other data sources, such as weather, alternative travel
times, sociodemographic data), as detailed by Dahmen
et al. (20). The entire study lasted from June 2022 to July
2023, where, on average, users participated in the mobi-
lity tracking for 209days. This led to a total of 882,790
trips.

Figure 2. Study area: the public transport service area
encompassing Greater Munich (Germany) is outlined in black. The
Global Positioning System data’s geographical distribution is
visualized in varying shades of blue, indicating the density of
recorded trajectories.
Note: Color online only. MVV = Greater Munich’s public transport service

provider.
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Methodology

In this section, we outline the selection of the mode
choice models, two of which are ML-based and one of
which is a conventional DCM method. In addition, the
data preparation and model calibration are described.

Model Selection

The model selection for this study was based on the liter-
ature review, which revealed the XGBoost and RF mod-
els to be both common and the best-performing
algorithms for SP and CRP data. Therefore, these mod-
els were selected to be applied to TRP data in this study.
These two models are compared to a common DCM, the
MNL.

XGBoost. An XGBoost model is an advanced form of
decision trees, first proposed by Friedman (21).
Conceptually, one can think of a decision tree as a model
that learns patterns (in our case mode choice behavior)
within data and makes a final decision on the data (such
as the chosen mode), which comprises many individual
decisions (What is the temperature? Or income?).
XGBoost models adopt an incremental training
approach, gradually learning (training) one tree at a time,
starting with smaller low-complexity trees that have low
learning capacity (weak learners). Trees are pruned to
prevent overfitting, that is, learning patterns too well,
therefore reducing transferability to new data. The
model aims to consistently learn from the mistakes of
previous trees (at a specific learning rate). The gradual
performance improvement up to the final tree is mea-
sured using a loss function, which quantifies the error
rate between predictions and true values. The gradient of
this loss function is key to the learning process in this
type of gradient boosting model and is subject to optimi-
zation to ensure fast, efficient learning. Such a combina-
tion of different model instances is known as an
ensemble. The reader is referred to Joshi (22) for an in-
depth explanation. The learning rate, loss function, regu-
larization (to avoid overfitting), maximum allowed depth
of individual trees (i.e., the number of sub-decisions),
and overall number of trees (iterations) all have to be
carefully set to ensure optimal learning with respect to
accuracy and runtime.

RF. RF models are also based on decision trees, yet they
build these independently in parallel, rather than sequen-
tially. Furthermore, these trees are trained on random
subsets of the data and features and are later aggregated,
aiming to create an accurate yet robust model. Apart
from the maximum number of trees and tree depth, the
RF’s hyperparameters also include the maximum

number of samples that may be used to train each tree
(18, 22).

MNL. MNL has a lower degree of complexity. It is a sta-
tistical method, based on utility theory, that is an exten-
sion of logistic regression, which is binary by nature (not
multi-class). It aims to approximate the mutually exclu-
sive transportation modes, commonly using logistic
regression and maximum likelihood estimation (16, 23).
Hyperparameters include a C-value, which can be used
for regularization, and selecting a solver, which is the
algorithm used to optimize the model’s coefficients
(weights).

Comparison. Overall, the MNL stands out because of its
explainability, making it the easiest model to interpret.
However, the interpretations cannot necessarily be made
with confidence, as the model assumes linearity in para-
meters. The parameters themselves can be non-linear
though. The low complexity reduces the likelihood of
overfitting. In comparison, RF models can be highly
complex. They can learn more advanced non-linear pat-
terns and are also robust to overfitting. On the downside,
they are less suitable for imbalanced training data.
XGBoost models share the high learning capacity of RF
algorithms, but they can be computationally expensive.
They are known for their good prediction accuracy. In
addition, an advantage of XGBoost is that it can handle
missing values (e.g., if an attribute of a user is unknown).
In contrast, for the MNL and RF approaches, missing
values must be imputed to use them as training data.

