

Technical University of Munich

TUM School of Engineering and Design

Automatic Detection and Interpretation

of Changes in Massive Semantic

3D City Models

Huynh Duc An Son Nguyen

Complete reprint of the dissertation approved by the TUM School of Engineering and Design

of the Technical University of Munich for the award of the

Doktor der Naturwissenschaften (Dr. rer. nat.).

Chair: Prof. Dr.-Ing. Liqiu Meng

Examiners:

1. Prof. Dr. rer. nat. Thomas H. Kolbe

2. Prof. Dr.-Ing. André Borrmann

3. Prof. Dr.-Ing. Youness Dehbi

The dissertation was submitted to the Technical University of Munich on 19.08.2024

and accepted by the TUM School of Engineering and Design on 19.11.2024.

SCHOOL OF ENGINEERING AND DESIGN
— AEROSPACE AND GEODESY

TECHNISCHE UNIVERSITÄT MÜNCHEN

Doctoral Thesis

Automatic Detection and Interpretation
of Changes in Massive Semantic

3D City Models

Huynh Duc An Son Nguyen

SCHOOL OF ENGINEERING AND DESIGN
— AEROSPACE AND GEODESY

TECHNISCHE UNIVERSITÄT MÜNCHEN

Doctoral Thesis

Automatic Detection and Interpretation
of Changes in Massive Semantic

3D City Models

Author: Huynh Duc An Son Nguyen
Supervisor: Prof. Dr. rer. nat. Thomas H. Kolbe
Co-Supervisors: Prof. Dr.-Ing. André Borrmann

Prof. Dr.-Ing. Youness Dehbi
Submission Date: August 19, 2024

I confirm that this doctoral thesis is my own work and I have documented all sources
and material used.

Munich, August 19, 2024 Huynh Duc An Son Nguyen

Acknowledgments

First and foremost, I would like to express my wholehearted gratitude to my Doktor-
vater, Prof. Dr. Thomas H. Kolbe, for his continuous guidance and support throughout
the years. His excellence expertise in the field and his knack for simplifying complex
concepts for the masses have inspired me to become both a better researcher and
communicator. But most importantly, his passion and relentless quest for knowledge
have been a great source of motivation for me to keep pushing the boundaries of what
is known. His unwavering faith in me and my abilities has empowered me to pursue
what I love doing the most: teaching and conducting research at the TUM.

I am grateful to my co-supervisor, Prof. Dr. André Borrmann, for his invaluable
trust and support, especially during my time as a doctoral researcher at the Leonhard
Obermeyer Center (LOC). I am deeply appreciative of the opportunities he provided,
allowing me to engage in fruitful exchanges with the students from his group.

I also would like to express my gratitude to my co-supervisor, Prof. Dr. Youness
Dehbi, for his continuous guidance and encouragement. His unwavering interest in my
professional growth from the very beginning of my academic journey has been a great
source of motivation for me.

I would like to thank Prof. Dr. Liqiu Meng for chairing my doctoral defence and
for her invaluable support in organizing it. I greatly appreciate our discussions on
enhancing teaching quality and learning experience at the TUM.

I am deeply grateful to Dr. Andreas Donaubauer for his advice and guidance during
my time as a doctoral researcher at the TUM. His experience and vision in the field
have been invaluable.

My heartfelt thanks go to my long-time advisor, colleague, and friend, Dr. Tatjana
Kutzner. Her belief in my potential and her enduring support and guidance have been
instrumental in bringing me to where I am today. Her tireless professionalism and
work ethic have taught me the importance of not aiming for good, but striving for
excellence and perfection.

I am grateful to my colleague and dear friend, Dr. Zhihang Yao, for his valuable
advice and support over the years. His encouragement opened doors for me, paving
the way for the research opportunities I am honoured to have today.

I would like to extend my appreciation to Dr. Claus Nagel for his vision, profession-
alism, and experience. His innovative tool citygml4j has been instrumental, serving as
one of the foundation libraries used in the implementation of this thesis.

I am deeply appreciative of the support, encouragement, and numerous discussions
with all my colleagues at the TUM. I cherish the unforgettable experiences we shared
during our conference stays both in Germany and abroad.

I am also thankful to the developers and community of Neo4j for their open-source
software solutions, which enable the use of a comprehensive graph database manage-
ment system employed in my study.

I would like to thank the Leonhard Obermeyer Center (LOC), the company Virtual
City Systems, and its parent organization, the CADFEM Group, for their partial financial
support of my doctoral research.

My heartfelt thanks go to my closest friends, who have always been there for me
since the day I arrived in Germany as a teenager.

I am grateful to my aunt, my uncle, and my cousins, who have been supporting me
since my early years at the university.

Last but certainly not least, I would like to thank my parents for their unconditional
love and unwavering support. Even over long distances, they have been accompanying
me, sharing my greatest moments with me through all my academic milestones and
achievements. Their weekly phone calls, filled with eagerness to hear about my work,
have always been my source of motivation and joy. Their constant encouragement to
strive for the best has been my guiding voice. I am also grateful to my little puppy
sister, who has been bringing joy to our parents every day. She reminds me of my
younger self, motivating me to keep moving forward. She is indeed worthy of many
long cuddles and delicious treats!

iv

Abstract

In recent years, Digital Twins have emerged as a major driving force behind many
global technological and economic advancements. Despite various existing definitions,
the general consensus agrees that a digital twin must involve a physical entity, a
corresponding digital representation, and a continuous feedback loop between them.
Focusing on the digital aspect of urban digital twins with semantic 3D city models
(primarily in CityGML) as key components, there has been no significant progress
in recent years on providing effective methods to keep track of changes between
different temporal versions of a virtual city model. As a result, many existing smart
city deployments often replace older datasets with newer ones. This approach not only
wastes time and resources, but also discards all meaningful progresses that occurred
during the given time period. Therefore, an optimal solution would require the
automatic and efficient detection of changes, particularly in large-scale virtual semantic
3D city models. However, identifying changes is only half of the problem; the other
half is to understand them. A comparison between two versions of a massive semantic
3D city model often results in millions of changes, rendering them incomprehensible
to humans. Moreover, while each individual change may not contain any substantial
information, when considered collectively, they can reveal valuable insights into the
changes in the city models, and, to a certain extent, into the changes of the city.
By uncovering hidden patterns and constellations among these changes, meaningful
interpretations can be achieved. On the other hand, different stakeholders of an
urban digital twin perceive changes vastly differently. While a data manager may be
interested in changes to the geometric representations of a building, a city mayor is
more interested in changes that indicate impacts of urban transformations on the city’s
living space and performance.

Therefore, this research proposes various methods for the automatic detection and
interpretation of changes in semantic 3D city models. Due to their structural similarities,
CityGML documents are first mapped onto graphs, which serve as a basis for all
subsequent processes. Based on the generated graphs, a comparison is performed
between the old and new city model. As graph matching is a challenging problem in
graph theory, especially in large graphs, this study employs various optimization and
heuristic strategies that leverage the rich semantic and geometric contents available
in CityGML objects. Identified changes are also represented as nodes, attached to

v

Abstract

the source nodes where they were detected. To describe the complex patterns among
these changes and define rules for identifying them, this thesis proposes the use of
a rule network, a type graph that can capture all interrelations and dependencies of
change patterns without redundancy. Then, the interpreter applies this rule network
to the entire graphs, aggregating lower-level changes into new changes of higher
semantic levels. This process reduces the number of changes to report significantly
while increasing their semantic content at the same time. Finally, this research presents
both the stakeholders and the interpreted changes in a semantic layered network.
Path-tracing techniques within this network are introduced, enabling the identification
of relevant changes for a specific stakeholder and interested stakeholders for a detected
change.

The concepts and methods introduced in this thesis, along with their results, are
evaluated using the city model of Hamburg as a case study. The evaluation employs
two versions of Hamburg’s 3D city model from 2016 and 2022, each covering an area of
750 km2. Each dataset contains approximately 400 thousand buildings and occupies 8
GB of storage space. The graph representations of both datasets hold over half a billion
nodes and 9 million detected changes. These graphs are stored in a graph database
that requires 100 GB of storage space.

All proposed methods are implemented using the open-source community version
of the graph database Neo4j. The software developed as part of this thesis is also
open-source and can be accessed via GitHub. All datasets used for testing are publicly
available as open data. Furthermore, the tools provided by this research can be applied
to other datasets supplied by users.

vi

Contents

Acknowledgments iii

Abstract v

1. Introduction 1
1.1. Changes in Semantic 3D City Modelling 1
1.2. Digital Changes in an Urban Digital Twin (UDT) 2
1.3. Interpretation of Changes in Semantic 3D City Models 5

1.3.1. Interrelations and Patterns among Changes 5
1.3.2. Human-centric Interpretation of Changes 6

1.4. Problem Statement and Scope . 7

2. Challenges of Comprehending Changes in Semantic 3D City Models 9
2.1. The Complexity of the CityGML Data Model 9

2.1.1. The Complex Data Model of CityGML 9
2.1.2. The Graph Characteristics of CityGML 10
2.1.3. Large Sizes of CityGML Documents 12

2.2. The Complexity of Matching CityGML Documents 12
2.2.1. The Graph and Subgraph Isomorphism Problem 14
2.2.2. Identifier-independent Matching 14
2.2.3. Syntactic Ambiguities allowed by GML and CityGML 15
2.2.4. Uncertainties in Detecting Geometric Changes 16

2.3. The Challenging Task of Interpreting Detected Changes 17
2.3.1. Large Sets of Low-level Detected Changes 17
2.3.2. Hidden and Intercorrelated Patterns among Changes 17
2.3.3. Multiple Perspectives when Interpreting Changes 18
2.3.4. Stakeholders’ Varying Interests in Changes 19

2.4. Use Case Example: Introduction of Stakeholders 19
2.5. Research Questions and Objectives . 22
2.6. Outline of the Thesis . 27

vii

Contents

3. Graph Representation of Semantic 3D City Models 29
3.1. Foundations and Related Work . 29

3.1.1. The City Geography Markup Language (CityGML) 30
3.1.2. Object-oriented Representations of CityGML Models 36
3.1.3. Relational Representations of CityGML Models 38
3.1.4. The Concept of Graphs and the Graph Data Structure 40
3.1.5. The Graph-based Nature of CityGML 42
3.1.6. Existing Graph Representations for GML and CityGML 44
3.1.7. The Graph Database Neo4j . 47

3.2. Graph Data Model for CityGML . 49
3.2.1. Requirements on Input CityGML Documents 50
3.2.2. Modelling Nodes . 50
3.2.3. Modelling Relationships . 51

3.3. Methods for Mapping CityGML Objects onto Graphs 52
3.3.1. Recursive Mapping . 53
3.3.2. Avoiding Circular References . 53
3.3.3. Preventing Repeated Mapping . 55
3.3.4. Mapping Arrays . 56
3.3.5. Extracting Sub-elements . 56
3.3.6. Evaluating Sub-elements’ Complexity 57

3.4. Resolving XLinks . 59
3.4.1. Separation of Graphs for each City Model 60
3.4.2. Strategies on Finding Nodes for Interlinking 60
3.4.3. Connecting href and Referenced Nodes 62

3.5. Evaluating Information Preservation in Generated Graphs 63
3.5.1. Assessing Mapped Thematic Content 63
3.5.2. Assessing the Semantic Structure of Mapped Graphs 64
3.5.3. Evaluation Results of all 14 CityGML Modules and 5 LODs . . . 65

3.6. Reconstruction of CityGML Objects from Graphs 77
3.6.1. Enriching Graph Representations of CityGML Objects 77
3.6.2. Key Characteristics of the Reconstruction Methods 83

3.7. Summary and Discussion . 85

4. Change Detection in Semantic 3D City Models 90
4.1. Foundations and Related Work . 91

4.1.1. Existing diff Algorithms for XML, GML, and CityGML 91
4.1.2. Graph Isomorphism . 94
4.1.3. The Graph and Subgraph Isomorphism Problem 96

4.2. Advantages and Challenges of Using CityGML Graphs 98

viii

Contents

4.3. Methods for Comparing CityGML Graphs 101
4.3.1. Recursive Matching . 101
4.3.2. Semantic Matching . 101
4.3.3. Comparing Node Properties . 103
4.3.4. Matching Child Nodes and Subgraphs 106
4.3.5. Direct Attachment of Change Nodes to Graphs 107

4.4. Node and Subgraph Similarity . 108
4.5. Finding the Best Potential Match . 110

4.5.1. Matching Generic Attributes . 112
4.5.2. Matching Points . 113
4.5.3. Matching Line Segments . 114
4.5.4. Matching Surfaces . 116
4.5.5. Matching Solids . 120
4.5.6. Matching Buildings . 121
4.5.7. Matching Other Types of Objects 123

4.6. Edit Operations and Edit Nodes . 123
4.7. Change Detection: Illustrative Examples 128
4.8. Summary and Discussion . 133

5. Change Interpretation in Semantic 3D City Models 136
5.1. Foundations and Related Work . 139

5.1.1. ECA Rules and Rete Networks . 140
5.1.2. Petri Nets . 141
5.1.3. Graph Transformation Systems . 143

5.2. Hierarchical Modelling of Changes in CityGML 145
5.2.1. Appearance Changes . 145
5.2.2. Semantic Changes . 145
5.2.3. Geometric Changes . 147
5.2.4. Topological Changes . 148
5.2.5. Structural Changes . 149
5.2.6. LOD Changes . 149
5.2.7. Syntactic Changes . 150
5.2.8. Scope Changes . 151

5.3. Defining Rules for Identifying Change Patterns 152
5.3.1. Requirements for the Pattern Matching Process 152
5.3.2. Definitions . 153
5.3.3. Properties of Rule Nodes . 156
5.3.4. Properties of Rule Relationships 159
5.3.5. Rule Notations in Cypher . 164

ix

Contents

5.4. Matching Change Patterns . 166
5.4.1. Successive Processing of Changes 166
5.4.2. Handling of Semantic and Graph Origin of Changes 169
5.4.3. Managing Scopes of Changes . 169
5.4.4. The Use of Aggregative Memory Nodes 171

5.5. Change-Stakeholder Analysis . 175
5.5.1. Requirements for Evaluating Change-Stakeholder Relations . . . 175
5.5.2. Change-Stakeholder Network Definition 176
5.5.3. Graph-based Path-tracing Analysis 181
5.5.4. Evaluating Traced Paths . 183

5.6. Summary and Discussion . 187

6. Optimization Strategies for Massive CityGML Datasets 190
6.1. Chunk-wise Mapping . 190

6.1.1. Splitting Massive CityGML Documents 190
6.1.2. Reconnecting Graph Representations of CityGML Chunks 192

6.2. Leveraging Thematic Indexes . 192
6.2.1. Token Lookup Index . 194
6.2.2. Range Index . 194
6.2.3. Text Index . 195
6.2.4. Full-text Index . 196
6.2.5. Combining Thematic Indexes . 197

6.3. Spatial Indexing . 199
6.3.1. Point Index . 199
6.3.2. R-trees for Indexing More Complex Geometries 200
6.3.3. Employing R-trees in a Graph Database 201
6.3.4. Linking R-tree Nodes with Geometric Content 203

6.4. Transaction Management . 205
6.4.1. Memory Management and Batch Transactions 205
6.4.2. Concurrency Control . 207

7. Application Results 212
7.1. Implementation: An Overview . 212

7.1.1. Implementation of the Mapping Process 213
7.1.2. Implementation of the Matching Process 215
7.1.3. Implementation of the Interpretation Process 217

7.2. Test Environment and Datasets . 222
7.3. Results of the Mapping Process . 223

x

Contents

7.4. Results of the Matching Process . 225
7.4.1. Detected Edit Nodes . 225
7.4.2. Detected Geometric Changes . 232

7.5. Results of the Interpretation Process . 241
7.5.1. Employed Change Pattern Rules 244
7.5.2. Unchanged Buildings . 247
7.5.3. Updated Identifiers of City Objects 251
7.5.4. Updated Property Values creationDate 253
7.5.5. Updated Coded Property Values 259
7.5.6. Raised Roofs of Buildings and Building Parts 263

7.6. Leveraging Interpretation Results for Further Analyses 276
7.6.1. Calculating Changes in the Living Space of the City 276
7.6.2. Assessing Interpretation Coverage among Detected Changes . . 280

7.7. Multi-perspective Change Interpretation 282
7.8. Runtime Complexity and Scalability . 289

8. Conclusion and Outlook 292
8.1. Summary of this Work . 292
8.2. Discussion and Contributions . 294

8.2.1. Strengths and Limitations . 295
8.2.2. Scientific Contributions . 298

8.3. Extendability and Future Work . 300

Publications 302

Appendices 304

Glossary 335

Acronyms 337

List of Figures 341

List of Tables 346

List of Code Listings 348

Bibliography 350

xi

1. Introduction

There is nothing permanent
except change.

— Heraclitus

In 2007, a significant shift was observed in the global demographics: for the first time
in history, the number of people living in urban areas surpassed those in rural areas, as
recorded by the United Nations’ World Urbanization Report (UN DESA, 2019). This
trend of urbanization has only accelerated since then. By 2030, the urban population
is projected to reach 68 %, with an expected increase of 2.5 billion people by 2050.
Within this time frame, 10 more megacities, defined as cities with more than 10 million
inhabitants, will emerge. As urbanization continues its rapid ascent, cities and nations
worldwide are faced with the challenge of balancing between economic, social, and
environmental needs through the integration of modern technologies.

As progresses are being constantly made to both the physical and digital infra-
structures, cities undergo numerous transformations over time, with each iteration
representing a different temporal stage. However, many smart city deployments world-
wide currently lack the capacity to detect changes between these temporal stages,
a deficiency that also hinders the comprehension of the dynamics underlying these
changes. As a result, both the detection and interpretation of changes have emerged as
one of the most pressing challenges in modern virtual city developments.

1.1. Changes in Semantic 3D City Modelling

Like in Building Information Modelling (BIM), semantic 3D city models are established
methods for the modelling, representation, and analysis of 3D urban objects, such
as buildings, bridges, and tunnels. While BIM is predominantly employed in the
construction sector for the planning, design, and construction of new buildings, as well
as the maintenance and renovation of existing structures (Volk et al., 2014), semantic 3D
city models allow for the storage, exchange, and analysis of a variety of urban objects
across a larger geographical area, which can extend from a handful of city blocks to all
spatial objects within an entire country. Thus, semantic 3D city models are utilized in
several key cases (Kolbe & Donaubauer, 2021):

1

1. Introduction

1. Urban Inventory of City Objects: Semantic 3D city models serve as an inventory
for a variety of urban objects. They store all relevant appearance, semantic,
topological, and geometric information in one place, providing essential data on
the stored objects. This is particularly useful in applications such as property and
asset management, and the life-cycle management of city objects.

2. Urban Data Integration: Information from various domains like energy, popula-
tion, and navigation is linked to city objects with certain spatial properties, such
as to a building with fixed coordinates. Semantic 3D city models, predominantly
represented according to the international standard City Geography Markup Lan-
guage (CityGML), allow for the linking of this thematic data to city objects. This
enables the enrichment of the city objects with additional thematic information.

Semantic 3D city models in the CityGML standard have been employed in more than
20 countries worldwide (Wysocki et al., 2022), including Australia, France, Germany,
Japan, the United Kingdom, and the United States of America. Applications of semantic
3D city models can be broadly classified into visualization-based applications, such as
flight simulation and light pollution assessment, or non-visualization-based applica-
tions, such as energy demand prediction and living space calculation (Biljecki et al.,
2015). While semantic 3D city models can be used for visualization-based applications,
they excel in non-visualization-based applications, where complex analyses can only be
performed based on available semantic information provided by the 3D city models.

Therefore, when updates are made to a semantic 3D city model, such as through
editing with software like the 3D City Database (3DCityDB), AutoCAD, or SketchUp,
the resulting changes may reflect various deviations in the spatial and topological
extent of city objects, their visual appearances, as well as the associated thematic
data from various application domains. Typical examples include changes in the
Coordinate Reference System (CRS) of a city model, spatial corrections of geometric
objects, updated thematic attributes, and insertions or deletions of city objects or their
parts. The ability to identify these diverse changes is crucial for capturing all progresses
made to the city model, thereby laying the groundwork for further urban analyses.

1.2. Digital Changes in an Urban Digital Twin (UDT)

In recent years, digital twins have emerged as a major driving force behind many
technological and economic progresses worldwide. The global market size for digital
twins was estimated at over US$11 billion in 2023 and is projected to reach US$140
billion by 2030, with a compound annual growth rate of 42.6 % during the forecast
period (Fortune Business Insights, 2023). Despite their rapid success, the concept of

2

1. Introduction

digital twins is not new. The birth of digital twins can be traced back to the early
2000s (Grieves & Vickers, 2016), but it was not until nearly a decade later that their
application was first described in a major industry (Shafto et al., 2010). With the
arrival of Industry 4.0, along with its digital advancements in Big Data and the Internet
of Things (IoT), the concept of digital twins was ‘rejuvenated’ (Sharma et al., 2022),
sparking further innovations, improvements, and discussions among a wide range of
application territories seen today.

As digital twins are being employed in vastly different fields, many definitions of
digital twins exist to date. In the context of smart cities and urban development, a
digital twin of a city, or an Urban Digital Twin (UDT), is a comprehensive framework for
organizing and harnessing various aspects of a city, ranging from physical components
and logical structures to partaking actors and processes (Nguyen & Kolbe, 2024).
Technical, legal, and administrative points of view co-exist in an urban digital twin.
Urban digital twins are created for specific purposes. The goal is to gain essential
insights into the state of the city and its development by observing and analysing the
information available in its digital twin, thereby supporting both regular operations
and critical urban planning and decision making. This thesis considers urban digital
twins with semantic 3D city models serving as one of their key digital components.

Despite the many definitions of digital twins, the general consensus agrees that a
digital twin must involve a physical entity, a corresponding digital representation, and
a continuous feedback loop between the physical and digital entity. This means that
changes in the real world must be reflected on the digital side, and vice versa. Such
urban digital twins are illustrated in Figure 1.1 and described as follows:

1. Physical World to Digital Entity: An urban digital twin combines a vast amount
of information gathered from a multitude of sources in the physical world, ranging
from direct, closely-linked measurements (typically from in-situ IoT sensors) to
remote sensing using various types of devices and platforms, as well as manually
updated data. This information is then reflected in the virtual city model.

2. Digital Entity to Physical World: Urban digital twins, especially their virtual
city models, have quickly become a crucial platform not only for storing, visual-
izing, and monitoring urban objects, but also for interpreting, simulating, and
analysing urban environments in general. This process involves many types of
transformations on the virtual city models, such as refinement, generalization,
derivation, and enrichment, as shown at the bottom of Figure 1.1. These changes
can be reflected back to the original physical counterpart for purposes such as
automated manufacturing, manual construction or destruction, and control of
components or systems. Moreover, they can be analysed to gain insights into
changes that occurred in the real world, as illustrated at the top of Figure 1.1.

3

1. Introduction

Digital
Entity

Physical
Entity

Transformations (refine,
generalize, derive, enrich)

Changes in
the real world

Direct, closely-linked measure-
ments (e.g., in-situ IoT sensors)

Remote sensing (all types of
devices and platforms)

Manual updating

Automated
manufacturing

Manual construction
and destruction

Control of components
and systems

Analysis

Interpretation

Simulation

Figure 1.1.: An overview of an Urban Digital Twin (UDT). Various processes can be
employed to reflect the changes in both the physical (top) and digital entity
(bottom). Digital changes may correspond to actual changes in the real
world or result from digital processes such as refinements, simulations, and
scenario testing. By detecting and interpreting these changes, additional
insights can be revealed, allowing for more in-depth urban analyses.

As a result, an urban digital twin acts as a comprehensive repository of both physical
and digital entities. It preserves a cumulative collection of different versions of these
entities over time, allowing for the predictive maintenance of the city in the real
world and in-depth analyses through the examination of the feedback loop between
the physical and digital entity. However, despite being one of the defining features
of an urban digital twin, such systematic two-way synchronization poses significant
challenges for implementation and scalability (Grieves & Vickers, 2016; Sharma et al.,
2022), especially when the procedures that initially performed these changes were
neither documented nor maintained.

A recent survey (Lei et al., 2023) conducted among international experts identified
updating, including change detection and version management, as one of the most
frequently cited technical challenges of urban digital twins, for which no complete
solution has yet been achieved.

4

1. Introduction

As a result, many current smart city deployments, especially those involving semantic
3D city modelling, often replace old datasets with newer ones. This approach not only
wastes time and resources, but also discards any meaningful progresses that could
have been captured between the datasets during the given time period. Therefore, an
optimal and sustainable strategy would require the automatic, efficient, and accurate
detection of changes, particularly in large-scale virtual semantic 3D city models.

1.3. Interpretation of Changes in Semantic 3D City Models

While the identification of changes in semantic 3D city models is essential, it is only
one aspect of the problem. Another crucial task is to understand the significance and
scope of these changes, as well as their impact on others.

1.3.1. Interrelations and Patterns among Changes

As illustrated in Figure 1.2, the relationships between digital and physical changes
in an urban digital twin are presented along a timeline. The changes detected in the
digital 3D city model may correspond to the real-world changes that occurred in the
past, a result of the synchronization process from the physical to the digital entity.
For example, a newly inserted building in the semantic 3D city model may indicate a
recently constructed building in the physical world.

On the other hand, digital changes, like those from simulations, can be utilized
to predict future changes in the real world. For example, prior to its construction,
a planned new parking garage must first undergo rigorous simulation tests. Once
approved, changes made in the simulation can be realized in the physical world.

However, these digital changes may not always correspond to real-world modifica-
tions. They could simply represent changes solely within the digital city model, such
as those made during hypothetical scenario testing independent of the actual world.

Furthermore, changes, whether in the physical or digital world, are not merely
individual discrepancies in the data. They are often interconnected, as they can be
caused by a single common action in the real world, or one change can trigger a chain
reaction of other changes. For instance, a single upward shift of an entire building
may lead to a corresponding upward shift of all its boundary surfaces. This translated
building may, in turn, coincide with the translation of all other buildings, indicating a
systematic shift among all buildings in the city model. This single observation is often
much more valuable to stakeholders, such as the manager of an urban digital twin, than
a multitude of individual uninterpreted changes. Such patterns among the changes are
hidden behind the data but can provide significant insights when uncovered, especially
for a large number of deviations detected across the datasets.

5

1. Introduction

Physical
Entity

Digital
Entity

Coupling

t−1 t0 t1

changes changes

changes changes

past real
changes

planned real
changes

model
changes

model
changes

Figure 1.2.: An illustration of an Urban Digital Twin (UDT) over time. Identifying and
understanding changes on the digital side can reveal insights into the past
changes that occurred in the physical world. When utilized for simulation
or scenario testing, these digital changes may also predict future changes
in the physical entity. Additionally, changes on the digital side may refer
to model changes only, independent of the physical reality. The primary
objective of this research is to detect and interpret all these changes.

Therefore, in addition to identifying digital deviations between the temporal versions
of a semantic 3D city model, further interpretations are required to reveal the semantic
interrelations and patterns among these changes.

1.3.2. Human-centric Interpretation of Changes

The identified patterns within the aforementioned changes provide crucial insights into
the interrelations and composition of changes in the semantic 3D city models. These
interpretations can effectively condense a large number of detected changes into a
substantially smaller, yet semantically richer set of changes.

However, as these interpretations must ultimately serve humans, and different
groups of stakeholders perceive different types of changes vastly differently, these
interpretations must be further categorized and refined to cater to the specific interests
of each stakeholder.

6

1. Introduction

For instance, among the detected changes and their interpretations, the city mayor,
who is responsible for the decision making and policy development of a city, is pre-
dominantly interested, for example, in changes that may have an impact on the city’s
total living space. This includes instances such as the recent construction of a new
residential building, the repurposing of a commercial building for residential use, or
the renovation of building to add more storeys. On the other hand, an expert in the
field of Geographic Information System (GIS), or a GIS specialist, who often maintains
and updates virtual models of cities, is primarily interested in changes related to the
overall quality of the data, the representation of geometric objects, and the visualization
of these changes.

To enable this, there needs to be a method in place that can explicitly describe
the relevance relations between different changes and stakeholders. Based on this
description, the approach should then be able to efficiently determine whether a given
change is relevant to a specific stakeholder, and vice versa, which changes a given
stakeholder is interested in.

However, considering that stakeholders’ interests in changes also vary over time, the
proposed approach should be adaptable and flexible enough to accommodate these
variations.

1.4. Problem Statement and Scope

This research addresses the fundamental problem of detecting and interpreting changes
in semantic 3D city models, as well as in urban digital twins, where semantic 3D city
models play a key role. The problem is described as follows:

Research Problem Statement

Given two temporal versions of a semantic 3D city model and a group of various
stakeholders, the objectives are to:

1. Detect all changes that occurred between these documents, covering se-
mantic, geometric, and topological contents, and

2. Deliver insightful interpretations of these changes, taking into account the
different perspectives of stakeholders.

Given the expansive scope of urban digital twins as a research domain, which
includes changes on both the physical and digital side, this thesis specifically focuses
on the handling of changes within the digital components of an urban digital twin. The
digital entity of an urban digital twin may involve not only semantic 3D city models,

7

1. Introduction

primarily encoded in CityGML, but also models from the built environment, such as
BIM, given in Industry Foundation Classes (IFC). Given the complexity of this issue,
this thesis only considers changes within semantic 3D city models that represent the
digital components of an urban digital twin.

Furthermore, the CityGML data model and encoding standard version 2.0 is em-
ployed. However, as explained throughout this thesis, the proposed methods leverage
the semantic and geometric information available in semantic 3D city models, which
are also present in BIM and the newer CityGML version 3.0. Therefore, the meth-
ods proposed in this thesis can be adapted and extended to accommodate BIM and
corresponding IFC models, as well as CityGML 3.0.

This thesis introduces methods capable of detecting all potential changes between
two temporal versions of a CityGML document. These include modifications to the
semantic, geometric, and topological contents. Changes in the visual appearance of city
objects, which often involve updates in the appearance images, require corresponding
methods from the field of computer graphics and computer vision, and are thus beyond
the scope of this thesis.

When interpreting changes, this thesis does not aim to provide a comprehensive
static model of all stakeholders. Instead, it focuses on providing an adaptable and
extendable approach that allows for modelling the dynamic relevance relations between
changes and stakeholders.

The results of this research can be utilized to enable complex semantic analyses on
the city model and enhance the update of older datasets, ultimately contributing to the
realization of the continuous bidirectional data flow necessary between the physical
and digital entity of an urban digital twin.

8

2. Challenges of Comprehending Changes
in Semantic 3D City Models

As highlighted in Chapter 1, the primary goal of this research is to provide compre-
hensive yet comprehensible interpretations of changes between two different temporal
versions of a semantic 3D city model, particularly those represented according to the
standard City Geography Markup Language (CityGML). However, this task is highly
complex and is divided into several smaller steps, each presenting a set of its own
challenges that need to be addressed. These challenges are summarized in this chapter,
with more detailed discussions to be provided for each step in the following chapters
of this thesis.

2.1. The Complexity of the CityGML Data Model

The City Geography Markup Language (CityGML) is an international standardized
information model and exchange format, commissioned by the Open Geospatial Con-
sortium (OGC), designed to model, store, and exchange most 3D urban objects (Gröger
et al., 2012). In contrast to other 3D city models that are purely graphical, such as those
with aerial mesh geometries, CityGML allows for the linking of graphical appearances
and geometries with various semantic properties of city objects. The result is a compre-
hensive, general-purpose semantic 3D city model that has found extensive applications
across a wide variety of domains (Kolbe et al., 2008; Schwab et al., 2020; Willenborg et
al., 2017). However, due to its inherent characteristics and design, CityGML introduces
several challenges that add complexity to the process of detecting and interpreting
changes in CityGML documents.

2.1.1. The Complex Data Model of CityGML

The CityGML data model version 2.0 represents city objects using a large number of
classes. These classes are organized into fourteen different thematic modules, such as
Building, Bridge, and Tunnel, and are structured in a sophisticated class hierarchy with
complex aggregation and inheritance relationships.

9

2. Challenges of Comprehending Changes in Semantic 3D City Models

Typically, a non-abstract class exists as a subclass within a deep hierarchy with
multiple levels of abstract superclasses above it. For instance, the class Building,
representing all buildings in the city model, is a subclass of the abstract class Abstract-
Building, which, in turn, is a subclass of AbstractSite. This abstract class is derived from
AbstractCityObject, which is an extension of AbstractFeature. Finally, at the top of this
class hierarchy lies the abstract superclass AbstractGML, representing all Geography
Markup Language (GML) objects. Thus, there are in total six classes in this hierarchy
that are employed by CityGML to model all buildings.

Therefore, when comparing two building instances, it is crucial to consider all
information inherited from all superclasses within this hierarchy. The definitions of all
such class hierarchies can be found in the Unified Modelling Language (UML) class
diagrams provided by the official CityGML specifications (Gröger et al., 2012), as well
as the model’s XML Schema Definition (XSD) files.

Moreover, the CityGML data model allows for the modelling of city objects in
five different Level of Details (LODs), spanning from LOD0 to LOD4, each with an
increasing level of detail. For instance, a building’s LOD0 representation displays its
footprint, while its LOD1 representation extends this footprint vertically, forming a
prismatic block. In LOD2, distinct boundary surfaces, such as roof, wall, and ground
surfaces, are introduced. The LOD3 further incorporates openings such as doors and
windows. Lastly, the most detailed LOD4 allows for the inclusion of indoor features,
such as rooms and furniture (Kolbe, 2009).

The selection of a suitable LOD depends on the quality available and complexity
required in each application. Notably, many geometric elements in CityGML, such as
lod[1-4]Solid and lod[1-4]MultiSurface, exist across multiple LODs with varying degrees
of detail. As a result, this LODs information should be considered when interpreting
changes in LODs. For example, during the comparison of two CityGML documents,
the consistent addition of a higher LOD to all buildings within the city model indicates
an improvement in the quality of the building representations within the datasets.

2.1.2. The Graph Characteristics of CityGML

CityGML 2.0 is an application profile of the Geography Markup Language (GML),
which, in turn, is a grammar of the Extensible Markup Language (XML). As such,
CityGML inherits numerous methods and features from both XML and GML. This
includes its independence from the order of elements and the use of the XML Linking
Language (XLink).

Although CityGML documents are often provided in textual format, they do not
distinguish between the order of sibling elements under the same parents. As a result,
for two city models with identical content, a building defined at the beginning of the

10

2. Challenges of Comprehending Changes in Semantic 3D City Models

first may potentially correspond to a building defined at the end of the second file
describing the same city model. The same also applies to sub-elements within each
building, and so forth.

In XML, XML Linking Language (XLink) is a mechanism used to link a current XML
element with another pre-existing one, thereby establishing a connection between the
two elements without the need for redefinition (W3C, 2006). This concept is widely
utilized in GML for the definitions of its geometries, and consequently, it is also
extensively employed in CityGML for the definitions of various city objects.

For example, a building represented in LOD2 consists of several boundary roof, wall,
and ground surfaces. Each of these surfaces is defined individually as a polygon. In
addition to these, the building also includes another element: a solid that represents
the 3D shape of the building, which is confined by these boundary surfaces. As a result,
this solid is defined as a collection of XLink references, with each XLink pointing to an
existing boundary surface.

Another application of XLinks in CityGML can be found in implicit geometries,
where a prototypical shape is defined once and can be reused or referenced multiple
times. This is particularly useful for representing city objects with similar shapes, such
as trees and traffic lights.

CityGML also utilizes XLinks for city object groups composed of other city objects,
such as buildings within a district or trees within a park. Each of these buildings or
trees, often defined already elsewhere in the dataset, can be referred to by the city
object group using XLinks. In addition, CityGML allows for a city object group to be
nested within other larger city object groups (Gröger et al., 2012), leading to the chain
use of XLinks.

The advantage of using XLinks is two-fold. Firstly, it allows for reusing elements,
thereby minimizing redundancy. Secondly, it enables the explicit modelling of topo-
logical relationships between 3D geometric objects in GML-based documents. In the
aforementioned example, the use of XLinks in defining the building’s solid geometry
indicates that all referenced boundary surfaces represent a side of the solid. Thus, they
collectively form a closed 3D volume, with each side adjoining at their boundaries.

While XLink is commonly used to link existing objects in CityGML, it also serves a
practical purpose, as explained throughout this thesis: reconnecting segmented parts of
large CityGML documents. This is typically the case when an input CityGML document
is so large that it needs to be divided into smaller segments for efficient reading and
parsing. For instance, a CityGML document containing one million buildings is too
large to be loaded entirely into main memory. Thus, it can be first divided into one
million smaller pieces, each containing a single building. This division allows for the
processing of arbitrarily large CityGML documents in manageable chunks, leading to
more efficient memory consumption and the possibility for multi-threaded processing.

11

2. Challenges of Comprehending Changes in Semantic 3D City Models

During this division, an XLink is inserted between the city model element and each of
its building chunks. After processing, serving as anchors, these XLinks are resolved,
effectively reconnecting all buildings back to the main city model.

While the use of XLinks offers numerous benefits, it also introduces an additional
layer of semantic and structural complexity to GML and CityGML documents. This
complexity arises from the fact that a single element may be referenced by multiple
others, thereby transforming their structure from tree-like form to a network-like one.
Figure 2.1 illustrates this graph structure of a CityGML document, which utilizes
XLinks to define its solid from existing boundary surfaces, regardless of the order of
sibling elements. As a result, despite their textual representation, GML and CityGML
documents essentially exhibit graph-based structures. Consequently, CityGML docu-
ments cannot be accurately matched using solely traditional comparison tools that are
designed for plain texts or tree structures.

2.1.3. Large Sizes of CityGML Documents

As mentioned in Chapter 1, semantic 3D city models are comprehensive repositories
of various types of information, representing a wide variety of 3D city objects. Their
scope can vary from a handful of building blocks to the entirety of a region’s buildings.
Therefore, CityGML documents can become very large in size, typically allocating
gigabytes of storage for datasets that contain all buildings of an entire state or country.

The sheer number of city objects often results in a significant amount of main memory
needed for loading and processing input CityGML documents. This also results in
more time and computational resources required when matching objects that are in
one-to-many or many-to-many relationships. For instance, when matching one million
buildings in the older city model with another one million buildings from the newer
city model, brute-force matching could result in one trillion comparisons of all possible
pairs, rendering it unfit for large datasets.

Therefore, it is necessary to implement effective optimization strategies to minimize
runtime complexity and memory consumption for large CityGML documents.

2.2. The Complexity of Matching CityGML Documents

In order to provide a comprehensive understanding of changes, it is essential to first
detect the changes between two given CityGML documents. However, a number of
challenges must be overcome, as described in the following sections.

12

2. Challenges of Comprehending Changes in Semantic 3D City Models

CityGML Document CityGML Document

Figure 2.1.: An illustration of the graph structure of CityGML documents. In this
example, a building’s solid (bottom) is defined using XLinks that reference
existing boundary surfaces (top). This may lead to cycles among elements.
Moreover, the order of sibling elements under the same parent does not
play any role in CityGML, as both left and right figure represent two of
the many possible arrangements of the same document. Thus, CityGML
documents exhibit a graph structure.

13

2. Challenges of Comprehending Changes in Semantic 3D City Models

2.2.1. The Graph and Subgraph Isomorphism Problem

Due to the graph-based nature of CityGML, as explained previously in Section 2.1.2,
the comparison of the content and structure of two CityGML objects is equivalent to
matching the content and structure of their respective graph representations, provided
a method for lossless mapping of CityGML objects onto graphs is used.

This corresponds to the graph and, more specifically, the subgraph isomorphism
problem in graph theory. These problems involve determining whether two graphs are
structurally identical, or whether the second graph is contained within the first. While
the graph isomorphism problem is generally not known to be solvable in polynomial
time nor to be NP-complete (McKay & Piperno, 2014; Skiena, 2008), the subgraph
isomorphism problem is even more complex and known to be NP-complete (Ullmann,
1976). Thus, both the graph and subgraph isomorphism problem are difficult and
require further optimization and heuristic strategies for large graph representations of
CityGML documents.

In addition, the process of comparing two graph representations of CityGML docu-
ments extends beyond a simple decision problem. Merely providing answers such as
‘true’ or ‘false’, or ‘identical’ or ‘not identical’, is not sufficient. The process must also
identify changes and accurately report their locations in the graphs when detected.

Moreover, graph isomorphism is only applicable when the two graphs have an
equal number of vertices. In addition, both the graph and subgraph isomorphism
evaluate whether two graphs are structurally identical. However, as GML and CityGML
allow multiple syntactic ways to define an object, as will be explained in Section 2.2.3,
multiple graph representations of the same CityGML object may exist. While these
graphs represent the same content, their different structures result in them being
consistently classified as ‘not matched’ by the standard graph isomorphism.

As a result, the matching process must employ a modified version of graph and sub-
graph isomorphism. This adaptation should leverage the rich semantic contents, such as
the semantic labelling of nodes and relationships available in the graph representations
of CityGML documents to enhance the runtime efficiency.

2.2.2. Identifier-independent Matching

In practice, CityGML objects are associated with a unique identifier that remains
consistent throughout the object’s lifespan and across various datasets. For instance,
in Germany, many CityGML documents, especially those created by the state map-
ping agencies, reference objects based on their identifiers extracted from Amtliches
Liegenschaftskatasterinformationssystem (ALKIS), the official real estate cadastre in-
formation system for Germany (AdV, 2008). In addition to identifiers, ALKIS also

14

2. Challenges of Comprehending Changes in Semantic 3D City Models

provides information about the shape, size, location, usage, and ownership of all re-
gistered real estate properties, including land parcels and buildings. The identifiers
defined in ALKIS generally remain unchanged during the objects’ entire lifespans and
can be shared across multiple datasets that use the same land parcels or buildings. As a
result, many urban analyses and processes leverage these unique identifiers to quickly
retrieve associated objects.

However, this uniqueness and consistency of identifiers are not always guaranteed,
as identifiers can be altered by a data manager or through a software change. Thus, the
matching process should not rely solely on the identifiers of objects when searching for
the best match of a reference city object.

2.2.3. Syntactic Ambiguities allowed by GML and CityGML

CityGML is a specialized application of GML3, which is based on the International
Organization for Standardization (ISO) 19107 model (Herring, 2020) for defining feature
geometries. Despite CityGML’s utilization of only a subset of GML geometries, it
adheres to the syntactic rules of GML and the geometric definitions of ISO 19107.

The GML standard allows for the definition of a wide variety of geometries through
different syntactic methods. For example, a polygon in GML is a two-dimensional
surface bounded by an exterior ring (representing the outer boundary) and any number
of interior rings (representing holes inside of the surface). A ring is a closed sequence
of control points that define a series of adjacent line segments. When the interior rings
touch each other at their boundaries, they can be merged together to form a larger
interior ring. Despite the differing number of interior rings, these two polygons are
geometrically identical.

Similarly, a three-dimensional solid may also be defined in GML using different
syntactic methods. It can be given by explicitly defining its boundary surfaces or by
forming a collection of XLinks that reference and reuse the pre-existing boundary
surfaces of a building.

There exist many other instances where the same objects can be defined using various
syntactic rules. These include the cases where a point in 3D space can be provided either
as a list of coordinates or a collection of three distinct sub-elements, each representing
one of its coordinates. In another example, measurements with different values are still
considered equal, if their units and values align, such as 1 m and 1,000 mm.

These syntactic ambiguities provide users, such as GIS specialists, with the flexibility
and freedom to define geometries in their preferred syntactic styles. However, these
ambiguities also add a significant layer of complexity to the comparison of CityGML
objects, especially geometric objects, as all the different syntactic methods used to
define an object must be taken into account when matching objects.

15

2. Challenges of Comprehending Changes in Semantic 3D City Models

2.2.4. Uncertainties in Detecting Geometric Changes

In addition to the syntactic ambiguities discussed previously, the matching process
must also account for geometric uncertainties. These include small acceptable error
tolerances when comparing lengths, angles, areas, and volumes. For instance, two
points are considered identical if their distance is smaller than the acceptable length
error tolerance. Two sets of line segments are considered equal if all their vertices are
located within a certain proximity of each other. Similarly, two polygons are regarded
as equal if the angle between their normal vectors is less than an angle error tolerance,
and they share at least 90 % of their area. Lastly, two solids are considered equal, if
they share at least 90 % of their volume. These percentage values can be adjusted.

However, the guidelines for matching geometric objects explained above do not
account for the possibility of geometric transformations, such as shifts by a translation
vector, rotations by a rotation vector or matrix, changes in vertical and horizontal
size, or any combination thereof. Figure 2.2 gives an example of such geometric
transformations for 2D surfaces. Therefore, the matching process must be capable of
matching geometries based on their spatial properties and given error tolerances, while
also accounting for potential occurrence of combinations of geometric transformations.

v

Figure 2.2.: An example of geometric changes in semantic 3D city models. On the left, a
2D surface is shown. In the middle, the same surface has been triangulated,
while retaining its original size, location, and orientation. On the right, the
triangulated shape has been translated by a vector v. Despite these changes,
all surfaces are considered equivalent. The first and second surface are
equivalent due to their identical geometric extents, differing only in their
syntactic representations. The second and third surface are equivalent for
sufficiently small values of ∥v∥, with error tolerances taken into account.
This comparison becomes even more complex when also considering size
changes, the 3D orientations of 2D surfaces, and 3D geometries.

16

2. Challenges of Comprehending Changes in Semantic 3D City Models

2.3. The Challenging Task of Interpreting Detected Changes

In previous steps, all base changes are detected between different temporal versions of
a CityGML document. These changes are then subject to further analysis, providing a
deeper understanding and comprehensive evaluation of the changes from the perspect-
ive of diverse stakeholders. As with preceding phases, this step introduces its own set
of challenges that need to be addressed.

2.3.1. Large Sets of Low-level Detected Changes

During the matching process, changes between the content and structure of two
CityGML documents are identified. These changes are presented as edit operations or
base changes, directly attached to the source elements where the changes occurred. This
allows for efficient retrieval of relevant information during the interpretation process.

At the lowest level, these changes include basic modifications such as the insertion,
removal, and updating of properties, as well as the insertion and removal of objects.
Even for CityGML documents of smaller sizes, the change detection process may
produce a significant number of such edit operations. In large CityGML datasets, this
number could reach millions of changes. Although these changes and their connected
objects could provide valuable insights for subsequent analyses, their sheer number
at this initial stage renders them difficult for humans to comprehend, especially those
without specialized knowledge of the underlying data structures and software tools
being used. As a result, these changes must be further analysed, interpreted, and
semantically enhanced before they can be presented to stakeholders.

2.3.2. Hidden and Intercorrelated Patterns among Changes

A change is not simply a deviation in the data; it has a meaning, context, and impact
on other elements. In fact, the majority of changes detected in CityGML documents are
often part of at least one larger constellation.

For instance, on its own, a single change in the location of a building’s boundary
surface may not provide any substantial meaning. However, if all boundary surfaces of
all buildings in the city model have been moved by the same offset, a pattern emerges
that suggests a systematic translation of the entire city model. In large city models,
this one single pattern can represent millions of otherwise incomprehensible geometric
changes.

In this thesis, patterns among changes are viewed as semantic aggregations, com-
bining changes of lower semantic levels into changes of higher semantic levels. As
the semantic level increases, the number of (interpreted) changes reduces. A pattern

17

2. Challenges of Comprehending Changes in Semantic 3D City Models

can therefore be thought of as a condensed semantic representation of all its member
changes.

However, such patterns are often hidden behind the data and pose a challenge for
interpreting due to the following reasons:

1. Large Quantity: A vast number of object types exist in the underlying CityGML
data model, leading to a correspondingly large number of potential patterns
among them.

2. Interdependent Patterns: An outcome of a pattern may be required and utilized
by another. For instance, the pattern of systematic translation of all buildings
in the city model is only valid if all buildings have been translated by the same
offset. A building, in turn, is considered translated, if all of its boundary surfaces
have been shifted by the same amount.

Therefore, to capture such hidden and complex patterns among changes, the inter-
pretation process must be guided by well-defined rules. These rules dictate which
lower-level changes must be aggregated into higher-level changes. Many current smart
city deployments employ a database query on an ad-hoc basis for each pattern. This
approach not only requires expert knowledge of the database in use, its structure, and
its query language, but it also leads to repeated interpretation of many patterns if these
patterns are interdependent on each other (forming a ‘pattern’ of patterns).

To reduce redundancy due to the interdependence among change patterns, the
interpretation process should allow for the centralized definition of pattern rules, with
each type of change employed at most once. Corresponding criteria and multiplicities,
required from the lower-level changes to form the next higher-level changes, should
also be evaluated.

2.3.3. Multiple Perspectives when Interpreting Changes

In contrast to the preceding change detection, the interpretation process aims to
provide insights into changes that are relevant to specific stakeholders, a process that is
inherently subjective in nature.

For instance, a city model manager is involved in the creation, maintenance, and
analysis of semantic 3D city models. They are interested in changes in the data
quality of the city model, such as improved numeric precision and increased LODs.
Additionally, they are also interested in the changes of the city model itself, particularly
when there is a systematic vertical shift of all buildings, which may indicate a change
in the elevation or terrain used in the city model.

On the other hand, a city mayor, who is involved in the decision and policy making
of the city, is interested in changes that have an impact, for example, on the city’s total

18

2. Challenges of Comprehending Changes in Semantic 3D City Models

living space. These changes include the construction of new buildings or demolition of
existing buildings, updates in the number of storeys in buildings, and variations in the
size of ground surfaces.

Therefore, besides the capability to detect hidden patterns among the detected
changes, the interpretation process must also be able to provide to specific groups of
stakeholders only the information they find most relevant, and vice versa. Figure 2.3 il-
lustrates an example of such interpretations in both directions between the stakeholders
and changes. This requires an adaptable and extendable strategy that can model and
capture the complex interrelations between changes and stakeholders in one central
place, such as in a layered network that comprises all types of changes and groups of
stakeholders.

2.3.4. Stakeholders’ Varying Interests in Changes

Another challenge in interpreting changes with respect to stakeholders is that a stake-
holder may have vastly different interests in different types of changes. Furthermore, a
stakeholder’s interest in a specific type of changes may fluctuate or even vanish over
time. On the other hand, a single type of changes may be relevant to multiple groups
of stakeholders at the same time, each with different levels of relevance.

As a result, the model that represents the relevance relations between changes and
stakeholders must be flexible enough to accommodate adjustments in the relevance
values, or even the deletion and addition of relevance relations between changes and
stakeholders.

2.4. Use Case Example: Introduction of Stakeholders

CityGML serves as a versatile information model, and any changes detected in CityGML
documents provide a wide spectrum of information for a variety of stakeholders.
However, not all changes are of equal importance to stakeholders. It is therefore crucial
to distinguish between three cases: (1) stakeholders are interested only in changes in
the real world, (2) stakeholders are exclusively interested in changes in the city models,
and (3) stakeholders are interested in changes in the city models to conclude changes
in the real world.

The application of the methods proposed throughout this study, especially the
interpretation process, is illustrated based on the following three example actor roles: a
data broker in the private sector, a city model manager working at a mapping agency,
and a city mayor representing the city planning department. They are described as
follows:

19

2.
C

hallenges
ofC

om
prehending

C
hanges

in
Sem

antic
3D

C
ity

M
odels

INTERPRETATION

Who is interested
in a given change?

Which changes are
relevant to a stakeholder?

City Model
Manager

Data
Volunteer

City
Mayor

Fire
Chief

Construction
Manager

Interior
Designer

Building
Split

Constructed
Building

Precision
Increase

Updated
Function

Lowered
Basement

Raised
Roofs

Figure 2.3.: An illustration of the dynamic two-way process of interpreting changes from the perspectives of various
stakeholders. From left to right (green): For a given stakeholder, the process determines relevant
changes. From right to left (orange): For a given change, the process determines interested stakeholders.
For instance, the change indicating the division of an old building into two smaller adjoining ones,
as depicted in orange on the right, may be of interest to city model managers, interior designers, and
firefighters, as shown in orange on the left. Conversely, the city mayor, displayed in green on the left,
may be interested in changes that have an impact on the city’s available living space, such as newly
constructed buildings, buildings repurposed from commercial to residential use, or changes like lowered
basements and raised roofs. This dual approach ensures a comprehensive understanding of the complex
interrelations between changes and stakeholders. The icons depicting the stakeholders and changes
shown in this figure were provided by Twitter, Inc. (2019) and other contributors under the Creative
Commons Attribution 4.0 International (CC BY 4.0) licence.

20

2. Challenges of Comprehending Changes in Semantic 3D City Models

1. Data Broker: Typically part of the private sector or larger corporations, a data
broker collects data from a variety of sources, organizes this information, and
then sells highly specialized data tailored to specific buyers. Such information
can be employed for various applications, such as for market analysis, research
studies, and decision making. In the context of urban digital twins and semantic
3D city modelling, a data broker is concerned with all aspects of the available
data, including semantic and geometric content, and thus requires as much detail
as possible. Therefore, in the context of change detection and interpretation in
CityGML documents, a data broker is interested in a wide variety of changes,
ranging from updated thematic properties to modified geometries. Therefore, a
data broker is predominantly interested in changes within the city model.

2. City Model Manager: A city model manager is responsible for the maintenance,
enhancement, and quality control of the 3D city models or urban digital twins of
a city. A city model manager may belong to the private or public sector, such as
in a mapping company or mapping agency. They are primarily interested in the
changes made to the digital city models. Their interests include an improvement
in the data accuracy, model refinement and completion (such as increased LODs),
and spatial and geometric changes. As for changes in the real world, a city
model manager is only interested in verifying whether these changes have been
accurately reflected in the city models.

3. City Mayor: As a key decision-maker, a city mayor holds significant influence over
the city’s overall development. Operating within the public sector, specifically
in the city administrative and planning department, a mayor’s focus lies in the
actual condition and well-being of the city, rather than the status of its models.
Thus, a city mayor is only interested in changes in the city models that reflect
actual changes within the real city, such as large-scale or significant changes
that can directly affect the living conditions and experiences of city residents.
These changes include those that affect the living space of citizens, such as the
enlargement of existing buildings, the construction of new building, the addition
of storeys, changes in building energy demand to account for resource alloca-
tion and utility infrastructure planning, the repurposing of buildings (such as
transitioning from residential to commercial use), or the preservation of historical
buildings that, unlike others, prohibits any structural changes to the buildings.

Chapter 7 demonstrates how all methods proposed in this research can be applied
to provide valuable insights into the changes of a city using its real-world datasets
over the years. These interpretation results are further evaluated and presented to the
stakeholders introduced above, with their various perspectives taken into account.

21

2. Challenges of Comprehending Changes in Semantic 3D City Models

2.5. Research Questions and Objectives

The research questions and objectives of this thesis, based on the aforementioned
challenges, are as follows:

A. Graph Representations of CityGML Documents: Given the graph-based nature
of GML and CityGML, CityGML documents are mapped onto graphs. These
graph representations serve as the basis for all subsequent processes. The research
questions during this phase include:

RQA1. Representation Comparison: What distinct advantages does the use of
graphs in this study offer compared to other representations of CityGML,
such as relational and object-oriented representations?

RQA2. Related Graph Representations: What existing graph representations are
there for GML and CityGML, and why is there a need to develop a new
method for mapping CityGML onto graphs?

RQA3. Graph Data Model for CityGML: How can a graph data model be
designed to accurately capture all substantial information available in the
original CityGML documents? What are the prerequisites or limitations
of this model?

RQA4. Mapping Methods and Evaluation: How can CityGML objects from all
fourteen thematic modules and five different levels of detail be mapped
onto graphs? Which evaluation criteria are required to ensure that the
resulting graph representations fully mirror all types of content and
structure information from the original CityGML documents?

RQA5. XLink Resolution: Where are the XLink elements from the original
CityGML documents stored in the graphs, and how can they be resolved
to restore the connectivity within the graphs?

RQA6. Compatibility with Graph Database: What strengths and limitations
does the employed graph database provide, and how can they be lever-
aged or mitigated to implement the mapping methods?

RQA7. Reconstruction of Graphs to CityGML Objects: How can graph repres-
entations be reconstructed back into their original CityGML represent-
ation? What additional information must be enriched to the graphs to
enable this reconstruction?

B. Change Detection in CityGML Documents: With the availability of a lossless
graph mapping of CityGML documents, the comparison of two temporal versions

22

2. Challenges of Comprehending Changes in Semantic 3D City Models

of a CityGML document can be performed based on their graph representations.
The research questions in this phase are as follows:

RQB1. Related Comparison Methods: What existing comparison methods are
available for XML, GML, and CityGML documents, and why is there a
need to develop a new method for comparing graph representations of
CityGML documents?

RQB2. Graph and Subgraph Isomorphism: What is the nature of the graph and
subgraph isomorphism problem, and why are they considered challenging
for graph representations of CityGML documents? What optimization and
heuristic adjustments can be incorporated to apply graph and subgraph
isomorphism to the comparison of these graphs?

RQB3. Advantages and Challenges of CityGML Graphs: What benefits does
the use of the semantic graph representations of CityGML documents
provide to enhance their matching process? What are the limitations and
challenges associated with using such graph representations?

RQB4. Matching Methods: How can the graph representations of CityGML
documents be compared? How can it be ensured that all content and
structure of the graphs are considered during matching? This includes:

a) Numeric values, measurements with units, and date-time values,

b) Generic attributes and generic attribute sets, and

c) Complex geometric objects, such as 0D points, 1D line segments, 2D
polygons, and 3D solids.

RQB5. Syntactic Ambiguities: What strategies should be employed to handle the
possible syntactic variations allowed by the GML and CityGML encoding
standard to define the same objects, especially geometries?

RQB6. Geometric Uncertainties: How can small acceptable error tolerances for
lengths, angles, areas, and volumes be accommodated while comparing
numeric and geometric contents?

RQB7. Geometric Transformations: Since geometric objects can be moved, res-
ized, or undergo any combination thereof, how can these transformations
be detected in the graphs, with error tolerances taken into account?

RQB8. Finding Best Match: What strategies should be used to find the best
match for any reference CityGML object, regardless of whether it is a
text property or a geometric object, in one-to-many or many-to-many
relationships? How can this be scaled to bigger datasets with a large
number of potential matches?

23

2. Challenges of Comprehending Changes in Semantic 3D City Models

RQB9. Representation of Changes: How can the detected changes be stored and
represented in the same graph representations of CityGML documents?
How to ensure that all relevant information and context can be quickly
retrieved?

C. Change Interpretation in CityGML Documents: Utilizing the detected changes
and their context in the graphs, hidden patterns are identified to derive meaning-
ful interpretations. These interpretations are then evaluated based on the interests
of various stakeholders. The research questions in this phase are as follows:

RQC1. Existing Rule-based Systems: What are the common rule-based systems
used to define and model Event Condition Action (ECA) rules? What are
the strengths and limitations of these systems in terms of describing the
pattern rules among changes in the context of this study?

RQC2. Hierarchical Modelling of Changes: How can the changes detected in
the previous step be modelled in a class hierarchy? What are these types
of changes, and how can they be utilized for the definition of rules to
detect change patterns?

RQC3. Rule Definition for Change Patterns: How can the rules for detecting
semantic and aggregative patterns among changes be explicitly defined
in a consistent manner? How can redundancies in interdependent rules,
where one rule relies on the outcome of another, be eliminated? What
can be incorporated to ensure that these rules can be easily adapted and
extended to specific use cases?

RQC4. Matching Change Patterns: What strategy should be employed to match
patterns among detected changes in the graphs based on the predefined
rules given above? This involves further research questions such as:

a) How to avoid repeated processing of the same changes when evaluat-
ing pattern rules?

b) What approach should be employed to deal with rules, where the
number of changes of a certain type required for the creation of the
next interpreted change is only known in runtime? For instance, the
pattern of a moved building requires that all its boundary surfaces
have also been moved by the same offset. However, this number of
boundary surfaces varies for each building.

c) Which sources of information can be leveraged to differentiate and
process different types of changes that belong to different classes of
objects using their graph representations?

24

2. Challenges of Comprehending Changes in Semantic 3D City Models

d) How to calculate the scope of detected changes that indicates whether
they belong to a global, clustered, or local pattern?

e) How to handle a pattern rule that relies on the outcomes of multiple
other rules?

RQC5. Managing Temporary Data: Where can the temporary data employed
during the interpretation process be stored in the graphs? This data
includes the type of the next change to be created, the number of changes
per type required by the current pattern, and the number of changes per
type collected so far.

RQC6. Change-Stakeholder Model: How can the identified change patterns and
their interpretations be evaluated based on the different perspectives of
stakeholders? This involves further research questions such as:

a) What are the most relevant stakeholders and change types serving as
examples in the context of this study?

b) How can the complex and hidden interrelationships between different
types of changes and various group of stakeholders be explicitly
modelled and described within a centralized network?

c) How can the model account for the varying interests of stakeholders
in a change type over time?

d) Where in the model can the reasoning or the real-world actions that
could have caused these changes be represented?

e) How can the model differentiate stakeholders and their specific roles
in the city, especially when a stakeholder, such as an organization,
can be assigned with multiple roles, with each role having distinct
interests in different changes?

RQC7. Graph-based Change-Stakeholder Analysis: What analyses can be con-
ducted based on the aforementioned change-stakeholder model? This
involves further research questions such as:

a) How can it be quickly determined whether a given detected change
is of interest to any stakeholder?

b) How can it be quickly determined which changes are of interest to a
given stakeholder?

c) When multiple stakeholders share a common interest in a change,
how can their differing levels of interest be evaluated against each
other? And vice versa, when multiple changes hold relevance to

25

2. Challenges of Comprehending Changes in Semantic 3D City Models

the same stakeholder, how can their different relevance values be
evaluated against each other?

D. Optimization for Large CityGML Documents: The aforementioned processes
are further optimized to allow for the handling of large CityGML documents.
The research questions in this phase are as follows:

RQD1. Memory Reduction: How can the memory consumption of all processes
discussed above be reduced to accommodate massive CityGML docu-
ments and a large number of changes?

RQD2. Database Indexes: What types of thematic and spatial indexes are re-
quired, and how can they be initiated, populated, and utilized in this
research?

RQD3. Transaction Management: What characteristics do the transactions in the
employed graph database exhibit, and how can they be optimized?

RQD4. Concurrency Control: Are the transactions in the employed graph data-
base suitable for execution in a multi-threaded environment? What mech-
anisms are used to prevent or avoid deadlocks when multiple concurrent
threads attempt to modify a shared resource?

These research questions and objectives shall be addressed in the subsequent chapters
of this thesis. Their overview can be found in Table 2.1.

Table 2.1.: An overview of all research questions (RQ) and their corresponding sections
in this thesis.

RQ Section

RQA1 3.1
RQA2 3.1
RQA3 3.2
RQA4 3.3, 3.5
RQA5 3.4
RQA6 3.1
RQA7 3.6

RQ Section

RQB1 4.1
RQB2 4.1, 4.5
RQB3 4.2
RQB4 4.3, 4.5
RQB5 4.5
RQB6 4.5
RQB7 4.5
RQB8 4.5
RQB9 4.6

RQ Section

RQC1 5.1
RQC2 5.2
RQC3 5.3
RQC4 5.4
RQC5 5.4
RQC6 5.5
RQC7 5.5

RQ Section

RQD1 6.1
RQD2 6.2, 6.3
RQD3 6.4
RQD4 6.4

26

2. Challenges of Comprehending Changes in Semantic 3D City Models

2.6. Outline of the Thesis

Chapters 3 to 5 establish the core workflow of this thesis. An overview of this workflow
is provided in Figure 2.4.

Chapter 3 introduces the use of semantic graphs in this study, illustrating their ability
to accurately represent the content and structure of CityGML documents. These graph
representations serve as the basis for all subsequent processes.

Chapter 4 discusses the graph and subgraph isomorphism problem, offering heuristic
graph matching methods that can leverage the semantic and geometric nature of the
employed graph representations of CityGML documents. These proposed methods
account for the syntactic ambiguities in GML and CityGML, while being able to quickly
determine the best match for each reference CityGML object.

Chapter 5 addresses the challenges of understanding the detected changes from
the perspectives of stakeholders. A rule network is proposed to define all rules for
detecting patterns among changes in one place, effectively eliminating the redundancies
caused by interdependent rules. Then, a change-stakeholder network is introduced,
offering a graph-based approach to explicitly describe the hidden interrelationships
between changes and stakeholders. Path-tracing techniques within the network are
presented that are capable of quickly determining the relevance of a given change to
any stakeholders, and conversely, identifying changes relevant to a specific stakeholder.

Chapter 6 approaches the scalability challenges posed by massive CityGML doc-
uments and provides various strategies to minimize the memory consumption and
enhance parallelism across all processes introduced in this thesis.

Chapter 7 applies the proposed processes to real-world datasets, evaluates, and
interprets their results. It provides additional details about the implementation and
offers guidelines and examples on how to employ these processes and further analyse
the results.

Finally, Chapter 8 summarizes the work of this thesis and discusses its applicability,
extendability, and contributions.

27

2. Challenges of Comprehending Changes in Semantic 3D City Models

CityGML CityGML

c1 c4

c2 c3 c5 c6

c1 c7

→ relevant to City Mayor

c4

c2 c3 c5 c6

Chapter 3:
Mapping onto Graphs

Chapter 4:
Matching Graph Representations

Chapter 5: Interpreting Changes

Figure 2.4.: An overview of the workflow presented in this thesis. Firstly, two temporal
versions of a CityGML document are mapped onto graphs (Chapter 3).
Then, these graphs are compared to identify changes (Chapter 4). Lastly,
change patterns are matched to provide relevant interpretations to stake-
holders (Chapter 5). All processes take place in the same graph database.

28

3. Graph Representation of
Semantic 3D City Models

The comparison of two City Geography Markup Language (CityGML) documents
requires knowledge about not only the content but also the structure of their elements,
which cannot be provided using the text format of these inputs. Despite being encoded
as text files, the CityGML data model exhibit network-like structures. Therefore, to
enable the matching of CityGML documents, they must first be transformed into
their equivalent graph representations. The process of mapping these documents is
explained in this chapter.

The content of this chapter substantially expands upon the author’s earlier publica-
tions, which are detailed as follows:

1. Nguyen, S. H., Yao, Z., & Kolbe, T. H. (2017, October). Spatio-Semantic Com-
parison of Large 3D City Models in CityGML Using a Graph Database [12th
International 3D GeoInfo Conference 2017, University of Melbourne, Melbourne,
Australia]. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences (pp. 99–106, Vol. IV-4/W5). Copernicus GmbH. https:
//doi.org/10.5194/isprs-annals-iv-4-w5-99-2017.

2. Nguyen, S. H., Yao, Z., & Kolbe, T. H. (2018). Spatio-Semantic Comparison
of Large 3D City Models in CityGML Using a Graph Database. In gis.Science
(pp. 85–100, Vol. 3). Wichmann Verlag. https://gispoint.de/artikelarchiv/gis/
2018/gisscience-ausgabe-32018.html.

3.1. Foundations and Related Work

This section establishes the necessary groundwork and discusses the literature relevant
to the development of the concepts and methods presented in this chapter. Research
Questions RQA1, RQA2, and RQA6 (Representation Comparison, Related Graph
Representations, and Compatibility with Graph Database, respectively) are addressed
in this section.

29

https://doi.org/10.5194/isprs-annals-iv-4-w5-99-2017
https://doi.org/10.5194/isprs-annals-iv-4-w5-99-2017
https://gispoint.de/artikelarchiv/gis/2018/gisscience-ausgabe-32018.html
https://gispoint.de/artikelarchiv/gis/2018/gisscience-ausgabe-32018.html

3. Graph Representation of Semantic 3D City Models

3.1.1. The City Geography Markup Language (CityGML)

CityGML is an open-source information model for representing, storing, and exchan-
ging semantic 3D city models (Gröger et al., 2012). It has been an international standard
of the Open Geospatial Consortium (OGC) since 2008, with version 1.0 released in
2008 and version 2.0 in 2012. To date, CityGML is the most commonly used exchange
format for semantic 3D city models worldwide and has become an important basis for
the development and application of urban digital twins. In 2021, the OGC approved
CityGML version 3.0 as the next evolution of the data model.

This thesis primarily focuses on CityGML version 2.0, which is currently the most
widely adopted version with the largest number of available datasets worldwide.
However, the generic approach for mapping CityGML documents onto graphs, as will
be explained later in this chapter, is also applicable to version 3.0. Henceforth, any
reference to CityGML in this thesis shall be understood as referring to CityGML version
2.0, unless a version is explicitly specified.

CityGML is an application schema of GML version 3.1.1 (Cox et al., 2004), which is an
Extensible Markup Language (XML) grammar defined by the OGC in accordance with
ISO/TC 211 standards for the purpose of describing geographical features. In contrast
to conventional 3D city models, which primarily focus on graphical or geometrical
representations, CityGML enables the storage of semantic, topological, geometrical,
and appearance information of city objects in one place. The following sections provide
a brief overview of some selected important aspects of CityGML that are most relevant
to the scope of this thesis.

Semantic Modelling

One of the most prominent features and biggest strengths of CityGML, compared to
other data models, is its fundamental modelling paradigm that enriches every element
with a semantic context. Each element is defined by its unique meaning, role, and type,
allowing for direct differentiation from elements of other types. These semantic types
are systematically organized into classes within a well-defined hierarchical structure.
This detailed schema enables non-redundant and comprehensive definitions of objects.
This is achieved by leveraging common object-oriented principles such as inheritance,
polymorphism, and encapsulation. Moreover, each object class is enriched with both
predefined thematic properties, such as the measured height and number of storeys of
a building, and other generic attributes that can be defined on an ad-hoc basis.

Another significant semantic feature extensively utilized in CityGML is the use of
aggregations. An object defined within an aggregation relationship can contain smaller
components or be a part of a larger element. For instance, the 3D shape of a building

30

3. Graph Representation of Semantic 3D City Models

part is an aggregation of all its boundary surfaces, while the building part itself, along
with other building parts, belongs to a larger building. These relationships not only
provide a comprehensive understanding of the city model but also aid in interpreting
their changes, as will be explained later in Chapter 5.

Multi-scale Modelling

CityGML allows for the modelling of city objects with regard to both their geometric
and thematic contents using five different Level of Details (LODs), ranging from LOD0
(the lowest) to LOD4 (the most detailed). The LOD0 representation of a building is
its footprint or roof edge polygon, while LOD1 is a prismatic block with flat roofs. In
LOD2, roof structures are added, and boundary surfaces are differentiated between roof,
wall, and ground surfaces. LOD3 adds further details to the architectural structures,
such as balconies and openings. Finally, LOD4 adds interior structures, such as rooms,
stairs, and furniture. Multiple LODs can exist simultaneously for a single object.

Modularization

The CityGML data model is thematically organized into a core module and thirteen
extension modules. The core module defines the basic concepts and components used by
the extension modules, while each of the extension modules covers a specific area of
semantic 3D city objects. These areas include Appearance, Bridge, Building, CityFurniture,
CityObjectGroup, Generics, LandUse, Relief, Transportation, Tunnel, Vegetation, WaterBody,
and TexturedSurface (which is now deprecated) (Gröger et al., 2012). This structure
allows for a highly flexible and modular representation of most important types of
city objects. A Unified Modelling Language (UML) package diagram illustrating this
modular structure is given in Figure 3.1.

Coherent Spatio-Semantic Modelling

CityGML integrates two distinct yet interrelated types of hierarchies: semantic and
geometric. At the semantic level, CityGML represents real-world city objects as features,
each with its own attributes and relationships to other features. For example, a
building consists of several boundary roof, wall, and ground surfaces. The relationships
between these features thus form an aggregation, with boundary surfaces being parts
of the building. On the other hand, at the spatial level, objects may be assigned
with geometries that represent their locations and shapes. A building, for instance, is
represented by a 3D solid, while its boundary surfaces are represented as polygons
forming the sides of the solid. CityGML combines both the semantic and geometric
hierarchy by linking semantic objects with their corresponding geometries (Gröger

31

3. Graph Representation of Semantic 3D City Models

Figure 3.1.: An overview of the modular structure of CityGML thematic modules and
their schema dependencies, represented as a UML package diagram. All
extension modules, denoted by «Leaf», depend on the core module, denoted
by «Application Schema». The core module, in turn, depends on the schema
definition of GML, denoted by «XSDschema». These dependencies are
indicated by the «import» relations. This diagram was taken from (Gröger
et al., 2012).

et al., 2012; Stadler & Kolbe, 2007). This coherent spatio-semantic modelling enables
seamless navigation between both hierarchies, allowing for more complex analyses.

Geometric-topological Modelling

Geometries in CityGML are defined using a subset of the geometry model provided
by the Geography Markup Language (GML). The GML model consists of geometric
primitives and combined geometries that are composed of primitives.

A geometric primitive is defined for each dimension: Point in 0D, _Curve in 1D,
_Surface in 2D, and _Solid in 3D. GML employs the Boundary Representation (B-Rep)
(Mäntylä, 1988) to represent its geometries. For instance, a 3D solid is bounded by
2D surfaces that form a closed volume, and a 2D surface is bounded by 1D curves
that form a closed area. In CityGML, curves are limited to being straight lines only,
meaning only the class LineString is used for 1D primitives. In addition, surfaces in
CityGML are represented by the class Polygon, where the boundary and interiors of
each polygon must be located on the same plane.

32

3. Graph Representation of Semantic 3D City Models

Geometric primitives can be combined to form aggregates, complexes, or composites,
each with its own unique topological characteristics. An aggregate, such as a Multi-
Point, MultiCurve, MultiSurface, or MultiSolid, is a collection of corresponding geometric
primitives without any topological constraints. This means that the components can
be disjoint, touching, or even overlapping. In contrast, the components of a geometric
complex must not overlap and can only be disjoint or touch at their boundaries. A
composite is a complex that requires its components to additionally be of the same
dimension and connected along their boundaries. Composites are thus available in one-
dimensional space or higher and are represented by CompositeCurve, CompositeSurface,
or CompositeSolid. These are illustrated in Figure 3.2.

(a) MultiSurface (b) GeometricComplex (c) CompositeSurface

Figure 3.2.: The topological differences between geometric aggregates (left), complexes
(middle), and composites (right) in 2D in CityGML. Adapted from (Gröger
et al., 2012).

CityGML also allows for the explicit modelling of topological relationships between
geometries that share a common boundary. These shared boundaries can be defined
once and then be referenced using the XML Linking Language (XLink) (W3C, 2006), a
concept provided by XML for interlinking objects. For instance, two adjacent rooms
of a building may be separated by a shared wall, which can first be defined in the
first room and then referenced by the second room using its identifier. This not only
reduces redundancy but also establishes the explicit topological relationships between
neighbouring geometries.

Listing 3.1 shows an example of a building model in CityGML. This is a simplified
excerpt from the open-source dataset FZK-Haus (KIT IAI, 2017) presented in LOD2.
The 3D shape of the building is represented by an element Solid, which contains a

33

3. Graph Representation of Semantic 3D City Models

CompositeSurface that consists of seven contiguous boundary surfaces. These include
two roof surfaces, four wall surfaces, and one ground surface, which have been defined
separately outside of this solid in the CityGML dataset. Thus, the solid does not
redefine the contents of these boundary surfaces. Instead, it references the already
existing boundary surfaces using XLinks. A 3D visualization of this FZK-Haus model
can be found in Figure 3.3.

Figure 3.3.: An illustration of the CityGML building model FZK-Haus in LOD2. As
outlined in Listing 3.1, the building has two roof surfaces, four wall surfaces,
and one ground surface. Therefore, the building’s solid contains seven
XLinks referencing these surfaces.

As previously mentioned in Section 2.1.2, XLinks are not only employed to describe
the explicit topological relationships among geometric objects, but also to define city
objects with implicit geometries, such as trees and traffic lights, which share the same
prototypical shape. Additionally, XLinks can be found in city object groups.

As will be shown later in Section 6.1, XLinks play a pivotal role in reassembling a
massive CityGML dataset that has been divided into smaller pieces, each marked with
a unique identifier. These identifiers are crucial for the XLink resolution process to
accurately relocate each segment.

34

3. Graph Representation of Semantic 3D City Models

� �
1 ...

2 <core:cityObjectMember>

3 <bldg:Building gml:id="FZK_HAUS_LOD2">

4 <bldg:lod2Solid>

5 <gml:Solid>

6 <gml:exterior>

7 <gml:CompositeSurface>

8 <!-- XLink references to the surfaces -->

9 <gml:surfaceMember xlink:href="#Roof_Surface_1_North"/>

10 <gml:surfaceMember xlink:href="#Roof_Surface_2_South"/>

11 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_1_West"/>

12 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_2_South"/>

13 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_3_East"/>

14 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_4_North"/>

15 <gml:surfaceMember xlink:href="#Ground_Surface"/>

16 </gml:CompositeSurface>

17 </gml:exterior>

18 </gml:Solid>

19 </bldg:lod2Solid>

20 <!-- Content of Roof Surface 1 (North) -->

21 <bldg:boundedBy>

22 <bldg:RoofSurface gml:id="...">

23 <bldg:lod2MultiSurface>

24 <gml:MultiSurface>

25 <gml:surfaceMember>

26 <gml:Polygon gml:id="Roof_Surface_1_North">

27 ...

28 </gml:Polygon>

29 </gml:surfaceMember>

30 </gml:MultiSurface>

31 </bldg:lod2MultiSurface>

32 </bldg:RoofSurface>

33 </bldg:boundedBy>

34 ... <!-- Content of other boundary surfaces -->

35 </bldg:Building>

36 </core:cityObjectMember>

37 ...� �
Listing 3.1: An excerpt of the CityGML building model FZK-Haus in LOD2.

35

3. Graph Representation of Semantic 3D City Models

3.1.2. Object-oriented Representations of CityGML Models

The CityGML data model employs object-oriented principles to organize city objects
into classes, making extensive use of concepts such as inheritance, polymorphism, and
encapsulation. These definitions are specified in the XML Schema Definition (XSD) of
CityGML, to which all CityGML documents must adhere.

As a result, the object-oriented representations of CityGML objects are the most
accurate and closest form to the source model in terms of both structure and content.
However, these representations are stored entirely in main memory, leading to high
memory consumption in large city models. Therefore, in many real-world applications
and use cases, these in-memory object-oriented representations are often used as a basis
for further transformation to other forms or representations, such as tables or graphs, as
will be discussed later in this chapter. This approach ensures minimal information loss
during conversion from the original CityGML documents to the target representation.

This conversion process can be implemented in several popular programming lan-
guages, such as Java, TypeScript, and Python. Among these, Java is selected for the
implementation of this thesis due to its strong support for object-oriented concepts and
high performance in handling multi-threaded operations, especially when dealing with
massive input datasets.

Unmarshalling XML Documents

In computer science, marshalling refers to the process of converting the state of an object
from its in-memory representation into a data format that can be stored or transmitted
(Grochowski et al., 2020). The reverse process is called unmarshalling. While many
programming languages regard marshalling (or unmarshalling) as a specific type of
serialization (or deserialization) (Python, 2023; Ryan et al., 1999), in some contexts,
these terms are used interchangeably (Grochowski et al., 2020).

Therefore, by unmarshalling CityGML documents, their object-oriented representa-
tion can be produced. Many programming languages provide their own frameworks to
marshal or unmarshal XML files, such as XMLSerializer in C# and Jakarta XML Binding
(JAXB) in Java.

The software library JAXB allows for the automatic mapping of Java classes from a
set of given XSD files. This capability enables three key operations:

1. Unmarshalling XML documents into corresponding Java objects,

2. Processing and updating the Java objects, and

3. Marshalling Java representations into XML documents.

36

3. Graph Representation of Semantic 3D City Models

Table 3.1 shows a list of some example XML schema built-in data types and their
corresponding types in Java (Kawaguchi et al., 2017).

XML Schema Data Type Java Data Type
xsd:string java.lang.String
xsd:integer java.math.BigInteger
xsd:int int
xsd:long long
xsd:short short
xsd:decimal java.math.BigDecimal
xsd:float float
xsd:double double
xsd:boolean boolean
xsd:byte byte

Table 3.1.: Mapping between some XML schema data types and Java data types
(Kawaguchi et al., 2017).

Unmarshalling CityGML Documents

In this thesis, to unmarshal CityGML documents into their corresponding object-
oriented representations, the software tool citygml4j1 is used. citygml4j is an open-source
Java library and Application Programming Interface (API) for reading, processing, and
writing CityGML datasets. At its core, the software employs JAXB to automatically
generate Java classes for CityGML objects based on their corresponding XSD files. Some
of the key features provided by citygml4j include:

1. Support for all major CityGML versions 1.0, 2.0, and 3.0 according to their
conceptual model standards (Gröger et al., 2008, 2012; Kolbe et al., 2021),

2. Ability to divide large CityGML documents into smaller chunks,

3. Capability to marshal to and unmarshal from CityGML documents,

4. Option to transform, process, and update city objects, and

5. An API for extending support for CityGML Application Domain Extensions
(ADEs) in applications.

1https://github.com/citygml4j/citygml4j

37

https://github.com/citygml4j/citygml4j

3. Graph Representation of Semantic 3D City Models

Figure 3.4 gives an overview of the contents of an in-memory building object in
CityGML, as parsed by citygml4j. This mapping corresponds to the conceptual model-
ling of the building module of CityGML (Gröger et al., 2012). Although some presented
properties are declared as private in their defining classes and can only be accessed
in subclasses via getter methods, for simplicity purposes, these properties are shown
instead of their corresponding getter methods.

The major advantage of the object-oriented representations lies in their precision in
depicting the contents and relationships of CityGML objects. As will be explained later
in this chapter, both the relational and graph representations of CityGML models are
often constructed based on these object-oriented representations.

However, object-oriented representations are held entirely in main memory, meaning
that (1) their contents will be lost after execution, and (2) a large main memory capacity
is necessary for handling large CityGML datasets.

While alternative representations, such as those using a relational or a graph database,
may capture less information and require additional efforts for mapping, they offer the
advantage of persistent storage of city objects. This not only allows for data reuse in
subsequent applications but also reduces memory consumption significantly.

3.1.3. Relational Representations of CityGML Models

Since the release of CityGML, there has been a rapid increase in both the number
and scale of virtual semantic 3D city models. This has led to a growing need for
efficient storage, management, and analysis of large CityGML documents, which is
often achieved through the use of databases.

Relational databases have long been a dominating workhorse in the data world and
are widely used in various application fields. A relational model represents all data
as a collection of relations (or tables), each consisting of a set of tuples (or rows) and
attributes (or columns) (Codd, 1970). Since its introduction (Chamberlin & Boyce, 1976),
Structured Query Language (SQL) has become the standard query language in modern
Relational Database Management Systems (RDBMSs) (Davoudian et al., 2018). Many
studies have therefore explored the use of an RDBMS for storing and managing XML
and GML documents in general, and CityGML documents in particular.

To convert XML documents into tables, most relational databases define a map-
ping between the corresponding XML document schemas, such as Document Type
Definition (DTD) and XSD, and the database schemas. Extensible Stylesheet Language
Transformations (XSLT) may be used in advance to transform input XML documents
to a structure specifically required by the mapping. There exist two common types of
mapping: table-based mapping, and object-relational mapping (Bourret, 2005). The
table-based mapping represents XML documents using a single table or a set of tables,

38

3.
G

raph
R

epresentation
ofSem

antic
3D

C
ity

M
odels

From class Building
Property Type
ade List<ADEComponent>

From class AbstractBuilding
Property Type
clazz, roofType Code
function, usage List<Code>
yearOfConstruction LocalDate
yearOfDemolition LocalDate
measuredHeight Length
storeysAboveGround Integer
storeysBelowGround Integer
storeyHeightsAboveGround MeasureOrNullList
storeyHeightsBelowGround MeasureOrNullList
lod[1-4]Solid SolidProperty
lod[1-4]TerrainIntersection MultiCurveProperty
lod[2-4]MultiCurve MultiCurveProperty
lod0FootPrint MultiSurfaceProperty
lod0RoofEdge MultiSurfaceProperty
lod[1-4]MultiSurface MultiSurfaceProperty
outerBuildingInstallation List<BuildingInstallationProperty>
interiorBuildingInstallation List<IntBuildingInstallationProperty>
boundedBySurface List<BoundarySurfaceProperty>
buildingPart List<BuildingPartProperty>
interiorRoom List<InteriorRoomProperty>
address List<AddressProperty>

From class AbstractCityObject
Property Type
creationDate ZonedDateTime
terminationDate ZonedDateTime
externalReference List<ExternalReference>
genericAttribute List<AbstractGenericAttribute>
generalizesTo List<GeneralizationRelation>
relativeToTerrain RelativeToTerrain
relativeToWater RelativeToTerrain
appearance List<AppearanceProperty>

From class AbstractFeatureg
Property Type
boundedBy BoundingShape
location LocationProperty
genericADEElement List<ADEGenericElement>
module Module

From class AbstractGMLg
Property Type
id String
description StringOrRef
name List<Code>
metaDataProperty List<MetaDataProperty>
localProperties Map<String, Object>
parent ModelObject

Object
Building

Building AbstractBuilding AbstractSite AbstractCityObject AbstractFeature AbstractGML

Figure 3.4.: The contents of a building object in CityGML parsed by citygml4j. The properties are grouped by their
respective defining classes. The hierarchical structure of these classes is shown at the bottom.

39

3. Graph Representation of Semantic 3D City Models

where the XML elements must be given in a specific structure required by the mapping.
On the other hand, the object-relational mapping represents complex XML elements as
class instances, while simple elements or attributes are represented as scalar properties
of these instances. Classes are then mapped to tables, and scalar properties to columns.
Complex properties used as references to other objects are stored as pairs of primary
and foreign keys in respective tables. Some popular relational databases that support
XML include Oracle Database (Murthy et al., 2005), IBM Db2 (Nicola & van der Linden,
2005), PostgreSQL (Obe & Hsu, 2017), and Microsoft SQL Server (Rys, 2005).

GML is an XML grammar that can capture a wide range of geographic informa-
tion, including geometry, topology, features, coordinate reference systems, units of
measurement, and time (Cox et al., 2004). Databases that support the storage and
management of geographic information are known as geographic databases (or geo-
databases), which are a subset of spatially-enhanced databases (or spatial databases).
Many modern XML-enabled relational databases are also capable of handling GML
documents, either natively or using extensions. For instance, the extension PostGIS for
PostgreSQL allows for storing and managing simple GML data within the database.

As an application schema of GML for modelling and storing most common 3D urban
objects (Gröger et al., 2012), CityGML documents can also be represented in a relational
database. For example, the database cjdb (Powałka et al., 2024), a compact relational
data model designed for PostgreSQL, allows for the storage of CityGML models by
utilizing CityJSON (Ledoux et al., 2019), a JavaScript Object Notation (JSON)-based
encoding of a subset of CityGML. The most prominent representative in this domain,
however, is the 3D City Database (3DCityDB), an open-source high-performance 3D
geo-database solution for importing, managing, analysing, visualizing, and exporting
semantic 3D city models in CityGML (Stadler et al., 2009; Yao et al., 2018). The
software is equipped with an import and export tool capable of handling very large
CityGML datasets. Additional functionalities are available, such as for converting
relational representation of city objects to common data formats used for visualization
purposes, and for managing use-case specific ADEs in CityGML (Yao & Kolbe, 2017).
The entire software package makes use of a single relational interface on top of a
spatially-enhanced Oracle or a PostgreSQL/PostGIS relational database instance.

3.1.4. The Concept of Graphs and the Graph Data Structure

The earliest recorded use of graphs dates back to 1736, when the Swiss mathematician
Leonhard Euler utilized them to solve the now-classical problem of the ‘Seven Bridges
of Königsberg’ (Euler, 1736, 1995). Euler’s solution to this problem is widely recognized
as the first true proof in the theory of networks (Newman, 2003), laying the foundations
for the development of topology and graph theory (Shields, 2012).

40

3. Graph Representation of Semantic 3D City Models

Graphs as a Mathematical Concept

In discrete mathematics, particularly graph theory, a graph G = (V, E) is a mathematical
structure that consists of a set V of vertices (or nodes) and a set E of edges. An edge
that connects two vertices is described as being incident to those vertices. The vertices
connected by an edge are referred to as adjacent. Similarly, two edges that share a
common vertex are also referred to as adjacent.

Edges can be directed or undirected. A directed edge, denoted as e = (v1, v2),
connects the start vertex v1 to the end vertex v2. On the other hand, an undirected
edge, denoted as e = {v1, v2}, does not distinguish between start and end vertices.
Thus, an undirected edge can be represented as a pair of two oppositely directed
edges: e1 = (v1, v2) and e2 = (v2, v1). A directed graph contains only directed edges,
while an undirected graph contains only undirected edges. In this thesis, the graph
representations of CityGML models are directed, since CityGML is an object-oriented
data model and the relations between CityGML objects are directed.

The definitions above do not permit a graph to have multiple edges (or multi-edges)
between the same pair of vertices. Such graphs are called simple graphs. However, in
some studies, the edge set may be extended to be a multiset, allowing multiple edges
between the same pair of vertices. These graphs are called multigraphs. On the other
hand, the aforementioned definitions allow the existence of edges that connect a vertex
to itself, known as loops. Loops and multi-edges are rarely employed in practice (West,
2000). Thus, the graph data model for CityGML presented in this thesis are a simple,
directed graph that excludes multi-edges (with identical contents) and loops.

An undirected graph is considered connected if there exists a sequence of adjacent
undirected edges connecting every pair of its vertices. Similarly, a directed graph is
strongly connected if there exists a sequence of adjacent directed edges connecting
every pair of vertices. A directed graph is weakly connected if it can be transformed
into a connected undirected graph by treating all directed edges as undirected.

The graph mapping algorithm for CityGML documents introduced in this chapter
ensures that the resulting graph representations of CityGML documents are weakly
connected, as all elements of a CityGML model can be reached from a single root
element, the city model. Furthermore, since the use of XLinks can cause circular
references or cycles that prevent processes from terminating, the methods for mapping
CityGML documents onto graphs must eliminate directed cycles in their results.2 Thus,
the graph representations of CityGML documents employed in this thesis are Directed
Acyclic Graphs (DAGs).

2The processes proposed in this thesis for mapping CityGML elements onto graphs and reconstructing
graphs into CityGML objects support directed cycles. However, for the matching and interpretation
process to terminate, the graphs must be acyclic, as observed in all CityGML 2.0 datasets tested so far.

41

3. Graph Representation of Semantic 3D City Models

Graphs as an Abstract Data Type (ADT)

In the field of computer science, a graph data structure is an Abstract Data Type (ADT)
that implements the mathematical concepts of graphs introduced above. In a graph
data structure, vertices are stored in a finite set, while edges are represented as either an
ordered or unordered pair of corresponding incident vertices, depending on whether
the underlying graph is directed or undirected, respectively. These edges often employ
references to existing vertices, such as their unique identifiers or indices within the
vertex set.

A graph data structure typically provides a range of common operations, including
graph construction and manipulation (such as inserting and removing vertices and
edges), connectivity control (such as verifying the adjacency between two vertices
or identifying all vertices adjacent to a vertex), and attribute manipulation (such as
retrieving and updating properties stored in vertices and edges) (Goodrich & Tamassia,
2014).

Two of the most commonly used representations of graphs are adjacency matrices and
adjacency lists. In an adjacency matrix, the value of each entry reflects the connectivity
of the corresponding vertices denoted by the row and column index. In an adjacency
list, all adjacent vertices of a specific vertex are stored in a linked list assigned for
that vertex (Horowitz & Sahni, 1983). Adjacency matrices are more suited for dense
graphs (where almost every pair of vertices is connected), while adjacency lists are more
suited for sparse graphs (where the majority of possible edges are unset) (Goodrich &
Tamassia, 2014).

As shown later in this chapter, the graph representations of CityGML datasets can
be considered as sparse graphs, as most elements are clustered within their respective
top-level features, such as buildings. Therefore, an adjacency list can be used to capture
the structure and contents of the graph representations of CityGML models. However,
other types of representations can be employed. This choice of representation for a
graph is typically handled internally by the underlying graph database.

3.1.5. The Graph-based Nature of CityGML

In the early 1980s, the increasing popularity of the object-oriented programming
paradigm led to several issues observed in the fields of Computer-aided Design (CAD),
Computer-aided Manufacturing (CAM), and Geographic Information System (GIS)
when using relational databases. The relational data model has limited capabilities for
modelling complex objects (Davoudian et al., 2018), and an object-relational impedance
mismatch may arise (Ireland et al., 2009). This mismatch occurs when data is stored
in a relational database but used by an object-oriented programming language, due

42

3. Graph Representation of Semantic 3D City Models

to the fundamental differences in how the data is represented between the two logic
models. For example, objects in an object-oriented programming language can reference
each other using object references, forming a directed graph. In contrast, a relational
data model organizes data in tuples and relations, which are linked together by JOIN
operations based on relational algebra (Codd, 1970). Since (natural or inner) JOIN
operations are symmetric, these links are bidirectional, forming an undirected graph.
Such conflicts involve many common object-oriented concepts, such as encapsulation,
accessibility, inheritance, polymorphism, and associations between classes and data
types that are more complex than those defined in SQL (Keller, 1997), as in the case
of the data models in XML, GML, and specifically CityGML. The 3D City Database
(3DCityDB) provided a database schema that effectively addressed these challenges,
while maintaining a relatively compact database structure and adhering to the naming
conventions of the CityGML data model. However, the design process for this schema
was highly manual.

Relational databases have proven to be highly effective in storing and managing
large-scale semantic 3D city models given in CityGML. However, the objectives of this
thesis extend beyond simply representing and storing CityGML datasets. It also aims
to further detect and interpret changes in the data, which requires frequent access to
the interrelationships between city objects. Due to the complex hierarchical structure
of CityGML elements and their multi-level deep relationships, a relational data model
would require a significant number of JOIN operations among many tables, rendering
it impractical for this purpose.

In this context, non-relational databases, also known as NoSQL databases, are often
employed as an alternative to their relational counterparts. A wide range of non-
relational databases exist to date, each with its own data models and applications,
including key-value store, tuple store, document-oriented store, object-oriented data-
base, and graph database. Non-relational databases do not follow the general principles
that are enforced by relational databases. For example, non-relational databases are
schema-less and thus more flexible in their ability to adopt structured, semi-structured,
and unstructured data models (Davoudian et al., 2018). This eliminates the need for
prior investments in the database schemas, which are typically required in relational
databases. In addition, instead of relying on SQL, non-relational databases often em-
ploy their own native query languages, omitting costly JOIN operations across tables.
Many non-relational databases trade off some of their Atomicity, Consistency, Isolation,
Durability (ACID) properties in exchange for improved scalability, availability, and
latency, particularly in web applications. However, some non-relational databases, such
as the graph database Neo4j, retain full ACID compliance.

While XML documents in general can be stored in a document-oriented database
(Bourret, 2005), which represents entire documents in a single instance, graph databases

43

3. Graph Representation of Semantic 3D City Models

are a more suitable choice for representing and managing CityGML documents due to
the graph-based nature of the CityGML data model. A graph database employs the
graph data structure as its fundamental concept to store information in the form of
vertices (or nodes) and edges (or relationships), each having its own properties. The
use of edges enables the explicit modelling and efficient querying of deep relationships
within the data.

Graph databases are particularly well-suited for handling highly interconnected data
(Davoudian et al., 2018). When compared to a relational database for counting the
number of nodes at a specific depth reachable from a start node, the graph database
Neo4j has been shown to deliver results up to ten times faster (Vicknair et al., 2010).
The nodes and edges used in the experiment were arranged in a DAG, with payloads
resembling the semi-structured data found in XML or JSON documents. Recent studies
have also shown that while relational databases excel at operations such as grouping,
sorting, and aggregation, graph databases outperform them in tasks such as joining
properties across multiple entities, pattern matching, and path traversal (Cheng et al.,
2019).

CityGML elements are defined in a graph-like structure, where the elements are
represented as vertices and their interrelations as directed edges. The relationships
between CityGML elements are complex, ranging from inheritance and polymorphism
to aggregation and composition. In addition, these edges can form (undirected) cycles
if XLinks are used to reference existing elements. All of these characteristics can be
effectively captured in a single graph. Figure 3.5 shows a graph representation of
the FZK-Haus building model, as outlined previously in Listing 3.1. In this figure,
the polygon geometries (blue) are referenced by both the corresponding boundary
surfaces (as the polygons are part of these surfaces) and by the element CompositeSurface
(through the use of XLinks).

3.1.6. Existing Graph Representations for GML and CityGML

Early adaptations of graphs for CityGML include the use of a graph-based schema
for storing, analysing and managing city objects (Falkowski & Ebert, 2009). The study
employed a directed graph called TGraph, where vertices and edges are typed, ordered,
and attributed. The model schema integrated many information aspects of CityGML,
including geometry, topology, semantic, and appearance.

Later, the potential of storing the graph representations of complex data models like
CityGML in a database was explored (Agoub et al., 2016). The difficulties of storing
and managing well-defined objects, attributes, and relations using an RDBMS were
discussed, and a lightweight method for mapping and storing objects of various OGC
standards in a graph database, such as Neo4j and ArangoDB, was provided.

44

3. Graph Representation of Semantic 3D City Models

Building

Roof
Surface

Roof
Surface

Wall
Surface

Wall
Surface Wall

Surface Wall
Surface

Ground
Surface

Multi
Surface

Multi
Surface

Multi
Surface

Multi
Surface Multi

Surface Multi
Surface

Multi
Surface

Polygon

Polygon

Polygon
Polygon

Polygon

Polygon

Polygon

Com-
posite

Surface

Solid

boundedByboundedByboundedBy boundedByboundedByboundedByboundedBy

lod2
Multi

Surface

lod2
Multi

Surface

lod2
Multi

Surface

lod2
Multi

Surface

lod2
Multi

Surface
lod2

Multi
Surface lod2

Multi
Surface

surface
Member

surface
Member

surface
Member

surface
Member surface

Member surface
Member

surface
Member

lod2Solid

exterior

surface
Member

surface
Member

surface
Member

surface
Member

surface
Member

surface
Member

surface
Member

Figure 3.5.: A graph representation of the CityGML building model FZK-Haus given in
Listing 3.1 and illustrated in Figure 3.3. The edges surfaceMember (blue) are
produced by resolving all XLinks in the CityGML document.

45

3. Graph Representation of Semantic 3D City Models

On the other hand, the versatility and extendability of graphs were showcased
in a study (Yao, 2020) aiming at enhancing the interoperability of CityGML ADEs
with established spatial relational databases, such as the 3DCityDB (Yao et al., 2018).
Graphs were used to represent both the XSD files of these ADEs and their associated
transformation rules. The transformed graphs could then be converted to corresponding
relational database schemas, allowing for the automatic integration of these ADEs.

A recent research (Ding et al., 2024) proposed a knowledge graph (Hogan et al., 2021)
in Resource Description Framework (RDF) structure to represent CityGML datasets.
This graph was built upon the 3DCityDB (Yao et al., 2018), utilizing an ontology
designed for CityGML3. This approach enabled integration of external data, such as
from OpenStreetMap (OSM), which could be queried using the OGC standard query
language GeoSPARQL. The use of a knowledge graph and its associated query language
simplified the query process, eliminating the need for complex SQL queries. However,
the knowledge graph’s structure may not fully align with the CityGML data model,
as it was derived from the relational 3DCityDB. Moreover, the ontology was manually
tuned and required manual extension, such as to incorporate properties present in
the CityGML documents but absent in the ontology. Furthermore, the ontology and
its associated mapping rules were designed for CityGML version 2.0 and would need
to be revised to accommodate the newer version 3.0. An automated approach was
later proposed (Vinasco-Alvarez et al., 2024) to transform the conceptual UML model
of CityGML version 3.0 into Web Ontology Language (OWL). However, the resulting
ontologies would require more complex rules to handle changes in cities.