Data Preparation

In this paper, only a subset of the Mobilität.Leben data
is used to ensure high-quality data. We use data from
September 2022 to March 2023 to exclude special PT
fare policies: the 9-Euro ticket and the Deutschlandticket.
Only trips (partially) within Greater Munich’s PT service
area are considered to limit the study’s spatial coverage
and facilitate PT cost and travel time estimation.
Furthermore, we exclude round trips, which start and
end in the same place (typically leisure walks), as these
do not reflect travel behavior with a different origin and
destination. To ensure accurate travel data, we selected
trips from reliable and involved users, which we defined
as users that were actively correcting, that is, editing the
draft travel diaries near the time of recording. With
respect to the transport mode, for multimodal trips the
main mode is the mode with the largest travel distance.
The modes of transportation were grouped into four
categories: walk, car, bike, PT. The modes airplane, boat,
and other were excluded. As the mode share of walking
(37.7%) drastically differed to car (20.6%), bike (20.0%),
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and PT (21.7%), the number of walking trips was
reduced to match the other modes to lessen the imbal-
ance in the data. In total around 60,000 trips were used.

Feature Preparation

A wide range of features (i.e., variables) was selected,
based on the literature and the available and derivable
values. These features comprise trip information, socio-
demographic data, weather (24), estimated travel times
and cost by mode, and infrastructure (25). Table 1
shows the individual features of each feature group and
the respective data sources. All data was normalized
before training the models, that is, scaled to zero-mean
and unit variance. With respect to car ownership, such
information is known for 81% of the trips. The remain-
ing trips are assigned the label ‘‘unknown.’’ The esti-
mated travel times were obtained using the TomTom
API (car) (26), which considers historic traffic patterns,
and the open-source tool OpenTripPanner (walk, PT,
bike) (27). In all cases the estimated rather than the
actual travel time was used, as the latter could reveal
information about the chosen mode. In some cases, no
travel times were computed for PT or car trips, for
example, for very short routes or because of the lack of

PT service. These missing values were imputed in a way
that would convey the unattractiveness of choosing
that mode (as it is not available): because of the colli-
nearity of the PT and car travel time with the time by
walking, a 95th percentile regression (a form of quan-
tile regression) is fitted to these (PT/car time versus
walk time) and used for the imputation. The estimated
cost of traveling by car is calculated based on the dis-
tance of the car route. The PT cost is based on the price
of an appropriate single ticket given the local zone-
based PT pricing structure. The PT cost also considers
whether a person is subscribed to a monthly PT ticket,
in which case the price per trip is set to the monthly
price divided by the number of trips. For the monthly
price, we assume e64, which is the price of a monthly
ticket within one of the local transport zones. The cost
of walking and cycling was set to zero as no relevant
monetary costs arise for these.

A collinearity analysis was performed on the 22 fea-
tures, as collinearities tend to lower the MNL’s perfor-
mance and make it harder to explain the results. The
standard Pearson correlation coefficients (a measure of
the linear correlation between two variables [28]) were
evaluated. Length, car cost, time by bike, and time by
walking are highly correlated with each other (.0.96).

Table 1. Input Features Used for Modeling (Category Level Used in Example in Bold)

Feature Source Example Notes/category encoding: [0, ., n]

Socio-demographic
Age Survey 32 years na
Income Survey 0 [\1.5, 1.5–2.5, 2.5–4, .4] in ke
Employment status Survey 1 [employee, student, both, neither]
Gender Survey 2 [female, diverse, male]
Car ownership Survey 0 [no, unknown (19% of trips), yes]

Weather
Precipitation DWD (24) 2 mm Hourly, at city center
Temperature DWD (24) 16�C Hourly, at city center
Relative humidity DWD (24) 82% Hourly, at city center
Wind speed DWD (24) 1.5 m/s Hourly, at city center