In another study, graphs were used to represent IndoorGML documents, an OGC
standard for indoor spatial information, to enhance indoor navigation efficiency (Jang et
al., 2023). These labelled and attributed graphs were stored in the graph database Neo4j,
providing an accurate representation of IndoorGML features and their interrelationships.
The graph structure allowed for the application of graph algorithms, such as the
Dijkstra’s algorithm for determining the shortest paths from one node to all other nodes
in the graph (Dijkstra, 1959). This could be applied to identify the optimal route between
two rooms inside a building, a task that would have been difficult using a relational
database. However, the authors did not directly convert input IndoorGML documents
into graphs. Instead, IndoorGML documents were first converted to key-value pairs,
similar to those in the JSON format. However, this structure had inherent limitations
and could not capture all information available in XML and GML documents, inevitably
leading to information loss without any control mechanism in place. Additionally, the
employed rules for mapping nodes and relationships were manually defined for each
object type, which could present challenges for adaptability and extendability.

3https://cui.unige.ch/isi/ke/ontologies

46

https://cui.unige.ch/isi/ke/ontologies

3. Graph Representation of Semantic 3D City Models

Semantic graphs, or knowledge graphs, have been proposed not only to represent, but
also to store, manage, and compare CityGML documents. Recent studies (Nguyen et al.,
2017; Nguyen, 2017; Nguyen et al., 2018) addressed the challenges of detecting changes
between different temporal versions of the same CityGML document. This comparison
was performed not directly between the CityGML text files but rather between their
graph representations. The implementation for the mapping of CityGML objects onto
graphs, stored in the graph database Neo4j as provided by these studies, was one of the
first open-source implementations that could directly map arbitrarily large CityGML
documents onto graphs. However, these mapping methods were implemented based on
a set of mapping rules manually defined for specific object types of CityGML version
2.0, primarily covering only the core and building module.

Graphs are also employed in other application fields such as for the automatic
conversion of the Industry Foundation Classes (IFC) exchange format in Building
Information Modelling (BIM) to CityGML (Stouffs et al., 2018). This leveraged the
expressiveness of graphs, essentially using them for transformation of data from or to
the CityGML format. In another example, ‘surface-line’ graphs are utilized to represent
3D building models from various input exchange formats, such as OBJ, COLLADA,
and CityGML (Mao & Li, 2019). These graph representations are then divided into
subgraphs based on the adjacency properties of the building geometries, enabling
detection of key semantic elements. This allows for sustainability analyses, particularly
energy simulations.

The majority of the studies mentioned above employed graph representations to
achieve various objectives, including the storage, management, analysis, visualization,
transformation, and comparison of GML or CityGML datasets. They accomplished this
by utilizing an abstraction or a subset of the underlying data model, such as CityGML,
and manually defining graph mapping rules. This thesis, however, presents a universal
approach that can (1) accurately map any objects available in both CityGML versions
2.0 and 3.0 across all LODs and thematic modules, ensuring minimal information
loss, (2) reconstruct the created graph representations back into their original CityGML
objects when required, and (3) accomplish these tasks without any manual rules or
the need for conversion to an intermediate structure such as relational tables or the
key-value pairs.

3.1.7. The Graph Database Neo4j

In this thesis, the graph database Neo4j is employed as a central tool for the persistent
storage and database management of graph representations of CityGML datasets. Neo4j
is a native graph database management system developed by Neo4j, Inc. It is one of the
most popular and widely used graph databases worldwide (Fernandes & Bernardino,

47

3. Graph Representation of Semantic 3D City Models

2018). The core components of Neo4j are implemented in Java, but the database can
be accessed from applications written in many other programming languages, such as
TypeScript and Python, through the use of drivers. Neo4j is available in several products
and licences. This thesis employs the open-source Neo4j Community Edition (Neo4j,
Inc., 2023), which is licensed and distributed under GPL v3 (GNU, 2023).

In Neo4j, vertices and edges of a graph are stored as nodes and relationships,
respectively. In this thesis, the term ‘vertex’ is used to refer to the mathematical concept
in graph theory, while the term ‘node’ is used to refer to the corresponding entities
in a graph database or network. Similarly, the term ‘edge’ refers to the mathematical
concept, while the term ‘relationship’ refers to the corresponding entities in a graph
database or network.

In Neo4j, nodes are identified by their labels, while relationships are distinguished
by their types. Both labels and types serve the same purpose of categorizing nodes and
relationships and can thus be used interchangeably. However, to maintain consistency
with Neo4j terminology, this thesis employs the term ‘labels’ when referring to nodes
and ‘types’ when referring to relationships.

Node labels and relationship types are used to index nodes and relationships, re-
spectively, thus enabling more efficient querying. While a node can have any number of
labels, including none, each relationship must be assigned with exactly one relationship
type. Although relationships are defined as directed connections between start and end
nodes, they can be traversed in both directions during queries in Neo4j.

Neo4j is a property graph (Vukotic et al., 2014), meaning each graph entity can be
further described using properties. Numeric and character-based properties, such
as integers, real numbers, and strings, are stored in nodes and relationships as a
collection of key-value pairs. For example, a node representing a building can be
labelled as Building and assigned with values such as its identifier and modification
date. Figure 3.6 illustrates an example of how such a building and its bounding shape
can be represented as nodes and relationships in Neo4j.

Although it is possible to store properties in relationships in Neo4j, in this thesis, most
useful non-structural data imported from CityGML documents are stored exclusively
in nodes. The majority of properties stored in relationships are auxiliary and reserved
internally for further processing.

Neo4j is a schema-less database, meaning it does not impose any specific requirements
on the contents and structure of nodes and their relationships. Instead, the data
model is implicitly derived from the data stored within the database, rather than being
explicitly defined as a component of the database itself (Vukotic et al., 2014). This
allows for efficient and flexible handling of various CityGML objects, eliminating the
need to account for all potential combinations that could arise from their data schema.
However, this also means that Neo4j is better suited for storing specific instances of

48

3. Graph Representation of Semantic 3D City Models

:Building
id: “DEBY_LOD2_1234567”
creationDate: “2023-01-01”

:Bounding_Shape
:Envelope

srsDimension: 3
srsName: “EPSG:25832”

:Direct_Position
value: (576285, 5950030, 28)

:Direct_Position
value: (576300, 5950043, 30)

:boundedBy

:envelope

:lower-
Corner

:upper-
Corner

Figure 3.6.: An example of a building and its bounding shape represented as nodes
and relationships in Neo4j. Node labels and relationship types are denoted
by a preceding colon ‘:’. Node properties are shown in blue. This bounding
shape will be automatically calculated and mapped onto graphs for each
city object with a spatial extent, such as a building or a building part.

object classes, rather than the object classes themselves. The database lacks support for
object-oriented concepts such as inheritance, polymorphism, and encapsulation. As
a result, mapping CityGML objects onto graphs in Neo4j, despite their semantic and
structural similarities, requires additional handling to ensure minimal information loss.
These mapping strategies are explained in Section 3.3.

The concepts and methods proposed in this thesis have been tested and evaluated
using Neo4j. However, they are also applicable to other graph databases with similar
data models and structures as explained in this section.

3.2. Graph Data Model for CityGML

Section 3.1.6 discussed several graph models used to represent CityGML documents.
However, many of them were tailored to specific purposes, such as navigation or
transformation. They often employed intermediate formats like JSON during conver-
sion, leading to substantial information loss. This study proposes a graph data model
compatible with both the CityGML data model and the graph database Neo4j, while
minimizing information loss. This section addresses Research Question RQA3 (Graph
Data Model for CityGML).

49

3. Graph Representation of Semantic 3D City Models

3.2.1. Requirements on Input CityGML Documents

While the methods presented in this chapter exhibit high robustness and generality,
certain prerequisites regarding the input CityGML datasets must be met to ensure
both the accuracy of the resulting graphs and the optimal performance of the mapping
process. These prerequisites include:

1. Adherence to the CityGML Information Model: All input CityGML documents
must strictly adhere to the underlying CityGML information model and its en-
coding schemas. This adherence allows for all elements to be correctly recognized
and mapped onto their respective graph representations, minimizing any unneces-
sary deviations between the original CityGML documents and their graph-based
counterparts.

2. Exclusion of Circular Referencing: This study only considers semantic inter-
relationships in CityGML that are defined with an explicit direction pointing
from an object ‘downwards’ to its member part-of components. This establishes
a consistent ‘semantic order’ throughout the dataset and, consequently, in its
corresponding graph representation. Therefore, the use of XLinks in CityGML
documents must also follow this coherent order, strictly allowing only parent
objects to reference their respective components. Otherwise, circular referencing
may occur, potentially causing the mapping process to fail to terminate or produce
incorrect results. Therefore, any circular references must be excluded from the
input CityGML datasets before mapping.

3.2.2. Modelling Nodes

Each CityGML element, based on its structural complexity, can be represented as a
subgraph, a single graph node, or a node property. For example, a building, which
contains many sub-elements, is represented as a subgraph. In contrast, simpler elements
such as geometric points can be stored as individual nodes, with their coordinates
stored as node properties. These different forms of representation are outlined as
follows:

1. Node Properties: This applies to CityGML attributes or simple element with a
single value that can be expressed in plain text.

2. Single Node with Properties: This applies to simple CityGML elements that
possess more than one property or attribute value, which are stored as properties
of the node.

3. Subgraph: This applies to complex CityGML objects with multiple sub-elements.

50

3. Graph Representation of Semantic 3D City Models

Additionally, labels can be assigned to nodes to group or distinguish them. These
labels may represent the types or groupings of corresponding CityGML objects, indicate
whether the elements belong to the old or new input dataset, or any other categories
necessary for the process. To reflect the hierarchical structure of CityGML object types,
two strategies for assigning node labels exist:

1. Full Hierarchy: This strategy stores the entire hierarchy of an object, spanning
from the lowest subclass to the highest superclass, with each label representing a
class. For instance, using this approach, a building node would require six labels:
Building, AbstractBuilding, AbstractSite, AbstractCityObject, AbstractFeature, and
AbstractGML. This hierarchy is shown previously in Figure 3.4. This approach
allows for more compact but powerful semantic queries, as nodes can be queried
based on any class within the class hierarchy. However, this requires a significant
amount of additional disk space, as labelled nodes are indexed and a large
number of classes exist in the class hierarchy of CityGML. The query time may
thus be drastically slower in many databases, especially in Neo4j.

2. Single Class: In this strategy, only the lowest subclass (i.e., the defining class) of
the corresponding CityGML object is assigned as a label to the representing node.
For example, a building node would have exactly one label for its type: Building.
The major advantage of this approach is the much smaller disk space required for
indexing, as only a small number of classes are stored as labels. This accelerates
query runtime significantly. However, queries that operate on more general or
abstract classes require additional handling.

As (1) some superclasses, such as AbstractGML, may cover a large number of objects
in CityGML, (2) indexing has a major impact on query runtime in Neo4j, and (3)
type checking (i.e., determining whether a class is a subclass of another class) is
well-supported in most object-oriented programming languages, the latter approach
Single Class is employed in this thesis. Thus, the majority of nodes in the graph
representations produced in this thesis contain two labels: one indicating its type and
another specifying its originating CityGML document.

3.2.3. Modelling Relationships

In Neo4j, nodes are interconnected through relationships. Unlike nodes, each relation-
ship must have exactly one relationship type. This type is used to represent the semantic
connection between two nodes, which in turn represent two CityGML elements. The
majority of these relationship types are derived from the CityGML data model itself.
For example, the connection boundedBy between a building and its bounding shape,

51

3. Graph Representation of Semantic 3D City Models

and the connection boundedBySurface between a building and its boundary surfaces, as
shown in Figure 3.4.

The relationships are directed, starting from parent nodes and pointing towards their
child nodes. This reflects the semantic order given in the CityGML data model. As a
result, all contents of a building can be retrieved by traversing ‘downwards’ along the
directed relationships starting from a node representing this building. Despite being
directed, relationships in Neo4j can be traversed in both directions.

While traversing in one direction ‘downwards’, there are two types of multiplicities
for relationships: one-to-one and one-to-many. These are the direct results of the
one-to-one and one-to-many (aggregation) relationships in the CityGML data model.
For instance, a building has exactly one bounding shape but multiple boundary roof,
wall, and ground surfaces.

Many-to-many relationships can also be represented in relationships that can be
traversed bidirectionally. For instance, a wall may belong to two adjacent rooms that
share it (commonly achieved via the use of XLink), while each room can be bounded
by multiple walls and other surfaces.

Like nodes, relationships in Neo4j can also be assigned with properties. However,
most of the substantial content in the CityGML data model and its citygml4j objects, such
as identifiers and thematic properties, is stored within CityGML elements rather than
their connections. Thus, this is also reflected in the corresponding graph representations.
If properties exist in a relationship, they are stored similarly to node properties. In
this thesis, relationship properties primarily serve internal, auxiliary functions, such as
those used during the interpretation process, as will be further explained in Chapter 5.

3.3. Methods for Mapping CityGML Objects onto Graphs

As mentioned in Section 3.1.1, the CityGML data model allows for the storage and
exchange of various types of important information in city objects, including their
semantic, geometric, and topological properties (Gröger et al., 2012). Addressing the
first half of Research Question RQA4 (Mapping Methods and Evaluation), the mapping
algorithms proposed in this thesis are designed to preserve these types of information4

in the graph representations of CityGML documents. At the same time, they aim to
maintain the structure of the resulting graphs as aligned with the CityGML data model
as feasible. This approach allows users, both familiar and unfamiliar with CityGML,

4In CityGML, appearances can contain any surface-based theme. This includes not only visual or
observable (geo-referenced) textures, but also other information sources such as infrared or solar
radiation. Processing and matching such visual information involve research across multiple domains
and are therefore beyond the scope of this research.

52

3. Graph Representation of Semantic 3D City Models

to navigate its graph representations effectively. Moreover, this approach eliminates
information loss in all tested datasets, as will be shown in Section 3.5, thereby enabling
converting graphs back to their respective CityGML objects.

The mapping methods used to construct graph representations of CityGML docu-
ments are shown in Algorithms 1 and 2. The first method map(source) initiates necessary
parameters and invokes its auxiliary method map(source, visited).

Algorithm 1: Graph mapping method map(source)
Input : In-memory object-oriented representation source of a CityGML object
Output : Graph representation node of that CityGML object

1 visited← new key-value map with objects as keys and mapped nodes as values
2 return map(source, visited)

The algorithms mentioned above employ several techniques and strategies, which
are explained in the following sections.

3.3.1. Recursive Mapping

Most of the mapping process is executed within the second method map(source, visited)
shown in Algorithm 2. This method is recursive (refer to Lines 13 and 26) and operates
in a top-down manner. It starts with a given object, followed by its sub-elements, then
the sub-elements of those sub-elements, and so forth. The process terminates when
there are no more elements left for mapping. This is summarized as follows:

1. For each input object, an empty node is created in the graph, and the object’s
type is stored as the label of this node.

2. Each ‘simple’ attribute of the object is stored as a node property.

3. Each ‘complex’ attribute of the object is mapped as a node by recursively applying
this method. The resulting nodes are then connected together to form a subgraph.

Section 3.3.6 explains when object attributes can be considered ‘simple’ or ‘complex’.

3.3.2. Avoiding Circular References

Object-oriented representations of CityGML elements, such as those produced using
citygml4j, may contain references that form cycles among objects. This may be caused
by the use of special properties such as references to parent objects. These could lead to
endless loops in the subsequent matching and interpretation process. Therefore, such
circular references are excluded from mapping.

53

3. Graph Representation of Semantic 3D City Models

Algorithm 2: Recursive graph mapping method map(source, visited)
Input : In-memory object-oriented representation source of a CityGML object

Key-value map visited storing visited objects and corresponding nodes
Output : Graph representation node of that CityGML object

1 if visited.hasKey(source) then return visited.getValue(source)
2 node← a new empty graph node
3 visited.add(source, node)
4 class← source.getClass()
5 node.addLabel(class)
6 if class is array then
7 node.addProperty("arrayMemberType", source.getArrayMemberType())
8 node.addProperty("arraySize", source.getArraySize())
9 for index← 0 to node.getArraySize()− 1 by 1 do

10 if isSimple(source[i]) then
11 node.addProperty("arrayMember_" + index, source[i])
12 else
13 child← map(source[i], visited)
14 rel← create a relationship ARRAY_MEMBER from node to child
15 rel.addProperty("arrayMemberIndex", index)
16 end
17 end
18 else
19 while class ̸= null do
20 foreach non-static property prop declared in class do
21 value← source.getProperty(prop)
22 if isSimple(value) then
23 node.addProperty(prop, value)
24 node.addProperty(prop + "Type", value.getClass())
25 else
26 child← map(value, visited)
27 create a relationship with type prop from node to child
28 end
29 end
30 class← class.getSuperClass()
31 end
32 end
33 return node

54

3. Graph Representation of Semantic 3D City Models

In addition, the use of XLinks can also lead to circular interlinking, particularly
when an object references its ancestors. To avoid such cases, this study only considers
CityGML documents that employ XLinks in a strictly ‘downwards’ semantic direction,
as mentioned in Section 3.2.1. Such cycles can be identified during mapping by tracking
visited elements, similar to the strategy described in Section 3.3.3.

3.3.3. Preventing Repeated Mapping

The CityGML data model is defined with a complex web of interconnections between
its elements. As a result, the in-memory representations of these elements contain a
large number of pointers or references to other objects. Despite the exclusion of directed
cycles, these objects are prone to repeated mapping without an effective repetition
prevention mechanism. This is illustrated in the following example of a building with
several boundary roof, wall, and ground surfaces. The 3D shape of the building is
represented by a solid geometry that includes these boundary surfaces as its sides.
This solid reuses the already defined boundary surfaces through the use of XLinks.
However, due to the recursive, top-down nature of the proposed mapping methods,
which process an object along with all its sub-elements, each boundary surface of the
building would be mapped onto graphs twice, even though the object’s structure does
not contain any directed cycles.

To prevent duplicates of the same objects in the resulting graphs and to ensure the
process terminates correctly, a key-value store, denoted as visited in Algorithm 2, is
employed. This store is essentially a map over tuples of type (Object, Node), where the
objects serve as keys and their corresponding graph representations serve as values.
The keys are unique, as each object is identified by their allocated address in main
memory. As previously mentioned, a graph representation of an object may be a
single node or a subgraph containing many nodes and relationships, depending on the
complexity of the given object. In the former case, the single generated node is stored
as the value, along with its corresponding object, in a key-value pair. In the latter case,
the source node of the generated subgraph is selected as the value of the key-value pair.
A (universal) source node of a directed graph can be considered as a starting point,
from which all other nodes within the graph can be reached.

During mapping of each object, the process first determines whether the object
has been previously visited and mapped by searching for a corresponding key in the
key-value map (refer to Line 1). The mapping continues only if the key does not
exist, indicating that the object has not been visited before. Otherwise, the previously
mapped node or subgraph assigned to this object is returned instead. This ensures that
no object is mapped more than once, and references between objects can be accurately
represented.

55

3. Graph Representation of Semantic 3D City Models

3.3.4. Mapping Arrays

In CityGML, many elements are given in a one-to-many or many-to-many relationships.
These relationships are stored using various data structures for collections, such as
(dynamic) arrays, linked lists, and key-value maps. In Java, arrays are particularly
common, as they are also used internally by many other data structures. For instance,
array lists or some key-value maps store their data in a built-in array. Therefore, the
ability to map arrays of objects onto graphs is essential (refer to Line 6), as it also allows
for mapping more complex data structures that utilize arrays.

An array with simple elements is represented as a collection of key-value pairs,
following Neo4j’s graph data model discussed in Section 3.1.7. For complex member
types, the array is mapped as a collection of nodes, with each node representing a
member object, and the structure is recursively mapped until all contents are captured.

The auxiliary node properties arrayMemberType, arraySize, arrayMember_i, as well as
the auxiliary relationship property arrayMemberIndex are needed for reconstructing
graph representations back to their original corresponding arrays. This reconstruction
process will be explained in Section 3.6.

3.3.5. Extracting Sub-elements

All contents available within an object must be mapped onto graphs. These include
properties declared in the object’s defining class, as well as those inherited from the
object’s superclasses within the class hierarchy. For instance, as shown in Figure 3.4, a
building object contains properties declared in its defining class Building, along with
those inherited from its superclasses: AbstractBuilding, AbstractSite, AbstractCityObject,
AbstractFeature, and AbstractGML.

However, due to data encapsulation in object-oriented modelling, an object can only
inherit non-private properties declared in its superclasses. In such cases, an alternative
is to utilize the read-only getter methods to extract the same information. However,
this approach depends on the existence and visibility of such methods. Typically, getter
methods are defined with non-private access modifiers.

Algorithm 2 performs a bottom-up search for all sub-elements of a given object (refer
to Line 20). It first extracts all properties declared in the object’s defining class, which
is the lowest within the class hierarchy. These properties must be non-static, since static
properties are bound to their respective classes and exist only once for all instances.
The process then moves ‘upwards’ to the next superclass in the hierarchy, continuing
extracting properties until it reaches the highest superclass (refer to Lines 19 and 30).

In statically typed languages such as Java, extracting properties from objects can be
achieved using reflective programming, also known as reflection (McCluskey, 1998).

56

3. Graph Representation of Semantic 3D City Models

In object-oriented modelling, two types of inheritance exist: single and multiple
inheritance. Single inheritance restricts a subclass to inherit from at most one superclass,
while multiple inheritance enables a subclass to inherit from more than one superclass.
Due to the substantial increase in complexity and ambiguity of multiple inheritance,
this research exclusively applies single inheritance to all models. This approach aligns
with the CityGML data model and is enforced by the majority of object-oriented
programming languages, including Java. The use of single inheritance ensures that all
superclasses of a given object can be sequentially iterated along a single path.

3.3.6. Evaluating Sub-elements’ Complexity

Adhering to the graph data model presented in Section 3.2, Algorithm 2 initiates its
recursive calls based on the complexity of the input objects and their properties. If
an object property is ‘simple’, it suffices to store it as a node property. However, for
sub-elements that are sufficiently complex, the method will be recursively invoked
again (refer to Lines 10 and 22). Whether an object is considered ‘simple’ in this context,
is determined by the method isSimple(source). A flowchart illustrating this method can
be found in Figure 3.7.

This method evaluates the complexity of objects through three consecutive checks:

1. It first verifies whether the source object is of a primitive type,

2. If not, it determines whether the object contains exactly one value of a primitive
type, and

3. If none of the above applies, it tests whether the source object can be efficiently
stored and compared using a single string representation.

The first check is applied to primitive data types, such as booleans (true, false), natural
and floating numbers, and texts. These types account for the majority of the actual
information payload in the CityGML datasets. The second check prevents the creation
of redundant nodes for an object that has only one primitive value. In this case, a single
node property is created instead of two additional nodes. The third check is designed
to handle more complex objects that can still be stored and compared efficiently using
their corresponding text representation.

For instance, the modification date and number of storeys of a building are of
primitive type and thus considered simple. As a result, they are stored as properties
within the building node. On the other hand, measurements are considered complex
and are stored as nodes. This is because each measurement contains a value and a
unit. To facilitate the comparison of measurements during the matching process, as will
be discussed in Chapter 4, the value and unit of a measurement are stored separately

57

3. Graph Representation of Semantic 3D City Models

Start

Input source

source is of
primitive type

source has only
one value of

primitive type

Output true

source can be stored
and compared easily

using one string

Output false

Stop

Stop

yes

no

yes

no

yes

no

Figure 3.7.: A flowchart visualization of the method isSimple(source). The method re-
turns true if the source object can be represented as a single node property.
Otherwise, additional nodes or subgraphs are created to represent this
source object. The primary objective of this method is to provide a uni-
fied approach for representing CityGML objects of arbitrary complexities,
thereby increasing the runtime efficiency of the matching process intro-
duced later in Chapter 4.

as properties within a node. This allows for efficient comparison of measured values
with unit conversion and measurement errors taken into account, such as in the case of
1.001 m and 100.101 cm, which are considered equal for an error tolerance of 1 mm.

58

3. Graph Representation of Semantic 3D City Models

3.4. Resolving XLinks

As an XML-based encoding, CityGML utilizes XLinks (W3C, 2006) to define new
connections among city objects. This not only allows for reusing existing objects,
but also enables the definition of more complex semantic, geometric, and topological
relationships between CityGML objects. Moreover, as will be explained in Section 6.1,
the XLink concept is also utilized to divide a large CityGML document into smaller,
more manageable pieces.

However, by solely applying the mapping methods outlined in Algorithms 1 and 2
to CityGML documents containing XLinks, the resulting graph representations become
fragmented. For instance, the graph representation of a building’s solid geometry
becomes disconnected from those representing its boundary surfaces. This is because
the solid is defined as a collection of XLink references to these boundary surfaces,
but XLink elements do not contain any further sub-elements other than a text field.
This results in the termination of the mapping of the current elements at their XLink
elements, leaving the graphs disjointed.

Given the significance of XLink connections as a source of semantic information,
they must be present as explicit relationships in the underlying graph representation
of CityGML documents. The method for resolving XLinks is outlined in Algorithm 3,
addressing Research Question RQA5 (XLink Resolution).

Algorithm 3: Method for resolving XLinks resolveXLinks(graph)
Input : Graph representation graph of a CityGML model containing XLinks
Output : Graph representation graph updated with resolved connections

1 hrefNodes← all nodes of graph that have property href
2 idNodes← all nodes of graph that have property id
3 foreach node hrefNode in hrefNodes do
4 id← hrefNode.getProperty("href").remove("#")
5 idNode← a node in idNodes uniquely identified by id
6 rel← create a relationship object from hrefNode to idNode
7 hrefNode.removeProperty("href")
8 rel.addProperty("wasXLink", true)
9 end

The process for resolving XLinks begins by searching for all nodes in the given graph
that contain the property href. This property, as prescribed in XLink, is used to reference
other objects via their identifiers. An example of an href is ‘#ReferencedID’, where the
prefix ‘#’ is employed in XLink to distinguishes href properties from identifiers. For
each node with the property href, its value is extracted. The referenced identifier is

59

3. Graph Representation of Semantic 3D City Models

obtained by removing the prefix ‘#’ from this value. The method then searches the
graph for a node that uniquely matches this referenced identifier. Finally, a relationship
is established in the direction from the href node to this referenced node, serving as an
explicit representation of the XLink connection. An illustration of this process is shown
in Figure 3.8. Several strategies and methods employed in this process are explained in
the following sections.

3.4.1. Separation of Graphs for each City Model

In this thesis, the graph representations of both the old and new CityGML dataset
are stored in the same graph database. As a result, all nodes and relationships of
both graphs are organized under the same sets of database indexes. This means that
(1) for each href value, there may exist two nodes with the same matching identifier
originating from each dataset, and (2) vice versa, when searching for href nodes, those of
both resolved and unresolved XLinks may be returned. Without a distinction between
nodes originating from each dataset, unrelated nodes across the two datasets may be
connected with each other, leading to incorrect representations of XLinks.

Therefore, to address this issue, the following strategies are employed:

1. The graph representations of both the old and new dataset must be distinct,
sharing no common nodes. Moreover, a mechanism to differentiate nodes based
on their originating dataset is required. This can be achieved by utilizing an
additional label indicating the originating dataset for all nodes during mapping.

2. The method for resolving XLinks outlined in Algorithm 3 must be invoked twice,
one for each CityGML dataset after it has been mapped onto graphs.

3.4.2. Strategies on Finding Nodes for Interlinking

Database indexes can be employed to efficiently locate all nodes containing an href
property or an identifier (refer to Lines 1 and 2), as well as to search for nodes with
a specific identifier (refer to Line 5). In Neo4j, indexing can be applied to nodes with
specific labels and property names. While property names are simply either ‘href’ or
‘id’, a large number of labels exist, as different types of nodes can be assigned with
these properties. There are two strategies to index and obtain these labels:

1. Hierarchical Approach: As explained previously in Section 3.2.2, the class name
of each object is assigned as label of their corresponding node representation.
This label can be extracted and evaluated within its class hierarchy. According to
the data models of GML and CityGML, the use of the properties href and id is
defined in specific superclasses. This behaviour is inherited by various subclasses,

60

3. Graph Representation of Semantic 3D City Models

Composite-
Surface

Surface-
Property
href = #1

Polygon
id = 1

Surface-
Property
href = #2

Polygon
id = 2

Surface-
Property
href = #3Polygon

id = 3
Surface-
Property
href = #4

Polygon
id = 4

Surface-
Property
href = #5

Polygon
id = 5

Surface-
Property
href = #6 Polygon

id = 6

Surface-
Property
href = #7

Polygon
id = 7

surfaceMember object

Figure 3.8.: An illustration of the resolution of XLinks in the graph representation of a
solid’s CompositeSurface in CityGML. For every matched pair of href and
id node (yellow and green, respectively), an explicit relationship (red) is
created. Without these connections, the resulting graph would become
disjointed. The node CompositeSurface in the centre (orange) represents the
exterior of a building’s solid. The corresponding CityGML model of this
building is given in Listing 3.1. For visual clarity, relationships are shown
without direction. A separate visualization of the graph representation of
this building is shown in Figure 3.4 (without SurfaceProperty nodes).

61

3. Graph Representation of Semantic 3D City Models

whose instances are mapped and present in the graphs. For example, in citygml4j,
the definition of the property id of all CityGML objects can be traced back to one
single superclass AbstractGML (see the content of this class in the example of a
building object shown in Figure 3.4). In the case of href, the superclass Association-
ByRepOrRef is the defining class. Thus, in this case, nodes can be indexed and
subsequently obtained, if the class represented by their labels are a subclass of
the superclasses mentioned above.

2. Cumulative Approach: During mapping, when the properties href or id are
encountered, the labels of their corresponding container nodes are stored in a list.
After the mapping process is complete, these stored labels are extracted and used
for defining indexes.

The hierarchical approach has the advantage of recognizing the superclasses and their
subclasses in advance, allowing for the definition of indexes prior to mapping. During
the mapping process, when the input object is an instance of the specified superclasses,
its corresponding node is indexed. However, this approach requires strict adherence of
the node labels to the hierarchical structure of GML, CityGML, and citygml4j, which
must be known in advance.

On the other hand, the cumulative approach is not limited by this constraint. It
dynamically collects labels of nodes that have the properties href or id while mapping,
making it more adaptable and applicable to any data model. Moreover, no type-
checking of classes is required in this case. However, this means that index definitions
can only be performed after the core mapping process is complete, once all node labels
for indexing are known.

Since the graph database Neo4j allows index definitions both before and after the
node creation, the more flexible, cumulative approach is employed in this thesis.

3.4.3. Connecting href and Referenced Nodes

For each pair consisting of an href node and its corresponding referenced node, an
explicit relationship is established (refer to Line 6), pointing from the href node to the
referenced node. The type of this relationship is determined based on the semantic
context of the href node and its link to the referenced node in the underlying encoding.
In citygml4j, all objects containing the property href are instances of the class Association-
ByRepOrRef. Therefore, all relationships representing XLink connections are created
with type object, as dictated by the class AssociationByRep, which is a superclass of
AssociationByRepOrRef. As a result, once these relationships are in place, there will be
no structural distinction between a graph representation of an object defined using an
XLink and one defined without it.

62

3. Graph Representation of Semantic 3D City Models

Although not mandatory, the following supplementary steps can be performed after
the XLink connections have been resolved:

1. Removal of the Node Property href : The property href becomes redundant and
can be removed (refer to Line 7). This ensures that the subsequent matching
process does not register any unnecessary changes on this type of properties,
since the matching process does not differentiate between objects defined with or
without an XLink. This removal of the property href also enables the distinction
between resolved and unresolved XLinks in the graphs.

2. Addition of the Relationship Property wasXLink: To indicate that an XLink
connection has been replaced by an explicit relationship, an additional property
wasXLink with value true can be added to the relationship (refer to Line 8). This
is particularly useful for tasks such as reconstructing graph representations back
into their original CityGML objects, as will be described in Section 3.6.

The method outlined in Algorithm 3 operates under the assumption that the input
CityGML datasets are valid and adhere to the encoding standards of XML, GML, and
CityGML. For instance, while there may be multiple href values pointing to the same
identifier, each referenced identifier must be found in exactly one node per dataset.

3.5. Evaluating Information Preservation in Generated Graphs

The graphs created using the methods proposed in this chapter serve as a basis for sub-
sequent processes, including but not limited to the change detection and interpretation
process in Chapters 4 and 5. Therefore, it is crucial to ensure that the generated graphs
can (1) accurately capture all substantial thematic details available in the input datasets,
and (2) closely mirror the semantic structure of the original CityGML documents,
thereby minimizing or preventing any discernible loss of information. This section
addresses the last half of Research Question RQA4 (Mapping Methods and Evaluation).

3.5.1. Assessing Mapped Thematic Content

To evaluate how accurately a graph representation of a CityGML document can capture
its thematic content, several indicators are involved:

1. Coverage: Each CityGML element has a corresponding representation in the
graphs. This representation can be a property of a node or a relationship, an indi-
vidual node or relationship, or even a subgraph consisting of multiple nodes and
relationships. The node labels and relationship types must align with the types
of their original CityGML elements. The coverage is determined by examining:

63

3. Graph Representation of Semantic 3D City Models

a) Type Coverage: Whether all types of CityGML objects have been mapped at
least once to corresponding graph entities, and

b) Instance Coverage: For each type of CityGML objects, whether all instances
have been mapped to corresponding graph entities.

A graph representation is considered to have a high type and instance coverage
if it exhibits both a high number of mapped CityGML types and occurrences
per type in relation to the total number of CityGML types (determined by the
CityGML data model) and occurrences per type (determined by the datasets),
respectively. The aim is to ensure that the generated graphs achieve 100 % type
and instance coverage.

2. Data Replication: Most substantial thematic data of CityGML objects is given as
attributes or text contents, such as the properties of buildings, and names and
values of generic attributes. It is crucial not only for the generated graphs to
include these sources of information but also to accurately preserve their data.
Simple plain texts, such as the function or description of a building, must be
stored in the corresponding graphs exactly as presented. More complex data,
such as point coordinates, can be represented differently from those in the original
datasets, but the content itself must remain the same. Therefore, the objective is
to attain a 100 % data replication rate, indicating that all thematic data available
in the original CityGML datasets is accurately replicated in the generated graph
representations.

3.5.2. Assessing the Semantic Structure of Mapped Graphs

The semantic structure of the generated graph representations of CityGML documents
is evaluated based on the following indicators:

1. Relationship Coverage: For any two elements in the original CityGML documents
that are in a parent-child relationship, there must also be a corresponding path
between the node representations of these CityGML elements in the generated
graph. The length of this path is not strictly limited to one, as additional (auxiliary)
graph nodes may be created in between. However, this length must remain
consistent in the case of multiple children of the same type under the same parent.
The graph must also reflect the number of children per type for each CityGML
element in the original CityGML documents by ensuring the same number of
paths between the parent node and its ascendant nodes of that type. Like the
order of the children under the same parent element in CityGML, the order of
their graph representations do not play any role. The objective is to maximize the

64

3. Graph Representation of Semantic 3D City Models

coverage of these graph paths representing the parent-child relationships in the
original datasets to 100 %.

2. XLink Replacement: The XLink connections in the CityGML documents must
be represented as explicit relationships between existing nodes in the generated
graphs. This replacement should apply consistently across all elements, eliminat-
ing structural deviations between CityGML elements defined with and without
the use of XLinks. The aim is to ensure that the generated graphs can achieve a
replacement rate of 100 % for all valid XLinks. In addition, the evaluation must
ensure that no directed cycles occur during the replacement of XLinks, as required
in Section 3.2.1.

3.5.3. Evaluation Results of all 14 CityGML Modules and 5 LODs

A graph is considered an accurate representation of a CityGML document if it can
entirely capture both the source’s thematic and structural content. Using the strategies
described above, this section evaluates the preservation of thematic and structural
information within the generated graph representations of CityGML documents.

The evaluation applies the proposed methods outlined in Algorithms 1 to 3 to two
types of datasets: the FZK-Haus datasets (KIT IAI, 2017) in all five LODs from 0 to 4,
and the Railway-Scene dataset (Häfele & Nagel, 2015) in LOD3 that employs all fourteen
thematic modules of CityGML. These six datasets ensure that the proposed methods
can reliably handle a wide variety of CityGML elements.

A visualization of the FZK-Haus dataset in LOD2-4 can be found in Figures 3.3, 3.9a,
and 3.9b, respectively. Figure 3.10 shows a combined 3D rendering of various CityGML
objects from the Railway-Scene dataset.

A visualization in Neo4j Browser of the graph representation of the FZK-Haus dataset
in LOD2 and its single building are shown in Figures 3.11 and 3.12, respectively. The
results of the XLink resolution process, as outlined in Algorithm 3, is illustrated in
Figure 3.13.

Table 3.2 provides a comprehensive overview of the evaluation results regarding
the preservation of both semantic and structural information in the generated graph
representations of all six CityGML documents. This table is an excerpt, showing only
the first and last two pages of the full version in Table A.1.

To evaluate the preservation of thematic content, all element and attribute names from
the original CityGML documents are collected, as shown in the table rows. These names
incorporate prefixes, such as bldg in bldg:Building or xlink in xlink:href, corresponding
to the namespace prefixes used in CityGML encoding, as well as other XML-based
standards.

65

3. Graph Representation of Semantic 3D City Models

(a) FZK-Haus in LOD3 (interior view)

(b) FZK-Haus in LOD4 (interior view)

Figure 3.9.: Interior visualization of the FZK-Haus datasets (KIT IAI, 2017) in LOD3 and
LOD4 using the KITModelViewer (KIT IAI, 2024).

66

3. Graph Representation of Semantic 3D City Models

Figure 3.10.: Visualization of a segment from the Railway-Scene dataset (Häfele & Nagel,
2015) using the 3DCityDB Web Map Client (Yao et al., 2018). The dataset,
presented in LOD3, incorporates various city objects from all fourteen
thematic modules in CityGML (Gröger et al., 2012): Core, Appearance,
Building, Bridge, Relief, CityFurniture, Generics, CityObjectGroup, LandUse,
TexturedSurface (deprecated), Transportation, Tunnel, Vegetation, and Water-
Body.

The fourteen thematic CityGML modules and their default prefixes are: Core (core),
Appearance (app), Building (bldg), Bridge (brid), Relief (dem), CityFurniture (frn), Generics
(gen), CityObjectGroup (grp), LandUse (luse), TexturedSurface (tex) (deprecated), Trans-
portation (tran), Tunnel (tun), Vegetation (veg), and WaterBody (wtr) (Gröger et al., 2012).
The XML-based standards and their default prefixes are: GML (gml) (Cox et al., 2004),
Extensible Address Language (xAL) (xAL) (CIQ TC, 2002), and XLink (xlink) (W3C,
2006).

67

3. Graph Representation of Semantic 3D City Models

bo
un
de
dB
y

envelope

low
erC
orn
er

value

elem
entData

upperC
orner

va
lue

el
em
en
tD
at
a

name

elementData

ARRA
Y_ME

MBER

cityO
bjectM

em
ber

elem
entD

ata

ARRAY_M
EM
BER

object

clazz

function
elementData

ARRAY_MEMBER

usage

elementData

ARRAY_MEMBER

yearOfConstruction

ro
of
Ty
pe

me
as
ur
ed
He
igh
t
lod
2S
olid

ob
jec
t

ex
te
rio
r

ob
je
ct

surfaceM
em
ber

elem
entData

A
R
R
A
Y
_M
E
M
B
E
R

object

exterior

object

controlPoints

elem
entData

A
R
R
A
Y
_M
E
M
B
E
R

pos

va
lu
e

elementData

A
R
R
A
Y
_M
E
M
B
E
R

po
s

value

elem
entD

ata

A
R
R
A
Y
_M
E
M
B
…

pos

value

elementData

ARRAY_MEMBER

pos

value

elem
entD

ata

AR
RA
Y_
ME
MB
ER pos

value

elementData

ARRAY_MEMBER

po
s

value

elem
entData

A
R
R
AY
_M
E
M
B
E
R

object

exterior

object

controlPoints
elementData

AR
R
AY_M

EM
BER

pos

value

ele
me
ntD
ata

AR
RA
Y_
ME
MB
ER

pos

value

elem
entData

ARRAY_MEMBER
pos

value

elem
entD

ata

ARRA
Y_ME

MBER

po
s

value

elementData

AR
RA
Y_
M
EM
BE
R

pos

va
lu
e

ele
me
ntD
ata

ARRAY_MEMBER

object

exte
rior

obje
ct

con
trol
Po
ints

ele
me
ntD
ata

ARRAY_MEMBER

pos

va
lu
e

elem
entD

ata

A
R
R
A
Y
_M
E
M
B
E
R

pos

value

elementData

ARRA
Y_ME

MBER

pos

valu
e

ele
me
ntD
ata

A
R
R
A
Y
_M
E
M
B
E
R

po
s

va
lue

el
em
en
tD
at
a

AR
RA
Y_
ME
MB
ER

po
s

va
lu
e

el
em
en
tD
at
a

A
R
R
AY
_M
E
M
B
E
R

pos

value

ele
me
ntD
ata

AR
RA
Y_
ME
MB
ER

object

ex
ter
ior

ob
jec
t

co
ntr
olP
oin
ts

el
em
en
tD
at
a

ARRA
Y_ME

MBER

pos

val
ue

elem
entD

ata

A
R
R
A
Y
_M
E
M
B
E
R

po
s

value

elementD
ata

AR
RA
Y_
M
EM
BE
R

po
s

value

ele
m
en
tD
at
a

A
R
R
AY
_M
E
M
B
E
R

pos

va
lueel

em
en
tD
at
a

A
R
R
A
Y
_M
E
M
B
E
R

pos

value

elem
entD

ata

A
R
R
A
Y
_M
E
M
B
E
R

object

ex
te
rio
r

ob
je
ct

co
nt
ro
lP
oi
nt
s

el
em
en
tD
at
a

ARR
AY_

MEM
BER

po
s

va
lu
e

elem
entD

ata

A
R
R
AY
_M
E
M
B
E
R

po
s

va
lu
e

el
em
en
tD
at
a

ARRAY_MEMBER

po
s

va
lu
e

el
em
en
tD
at
a

ARRAY_M
EM
BER

pos

va
lu
e

elementData

A
R
R
A
Y
_M
E
M
B
E
R

pos

value

elementData

AR
R
AY_M

EM
BER

object

exterior

object

controlP
oints

elem
entD

ata

AR
R
AY
_M
EM
BE
R

po
s

va
lu
e

elem
entData

A
R
R
A
Y
_M
E
M
B
E
R

pos

value

elementData

ARRAY_MEMBER

pos

va
lu
e

elem
entD

ata

AR
R
AY_M

EM
BER

pos

value

elementData

ARRAY_ME
MBER

pos

value

elementData

ARRAY_MEMBER

object

exterior

object

controlPoints

elementData

A
R
R
A
Y
_M
E
M
B
E
R

pos

valu
e

elem
entD

ata

AR
R
AY
_M
EM
BE
R pos

value

elem
entD

ata

AR
R
AY_M

EM
BERpo

s

value

elem
entD

ata

ARRAY_MEMBER

pos

value

el
em
en
tD
at
a

ARRAY_
MEMBE

R

pos

value

elem
entD

ata

boundedBySurface

elementData

A
R
R
A
Y
_M
E
M
B
E
R

object

nam
e

elem
entData

ARRAY_MEMBER

lod2M
ultiSu

rface

object

surfaceMember

elementData

ARRAY_MEMBER

object

A
R
R
AY
_M
E
M
B
E
R

object

lo
d2
M
ul
tiS
ur
fa
ce

ob
jec
t

surfa
ceMe

mber

elementD
ata

ARRAY_MEMBER object

name

elementData

ARRAY_MEMBER

ARRAY_MEMBER

object

description

lo
d2
M
ul
tiS
ur
fa
ce

ob
jec
t

surfa
ceMe

mber

elementD
ata

ARRAY_MEMBER
object

name

elementData

ARRAY_MEMBER

ARRAY_MEMBER

object

lod
2M
ulti
Su
rfa
ce

objec
t

surfa
ceMe

mber

elem
entD

ata

ARRA
Y_ME

MBE
R

obj
ect

name

eleme
ntData

ARR
AY_

ME
MB
ER

ARR
AY_M

EMB
ER

obj
ect

lod2M
ultiSu

rface

obje
ct

surfa
ceMe

mber

elementData

ARRAY
_MEM

BER

obje
ct

nam
e

elem
entD

ata

AR
RA
Y_
ME
MB
ER

AR
R
AY
_M
EM
BE
R

ob
je
ct

nam
e

ele
me
ntD
ata

AR
RA
Y_
ME
MB
ER

lod2MultiSurface

objec
t

surfa
ceMe

mber

eleme
ntData

ARRA
Y_ME

MBER

obje
ct

A
R
R
A
Y
_M
E
M
B
E
R

ob
je
ct

lod
2M
ulti
Su
rfa
ce

ob
jec
t

su
rfa
ce
Me
mb
er

el
em
en
tD
at
a

AR
RA
Y_
M
EM
BE
R

ob
je
ct

na
m
e

ele
m
en
tD
at
a

AR
RA
Y_
M
EM
BE
R

relativeToTerrain

de
sc
rip
tio
n

genericAttribute

eleme
ntData

ARRAY_MEMBER

ARRA
Y_ME

MBER

value

A
R
R
AY
_M
E
M
B
E
R

ad
dre
ss

ele
me
ntD
ata

ARR
AY_M

EMB
ER

object

xalAd
dress

object

locality

thoroug
hfare

thoroughfareN
am
e

ele
me
ntD
ata

A
R
R
A
Y
_M
E
M
B
E
R

num
berO

rRange

elem
entD

ata

A
R
R
A
Y
_M
E
M
B
E
R

thoroughfareN
um
ber

postalCode

postalC
odeN

um
ber

elem
entData

ARRAY_MEM
BER

localityName

elementData

A
R
R
AY
_M
E
M
B
E
R

boundedB
y

envelope

up
pe
rC
or
ne
r

value

ele
me
ntD
ata

low
erC
orner

value

elem
entD

ata

nam
e

elem
entD

ata

AR
R
AY_M

EM
BER

b063650a-ad3…

UUID_d281adf…

Figure 3.11.: Visualization in Neo4j Browser of the graph representation of the FZK-
Haus dataset (KIT IAI, 2017) in LOD2. The big red node at the bottom
represents the city model element, while the big orange node represents
the building. Arrays, such as collections of objects (when shown as inner
nodes) or simple point coordinates (when shown as sink nodes), are
depicted in green. Polygons are shown in blue, points in orange, and code
values (such as for the CityGML attributes function and usage) in purple.

68

3. Graph Representation of Semantic 3D City Models

clazz

fu
n
ctio

n

usage

yearOfConstruction

roofType

m
ea

su
re

dH
ei

gh
t

lo
d
2
S

o
lid

boundedBySurface

re
la

tiv
e
To

Te
rr

a
in

description

generic
Attr

ibute

a
d
d
re

ss

b
o
u
n
d
e
d
B

y

n
a
m

e

elementData

A
R

R
A
Y

_
M

E
M

B
E

R

ARRAY_MEMBER

ARRAY_MEMBER

ARRAY_MEMBER

A
R

R
A
Y

_
M

E
M

B
E

RA
R

R
A
Y

_
M

E
M

B
E

R

A
R

R
A
Y

_
M

E
M

B
E

R

UUID_d281adf…

1000

2020

1030

6.52

entirelyA…

FZK-Haus
(Forsc…

Figure 3.12.: Visualization in Neo4j Browser of the graph representation of the building
(big left node) from the FZK-Haus dataset (KIT IAI, 2017) in LOD2. For
visual clarity, only paths of lengths between one and three from the
building node are shown. This building has seven boundary surfaces, as
indicated by seven blue nodes on the right. Their array node is depicted
in green.

To evaluate the preservation of structural content, each element and attribute is
assigned a level (or depth) indicating its position in the document hierarchy. The
level starts from 0 for the root element and increases by 1 for each nested element.
For instance, the element core:CityModel is at level 0, as it is the root element of every
CityGML element. The element bldg:Building is at level 2, as it is a child of the element
core:cityObjectMember, which is a child of the root element. Thus, these levels provide
the information on the semantic order and reachability properties of these elements
and their corresponding graphs. The maximum levels of the FZK-Haus datasets in
LOD0-4 are 9, 11, 11, 13, and 15, respectively. The maximum level of the Railway-Scene
dataset is 13. Table 3.2 displays the elements sorted in ascending order of their levels.

69

3. Graph Representation of Semantic 3D City Models

b
o

u
n

d
e

d
B

yS
u

rf
a

c
e

e
le

m
e

n
tD

a
ta

A
R
R

AY
_M

E
M

B
E
R

object lod2MultiSurface object surfaceMember

e
le

m
e

n
tD

a
ta

A
R

R
A

Y
_

M
E

M
B

E
R

o
b

je
c
t

lo
d

2
S

o
lid

object

exterior object surfaceMember elementData

A
R

R
A

Y
_

M
E

M
B

E
R

o
b

je
c
t

UUID_d281adf…

<bldg:Building gml:id="...">

<!-- Boundary wall surface -->

<bldg:boundedBy>

<bldg:WallSurface gml:id="...">

<bldg:lod2MultiSurface>

<gml:MultiSurface>

<gml:surfaceMember>

<gml:Polygon gml:id="PolyID_1">

...

</gml:Polygon>

</gml:surfaceMember>

</gml:MultiSurface>

</bldg:lod2MultiSurface>

</bldg:WallSurface>

</bldg:boundedBy>

<!-- Solid geometry -->

<bldg:lod2Solid>

<gml:Solid>

<gml:exterior>

<gml:CompositeSurface>

<!-- Reuse existing polygon -->

<gml:surfaceMember

xlink:href="#PolyID_1"/>

...

</gml:CompositeSurface>

</gml:exterior>

</gml:Solid>

</bldg:lod2Solid>

</bldg:Building>

Figure 3.13.: Visualization in Neo4j Browser of the graph representation of a polygon
(right blue) from the FZK-Haus dataset (KIT IAI, 2017) in LOD2 after all
XLinks have been resolved, as described in Algorithm 3. An excerpt of
this CityGML document is shown in the middle. This polygon is defined
both as a boundary wall surface (top red) and an exterior surface of a solid
geometry (bottom red) of the building (big left).

70

3. Graph Representation of Semantic 3D City Models

To evaluate whether the thematic attributes of the original CityGML datasets can be
accurately replicated in the generated graphs, all these attributes and node properties
in the graphs are first divided into groups. This grouping is based on their levels in the
CityGML documents and depths in the graphs, which are their distances from the city
model node. Then, a comparison between these text-based values with the same name
is performed within these groups.

Table 3.2 shows that some elements may appear at different levels, as allowed by
the underlying encoding standards. For example, the element gml:Polygon is found at
levels 10 and 12 in the same FZK-Haus LOD4 dataset, since GML polygons can be used
to define many complex geometric objects in CityGML. These levels directly influence
the placement of the corresponding subgraphs within the main graphs representing
each CityGML document.

The differentiation in levels of otherwise identical elements enables the structural
evaluation of the generated graph representations when compared to the original
CityGML datasets. However, the level of an element does not affect the structure of
its own graph representation. The mapping methods will generate the same graph
structure for the same city object type, regardless of the levels of their instances.

The total number of occurrences of each CityGML element and attribute per dataset
and level is shown on the right-hand side of Table 3.2. The table cells are blue if (1)
all the occurrences have been mapped to graphs, and (2) the order of their levels is
preserved in the graphs. For instance, the FZK-Haus datasets have one building each,
while the Railway-Scene dataset has three buildings. All of these table cells are blue,
which means that there exists a node representation for each building, and all these
nodes are the descendants of the node representing core:CityModel.

While some CityGML elements are mapped onto nodes or subgraphs, others are
converted into relationships. This is determined by the CityGML encoding schemas,
the binding of CityGML classes in citygml4j, and the mapping methods proposed in
this study.

Table 3.2 (middle column) describes the mapping patterns for each CityGML element.
These descriptions use the following symbols:

1. Node : Create either a single node or a source node of a subgraph

2. Rel : Create an outgoing relationship from the current node

3. Prop : Insert a property to the current node

4. L : Use the name from the left column in ‘CamelCase’ without namespace prefix

5. l : Use the name from the left column in ‘camelCase’ without namespace prefix

71

3. Graph Representation of Semantic 3D City Models

To distinguish between elements and attributes that share the same name but be-
long to different namespaces, the (shortened) package names of their corresponding
Java classes in citygml4j can be used. For instance, the elements bldg:GroundSurface
and tun:GroundSurface have identical names without the namespace prefixes. Thus,
their corresponding nodes in the graph can be labelled as building.GroundSurface and
tunnel.GroundSurface, where building and tunnel are the (shortened) names of their
packages. However, these package names are omitted in the following descriptions for
simplicity, if the element and attribute names are unique and not shared by any other
elements or attributes presented in the example. For instance:

1. core:CityModel Node L
Create a node with the label CityModel.

2. core:cityObjectMember Rel l
Create a relationship with the type cityObjectMember.

3. core:creationDate Prop l
Insert a property with the name creationDate to the current node.

4. bldg:measuredHeight Prop l + Node Length
Create a relationship with the type measuredHeight and a node with the label
Length. The new relationship connects the current node with the new node.

5. xlink:href Rel object → Node found by href
Create a relationship with the type object and point it to an existing node that has
the same identifier as the value of href (without ‘#’).

Such descriptions in Table 3.2 illustrate how different types of CityGML elements are
mapped to nodes, relationships, and properties in the graph. However, these descrip-
tions do not serve as static rules for the mapping methods proposed in Algorithms 1
to 3, but rather describe their outcomes. These methods can automatically produce
a graph representation from any CityGML element, without requiring any manual
mapping rules.

All non-zero cells of Table 3.2 are blue. This indicates that the generated graph
representations of all CityGML datasets have achieved the value of 100 % for the type,
instance, and relationship coverage, as well as the XLink replacement, leading to the
total preservation of thematic and structural data of the original CityGML documents.
Similar results have been consistently observed across all datasets tested thus far.

72

3.
G

raph
R

epresentation
ofSem

antic
3D

C
ity

M
odels

Table 3.2.: Assessing the preservation of thematic and structural content in the generated graph representations
of the CityGML datasets FZK-Haus (KIT IAI, 2017) and Railway-Scene (Häfele & Nagel, 2015). The total
number of occurrences of each CityGML element and attribute per dataset is shown in the cells located
in the respective rows and columns. Cells with full coverage are shown in blue. This table is an excerpt,
showing only the first and last two pages of the full version in Table A.1.

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

CityGML elements in ascending XML levels:
00 core:CityModel Node L 1 1 1 1 1 1
01 app:appearanceMember∗ Rel l + Node L 0 0 0 0 2 151
01 core:cityObjectMember∗ Rel l 1 1 1 1 1 52
01 gml:boundedBy Rel l 1 1 1 1 1 0
01 gml:namet Rel l 1 1 1 1 1 0
02 app:Appearance Node L 0 0 0 0 2 151
02 bldg:Building Node L 1 1 1 1 1 3
02 brid:Bridge Node L 0 0 0 0 0 4
02 dem:ReliefFeature Node L 0 0 0 0 0 1
02 frn:CityFurniture Node L 0 0 0 0 0 11
02 gen:GenericCityObject Node L 0 0 0 0 0 2
02 gml:Envelope Node L 1 1 1 1 1 0
02 grp:CityObjectGroup Node L 0 0 0 0 0 1
02 tran:Railway Node L 0 0 0 0 0 10
02 tun:Tunnel Node L 0 0 0 0 0 4
02 veg:SolitaryVegetationObject Node L 0 0 0 0 0 15
02 wtr:WaterBody Node L 0 0 0 0 0 1
03 app:surfaceDataMember∗ Rel l 0 0 0 0 2 151

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

73

3.
G

raph
R

epresentation
ofSem

antic
3D

C
ity

M
odels

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

03 app:themet Prop l 0 0 0 0 0 151
03 bldg:address Rel l 1 1 1 1 1 0
03 bldg:boundedBy Rel l 0 0 7 7 7 40
03 bldg:classt Rel l + Node Code 1 1 1 1 1 0
03 bldg:functiont,∗ Rel l + Node Code 1 1 1 1 1 1
03 bldg:interiorRoom∗ Rel l 0 0 0 0 7 0
03 bldg:lod0FootPrint Rel l 1 0 0 0 0 0
03 bldg:lod0RoofEdge Rel l 1 0 0 0 0 0
03 bldg:lod1Solid Rel l 0 1 0 0 0 0
03 bldg:lod2Solid Rel l 0 0 1 0 0 0
03 bldg:lod3Solid Rel l 0 0 0 1 0 0
03 bldg:lod4Solid Rel l 0 0 0 0 1 0
03 bldg:measuredHeightt Rel l + Node Length 1 1 1 1 1 0
03 bldg:outerBuildingInstallation∗ Rel l 0 0 0 0 0 56
03 bldg:roofTypet Rel l + Node Code 1 1 1 1 1 0
03 bldg:storeysAboveGroundt Prop l 1 1 1 1 1 0
03 bldg:storeysBelowGroundt Prop l 1 1 1 1 1 0
03 bldg:usaget,∗ Rel l + Node Code 1 1 1 1 1 0
03 bldg:yearOfConstructiont Rel l + Node LocalDate 1 1 1 1 1 0
03 brid:classt Rel l + Node Code 0 0 0 0 0 2
03 brid:functiont,∗ Rel l + Node Code 0 0 0 0 0 2
03 brid:lod3MultiSurface Rel l 0 0 0 0 0 4
03 brid:outerBridgeConstruction∗ Rel l 0 0 0 0 0 3

. . .
t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

74

3.
G

raph
R

epresentation
ofSem

antic
3D

C
ity

M
odels

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

. . .
09 gml:lowerCornert Rel l + Node DirectPosition 0 0 0 0 0 43
09 gml:namet,∗ Rel l + Node Code 0 0 0 0 15 0
09 gml:posListt Rel l + Node DirectPositionList 2 0 0 0 0 38,819
09 gml:surfaceMember∗ Rel l 0 0 0 205 14,511 167
09 gml:upperCornert Rel l + Node DirectPosition 0 0 0 0 0 43
09 xAL:PostalCodeNumbert,∗ Rel l + Node L 1 1 1 1 1 0
09 xAL:ThoroughfareNamet,∗ Rel l + Node L 1 1 1 1 1 0
09 xAL:ThoroughfareNumbert,∗ Rel numberOrRange + Node L 1 1 1 1 1 0
10 gml:CompositeSurface Node L 0 0 0 0 16 0
10 gml:LinearRing Node L 0 6 7 5 5 26,770
10 gml:MultiSurface Node L 0 0 0 0 19 0
10 gml:OrientableSurface Node L 0 0 0 0 70 0
10 gml:Polygon Node L 0 0 0 205 14,425 167
11 gml:baseSurfacet Rel l 0 0 0 0 70 0
11 gml:exterior Rel l 0 0 0 205 14,425 167
11 gml:interior∗ Rel l 0 0 0 13 36 24
11 gml:post,∗ Rel l + Node DirectPosition 0 0 37 33 33 0
11 gml:posListt Rel l + Node DirectPositionList 0 6 0 0 0 26,770
11 gml:surfaceMember∗ Rel l 0 0 0 0 232 0
12 gml:LinearRing Node L 0 0 0 218 14,461 191
12 gml:OrientableSurface Node L 0 0 0 0 16 0
12 gml:Polygon Node L 0 0 0 0 216 0
13 gml:baseSurfacet Rel l 0 0 0 0 16 0

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

75

3.
G

raph
R

epresentation
ofSem

antic
3D

C
ity

M
odels

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

13 gml:exterior Rel l 0 0 0 0 216 0
13 gml:interior∗ Rel l 0 0 0 0 11 0
13 gml:post,∗ Rel l + Node DirectPosition 0 0 0 1,364 70,420 0
13 gml:posListt Rel l + Node DirectPositionList 0 0 0 0 0 191
14 gml:LinearRing Node L 0 0 0 0 227 0
15 gml:post,∗ Rel l + Node DirectPosition 0 0 0 0 1,302 0

CityGML attributes:
codeSpace Prop l 4 4 4 4 4 0
gml:id Prop l 1 1 22 458 29,383 110,047
name Prop l 3 3 3 3 3 0
orientation Rel l + Node Sign 0 0 0 0 86 0
ring Prop l 0 0 0 0 0 14,106
srsDimension Prop l 5 9 3 3 3 66,025
srsName Prop l 1 1 1 1 1 230
Type Prop L 2 2 2 2 2 0
uom Prop l 2 2 2 2 2 0
uri Prop l 0 0 0 0 0 13,933
xlink:href Rel object→ Node found by href 0 0 7 20 106 26

Total preservation of thematic and structural content 2� 2� 2� 2� 2� 2�

CityGML module prefixes: Core (core), Appearance (app), Building (bldg), Bridge (brid), Relief (dem), CityFurniture (frn), Generics (gen), CityObject-
Group (grp), LandUse (luse), TexturedSurface (tex) (deprecated), Transportation (tran), Tunnel (tun), Vegetation (veg), and WaterBody (wtr) (Gröger
et al., 2012). XML specification prefixes: GML (gml) (Cox et al., 2004), xAL (xAL) (CIQ TC, 2002), and XLink (xlink) (W3C, 2006).
Node Represented as a node Rel Represented as a relationship Prop Stored as a node property
l Value of the left column in ‘camelCase’ (without namespace) L Value of the left column in ‘CamelCase’ (without namespace)

t Element contains text content ∗ Multiple instances may exist

76

3. Graph Representation of Semantic 3D City Models

3.6. Reconstruction of CityGML Objects from Graphs

This chapter mainly focuses on the creation of graphs that can accurately represent
CityGML objects. However, many applications, including the change detection and
interpretation process introduced in later chapters, require the reconstruction of these
graphs back into their original in-memory objects. This is particularly useful for tasks
such as matching two surfaces that were defined using different syntactic styles. Such
tasks require the handling of geometric extents and point coordinates in 3D space, which
can be achieved more efficiently using their object-oriented in-memory representations
and associated object functions, rather than repeatedly parsing their graph contents
from Neo4j, which officially only supports spatial operations of points (Neo4j, 2023).
As a result, there is no need to represent these geometries in any additional structures,
such as the Well-known Text (WKT) and Well-known Binary (WKB) representations
(Herring, 2011) commonly used in Spatially-enhanced Relational Database Management
Systems (SRDBMSs). Ultimately, in conjunction with the mapping methods, this
reconstruction process could be scaled up to facilitate the import and export of entire
CityGML documents to and from a graph database. This section addresses Research
Question RQA7 (Reconstruction of Graphs to CityGML Objects).

The methods for reconstructing graphs back into their original in-memory CityGML
objects are detailed in Algorithms 4 and 5. These procedures can be thought of as
the reverse counterparts of the methods for mapping CityGML objects onto graphs,
as shown earlier in Algorithms 1 and 2. The first method toObject(node) sets up the
parameters required for invoking the second method toObject(node, visited), which
recursively performs most of the reconstruction process.

Algorithm 4: Graph to CityGML conversion toObject(node)
Input : A node generated from the mapping process
Output : The original CityGML object represented by node and its subgraph

1 visited← new key-value map with nodes as keys and converted objects as values
2 return toObject(node, visited)

3.6.1. Enriching Graph Representations of CityGML Objects

The methods map(source), map(source, visited), and resolveXLinks(graph) detailed in Al-
gorithms 1 to 3 are designed with a focus on high flexibility and universality, making
them suitable for mapping a wide range of objects, including but not limited to CityGML
objects, onto their respective graph representations. The advantages are two-fold: (1)
the methods do not require any additional manual mapping rules for any specific types

77

3. Graph Representation of Semantic 3D City Models

Algorithm 5: Recursive graph to CityGML conversion toObject(node, visited)
Input : A node generated from the mapping process

Key-value map visited storing nodes and converted objects
Output : The original CityGML object object represented by node and its subgraph

1 if visited.hasKey(node) then return visited.getValue(node)
2 if node represents an array then
3 arrayMemberType← node.getProperty("arrayMemberType")
4 arraySize← node.getProperty("arraySize")
5 object← a new empty array of arrayMemberType and arraySize
6 visited.add(node, object)
7 if node does not have any outgoing ARRAY_MEMBER relationships then

// All array members are simple and stored as properties
8 foreach property prop of node do
9 index← extract index value from the name of prop

10 object[index]← the value of prop cast to arrayMemberType
11 end
12 else

// All array members are complex and stored as child nodes
13 foreach relationship ARRAY_MEMBER rel outgoing from node do
14 endNode← rel.getEndNode()
15 index← rel.getProperty("arrayMemberIndex")
16 object[index]← toObject(endNode, visited) cast to arrayMemberType
17 end
18 end
19 else
20 object← a new empty instance of class node.getLabel()
21 visited.add(node, object)
22 foreach property prop available in object.getClass() do
23 if node.hasProperty(prop) then
24 propType← node.getProperty(prop + "Type")
25 object.get(prop)← the value of prop cast to propType
26 else
27 endNode← node.getOutgoingRelationship(prop).getEndNode()
28 object.get(prop)← toObject(endNode, visited)
29 end
30 end
31 end
32 return object

78

3. Graph Representation of Semantic 3D City Models

of objects, and (2) the absence of such manual mapping rules greatly simplifies the
process of reconstructing the graph representations back to their original objects. This
is because, with each additional manual rule introduced during the mapping process, a
corresponding reverse rule must also be implemented in the reconstruction process.
The mapping methods described in previous sections, as well as the reconstruction
methods proposed in this section, eliminate the need for any of such manual rules.

However, since the graph database Neo4j does not impose any schemas on its
stored content and employs its own data types for properties that may not align with
the data types used in the original objects, such type information is lost or changed
during mapping. Although this is typically not an issue for many processes that
utilize the content of these graph representations, the type information is crucial for
reconstructing these graphs back to their original in-memory objects. Therefore, to
facilitate this reconstruction process, graph representations of CityGML objects are
supplemented with additional metadata. This applies to:

1. Array Node Representation: If the current node represents an array, it is enriched
with additional properties such as the array member type arrayMemberType and
the array size arraySize.

a) Each simple character-based or numeric array member is represented as a
node property named arrayMember_i, where i corresponds to the index in
the original in-memory array object.

b) Each complex array member is represented as a subgraph and is connected
with the array node through a relationship of type ARRAY_MEMBER. This
relationship contains an additional property arrayMemberIndex indicating the
index of the current array member.

Despite the order of sibling elements do not play any role, the order of array
members is preserved explicitly as properties to ensure the structure of the
reconstructed objects closely resembles that of the original CityGML objects.
This is particularly useful when reconstructing an array of 3D coordinates to
points. These additional graph entities are created in Lines 7, 8, 11, 14, and 15 of
Algorithm 2 and utilized in Lines 3, 4, 9, 13, and 15 of Algorithm 5.

2. Non-array Node Representation: For each character-based or numeric property
of a non-array node, an additional property is created to store the type of its corres-
ponding property. For example, a building node is not an array and has a property
creationDate. Thus, an additional property creationDateType is created to expli-
citly store the type of the property creationDate, which is java.time.ZonedDateTime
in Java. Such additional properties are created in Line 24 of Algorithm 2 and
employed in Line 24 of Algorithm 5.

79

3. Graph Representation of Semantic 3D City Models

3. XLink Relationship Representation: If the current node has an incoming re-
lationship representing an XLink connection, a property wasXLink is added to
this relationship. Although the generated graph representations of CityGML
documents do not distinguish between elements defined with or without XLinks,
this information is preserved as explicit properties to ensure the structure of
the resulting reconstructed objects closely matches that of the original CityGML
documents. This is implemented in Line 8 of Algorithm 3. Contrary to other
supplementary metadata, the property wasXLink is not employed during the pro-
cess of reconstructing graphs into CityGML objects. This is because in-memory
CityGML objects, like their graph representations, replace the implicit XLink
connections with explicit references or relationships, thereby eliminating the
distinction between cases with or without the use of XLinks. Instead, the property
wasXLink is primarily used for exporting the reconstructed in-memory CityGML
objects back into their original CityGML documents, which can contain XLinks.
However, this is done only when the structure of the exported CityGML docu-
ments needs to closely mirror that of the original.

This metadata, which is not included in the original CityGML documents, should not
be confused with the metadata already available according to the GML and CityGML
information model. For instance, the definition and description of the local Coordinate
Reference System (CRS) contained in the element gml:metaDataProperty are part of the
existing metadata. If such elements are present in the input CityGML documents, they
will be mapped onto graphs like every other element.

Figure 3.14 provides an illustration of the additional metadata properties of the build-
ing node generated from the FZK-Haus CityGML dataset (KIT IAI, 2017). On the other
hand, Figure 3.15 demonstrates how a subgraph representation of a composite surface
of a solid geometry of the building from the FZK-Haus dataset can be enriched. In this
case, the seven member surfaces are grouped by an array node. The paths between the
array node and the polygon nodes consist of two relationships: ARRAY_MEMBER and
object. While the relationships ARRAY_MEMBER are enriched with the index value
of their respective surfaces within the array, the relationships object are supplemented
with the property wasXLink, indicating that the solid geometry was defined by reusing
the existing polygons in the dataset.

The majority of the methods proposed in this study are programming language-
agnostic and can be implemented using any compatible programming languages.
However, the data types used to enrich nodes and relationships, like java.lang.Integer
and java.lang.String in Java, are specific to the programming language used in the
mapping process. Consequently, the reconstruction methods must also be implemented
using the same programming language as in the mapping process.

80

3. Graph Representation of Semantic 3D City Models

Building

Node Properties

Name Value

id UUID_d281adfc. . .
idType java.lang.String
creationDate 2017-01-23
creationDateType java.time.ZonedDateTime
storeysAboveGround 2
storeysAboveGroundType java.lang.Integer
storeysBelowGround 0
storeysBelowGroundType java.lang.Integer

Figure 3.14.: An illustration of the building node generated from the FZK-Haus dataset
(KIT IAI, 2017) and the metadata stored as its additional properties (blue).

As explained in Section 3.3.4, arrays are a fundamental data type in many program-
ming languages including Java, not only in direct definitions but also as an internal
component of many other data structures, such as ArrayList. The library citygml4j
manages collections of CityGML objects using the class ChildList<T extends Child>, which
is a subclass of ArrayList<T>. Here, Child is an interface implemented by all CityGML
objects, and T represents a generic type according to Java’s generic typing. This generic
type T serves as a placeholder for all subclasses of the class Child, which is its bound.

For instance, the single building of the FZK-Haus dataset in LOD2 contains a Solid
geometry, which contains a CompositeSurface, which in turn contains a ChildList col-
lection of all seven boundary surfaces of the building. Since ChildList is a subclass
of ArrayList, the boundary surfaces are grouped using an Array node, as shown in
Figure 3.15.

The property arrayMemberType of an Array node denotes the common type of all
members of that array. For an array of point coordinates as floating-point numbers
(i.e., of type Double[]), all members of this array are of the same type java.lang.Double.
However, as arrays are also used internally in ArrayList and ChildList, the value of array-
MemberType is often Object, the superclass of all Java classes, as shown in Figure 3.15.

This is a consequence of type erasure in Java, where the generic types are replaced
with their bounds, or Object if the types are unbounded, at compile time. This re-
placement leverages polymorphism, an object-oriented concept that allows a superclass
to serve as a placeholder for all its subclasses. Despite this type erasure, the addi-
tional metadata provided is sufficient for the reconstruction of graphs back into fully
functional CityGML objects.

81

3. Graph Representation of Semantic 3D City Models

Node Array

arrayMemberType java.lang.Object
arraySize 7

Array

Surface-
Property

Polygon

A
R

R
A

Y
_M

EM
BE

R
|

i=
6

A
R

R
A

Y
_M

EM
BE

R
|

i =
5

A
RR

AY
_M

EM
BE

R
|

i =
4

ARRAY_M
EM

BER
|

i =
3

ARRAY_MEMBER | i = 2

ARRAY_MEMBER | i = 1

ARRAY_MEMBER | i = 0

Relationship ARRAY_MEMBER

arrayMemberIndex 0-6

object | wasXLink

Relationship object

wasXLink true

object | wasXLink

object | wasXLink
objec

t |
wasX

Link

ob
je

ct
|

w
as

X
Li

nk

ob
je

ct
|

w
as

X
Li

nk

ob
je

ct
|

w
as

X
Li

nk

Figure 3.15.: An illustration of a node representation of an array of polygons with
additional metadata. This array node is used to group the member surfaces
of the solid geometry of the FZK-Haus dataset in LOD2 (KIT IAI, 2017).

82

3. Graph Representation of Semantic 3D City Models

3.6.2. Key Characteristics of the Reconstruction Methods

Similarly to the mapping methods introduced in Section 3.3, the key characteristics of
the reconstruction methods are outlined in this section.

Recursive Reconstruction

The recursive method detailed in Algorithm 5 (refer to Lines 16 and 28) operates in a
top-down manner. It rebuilds an in-memory object starting with a given graph node,
followed by its properties and child nodes, then the properties and child nodes of those
child nodes, and so forth. The process terminates when there are no more elements left
for converting.

Preventing Repeated Reconstruction

When an object is referenced by multiple parents, such as when a boundary wall
surface is shared between two adjacent rooms through the use of XLink, the subgraph
representation of that child element obtains multiple incoming relationships from its
respective parents. Since the reconstruction methods operates in a top-down manner,
the same subgraph may be reconstructed multiple times. As a result, each of the
aforementioned adjacent rooms would then gain a separate boundary wall surface,
despite both surfaces being identical.

To prevent this redundancy, a key-value store, denoted as visited in Algorithm 4, is
employed. This store is a map over tuples (Node, Object), where the node representations
serve as keys and their corresponding in-memory objects serve as values. The keys
are unique, as each node can be identified by their allocated address in main memory
within a transaction during execution or simply by their identifiers. In Neo4j, each
node is automatically assigned an identifier. However, these internal identifiers are
not unique, as the identifiers of deleted nodes may be recycled for new nodes (Neo4j,
2023). Therefore, this study (1) introduces a unique identifier for each node of specific
important types such as top-level features and geometric elements, and (2) avoids
deletion of nodes in all processes when possible.

During conversion of each node into objects, the process first determines whether
the node has been previously visited and converted by searching for its key in the
key-value map (refer to Line 1). The reconstruction proceeds only if the key does not
exist, indicating that the node has not been visited before. Otherwise, the previously
reconstructed in-memory object associated with this node is returned instead. This
ensures that no node or subgraph is converted more than once, thereby guaranteeing
termination of the algorithms and accurate reconstruction of complex references in the
resulting in-memory CityGML objects.

83

3. Graph Representation of Semantic 3D City Models

Reconstructing Arrays

Based on the complexity of its members, a node representation of an array may store its
members as properties or as child nodes, as dictated by Figure 3.7 during the mapping
process. Therefore, the reconstruction of such arrays from their corresponding graph
representations can be described as follows (refer to Line 7 through Line 18):

1. If the array node does not have any outgoing relationships of the predefined
type ARRAY_MEMBER, then all its original members are of simple types and
are stored as the node’s properties. In this case, the array member type, the
index value, and the content of each member can be extracted from the node’s
corresponding properties.

2. If the array node possesses at least one outgoing relationship of the predefined
type ARRAY_MEMBER, then there must be exactly as many such relationships as
there are members of the array, since all members of an array must be of the same
type and thus mapped and reconstructed in the same manner. In this case, the
end node of each such relationship represents an array member. The type and
size of the array can be extracted from the corresponding properties stored in the
array node, while the index value of each array member can be retrieved from its
respective relationship outgoing from the array node. The array object can then
be reconstructed by recursively reconstructing each of its member nodes.

Reconstructing Non-array Complex Objects

In contrast to arrays, non-array objects can contain various properties of primitive or
complex types, as dictated by the data model and the classes they belong to. Therefore,
to rebuild a complex object from its graph representation, the first and most important
step is to create an empty instance of its class. The object’s class can be retrieved from
the label of its node representation.

In Java and many other object-oriented programming languages, the default con-
structor of a class can be invoked to create an instance with default values for its
properties. This approach requires that the default constructor is available, as already
is the case with employed CityGML classes provided by the library citygml4j in Java.

Alternatively, duck typing can be used. In computer programming, duck typing is
an application of the abductive duck test (Devopedia, 2023): ‘If it looks like a duck,
swims like a duck, and quacks like a duck, then it probably is a duck.’ Duck typing
allows for classifying any object as a certain type if it possesses the necessary properties
and methods. This is useful when no constructors are available, or no type checking is
enforced.

84

3. Graph Representation of Semantic 3D City Models

Once an empty object has been instantiated, its default values are then filled or
updated based on the content derived from its graph representations. This is described
as follows:

1. If a property exists in the node representation and a property with the same
name is declared in the object model, then the node property represents a ‘simple’
property of the instantiated object, as previously explained in Section 3.3.6. In
this case, the value and type of the node property are retrieved to update the
corresponding property of the object (refer to Lines 24 and 25). For example, the
node properties creationDate and creationDateType are used to update the simple
property creationDate of a building object.

2. For each outgoing relationship from the node representation, if the relationship’s
type matches a property allowed by the object model, the end node to which the
relationship points is used to reconstruct that property (refer to Line 28). For
instance, the outgoing relationship boundedBy from a building node points to a
subgraph representing a BoundingShape that describes the bounding box of that
building, as previously illustrated in Figure 3.6.

The major advantage of this method lies in its selective conversion, where only graph
contents matching the names and types of corresponding properties in the object model
are considered. As a result, this targeted approach dismisses auxiliary or internally
used graph entities, such as helper nodes, relationships, or properties of nodes and
relationships, allowing them to coexist within the graphs without being included in
the reconstructed in-memory objects. This is achieved due to the coherent mapping
between the CityGML data model and its graph representations employed in this
research. This name and type checking ensures the consistent conversion from the
graph representations back into their original CityGML objects.

3.7. Summary and Discussion

This chapter discusses the key characteristics of the City Geography Markup Language
(CityGML) that are relevant to this study, such as the semantic modelling, multi-
scale modelling using different Level of Details (LODs), modularization of thematic
modules, coherent spatio-semantic modelling, and geometric-topological modelling.
The chapter then explores the object-oriented and relational representations of CityGML
objects. Given the graph-based nature of CityGML, a graph data model is proposed for
representing the CityGML data model.

This chapter then introduces methods for mapping CityGML objects onto their graph
representations. These methods are recursive and highly flexible, capable of mapping

85

3. Graph Representation of Semantic 3D City Models

any objects, including CityGML objects, without the need for any manual mapping rules.
This chapter also explains how XLinks present in the original CityGML documents can
be resolved in the produced graphs. The mapping methods are evaluated across all
five different LODs and all fourteen thematic modules of CityGML.

Finally, the chapter proposes reconstruction methods, the reverse counterpart to the
mapping methods to convert graphs back to their original CityGML objects. Like the
mapping methods, the reconstruction process is recursive and highly flexible, capable of
reconstructing any objects without the need for any manual reconstruction rules. This
is achieved by enriching the graph representations of CityGML objects with additional
metadata, such as the types of individual objects, as well as the member types, member
indices, and the size of an array. Both the mapping and reconstruction process are
implemented using the graph database Neo4j.

Some notable observations and insights related to the concepts introduced in this
chapter include:

1. Mapping of Thematic Content: The mapping methods outlined in Algorithms 1
to 3 transform CityGML documents into labelled, attributed graphs. These
graphs contain a wealth of thematic information, primarily stored within the
key-value mappings assigned to each node. Additionally, the node labels and
relationship types reflect the classes of CityGML objects and the nature of their
interrelationships, respectively. Unlike conventional graph labellings in graph
theory, such as ‘graceful labelling’, where no two distinct vertices are labelled the
same or no two distinct edges connect the same pair of vertices, the node labels
and relationship types in this study can be reused when necessary to represent
the semantic content of the original CityGML objects. The values of these labels
and types, as well as their labelling rules, are determined solely based on the
schemas provided by the CityGML data model (Gröger et al., 2012).

2. Mapping of Structural Content: The structure of the graph representations of
CityGML documents adheres to the graph data model proposed in Section 3.2 and
closely mirrors that of the CityGML object model. Algorithms 1 and 2 dictate that
the resulting graphs are directed, with relationships consistently pointing from
objects to their respective components. Algorithm 3 ensures that these graphs
exhibit weak connectivity. As a result, the graphs generated by these methods are
Directed Acyclic Graphs (DAGs), as explained in Sections 3.1.4 and 3.1.5, and the
existence of exactly one (universal) source node is guaranteed in each graph, such
as the city model node. This implies two major advantages: (1) recursive methods,
such as those employed in the change detection and interpretation process, can
cover the entire graphs given their respective source nodes, and (2) all methods
operating on these graphs can terminate due to the absence of directed cycles.

86

3. Graph Representation of Semantic 3D City Models

3. Evaluation of the Mapping Methods: As previously explained in Section 3.1.7,
Neo4j operates as an instance-based graph database. This implies its capability to
capture information of specific individual CityGML objects, rather than describing
the underlying information model itself. As a result, the evaluation of both
thematic and structural information preservation in generated graphs is conducted
against their original CityGML datasets. This does not provide any verification of
whether these contents adhere the CityGML encoding standard. Thus, this study
assumes that the input CityGML datasets used for mapping already comply with
the CityGML schemas, as mentioned in Section 3.2.1.

4. Enhanced Information Representation: The generated graph representations
not only fully capture all thematic and structural information from the input
CityGML documents, as shown in Section 3.5.3, but they also contain more
information than explicitly available in the original documents. Such additional
information is crucial for the subsequent processes. For example, additional
metadata information is employed for reconstructing graph representations back
into their original in-memory objects, as described in Section 3.6. Moreover,
the graphs can also be enriched with an R-tree structure that contains the 2D
footprints of all top-level features in the city model, as explained in Chapter 4.
This R-tree, serving as a spatial index, is essential to minimize the time required
to find the best candidates that spatially matches a reference object. The process
of constructing such an R-tree is explained in Section 6.3.2.

5. The Use of the City Model Node: Each CityGML top-level feature is often
mapped onto a separate subgraph. These subgraphs can be reached from a
central node that represents the city model object. This graph structure allows for
(1) better multi-threaded performance on isolated subgraphs, and (2) enhanced
query time during traversing due to the reduced number of potential paths
between nodes. The city model nodes are often the most important nodes in large
CityGML datasets, as they have the highest out-degree centrality. This means that
they are connected to many other nodes in the graph and can serve as a starting
point for various traversal operations, as observed in many methods used in the
change detection and interpretation process in the next chapters.

6. Memory Footprint: Both the mapping and reconstruction methods operate
recursively in a top-down manner. They start from a source object or node
and successively process all descendant elements. As a result, the memory
consumption of these methods is proportional to the size of the source object or
the subgraph, including all nodes and relationships reachable from the source
node. In the worst-case scenario, this memory footprint could contain the entire

87

3. Graph Representation of Semantic 3D City Models

city model if the source object is a city model or if the source node represents
a city model object. To reduce the memory footprint of the mapping methods,
large input CityGML documents can be first divided into smaller segments, each
of which is then mapped onto graphs sequentially. Such optimization strategies
for handling massive CityGML datasets are explained in Chapter 6. On the other
hand, since in-memory CityGML objects are held entirely in main memory, the
reconstruction methods should be applied only to small subgraphs, such as the
graph representations of individual geometries like polygons and solids.

7. Export of Graphs to CityGML Datasets: By utilizing the reconstruction methods
outlined in Algorithms 4 and 5, along with the built-in functions of the library
citygml4j, graph representations of city objects can be both reconstructed into
their corresponding in-memory CityGML objects and re-exported to the original
CityGML datasets. During this process, XLinks are automatically assigned based
on the existing ones in the original datasets, or new ones are generated to ensure
that each city object is exported only once.

8. Creation and Modification of City Models using Cypher: Instead of first map-
ping input CityGML datasets onto graphs, an entire city model can alternatively
be built directly using Cypher scripts, which contain the structure and content
of the city model in compliance with the CityGML data model. To generate
these scripts, CityGML documents can be manually written in Cypher, or Neo4j’s
built-in functions can be used to automatically convert an existing CityGML graph
into its corresponding Cypher scripts for later use. Once the city model has been
created in the database, it can be edited, updated, and eventually exported into
a new CityGML dataset. As Neo4j is schema-less, the city model graph can be
modified freely. However, when reconstructing CityGML objects and exporting
them to CityGML documents, only information conforming to the CityGML data
model is considered. This selective process is done automatically without any
need for manual intervention.

9. Compatibility with CityGML versions 2.0 and 3.0: The methods proposed in
this chapter are highly flexible and can be applied to any in-memory objects
and compatible graphs without the need to define any manual mapping and
reconstruction rules. As a result, datasets of both CityGML versions 2.0 and
3.0, including all LODs and thematic modules, can be mapped onto graphs.
Conversely, any compatible graph representations can be converted back into
their original CityGML objects, even if these graphs have been enriched with
information not prescribed by the CityGML data model, such as the various
auxiliary nodes, relationships, and properties utilized in this study.

88

3. Graph Representation of Semantic 3D City Models

10. Applications of the Generated Graph Representations: In most use cases, the
creation of the graph representations of CityGML models introduced above does
not mark the end of the workflow. Instead, they are further used as a basis for
a multitude of applications. These include, but are not limited to, the processes
for detecting changes and interpreting their patterns, as explained in Chapters 4
and 5, respectively. Additional applications discussed in other studies include the
use of a graph representation of IndoorGML documents to facilitate routing in
indoor environment, such as finding an optimal route between two offices inside
a building (Jang et al., 2023). These graph representations can also be enhanced
with supplementary information from external data sources, such as OSM data
(Ding et al., 2024). In another example, a graph representation of a segment of
the detailed street and lane network of the cities of Ingolstadt and Grafing near
Munich, utilizing the street space models of CityGML version 3.0, is employed
for complex multimodal navigation between two locations (Olbrich, 2023; Olbrich
et al., 2024).

In this chapter, the methods for mapping CityGML objects onto graphs are evaluated
in Section 3.5. An excerpt of the evaluation results can be found in Table 3.2. The full
version is available in Table A.1.

Conversely, to evaluate the reconstruction methods, the following steps can be
applied:

1. Map a CityGML document onto its graph representation.

2. Convert this graph into a city model object, which is then exported to a new
CityGML document.

3. Map the newly created CityGML document onto its graph representation.

4. Compare both the generated graph representations of the original and new
CityGML document.

The first three steps can already be performed by employing the mapping and
reconstruction methods proposed in this chapter. The export of a city model object into
a CityGML document can be accomplished using the library citygml4j. In the last step,
by comparing their graph representations, the similarity in the structure and content
of both the original and newly created CityGML document can be evaluated. If the
graphs are identical, both the mapping and reconstruction methods are considered to
produce reliable results. This requires the ability to compare complex graphs, which
can be achieved by employing the methods for comparing graph representations of
CityGML documents presented in Chapter 4.

89

4. Change Detection in
Semantic 3D City Models

Identifying changes between two different temporal versions of a CityGML document
can present significant challenges when attempted through direct comparisons. This is
primarily due to the structural constraints of plain CityGML text files, which impose
a fixed order of occurrence when reading elements sequentially. At the same time,
these text files have limitations in expressing explicit one-to-many and many-to-many
relationships between elements. Even with the use of XLinks, sequential reading of
plain CityGML text files cannot handle cases where an element is referenced before
it has been parsed or after it has been discarded due to limited memory capacities in
earlier read iterations.

Matching CityGML elements based on their relational representations like in the
3DCityDB is also difficult, as it may require a high number of JOIN operations on
a regular basis, leading to significant performance costs. On the other hand, while
object-oriented representations are ideally suited for matching the content and structure
of CityGML objects, this approach is only feasible for small datasets, as it requires
objects to be held entirely in main memory, leading to high memory consumption.

In this context, a more effective approach is to employ the graph representations of
these CityGML documents instead. As previously shown in Chapter 3, these graphs
can accurately capture all thematic and structural information available in the original
CityGML documents and are thus fully capable of representing them during the
matching process. Therefore, this chapter proposes methods to detect changes between
these graph representations, thereby reflecting the changes that occurred between the
corresponding CityGML documents.

The content of this chapter substantially expands upon the author’s earlier publica-
tions, which are detailed as follows:

1. Nguyen, S. H., Yao, Z., & Kolbe, T. H. (2017, October). Spatio-Semantic Com-
parison of Large 3D City Models in CityGML Using a Graph Database [12th
International 3D GeoInfo Conference 2017, University of Melbourne, Melbourne,
Australia]. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences (pp. 99–106, Vol. IV-4/W5). Copernicus GmbH. https:
//doi.org/10.5194/isprs-annals-iv-4-w5-99-2017.

90

https://doi.org/10.5194/isprs-annals-iv-4-w5-99-2017
https://doi.org/10.5194/isprs-annals-iv-4-w5-99-2017

4. Change Detection in Semantic 3D City Models

2. Nguyen, S. H., Yao, Z., & Kolbe, T. H. (2018). Spatio-Semantic Comparison
of Large 3D City Models in CityGML Using a Graph Database. In gis.Science
(pp. 85–100, Vol. 3). Wichmann Verlag. https://gispoint.de/artikelarchiv/gis/
2018/gisscience-ausgabe-32018.html.

3. Nguyen, S. H., & Kolbe, T. H. (2020, September). A Multi-Perspective Approach to
Interpreting Spatio-Semantic Changes of Large 3D City Models in CityGML using
a Graph Database [15th International 3D GeoInfo Conference 2020, University
College London (UCL), London, UK]. In ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences (pp. 143–150, Vol. VI-4/W1-
2020). Copernicus GmbH. https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-
143-2020.

4.1. Foundations and Related Work

This section establishes the necessary groundwork and discusses the literature relevant
to the concepts and methods presented in this chapter. Research Question RQB1
(Related Comparison Methods) and the first half of Research Question RQB2 (Graph
and Subgraph Isomorphism) are addressed in this section.

4.1.1. Existing diff Algorithms for XML, GML, and CityGML

Traditional change detection or data comparison algorithms, often referred to as diff
tools (Hunt & Szymanski, 1977; Myers, 1986; Wagner & Fischer, 1974), were primarily
designed for comparing unstructured plain texts. However, the CityGML data model,
despite often being encoded as text files, is a GML application schema, which, in turn,
is an XML grammar. Both XML and GML, and especially CityGML, are structured
exchange formats and cannot be treated as plain texts for comparison purposes. For
instance, in the context of comparing XML text files, the order of sibling elements is
predetermined when read from top to bottom. However, this sequence does not play
any significant role, as the siblings can be reordered in another text file, and both files
could still be identical in terms of content.

Every well-formed XML document must contain a single root element, serving as
the starting point to access all other elements. While each XML element may have an
arbitrary number of attributes and sub-elements, it can only be defined by exactly one
parent element. Elements without any sub-elements are located at the lowest level and
considered as leaf elements. As a result, the structure of each XML document mirrors
that of a tree and can be conceptually depicted as a tree data structure, commonly
known as an XML tree.

91

https://gispoint.de/artikelarchiv/gis/2018/gisscience-ausgabe-32018.html
https://gispoint.de/artikelarchiv/gis/2018/gisscience-ausgabe-32018.html
https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-143-2020
https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-143-2020

4. Change Detection in Semantic 3D City Models

In graph theory, the term tree, first introduced in 1857 by the British mathematician
Arthur Cayley (Cayley, 1857), refers to a mathematical structure consisting of a set of
vertices and edges, where exactly one path must exist between any two vertices, making
the tree loop-free. A rooted tree is a tree with a designated root vertex. In contrast, a
tree without a designated root is referred to as a free tree. An ordered tree is a rooted
tree, in which an ordering exists among the children of a vertex. In computer science, a
tree is an Abstract Data Type (ADT) that implements the concept of rooted trees from
graph theory, with nodes representing vertices and edges representing connections
between nodes. A binary tree restricts the number of children a tree node can have to a
maximum of two.

The comparison of XML documents has been a subject of extensive discussion. For
example, a fast and memory-efficient diff algorithm, known as XyDiff (Cobena et al.,
2002), was introduced for comparing ordered XML trees. This was accomplished by
matching unchanged XML subtrees between the older and newer version. Subsequently,
an effective algorithm named X-Diff (Wang et al., 2003) was proposed to detect changes
between unordered XML trees. The research incorporated several key XML character-
istics by introducing concepts such as node signature and XHash. Coupled with the
standard tree-to-tree correction techniques (Zhang, 1993), the difference between two
XML documents could be detected efficiently. The research argued that, despite the
implementation being considerably more difficult compared to that for the ordered
tree model, matching XML documents using their unordered tree model yielded more
accurate results.

Building upon this unordered tree model, a later study (Redweik & Becker, 2014)
extended X-Diff to more effectively incorporate spatial and geometric information
present in the tree representation of CityGML documents. However, the approach did
not factor in the use of XLinks, an important component in the GML and CityGML
encoding standard that allows the reuse and linking of previously defined elements
within the same document. The inclusion of XLinks would result in cycles in the em-
ployed tree representation of CityGML documents, contradicting the inherent definition
of trees being loop-free. As a result, despite being XML-based, CityGML documents
are basically considered as graphs, as explained in Chapter 3, and cannot be solely
confined to tree structures (Schade & Cox, 2010).

Recent studies have suggested the use of graphs for comparing CityGML documents
through their graph representations (Nguyen et al., 2017; Nguyen, 2017; Nguyen et al.,
2018). Changes detected in these graphs can provide insights into the changes in the
original CityGML documents. These studies have contributed to one of the first open-
source implementations for change detection in semantic 3D city models. However,
these studies employed a large number of manually defined rules for matching. While
these rules were capable of managing the syntactic ambiguities of simple geometric

92

4. Change Detection in Semantic 3D City Models

objects, they fell short in supporting more complex geometric objects and their changes,
such as the translation or resizing of a surface. In addition, due to the lack of support for
automatic conversion of graphs back into their original in-memory CityGML objects, the
implementation of these studies constantly referred to the graph database to compare
the structure and content of these subgraphs, a process that is labour-intensive and
inefficient compared to the object-oriented approach. Despite these limitations, these
studies have been instrumental in laying the groundwork for the matching process
proposed in this thesis.

In BIM, graphs have also been utilized to detect and document changes across
different temporal versions of an IFC model (Esser, 2024; Esser et al., 2022). By
leveraging graphs as a central medium for the representation of IFC documents and
detailed documentation of their changes, these studies laid the groundwork for enabling
version control and interdisciplinary collaboration in the built environment. Using
well-defined formal descriptions of incremental changes, these studies were capable
of handling diverging concurrent versions originating from a common document, as
well as merging different versions back into one unified state. Changes in the thematic
properties and topological positions of nodes within the graphs could be detected and
directly accessed, allowing for exchange with other collaborating partners.

However, these studies did not provide further guidelines on how to match complex
3D geometries, including those that may have been translated or resized. They did not
consider the possible different syntactic representations of the same (geometric) object
allowed by the underlying encoding. In addition, as these studies employed graph
and subgraph isomorphism, as will be introduced in Section 4.1.2, an open question
remains whether the proposed methods could be applied to the very large datasets
often found in the field of GIS. While the detected changes could be automatically
described in great detail, it has not yet been established how these changes can be
further interpreted to cater to specific needs of different stakeholders. Such questions
are addressed throughout this thesis.

There exist studies that did not utilize graph representations of CityGML documents
for detecting changes, such as in the use case of Lyon, France (Pédrinis et al., 2014),
where a building may cover a large area with many polygons. The authors employed
a purely geometric approach. Roofs were first projected onto the ground to extract
buildings’ footprints (in the absence of ground surfaces in the CityGML datasets). The
projected footprints were then matched based on their intersections and predefined
thresholds. Since the change detection process relied entirely on geometric matching,
the Hausdorff distance (Hausdorff, 1914) was used as an additional check to further
distinguish buildings with matching footprints, such as when a building had increased
in height. Moreover, the CityGML geometries were further combined with cadastre
data of the corresponding area to improve accuracy.

93

4. Change Detection in Semantic 3D City Models

The aforementioned study could only provide information on whether a building had
been deleted, inserted, or geometrically modified. Its methods could not detect more
complex geometric changes, such as translations and resizes in 3D space. Moreover,
cadastre information may not be always available. Additionally, without an expressive
intermediate representation like graphs employed in this thesis, no further changes
within the semantic contents of the matched buildings could be found, which is an
important information aspect of CityGML that should be considered.

As will be explained in Section 4.5, this thesis also performs an overlap check as
one of the first steps to quickly identify potential geometric matches. This applies to
all geometries except points, such as line segments, surfaces, and solids. This type of
geometric matching is employed not only for change detection in CityGML (Pédrinis
et al., 2014; Redweik & Becker, 2014), but also in many other studies and tools for a
variety of purposes. These include enriching 3D city objects with external information
(Ding et al., 2024) and managing 3D city objects within a database like the 3DCityDB
(Yao et al., 2018). As a result, there exist many variations to this overlap check. To
prioritize speed, this research only considers axis-aligned minimum bounding boxes of
city objects. Bounding boxes of top-level objects like buildings, if absent, are computed
and stored during the mapping process, as explained previously in Chapter 3.

For the 3D geometries A and B of two such city objects, their respective volumes
v (A) and v (B), their overlap v (A ∩ B), their union v (A ∪ B), and a sufficiently large
threshold h (ideally close to 1), a geometric match can be established based on one of
the following conditions:

v (A ∩ B)
v (A)

≥ h,
v (A ∩ B)

v (B)
≥ h,

v (A ∩ B)
v (A ∪ B)

≥ h. (4.1)

The first condition determines whether A is contained within B, while the second
condition verifies whether B is contained within A. The third condition, utilizing the
Jaccard index (Jaccard, 1912), ensures that both A and B are contained within each
other, meaning that they are geometrically equal. This research utilizes all three of
these variations across different cases.

4.1.2. Graph Isomorphism

In graph theory, an isomorphism between two graphs G and H is defined as a bijective
mapping between their vertex sets VG and VH, respectively, f : VG → VH, such that
if two vertices u, v ∈ VG are adjacent in G, then the vertices f (u) , f (v) ∈ VH are
also adjacent in H. Therefore, an isomorphism between two graphs is a bijection that
maintains adjacency (McKay & Piperno, 2014), often referred to as an ‘edge-preserving
bijection’, as it conserves the structure within the graphs.

94

4. Change Detection in Semantic 3D City Models

The aforementioned definition applies to graphs that are undirected, unlabelled,
and unweighted. This suggests that the isomorphism of two graphs is not influenced
by their node labels or layout but is solely determined by the similarity of their
structure (Trudeau, 1994). Graphs that are isomorphic to each other belong to the same
isomorphism class. Figure 4.1 illustrates a set of such graphs.

Figure 4.1.: An illustration of isomorphic graphs. By rearranging the vertices of the
pentagon in the middle, the star graph on the left is formed. Similarly, by
depicting the edges of the pentagon as curves, the circular graph on the
right is created. All these graphs belong to the same isomorphism class.