Estimated travel time & cost
Time by car TomTom (26) 17 min na
Time by walkinga OTP (27) 72 min na
Time by bikea OTP (27) 27 min na
Time by PT OTP (27) 34 min na
PT transfers OTP (27) 1 na
PT cost Derived e5.6 Considers monthly PT pass
Car costa Derived e11.3 na

Trip information
Length - 8700 m Straight-line distance
Trip start time - 15.0 Rounded to nearest full hour
Day of week - 6 [Mon, Tue, Wed, Thu, Fri, Sat, Sun]

Infrastructure
Bike racks OSM (25) 2 No. within 200 m
PT stop density OSM (25) 1 No. within 800 m
Bike infrastructure quality OSM (25) 0.24 Ratio of length of roads with cycling infrastructure to those without

Note: PT = public transport; DWD = Deutscher Wetterdienst; OTP = OpenTripPlanner; OSM = OpenStreetMap; na = not applicable.
aFeatures excluded because of collinearity.
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Consequently, all but one of these (length) were removed,
as they convey the same information sufficiently well.
Time by car and time by PT also correlate with length,
yet not enough to remove them. Furthermore, the statis-
tical analysis of all features is shown in Table 2. It is
noted that the high maximum PT price results from an
individual having a PT pass but not using it sufficiently.
If one has a monthly PT pass but only makes one PT trip
in a month, the effective price of the trip will be the price
of the PT pass. Furthermore, the number of bike racks is
rarely over 40; this is only the case for two central train
stations and two new development areas, where there is
a bike rack in front of each building. The very high PT
stop density values are also only found at one of the main
train stations.

Model Calibration

Using the prepared dataset, the models’ hyperparameters
were tuned using a grid-based approach (testing all com-
binations of a preselected set of parameter values) to
determine the set that led to each model’s best mean
training accuracy. The models were trained with 70%
and tested with 30% of the data, and 10-fold cross-
validation (CV) was employed to counteract overfitting
and selection bias. CV means that the data is reshuffled
before each of the 10 train–test runs.

The models were built in Python using XGBoost’s
XGBClassifier and sklearn’s RandomForestClassifier
and LogisticRegression. The final hyperparameters of
the XGBoost model include a learning rate of 0.1 and
300 trees. The multi:softmax objective function is
selected as we are dealing with a multi-class classifica-
tion. The maximum tree depth is relatively high (maxi-
mum 30). A minimum child weight of 9 helps to avoid
overfitting and reduces the model complexity. This also
applies to the regularization measures (gamma: 0.01,
lambda: 5). For the RF model, 250 trees and a maxi-
mum possible depth of 60 led to the best results. An
‘‘lbfgs’’ solver (limited-memory Broyden–Fletcher–
Goldfarb–Shanno, capable of handling multi-class
problems) was used to solve the MNL model with L2
loss (sum of all squared differences). The C-value was
set to 2.5, that is, a relatively low penalty is applied to
the coefficients during training.

The performance was measured based on accuracy, as
this is commonly used in the literature (5, 10, 14, 15, 29).
The accuracy of this multilabel classification problem
was determined as follows, where n is the number of
samples and ‘‘1()’’ is the indicator function:
1=nð Þ3

Pn�1
i= 0 1 ŷi = yið Þ (30). As here the mode classes

are split almost evenly, little bias is expected in the accu-
racy, therefore by definition the accuracy is expected to
be similar to the recall (13). The standard deviation of

Table 2. Statistical Distribution of Features

Categorical feature Percentage share of each category (%)

Income e1499 or less: 10, e1500–e2499: 14, e2500–e3999: 26, e4000 or more: 50
Employment status Employee: 68, Student: 10, Both: 8, Neither: 14
Gender Female: 50, Diverse: 1, Male: 50
Car ownership No: 33, Unknown: 1, Yes: 66
Day of the week Mon.: 15, Tue.: 16, Wed.:16, Thu.: 17, Fri.: 16, Sat.: 14, Sun.: 8

Numerical feature Mean SD Min. Max.

Age (years) 43.0 14.5 15.0 82.0
PT price (e) 1.8 2.2 0.1 63.2
Car price (e) 3.7 4.7 0.1 46.4
Time by PT (min) 34.9 30.7 1.0 981.0
Time by car (min) 12.6 9.5 0.4 74.8
PT transfers (no.) 0.5 0.8 0.0 5.0
Time by walking (min) 40.4 48.1 0.0 239.0
Time by bike (min) 20.1 29.4 0.0 240.0
Bike racks (no.) 3.1 5.5 0 80
PT stop density (no.) 12.5 11.2 0 125
Bike infrastructure quality 0.2 0.1 0.0 0.9
Precipitation (mm) 0.1 0.4 0.0 8.2
Temperature (�C) 11.3 7.1 -10.0 27.5
Relative humidity (%) 74.2 15.5 32.0 99.0
Wind speed (m/s) 2.4 1.2 0.3 8.9
Length (m) 3836.4 6070.8 0.0 68,449.3
Time of day (hour) 12.5 4.2 0 23

Note: PT = public transport; SD = standard deviation; Min. = minimum; Max. = maximum.
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the CV is also considered to assess the consistency of the
results. The runtime will not be assessed, as even the
longest training time was below 10min for the final
hyperparameters.

Results and Discussion

This section is split into three: firstly, the results of the
three classification models will be compared overall and
by mode. Next, the explainability of the best-performing
model will be assessed in depth, ranging from the contri-
bution of each feature to assessing individual predictions.
Lastly, a sensitivity analysis will provide valuable insights
about the model performance when subject to various
data constraints.

Overall Results

Among the XGBoost, the RF, and the MNL models, the
XGBoost model performed best when considering the
mean accuracy: 79.0%. The RF was slightly inferior
(76.3%) and the MNL performed poorly in comparison
(57.7%), as shown in Table 3. This ranking of the three
models is consistent with other studies, where XGBoost
is either equally good or only slightly better than the RF
(10, 11, 13, 15). The XGBoost model also outperformed
the RF and MNL in the standard deviation of the CV,
at 0.28%, 0.78% and 0.44%, respectively; this implies
that there is lower variation among the CV runs. The

accuracies of such models can hardly be compared across
studies, if there were any for TRP data, as the results are
heavily affected by factors such as the data quality, size,
and region.

When looking at the individual output classes (the
four modes), the XGBoost model again surpassed the
other models with respect to the average score, and for
PT, car, and walk. For both the RF and the XGBoost,
there was little deviation in the accuracy scores across
the individual modes. The ML models are able to cap-
ture the patterns in the data well for all modes, which
can, in part, be attributed to the low imbalance in the
data. In the case of the MNL model, the model was
better at predicting PT and bike trips than car and
walk trips.

The confusion matrix for MNL (Figure 3a) reveals
that walk trips were frequently classified as bike trips
(36% of all walk trips); these matrices display the values
of single runs. Falsely predicted car trips (45%) were
often predicted as bike (28%) or PT (16%) trips.
Mislabeled PT and bike trips were most commonly mis-
taken for one another: 22% and 18% of all trips, respec-
tively. Similar trends are observed for XGBoost
(Figure 3b) and the RF (Figure 3c), yet because of their
high accuracies, the corresponding shares are lower, for
example, less than 10% of all walk trips are predicted as
bike trips. The mismatch between walking and cycling
likely occurs because they are active modes and both are
used frequently at short to medium distances (250–
750m), as our data shows.