In the context of directed or weighted graphs, the aforementioned definition of
isomorphism can be extended with additional conditions to further ensure the preser-
vation of both direction and weights. On the other hand, when dealing with labelled
graphs, two cases are differentiated:

1. Each vertex and edge is unique and can be identified by a distinct label. For
instance, the vertices and edges of the graphs shown in Figure 4.1 are distinct
from each other. In this case, the isomorphism of these graphs is reducible to
the standard isomorphism between two corresponding unlabelled graphs, also
known as normal graphs.

2. The same labels may be assigned to multiple vertices or edges, grouping them
into equivalent classes. Within each equivalent class, all vertices or edges have the
same label. In this case, an isomorphism between such graphs must preserve both
the structure and the equivalence classes of labels. This means that, in addition to
adjacency properties, vertices and edges sharing a label in one graph must also
share a label in the other graph (Hsieh et al., 2006).

The latter definition of isomorphism applies to the graph representations of CityGML
documents employed in this thesis, since they are directed, labelled, and attributed
graphs that contain multiple equivalence classes of labels derived from various CityGML
classes.

95

4. Change Detection in Semantic 3D City Models

4.1.3. The Graph and Subgraph Isomorphism Problem

The graph isomorphism problem is the computational task of determining whether
there exists an isomorphism between two given graphs. This problem has been a focus
of research in multiple disciplines, including mathematics, theoretical computer science,
structural chemistry, and Geographic Information System (GIS) with hundreds of pub-
lished studies dedicated to it. Despite its prominence, the graph isomorphism problem
remains one of the few major algorithmic problems, besides integer factorization, for
which the exact computational complexity is still unknown (Skiena, 2008).

In computational complexity theory, decision problems (yielding ‘yes’ or ‘no’), belong
to the complexity class P (polynomial time complexity) if they can be solved using a
deterministic Turing machine (Turing, 1936) and their worst-case runtime is polynomial
with respect to their input size n, i.e., in O

(
nk), for a certain positive constant k. A

decision problem is in the complexity class NP (non-deterministic polynomial-time) if it
can be solved in polynomial time using a non-deterministic Turing machine and verified
in polynomial time using a deterministic Turing machine. A decision problem is NP-
complete (non-deterministic polynomial-time complete) if it is in NP and every other
problem in NP can be reduced to this problem in polynomial time. While a solution to
an NP-complete problem can be quickly verified (Cobham, 1965), finding it quickly is
much more challenging. Thus, NP-complete problems are the most difficult problems
for which a solution can still be verified quickly. Notable NP-complete problems include
the Boolean satisfiability problem (SAT) (Cook, 1971), the Hamiltonian path problem
(Garey & Johnson, 1979), and the travelling salesman problem (Held & Karp, 1970).

The graph isomorphism problem is unique because it is not known to be solvable in
polynomial time nor to be NP-complete (McKay & Piperno, 2014; Skiena, 2008). This is
under the assumption that P is not equal to NP, implying that P and NP-complete are
disjoint subsets of NP. The majority of studies consider the runtime complexity of the
graph isomorphism problem to reside somewhere between P and NP-complete (Skiena,
2008). The most efficient solution for the graph isomorphism problem is currently
believed to be in quasi-polynomial time exp

(
logO(1) n

)
(Babai, 2016). The previously

best known bound was exp
(
O

(√
n log n

))
(Babai & Luks, 1983).

A large number of studies focused on solving the graph isomorphism problem for
unlabelled graphs (Conte et al., 2004; Hsieh et al., 2006). To verify the isomorphism
between two labelled graphs, many studies performed the graph canonization (or
graph canonicalization) to convert these graphs into a canonical form (Huan et al., 2003;
Kuramochi & Karypis, 2004). The canonical form of a labelled graph serves as its
identifier, establishing that two graphs are isomorphic to each other if and only if they
have the same canonical form (Hsieh et al., 2006). For a labelled graph of n vertices,
where each vertex is uniquely identifiable, the time complexity to derive its canonical

96

4. Change Detection in Semantic 3D City Models

form is O (n!), accounting for all permutations over its vertices. This essentially renders
the approach impractical even with a small vertex set. In the case of a graph where
the same vertex or edge label may recur multiple times, vertex invariants, which are
vertex properties that remain unchanged across isomorphism mappings (Kuramochi
& Karypis, 2004), such as vertex degrees or labels in this context, are utilized. This
allows the vertices to be segregated into equivalence classes π1, π2, . . . , πc. The time
complexity to derive the canonical form is Θ

(
n2 ∏c

i=1 (|πi|!)
)
, where |πi| represents the

number of vertices of class πi (Hsieh et al., 2006; Kuramochi & Karypis, 2004). This can
be further reduced to O (n ∑c

i=1 (|πi|!)) by encoding the vertex invariants into compact
vertex signatures, which can be compared in linear time (Hsieh et al., 2006).

Given the complexity of the graph isomorphism problem, a majority of successful
research has concentrated on partitioning vertex sets based on specific criteria and
invariants (Arlazarov et al., 1974; Corneil & Gotlieb, 1970). This approach is often
referred to as the ‘individualization-refinement’ paradigm (McKay & Piperno, 2014).
One of the most prominent implementations of this approach is nauty, which leverages
automorphism, an isomorphism of a graph to itself, to organize the graphs into
automorphism groups and apply canonical labelling for search pruning (McKay, 1978,
1980). Decades later, it was demonstrated that nauty could generate large automorphism
groups for certain types of graphs, causing exponential runtime (Miyazaki, 1997). This
led to the introduction of a new software called Traces (Piperno, 2011). Unlike nauty,
Traces does not rely on backtracking to navigate within the search space. Instead,
it employs a strategy that combines the benefits of both the breadth-first traversal
for early pruning of irrelevant subtrees and the depth-first search for detection of
automorphism. Currently, both nauty and Traces are available in a single software
package (McKay & Piperno, 2023). While nauty supports labelled vertices, it does
not support labelled edges (Hsieh et al., 2006; Kuramochi & Karypis, 2004; McKay &
Piperno, 2023). However, certain types of graphs with labelled edges can be converted
to graphs with labelled vertices (McKay & Piperno, 2023). On the other hand, Traces
does not support directed graphs (McKay & Piperno, 2014; Piperno, 2011).

To further reduce the runtime complexity of the graph isomorphism problem, ad-
ditional constraints can be imposed on the graphs. For instance, polynomial time
can be achieved for specific types of graphs, such as interval and planar graphs (Col-
bourn & Booth, 1981; Hopcroft & Wong, 1974), both labelled or unlabelled trees (Aho
& Hopcroft, 1974), and graphs with excluded minors (Grohe, 2010; Ponomarenko,
1988). Further classes of graphs that also achieve this polynomial time when certain
constraints are applied include bounded genus (Filotti & Mayer, 1980; Miller, 1980),
bounded maximum vertex degree (Luks, 1982), bounded tree-width (Bodlaender, 1990),
bounded eigenvalue multiplicity (Babai et al., 1982), bounded rank-width (Grohe &
Schweitzer, 2015), and unit square graphs (Neuen, 2016).

97

4. Change Detection in Semantic 3D City Models

The subgraph isomorphism problem is a more complex task closely related to the
graph isomorphism problem. It involves determining whether there exists a subgraph
of a given graph G that is isomorphic to another given graph H. Thus, the subgraph
isomorphism problem is a generalization of the graph isomorphism problem, as G
and H are isomorphic if and only if they are isomorphic subgraphs of each other.
However, unlike the graph isomorphism problem, whose runtime complexity is still
undetermined between P and NP-complete, the runtime complexity of the subgraph
isomorphism problem is known to be NP-complete (Ullmann, 1976). This is because
the subgraph isomorphism problem is a generalization of other NP-complete problems,
such as the Boolean satisfiability problem (SAT) (Cook, 1971), the clique problem
(Bomze et al., 1999), and the Hamiltonian path problem (Garey & Johnson, 1979).
However, polynomial time can be achieved for certain types of graphs, such as planar
graphs (Eppstein, 1999).

Applications of both the graph and subgraph isomorphism problem cover a wide
range of use cases in various fields, such as exact graph matching in computer vision and
pattern recognition, and identification of known chemical compounds in mathematical
chemistry and cheminformatics. This research employs a heuristic variant of graph
matching that has been optimized for graph representations of CityGML documents,
which will be explained throughout this chapter. The runtime complexity of this
matching process, as demonstrated later in Chapter 7, exhibits a linear growth rate
with respect to dataset sizes.

4.2. Advantages and Challenges of Using CityGML Graphs

The main objective of this chapter is described as follows: Given two graph representa-
tions of a CityGML document, compare both their structure and content, and identify
all deviations and their locations within the graphs. However, the unique characteristics
of these graph representations, as generated from Chapter 3, present both advantages
and challenges. This section addresses Research Question RQB3 (Advantages and
Challenges of CityGML Graphs). The advantages of using the graph representations of
CityGML documents for the matching process include:

1. Semantic Graphs: These graphs are semantically rich with node and relationship
labelling. The node labels and relationship types are not unique and may recur
multiple times, such as in child nodes of the same parent node in a one-to-many
relationship, or the same node label but at different locations within the graph
like the node label gml:Polygon that occurs at different levels as shown in Table 3.2.
This allows the graphs to be divided into several equivalence classes of recurring
node labels and relationship types, simplifying the matching process.

98

4. Change Detection in Semantic 3D City Models

2. Well-defined Data Model: The graph entities are not only labelled, but the rela-
tionships that should follow a node and vice versa are dictated by the underlying
GML and CityGML data model. This semantic context serves as a guide, where
node labels and relationship types are already predefined. These semantic rules
are the additional constraints imposed on the graphs, allowing for fast retrieval
of matching candidates that satisfy these rules and dismissing those that do not.

3. Object-oriented Structure: The graph representations of CityGML objects closely
mirror their object-oriented representations. This means that a subgraph can
be easily transformed back into its original in-memory object, facilitating the
matching of their structure and content. For example, a polygon object can
be rebuilt from a polygon node and its associated subgraph, as explained in
Section 3.6, allowing for matching its geometric extents without the constant
need to fetch the data from each node and relationship manually. However, this
approach is only applicable for small subgraphs.

4. Spatial Extent: The employed graphs are not only rich in semantic content, but
also in spatial information, such as the available or computed bounding box of
each building in the city model. This spatial data is crucial to limit the number
of candidates that could potentially match a reference subgraph. For example,
when given a reference building, the matching process avoids a brute-force search
for matching candidates by specifically looking for those that have the most
overlapping bounding volume with that building.

However, the use of the graph representations of CityGML documents in this research
also presents many challenges:

1. Complex Class Hierarchy: The CityGML data model utilizes a multitude of
classes to represent city objects. These classes are organized within a complex
class hierarchy. This translates into a high number of node labels and relationship
types employed within the graph database. However, since Neo4j operates as
an instance-based database, it lacks the ability to handle many object-oriented
concepts, such as inheritance and polymorphism. For instance, by employing
the graph data model explained in Section 3.2, each node only has one label
for its type, which is the lowest subclass in the class hierarchy of its respective
CityGML object. As a result, the database is unable to determine whether a node
represents an instance of a certain superclass. This restriction in the number
of labels allowed per node is made to avoid excessive number of indexes in
the database, which not only requires more storage but also slows down the
processing time. Therefore, such type checking is typically performed outside of
the database using an object-oriented programming language such as Java.

99

4. Change Detection in Semantic 3D City Models

2. Large, Directed Graphs: The graphs used in this research are directed and
therefore not compatible with the tool Traces (Piperno, 2011). Additionally, since
the relationships are typed, the graphs cannot be processed by the tool nauty
without first transforming them to graphs with only labelled nodes (McKay &
Piperno, 2023). Furthermore, these graphs are often very large in size, with
millions of nodes and gigabytes of data stored in the graph database. Graph
and subgraph isomorphism are generally not suited for large graphs (McKay &
Piperno, 2014).

3. Attributed Graphs: Each node and relationship of the graphs is attributed. In
Neo4j, while properties within a node or a relationship are uniquely identified,
there may exist properties across multiple nodes or relationships with identical
names but potentially different meanings. Thus, matching a node or a relationship
based solely on their labelling is not sufficient; their properties must also be taken
into account.

4. Alternating between Graph and Subgraph Isomorphism: The change detection
process in this context is not a decision problem, meaning it does not yield a
simple true or false. Instead, when two subgraphs representing the same object
are identified, they are compared, and the exact extent and location of their
deviations in the graphs must be reported. Moreover, graph isomorphism is
typically employed in cases where both the graphs have the same number of
vertices. However, this is not always applicable in the graph representations
of CityGML documents. Therefore, the more complex subgraph isomorphism,
or inexact graph matching, is a more suitable approach. As a result, graph
isomorphism is applied first to determine whether two graphs are identical.
If not, the process switches to subgraph isomorphism and attempts to find a
matching subgraph.

In addition, challenges, which are not strictly specific to graphs, but are rather the
direct consequences of the underlying encoding standards of GML and CityGML,
include: order and identifier-independence, syntactic ambiguities, and uncertainties in detect-
ing geometric changes of objects, such as translations and size changes of surfaces with
measurement errors taken into account. These challenges are described previously in
Section 2.2.

Therefore, all these factors add a significant layer of complexity to the already
challenging graph and subgraph isomorphism problem employed in this chapter.
These shall be addressed in Section 4.3.

100

4. Change Detection in Semantic 3D City Models

4.3. Methods for Comparing CityGML Graphs

The main method for detecting changes between two graph representations of CityGML
documents is outlined in Algorithm 6. This method compare(left, right) utilizes the graphs
generated by the mapping methods introduced in Chapter 3. However, graphs with
similar structure and data model can also be applied. The techniques and strategies
used in Algorithm 6 are explained in the following sections, addressing the first half of
Research Question RQB4 (Matching Methods).

4.3.1. Recursive Matching

The method compare(left, right) is recursive (refer to Line 29) and operates in a top-
down manner. Its two input nodes, left and right, are node representation of the old
and new CityGML object, respectively. These are the source nodes of the subgraph
representations of CityGML objects, from which all remaining nodes in the subgraphs
can be reached. The method first compares the properties of these nodes, then proceeds
to their child nodes, and so forth until all elements of the subgraphs reachable from
the given nodes left and right have been traversed. The advantage of this approach is
its concise implementation while remaining applicable to graphs of any scale, given
sufficient computational resources.

The graph representations of CityGML objects utilized in this research are directed
and weakly connected, as explained in Section 3.1.4. As a result, once this recursive
method is invoked, it will be executed for the entire content of the CityGML objects
represented by the provided nodes left and right. Moreover, as these graphs do not
contain directed cycles, as explained in Sections 3.1.4 and 3.2.1, the termination of the
recursive method on these finite graphs is guaranteed.

4.3.2. Semantic Matching

As mentioned in Sections 4.1.3 and 4.2, the challenges of graph and subgraph isomorph-
ism are significant, particularly when dealing with graph representations of large-scale
CityGML documents. However, the runtime complexity can be reduced significantly
by utilizing the rich semantic information available in these graphs. This includes node
labels, relationship types, and property names.

Therefore, a comparison of two nodes, relationships, or properties is only performed
if they share the same labels, types, or names, respectively (refer to Lines 1, 8, and 20).
This use of semantic labelling ensures that most of the graphs can be excluded when
matching. For massive graphs, thematic indexing is utilized to enhance the retrieval of
nodes or relationships based on their labelling, as detailed in Section 6.2.

101

4. Change Detection in Semantic 3D City Models

Algorithm 6: Recursive graph comparison method compare(left, right)
Input : Node representations left and right of old and new CityGML object
Outcome: Change nodes directly attached to the graphs when detected

1 if left.getLabels() != right.getLabels() then return
2 foreach property prop of left and not right do
3 attach a Change node indicating removal of prop from left
4 end
5 foreach property prop of right and not left do
6 attach a Change node indicating insertion of prop into right
7 end
8 foreach property prop in both left and right do
9 if left.get(prop) ̸= right.get(prop) then

10 attach a Change node indicating updated prop between left and right
11 end
12 end
13 foreach outgoing relationship rel from left and not right do
14 attach a Change node indicating removal of rel.getEndNode() from left
15 end
16 foreach outgoing relationship rel from right and not left do
17 attach a Change node node indicating insertion of rel.getEndNode() into right
18 end
19 matchedRight← empty list of matched child nodes of right
20 foreach outgoing relationship rel from both left and right do
21 leftChild← rel.getEndNode()
22 {rightChild, similarity} ← findBest(left, right, leftChild)
23 if rightChild = null then
24 attach a Change node indicating removal of leftChild from left
25 else
26 matchedRight.add(rightChild)
27 if similarity ̸= EQUIVALENCE then
28 attach a Change node indicating similarity between left and right
29 compare(leftChild, rightChild)
30 end
31 end
32 end
33 foreach child node rightChild of right not found in matchedRight do
34 attach a Change node indicating insertion of rightChild into right
35 end

102

4. Change Detection in Semantic 3D City Models

4.3.3. Comparing Node Properties

When two nodes share the same label or two relationships share the same type, the
matching process proceeds to compare their properties (refer to Line 2 through Line 12).
In Neo4j, both node and relationship properties are stored in a key-value mapping,
with property names serving as unique keys. This means that while the same property
names can be reused across nodes and relationships, no two properties within the same
node or relationship can have the same name.

As a result, retrieving properties by their names between two nodes or relationships
is a straightforward process. If a property only exists in the node representation of
the older CityGML object, it may indicate that the property has been deleted during
the given time period (refer to Line 2 through Line 4). Conversely, if a property only
exists in the node representation of the newer CityGML object, it may suggest that
the property has been added during that period (refer to Line 5 through Line 7). A
property is considered to have been updated from the old to new value only when it
exists in both given nodes (refer to Line 8 through Line 12).

The comparison of these property values, as shown in Line 9, is complex, as it
involves not only a type comparison but also the consideration of error tolerances when
dealing with measurement values.

Handling Property Types

Since Neo4j does not store any type information for node and relationship properties
in its instance, all property values retrieved from the database are typically treated
as strings. Two solutions to this issue exist: (1) use the enriched type information of
each property, as introduced in Section 3.6 for the reconstruction of graphs back into
their original CityGML objects, or (2) perform a type conversion from string at runtime.
The exact type information is crucial for matching, as these string property values can
represent a variety of data types, including booleans, numbers, date-time values, and
plain texts.

The first option, using the enriched type information, can be applied if such informa-
tion is readily available in the graphs. If not, the second option can be employed. The
process of deducing the corresponding data types from a given property text, denoted
as t, is described as follows:

1. Trim all spaces at the beginning and end of t, and then convert t to lower case.

2. If t is equal to true or false, then it is identified as a boolean.

3. If t contains only digits and optionally a sign, then it represents a natural number.

103

4. Change Detection in Semantic 3D City Models

4. If t contains only digits and optionally a sign, an exponent symbol ‘e’, or a single
dot or comma, then it may represent a floating-point number.

5. If t contains only digits and date-time delimiters, then it may represent a date-time
value.

6. If none of the above applies, t is treated as a plain text.

To implement these steps, regular expressions can be utilized.

Numeric Comparison

If the type of a given property value is determined as a natural or floating-point number,
its string value is converted to a corresponding numeric format. Two natural numbers
are considered identical if and only if their subtraction is equal to 0. On the other
hand, two real numbers, denoted as p and q, are considered to be equal if and only if
the absolute value of their difference is less than a small, acceptable error tolerance,
denoted as ϵ. This can be described as:

p ≈ q ⇐⇒ |p− q| < ϵ (4.2)

Measurement Comparison

Each measurement in CityGML is composed of two components: a real value, and
an associated unit of measurement (uom). Both of these are stored as separate node
properties within the same node, as explained in Section 3.3.6. Therefore, when
comparing two measurements, it is crucial to consider not only the measured values
but also their units. Moreover, the length error tolerance itself also has a unit that may
differ from those used in the measurements.

As a result, to compare two measurements, they must first be in the same unit. If
not, they are converted to a common reference unit, typically metres. The length error
tolerance is also converted if it is not in the reference unit. Once a common unit of
measurement is established, the measured values can be compared in the same manner
as when comparing two numeric values, as previously explained.

For instance, consider two measurements: 1 m and 99 cm. These are considered equal
for a length error tolerance ϵ of 5 cm. This is because, when converted to metres, the
two measurements are 1 m and 0.99 m, respectively. Their absolute difference, 0.01 m, is
smaller than and the length error tolerance in metres, 0.05 m. Therefore, even though
both the measurement values and units of measurements differ, they are considered
identical, and no real change is recorded.

104

4. Change Detection in Semantic 3D City Models

Date-Time Comparison

Similarly to measurements, date-time values also have units. However, unlike length
measurements, date-time values can have multiple units at the same time: years, months,
days, hours, minutes, seconds, and even milliseconds, along with the time zone. There
exist numerous formats of describing the same date and time across many different
regions of the world. For instance, dates can be given as mm-dd-yyyy, mm/dd/yyyy,
dd-mm-yyyy, or dd/mm/yyyy. Similarly, the same time value can be described differently
depending on the time zones.

To ensure a consistent and unambiguous way of describing date-time values world-
wide, the international standard ISO 8601 provides a standardized format for defining
and displaying these values (ISO, 2019a, 2019b). For example, the format YYYY-MM-DD
is defined for calendar dates, such as ‘1970-01-01’, and hh:mm:ss for time in a 24-hour
clock system, like ‘01:00:00’. This time value can be directly appended with a time zone
designator, such as 01:00:00Z in Coordinated Universal Time (UTC). The character ‘Z’
stands for Zulu time, which corresponds to the time zone 0 of the military time zones
(CCEB, 2010). Alternatively, a time zone offset can replace the letter Z, such as ‘+01:00’
for time zone 1. In the absence of time zone information, the time is assumed to be
local. An example of a combined date-time representation with a time zone could be
‘1970-01-01T01:00:00+01:00’, which is equivalent to ‘1970-01-01T00:00:00Z’.

To handle these various syntactic representations of date-time values, Unix time, also
known as epoch time, is commonly employed. It converts any given date-time value
into the number of seconds, or milliseconds for greater precision, that have passed
since 00:00:00 UTC, January 1, 1970, excluding leap seconds. Therefore, to compare two
date-time values, they are first converted to Unix time. Then, the resulting values are
compared in a similar manner to length measurements, with the unit being seconds (or
milliseconds, depending on the level of granularity chosen).

The CityGML encoding utilizes the XML data type xs:date for defining date attributes,
such as creationDate, where xs denotes the namespace of the XML schema. This data
type leverages the ISO 8601 standard to describe a set of Gregorian calendar dates,
with a period of one day between two nearest dates. For instance, the following date
values are considered equivalent in XML: ‘1970-01-01’, ‘1970-01-01Z’, ‘1970-01-01+01:00’,
given a time error tolerance of one day. However, when CityGML documents are
parsed using the library citygml4j to generate their in-memory objects, these dates are
automatically appended with a default time value, such as with the suffix ‘T00:00+01:00’.
The combined date-time format is then stored as a single node property in the graph
representations employed in this research.

105

4. Change Detection in Semantic 3D City Models

Boolean and String Comparison

If none of the above conditions applies, the property values are simply considered as
strings. Two strings are identical if they contain the same sequence of characters. The
comparison of string values is case-sensitive.

On the other hand, boolean values are equal if they both evaluate to either true or
false. This can be achieved by performing a logical comparison on their boolean values
or by matching their string representations, irrespective of case. For instance, the string
‘True’ is considered equal to ‘true’. This implementation can be extended to also allow
for the string values of ‘T’ and ‘F’, or ‘t’ and ‘f’.

4.3.4. Matching Child Nodes and Subgraphs

In the employed graph database Neo4j, each node can have an arbitrary number of
relationships, both in the incoming and outgoing direction. However, every relation-
ship must be assigned with exactly one type. Moreover, a node can have multiple
relationships of the same type. The matching process, which operates in a top-down
manner, consistently follows the outgoing direction of all relationships to minimize
repeated traversal. Thus, in the context of one-to-many and many-to-many semantic
relationships, a node can establish multiple outgoing relationships of the same type to
its child nodes.

If a relationship type only exists for the node representation of the older CityGML
object, it may indicate that all corresponding relationships and their subsequent paths
have been removed during the given time period (refer to Line 13 through Line 15).
Conversely, if a relationship type is exclusive to the node representation of the newer
CityGML object, it may suggest that all its relationships and their subsequent paths
have been added during that period (refer to Line 16 through Line 18). A relationship
type that exists for both nodes indicates that its relationships and associated subgraphs
can be further compared (refer to Line 19 through Line 35).

Matching one-to-one relationships is straightforward, as it requires at most only a
single comparison for the end node of each relationship. For example, if both Building
nodes contain a measuredHeight relationship, their measured heights can be matched
quickly, since each building can have only one measured height. However, when
dealing with one-to-many and many-to-many relationships, more efficient strategies
are required to accurately identify the best matching candidate for a reference node.
For instance, when comparing an older CityGML document containing n buildings
with a newer CityGML document containing m buildings, a brute-force comparison
would result in nm comparisons between each possible pair of buildings. This approach
is not only inefficient but also impractical for large datasets.

106

4. Change Detection in Semantic 3D City Models

Therefore, an additional method findBest(left, right, ref) is employed to identify the
best potential match for a reference node (refer to Line 22). In the example above of
comparing two CityGML documents, this method returns at most a single building
from the new city model that best matches the reference building from the old city
model. If no match is found, the reference object is considered to have been deleted
from the old dataset (refer to Line 24). If a match is found, both the reference node and
the returned node are compared (refer to Line 29), significantly reducing the matching
runtime by performing only one comparison. This method for finding the best potential
match, which will be further explained in Section 4.5, often serves as a preliminary
evaluation method to find the best matching candidate before any actual comparison.
The similarity levels between the reference node and the matching candidates are
evaluated for this purpose. These similarities are further explained in Section 4.4.
Lastly, any remaining unmatched relationships from the new node are considered
as additions to the new dataset (refer to Lines 19 and 26, as well as Line 33 through
Line 35).

In contrast to node and relationship properties, where changes can be detected by
comparing their literal content, solely comparing the structure of subgraph represent-
ations of CityGML objects may not always reveal actual changes. For example, even
with identical geometric content, a polygon defined using a different syntactic way,
such as by dividing its interior into two smaller adjacent interiors that together form
the original interior, would result in a series of node deletions and insertions. Such
syntactic ambiguities of geometric elements are addressed in Section 4.5.

4.3.5. Direct Attachment of Change Nodes to Graphs

During the method compare(left, right), each detected change leads to the insertion of
an additional node into the database (refer to Lines 3, 6, 10, 14, 17, 24, 28, and 34),
serving as a change indicator. The type of this change determines whether its change
node is attached to the left node representing the older CityGML object, the right node
representing the newer CityGML object, or both. For example, for a deleted node
property, a corresponding change node is attached to the left node, where the property
was removed. Conversely, for an added node property, a corresponding change node is
attached to the right node, where the property was inserted. In the case of an updated
node property, the change node is attached to both the left and right node.

The benefits of attaching these change nodes are manifold. Firstly, it enables the
marking and documentation of all detected changes, even after the matching process is
complete, as these change nodes are persistently stored in the database. Secondly, a
change node’s direct links to its context nodes allow for quick extraction of relevant
information required for further change analyses and classification, without the need for

107

4. Change Detection in Semantic 3D City Models

complex queries. Lastly, as explained in Chapter 5, change nodes and their linked nodes
provide crucial semantic context in the graph database that allows for the interpretation
of more complex change patterns.

In addition to change nodes, match nodes can also be used to indicate equality between
two nodes. However, these change and match nodes require expensive write operations
as they are written directly into the database. This constant writing can significantly
slow down the matching process, potentially blocking other parallel processes or even
causing a deadlock in a multi-threaded environment, as described in Section 6.4. For
example, when enabled, comparing two similar graphs may result in a large number of
match nodes, thereby slowing down the process. Therefore, in this research, considering
that the graph representations of two temporal versions of the same CityGML document
often exhibit more similarities than differences, in most cases, only change nodes are
utilized and no match nodes are added.

The change nodes inserted in this context are often referred to as edit nodes, repres-
enting the edit operations created after the matching process between the two graphs is
complete. This is further explained in Section 4.6.

4.4. Node and Subgraph Similarity

The method findBest(left, right, ref), as shown in Line 22 of Algorithm 6, not only
identifies the best potential match for a reference node, but also provides further
information about the similarities in both their structural and semantic contents. In
this study, the term similarity between two nodes refers to the similarity between
them and the entire subgraphs they represent (i.e., the subgraphs that are reachable
from these nodes when applying the ‘downward’ direction from higher semantic level
elements to lower ones). For instance, the similarity between two polygon nodes is
assessed by considering all their geometric properties extracted from their subgraph
representations. The process of calculating these similarities is detailed in Section 4.5.

In the presence of a large number of potential matches, the similarities between the
reference and each candidate are assessed first. Based on these similarity values, the
matching process determines whether to consider both the reference and the corres-
ponding candidate as identical, thereby eliminating the need for further comparison, or
to proceed with the actual comparison of the content of both subgraphs. The metrics
used in this process include both the semantic and geometric similarities, providing an
order, based on which candidates can be evaluated and sorted.

In this research, the similarities between two node candidates for matching are
categorized into several levels, each assigned with a unique label. A detailed description
of these levels, given in ascending order, can be found in Table 4.1.

108

4. Change Detection in Semantic 3D City Models

Table 4.1.: Similarity levels for matching nodes and subgraphs they represent, shown in
ascending order.

Similarity Level Scope Description

SAME_LABELS N Both nodes share the same labels.

SAME_ID N Both nodes share the same identifier.

SAME_STRUCTURE N G Both nodes and their respective subgraphs share the
same property names and graph structure.

SAME_GEOMETRY N G Both nodes and their respective subgraphs represent
the same geometry.

EQUIVALENCE N G Both nodes and their respective subgraphs represent
the same object.

N Applicable to nodes G Applicable to subgraphs represented by given nodes

While the majority of these similarity levels can be applied to both given nodes and
the subgraphs they represent, some levels are specific to single nodes only. For example,
the levels SAME_LABELS and SAME_ID indicate that both the given nodes share the
same labels and identifier, respectively. These levels are exclusively employed when the
nodes do not represent any further subgraphs.

On the other hand, similarity levels like SAME_STRUCTURE, SAME_GEOMETRY,
and EQUIVALENCE apply to both nodes and their corresponding subgraphs. They are
further explained as follows:

1. SAME_STRUCTURE: This level suggests that both the given nodes and their
respective subgraphs share the same naming schema for existing properties
(without comparing property values), as well as the same graph structure. In
this context, two graphs are considered to have the same structure if they are
isomorphic to each other, with both vertex and edge labelling taken into account.
This is typically the case for graph representations of different instances of the
same object class: they have the same structure but contain different values.

2. SAME_GEOMETRY: This level implies that even if two nodes and their sub-
graphs do not share the same graph structure, they can still represent the same
geometry. This is due to the multiple syntactic possibilities allowed by the GML
and CityGML encoding standard. This level does not include the equality of
the thematic property values stored within the nodes and subgraphs, except for
geometric coordinates and measurements used to represent the geometry.

109

4. Change Detection in Semantic 3D City Models

3. EQUIVALENCE: This level ensures that both nodes and their subgraphs represent
the same object. This means that both nodes and their subgraphs are identical in
both content and structure, or they may be structured differently but share the
same content. This is the highest level of similarity, and no further comparison
between the nodes and their subgraphs is needed once this level is reached.

The distinction between the levels SAME_STRUCTURE and EQUIVALENCE lies in
the property values within the graphs being different in the former. Similarly, the level
SAME_GEOMETRY differs from EQUIVALENCE in that it does not enforce the equality
of the thematic properties stored within the graphs. Therefore, both the levels become
EQUIVALENCE if either all respective thematic property values also match, or they do
not contain any thematic properties.

For instance, by computing their orientations, positions, bounding boxes, and key
vertices, two boundary surfaces can be quickly matched without processing their
geometric content. Thus, they are first categorized as SAME_GEOMETRY, indicating
that a geometric comparison can be omitted, and further comparison of their thematic
elements may still be needed. However, if these surfaces do not have any thematic
elements, they are considered equal and categorized as EQUIVALENCE.

The similarity levels introduced above are employed by the method findBest(left, right,
ref) in Section 4.5 to provide the matching process with additional information about
the found candidates, including how they were selected, and how similar they are to
the given reference node. This information is then reflected in the additional change
nodes directly attached to the graphs (refer to Line 28 of Algorithm 6).

While the similarity levels shown in Table 4.1 are crucial for the matching process in
this research, additional, more granular levels can be introduced when needed.

4.5. Finding the Best Potential Match

As outlined in Line 22 of Algorithm 6, the method compare(left, right) utilizes findBest(left,
right, ref) to identify the best potential match for a reference node. This serves as an
initial filtering mechanism, allowing for fast selection of the most suitable match from a
large candidate pool. This is achieved by evaluating their most prominent features that
can be extracted quickly, thereby circumventing the need to parse and compare entire
subgraphs. This process is outlined in Algorithm 7, addressing the last half of Research
Questions RQB2 and RQB4, as well as Research Questions RQB5 to RQB8 (Graph
and Subgraph Isomorphism, Matching Methods, Syntactic Ambiguities, Geometric
Uncertainties, Geometric Transformations, and Finding Best Match, respectively). The
following sections explain how the method findBest(left, right, ref) leverages the unique
characteristics of various GML and CityGML objects, with an emphasis on geometries.

110

4. Change Detection in Semantic 3D City Models

Algorithm 7: Method for finding the best potential match findBest(left, right, ref)
Input : Node representations left and right of old and new CityGML object

A child node ref of left as reference
Output : The best matching candidate match for ref , which is a child of right

Similarity value between match and ref
1 candidates← right.getChildren(ref .getLabels())
2 if candidates is empty then return {null, null}
3 switch object type represented by ref do
4 case generic attribute do
5 match← candidates.matchGenericByValue(ref)
6 if match = null then
7 match← candidates.matchGenericByName(ref)
8 return {match, SAME_LABELS}
9 end

10 return {match, EQUIVALENCE}
11 end
12 case geometry do
13 match← candidates.matchGeometry(ref)
14 if match = null then
15 return {null, null}
16 end
17 if ref and match contain thematic properties then
18 return {match, SAME_GEOMETRY}
19 end
20 return {match, EQUIVALENCE}
21 end
22 case top-level feature do
23 match← candidates.matchBBox(ref)
24 if match = null then
25 return {null, null}
26 end
27 return {match, SAME_LABELS}
28 end
29 otherwise do
30 return {match, SAME_LABELS}
31 end
32 end

111

4. Change Detection in Semantic 3D City Models

4.5.1. Matching Generic Attributes

The generic module of CityGML enables the extension of its data model with arbitrary
additional attributes. These generic attributes, declared in the class CityObject of the core
module of CityGML, can be incorporated into all city objects (Gröger et al., 2012). Each
generic attribute can have a name and a value. Six different types of generic attributes are
available, defining this value as a natural number, a floating-point number, a date-time
value, a measurement object (containing a measured value and its unit), a string value,
and a Uniform Resource Identifier (URI).

A city object can have an arbitrary number of generic attributes, either directly as
a collection of individual generic attributes or as a collection of generic attribute sets,
which, in turn, are collections of individual generic attributes. As a result, when
matching graph representations of two city objects with multiple generic attributes, the
method for finding the best potential match for each reference generic attribute can be
applied (refer to Line 4 through Line 11). This process is further described as follows:

1. Value-based Matching: The value of a reference generic attribute is compared to
all candidates to find the optimal match (refer to Line 5). The comparison method
varies depending on the types of the generic attributes:

a) Numeric Values: The numeric values, both natural and floating-point num-
bers, are compared considering a small error tolerance.

b) Measurement Values: Generic measurements are compared based on their
values and units, factoring in unit conversion and a small error tolerance.

c) Date-time Values: Generic date-time values are parsed and compared,
accounting for different conventions for describing dates and time.

d) Text Values: Generic text values, such as string and URI values, are compared
based on their exact string representations.

The techniques for comparing these different value types have been previously
discussed in Section 4.3.3. A non-empty result from this matching process
suggests an exact correspondence between two generic attributes, as indicated by
the similarity level EQUIVALENCE shown in Line 10, eliminating the need for
additional comparisons.

2. Name-based Matching: If the value-based matching above fails to identify a
potential match for a given reference generic attribute, the process proceeds to
find the next best match with the same name (refer to Lines 6 and 7). A non-empty
result suggests that the two generic attributes share the same type and name, but
with different values, as indicated by the similarity level SAME_LABELS shown
in Line 8.

112

4. Change Detection in Semantic 3D City Models

4.5.2. Matching Points

As fundamental geometric elements in 0D, points are pivotal in constructing more
complex, higher-dimensional geometries. This results in a CityGML document often
containing a vast number of points, with even a small building potentially employing
hundreds of points to define its geometries. Therefore, the ability to quickly find a
matching point from a large set is crucial for various subsequent processes.

Two points are considered equivalent if they are located within each other’s neigh-
bourhood, defined by their coordinates and a margin of error or error tolerance, denoted
as ϵ. This neighbourhood forms a circle in 2D or a sphere in 3D space, with the point
at the centre and ϵ as the radius. As illustrated in Figure 4.2a, point B lies within the
neighbourhood of A, making them equivalent, while A and C are not.

In a Projected Coordinate System (PCS) with Cartesian coordinates like x and y,
Euclidean distances can be employed to compute the planar distances between points.
Conversely, in a Geographic Coordinate System (GCS) with spherical coordinates
like longitude and altitude, the haversine formula is applicable for calculating the
great-circle distances between points.

A

B

C

ϵ

(a) Neighbourhood as a circle

A

B

C

ϵ

(b) Neighbourhood as a square

Figure 4.2.: Matching points by calculating their Euclidean distances (left) or direct
comparison of their coordinates (right) in 2D, with an error tolerance ϵ.
Points located in the same neighbourhood (yellow) are considered equal.

Alternatively, for a sufficiently small ϵ, individual point coordinates can be compared
directly. As these are numerical values, the same comparison techniques used for
numbers apply, as explained in Section 4.3.3. This approach defines the neighbourhood
as a square in 2D and a cube in 3D, with the point at the centre and 2ϵ as the side length.
As shown in Figure 4.2b, point C now also falls within the enlarged neighbourhood of
A. The points A, B, and C are thus considered equivalent.

113

4. Change Detection in Semantic 3D City Models

Compared to Euclidean distances or the haversine formula, which require expensive
arithmetic operations like multiplications and square roots, or complex trigonometric
operations and their inverses like sine, cosine, and arcsine, matching point coordinates
only requires simple operations such as subtractions and comparisons, which are
significantly faster. However, this approach is only applicable for a sufficiently small
ϵ. The new neighbourhood shown in Figure 4.2b is larger than that in Figure 4.2a by
(4− π) ϵ2 in 2D or (8− 4π/3) ϵ3 in 3D. With a very small value of ϵ, this difference is
negligible in most cases.

In CityGML datasets consisting of millions of points, the task of retrieving and
comparing points can be optimized by employing point indexing, a feature available in
the graph database Neo4j. This point index is capable of determining quickly whether
two points are in proximity or identifying all points near a given point. A detailed
explanation of this indexing is provided in Section 6.3.1.

4.5.3. Matching Line Segments

While a curve can take the form of an arc or a straight line, in CityGML, curves are
specifically restricted to straight lines. As a result, only the GML class LineString is
utilized (Gröger et al., 2012). A LineString is a special type of curve that is defined by two
or more points, with linear interpolation between them (Cox et al., 2004). Consequently,
a LineString is a series of connected line segments, representing a polygonal chain. For
example, as illustrated in Figure 4.3, the blue LineString geometry is composed of five
points that define four connected segments AB, BC, CD, and DE.

Given that multiple LineString elements with collinear segments can represent the
same geometry, such as the blue paths ABCDE and ABDE illustrated in Figure 4.3, the
first step is to resolve this syntactic ambiguity. This is achieved by grouping all collinear
points, with an error tolerance ϵ taken into account, to form larger segments confined
by their two outermost points, often referred to as vertices. For example, the points B
and D serve as the vertices of the collinear segments BC and CD. The line segments
that result from this process are distinct and can therefore be further compared.

To find the best potential match for a given reference LineString geometry efficiently,
the following steps can be performed:

1. Bounding Box Calculation: For each LineString candidate, its Axis-aligned Min-
imum Bounding Box (AABB) is calculated. A bounding box of a LineString
is defined by the minimum and maximum coordinates of its points in each
dimension. These bounding boxes are utilized for the following evaluations:

a) Overlap Check: All candidates, where the overlapping area or volume of
the bounding boxes exceeds a certain sufficiently high threshold, such as

114

4. Change Detection in Semantic 3D City Models

A

B C D

E

J

K
L

M

P

Q

R S

T

Figure 4.3.: An illustration of the process of matching line segments. Collinear points
are grouped to form larger segments, bound by two furthest points, referred
to as vertices. For example, the segments BD and PR represent the collinear
points B, C, D and P, Q, R, respectively. Then, the path JKLM is considered
to be geometrically equivalent to the reference path ABCDE, as their ver-
tices are located within each other’s neighbourhood, represented by the
yellow circle areas with the error tolerance ϵ as radius. The path PQRST
could also be considered equivalent, with translations by an acceptable
amount taken into count.

90 % of the area or volume of the reference bounding box, are considered.
If the reference LineString contains only collinear segments, resulting in its
bounding box being also a line, the same principle can be applied but to its
overlapping length instead of area or volume.

b) Point-wise Comparison: Among these, the best candidate is found where all
its vertices are equivalent to those of the reference LineString, as explained in
Section 4.5.2. For a small value of ϵ, this should yield at most one result.

2. Minimum Distance Check: If no candidates are found with a sufficiently large
overlapping area or volume, the candidate with the smallest distance to the
reference bounding box is selected. If this candidate contains the same number of
vertices and there exists a consistent translation vector v for each corresponding
vertex pair between the two geometries, the best match is found. If not, the
selection process continues with the candidate with the next smallest distance

115

4. Change Detection in Semantic 3D City Models

until a match is found or none remains. When found, this match represents the
same geometry as the reference but has been translated by v. As illustrated in
Figure 4.3, the green path PQRST represents the same line segments as ABCDE,
but it has been translated by the distance ∥v∥ = AP = BR = DS = ET.

The computation of the axis-aligned bounding boxes is straightforward, as it only
requires comparison between point coordinates to determine their minimum and
maximum in each dimension. Moreover, the overlap check is simple, yet effective to
filter out most unrelated candidates. The minimum distance check ensures that the best
optimal match can be found when translations between the geometries are also taken
into account. However, the maximum allowed value of this distance offset ∥v∥ should
be kept small to reduce the number of potential matches. Moreover, this approach
matches line segments where points are given in the same sequence. For line segments
in opposite order, the points are first reversed, and then the same method is applied.

4.5.4. Matching Surfaces

The CityGML encoding standard employs the GML class Polygon to represent its
surfaces (Gröger et al., 2012). In GML, a polygon is composed of an exterior and any
number of interiors (also known as holes), which together form its boundary (Cox
et al., 2004). Each polygon is planar, implying that both its exterior and interiors must
be on the same plane. The exteriors and interiors are defined as closed rings, most
notably represented by the GML class LineString. Figure 4.4 illustrates an example of
such polygon surfaces.

(a) One exterior, one interior (b) One exterior, two interiors

Figure 4.4.: An example of a polygon with one single interior (left) and two interiors
(right). Both shapes are equal.

116

4. Change Detection in Semantic 3D City Models

Considering a polygon may contain any number of interiors, the first step is to
combine all adjacent interior rings into bigger ones. This is achieved by successively
performing a union operation on every two adjacent coplanar interiors until they merge
into one. The shape of the polygon is then determined by subtracting this combined
interior from its exterior. However, due to the computational intensity of both the
interior merging and the subtraction process, these operations are only executed when
two polygons share the same exterior ring.

Polygons, despite being 2D geometries, are given in 3D space. This presents both
challenges and advantages for the matching process. The challenge lies in the increased
complexity of geometrical functions needed to handle these surfaces, as they can be
parallel, intersecting, or neither when treated as bounded regions in space. However,
the advantage is that most of these surfaces, including parallel ones, can often be
quickly filtered by calculating their normal vectors1. Moreover, as many surfaces in
CityGML are created to form a closed 3D volume, such as a solid representing the 3D
shape of a building, their normal vectors vary for a large number of member surfaces.

Numerous transformations can be applied between two surfaces, including affine
transformations such as scaling, reflection, translation, and rotation. However, in the
context of CityGML, where surfaces serve as both semantic and geometric repres-
entations of real-world objects, only certain transformations are considered. These
include translation, rotation, and any combination of these transformations. These trans-
formations belong to the class of rigid transformations, which preserve the Euclidean
distances between any pair of points. Additionally, random variations in size or extent
can occur between two surfaces. In this thesis, they are referred to as resize changes,
which should not be confused with the resizing associated with affine transformations.
Figure 4.5 provides an example of a translation and rotation between two surfaces.

To efficiently find the best potential match for a given reference polygon geometry,
the following steps can be performed:

1. Orientation Check: The normal vector for each polygon candidate is computed.
Its orientation is compared with that of the reference surface. Candidates with
the same orientation, considering an angle error tolerance, are considered.

2. Overlap Check: Similarly to LineString, the Axis-aligned Minimum Bounding Box
(AABB) of each polygon candidate is calculated. An overlap check is performed to
determine the intersection between the candidates and the reference. Candidates
with sufficiently high overlapping area or volume are considered.

1This study assumes that the input CityGML documents are both syntactically and geometrically valid.
This implies that all points within a surface must be coplanar (with small error tolerances), and the
order of points given in exterior and interior rings must be consistent.

117

4. Change Detection in Semantic 3D City Models

θ

d

n⃗1

n⃗1

n⃗2

A

B

C

D

E

F

G

H

(a) 3D view

θdn⃗1

n⃗1

n⃗2

A

B
C

D

E

F
G

H

(b) Top-down view (different scale)

Figure 4.5.: Matching two surfaces with a translation offset d and a rotation angle θ.

118

4. Change Detection in Semantic 3D City Models

3. Minimum Distance Check: Among the remaining candidates, their centroids
are calculated, whose coordinates are the mean values of the bounding box
coordinates in each dimension. A distance between the centroid of each candidate
and that of the reference is measured. This is to exclude parallel surfaces that
have the same orientation. The candidate with the smallest distance is selected.
Centroids, rather than corner points of the bounding boxes, are utilized to
calculate distances to minimize the measurement’s sensitivity against size changes
in surfaces. The following steps are further performed:

a) Boundary Comparison: The selected candidate with the minimum distance
is considered a match for the reference surface. However, to account for
translations indicated by non-zero minimum distance, the exterior and
interior ring of the selected candidate are translated towards the reference by
the found distance, and then compared with the exterior and interior ring
of the reference polygon. This can be accomplished similarly to LineString
comparison, as rings are equivalent to closed line segments. If the translated
and the reference rings are equal, the selected candidate is considered a
translated match for the reference polygon.

b) Size Check: If the rings do not match, it implies a change in the surface size
between the selected candidate and the reference, in addition to a potential
translation indicated by the non-zero distance.

4. Transformation Matrix: If the overlap check fails but the orientation deviates
from that of the reference surface within an acceptable range, a transformation
matrix can be derived from the point set of the exterior ring of each candidate and
the reference. This can be achieved by first translating one point set to the other
using the distance between their centroids, followed by the application of the
Kabsch-Umeyama algorithm (Kabsch, 1976; Umeyama, 1991). The resulting trans-
formation matrix estimates an optimal rotation between the surfaces. However,
this method does not consider surface size changes.

A major challenge in matching surfaces lies in determining not only their equivalence,
but also potential transformations such as translation, rotation, resizing, or a combina-
tion thereof. Figure 4.5 gives an example where a matching polygon underwent both
a translation and a rotation relative to the reference. The polygons ABCD and EFGH
correspond to the same geometry, yet a translation and rotation exist. The translation
offset d can be determined by calculating the centroids and their distance, while the
rotation angle θ is measured between the normal vectors of the surfaces. Moreover,
normal vectors can only be computed for valid surfaces, which is not always guaranteed
in real-world datasets, where surfaces may consist solely of collinear points.

119

4. Change Detection in Semantic 3D City Models

However, to minimize the number of potential matches and prevent false positives,
the maximum allowed values for the distance offset d and the rotation angle θ should
be kept small, such as 0.1 radian or 5◦. This is particularly crucial, as polygon surfaces
are often defined spatially adjacent or in close proximity to each other, collectively
forming a more complex 3D form, such as the solid geometry of a building.

As adjacent interior rings within a surface are merged into a larger one, composite or
triangulated surfaces are combined into a single, larger surface before matching. This
method applies to geometric aggregates and composites in all dimensions.

4.5.5. Matching Solids

The CityGML encoding standard utilizes the GML class Solid as the basis for represent-
ing 3D geometric objects. Similarly to a polygon, a solid geometry is bounded by an
exterior and any number of interiors. As the boundaries of a polygon are composed of
closed 1D rings, the boundaries of a solid are formed by 2D surfaces.

Therefore, the first step is to merge all adjacent interior surfaces into a single larger
one, enabling each solid to be distinctly compared based on their unique representation
of exterior and interior boundaries. However, given that the combined interior cannot
be expressed solely in 2D space, and the merging of interior surfaces is computationally
intensive, it is generally sufficient to determine whether two solid objects represent the
same geometry based solely on their exterior boundary.

Therefore, the matching process of solids is performed using the following steps:

1. Overlap Check: The 3D Axis-aligned Minimum Bounding Box (AABB) of each
solid candidate is calculated. An overlap check is performed to determine the
overlapping volume between the candidates and the reference. Candidates that
exhibit a significant overlapping volume are considered.

2. Minimum Distance Check: Among the remaining candidates, their centroids
are computed, whose coordinates are the mean values of the bounding box
coordinates in each dimension. A distance between the centroid of each candidate
and that of the reference is measured. The candidate with the smallest distance
not exceeding a certain threshold is considered.