Table 3. Mean Accuracy of the Baseline Models (Overall and Mode-Specific Accuracy) and Model Variations (Overall Accuracy Only)

Description

Accuracy (%)

XGBoost RF MNL

Baseline
Overall accuracy 79.0 76.3 57.7
Accuracy of PT predictions 79.3 77.3 66.5
Accuracy of bike predictions 76.3 77.7 62.2
Accuracy of car predictions 77.8 72.5 46.1
Accuracy of walk predictions 82.7 77.0 52.0

Variations in input features
No survey-based data (sociodemographic, PT monthly pass and car ownership) 76.0 73.2 56.8
No infrastructure data 77.4 75.0 54.9
No weather data 78.4 77.1 57.5
No alternative travel time data 78.5 76.8 53.3
Only trip data (length, time of day, weekday) 53.5 48.0 46.7
Including all collinear features 79.0 73.7 53.8

Variations in dataset size
10,000 trips per mode 77.6 74.5 56.9
3000 trips per mode 72.3 69.3 52.0
700 trips per mode 66.9 63.3 54.5

Variation in user involvement
Fully passive tracking (non-correcting users) 76.4 72.9 53.6

Note: XGBoost = extreme gradient boosting; RF = random forest; MNL = multinomial logit regression; PT = public transport.
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Interpretability

The results from the ML-based models and particularly
the XGBoost model look promising so far; the gap in per-
formance compared to the MNL model is greater than
20%. Yet, the key advantage of these models, their com-
plexity, is also their largest disadvantage. They learn
advanced patterns and excel at predicting; however, it
becomes seemingly impossible to back-track the model’s
decision-making steps. While it is neither feasible nor prac-
tical to look at each decision made in the training process,
one approach that has seen a rise in interest is SHAP.

SHAP (31) was developed based on the idea that there
is a need to be able to explain the contribution of each fea-
ture to the predictions made. Essentially, a Shapley value
assesses the mean relative deviation in output if a feature
is excluded compared to when it is included, in all possible
combinations. The corresponding mathematical formula-
tion is shown in Equation 1, where fi is the Shapley value
of a feature i, C is a coalition of n features (of all N fea-
tures M), and v(M) is the model output. Lundberg and
Lee (31) proposed to formulate a function that combines
Shapley values of all features M in an additive manner, as
shown in Equation 2 where z0 is 1 if a feature is present,
else 0 (11). Three key advantages of SHAP are that it pro-
vides accurate and consistent results while being able to
deal with missing input values:

fi =
X

C�Mfig

jCj!(n� jCj � 1)!

n!
v C

[
fig

� �
� v(C)

h i
ð1Þ

g(z0)=f0 +
XN

i= 1

fiz
0
i ð2Þ

In this section, only the interpretability of the best-
performing model, XGBoost, will be explored in depth,
and as such a SHAP analysis can be performed for the
other models in the same manner. Figure 4 shows the

average magnitude of each feature’s SHAP values (fea-
tures with the highest contribution at the top). For
instance, length is by far the most important indicator
of the mode, followed by PT price and time by car, and
time by PT. This is in line with mode choice literature,
for example, Tamim Kashifi et al. (13) also found the
trip length to be the most important attribute, and
Wang et al. (14) found length and travel time to be
most indicative. PT price is rarely considered in the lit-
erature; however, estimated travel times are frequently
considered and found to be among the most contribut-
ing features (5, 10). Overall, temperature and age are
the only relevant weather-related and sociodemo-
graphic features, respectively. The variable age is found
to be most important among the sociodemographic
data by Cheng et al. (5), and right after travel time by
Richards and Zill (15); neither of the two considers
length or PT price. It is noted that the RF model had
the same top eight features with only two shifted by a
spot (age, PT stop density), indicating consistency
across models and fostering the trustworthiness of
SHAP values.

So far, we have explored the overall impact of each
feature. However, we can also see each feature’s relative
contribution to each mode, as shown by the colors in
Figure 4. The numbers denote which three features affect
each mode prediction most. For instance, the length con-
tributes most to walk predictions (light blue), as denoted
by ‘‘W1.’’ In addition, we can also look at how exactly
features’ values affect each mode classification. The
impacts of features on individual modes are rarely dis-
cussed in the context of ML for transportation mode
choice, yet it is essential when discussing its potential use
for behavioral analyses. Such information is conveyed in
Figures 5–9, where the features are ordered by relative
contribution (analogous to the numbers in Figure 4). The
high values (upper end of the color scale) reflect a high
value in the input data. Categorical variables are encoded

Figure 3. Confusion matrices for the three models (single runs). (a) Multinomial logit regression. (b) Extreme gradient boosting.
(c) Random forest.
Note: PT = public transport.
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as shown in Table 1, for example, 0 for Monday and 6
for Sunday.