3. Boundary Comparison: The candidate selected in the previous step is considered
a match for the reference. This step ensures the detection of any existing trans-
formations. Since the exterior boundary of a solid is composed of adjacent
surfaces, the surfaces of the solid candidate can be matched with those of the
reference by employing the matching process for polygons, as described in Sec-
tion 4.5.4. If a consistent transformation is found across all its boundary surfaces,
this transformation is assumed to be applied to the selected candidate as well.

120

4. Change Detection in Semantic 3D City Models

Figure 4.6 gives an example of two overlapping solid geometries with a potential
translation. In contrast to LineStrings and polygons, where the geometric comparison
between the optimal match and the reference is no longer required, the geometric
comparison between a selected solid match and its reference still needs to be performed
on their boundary surfaces, which employs the techniques covered in Section 4.5.4 for
polygons.

Figure 4.6.: An illustration of two overlapping solid geometries of identical size, po-
tentially subjected to a translation. They are considered equivalent if their
overlapping volume reaches that of each solid. If not, a translation is con-
sidered if the translation offset is within a certain threshold and no other
solid is located in the vicinity.

4.5.6. Matching Buildings

Massive CityGML datasets may contain millions of top-level features, such as buildings.
The brute-force approach of matching each possible pair of buildings from the old and
new version of a city model can be computationally expensive or even infeasible. Thus,
efficient strategies are crucial to first quickly determine the best optimal match for a
reference top-level feature.

121

4. Change Detection in Semantic 3D City Models

As outlined in Line 22 through Line 28 of Algorithm 7, bounding boxes of top-level
features provide necessary spatial information for effective matching. For buildings,
this thesis uses 2D footprints due for several reasons. Firstly, buildings are primarily
distributed horizontally on the Earth’s surface. Secondly, using building footprints also
is advantageous when additional storeys are added. As the building height increases,
its 3D bounding box expands vertically and may no longer match its original 3D
bounding box. In contrast, its footprint remains unchanged and can be utilized for
matching. However, this approach does not apply to horizontally expanded buildings
with additional installations, which may be considered as separate buildings. For
vertically allocated top-level features, like tunnels, a 3D bounding box overlap test is
required for all matching candidates retrieved from the R-tree. This section focuses on
matching buildings, with similar methods applied to other types of top-level features,
as they share many thematic and geometric components.

As the employed bounding boxes are axis-aligned, it is common for a building and
its footprint to overlap with the footprints of multiple nearby buildings. In such cases,
similarly to matching geometries, the building with the largest overlapping area is
considered the best match for a given building.

However, an optimal match only indicates that both it and the reference spatially
correspond to the same building across the datasets. It does not guarantee the equality
in their content and structure. Thus, the similarity level assigned to this match, as
shown in Line 27, is SAME_LABELS, suggesting that further comparisons are required.

Additionally, candidates that do not satisfy the overlapping volume test may still
correspond to the reference building. This is particularly the case where the reference
building from the old dataset has been divided into smaller, adjacent ones in the new
dataset, such as when a building has been split into two smaller, adjacent buildings.
This is classified as an ObjectSplit change, as will be discussed in Section 5.2.

To detect such changes, the matching process examines whether the combined
bounding box of two or more adjacent candidates is (mostly) equal to the bounding
box of the reference building. If this condition is met, an ObjectSplit change is detected.
Without this change, one DeletedNode change and multiple InsertedNode changes would
have been created for the reference building and its candidates.

Conversely, to detect an ObjectMerge change, such as when two smaller buildings
from the old city model are combined into a larger building in the new city model,
the following steps are performed. For each element in the list of potential inserted
buildings, a search is conducted among the elements in the list of potential deleted
buildings. If the combined bounding box of two or more buildings from the second
list is (mostly) equal to the bounding box of the building from the first list, an Object-
Merge change is detected. Without this change, one InsertedNode change and multiple
DeletedNode changes would have been created.

122

4. Change Detection in Semantic 3D City Models

To handle massive datasets, an R-tree (Guttman, 1984) can be employed for the
spatial indexing of these 2D footprints of buildings, enabling more efficient and rapid
retrieval of their contents. Since the graph database Neo4j does not officially support
spatial indexing of geometric elements beyond 0D points, an R-tree is incorporated on
top of the existing graphs. The construction of this R-tree and the utilization of spatial
indexing are described in Section 6.3.2.

4.5.7. Matching Other Types of Objects

The spatial extent of implicit geometries is first transformed based on their anchor
points and then stored in an R-tree for matching. For objects that are neither generic
attributes, geometric objects, nor top-level features, and lack distinctive features that
can be utilized for efficient matching, the following rules, listed in descending order of
priority, can be applied for matching one-to-many and many-to-many relationships:

1. Key-value Matching: Two nodes are considered matched, if they share the
highest number of properties stored in the key-value mapping compared to other
candidates.

2. Identifier Check: Despite the potential for an object’s identifier to change across
different temporal versions of CityGML documents, in the absence of other
information useful for identifying the best optimal match, two nodes with the
same identifier can be considered as a match for further comparisons.

If none of the above rules is applicable, the literal content and structure of nodes
are compared. This measure is considered the last resort when all other criteria fail to
apply. In such cases, it is crucial to assign the resulting match with the similarity level
SAME_LABELS, as shown in Line 30 of Algorithm 7, to enforce further comparisons on
its structure and content.

4.6. Edit Operations and Edit Nodes

As mentioned in Section 4.3.5, the method compare(left, right), outlined in Algorithm 6,
creates a change node each time a change in the content and structure of the graphs is
detected (refer to Lines 3, 6, 10, 14, 17, 24, 28, and 34). These change nodes serve as
markers, highlighting the locations of changes within the graphs. They not only allow
for rapid retrieval of relevant information directly from the graphs, but also enrich the
detected changes with semantic meaning required in further analyses, such as during
the interpretation process of changes in Chapter 5. This section addresses Research
Question RQB9 (Representation of Changes).

123

4. Change Detection in Semantic 3D City Models

Change nodes, which are directly linked to their sources in the graphs where they
were detected, are often referred to as edit nodes in this study. These nodes represent
the concept of edit operations, which have been utilized in many change detection
and update systems for structured data (Chawathe & Garcia-Molina, 1997), including
graphs (Nguyen & Kolbe, 2020). This research categorizes the edit operations into five
distinct classes based on their scope and linked data: InsertedProperty, DeletedProperty,
UpdatedProperty, InsertedNode, and DeletedNode.

The proposed edit operations are described as follows:

1. Property-based Edit Operations: These edit operations are directly linked to
nodes where property changes are detected.

a) InsertedProperty (p, v, R): This edit operation indicates the addition of
a node property in the newer CityGML document. Each InsertedProperty
instance contains information about the name p and value v of the inserted
property, as well as the target ‘right’ node R, which is located in the graph
representation of the newer CityGML document.

b) DeletedProperty (p, L): This edit operation indicates the removal of a node
property in the older CityGML document. Each DeletedProperty instance
contains information about the name p of the inserted property, as well as
the target ‘left’ node L, which is located in the graph representation of the
older CityGML document.

c) UpdatedProperty (p, vL, vR, L, R): This edit operation indicates the modific-
ation of a node property in both the older and newer CityGML document.
Each UpdatedProperty instance contains information about the name p, the
old value vL, and the new value vR of the updated property, as well as
the target ‘left’ node L and ‘right’ node R, which are located in the graph
representation of the older and newer CityGML document, respectively.

2. Node-based Edit Operations: These edit operations are directly linked to nodes
where changes on the node level are detected.

a) InsertedNode (C, r, R): This edit operation indicates the addition of a node in
the newer CityGML document. Each InsertedNode instance contains informa-
tion about the inserted child node C, the incoming relationship r associated
with C, and the parent ‘right’ node R. All C, r, and R are located in the
graph representation of the newer CityGML document.

b) DeletedNode (C, L): This edit operation indicates the removal of a node in the
older CityGML document. Each DeletedNode instance contains information
about the deleted child node C, and its parent ‘left’ node L. Both C and L
are located in the graph representation of the older CityGML document.

124

4. Change Detection in Semantic 3D City Models

While the edit operations InsertedProperty and DeletedProperty are linked to only
one corresponding node within the graph representation of either the older or newer
CityGML documents, the edit operation UpdatedProperty provides information linked to
both. On the other hand, the node-based edit operations InsertedNode and DeletedNode
provide information about the affected node C, which can be located in either the older
or the newer graph, depending on the type of the edit operations used, as described
above.

Additionally, the elements C, L, and R serve as references to nodes within the graphs.
This implies that the node-based edit operations also extend to subgraphs reachable
from these nodes. For instance, when a building node is marked as inserted, an edit
operation InsertedNode is attached to this node, indicating that it, along with all its
reachable subgraphs, has been inserted.

The data stored in each type of edit operations described above contains the minimum
amount of information required for tracking the locations and extracting the semantic
context of changes efficiently. This can be extended to include further contents needed
in specific use cases.

For each edit operation, its corresponding edit node is created in the graph database
and filled with the following contents:

1. Node Label: The type of the edit operation is assigned as the label of the edit
node.

2. Node Properties: The elements p, v, vL, vR, and r are stored as properties of the
edit node.

3. Outgoing Relationships: Corresponding outgoing relationships are created from
the edit node to link it with the nodes L, R, and C.

Figure 4.7 gives two examples of these edit nodes. The upper edit node, as shown in
Figure 4.7a, indicates an updated property between the old and new node representation
of a building. The lower edit node, as illustrated in Figure 4.7b, depicts the removal of
not only the node MeasureAttribute, but also its entire subgraph, including the node
Measure. This subgraph represents a generic attribute for measurements in CityGML.

A corresponding UML class diagram of these edit operations can be found in
Figure 4.8. The detailed property and method names, as well as their types are selected
for clarity. The displayed class hierarchy is structured according to the scope of the
edit operations, specifically focusing on property-based and node-based operations,
as discussed above. Alternatively, these edit operations could be modelled based on
their functions. This would prioritize the operation types deletion, insertion, and
modification of both node properties and subgraphs over their scopes.

125

4. Change Detection in Semantic 3D City Models

Building
creationDate:
2022-01-01

Building
creationDate:
2024-01-01

UpdatedProperty
p: creationDate
vL: 2022-01-01
vR: 2024-01-01

L
(old)

R
(new)

(a) Updated building property creationDate

Array

String-
Attribute

name: Class
value: 100

Measure-
Attribute

name: Area

Measure
value: 120
uom: m2

ARRAY-
MEMBER

ARRAY-
MEMBER

value

Array

String-
Attribute

name: Class
value: 100

ARRAY-
MEMBER

DeletedNode

C
(old)

(b) Deleted subgraph (orange) in an array of generic attributes

Figure 4.7.: Examples of edit nodes in graphs between the old (yellow) and new (green)
graph representation of CityGML objects. The edit node DeletedNode indic-
ates the removal of the orange subgraph.

126

4. Change Detection in Semantic 3D City Models

EditOperation

PropertyOperation

propertyName: String

+ getPropertyName(): String

NodeOperation

childNode: Node

+ getChildNode(): Node

InsertedProperty

propertyValue: Object
rightNode: Node

+ getPropertyValue(): Object
+ getRightNode(): Node

DeletedProperty

leftNode: Node

+ getLeftNode(): Node

UpdatedProperty

leftPropertyValue: Object
rightPropertyvalue: Object
leftNode: Node
rightNode: Node

+ getLeftPropertyValue(): Object
+ getRightPropertyValue(): Object
+ getLeftNode(): Node
+ getRightNode(): Node

InsertedNode

rel: Relationship
rightNode: Node

+ getRel(): Relationship
+ getRightNode(): Node

DeletedNode

leftNode: Node

+ getLeftNode(): Node

Figure 4.8.: A UML class diagram of edit operations.

127

4. Change Detection in Semantic 3D City Models

4.7. Change Detection: Illustrative Examples

This section demonstrates the techniques proposed previously in this chapter for
detecting changes between two different temporal versions of CityGML documents
using their graph representations. These changes include semantic, structural, and
geometric changes between CityGML objects.

For demonstration purposes, the CityGML document FZK-Haus (KIT IAI, 2017) in
LOD2 is used. Its content is shown in Listing 3.1, and its 3D visualization is depicted
in Figure 3.3. Despite its small size, the document includes many elements commonly
found in many CityGML documents, such as generic attributes, LinearRings, polygons,
and solids. This compact size also allows for manageable result control and evaluation.

In this experiment, the content of the only building in the original FZK-Haus docu-
ment is manually modified with the following changes:

1. Reordering of Generic Attributes: The order of generic attributes is changed
arbitrarily. The excerpts of the CityGML documents, both before and after the
modification, are displayed in Listings 4.1 and 4.2, respectively.� �

1 <gen:measureAttribute name="GrossPlannedArea">

2 <gen:value uom="m2">120.00</gen:value>

3 </gen:measureAttribute>

4 <gen:stringAttribute name="ConstructionMethod">

5 <gen:value>New Building</gen:value>

6 </gen:stringAttribute>

7 <gen:stringAttribute name="IsLandmarked">

8 <gen:value>NO</gen:value>

9 </gen:stringAttribute>� �
Listing 4.1: Before changing the order of generic attributes.� �

1 <gen:stringAttribute name="ConstructionMethod">

2 <gen:value>New Building</gen:value>

3 </gen:stringAttribute>

4 <gen:stringAttribute name="IsLandmarked">

5 <gen:value>NO</gen:value>

6 </gen:stringAttribute>

7 <gen:measureAttribute name="GrossPlannedArea">

8 <gen:value uom="m2">120.00</gen:value>

9 </gen:measureAttribute>� �
Listing 4.2: After changing the order of generic attributes.

128

4. Change Detection in Semantic 3D City Models

2. Reordering of Boundary Surfaces: The order of all boundary surfaces is changed
arbitrarily. The excerpts of the CityGML documents, both before and after the
modification, are displayed in Listings 4.3 and 4.4, respectively.� �

1 <bldg:boundedBy>

2 <bldg:RoofSurface gml:id="Roof_Surface_1_North">

3 ...

4 </bldg:WallSurface>

5 </bldg:boundedBy>

6 <bldg:boundedBy>

7 <bldg:WallSurface gml:id="Outer_Wall_Surface_1_West">

8 ...

9 </bldg:WallSurface>

10 </bldg:boundedBy>

11 <bldg:boundedBy>

12 <bldg:GroundSurface gml:id="Ground_Surface">

13 ...

14 </bldg:WallSurface>

15 </bldg:boundedBy>

16 ...� �
Listing 4.3: Before changing the order of boundary surfaces.� �

1 <bldg:boundedBy>

2 <bldg:GroundSurface gml:id="Ground_Surface">

3 ...

4 </bldg:WallSurface>

5 </bldg:boundedBy>

6 <bldg:boundedBy>

7 <bldg:WallSurface gml:id="Outer_Wall_Surface_1_West">

8 ...

9 </bldg:WallSurface>

10 </bldg:boundedBy>

11 <bldg:boundedBy>

12 <bldg:RoofSurface gml:id="Roof_Surface_1_North">

13 ...

14 </bldg:WallSurface>

15 </bldg:boundedBy>

16 ...� �
Listing 4.4: After changing the order of boundary surfaces.

129

4. Change Detection in Semantic 3D City Models

3. Reordering of Solid Member Surfaces: The order of all seven boundary surfaces
of the building’s solid is changed arbitrarily. These surfaces are the same as
the building’s boundary surfaces and referenced by the solid using XLinks. The
excerpts of the CityGML documents, both before and after the modification, are
displayed in Listings 4.5 and 4.6, respectively.� �

1 <gml:Solid>

2 <gml:exterior>

3 <gml:CompositeSurface>

4 <!-- XLink references to the surfaces -->

5 <gml:surfaceMember xlink:href="#Roof_Surface_1_North"/>

6 <gml:surfaceMember xlink:href="#Roof_Surface_2_South"/>

7 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_1_West"/>

8 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_2_South"/>

9 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_3_East"/>

10 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_4_North"/>

11 <gml:surfaceMember xlink:href="#Ground_Surface"/>

12 </gml:CompositeSurface>

13 </gml:exterior>

14 </gml:Solid>� �
Listing 4.5: Before changing the order of the solid’s surfaces.� �

1 <gml:Solid>

2 <gml:exterior>

3 <gml:CompositeSurface>

4 <!-- XLink references to the surfaces -->

5 <gml:surfaceMember xlink:href="#Roof_Surface_1_North"/>

6 <gml:surfaceMember xlink:href="#Ground_Surface"/>

7 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_3_East"/>

8 <gml:surfaceMember xlink:href="#Roof_Surface_2_South"/>

9 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_2_South"/>

10 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_4_North"/>

11 <gml:surfaceMember xlink:href="#Outer_Wall_Surface_1_West"/>

12 </gml:CompositeSurface>

13 </gml:exterior>

14 </gml:Solid>� �
Listing 4.6: After changing the order of the solid’s surfaces.

130

4. Change Detection in Semantic 3D City Models

4. Conversion of Measurements: The unit associated to the building’s measured
height is changed from m to mm. At the same time, the measured value is updated
from 6.52 to 6,520.0 Despite these modifications, both the elements represent the
same measurement. The excerpts of the CityGML documents, both before and
after these modifications, are displayed in Listings 4.7 and 4.8, respectively.� �

1 <bldg:measuredHeight uom="m">6.52</bldg:measuredHeight>� �
Listing 4.7: Before converting the unit of measurement.� �

1 <bldg:measuredHeight uom="mm">6520.0</bldg:measuredHeight>� �
Listing 4.8: After converting the unit of measurement.

5. Update of Building Identifier: The identifier of the building is changed. The
excerpts of the CityGML documents, both before and after the modification, are
displayed in Listings 4.9 and 4.10, respectively.� �

1 <bldg:Building gml:id="FZK_HAUS_LOD2">...</bldg>� �
Listing 4.9: Before updating building ID.� �

1 <bldg:Building gml:id="FZK_HAUS_LOD2_UPDATED">...</bldg>� �
Listing 4.10: After updating building ID.

6. Translation of Surfaces: All seven boundary surfaces of the building are shifted
‘upwards’ by 1 length unit. This is achieved by updating the height values of their
exterior boundaries stored in LinearRing elements. The excerpts of the CityGML
documents, both before and after the modification, are displayed in Listings 4.11
and 4.12, respectively.� �

1 <gml:LinearRing gml:id="PolyID...">

2 <gml:pos>457842 5439088 118.317691453624 </gml:pos>

3 <gml:pos>457842 5439093 115.430940107676 </gml:pos>

4 <gml:pos>457842 5439093 111.8 </gml:pos>

5 <gml:pos>457842 5439083 111.8 </gml:pos>

6 <gml:pos>457842 5439083 115.430940107676 </gml:pos>

7 <gml:pos>457842 5439088 118.317691453624 </gml:pos>

8 </gml:LinearRing>� �
Listing 4.11: Before moving surfaces ‘upwards’ by 1 height unit.

131

4. Change Detection in Semantic 3D City Models

� �
1 <gml:LinearRing gml:id="PolyID...">

2 <gml:pos>457842 5439088 119.317691453624 </gml:pos>

3 <gml:pos>457842 5439093 116.430940107676 </gml:pos>

4 <gml:pos>457842 5439093 112.8 </gml:pos>

5 <gml:pos>457842 5439083 112.8 </gml:pos>

6 <gml:pos>457842 5439083 116.430940107676 </gml:pos>

7 <gml:pos>457842 5439088 119.317691453624 </gml:pos>

8 </gml:LinearRing>� �
Listing 4.12: After moving surfaces ‘upwards’ by 1 height unit.

7. Representation Change of Rings: The syntactic representation of all seven Linear-
Ring elements is changed, while preserving their geometric content. The excerpts
of the CityGML documents, both before and after the modification, are displayed
in Listings 4.13 and 4.14, respectively.� �

1 <gml:LinearRing gml:id="PolyID...">

2 <gml:pos>457842 5439088 119.317691453624 </gml:pos>

3 <gml:pos>457842 5439093 116.430940107676 </gml:pos>

4 <gml:pos>457842 5439093 112.8 </gml:pos>

5 <gml:pos>457842 5439083 112.8 </gml:pos>

6 <gml:pos>457842 5439083 116.430940107676 </gml:pos>

7 <gml:pos>457842 5439088 119.317691453624 </gml:pos>

8 </gml:LinearRing>� �
Listing 4.13: Before changing syntactic representation of rings.� �

1 <gml:LinearRing gml:id="PolyID...">

2 <gml:posList srsDimension="3">

3 457842 5439088 119.317691453624

4 457842 5439093 116.430940107676

5 457842 5439093 112.8

6 457842 5439083 112.8

7 457842 5439083 116.430940107676

8 457842 5439088 119.317691453624

9 </gml:posList>

10 </gml:LinearRing>� �
Listing 4.14: After changing syntactic representation of rings.

132

4. Change Detection in Semantic 3D City Models

Both the original and modified versions of the CityGML document are subsequently
mapped onto graphs using the mapping methods proposed in Chapter 3. These graphs
are then compared using the matching strategies presented in this chapter. The results
of this comparison process are summarized in Table 4.2.

Table 4.2.: Comparison results of both the original and modified FZK-Haus document.

Changes Made to the Document Result Evaluation

Reordering of generic attributes N ✓ Order independence
Reordering of boundary surfaces N ✓ Order independence
Reordering of solid surfaces N ✓ Order independence
Conversion of measurements N ✓ Handling of measurements
Update of building identifier 1× U ✓ ID independence
Translation of surfaces 7× T ✓ Transformation detection
Representation change of rings N ✓ Handling of syntactic ambiguities

N No real changes U Updated property T Translated surface

These results demonstrate that the matching techniques proposed in this study can
effectively match CityGML objects irrespective of their identifiers, order of occurrence
in the document, or their syntactic representations allowed by the encoding. In addition,
the matching process is able to handle measurements coupled with unit conversions.
Such syntactic and representation changes are purely model-based and do not reflect
actual changes in the physical world. Thus, while relevant to data brokers, they hold
little significance for other stakeholders like firefighters or the city mayor.

In contrast, the geometric translations observed in this experiment, along with the
detected translation vectors, may indicate real changes in the city. They can be valuable
to multiple stakeholders, such as architects and real estate managers. The interpretation
of changes will be discussed in Chapter 5. Further demonstrations on the comparison
of larger CityGML datasets are provided in Chapter 7.

4.8. Summary and Discussion

This chapter first discusses the relevant comparison algorithms currently in use for
XML and GML documents, with a special focus on CityGML documents. It suggests a
shift from direct comparison of CityGML documents in text form, which fails to account
for their graph-based nature, to a comparison of their lossless and unambiguous graph
representations. The changes detected in these graphs can then be used to reflect the
changes that occurred between the original CityGML documents.

133

4. Change Detection in Semantic 3D City Models

This chapter introduces the concept of graph isomorphism, a mathematical concept
for structural similarity between two graphs. It then explores the problem of graph and
subgraph isomorphism in graph theory, which determines whether two given graphs
or subgraphs are structurally identical. Despite extensive research, these problems
remain complex.

The chapter further discusses the challenges and complexity, but also the benefits of
matching graph representations of CityGML documents. It proposes recursive methods
for comparing these graphs, leveraging the rich semantic information available in
CityGML to reduce runtime by only matching nodes and relationships with the same
labelling. This approach is capable of handling both the structure and content of
graphs.

To implement this, the chapter first proposes different techniques for comparing
different types of thematic contents, such as generic attributes, measurements, and
date-time values. It then presents methods for matching nodes and subgraphs. Each
time a change is detected in the graphs, a change node is created and directly attached
to the graph elements where the change occurred. This change node acts as a marker,
highlighting the locations of the detected changes within the graphs for efficient
retrieval and analysis in subsequent processes.

The chapter introduces the use of node and subgraph similarity to assess the similarity
of graph elements based on their semantic and geometric content. These similarity
levels can be extended depending on the applications and use cases.

One of the biggest challenges of the matching process is the handling of one-to-many
and many-to-many relationships in large graphs, where a given subgraph may have
a large number of potential matches. To avoid brute-force comparisons, the chapter
proposes a variety of strategies for quickly determining the best potential match by
leveraging their prominent features, without having to match their entire content. This
applies to generic attributes, geometric objects, top-level features, and other object types.
The geometric objects considered include 0D points, 1D line segments, 2D surfaces,
and 3D solids. The presented methods are also capable of detecting transformations
or deviations among these geometries, such as translation, rotation, resizing, or any
combination thereof.

The chapter then describes how the detected changes can be documented as edit
operations and edit nodes. It provides a conceptual modelling of edit operations, as
well as details on how these edit operations can be mapped onto graph nodes. Finally,
the chapter demonstrates the proposed methods and concepts in an illustrative case
and evaluates the results.

Some notable observations and insights related to the concepts introduced in this
chapter include:

134

4. Change Detection in Semantic 3D City Models

1. The Use of In-memory Objects: The method toObject(node), as presented in
Section 3.6, can be utilized to reconstruct a subgraph back into its original
CityGML object. These objects ensure full compatibility with object-oriented
modelling principles employed in CityGML. Given that objects can be defined
using different syntactic ways, and their graph representations only capture one
such definition, the use of in-memory objects allows for the comparison of only
their contents, regardless of how they are represented. This eliminates the need
for constant data fetching and parsing from the subgraph in the graph database.
However, as these in-memory objects are stored entirely in main memory, this
approach is primarily used for small, predominantly geometric objects with high
syntactic ambiguities while matching.

2. Prioritization of Speed during Matching: The method findBest(left, right, ref),
as proposed in this chapter, is employed to determine the best match for each
reference subgraph in one-to-many and many-to-many relationships. As a large
number of matching candidates may exist in large graphs, the primary objective
of this method is to identify the most suitable match as quickly as possible.
Therefore, complex geometric operations, especially in 3D space, are typically
avoided or only employed when necessary. Instead, heuristic measures, such
as matching geometries based on their centroid distances, normal vectors, and
overlaps, are generally prioritized.

3. Handling of Geometric Uncertainties: To deal with geometric uncertainties
in matching, this thesis employs predefined, small error tolerances for metrics
such as lengths, angles, areas, and volumes. Given the cost-effectiveness of a
single numeric comparison required for these values, this approach suffices in the
majority of use cases and test datasets examined within this study. For a more
comprehensive approach, various complex statistical tests can be employed, such
as the chi-squared (χ2) test (Pearson, 1900) along with a covariance matrix and its
pseudo-inverse (Dehbi & Plümer, 2011).

4. Application of Edit Nodes: The edit operations and edit nodes introduced in
this chapter represent the most fundamental level of change nodes. This is
indicated by their direct link to the source graph elements where the changes
occurred. These edit nodes serve as a basis for subsequent analyses, such as the
automatic update of existing CityGML documents. In Chapter 5, the process of
change interpretation is explored, where more complex and expressive changes
are derived based on these edit nodes.

135

5. Change Interpretation in
Semantic 3D City Models

The methods presented in Chapter 4 compare CityGML documents by matching their
graph representations. For each detected change in the data, from updated properties
to deleted subgraphs, an edit node is created and attached directly to the graph nodes
where the changes are detected. While these edit nodes can provide direct access to
all detected changes and their context, their sheer number, often reaching millions
or billions for large datasets, poses a significant challenge for humans to manage
and comprehend. Detecting changes is only half of the solution; the other half is to
understand them.

While each individual change at the lowest level may be insignificant, collectively,
they may uncover valuable insights into the procedures and reasoning hidden behind
these changes. By considering changes within a constellation or pattern as a whole, the
sheer number of detected edit nodes can be reduced significantly, while the semantic
content of interpreted changes can be increased at the same time. For example, as
illustrated in Section 4.7, the matching process reported a shift in the location of all
roof, wall, and ground surfaces of a building. When all translations are in the same
orientation and have the same offset, a pattern is found, indicating that the entire
building has been moved. Thus, all these individual translations can be represented by
a single interpretation suggesting a movement of the building, which exhibits a much
higher level of semantic content than each of the individual changes.

However, most studies on changes in CityGML documents often solely focus on
identifying base changes (or edit nodes) without further considering their interpreta-
tion or pattern identification. In many current smart city deployments, the common
approach to detecting patterns is to formulate database queries for each pattern and
execute them in an ad-hoc manner. This not only requires expertise in the database
structure but may also result in undesired scheduling and efficiency issues, particularly
when rules are interdependent, forming a ‘pattern’ of patterns.

Furthermore, the perception of different types of changes varies among different
groups of stakeholders. For example, a change in the geometries of buildings might
be crucial to data brokers and urban analysts, whereas a city mayor may prioritize
top-level changes for decision making, such as recently constructed or demolished

136

5. Change Interpretation in Semantic 3D City Models

buildings that contribute to the district’s changes in living space. Additionally, like
data, stakeholders’ interest in changes evolves over time, adding complexities to the
modelling process of both stakeholders and changes. Initial studies have touched
on several aspects of this problem (Nguyen & Kolbe, 2020, 2021, 2022; Nguyen &
Kolbe, 2024), but none has yet provided a comprehensive workflow containing both the
detection of changes in CityGML datasets and the derivation of meaningful insights for
each group of stakeholders.

The methods presented in this chapter are illustrated through a use case example, as
visualized in Figure 5.1. These methods are used to interpret changes between graph
representations of CityGML documents. They are summarized as follows:

1. Defining Pattern Rules (Figure 5.1a): A hierarchical classification of changes is
proposed in Section 5.2. Changes detected between the graph representations of
CityGML documents are matched against a set of predefined rules for finding
change patterns. A rule network is proposed in this step, allowing all pattern
rules to be defined within a single graph, as explained in Section 5.3.

2. Matching Change Patterns (Figures 5.1b and 5.1c): Patterns in the changes
are identified in a bottom-up manner. Lower-level changes are aggregated to
form higher-level changes that contain more semantic meaning. Meaningful
interpretations can then be derived from these detected change patterns. The
methods for the pattern matching process are presented in this step in Section 5.4.

3. Evaluating Change-Stakeholder Relations (Figure 5.1d): The derived interpreta-
tions are further evaluated to determine which changes are relevant to a given
stakeholder and, conversely, identify which stakeholders are interested in a par-
ticular type of changes. Path-tracing techniques within the network that models
the interrelations between changes and stakeholders are explained in Section 5.5.

The entire workflow takes place within the same graph database used to store
the graph representations of CityGML documents and their changes, as discussed in
previous chapters.

The content of this chapter substantially expands upon the author’s earlier publica-
tions, which are detailed as follows:

1. Nguyen, S. H., & Kolbe, T. H. (2020, September). A Multi-Perspective Approach to
Interpreting Spatio-Semantic Changes of Large 3D City Models in CityGML using
a Graph Database [15th International 3D GeoInfo Conference 2020, University
College London (UCL), London, UK]. In ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences (pp. 143–150, Vol. VI-4/W1-
2020). Copernicus GmbH. https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-
143-2020.

137

https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-143-2020
https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-143-2020

5. Change Interpretation in Semantic 3D City Models

Predefined Pattern Rules

(a) Matching detected changes (grey) against predefined pattern rules (green)

(b) Creating a new interpretation node (red) that represents a matched pattern

∆h = 3

“Building roofs
have been raised

by 3 m.”

(c) Deriving interpretations from the detected patterns

∆h = 3

“Building roofs
have been raised

by 3 m.”

Path-tracing
techniques in

change-stakeholder
network

Relevant to:
Property Manager
Fire Safety Officer
City Mayors

(d) Evaluating interpretations with respect to stakeholders

Figure 5.1.: An illustration of the change interpretation process. The 3D model on the
left represents the original building, while the model on the right visualizes
that same building, but with raised roofs and vertically enlarged walls. The
geometries of the roof and ground surfaces remain the same.

138

5. Change Interpretation in Semantic 3D City Models

2. Nguyen, S. H., & Kolbe, T. H. (2021, October). Modelling Changes, Stakeholders
and their Relations in Semantic 3D City Models [16th International 3D GeoInfo
Conference 2021, New York University (NYU), NY, USA]. In ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 137–144,
Vol. VIII-4/W2-2021). Copernicus GmbH. https://doi.org/10.5194/isprs-annals-
viii-4-w2-2021-137-2021.

3. Nguyen, S. H., & Kolbe, T. H. (2022, October). Path-tracing Semantic Networks to
Interpret Changes in Semantic 3D City Models [17th International 3D GeoInfo
Conference 2022, University of New South Wales (UNSW), Sydney, Australia]. In
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences (pp. 217–224, Vol. X-4/W2-2022). Copernicus GmbH. https://doi.org/
10.5194/isprs-annals-x-4-w2-2022-217-2022.

4. Nguyen, S. H., & Kolbe, T. H. (2024, September). Identification and Interpretation
of Change Patterns in Semantic 3D City Models [18th 3D GeoInfo Conference
2023, Technical University of Munich (TUM), Munich, Germany]. In T. H. Kolbe,
A. Donaubauer & C. Beil (Eds.), Recent Advances in 3D Geoinformation Science
(pp. 479–496). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-
43699-4_30. Reproduced with permission from Springer Nature Switzerland.

5.1. Foundations and Related Work

In computer science, pattern matching is the process of determining whether a known
sequence or pattern exists within an input. The most basic form is sequence matching
of strings with one-dimensional input and rules often written as regular expressions.
As the complexity of data increases, the pattern matching problem becomes more
challenging. Given that CityGML documents and their changes are represented as
graphs in this study, this leads to the pattern matching problem of graphs.

One of the main objectives of this research is to detect patterns among detected
changes based on predefined rules. This involves the use of rule-based systems and
other related concepts. Basic components of a rule-based system include a knowledge
base containing predefined rules and facts, a rule interpreter that assesses and executes
these rules, a working memory that holds temporary data, and a user interface for
human interaction (Grosan & Abraham, 2011; Masri et al., 2019).

To interpret changes in CityGML graphs, this thesis proposes concepts that are, to
some extent, related to graph pattern matching and rule-based systems. These include
Rete networks, Petri nets, and graph transformation systems, which will be introduced
briefly. This section addresses Research Question RQC1 (Existing Rule-based Systems).

139

https://doi.org/10.5194/isprs-annals-viii-4-w2-2021-137-2021
https://doi.org/10.5194/isprs-annals-viii-4-w2-2021-137-2021
https://doi.org/10.5194/isprs-annals-x-4-w2-2022-217-2022
https://doi.org/10.5194/isprs-annals-x-4-w2-2022-217-2022
https://doi.org/10.1007/978-3-031-43699-4_30
https://doi.org/10.1007/978-3-031-43699-4_30

5. Change Interpretation in Semantic 3D City Models

5.1.1. ECA Rules and Rete Networks

The Event-driven Architecture (EDA) is an established software architecture paradigm,
specifically designed for event-based applications. In this context, an event signifies
a state change, a problem, or an opportunity (Michelson, 2006). Immediately upon
its occurrence, an event is distributed to all observers, including both humans and
machines, and subsequent actions are initiated based on predefined rules. In an Active
Database Management System (ADBMS), a database management system equipped
with an event-sensitive response mechanism, Event Condition Action (ECA) rules are
employed to describe the reactive behaviour of the system (Dittrich et al., 1995). Each
ECA rule is typically composed of three components: an event, some logical conditions,
and an action. An action is executed if both the corresponding event occurs and its
conditions are satisfied. To evaluate these conditions and trigger actions, many database
systems employ rule engines, such as the Rete match algorithm and its variants.

The Rete match algorithm, an efficient technique for matching a multitude of patterns
against a large set of objects, was initially developed for production system interpreters
(Forgy, 1982). A production system typically consists of a set of conditional if-then
statements, a global working memory that holds temporary data, and a rule interpreter
that evaluates rule conditions and triggers actions.

When dealing with a large set of interdependent rules (known as inference, where
one rule’s outcome influences another), a brute-force approach may iterate over each
rule, evaluate its conditions, trigger actions if necessary, and then repeat the whole
process. The Rete algorithm circumvents this repetitive iteration over input data by
storing matched objects in their respective rules. When a new element is added or
an existing one is removed from the shared working element, the impacted rules are
notified, and their list of stored objects is updated accordingly. To further avoid repeated
iteration over rules, a directed acyclic graph representation of rules is employed for
pattern matching. This graph is referred to as a Rete network (Forgy, 1982).

A significant advantage of the Rete match algorithm is its processing speed, attributed
to the working memory holding temporary data for each pattern during execution.
This memory stores previously read input objects and processed results in containers,
triggering actions when full. Therefore, it enables both on-the-fly type checking and
on-demand reactivation of pending rules.

Moreover, the Rete algorithm is particularly effective in scenarios where the input is
a stream of unordered, differently typed objects, which is subject to frequent insertion
and deletion operations. The performance of the algorithm largely depends on the
implementation of its working memory. However, in worst-case scenarios, the original
Rete algorithm may store all temporary data in main memory, degenerating memory
efficiency.

140

5. Change Interpretation in Semantic 3D City Models

The methods proposed in this thesis, which enable formulation of rules for identifying
patterns in detected changes, utilize an extended version of the aforementioned working
memory, effectively avoiding excessive memory consumption. Additionally, the Rete
network only permits nodes with a maximum in-degree of two, implying that joining
n inputs may require n− 1 consecutive nodes. While numerous variants of the Rete
algorithm exist today that offer improvements to such limitations, some are either not
fully disclosed (as in the case of Rete II) or tailored for specific applications and use
cases. Therefore, these variants are not further discussed in this thesis.

5.1.2. Petri Nets

Petri nets were first proposed to model parallel and distributed systems (Petri, 1962).
The inception of this concept was driven by the author’s intention to graphically
represent and study chemical reactions (Reisig, 2013). A Petri net is a bipartite graph
consisting of two types of nodes: places and transitions. Nodes between partitions are
connected via directed arcs.

In a Petri net, tokens are elements that can be stored within places and can tra-
verse between adjacent places via their connecting transitions. In rule-based systems,
places semantically represent the current state or conditions of rules, while transitions
represent actions. When a place obtains sufficient number of tokens, it triggers its
outgoing transitions. This process consumes all input tokens and produces new ones.
The quantity of tokens consumed and produced is dictated by the weights assigned to
arcs connecting these places and transitions.

Given an initial configuration or distribution of tokens across places, Figure 5.2
illustrates an example of such a Petri net as an attempt at modelling the patterns of
translation changes in the boundary surfaces of a building, as well as in buildings of a
city model. This net corresponds to the example presented in Section 4.7. When all
boundary surfaces of a building have been translated by the same translation vector, it
indicates that the entire building has been translated by that same vector. Similarly, if
all buildings within a city model have been translated by the same translation vector, it
indicates a systematic translation in the entire dataset.

Reachability is one of the most prominent and long-established algorithmic problems
in Petri nets. This problem involves determining whether a certain configuration of
the net can be achieved, given an initial configuration of a Petri net. It was shown
in the 1970s that the reachability problem requires exponential space (Lipton, 1976).
Subsequent studies in the following decades further established that the problem is non-
primitive recursive (Czerwiński & Orlikowski, 2022; Leroux, 2022). A reachability graph
is often constructed to study this problem. However, many structural analyses of Petri
nets prefer to employ transition and place invariants instead of a reachability graph due

141

5. Change Interpretation in Semantic 3D City Models

pR

pW

pG

pB

pC

T1 T22

4

1

1 1 1

(a) Initial configuration

pR

pW

pG

pB

pC

T1 T22

4

1

1 1 1

(b) After T1 has been triggered

pR

pW

pG

pB

pC

T1 T22

4

1

1 1 1

(c) After T2 has been triggered

Figure 5.2.: An example of a Petri Net in its different configurations. The nodes pR, pW ,
pG, pB, and pC symbolize the places representing roof, wall, and ground
surfaces, as well as buildings and city models, respectively. Each filled circle
denotes a token. Tokens in each place depict translations of the same vector.
Therefore, this Petri net simulates a pattern, where consistent translations
in all boundary surfaces of a building indicate its translation by the same
vector. When applying this to all buildings within a city model, a systematic
translation can be deduced. In this example, all buildings must contain two
roof surfaces, four wall surfaces, and one ground surface. Moreover, the
city model contains only one building.

142

5. Change Interpretation in Semantic 3D City Models

to their compactness and simplicity. In certain Petri nets, particularly those containing
cycles, the reachability graph may become infinite. In such cases, an approximation of
the reachable configurations can be computed instead. This is known as the coverability
graph.

Petri nets have strong scalability and modelling potential in rule-based applications.
The mechanism of token consumption and production aligns with the description
of numerous aggregation rules of changes employed in this thesis. Moreover, Petri
nets and their configurations can be mathematically represented as both graphs and
matrices. This dual representation allows for the application of many well-established
mathematical methods from both the fields of graph theory and linear algebra.

However, tokens in the classical Petri nets lack attributes and types, rendering them
indistinguishable. In contrast, changes in CityGML documents analysed in this thesis
are both typed and attributed. Some variants of Petri nets, such as the Coloured Petri
Nets (Jensen, 1987), permit the use of typed and attributed tokens.

While tokens in a Petri net can be used to model rule-based systems, their quantity
for each place and transition is static and must be fully known before execution. For
instance, the Petri net shown in Figure 5.2 dictates that, in order to produce exactly
one token in pB, there must exist exactly two tokens in pR, four tokens in pW , and one
token in pG. However, the number of boundary surfaces varies vastly across buildings
in a CityGML document and are thus not known before execution. In addition, while
the example shown in Figure 5.2 presumes that all tokens represent translations by the
same vector, the Petri net itself is incapable of enforcing such constraints.

Therefore, this thesis employs a special type of graphs to define rules for matching
change patterns in graph representations of CityGML documents. These graphs are
related to Petri nets, particularly in their use of tokens to emulate the aggregation
relationships among changes. In contrast to the classical Petri nets, the tokens used are
attributed and typed to allow for the modelling and handling of complex, semantic
changes.

5.1.3. Graph Transformation Systems

Graphs serve as both an expressive data structure and a modelling instrument for a
vast number of theoretical and practical problems. Rule-based systems employing
graphs often also involve graph transformation techniques to a certain degree. Since
this study stores both the graph representations of CityGML documents and their
detected changes in the same graph database, the process of matching their change
patterns can also be considered as an application of graph transformation.

Graph transformation was first proposed as a graph grammar for rule-based rewriting
of non-linear data structures (Heckel, 2006; Pfaltz & Rosenfeld, 1969; Pratt, 1971).

143

5. Change Interpretation in Semantic 3D City Models

This concept finds applications in fields such as image recognition and string-graph
translation. In graph transformation, rules are given using two distinct types of graphs:
type graphs and instance graphs. A type graph defines the conceptual model of object
classes and their behaviour. On the other hand, an instance graph is a snapshot that
contains concrete values and structure, as prescribed by the corresponding type graph.
Consequently, all instance graphs of a specific type can be represented by a single type
graph.

Graph transformation systems are a powerful tool for handling complex semantic
structures. Type-enabled graph transformation can extract and utilize hidden context
information from the graph representations of objects, such as the semantic context
between graph elements, enabling more complex analyses. This advantage is relevant
to this research and has been utilized in previous studies, such as the analysis and
semantic transformation of the CityGML data model (including its ADEs), originally
defined using XSDs (Yao, 2020).

However, graph transformation utilizes graph and subgraph isomorphism, which,
due to their inherent complexity, are not suitable for large search graphs or cases where
runtime efficiency is a priority. Another limitation of graph transformation is that the
structure of both the type and instance graphs, as dictated by the transformation rules,
must be known before execution.

For instance, like the Petri net example provided in Figure 5.2, when defining a rule
for a pattern in translation changes between a building and its boundary surfaces,
the number of roof, wall, and ground surfaces of each building must be known.
However, this information is only available at runtime. Moreover, graph and subgraph
isomorphism invariably employs exact structural matching, which may not be feasible
in real-world scenarios where some deviations should be tolerated.

In addition, graph transformation typically exhibits non-deterministic behaviour.
The outcomes of the rewriting process vary depending on the sequence in which
both the rules are executed and the graph occurrences are selected for the application
of these rules. For instance, when multiple rules are applicable for a subgraph, the
application of any rule may alter the structure of the subgraph, rendering subsequent
rules inapplicable. On the other hand, when multiple instance graphs are eligible for
the same transformation rule, the results can differ depending on the sequence in which
each graph is transformed.

Therefore, the methods proposed in this thesis employ a simplified approach to
graph transformation that employs heuristic optimizations for graph and subgraph
isomorphism. Like the matching process discussed in Chapter 4, these methods leverage
the labelling of nodes and relationships, along with their semantic context within the
graphs, to improve the runtime efficiency of the pattern matching process in large
graphs.

144

5. Change Interpretation in Semantic 3D City Models

5.2. Hierarchical Modelling of Changes in CityGML

Addressing Research Question RQC2 (Hierarchical Modelling of Changes), Figure 5.3
presents a UML class diagram of changes typically detected between temporal versions
of CityGML documents examined in this thesis. While this class hierarchy is specifically
designed for changes in semantic 3D city models given in CityGML, it can also be
extended and applied to other domains, such as in the field of BIM, which similarly
employs semantic and geometric contents. The classes proposed in the UML diagram
will be discussed in further detail in the following sections.

5.2.1. Appearance Changes

The class AppearanceChange represents changes in the visually observable properties
of city objects that are associated with their surfaces. These properties extend beyond
visual data and can be linked to any theme, such as solar potential and infrared
radiation. In each Level of Detail (LOD), different appearances can be defined for a
variety of themes. As a result, themes serve as identifiers for thematic appearance
groups. Changes in these themes may include a name change for a specific theme
or reassignment of themes among different LODs, while the associated appearances
remain unaffected. The class ThemeChange covers these changes.

On the other hand, changes can also occur within the appearances of a theme. In
CityGML, appearances are portrayed in the surface data elements, which enable the
modelling of simple surface properties with constant light reflection as materials, and
other coordinate-based surface properties as textures (Gröger et al., 2012). Therefore, the
class SurfaceDataChange represents changes in these objects. Additionally, the surface
data elements are linked to their corresponding geometric objects using their identifiers,
enabling the connection of both the closely related surface data and surfaces while
preserving the original geometric contents. Hence, this class solely covers changes that
occurred on the surface data side; changes of the surfaces themselves are considered as
geometric changes, as will be explained in Section 5.2.3.

5.2.2. Semantic Changes

CityGML documents are rich in semantic content, which covers the thematic, functional,
and logical aspects of city objects. Thematically, an object can store information specific
to its type, such as its name and identifier. Moreover, objects of the same type can
be grouped together. This enables the identification and distinction of city objects of
various types (such as buildings, bridges, and tunnels) in relation to their hierarchy.
For instance, an office is a building, which belongs to the class of all city objects.

145

5.
C

hange
Interpretation

in
Sem

antic
3D

C
ity

M
odels

1 0..*
1

1..*

1

1..*

CityModelChange

tmpcore::_CityObject

ScopeChange

GlobalChange

ClusteredChange

LocalChangeAppearanceChange
ThemeChange

SurfaceDataChange

SemanticChange

FunctionalChange

LogicalChange

ThematicChange

IDChange

ValidityChange

GeometricChange

PointChange

CurveChange

SurfaceChange

SolidChange

Transformation

CombinedTChange

Translation

Rotation

SizeChange

CRSChange

SyntacticChange

GeomRepChange

NumRepChange

DateRepChange

PointRepChange

CurveRepChange

SurfaceRepChange

SolidRepChange

UOMChange

PrecisionChange

TopologicalChange
ToMulti

ToComplex

ToComposite

StructuralChange

ObjectMerge

ObjectSplit

ObjectRemoval

ObjectAddition

LODChange

LODIncrease

LODUpgrade

LODAddition

LODDecrease

LODDowngrade

LODRemoval

Figure 5.3.: A UML class diagram of changes in CityGML documents. Each change is attached to a source city
object, represented by the class _CityObject (orange) from the core module of CityGML.

146

5. Change Interpretation in Semantic 3D City Models

Functionally, an object can be a component of a collection, or a collection of other
components. This is typically observed in the composition and aggregation relations.
Lastly, objects are structured based on their logical criteria and interrelationships (Kolbe
& Donaubauer, 2021). City objects are represented using a set of predefined classes,
such as Building, Bridge, and Tunnel. Complex objects can be recursively divided. For
example, a building may consist of building parts, installations, and rooms, which are
further defined using boundary roof, wall, and ground surfaces.

Therefore, changes in the aforementioned aspects are represented by the classes
ThematicChange, FunctionalChange, and LogicalChange, respectively. For instance, up-
dating building’s height is categorized as a thematic change, while converting a wall
surface into a window is considered a functional change. Additionally, a thematic
change can be further classified as IDChange or ValidityChange. An instance of ID-
Change represents a change in an object’s identifier, typically its gml:id. On the other
hand, an instance of ValidityChange indicates a change in the attributes creationDate and
terminationDate. These attributes are displayed in Figure 3.4.

Notably, certain logical changes in semantic 3D city models may suggest adjustments
in the class structure and relationships within the encoding specification itself. For
example, building parts may no longer consists of other building parts. These refer to
the level M1 (i.e., model level) and higher according to the Model-driven Architecture
(MDA) in UML in general, and CityGML in particular (Kleppe et al., 2003; Kutzner,
2016). This implies that such changes typically occur between different versions of the
conceptual model, such as between CityGML versions 1.0, 2.0, and 3.0. However, a
comparison between these versions is out of the scope of this research. Conversely, the
structural changes, as introduced in Section 5.2.5, refer solely to the level M0, which is
the instance level according to the MDA. Thus, such changes can be classified using
the modelling rules allowed by the same version of CityGML.

5.2.3. Geometric Changes

CityGML employs GML3 geometries, which is based on the ISO 19107 model (Herring,
2020). This includes a set of geometric primitives for each dimension, ranging from 0D
up to 3D, specifically Point, _Curve, _Surface and _Solid. As mentioned in Section 3.1.1,
besides the classes Point in 0D and Solid in 3D, the CityGML encoding standard only
utilizes the class LineString of _Curve, and the class Polygon of _Surface for the modelling
of 1D and 2D geometric objects, respectively. These geometric primitives can then
be combined to form more complex geometries, such as aggregates, complexes, and
composites. Therefore, geometric changes in CityGML documents are represented by
the class GeometricChange and its subclasses PointChange, CurveChange, SurfaceChange,
and SolidChange, covering also corresponding aggregates and composites.