Starting with Figure 5, the features length, PT price,
age, and temperature contribute most to bike predictions.
The length is intuitive as very short or long trips will typi-
cally not be made by bike. Similarly, temperature and
bike infrastructure (in sixth place) were also expected to
be features that have high contribution; Winters et al.
(32) made the same observations in a SP survey. People
are less willing to cycle in cold, icy conditions, if the trip
length is high and if there is no designated cycling infra-
structure. The SHAP values of the PT price are not line-
arly distributed. This was further investigated using a
partial dependence plot (Figure 6a), which reveals that
for low to medium values (around e1–e4, as shown by
the dashed lines) the SHAP values are positive (cycling is

more likely). For higher prices, people tend to not cycle
when the corresponding time by PT is low.

The age variable has a very uneven color distribution
(no easily identifiable trend), yet Figure 6b shows that
young people (particularly university students) are on
average more likely to cycle. For older age groups, who
are almost entirely retired, there is, on average, a nega-
tive SHAP value. Across the other age groups, it is diffi-
cult to identify a relationship. Interestingly, precipitation,
wind, and relative humidity have little impact on the
model output, while many occasional or leisure cyclists
would dispute that. Nonetheless, similar observations
have been made by Tamim Kashifi et al. (13). The effects
of temperature and bike infrastructure are both positive
at higher feature values and support the findings of Hull
and O’Holleran (33).

Figure 4. The contribution of each feature to the output class (mode) by mean SHAP (SHapley Additive exPlanations) value for the
extreme gradient boosting (XGBoost) model at an (i) aggregate level: total width, that is, most impactful feature at the top, and (ii)
individual level for each mode: denoted by the colors, where the numbers indicate the three features that contribute most to a mode.
Note: PT = public transport. Color online only.
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Walking is by far most affected by length, as walks are
typically short. The time by car, PT price, and age follow,
as shown in Figure 7. The mean absolute SHAP value of
length is 2.4, while the next most important feature only
has a mean SHAP value of 0.3; for the other modes, this
gap does not exceed a magnitude of 0.4. The gray section
for time by car with high SHAP values represents trips
where no estimated time by car was available, that is, for
very short trips or when there is no road available, for
example, in a park. Furthermore, a high time by car and
time by PT discourage walking. For older individuals,
the age will have a more negative SHAP value, that is, it
contributes negatively to the walk prediction. For the PT
price we observe that for a price range of around e1.5–e4

the walking SHAP values are negative. As the price of a
regular short–medium distance single ticket is either e1.8
or e3.6, this pattern likely reflects inner-city trips, where
walking would be inconvenient.

The choice of the car is influenced most by car own-
ership and length, followed by the PT stop density and
time by car (see Figure 8). For car ownership, a high
value of 2 indicates that a person has access to a car;
therefore, the user is more likely to take a car, result-
ing in the positive SHAP value. The opposite is the
case for people without a car, denoted by 0. If it is not
known if a car is available, that is, 1, the SHAP values
remain slightly negative. The remaining three top fea-
tures follow clear monotone trends, for example, a

Figure 5. The impact of each feature on the bike class in the form of SHAP (SHapley Additive exPlanations) value dependencies for the
extreme gradient boosting (XGBoost) model. High and low correspond to the features’ highest/lowest values. Gray dots represent
missing values.
Note: PT = public transport.
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high PT stop density discourages car use, as driving is
inconvenient in the city center because of a lack of
parking and traffic. A high time by car and low length
increase the contribution of these features to the over-
all prediction being ‘‘Car.’’

Similarly, the four features with the highest SHAP val-
ues for ‘‘PT’’ also follow linear trends (Figure 9). A high
length contributes positively to PT predictions, along

with a low time by PT and a low PT price. A high time by
car also encourages PT trips, yet time by car correlates
with length to an extent, as shown in Figure 10. Such
trips make cycling and walking unattractive options, and
if the time by car is low in comparison to the time by PT,
PT is less likely to be the mode of choice.

Thus far we have been looking at the average values
across the entire dataset. It is also possible to investigate

Figure 6. SHAP (SHapley Additive exPlanations) dependency plots for selected variables for the output class bike. (a) SHAP values for
the class bike for the feature public transport (PT) price, colored by PT time. (b) SHAP values for the class bike for the feature age, for the
respective employment status.
Note: PT = public transport.
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to what extent individual features affect the classification
output of an individual prediction. In brief, for each
mode, the SHAP values of each feature (positive as well
as negative) are summed up to an overall SHAP value.
The mode with the highest sum indicates the predicted
label. An example of a correctly predicted PT trip is
shown in Figure 11, which illustrates how each input fea-
ture contributed to the overall result. For instance, an
individual does not have access to a car, has a monthly
PT pass, is 57 years old, and makes a 6.1 km trip on a
Sunday around 16:00. In this case, the attributes that
contribute most (the ones with the highest absolute
SHAP values) are as follows: the PT price is very low at
e0.16 (because of the monthly PT pass), the trip length
(6.1 km) is a typical PT trip and atypical walking trip,

and the lack of access to a car makes it an unlikely
choice. This explains the PT classification, as this is the
mode with the highest sum of individual SHAP values
(denoted in bold at the top of the figure).

Sensitivity Analysis

Now that we have found the best-performing model for
mode choice prediction and have shown that it is explain-
able, we will use a sensitivity analysis to shed light on fac-
tors that could hinder its implementation in practice:
lack of data sources, reduced availability of TRP data,
and uncooperative users or fully passive TRP data. The
results of the previous models (which is used as a base-
line) and the results obtained when leaving out certain

Figure 7. The impact of each feature on the walk class in the form of SHAP (SHapley Additive exPlanations) value dependencies for the
extreme gradient boosting (XGBoost) model. High and low correspond to the features’ highest/lowest values. Gray dots represent
missing values.
Note: PT = public transport.
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input feature groups, altering the dataset size, and select-
ing uninvolved users are summarized in Table 3.

In this paper, a total of 22 features (19 excluding colli-
near features) are used, yet such a wide range of vari-
ables may not always be available. Some of the data can
be obtained as open-source, while other features such as
car ownership have to be collected. It is well-known that
ML models tend to perform best with more features, as
confirmed by Richards and Zill (15) for transportation
mode choice prediction using CRP data. It is of interest
to know how much the model performance may decrease
when different categories of data are not available. It is
found that the absence of survey-based data (sociodemo-
graphic data, PT monthly pass, and car ownership) has
the biggest impact: a 3% reduction in mean accuracy for
XGBoost and RF. This is realistic, as PT price, car

ownership, and age highly contribute to the predictions
(Figure 4); nonetheless, both models still surpass the
MNL by far. Removing the weather data or, interest-
ingly, the alternative travel times has the lowest effect.
On the whole, the XGBoost model is less affected by the
removal of feature groups compared to the RF. The
MNL demonstrates distinctly different (albeit worsened)
patterns in comparison to the XGBoost and RF models.
If only the data taken directly from the travel diaries
(length, time of day, weekday) is used, this leads to an
accuracy of around 50% for all three models. This shows
the importance of the length variable. Furthermore, it
was tested whether the inclusion of the previously
excluded collinear variables affects the model perfor-
mance. As expected, they either have no effect or worsen
the performance.