147

5. Change Interpretation in Semantic 3D City Models

Additionally, the class Transformation, a specialization of the class GeometricChange,
represents commonly observed transformations of geometric objects in semantic 3D
city modelling. As mentioned in Section 4.5.4, these transformations may include
translation, rotation, resizing, and any combination thereof. Furthermore, given that
each geometry is assigned with a 3D Coordinate Reference System (CRS), a deviation
in these spatial reference systems results in a transformation of all point coordinates
within the affected geometries. This transformation is required to align geometries
to one common coordinate system prior to conducting any further spatial analyses.
Thus, such changes are represented by the classes Translation, Rotation, SizeChange,
CRSChange, and CombinedTChange, which is both a subclass and a composition of the
class Transformation.

Compared to other types of geometric changes, transformation changes are more
challenging due to their high computational complexity in 3D. However, once detected,
they offer a more profound understanding of the geometric modifications made to the
city objects. For example, an increase in the height of all walls may also indicate a
translation of roof and ground surfaces. When combined with the scopes introduced in
Section 5.2.8, transformation changes can aid in identifying many common systematic
changes, such as a consistent shift in the locations of all city objects or changed spatial
reference systems across entire datasets.

Furthermore, CityGML permits the reuse of geometric contents via implicit geo-
metries. A single change to the source geometry will result in changes in all objects
that reference it. Such changes can be identified by examining their scope within the
datasets, as mentioned in Section 5.2.8.

All geometric changes covered by the class GeometricChange indicate actual modifica-
tions to the numeric and geometric content of objects. Changes, which merely impact
the syntactic representations of the same geometry, are considered as instances of the
class SyntacticChange, as explained in Section 5.2.7.

Moreover, modifications to the aggregate, complex, and composite geometries often
lead to changes not only to the geometric but also the topological content. Such
topological changes are addressed separately in Section 5.2.4.

5.2.4. Topological Changes

Topology, like appearance, semantics, and geometry, is a crucial information aspect of
the CityGML data model. It allows for the storage of geometric objects with implicit
topological relations, as enabled by the geometrical-topological model of CityGML
briefly explained in Section 3.1.1. This is particularly the case for complex objects
formed from geometric primitives in each dimension: aggregates, complexes, and
composites.

148

5. Change Interpretation in Semantic 3D City Models

While an aggregate permits unrestricted spatial and topological relations between its
members, a complex is a collection of geometric primitives that either are disjoint or
touch at most at their boundaries. Moreover, a composite is a specialized complex that
allows only geometric components of the same dimension, and they must be adjacent at
their boundaries. A 2D illustration of these topological relations are shown in Figure 3.2
in Section 3.1.1.

In addition, CityGML also allows for the explicit modelling of the topological ad-
jacency relations between objects. A shared boundary, such as a curve boundary
between two adjacent surfaces or a surface boundary between two adjacent solids, can
be defined once and then referenced by other adjacent features and geometries. For
example, a wall surface shared by two adjacent buildings can be defined only once
in the solid representing the first building and then referenced by the second solid
representing the other building. These adjacency relations are realized using the shared
geometries’ identifiers as hyperlinks, or XLinks. This not only reduces redundancy but
also maintains the explicit topological relations between objects.

To model changes in the topological relations between city objects, the classes To-
Multi, ToComplex, and ToComposite are proposed, where the class ToComposite is a
subclass of ToComplex, reflecting that a composite is also a complex geometry. These
classes represent changes that result in unrestricted, disjoint or connected, and explicit
connected topological relations between geometries of the same city object, respectively.

5.2.5. Structural Changes

In CityGML, top-level features, such as buildings, bridges, and tunnels, can be sub-
divided into smaller components, mirroring their physical structure in the real world.
For example, a building can comprise an arbitrary number of building parts, rooms, and
installations. These are further bounded by boundary surfaces, such as roof, wall, and
ground surfaces. The class StructuralChange represents modifications to the structure of
such objects. Depending on the methods, these changes can be further categorized into
ObjectMerge, ObjectSplit, ObjectRemoval, and ObjectAddition. Further discussion can be
found in Section 7.4.2.

5.2.6. LOD Changes

As mentioned in Section 3.1.1, CityGML supports multi-scale modelling with five
different LODs (LOD0-4). A feature can be assigned with one or multiple LODs at the
same time. Consequently, changes regarding the LODs can occur in two directions: an
increase or a decrease in the level of detail, represented by the classes LODIncrease and
LODDecrease, respectively. Both of these are subclasses of the class LODChange.

149

5. Change Interpretation in Semantic 3D City Models

An increase in the level of detail of an object can be thought of as an increase in its
highest available LOD. This includes an upgrade of a single available LOD to a higher
one, or an addition of a higher LOD to the existing ones. These are covered by the
subclasses LODUpgrade and LODAddition of LODIncrease, respectively. For instance, if
an object was defined in LOD1 and LOD2, and is now available in LOD2, LOD3, and
LOD4, the presence of the new highest LOD4 indicates an increase in the level of detail.
This change can be interpreted as a combination of one upgrade from LOD1 to LOD3
and one newly added LOD4. Although changes within the objects of LOD2 may still
persist, they do not reflect changes in the LODs themselves and should be covered by
other types of changes, such as geometric and appearance changes.

Similarly, a decrease in the level of detail of an object can be thought of as a reduction
in its highest available LOD. This includes a downgrade of a single available LOD
to a lower one, or the removal of the highest LOD from the existing ones. These
are represented by the subclasses LODDowngrade and LODRemoval of LODDecrease,
respectively.

5.2.7. Syntactic Changes

The majority of the changes discussed above have a direct correlation with the reality
and are typically the outcomes of some actions in the real world. However, some
changes do not exhibit this relationship and are relevant at the model level only. These
are primarily caused by the change in the syntactic representations of objects, as allowed
by the underlying encoding standards. Such changes are covered by the superclass
SyntacticChange and its subclasses DateRepChange, NumRepChange, and GeomRepChange.

As outlined in Sections 4.3.3 and 4.5, date-time values can be depicted in various ways
while maintaining the same content. The representation of date and time accommodates
many variations, such as based on the calendar used (Gregorian, lunar calendar, etc.),
along with a variety of localizations based on countries and time zones. Such variants
are covered by the class DateRepChange.

The class NumRepChange covers changes in the representations of numeric values.
These changes are often observed in floating-point numbers, which can be represented
by a combination of significands, bases, and exponents. For example, the numbers
1.234, 12.34× 10−1, and 1234× 10−3 are different floating-point representations, yet they
represent the same value. In addition, real-world object measurements often contain
instrument and rounding errors that can be tolerated up to a certain threshold. A
lower tolerance threshold requires a higher precision in the measurements. In practice,
values that fluctuate within a small enough error tolerance threshold, referred to as ϵ

in Chapter 4, are often not further differentiated and can be considered as acceptable
numeric representations of the same value. For example, both 1.234 and 1.235 represent

150

5. Change Interpretation in Semantic 3D City Models

the same value within an error tolerance of 0.001. These variations are represented by
the class PrecisionChange.

Furthermore, as explained in Section 4.3.3, measurement values are always assigned
with a predefined unit of measurement (uom), such as in millimetres and metres.
Similarly, the aforementioned error tolerance can also be defined with a unit. This is a
crucial factor when comparing two measurements. For instance, with an error tolerance
of 1 mm, two measurements of 1.001 m and 1,000 mm are considered equal. This is
classified as a UOMChange combined with a PrecisionChange.

A significant part of representation changes is observed in geometric objects. As
detailed in Section 4.5, two points are considered geometrically equivalent if they are
located within the neighbourhood of each other, confined by a given error tolerance.
LineString objects, whether composites or singular geometries, are considered geomet-
rically equivalent if all their distinct vertices are geometrically equivalent. Two polygon
surfaces are considered geometrically equivalent if the shape bounded by their exterior,
subtracted by their interiors, represent the same geometry. Lastly, two solid objects are
considered geometrically equivalent if their overlapping volume equals their respective
volumes. These correspond to the similarity level SAME_GEOMETRY returned by
the method findBest(left, right, ref) outlined in Algorithm 7. Therefore, these changes
in the representation of geometric objects are covered by the classes PointRepChange,
CurveRepChange, SurfaceRepChange, and SolidRepChange, respectively.

5.2.8. Scope Changes

A change can have an effect and impact on numerous elements in the city model.
This can be observed by analysing its scope, as represented by the class ScopeChange.
A change in scope is a collection of other types of changes proposed above, such
as semantic, geometric, and syntactic changes. Depending on the extent and size of
this collection, scope changes are further classified into three subclasses: LocalChange,
ClusteredChange, and GlobalChange. This aggregation allows for efficient retrieval of
associated changes within the same scope.

A local change impacts a specific attribute, element, or object. For example, a change
in the generic attribute storing the energy consumption of a building has a limited
scope and is considered local. On the other hand, a clustered change occurs over a
number of objects that are spatially or semantically related. For instance, all objects
within a spatial region may be extracted, modified, and re-imported into the city model.

Lastly, a change is considered global or systematic when it is applied to all objects of
the same type in the entire city model. For instance, a global height offset between two
city models can be derived by finding a systematic change in the height coordinates of
all geometries in the entire datasets.

151

5. Change Interpretation in Semantic 3D City Models

The complexity to determine these scopes increases with their coverage and granular-
ity. An indicator accounting for the affected elements (both semantically and spatially)
can be stored for each change. Their scope can then be analysed by comparing the
indicator’s value with a set of predefined thresholds, such as those relative to the
number of objects within a top-level feature and to the number of top-level features of
the same type within the city model.

For instance, the number of buildings with updated property creationDate within the
city model is stored in a semantic scope, while their bounding boxes are merged to
form a bigger one representing their spatial scope.1 By analysing such semantic and
spatial scope, it can be determined whether these changes apply to all buildings or only
to buildings within a specific region. Section 5.4.3 explains further how such scope
information can be computed and stored during the interpretation process.

5.3. Defining Rules for Identifying Change Patterns

This section introduces a compact network for defining aggregative rules to identify
and match change patterns, addressing Research Question RQC3 (Rule Definition for
Change Patterns). The network is a type graph that stores all rules in a connected
graph, thus enabling the modelling of interdependent rules without redundancy.

5.3.1. Requirements for the Pattern Matching Process

For the purpose of defining aggregation rules that can identify patterns among changes
in the graph representations of CityGML documents, thereby reducing the number
of changes to report and at the same time forming new ones with enhanced semantic
levels, the following key technical requirements must be fulfilled:

1. On-the-fly Typing: Given that the CityGML data model is rich with semantic
information, their changes are correspondingly typed and attributed. These
attributes primarily originate from the edit nodes and their directly linked nodes
in the graphs, as explained in Section 4.6. The types can be taken from the class
hierarchy depicted in Figure 5.3. However, in this research, input changes for the
interpretation process are provided as a sequence of arbitrary length, and graphs
do not preserve any specific order among sibling elements when retrieved from
the database. This leads also to the mixed order of their corresponding changes
in the input sequence. A simple approach would first divide this input sequence
into smaller groups of changes of the same type and then operate on each group.

1Alternatively, city object groups could be used to mark buildings sharing the same scope. However, this
approach changes the contents of the original city models and is therefore not implemented.

152

5. Change Interpretation in Semantic 3D City Models

This not only is inefficient as each change is processed multiple times, but it also
requires the length of the input sequence to be known, which is often difficult to
achieve while iterating over large and dynamic data. As a result, the ability to
efficiently distinguish these changes by type and attributes on-the-fly, irrespective
of their order and without the need for repeated iterations, is required.

2. Origin Handling: Even when two changes within a sequence share the same
type, they could still belong to two unrelated objects from two distant parts of
the dataset. For example, a database query may return a series of all translated
surfaces in the graphs. However, these surfaces may not be part of the same
building; in fact, each surface could even belong to a different building. Therefore,
to differentiate them beyond their type information, their semantic context should
also be employed to uncover valuable information about the original objects to
which they belong.

3. Dynamic Aggregation: The majority of aggregation rules specify a fixed number
of input changes per type that are needed to formulate new ones. For instance,
the rules shown in Figure 5.2 require exactly two roof surfaces, four wall surfaces,
and one ground surface. However, this information is typically not available until
execution. Furthermore, this number varies significantly among city objects. For
example, one building may have two roof surfaces, four wall surfaces, and one
ground surface, while another building may have only one roof surface, but six
wall surfaces, and two ground surfaces. Consequently, aggregation rules with
dynamic input quantities must be allowed and managed accordingly.

4. Memory Efficiency: Graph representations of cities may become very large,
leading to a potentially overwhelming number of produced changes. Additional
strategies must be introduced to efficiently process all changes without the need
for repeated iterations, thereby reducing the memory consumption.

Therefore, based on the strengths and limitations of the Rete networks, Petri nets,
and graph transformation systems, as discussed previously in Section 5.1, this research
first proposes a flexible and compact aggregative rule network for establishing rules for
identifying change patterns in the graph representation of CityGML documents in one
place. Subsequently, the rules are parsed and applied to the graphs, and corresponding
patterns are matched during the pattern matching process.

5.3.2. Definitions

This section provides definitions and terms related to the content networks and rule
networks that are employed throughout this thesis.

153

5. Change Interpretation in Semantic 3D City Models

Content Network

The directed and attributed graph representations of CityGML documents, as employed
thus far in Chapters 3 and 4, are referred to as content networks in this study, as they
contain all substantial information about the city models. Nodes and relationships
within a content network are denoted as content nodes and content relationships, respect-
ively. Each content network holds the graph representations of both the old and new
CityGML documents.

An example of such a content network is shown in Figure 5.4. For visual simpli-
city, this illustration replaces the ARRAY node and its outgoing ARRAY_MEMBER
relationships, as seen in Figure 3.12, with the relationships boundarySurface between
the building node and its boundary surfaces. Moreover, edit nodes representing the
detected changes, such as updated properties, are attached to both the old and new
graph representations, as explained in Section 4.6. However, for clarity, this figure only
shows one of these graph representations with connected edit nodes, as will be shown
later in Figure 5.10.

Rule Network

A rule network is a directed acyclic and attributed graph serving as a centralized place
for defining all rules required for pattern matching. Operating as a special type graph,
it describes the characteristic behaviours associated with various types of changes,
allowing the dependencies between rules to be explicitly captured. Therefore, the
subgraphs, which contain all change nodes within the corresponding content network,
are considered instance graphs of this rule network.

Organizing rules for patterns among changes poses a major challenge due to their
high interdependence: one rule may rely on the outcomes of others. For example, the
rule for determining whether a building’s roofs have been raised relies on the results
of rules assessing whether roof surfaces have been moved upwards, and whether
wall surfaces have been enlarged vertically. These rules, in turn, depend on the rules
examining whether each corresponding surface geometry underwent a translation or
size change by the same amount. Absence of an effective model to handle such complex
interdependence can result in substantial redundancy and an excessive number of
duplicate rules, leading to an unsustainable representation of that rule set.

The rule network’s nature as a type graph eliminates this problem by ensuring each
type of changes is presented only once in the network. This approach minimizes
redundancy, thereby allowing all interdependent pattern rules to be succinctly and
efficiently described within a single rule network. In this thesis, rules may be interpreted
in a non-deterministic order, but the final results remain consistent.

154

5. Change Interpretation in Semantic 3D City Models

Building
msdHeight

Roof
Surface

Ground
Surface

Wall
Surface

Wall
Surface

Wall
Surface

Wall
Surface

boundary
Surface

boundary
Surface

boundary
Surface

boundary
Surface

boundary
Surface

boundary
Surface

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Figure 5.4.: A content network of a simplified building model, representing multiple
one-to-many relations between a building and its boundary surfaces.

155

5. Change Interpretation in Semantic 3D City Models

Nodes and relationships within a rule network are denoted as rule nodes and rule
relationships, respectively. A rule node can represent a type of edit nodes listed in
Section 4.6, a change class depicted in Figure 5.3, or an interpreted change at a later
stage. Figure 5.5 illustrates an example of such a rule network applicable to the content
network previously presented in Figure 5.4.

Change Network

Similarly, the network formed by changes, including both the edit nodes and interpreted
changes, is referred to as the change network.

In this research, to enable further queries and analyses, all changes, including lower-
level base changes and all higher-level interpreted ones, are directly linked to the graph
elements from which they originate. The content networks of CityGML documents, as
explained in Chapter 3, are directed, with content relationships pointing from higher
semantic level content nodes to lower semantic level ones, such as from a building
node to its boundary surfaces. In contrast, the pattern matching process operates in
a bottom-up manner, aggregating lower-level changes to formulate higher-level ones.
New, interpreted changes are connected to preceding changes from which they are
derived. As a result, the direction of the change network is opposite to that of its
associated content network.

5.3.3. Properties of Rule Nodes

Each rule node has the label RULE and contains a list of properties. An overview of
these properties is given in Table 5.1.

Table 5.1.: An overview of properties available in rule nodes.

Property Description Example value Required

changeType The type of changes represented by this
rule node.

PolygonMoved Yes

calcScope Directive to calculate scope over Change-
Type and a set of properties.

{∆h} No

join Boolean conditions for joining incoming
rule relationships.

r1 ∧ (¬r2 ∨ r3) No

These properties are described further in the following sections.

156

5. Change Interpretation in Semantic 3D City Models

Polygon
Moved

vT

Polygon
Resized

D

Property
Changed

∆h

Roof
Moved

vT

Wall
Resized

D

Height
Changed

∆h

Roof
Raised

∆h

1

2

3

4

5

6

Rule Relationship Properties

ID Next content type Conditions Propagate Weight

1 RoofSurface true {vT} 1
2 WallSurface true {D} 1
3 Building true {∆h} 1

4 Building vT = (0, 0, ∆h) ∅ ∗
5 Building D = (0, 0, ∆h) ∅ ∗
6 Building ∆h > 0 {∆h} 1

Figure 5.5.: An example of a rule network for the content network shown in Figure 5.4.
Each rule node is depicted with its label and (propagated) properties. Rule
nodes within the same semantic level are highlighted in the same colour.
Each relationship is assigned with a set of predefined properties required
for describing the pattern rules.

157

5. Change Interpretation in Semantic 3D City Models

Property changeType

Each rule node is associated with the type of the changes it represents. These changes
can be edit nodes that are attached directly to the source graph elements where the
changes were detected, or they can represent higher-level changes derived from these
edit nodes. In this study, the information about this change type is stored in the
property changeType of each rule node, rather than its label. This approach minimizes
the label set of rule nodes for indexing and provides the flexibility in naming and
referencing rule nodes.

In the illustration provided in Figure 5.5, each depicted node is a rule node. The rule
nodes on the left-hand side denote edit nodes that were identified after the matching
process is complete, as explained in Chapter 4. Positioned at one semantic level above
the edit nodes, the rule nodes in the middle represent changes at a higher abstraction
level, condensing more semantic information. Such additional semantic information is
gained from the semantic context extracted from the content network while traversing.
For example, a change representing a translated polygon becomes a translated roof
surface once it acquires context information about the type of the boundary surface
containing that polygon. Lastly, the rule node on the right obtains the highest semantic
level of this change pattern.

This semantic ordering of the rule network, distinguishing between the low and high-
level rule nodes, is dictated by the direction of the rule relationships interconnecting
these nodes. In this arrangement, these relationships point from lower-level rule nodes
towards higher-level rule nodes, establishing a hierarchical structure. Source nodes,
those without incoming relationships like the edit nodes on the left of Figure 5.5,
are regarded as residing at the lowest semantic levels. Conversely, sink nodes, those
without outgoing relationships like the rightmost node of Figure 5.5, are positioned
at the highest semantic level within the pattern they represent. As a result, these
highest-level rule nodes are often used to refer to their associated patterns.

Property calcScope

In addition to the mandatory property changeType, additional optional properties, such
as calcScope, can be assigned. The property calcScope serves as a directive for the pattern
matching process to calculate and evaluate the scope over the current changeType and
its given properties.

For example, the directive calcScope over the value ‘∆h’ for the change type RoofRaised
specifies that the pattern matching process must examine whether all instances of this
type share the same height offset, and if it is the case, calculate the semantic and spatial
extent (such as the bounding box) of all matching instances.

158

5. Change Interpretation in Semantic 3D City Models

The results of the scope computation process can be local, clustered, or global scope,
with a corresponding bounding box covering the scope’s spatial extent, as modelled in
Section 5.2. As scope calculation is computationally expensive, it is often applied only
for top-level features in this research.

Property join

In Figure 5.5, the rightmost rule node requires all incoming conditions to be fulfilled.
Each of these conditions can be vastly different and are evaluated based on its own
propagated knowledge acquired thus far, such as vT, D, and ∆h of the rule nodes in the
middle. However, as the rule relationships converge at the rightmost rule node, their
knowledge store can also be shared, allowing for more comprehensive join conditions.
Such are given in the property join of the rule node where rule relationships converge.

In addition, the join conditions also allow for the evaluation of more complex boolean
expressions among converging rule relationships, such as r1 ∧ (¬r2 ∨ r3), where r1, r2,
and r3 are the relationship names representing their boolean values. These relationship
names are described in Section 5.3.4.

5.3.4. Properties of Rule Relationships

Rule nodes are connected within the network using directed rule relationships. All rule
relationships have the type AGGREGATED_TO, reflecting the aggregative nature of
these pattern rules, and a number of properties. These properties are summarized in
Table 5.2 and described in the following sections.

Property nextContentType

The property nextContentType guides the rule interpreter on where to navigate next
within the content network. The direction of traversal is opposite to that of the content
network, moving from lower semantic level content nodes to higher ones. For example,
as shown in Figure 5.5, the target content types of the three rule nodes on the left are
RoofSurface, WallSurface, and Building, while the target content type of all three rule
nodes in the middle is Building.

This next target content type does not necessarily need to be the type of the next
content node adjacent to the current one. It can be any node along the paths in the
direction of traversal. One major advantage of this approach is that it does not require
prior knowledge about the exact structure of the content network. As long as the type
of the next ‘check point’ is known, the rule interpreter shall attempt to search for a path
up to that node.

159

5. Change Interpretation in Semantic 3D City Models

Table 5.2.: An overview of properties available in rule relationships.

Property Description Example value Required

nextContentType The type of the target content node
used by the interpreter while navig-
ating within the content network.

Building Yes

searchLength The maximum length the interpreter
can traverse to reach the target node
determined by nextContentType.

5 No

notContains The content type that should not be
encountered while traversing to the
target content node.

BuildingPart No

name Assign a name to the start rule node
of this relationship referenced by the
join operations.

ruleHeight No

propagate Directive to propagate the proper-
ties of the start rule node of this re-
lationship to the next one.

vT No

conditions Boolean conditions required for the
creation of the next interpreted
change.

∆h > 0 No

scope Examine whether the changes rep-
resented by the start rule node of
this relationship belong to a scope.

global No

weight The number of changes represented
by the start rule node required for
the creation of the next change.

7 No

Property searchLength

When searching for the next content nodes based on their types, the additional inform-
ation searchLength can be provided to limit the maximum number of relationships that
can be traversed sequentially in a depth-first search before the target content nodes are
reached. This is useful in cases where there are multiple content nodes of the same
type exist along the path between two given nodes. By setting a limit on the search

160

5. Change Interpretation in Semantic 3D City Models

length, the targeted content node can be found. Notably, a search length value of 0
indicates that the next content node is the same as the current one, while the value
1 indicates that the next content node is the direct predecessor of the current content
node within the content network.

Property notContains

During the traversal to the next content nodes, it is often required to exclude paths that
contain a specific content type. This can be specified by the property notContains. If a
content node of the type specified by notContains is encountered during traversal, the
interpreter excludes the current content node and its change from the pattern. This
approach is employed to handle cases where multiple possible paths may exist in the
content network between the current content type and the target content type. For
example, as allowed by the CityGML data model, a boundary surface may belong
to a building or a building part. Relying solely on the property targetContentType is
insufficient to differentiate boundary surfaces of a building or a building part. This
problem can be solved by employing the additional property notContains.

Property name

In complex change patterns, a rule node may require multiple preceding rule nodes. For
example, the rightmost rule node in Figure 5.5 requires three rule nodes in the middle.
In such cases, the rule relationships outgoing from these middle rule nodes converge at
the rule node on the right. To facilitate further assessment of complex patterns, such as
evaluating all conditions for the creation of the next interpreted change, unique names
can be assigned to the all converging relationships and their corresponding preceding
rule nodes. All rule nodes with converging outgoing rule relationships can access the
names and properties of each other. This is particularly useful when defining and
evaluating join conditions, as described previously in Section 5.3.3.

Property propagate

The rule network allows for propagating variable and property values from lower-level
rule nodes to the next higher-level node. This process ensures that the knowledge
gained while interpreting the change patterns through the hierarchy is preserved,
preventing the loss of important observations and findings while traversing through
the rule network. For example, as illustrated in Figure 5.5, the knowledge variables
vT, D, and ∆h are first obtained in the left rule nodes. These values are then further
propagated to the subsequent rule nodes in the middle and on the right, as specified
by the property propagate of the corresponding rule relationships.

161

5. Change Interpretation in Semantic 3D City Models

Property conditions

The property conditions specifies the criteria that must be met for the creation of the
next interpreted change. These conditions are logical expressions assessed against
properties in the corresponding change nodes. Properties propagated from previous
nodes, or those shared across converging rules for a join condition, can be used to
formulate and evaluate these conditions. In the absence of any specific conditions, the
default value true is used.

Property scope

When the directive calcScope of the previous rule nodes is activated and a scope has been
calculated across all corresponding changes, the resulting scope can be assessed using
the property scope. For instance, the value global considers only global or systematic
changes. Global changes related to top-level features are typically attached to the
CityModel node, as it serves as the source node of the entire graph representation of the
CityGML document. Other scope values include clustered and local.

Property weight

The weight or multiplicity of a rule relationship dictates the required number of
change occurrences corresponding to the preceding rule node for the creation of the
next interpretation node. A rule node with multiple incoming relationships can only
be activated if all preceding rule nodes, when required by the join conditions, have
accumulated a sufficient number of change instances. For example, as depicted in
Figure 5.5, the rule node RoofRaised can only be activated if all required occurrences of
RoofMoved, WallResized, and HeightChanged exist.

The weight can be assigned a specific value or a placeholder ‘∗’ if the value is not
yet known. For instance, given that each building can have a different number of
wall surfaces, the weight of the rule relationship between WallResized and RoofRaised
is initially set to ‘∗’. This placeholder is updated with a concrete value by the rule
interpreter during runtime. The same can also be applied to other types of boundary
surfaces or any other content types.

Figure 5.6 illustrates an extended rule network based on the rule network given in
Figure 5.5. This enhanced network, utilizing many of the aforementioned node and
relationship properties, can be employed to identify both translations and size changes
of all boundary roof, wall, and ground surfaces of buildings. The same approach can
be applied to define pattern rules for surfaces of building parts.

162

5. Change Interpretation in Semantic 3D City Models

Polygon
Moved

vT

Roof
Moved

vT

Wall
Moved

vT

Ground
Moved

vT

BldgRoofs
Moved

vT

BldgWalls
Moved

vT

BldgGrounds
Moved

vT

Polygon
Resized

D

Roof
Resized

D

Wall
Resized

D

Ground
Resized

D

BldgRoofs
Resized

D

BldgWalls
Resized

D

BldgGrounds
Resized

D

Property
Changed

∆h
Height

Changed

∆h

BldgRoofs
Raised

1

3

2

4

Rule Relationship Properties

ID Next content type Search Length Conditions Name Weight

1 Building 0 vT.z > 0 roofs 1
2 Building 0 vT.z ̸= 0 grounds 1
3 Building 0 D.z > 0 walls 1
4 Building 0 ∆h > 0 height 1

Join at node BldgRoofsRaised: height.∆h = walls.D.z = roofs.vT.z− grounds.vT.z

Figure 5.6.: A rule network for detecting raised roofs of buildings, which is extended
from that of Figure 5.5 by also considering translation and size changes of
all boundary surfaces. The green rule nodes represent surface translation
or size changes of the same vT or D within a building.

163

5. Change Interpretation in Semantic 3D City Models

5.3.5. Rule Notations in Cypher

The rule nodes and relationships, as described previously in Sections 5.3.3 and 5.3.4,
can be combined and utilized by users to define their own rule networks. This section
explains how such rule networks can be implemented in Cypher using the node and
relationship definitions introduced above.

Table 5.3 gives an overview of rule nodes, relationships, along with their labellings
and contents, expressed in Cypher notations. Node labels and relationship types are
managed in Neo4j using thematic indexes, allowing for efficient retrieval of rule nodes
and relationships based on their labelling, as described in Section 6.2.

Table 5.3.: Rule nodes and relationships in Cypher
notations.

Rule Element Cypher Notation

Labelling
Node label RULE
Relationship type AGGREGATED_TO

Node Properties
changeType change_type
calcScope calc_scope
join join

Relationship Properties
nextContentType next_content_type
searchLength search_length
notContains not_contains
name name
propagate propagate
conditions conditions
scope scope
weight weight

Listing 5.1 shows an example of a rule network for detecting change patterns on
buildings’ identifiers in Cypher. This simple network consists of a single path, contain-
ing three rule nodes that are sequentially connected by two rule relationships. It starts
with the lowest-level change in an object’s identifier property, then verifies if that object
is a building, and finally checks if all buildings’ identifiers have been updated. Thus,
the last node is at the highest semantic level of this pattern.

164

5. Change Interpretation in Semantic 3D City Models

Rule nodes and relationships can be described using the following Cypher notations:

1. Rule node: Denoted as (n:RULE {properties}), where RULE is the label of the node,
properties represents a list of the node’s properties, and n serves as a reference to
the node for reusing.

2. Rule relationship: Denoted as ()-[r:AGGREGATED_TO {properties}]->(), where
AGGREGATED_TO is the type of the relationship, properties represents a list of
the relationship’s properties, and r serves as a reference to the relationship (often
not utilized).� �

1 // Pattern in id of buildings

2 MERGE (updated_property:RULE { // unique node names within the query

3 change_type: 'UpdatedProperty' // unique change type within the database

4 })-[:AGGREGATED_TO {

5 next_content_type: 'Building', // the label of the next content node

6 search_length: 0, // the updated property is inside the content node

7 conditions: 'NAME === "id"', // JavaScript syntax

8 propagate: 'NAME', // propagate only property name

9 weight: 1

10 }]->(updated_building_id:RULE {

11 change_type: 'UpdatedBuildingId',

12 calc_scope: 'NAME' // calculate scope over this property

13 })-[:AGGREGATED_TO {

14 next_content_type: 'CityModel', // attach scope nodes to CityModel node

15 scope: 'global'

16 }]->(global_updated_building_ids:RULE {

17 change_type: 'GlobalUpdatedBuildingIds'

18 })� �
Listing 5.1: An example Cypher query for defining pattern rules on the identifiers of

buildings.

In Cypher, the clause MERGE functions as a combination of MATCH and CREATE.
It determines whether a given graph pattern exists; if so, the graph entities are reused,
otherwise, they are created. This is particularly useful for creating unique nodes and
relationships that should exist only once, as in the case of the rule networks.

Additional guidelines and examples on constructing more complex rule networks
using real-world datasets can be found throughout Chapter 7. A comprehensive list
of all change patterns employed in the implementation of this thesis is available in
Listing B.1.

165

5. Change Interpretation in Semantic 3D City Models

5.4. Matching Change Patterns

During pattern matching, change patterns in a content network are matched against
predefined rules in a rule network. Recognized patterns are represented as additional
interpretation nodes, which act as interpreted changes linked to their content nodes,
similar to any other changes in the change network. For instance, a PolygonMoved
node is attached to a polygon node, while a RoofRaised is attached to a building. These
interpretation nodes are central to the expansion of the change network.

Given an initial change network that contains edit nodes and other base changes,
a content network, and a corresponding rule network with predefined pattern rules,
the method matchPatterns(changes, contents, rules) for matching patterns using these
components is outlined in Algorithm 8. Addressing Research Question RQC4 (Matching
Change Patterns) and Research Question RQC5 (Managing Temporary Data), this
method employs several strategies, which are explained in the following sections.

5.4.1. Successive Processing of Changes

Interdependence exists among change patterns, where a change can be both the
outcome of previous lower-level changes and the input to subsequent higher-level
changes. Therefore, the pattern matching process must avoid unnecessary repeated
processing of these changes, while ensuring no changes are left unchecked.

To address this, the algorithm employs a First In First Out (FIFO) queue that functions
like a conveyor belt in an assembly line. Initially, the queue is filled with all edit nodes
and base changes (refer to Line 1). These are then sequentially removed from the
queue for processing (refer to Line 3). When a pattern is identified and an interpreted
change is created, it is added to the end of the queue (refer to Line 31). As a result, the
changes stored in this queue follow an ascending semantic order, with newer changes
possessing more semantic content.

Figure 5.7 illustrates the use of this queue during the pattern matching process. The
algorithm successively assesses changes from the queue against a number of criteria:
type check (Line 5), condition check (Line 11), origin check (Line 13), scope check
(Line 14), and join check (Line 27), which are described as follows:

1. Type Check: Changes are typed and attributed. Only changes that are utilized in
the rule network, indicating their role as a component of a pattern, are processed.

2. Condition Check: For a change to be aggregated, it must satisfy the logical
conditions specified in the corresponding property in the rule relationships.

3. Origin Check: Even when changes are of the same type, they may originate
from different, unrelated objects. The origin check ensures that only changes

166

5. Change Interpretation in Semantic 3D City Models

Algorithm 8: Method for pattern matching matchPatterns(changes, contents, rules)
Input : The networks changes, contents, and rules
Outcome: Interpretation nodes linked to content nodes for detected patterns

1 queue← all edit nodes and base changes in changes
2 while queue is not empty do
3 change← queue.dequeue()
4 rule← rules.findRuleBy(change)
5 if rule = null then continue
6 if rule.hasProperty("calcScope") then
7 scope← create or retrieve a scope node based on change and rule
8 attach change to scope, and update semantic and spatial extent of scope
9 end

10 foreach outgoing relationship rel of rule do
11 if change does not satisfy rel.getProperty("conditions") then continue
12 nextContent← find next content node in contents based on

rel.getProperties("nextContentType", "searchLength", "notContains")
13 if nextContent = null then continue
14 if rel.hasProperty("scope") but the scope does not satisfy then continue
15 nextRule← rel.getEndNode()
16 nextChangeType← nextRule.getProperty("changeType")
17 memory← find a memory node linked to nextContent with nextChangeType
18 if memory = null then
19 memory← create a memory node for nextChangeType
20 initiate a count of 1, and a capacity based on rel.getPropety("weight")
21 attach memory to nextContent
22 else
23 increase the count value of memory by 1
24 end
25 attach change to memory
26 if rel.hasProperty("propagate") then copy properties of change to memory
27 if memory does not satisfy nextRule.getProperty("join") then continue
28 nextChange← create next change node and copy properties from memory
29 attach all nodes linked from memory to nextChange
30 attach nextChange to nextContent
31 queue.enqueue(nextChange)
32 end
33 end

167

5. Change Interpretation in Semantic 3D City Models

sharing the same semantic context within the graphs are processed together. This
is further explained in Section 5.4.2.

4. Scope Check: For changes that are part of a larger pattern, such as individual
building translations that contribute to a systematic translation of the entire city
model, their scope can be queried and analysed. A scope can be computed based
on both the semantic and spatial information shared among changes. This is
further detailed in Section 5.4.3.

5. Join Check: Lastly, when a pattern relies on several component rules, their
conditions can be evaluated based on the join conditions specified at the pattern
rule node, where the rule relationships of this pattern converge.

← ← ← ← . . . ←
Input changes Interpreted

Type
Check

Condition
Check

Origin
Check

Scope
Check

Join
Check

PREDEFINED RULE NETWORK

process produce

Figure 5.7.: An overview of the pattern matching algorithm. It employs a queue to
process all edit nodes and base changes (blue). Changes that pass all checks
are aggregated into a new interpreted change (red), which are added to the
end of the queue for further processing.

These evaluations are conducted using the properties available in rule nodes and
relationships, namely: changeType, calcScope, and join, as well as nextContentType, search-
Length, notContains, propagate, conditions, scope, and weight, as introduced in Sections 5.3.3
and 5.3.4, respectively. Only changes that successfully pass all the aforementioned
checks are aggregated. Once a sufficient number of changes have been aggregated, a
new interpreted change is produced from these components. This process employs
aggregative memory nodes, which are explained in Section 5.4.4. For Algorithm 8 to
terminate, the given rule network must be acylic.

168

5. Change Interpretation in Semantic 3D City Models

5.4.2. Handling of Semantic and Graph Origin of Changes

One of the key concepts of the pattern matching algorithm is its ability to differentiate
changes based on the semantic context of their corresponding content node within the
content network. The origin of a content node is a set that includes the node itself and all
its ancestors in the content network. This origin information is essential to distinguish
changes that are similarly typed and attributed. For example, in an input sequence of
changes, such as (r, w, w, r, r, h, . . .), where the change types are RoofMoved, WallResized
and HeightChanged, it is unknown whether these changes refer to the boundary surfaces
of the same building or several different ones. Incorrectly aggregating parts from
unrelated origins can lead to incorrect outcomes for the current rule and may prevent
other rules from triggering due to missing required parts.

Therefore, the origin check is employed as an additional semantic safeguard, along-
side the type check, to ensure accurate aggregation of changes. This is related to the
problem of finding the Lowest Common Ancestor (LCA) (Aho et al., 1976; Harel &
Tarjan, 1984) in graph theory, which involves searching for the closest shared ancestor
of two given nodes in a directed acyclic graph. For instance, as shown in Figure 5.8,
given the changes v1, v2, and v3 and their corresponding content surface nodes s1, s2,
and s3. The LCA of s1 and s2 is the content building node b, while the LCA of b and
s3 is the content city model node. By leveraging the direct linkage between changes
and content nodes (depicted in orange), the change v3 can be distinguished from the
changes v1 and v2, even though they all refer to the same type of changes.

Furthermore, the information about LCA indicates that the interpreted change C1,
which is associated with the building node b, is produced by aggregating v1 and v2.
Similarly, the interpreted change C2, which is associated with the city model node, is
produced by aggregating C1 and v3. This applies to all LCAs for two given changes.
The interpretation of changes at higher levels only considers interpreted changes at the
next lower level, or edit nodes or base changes in the absence of such an interpretation.

5.4.3. Managing Scopes of Changes

In addition to patterns that rely on multiple types of component changes, such as the
change RoofRaised, which is derived from RoofMoved, WallResized, and HeightChanged,
a large number of patterns can also be derived from component changes of the same
type. For instance, a systematic RoofRaised among buildings within the city model. To
detect these patterns, the scopes of changes are computed.

A scope can be calculated based on the semantic information of changes, their spatial
extent, or a combination of both. The semantic information used to compute scopes
includes the types of changes, along with their thematic properties. On the other

169

5. Change Interpretation in Semantic 3D City Models

Surface s1v1 Surface s2v2 Surface s3v3

Building b LCA of s1 and s2Change C1

CityModel LCA of b and s3Change C2

Figure 5.8.: An example of origin comparison among changes based on their corres-
ponding content nodes. The old content network is used unless changes are
attached to the new content nodes only. The change nodes v1, v2, and v3 are
associated with the content surface nodes s1, s2, and s3 (green). The Lowest
Common Ancestor (LCA) of s1 and s2 is located at the content building
node b (blue), while the LCA of b and s3 is located at the content city model
node (red). For visual clarity, the relationships between changes v1, v2, v3,
C1, and C2 are not shown.

hand, the spatial information employed to compute scopes includes various geometric
details, such as positions, orientations, footprints, and bounding boxes. For example,
a systematic change on building identifiers has a semantic scope, as it involves only
building objects and their thematic properties, while a systematic translation of all
geometries in the city model has a spatial scope, as it involves spatial positions of
geometric objects. Additionally, both semantic and spatial information can be combined
to compute scopes. Examples include lifted buildings within a certain bounding box,
or renovated buildings along a street.

When a change is part of a scope, the pattern matching process creates an explicit
connection between the change and its scope node. This allows for efficient retrieval of
changes within a scope, as well as effective removal and insertion of member changes
within that scope. Scope nodes are attached to the content nodes that are the LCAs
of all content nodes associated with these changes. These are often a top-level feature
node (such as a building) for changes related to its sub-elements, or the city model node
for changes related to the top-level features themselves. In this study, the computation
for the majority of scopes is performed over top-level features. Therefore, the city
model node is often used to retrieve all these scope nodes.

170

5. Change Interpretation in Semantic 3D City Models

While a scope may cover a large number of changes, a single change may be assigned
to multiple scopes. Scopes associated with a specific change are distinguished by the
information they carry, including the type of the change, as well as semantic and spatial
properties employed for the calculation of the scopes.

Scopes are evaluated based on their coverage. They are categorized as global if all
changes are covered, local if only a single change is affected, or clustered for all other
cases in between. The value clustered can be further specified to denote scopes of
changes within a certain bounding box, polygon area, or radius. During the pattern
matching process, as changes are being added to the existing scope, the semantic and
spatial extent of these scopes must be updated to include the newly added change
(refer to Line 8).

5.4.4. The Use of Aggregative Memory Nodes

The method matchPatterns(changes, contents, rules), as outlined in Algorithm 8, relies
greatly on the use of aggregative memory nodes for the implementation of many of its
core concepts. A memory node serves as an auxiliary node, attached to a content node,
and is responsible for storing temporary information required for the creation of the
next interpreted changes.

Since a content node can be associated with many change patterns, multiple memory
nodes can exist for one single content node. Therefore, memory nodes linked to the
same content node are differentiated from each other by the type of the next changes
they aim to create once sufficient components have been collected. For example, for
the change pattern given in Figure 5.5, a memory node is created and attached to a
building node, collecting the information necessary for the creation of the interpreted
change RoofRaised.

In addition to the change type, memory modes also incorporate a counter that keeps
track of the number of component changes per type collected thus far. Each time a
change of a specific type is encountered and accepted, the counter is incremented by 1
(refer to Line 23). This counter continues to increase until it reaches a predetermined
threshold, which is the capacity specified by the memory node for a specific change
type. Once all component changes have reached their respective capacities, the next
change node is then created. Figure 5.9 illustrates such a memory node utilized for
matching the patterns defined in Figure 5.5.

The use of memory nodes is similar to that of the Rete networks (Forgy, 1982) and
can eliminate repeated iteration by processing changes on the fly. However, in contrast
to classical Rete networks, the proposed method does not store entire objects in its
memory. Instead, the algorithm first distinguishes changes based on their types and
attributes, then updates their counters accordingly. Moreover, at the start, the memory

171

5. Change Interpretation in Semantic 3D City Models

BuildingMemory

Node Properties

Name Value

next_change_type RoofRaised
propagated_delta_h 1
count_RoofMoved 1
capacity_RoofMoved 2
count_WallResized 3
capacity_WallResized 4
count_HeightChanged 1
capacity_HeightChanged 1

SAVED_FOR

Figure 5.9.: An illustration of a memory node used for matching the pattern rules for
RoofRaised, as defined in Figure 5.5. Propagated properties from previous
change nodes are shown in green, the number of acquired component
changes thus far in blue, and their required number of occurrences in red.
In this example, the memory node has acquired 50 % of RoofMoved, 75 % of
WallResized, and 100 % of HeightChanged instances required.

is empty and only expanded as new rules and changes are encountered. This avoids
the worst-case memory consumption of Rete networks, where the working memory
could hold all input objects at runtime.

The capacity used in memory nodes is typically determined by the property weight
found in rule relationships (refer to Line 20). However, when this weight is unknown,
as indicated by its value ‘∗’, it is substituted with a concrete value during execution.
To achieve this, the interpreter first searches ‘upwards’ in the content network for the
next content node that matches the content type specified in the rule relationship. It
then traverses all paths ‘downwards’ until a non-deleted content node specified by the
previous rule node is found. The placeholder is subsequently replaced with the total
number of paths reached. For instance, while processing the rule relationship between
WallResized and RoofRaised, the interpreter searches for a building node, as its type is
specified as the next content type of the rule relationship. From this building node, all
paths to wall and roof nodes are counted.

As changes are being acquired by a memory node, they are temporarily linked to
the memory node until all criteria are met to generate the next change, at which point
these temporary connections are then replaced with relationships between the previous
and next changes. Therefore, once interpreted, changes within a change network
are interconnected, with lower-level changes pointing towards higher-level changes.
Figure 5.10 shows an example of such a change network, which is the outcome of

172

5. Change Interpretation in Semantic 3D City Models

applying the pattern matching process to the content network depicted in Figure 5.4
and the rule network shown in Figure 5.5.

In this example, the algorithm starts with the changes PolygonMoved, PolygonResized
and PropertyChanged at the lowest level and gradually propagates ‘upwards’ in the
content network until a content node with a wanted type is encountered, such as
the path PolygonResized → Polygon → WallSurface, where WallSurface is required by
WallResized. Once all criteria have been fulfilled, a new interpretation node WallResized
is created. The propagation proceeds until a building or a city model node (not shown)
is reached, the latter of which is often associated with global or systematic change
patterns. Thus, the pattern matching algorithm is an aggregation process, where
changes of lower semantic levels are aggregated to produce new changes of higher
semantic levels.

Additionally, memory nodes also serve as a repository for properties propagated
from previous change nodes, which are required for evaluating the conditions for the
creation of the next change. The decision on which properties are propagated and
from which rule node is dictated by the corresponding property propagate in the rule
relationships, as explained in Section 5.3.4. These properties remain in the memory
node until the next change is created, at which point they are transferred to the new
change node. For the rightmost rule node in the rule network given in Figure 5.5,
its associated memory node stores the property ∆h, which is propagated from the
preceding rule node HeightChanged. Upon the creation of the next change node Roof-
Raised, it will acquire the property ∆h from the memory node. This ensures a consistent
propagation of knowledge gained during the interpretation process.

A comparison of the methods for pattern matching and its rule network, as utilized
in this thesis, with the concepts previously mentioned in Section 5.1 is summarized in
Table 5.4.

Table 5.4.: A comparison between the proposed pattern matching methods and related
concepts with respect to the key requirements described in Section 5.3.1.

On-the-fly
Typing

Origin
Handling

Dynamic
Aggregation

Memory
Efficiency

Rete networks1 × × ×
Petri nets1 × ×

Graph transformation1 × ×
Proposed pattern rules2

× Not applicable Applicable if typing is enabled Applicable
1 Original publication is considered. Some variants may differ.

173

5. Change Interpretation in Semantic 3D City Models

Building
msdHeight

Roof
Surface

Ground
Surface

Wall
Surface

Wall
Surface

Wall
Surface

Wall
Surface

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Poly-
gon

Roof
Raised

∆h

Polygon
Moved

vT

Roof
Moved

vT

Property
Changed

∆h

Height
Changed

∆h

Polygon
Resized

D

Wall
Resized

D

Polygon
Resized

D
Wall

Resized
D

Polygon
Resized

D
Wall

Resized
D

Polygon
Resized

D

Wall
Resized

D

Figure 5.10.: An example of the results (blue) of the pattern matching process based
on the content network shown in Figure 5.4 and the rule network shown
in Figure 5.5. For visual clarity, boundarySurface nodes are omitted. Inter-
pretation connections are shown in orange. The algorithm starts with the
changes PolygonMoved, PolygonResized, and PropertyChanged at the lowest
level and propagates ‘upwards’ in the content network until a content
node with a wanted type is found, such as the path PolygonResized →
Polygon → WallSurface. Once all criteria are met, a new interpretation
node WallResized is created. Thus, the pattern matching algorithm is an
aggregation process.

174

5. Change Interpretation in Semantic 3D City Models

5.5. Change-Stakeholder Analysis

The interpretations derived from change patterns, as discussed in Section 5.4, provide
crucial insights into the actual modifications across temporal versions of a city model.
These interpretations, rich in semantic content, are both manageable and compre-
hensible to humans. However, as different groups of stakeholders perceive various
types of changes differently, the next and final task is to examine which changes are
relevant to which stakeholders, and vice versa, which stakeholders are interested in
which types of changes. Addressing Research Question RQC6 (Change-Stakeholder
Model) and Research Question RQC7 (Graph-based Change-Stakeholder Analysis),
this section introduces a graph-based approach that allows for the dynamic modelling
of the relevance relations between changes and stakeholders in a change-stakeholder
network. These relations are then analysed using path-tracing techniques.

5.5.1. Requirements for Evaluating Change-Stakeholder Relations

The evaluation process of the relevance relations between changes and stakeholders
presents several requirements and challenges, which are described as follows:

1. Hidden Correlations: Changes in semantic 3D city models are multifaceted and
often correlated. They may all be caused by one single real-world action, or one
change may induce other changes. Such correlation relations are complex and
often hidden behind the data.

2. Varying Interests: Stakeholders have diverse and evolving interests in changes. A
change that is highly relevant to a stakeholder now might lose its relevance in the
future. This requires a flexible approach that allows for dynamic and adjustable
modelling of changes and stakeholders.

3. Stakeholder Roles: In the context of Urban Digital Twins (UDTs), the term stake-
holder can refer to real-world organisations, such as the city planning department.
Each such stakeholder can have different actor roles and professions. For instance,
a city mayor and a construction manager, both members of the city planning
department, may have different responsibilities depending on the city’s current
policies and mandates, and hence, may be interested in different types of changes.

4. Bidirectional Evaluation: Many change analyses require not only the knowledge
of which stakeholders are interested in the changes found in the city models, but
also, conversely, a tailored list of specific types of changes that could be relevant
to a given stakeholder.

Thus, these challenges are addressed in the following sections.