Figure 8. The impact of each feature on the car class in the form of SHAP (SHapley Additive exPlanations) value dependencies for the
extreme gradient boosting (XGBoost) model. High and low correspond to the features’ highest/lowest values.
Note: PT = public transport.
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In contrast, it may occur that a wide range of features
is available but that the sample size is relatively small. In
ML, this can lead to critical issues, as sufficient data is
required to accurately learn travel behavior patterns. It
was tested how much the accuracies decrease if less train-
ing data is used. Because of the relatively even modal
split, a fixed number of trips per mode was selected:
10,000, 3000, and 700. It is noted that no special tech-
niques were used to enhance the models’ abilities in
learning from a small training dataset. From Table 3 it is
evident that the performance of the XGBoost and RF
models is notably reduced (for 700 trips per mode:
XGBoost by 10.7% and RF by 13.0%) while still outper-
forming the MNL (3.2% drop) with respect to overall
accuracy. It is evident that the ML approach strongly
benefits from a high amount of training data. This ini-
tially seems drastic, yet with TRP data, it is easier than

ever to scale up the size of the dataset by extending the
tracking period (or acquiring more users).

Lastly, the use of semi-passive instead of fully pas-
sive travel diaries—where there is no sort of user inter-
action or validation—improves the accuracy. The latter
is tested by selecting users from the study who were
known to not have corrected the draft diaries generated
by the smartphone-tracking app. Thus far, the final
model had only used data from committed users that
frequently correct erroneous recordings, yet when using
such ‘‘fully passive’’ data, all models’ performance
dropped: XGBoost by 2.6%, RF by 3.4%, and MNL
by 4.1%. This illustrates the importance of incentiviz-
ing users to validate and rectify trip detection errors,
which are often not fixable during post-processing,
therefore impeding pattern recognition by the mode
choice models.

Figure 9. The impact of each feature on the public transport (PT) class in the form of SHAP (SHapley Additive exPlanations) value
dependencies for the extreme gradient boosting (XGBoost) model. High and low correspond to the features’ highest/lowest values.
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Conclusions

In this paper, we presented the application of two ML
models to a TRP dataset to predict transportation mode
choice. These two selected models have performed well

on SP and self-reported CRP data, yet their performance
and explainability have not previously been studied for
TRP data. The XGBoost model, in particular, and the
RF model outperformed the conventional MNL model.
The interpretability of the best-performing model was
investigated thoroughly using SHAP values. It was found
that trip length, PT price, and estimated travel times by
car and PT contribute most to the overall mode predic-
tions. We also identified the key factor for each individ-
ual mode: trip length was most important for all modes
except for car, where car ownership contributed slightly
more. Lastly, a brief sensitivity analysis gave insight into
issues that might be frequently encountered in practice.

The use of TRP data compared to CRP data promises
precise locations and timestamps, a wide range of poten-
tial features, and circumvents the issue of trip underre-
porting. Yet, TRP data is subject to the reliability and
commitment of users and good data processing to reduce
errors in tracking. We found that high user involvement
can improve the ML models’ results. For completeness,
we would like to point out the limitations of our study.
Firstly, we have not performed a sensitivity analysis of
how changing individual features affects the model out-
put. This could reveal relevant insights on model robust-
ness. Secondly, with regards to data quality, we only

Figure 10. SHAP (SHapley Additive exPlanations) dependence
plot for public transport for the feature length for the extreme
gradient boosting model.

Figure 11. Evaluation of the SHAP (SHapley Additive exPlanations) values of a single predicted public transport (PT) trip for the
extreme gradient boosting model. The magnitude of each bar displays the contribution of that feature’s value to the corresponding
mode’s overall SHAP value (the sum).
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considered the lack of user validation, but no factors
related to the recording device, that is, the smartphone.

In future studies, a comparative analysis of TRP,
CRP, and SP data would be worth exploring. Thus far,
only the latter two have been compared (12). Altogether,
the findings in this paper about the accuracy and inter-
pretability of ML models for TRP data aid in the evalua-
tion and analysis of future TRP studies, while also
shedding light on the travel behavior in the case study
area of Munich, Germany.
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