175

5. Change Interpretation in Semantic 3D City Models

5.5.2. Change-Stakeholder Network Definition

This study introduces the concept of a change-stakeholder network, a multilayered
semantic network that allows for the explicit description of the implicit interrelations,
not only between changes and stakeholders, but also among changes and stakeholders
themselves.

Formally, a change-stakeholder network is a graph or network G = (V, E) consisting
of a set V of nodes and a set E of relationships. The node set V is further divided
into several partitions Lk called layers. At least two layers are required in a change-
stakeholder network, namely an input and output layer that represent changes and
stakeholders.

Layers are serially connected with a fixed direction, meaning a layer Lk can only
have incoming connections from its previous layer Lk−1 and outgoing connections to
its subsequent layer Lk+1. The input layer L1 does not have incoming relationships and
the output layer Ln does not have outgoing relationships. The same can also be applied
to the opposite direction.

Each node v(k)i of layer Lk is assigned a weight x(k)i ∈ R. A relationship e(k,m)
i,j is a

directed or an undirected connection from node v(k)i to node v(m)
j and is assigned with

a weight w(k,m)
i,j ∈ R. Figure 5.11 illustrates an example of such network.

Layer 1Layer 2Layer 3

x(1)1

x(1)2

x(2)1

x(2)2

x(2)3

x(3)1

x(3)2

w(1,2)
1,1

w(1,2)
1,2

w(1,2)
2,3

w(2,3)
1,1

w(2,3)
2,2

w(2,3)
3,2

(a) Forward path tracing

Layer 1Layer 2Layer 3

x(1)1

x(1)2

x(2)1

x(2)2

x(2)3

x(3)1

x(3)2

w(1,2)
1,1

w(1,2)
1,2

w(1,2)
2,3

w(2,3)
1,1

w(2,3)
2,2

w(2,3)
3,2

(b) Backward path tracing

Figure 5.11.: An example of a bidirectional change-stakeholder network, where x(k)i
indicates the weight of node v(k)i of layer Lk and w(k,m)

i,j indicates the
weight of the relationship between nodes v(k)i and v(m)

j of layer Lk and Lm,
respectively.

176

5. Change Interpretation in Semantic 3D City Models

In a change-stakeholder network, all nodes and relationships can be assigned with
weights represented by real numbers. These values indicate the level of interest
or relevance between adjacent nodes. In a directed network, a relationship weight
w(k,m)

i,j denotes the relevance value of node v(k)i from layer Lk towards the node v(m)
j

of the subsequent layer Lm. In an undirected network, this weight applies to both
directions. Thus, in case of different weights in each direction, directed relationships
could be employed. Alternatively, positive and negative weights can also be assigned
to undirected relationships to appoint a consistent traversal direction over the entire
network. Infinite values can be utilized to explicitly prioritize or bypass certain nodes
and relationships while traversing.

For example, relationship weights, with normalized values ranging between 0 and
1, can be used to qualitatively represent how relevant a change is to a stakeholder,
with 0 signifying no interest and 1 indicating absolute interest. If the weight is 0, the
relationship can be omitted, implying there exists no semantic relation between the
nodes. In the case of true of false relations, such as whether a change is relevant to a
stakeholder or not, the weight value 1 can be assigned to all existing relationships.

The change-stakeholder network is structurally similar to conventional Artificial
Neural Networks (ANNs) (McCulloch & Pitts, 1943; Werbos, 1974). This similarity in
structure is an intended design choice to facilitate the usage of change-stakeholder
network in future deep learning applications. However, compared to common neural
networks, a change-stakeholder network is additionally characterized as follows:

1. Semantic Network: The nodes and relationships of a change-stakeholder network
are employed to model semantic concepts. While a node represents a concept or
an object, such as a change or a stakeholder, a relationship describes a semantic
meaning between its nodes. Thus, a node does not require incoming relationships
from all nodes in the preceding layer, nor does it produce outgoing relationships
to every node in the subsequent layer. A connection is set only if it represents a
meaningful relation between nodes.

2. Path-tracing Techniques: A change-stakeholder network employs graph-based
path-tracing techniques across the entire network to analyse the semantic meaning
of its content. To enable forward and backward path tracing between the input
and output layer, relationships must be bidirectionally traversable, i.e., by using an
undirected relationship or two directed opposite relationships. These techniques
are further discussed in Section 5.5.3.

3. Layer Subdivision: In a change-stakeholder network, a layer can be further
divided into any number of sub-layers. This division allows for a more flexible
modelling of semantic interrelations between concepts and objects.

177

5. Change Interpretation in Semantic 3D City Models

Therefore, the change-stakeholder network is capable of handling data models rich in
semantic information and complex interrelations. The use of a connected multilayered
network provides not only an explicit representation of often implicit interactions
between objects, but also an expressive and intuitive way to describe and capture the
complex nature of objects and their relations.

A standard change-stakeholder network consists of four layers: Change Type Layer
L1, Reasoning Layer L2, Actor Role Layer L3, and Stakeholder Layer L4. These layers
are explained in the following sections. An illustration of such a network can be found
in Figure 5.12. For visual simplicity, relationships between nodes within a layer are not
shown in this figure.

Change Type Layer L1

The Change Type Layer L1 serves as the first layer of the change-stakeholder network.
This layer is a type graph, where each node represents a distinct class of changes. These
nodes can either represent the highest-level changes, as interpreted from the pattern
matching process described in Section 5.4, or they can cover all changes within the
entire change network, including edit nodes and other changes modelled in Sections 4.6
and 5.2. In the latter case, the rule network, as introduced in Section 5.3, can also act as
the Change Type Layer L1 due to them both being a type graph used to describe the
interrelationships between different types of changes.

Within this layer, only nodes that capture change types of interest are connected
to the next layer. Nodes that are not relevant to the subsequent layers, such as those
representing auxiliary change types, are considered local only to the current layer and
are not forwarded further within the change-stakeholder network. This can be achieved
by marking or ‘colouring’ all such nodes and their corresponding relationships as local,
to be excluded by the path-tracing process at a later stage. Alternatively, signed infinite
weights can be assigned to these nodes and relationships to achieve the same outcomes.

Reasoning Layer L2

Real-world objects are often interconnected through a variety of logical and physical
processes. A modification to one object may also cause changes in others, or a single
process can trigger changes to a number of connected objects. Thus, the Reasoning
Layer L2, the second layer of the change-stakeholder network, is introduced to help
capture and model the implicit correlation and causal effects of changes in objects.
The aim of this layer is not to provide a general-purpose model of correlation and
causation relations between changes and real-world actions, which is challenging due
to a multitude of factors to consider and thus out of the scope of this research. Instead,

178

5. Change Interpretation in Semantic 3D City Models

Change Type
Layer (L1)

Reasoning
Layer (L2)

Actor Role
Layer (L3)

Stakeholder
Layer (L4)

Precision
Changed

Function
Changed

Roof
Raised

Wall
Enlarged

Ground
Lowered

Data
Improvement

Measurement
Reiteration

Building
Repurpose

Floor
Addition

Attic Space
Expansion

Basement
Enlargement

City Model
Manager

Data
Volunteer

City
Mayor

Property
Manager

Interior
Designer

Fire Safety
Officer

Mapping
Agency

City
Resident

City Planning
Department

Real Estate
Company

Fire and Rescue
Department

Figure 5.12.: An illustration of a change-stakeholder network employed for the mod-
elling and analysis of changes, stakeholders, and their relations. Nodes
represent semantic concepts and object classes, while relationships repres-
ent the relevance relations between nodes. The nodes and relationships in
this figure are interpreted from right to left. However, in a bidirectional
network, the interpretation can also proceed from left to right.

179

5. Change Interpretation in Semantic 3D City Models

this layer provides the necessary means to explicitly capture such hidden relations in
specific use cases.

In the Reasoning Layer L2, each node represents an action that may have caused
the observed changes in the data. Based on their impact within an UDT, these actions
can be categorized as either changes to the physical reality or modifications to the
digital representations. Similar to the types of changes in the Change Type Layer L1, a
conceptual model of these actions can be employed to fill the nodes of the Reasoning
Layer L2. Then, the correlation and causality between changes in layer L1 and real-
world actions in layer L2 can be expressed explicitly using relationships in the semantic
network.

Each relationship connecting a node in layer L1 with a node in layer L2 represents a
causality between the two nodes. When outgoing relationships from two change nodes
u and v in layer L1 converge at an action node t in layer L2, a correlation between the
changes u and v is found, with the action t being their correlation effect. For example,
as shown in Figure 5.12, the changes representing raised roofs and enlarged walls in
layer L1 are connected with the action of adding a new floor to the existing building.
This implies that these changes may have been caused by the action. Similarly, since
these changes have outgoing relationships that meet at the attic space expansion node,
performing this action may trigger both of these changes.

On the other hand, when two actions result in the same changes, they may also be
correlated. For instance, the action nodes representing the addition of a new floor and
the expansion of the attic space are correlated, since they both share the same change
nodes for raised roofs and enlarged walls.

Actor Role Layer L3 and Stakeholder Layer L4

Changes in layer L1 are caused by actions in layer L2, which are, in turn, initiated by
humans. Previous studies have highlighted the complexity of the relationships between
stakeholders and various types of changes in semantic 3D city models (Nguyen & Kolbe,
2020, 2021, 2022). Interest levels, like cities, evolve over time. Stakeholders may perceive
different types of changes differently depending on their current professions, positions,
and roles in the process. Therefore, to allow for meaningful analysis and interpretation
of changes with respect to stakeholders, two additional layers are proposed to represent
stakeholders in the change-stakeholder network: the Actor Role Layer L3 and the
output Stakeholder Layer L4, as shown in Figure 5.12.

By decoupling roles from stakeholders as a separate layer, the network can establish
direct connections between actions in layer L2 and their actors in layer L3. Roles
provide a more expressive and robust means of describing the functional positions
of a stakeholder in the process, especially when a stakeholder can be associated with

180

5. Change Interpretation in Semantic 3D City Models

many different roles at the same time. The Stakeholder Layer L4, the last and output
layer of the network, represents stakeholders based on their physical characteristics,
such as individual beings (citizens), companies (private sectors), and organizations
(non-governmental and governmental organizations). Similar to previous layers, a
conceptual model for actors in layer L3 and stakeholders in layer L4 for specific use
cases can be employed to populate the network (Nguyen & Kolbe, 2021).

5.5.3. Graph-based Path-tracing Analysis

This section introduces efficient traversal techniques for analysing the complex in-
terrelations between changes and stakeholders based on a given change-stakeholder
network.

Path-tracing Techniques

A significant advantage of the change-stakeholder network is its compatibility for effi-
cient path-tracing techniques. These graph-based techniques allow for a comprehensive
analysis of the interrelationships between changes and stakeholders simply based on
the available modelled nodes and their connections.

The term ‘path tracing’ is used in this study to denote the traversal techniques
employed between the layers of the change-stakeholder network. This name is inspired
by the path-tracing technique used in the field of computer graphics, which simulates
realistic global illumination of a 3D scene. It begins at the individual pixels on the
objects’ surface and follows along the many light rays bounced between objects until
the light source is reached (Kajiya, 1986). Any light paths that did not reach the light
source are discarded.

Using similar terminology, the one-way path-tracing process of the change-stakeholder
network starts with the input layer L1 and follows numerous graph paths between
layers until the output layer Ln is reached. Paths that did not reach the target layer are
discarded. The two-way variant of the path-tracing process can additionally start with
the output layer Ln and end at the input layer L1.

Forward and Backward Path Tracing

In this study, path tracing in the direction from the Change Type Layer L1 to Stakeholder
Layer L4 is referred to as forward path tracing, while the reverse is referred to as backward
path tracing. These are illustrated in Figures 5.11 and 5.13.

When applied to the entire change-stakeholder network, both the path-tracing direc-
tions enable efficient analyses of the often hidden interrelations between changes and
stakeholders, such as:

181

5. Change Interpretation in Semantic 3D City Models

Change Type
Layer (L1)

Reasoning
Layer (L2)

Actor Role
Layer (L3)

Stakeholder
Layer (L4)

Precision
Changed

Function
Changed

Roof
Raised

Wall
Enlarged

Ground
Lowered

Data
Improvement

Measurement
Reiteration

Building
Repurpose

Floor
Addition

Attic Space
Expansion

Basement
Enlargement

City Model
Manager

Data
Volunteer

City
Mayor

Property
Manager

Interior
Designer

Fire Safety
Officer

Mapping
Agency

City
Resident

City Planning
Department

Real Estate
Company

Fire and Rescue
Department

Figure 5.13.: An example of a two-way path-tracing analysis over changes, stakeholders,
and their relevance within the change-stakeholder network given in Fig-
ure 5.12. The paths traced during the forward and backward path-tracing
process are shown in red and blue, respectively.

182

5. Change Interpretation in Semantic 3D City Models

1. Change-Stakeholder Analysis: This process determines how relevant a change
is to different actions, actors, and ultimately stakeholders. Forward path tracing
is employed in this case. For instance, the change RoofRaised, as introduced in
Figure 5.1 and discussed in the example rule network in Figure 5.5, could suggest
that a new floor has been added or the attic space has been expanded, thereby
increasing the living space of the building. This information may be of interest to
the city mayor, as well as property managers, interior designers, and fire safety
officers. These actor roles are represented by the city planning department, real
estate sector, and fire and rescue department, respectively. Thus, this analysis
is employed when a number of changes have been detected and need to be
evaluated with respect to stakeholders.

2. Stakeholder-Change Analysis: This process identifies which roles, actions, and
ultimately types of changes are relevant to a specific stakeholder. Backward
path tracing is employed in this case. For example, city residents, particularly
volunteered data contributors, may be interested in processes such as data im-
provement, measurement reiteration, and building repurposing. As a result, they
may be interested in changes concerning the quality of the data stored in the
city model, as well as changes in the functions or types of a building. Thus, this
analysis is essential in providing stakeholders with a more concise yet accurate
list of potential changes of interest, apart from many other less relevant changes
stored in the database.

As a result, despite the potentially large number of nodes and relationships stored in the
change-stakeholder network, the relations between a given change and a stakeholder
can be quickly identified and evaluated from both directions.

For the path-tracing process to terminate successfully, the network must either be
free of cycles for each tracing direction, or if it does contain cycles, they should only
be traversable for a finite number of times. To allow for both forward and backward
path tracing, the given change-stakeholder network must be either undirected or
bidirectionally traversable, as in the case of Neo4j graphs.

More examples and guidelines on the construction and path-tracing analysis of such
networks are available in Section 7.7 and Listing C.1.

5.5.4. Evaluating Traced Paths

When the path-tracing techniques presented above result in multiple paths, such
as when there are multiple changes reachable from a given stakeholder, it becomes
necessary to establish a metric that enables comparison among these paths. This is
done by evaluating the accumulated weights of all traced paths within the network in

183

5. Change Interpretation in Semantic 3D City Models

a specific direction. For forward path tracing, the accumulated weight wP of a traced
path P =

(
v(1)i1

, v(2)i2
, . . . , v(n)in

)
can be defined as follows:

wP =
n−1

∑
k=1

x(k)ik
w(k,k+1)

ik ,ik+1
(5.1)

where v(k)ik
is the ik-th node of layer Lk with weight x(k)ik

, 1 ≤ ik ≤ |Lk| with |Lk| as the

number of employed nodes of layer Lk, and w(k,k+1)
ik ,ik+1

is the weight of the relationship

connecting v(k)ik
with v(k+1)

ik+1
. Notably, the node weight x(n)in

of the target layer Ln is
excluded from wP. This can be included if needed.

If node weights are not utilized, or if all node weights are set to 1, Equation (5.1)
simplifies to:

wP =
n−1

∑
k=1

w(k,k+1)
ik ,ik+1

(5.2)

Equations (5.1) and (5.2) allow for zero node and relationship weights, but the sums
are not normalized. Multiplying all weights would normalize the value, but a single
zero component would override others. Thus, the summation approach is used.

The path P has a maximum length of n− 1 relationships, since the network has n
layers. There exist at most ∏n

k=1 |Lk| such paths. If the length of P is not less than
n− 1, it indicates that this path has not been fully traced, meaning that the target layer
is not reachable. Otherwise, among the fully traced paths, the most fitting candidate
for further analyses can be determined by calculating the maximum value of the
accumulated weights, or their minimum value depending on the use cases and the sign
of the weight values. This corresponds to solving the shortest or longest path problem
in graph theory (Dijkstra, 1959).

However, it is often necessary to consider multiple candidate paths, since a stake-
holder may have interest in not one, but a multitude of changes. As a result, instead
of computing their minimum or maximum weight values, paths with weights below
or above a certain threshold are considered. They can then be further sorted based on
their weights for assessment. The value of this threshold is determined depending on
the specific use cases.

For example, in the change-stakeholder and stakeholder-change analysis mentioned
above, weights of nodes and relationships can be given as real, positive, normalized
numbers to denote the relevance values between changes and stakeholders. Therefore,
the most fitting candidates are the fully traced paths with the highest accumulated
weights above a defined threshold.

Given that no relationships between nodes within the same layer exist in the change-
stakeholder network (or such relationships can be ignored during the path-tracing

184

5. Change Interpretation in Semantic 3D City Models

process, as explained above), the adjacency properties of two consecutive layers Lk and
Lk+1 can be described using a modified submatrix Ak of their adjacency matrix.

This submatrix is defined as follows:

Ak =
(

x(k)i w(k,k+1)
i,j

)
∈ R|Lk |×|Lk+1| (5.3)

Thus, the adjacency matrix A of the entire network becomes:

A =

L1L1L1 L2L2L2 L3L3L3 LnLnLn

L1L1L1 0 A1A1A1 0 . . . 0
L2L2L2 0 0 A2A2A2 . . . 0
...
...
...

. . .
Ln−1Ln−1Ln−1 0 0 0 . . . An−1An−1An−1

LnLnLn 0 0 0 . . . 0

 (5.4)

An interesting property emerges when an adjacency matrix (filled with values 0 and
1) is multiplied by itself multiple times. Specifically, each matrix value aij of Ak, the
matrix product of k copies of A, is equal to the number of paths of length k that can be
traced between the layers Li and Lj. Thus, if the distance between layers Li and Lj is
greater than k, the value aij of Ak becomes zero, as shown in Equation (5.4) with k = 1.

Given that layers are serially connected, only the ‘diagonal’ (A1A2 . . . An−k) of Ak is
populated with non-zero values. As k increases, this diagonal shifts upwards, leaving
zeros behind. Thus, if n represents the number of layers in the change-stakeholder
network, the number of all fully traced paths of length n− 1 between layers L1 and
Ln can be found in the submatrix located in the top right corner, confined by the first
|L1| rows and last |Ln| columns of An−1. This can be utilized to reduce the size and
computational complexity of Ak.

The aforementioned observations apply only when the values of the adjacency matrix
are either 1 or 0. Leveraging this property, the matrix multiplication of the adjacency
matrix can be modified to accommodate values other than 1 and 0, such as numeric
values that represent the accumulated weights of respective paths.

In this modified matrix, its value aij ∈ A ◦ f A ◦ f . . . ◦ f A = Ak denotes the accumu-
lated weight of a path of length k between nodes vi and vj. Here, ◦ f is a modified matrix
multiplication such that, for each matrix P =

(
pij

)
∈ Rm×l and Q =

(
qij

)
∈ Rl×s, their

modified multiplication is P ◦ f Q =
(
rij
)
∈ Rm×s, with rij = max

(
f
(

pit, qtj
))
∀t ∈ [1, l].

Depending on the use cases, a minimum function may be preferred. The function f is
defined for real values x and y such that f (x, y) = 0 if xy = 0, or x + y otherwise. This
ensures that the weights of each path can be accumulated correctly through successive
multiplications of the modified adjacency matrix A with itself.

185

5. Change Interpretation in Semantic 3D City Models

L1L2L3

0.1

0.2

0.3

0.4

0.5
0.3

0.4

0.5

0.1

0.2

Figure 5.14.: An example of a directed network with three layers and five nodes. Nodes
and relationships are depicted with their respective normalized weights.

To demonstrate, the simplified network illustrated in Figure 5.14 has the following
adjacency matrix according to Equation (5.4):

A = 10−2 ·

0 0 3 4 0
0 0 0 10 0
0 0 0 0 3
0 0 0 0 8
0 0 0 0 0

 (5.5)

The adjacency matrix A contains the weights of all paths of length one between the
layers of the given network. The weight of each path is calculated based on the node
and relationship weights, as defined in Equation (5.1). For example, the value of a14 of
A is a product of the node weight 0.1 and relationship weight 0.4.

The modified matrix product of A with itself is described as follows:

A2 = A ◦ f A = 10−2 ·

0 0 0 0 12
0 0 0 0 18
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (5.6)

Therefore, the matrix product A2 shows the maximum accumulated weights of all
traced paths of length two from layer L1 to layer L3. For example, the value a15 of
A2 is computed as 10−2 ·max (3 + 3, 4 + 8) = 10−2 · 12, while a25 of A2 has a value of
10−2 ·max (0, 10 + 8) = 10−2 · 18. These values correspond to the accumulated weights
of the red paths shown in Figure 5.14.

Thus, the accumulated weights of paths traced within the change-stakeholder network
can be efficiently represented and evaluated using the network’s adjacency matrix.

186

5. Change Interpretation in Semantic 3D City Models

5.6. Summary and Discussion

This chapter first provides a classification of changes detected between the graph
representations of CityGML documents. These changes are categorized into various
classes within a hierarchy, including changes in appearance, semantic, geometric,
topological, structural, LOD, syntactic, and scope information. To identify complex
patterns among these changes, this chapter introduces a rule network, which is a type
graph that can describe the typical behaviours and interrelationships of changes within
patterns. It allows for the capture of all potential complex patterns among changes
in a single network without redundancy, especially for patterns that depend on the
outcomes of others. The rules within this network are aggregative, combining smaller
changes with lower level of semantic content into changes with higher level of semantic
content.

While the structure of the rule network allows for the definition of various change
patterns, its nodes and relationships are assigned with properties that are essential for
the subsequent pattern matching process, which is designed to detect patterns among
changes attached to the content network. These properties can contain a range of
information, from the type of the represented change and the type of the next content
node, to the directive to calculate the scope of changes and boolean conditions for the
creation of the next interpreted changes.

To detect change patterns based on the predefined rules, this study utilizes a First
In First Out (FIFO) queue to manage all changes, including interpreted changes that
may be part of bigger ones. The queue allows for successive handling of all changes
without processing any change more than once. Each change removed from the queue
undergoes a series of checks to ensure the creation of the next interpreted changes
when a sufficient number of changes of correct types and origins within the graphs are
present.

This aggregation of component changes is enabled by the use of aggregative memory
nodes. These auxiliary nodes contain temporary information required for the creation
of the next interpreted changes and are attached to the content nodes where next inter-
preted changes will be created. A memory node contains essential information about
the type of the next change to be created, knowledge gained during the interpretation
process, the number of change instances per type acquired thus far, and the number of
occurrences of these changes required to create the next change.

This research further introduces the change-stakeholder network, a multilayered
semantic network to represent, model, and evaluate the relevance relations between
different types of changes and different groups of stakeholders. A standard change-
stakeholder network consists of four layers: Change Type Layer L1, Reasoning Layer L2,
Actor Role Layer L3, and Stakeholder Layer L4. While nodes represent concepts and

187

5. Change Interpretation in Semantic 3D City Models

objects involved in the process, relationships represent the relevance relations between
nodes and are only set if a semantic relationship exists between the nodes. Nodes and
relationships can be individually assigned with weights when necessary.

Lastly, this chapter presents path-tracing techniques as efficient traversal strategies
for determining the relevance relations between every change and stakeholder. These
techniques include the forward and backward path tracing to identify the stakeholders
interested in a given change, and conversely, the changes a given stakeholder may be
interested in. Their relevance relation is confirmed if there exists at least one path
between them across layers. Mathematical methods, including a modified adjacency
matrix, are provided to evaluate traced paths based on their accumulated weights.

Some notable observations and insights related to the concepts introduced in this
chapter include:

1. Significant Reduction of Number of Changes to Report: As shown in Figure 5.5,
all individual changes such as RoofMoved, WallResized, and HeightChanged can be
represented by a single interpreted change RoofRaised. This effect is amplified
in global change patterns, such as where all individual translations of geometric
elements can be represented by a single interpretation, suggesting a systematic
elevation change of the entire city model. The method employs aggregative rules
to condense a large number of changes into a few interpretation nodes that are
more comprehensible to stakeholders.

2. Database-wide Application of Pattern Rules: Pattern rules within a rule network
are verified against all changes of corresponding types, regardless of the rules’
size. For instance, a pattern rule with two rule nodes interpreting a translated
polygon as a lifted polygon (for positive z component) is applied to all polygon
translations found in the graphs. This implies that even a small rule network can
have a significant impact on the interpretation of changes.

3. Rule Networks for Consistency Check: In addition to detecting change patterns,
rule networks can also potentially be used to detect inconsistencies among changes
in the data. For instance, pattern matching rules can examine whether a change in
the number of storeys above ground of a building is consistent with the change in
the building’s measured heights and the vertical size of all wall surfaces. However,
such verification process is out of the scope of this thesis.

4. Expansion of the Change Network: While interpreting, the change network is
constantly expanded with new interpreted changes. These changes are connected
to form a hierarchy, as dictated by the structure of both the employed rule and
content network. New changes are attached to their corresponding content nodes,
while the entire content network remains unchanged.

188

5. Change Interpretation in Semantic 3D City Models

5. Memory Nodes after Interpretation: During pattern matching, memory nodes
store temporary information needed for the creation of the next interpreted
changes. They also serve as a temporary reference, linking all component changes
of the next change. After the next change has been created and linked to its
component changes, the memory node is left only connected to its content node.
Depending on the implementation, memory nodes can then be removed. However,
as the graph database Neo4j may reuse internal identifiers of deleted nodes for
newly created ones, the implementation of this study removes the memory nodes
in the graphs only after all processes are complete.

6. Extended Change-Stakeholder Networks: The change-stakeholder network in-
troduced in this chapter contains four layers. However, the same principles can be
applied for any number of layers larger than two, provided they care connected
via relationships that reflect their semantic interrelations.

189

6. Optimization Strategies for
Massive CityGML Datasets

While the methods proposed in previous chapters can effectively accomplish their
designated objectives, their runtime complexity grows with the size of the input
CityGML documents. Thus, this chapter introduces optimization strategies to enhance
the efficiency of these methods when applied to large CityGML documents.

6.1. Chunk-wise Mapping

The methods detailed in Algorithms 1 to 3 are capable of generating a graph represent-
ation of an entire CityGML dataset. The input CityGML documents, along with their
object-oriented representations, are entirely held in main memory. Consequently, an
increase in the size of the input datasets leads to an increase in memory consumption.
This, in turn, results in a slowdown of the program due to the time-consuming nature of
the memory allocation and data structure construction processes. While this approach
is feasible for small CityGML datasets, it becomes increasingly challenging or even
impossible for larger ones, particularly those that reach gigabytes or even terabytes of
data. Therefore, additional optimization strategies are necessary to process massive
input CityGML datasets effectively, especially with restricted memory capacities. This
section addresses Research Question RQD1 (Memory Reduction).

6.1.1. Splitting Massive CityGML Documents

There exist two primary methods for reading XML documents: the Document Object
Model (DOM)-based approach and the event-based approach.

The DOM (Wood et al., 2000) is a standardized interface for reading, handling,
and manipulating HyperText Markup Language (HTML) and XML documents. It
represents each document as a hierarchical tree structure, where each element in the
document is depicted as a node. Specifically, the DOM for HTML treats every element
as a node, including all HTML elements, attributes, the text contents of HTML elements,
comments, and even the document itself, which serves as the root node of the DOM
tree. Each path in the tree begins at the root node and ends at a leaf node. Every node

190

6. Optimization Strategies for Massive CityGML Datasets

must have exactly one parent (except for the root node) and can contain an arbitrary
number of children (with the exception of the leaf nodes). The entire DOM tree is
loaded into the main memory, allowing for both direct and fast access, navigation, and
manipulation of data from any point within the tree. As a result, the DOM and its
variants are employed in most modern web browsers.

Contrary to DOM that operates on entire documents, event-based methods like the
Simple API for XML (SAX) (Harold et al., 2000) operate specifically on individual
segments of XML documents. SAX sequentially reads XML documents in a single pass,
triggering events during parsing. When an event is detected, SAX reports it and then
discards most of that information to accommodate the next event. As a result, the
memory footprint of SAX is often much smaller than that of the DOM, especially for
datasets that are larger than the capacity of the available main memory. Moreover, due
to its event-driven nature, SAX generally outperforms DOM-based parsers in tasks that
can be completed in a single start-to-end pass of XML documents, such as indexing,
formatting, or converting XML elements. However, SAX is read-only and does not have
the capability to change or write XML contents.

Many common event-based APIs like SAX employ a push model, in which the parser
feeds the content of XML documents to the application immediately after an event has
been detected. This approach, however, deprives the application of control over how
and when XML elements are parsed, as the parser continues to iterate until it reaches
the end of the document. This restrictive observer design pattern can be challenging for
developers to adapt (Harold, 2003). In contrast, the pull model used in the Streaming
API for XML (StAX) poses fewer adaptation challenges as it aligns with the more
familiar iterator design pattern. In this model, the application dictates how and when the
parser searches for the next piece of information from the document. StAX can thus be
perceived as a bridge between the two opposing interfaces of DOM and SAX. It allows
for reading, manipulating, and writing XML elements, while still retaining the ability
to handle documents of arbitrary size with low memory consumption.

The concepts of DOM, SAX, and StAX are included in the Java API for XML Pro-
cessing (JAXP). The library citygml4j utilizes JAXP, in conjunction with JAXB as in-
troduced in Section 3.1.2, to generate in-memory Java objects of CityGML elements.
To reduce memory usage while parsing large CityGML documents, citygml4j allows
for dividing these documents into smaller pieces, often referred to as chunks. Each
chunk can contain a CityGML feature, ranging from smaller elements such as boundary
surfaces up to top-level features like entire buildings.

For example, a city model composed of six buildings can be segmented into seven
chunks. Each of the first six chunks contains one building, while the seventh chunk
includes the main content and semantic structure of the city model without the contents
of its buildings. As these chunks are detached from their original form, citygml4j

191

6. Optimization Strategies for Massive CityGML Datasets

incorporates six href properties into the main seventh chunk to reference each of the six
associated extracted chunks. These new XLink references, although not present in the
original CityGML document, are necessary for the reconnection of all seven chunks
after they have been mapped onto graphs. The processes for mapping and reconnecting
CityGML chunks are explained in Sections 3.3 and 3.4 respectively.

6.1.2. Reconnecting Graph Representations of CityGML Chunks

Figure 6.1 provides an overview of the three-step process for generating cohesive,
connected graph representations of large CityGML datasets: (1) segmenting a large
CityGML document into chunks, (2) mapping these chunks onto graphs, and (3)
resolving XLinks between these subgraphs. The same concepts illustrated in this
example can be applied to accommodate any large-scale CityGML datasets.

The first two steps can be executed while chunks are being parsed from the input
documents. However, the third step, resolving XLinks, can only be done after both the
previous steps are complete for the entire dataset. This is because objects referenced by
XLinks may not have been read yet while parsing the sequential chunks from the input
dataset and thus are not yet available for reconnecting.

6.2. Leveraging Thematic Indexes

As mentioned previously, the resolution of XLinks requires the identification of graph
nodes that contain either an href or id property. A brute-force approach to this would
be to scan through all nodes and search among their property keys for the presence
of href or id. However, this method can be time-consuming and inefficient, especially
when dealing with large CityGML datasets that are represented by a vast number of
nodes.

Furthermore, this issue is not limited solely to the resolution of XLinks. There exist
other processes employed in this study that also require frequent access to nodes and
relationships with specific labellings and properties, such as finding potential matches
for a given subgraph.

In such cases, indexing can be applied. In databases, an index is an efficient data
structure for storing and managing copies of selected data. It allows for faster retrieval
of indexed data at the cost of additional write operations and storage space.

In the graph database Neo4j, thematic indexes can be applied to both nodes and rela-
tionships that have specific labels or types and properties. Neo4j provides support for
several types of thematic indexes, including token lookup index, range index, text index,
and full-text index. This section addresses the first half of Research Question RQD2
(Database Indexes).

192

6. Optimization Strategies for Massive CityGML Datasets

citymodel.gml

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Chunk 5

Chunk 6

C
hu

nk
7

Graph 1

Graph 2

Graph 3

Graph 4

Graph 5

Graph 6

G
ra

ph
7

Graph 1

Graph 2

Graph 3

Graph 4

Graph 5

Graph 6

G
ra

ph
7

Split into
chunks

citygml4j
JAXB & JAXP

Map onto
graphs

Algorithms
1 and 2

Resolve
XLinks

Algorithm
3

Figure 6.1.: Visualizing the processes: From segmenting a large CityGML document
into chunks, to mapping these chunks onto graphs, and resolving XLinks
between these subgraphs. The href properties are shown in orange, while
the referenced identifiers are shown in blue. The tools and methods em-
ployed in these processes are citygml4j with JAXB and JAXP, as well as
Algorithms 1 and 2 for mapping, and Algorithm 3 for resolving XLinks.
Each of the blue chunks can contain a top-level feature (such as a building),
while the orange chunk represents the city model. In this example, the
city model has six buildings, but the same concepts can be applied to
accommodate any large-scale CityGML datasets.

193

6. Optimization Strategies for Massive CityGML Datasets

6.2.1. Token Lookup Index

Token lookup indexes are the only indexes in Neo4j that operate exclusively on node
labels and relationship types, independent of their properties. They are enabled
by default for all nodes and relationships (Neo4j, 2023). The token lookup indexes
play a central role in Neo4j’s indexing system, as they accelerate the population of
other indexes and are extensively utilized in many database operations and queries.
Listing 6.1 provides some examples of such database queries in Cypher, Neo4j’s query
language. They showcase the implicit use of the token lookup indexes in Cypher
queries.� �

1 // The token lookup indexes are implicitly utilized in Cypher

2

3 // Using node label predicate

4 MATCH (n:Building)

5 RETURN n

6 // Alternative node label predicate

7 MATCH (n)

8 WHERE n:Building

9 RETURN n

10

11 // Using relationship type predicate

12 MATCH ()-[r:boundedBy]->()

13 RETURN r

14 // Alternative relationship type predicate

15 MATCH ()-[r]->()

16 WHERE r:boundedBy

17 RETURN r� �
Listing 6.1: Querying by node labels and relationship types in Cypher.

6.2.2. Range Index

Range indexes are the most commonly used indexes for node and relationship proper-
ties in Neo4j. When used in conjunction with the token lookup index, a range index
enables the search for nodes and relationships based on a wide range of operations
on their properties. These operations, which are based on boolean logic, include exact
comparisons, checks for membership and existence, as well as inequality and prefix
searches. Range indexes can be applied to multiple properties of the same node,
forming a composite index.

194

6. Optimization Strategies for Massive CityGML Datasets

Listing 6.2 illustrates the use of range indexes on node properties in Cypher queries.
The same applies to relationship properties.� �

1 // Range indexes on node properties

2

3 // Exact comparison

4 MATCH (n:Building)

5 WHERE n.id = "bdlg1"

6 RETURN n

7

8 // List membership test

9 MATCH (n:Building)

10 WHERE n.id IN ["bldg1", "bldg2", "bldg3"]

11 RETURN n

12

13 // Existence test

14 MATCH (n:Building)

15 WHERE n.id IS NOT NULL

16 RETURN n

17

18 // Inequality search

19 MATCH (n:Building)

20 WHERE n.storeysAboveGround > 5

21 RETURN n

22

23 // Prefix search

24 MATCH (n: Building)

25 WHERE n.id STARTS WITH "bldg"

26 RETURN n� �
Listing 6.2: Using range indexes on node properties in Cypher.

6.2.3. Text Index

Range indexes can be employed for both numeric and character-based properties, as
shown previously. In contrast, a text index is applicable exclusively to strings. When
used in conjunction with the token lookup index, it allows for efficient retrieval of
nodes and relationships based on a variety of string operations on their properties.
These operations cover exact string comparisons, checks for membership in a string list,
as well as prefix, suffix, and substring searches.

195

6. Optimization Strategies for Massive CityGML Datasets

Text indexes are particularly efficient when dealing with suffix and substring searches,
providing them an advantage over range indexes (Neo4j, 2023). Similarly to the use
of STARTS WITH for prefix searches, the key words ENDS WITH and CONTAINS are
employed for suffix and substring searches, respectively.

6.2.4. Full-text Index

The previously mentioned range and text indexes offer limited operations on string
properties, such as exact matching, as well as prefix, suffix, and substring searches.
In contrast, a full-text index provides more flexibility, as it divides string values into
smaller tokens, thus allowing for matching from any point within the strings. This is
achieved by tokenizing the indexed string values (Neo4j, 2023).

Full-text indexes are provided by Apache Lucene1, a powerful library developed for
indexing and searching. Full-text indexes are equipped with various analysers that
dictate the tokenization process of strings. Analysers can be provided for different
natural languages, such as English and German, but also in various structures, such as
an email analyser for parsing email communication.

Unlike range and text indexes, a full-text index can be applied to multiple node labels
and relationship types. It can also be applied to multiple string properties at once. In
contrast to composite indexes, where only nodes with the exact labels and all specified
properties are indexed, a full-text index is performed on nodes that have any of the
specified node labels and relationship types, as well as any of the specified properties.

Listing 6.3 illustrates how full-text indexes can be employed in Cypher.� �
1 // Query nodes using a full-text index on street names

2 CALL db.index.fulltext.queryNodes(

3 "indexStreetNames", // unique index name

4 'Arcisstr. OR Boltzmannstr.' // logical operation

5) YIELD node

6 RETURN node

7

8 // Query relationships using a full-text index on wasXLink attributes

9 CALL db.index.fulltext.queryRelationships(

10 "indexWasXLink",

11 "true"

12) YIELD relationship

13 RETURN relationship� �
Listing 6.3: Using full-text indexes on node and relationship properties in Cypher.

1https://lucene.apache.org/

196

https://lucene.apache.org/

6. Optimization Strategies for Massive CityGML Datasets

6.2.5. Combining Thematic Indexes

This thesis leverages different types of indexes available in Neo4j for different types
of nodes and their properties. The goal is to enhance the retrieval speed of these
elements within a large-scale graph database instance. While indexes can also be
applied to relationships, the majority of queries used in this research make extensive
use of indexes on nodes and their properties. These indexes play a crucial role not only
in the mapping process but also in the subsequent processes of matching graphs and
interpreting their changes. Table 6.1 showcases some of the most prominent examples
of thematic indexes used in these processes.

Table 6.1.: The use of thematic database indexes to enhance query time of specific
node labels and their properties.

Node Labels and Properties Index Type In Process

All labelled nodes Token lookup index 1 2 3
Nodes containing id Text index 1 2 3
Nodes containing href Text index 1
Code nodes (for function, usage, roofType) Text index 3
Length nodes (for measuredHeight) Range index 3
Building nodes, on storeysAboveGround Range index 3
Building nodes, on storeysBelowGround Range index 3
Top-level features, on relativeToTerrain Text index 3
Top-level features, on relativeToWater Text index 3
Top-level features, on creationDate Full-text index 3
Top-level features, on terminationDate Full-text index 3
Top-level features, on yearOfConstruction Full-text index 3
Top-level features, on yearOfDemolition Full-text index 3

1 Graph mapping 2 Change detection 3 Change interpretation

Both the token lookup index for all labelled nodes and the text index on nodes with
the property id are utilized in all processes. In contrast, the text index on nodes with
the property href is primarily used during the mapping process to resolve XLinks. Once
the XLinks are resolved, the property href becomes redundant, and thus, its index is no
longer needed in the subsequent processes.

The majority of the indexes are reserved for the change interpretation process, as
it attempts to detect patterns among various types of content and change nodes,
particularly those associated with top-level features such as buildings.

197

6. Optimization Strategies for Massive CityGML Datasets

The full-text index on top-level features with a date property, such as creationDate
and terminationDate, can be performed using a date analyser. On the other hand, nodes
with numeric values like measuredHeight can be found using a range index.

The creation and removal of some of these indexes are depicted in Listing 6.4.� �
1 // Create a range index

2 CREATE RANGE INDEX indexLengths

3 FOR (n:Length)

4 ON (n.value)

5

6 // Create a text index

7 CREATE TEXT INDEX indexIds

8 FOR (n:Building)

9 ON (n.id)

10

11 // Create a full-text index

12 CREATE FULLTEXT INDEX indexDates

13 FOR (n:Building)

14 ON EACH [

15 n.creationDate,

16 n.terminationDate,

17 n.yearOfConstruction,

18 n.yearOfDemolition

19]

20

21 // Drop an existing index

22 DROP INDEX indexDates� �
Listing 6.4: Creating and dropping indexes in Cypher.

In Neo4j, indexes can be established either before or after the creation of nodes
and relationships. Once initiated, indexes are maintained in the background and
are automatically updated when any changes are made to the associated nodes and
relationships in the database. When processing queries, Neo4j automatically leverages
the available indexes to optimize runtime, thereby eliminating the need for explicit
usage or invoking of indexes in each Cypher query.

However, like node labels, the number of thematic indexes employed in the database
should be kept small to avoid excessive amount of additional disk storage and decreased
runtime efficiency while managing these indexes.

198

6. Optimization Strategies for Massive CityGML Datasets

6.3. Spatial Indexing

As depicted in Table 6.1, matching graph representations of city objects leverages
thematic indexes on node labels and their identifiers. This is particularly useful when
matching objects with unchanged identifiers over time. However, as explained in
Section 2.2.2, this is not always guaranteed, leading to multiple different identifiers of
the same objects. As a result, further optimization strategies are required for matching
objects in one-to-many and many-to-many relationships of large city models.

In addition to the semantic information, CityGML documents are also rich in geomet-
ric contents, which can be utilized to efficiently retrieve and differentiate objects from
one another. Database indexes that leverage this source of information are referred
to as spatial indexes. This section addresses the last half of Research Question RQD2
(Database Indexes).

6.3.1. Point Index

Neo4j natively supports a basic spatial index known as the point index. This index is
capable of handling spatial queries involving points, such as determining the distance
between two given points or verifying whether a point is located within a certain
bounding box. However, its capabilities are limited, as it can only operate on a single
property of a node or relationship, and that property must be of the type point specified
by Neo4j. Moreover, exact comparison is the only non-spatial query supported by this
index. Listing 6.5 illustrates how this point index can be created and utilized in Cypher.� �

1 // Create a point index

2 CREATE POINT INDEX indexPoints

3 ON (n:Point3D)

4 FOR (n.location) // e.g., n.location = point({x: 100, y: 100, z: 100})

5

6 // Calculate distance between two point nodes n and m

7 point.distance(n, m)

8

9 // Verify whether a point node n is in a bounding box

10 // bounded by two point nodes lowerLeft and upperRight

11 point.withinBBox(n, lowerLeft, upperRight)

12

13 // Drop the point index

14 DROP INDEX indexPoints� �
Listing 6.5: Applying a point index in Cypher.

199

6. Optimization Strategies for Massive CityGML Datasets

Neo4j’s point index supports both 2D and 3D points. However, it only recognizes
point locations given in either the Cartesian coordinate system (with coordinates x,
y, and z) or the World Geodetic System (WGS) 84 CRS (with latitude, longitude, and
height). For spatial querying, Neo4j provides several built-in spatial functions, such as
point.distance(n, m) and point.withinBBox(n, lowerLeft, upperRight), as shown in Listing 6.5.
The resulting values and units of these functions vary depending on the dimensionality
and the CRS of the given points (Neo4j, 2023). For example, the distance (both 2D
and 3D) between two points provided in the Cartesian coordinate system is calculated
using Pythagoras’ theorem. On the other hand, the 2D distance of points provided in
the WGS 84 CRS is calculated using the haversine formula, while the 3D distance is
calculated using a combination of the haversine formula and Pythagoras’ theorem.

6.3.2. R-trees for Indexing More Complex Geometries

The point index can be utilized during the change detection and interpretation process
to efficiently locate city objects based on their spatial properties. The storage and
management of indexed points are handled automatically by Neo4j in the background.
However, this index only applies to points, while many queries in the change detection
and interpretation process involve more complex geometries in higher dimensions,
such as 2D surfaces in 3D space. Moreover, the locations of these points must be
provided using a built-in constructor specified by Neo4j. In addition, the point index
only supports coordinates given in the Cartesian or WGS 84 system.

In this context, a Bounding Volume Hierarchy (BVH) is often used for indexing a
large number of complex geometries. A BVH is a tree data structure constructed using
a bottom-up approach, where each leaf node represents an individual input geometry.
Geometries in close proximity are grouped together, forming their minimum bounding
volume. This volume is then stored as a parent node encompassing the wrapped
geometries. These minimum bounding volumes, in turn, are bundled together based
on their proximity to each other, creating a larger minimum bounding volume at the
next level. This process of spatial aggregation repeats ‘upwards’ until all geometries
are encapsulated within a single minimum bounding volume, which serves as the root
node of the tree. BVHs are particularly useful in applications such as in ray tracing and
overlapping or collision detection.

The term BVH is a broad classification over various types of spatial hierarchies. Each
hierarchy is distinguished by the shape of the minimum bounding volumes used, which
can range from 2D geometries such as rectangles and circles to 3D shapes such as cubes
and spheres. However, most studies and applications tend to limit these shapes to
simpler forms that best fit their input geometries, while being able to enhance query
efficiency. In this context, R-trees (Guttman, 1984) are a special class of BVHs that

200

6. Optimization Strategies for Massive CityGML Datasets

employs 2D Axis-aligned Minimum Bounding Boxes (AABBs) as minimum bounding
volumes (Haverkort, 2004). The use of AABBs simplifies the execution of many spatial
operations such as intersection queries, as only comparisons and subtractions of the
coordinates at the vertices of the bounding boxes are required. Although the ‘R’ in
the name ‘R-tree’ indicates the use of rectangles, R-trees can also be applied to three-
dimensional bounding boxes. Moreover, each node in an R-tree can be allocated a
maximum number of regions, known as the tree’s block size. This implies that the leaf
nodes of an R-tree are no longer atomic entities, as they contain input data rectangles
which are the actual atomic elements. Figure 6.2 illustrates the structure of an R-tree
with a block size of three used for organizing 2D surfaces.

R-trees can be utilized for a variety of spatial queries, such as determining the
nearest geometry to a given location or finding all geometries within a certain radius
of a specific point. However, they are exceptionally efficient in coverage and overlap
queries. Since every non-leaf node in the tree represents a bounding box that contains
its member elements, if a given geometry does not intersect with this bounding box, it
can be concluded that it does not overlap with any of the enclosed geometries. This
essentially allows for the majority of the tree hierarchy to be disregarded during queries.
Similar to B-trees (Bayer & McCreight, 1970), R-trees are balanced search trees, thus
resulting in the logarithmic runtime complexity for coverage or overlap queries on average.

Several variants of R-trees exist. A standard R-tree may contain large overlap or
empty areas between their minimum bounding boxes during construction. The R+-tree
(Sellis et al., 1987) addresses these issues by allowing geometric objects to be stored
redundantly in multiple leaf nodes. As a result, however, an R+-tree may become larger
than its corresponding R-tree for the same input dataset. On the other hand, the R*-tree
(Beckmann et al., 1990) avoids excessive overlap between minimum bounding boxes in
the original R-trees by splitting elements from overfilled nodes and reinserting them
into the tree. While this increases the construction cost of R*-trees compared to R-trees,
it allows for better performance for coverage and overlap queries in general.

6.3.3. Employing R-trees in a Graph Database

As of this writing, the most recent release of Neo4j does not officially support spatial
indexing for geometries more complex than points in higher dimensions. However,
several community-supported plug-ins and extensions are available, such as the Neo4j
Spatial utility library2. This tool enables indexing of already existing spatial data in the
graph database with a new layer of R-tree nodes, allowing for efficient spatial operations
and queries on 2D regions and surfaces. The R-tree hierarchy is maintained in the
same persistent storage as its associated spatial data. This library has been successfully

2https://neo4j-contrib.github.io/spatial

201

https://neo4j-contrib.github.io/spatial

6. Optimization Strategies for Massive CityGML Datasets

R0

A

B

E

C

D

F

R1 R2

R3

R4

R5

R6

R7

R8

R9

E F

A B C D

R1 R2 R3 R4 R5 R6 R7 R8 R9

Figure 6.2.: An example of an R-tree with a block size of three that contains nine
rectangles labelled from R1 to R9. The minimum bounding boxes of these
rectangles are A, B, C, and D, as shown in blue. These boxes are further
enclosed by larger minimum bounding boxes, E and F, depicted in red,
which together form the root node of the R-tree. The grey rectangle R0

does not intersect with E, and therefore does not intersect with any of the
enclosed rectangles R1 to R5. Similarly, R0 does not intersect with D, and
thus does not intersect with R8 and R9. However, R0 does intersect with C,
indicating a potential intersection with R6 or R7.

202

6. Optimization Strategies for Massive CityGML Datasets

employed in several past studies (Nguyen et al., 2017; Nguyen, 2017; Nguyen et al.,
2018), mostly with earlier versions of Neo4j. However, as a community-driven project,
it does not receive updates as frequently as Neo4j, leading to compatibility issues with
the latest version of Neo4j employed in this thesis.

Alternatively, in-memory representations of R-trees can be used for spatial indexing.
These representations allow for faster access to R-tree nodes, as well as faster writes
and updates in the tree compared to its persistent representation. By storing only a
single reference, such as a unique identifier or a single relationship, to each associated
spatial element of specific types of CityGML objects, like top-level features, the memory
required by the in-memory R-tree is kept at a comparatively low level. This thesis
makes use of such in-memory representations of R-trees, including their variants such
as R*-trees, and leverages their open-source and up-to-date implementations3. During
execution, the R-tree hierarchy is maintained in the main memory. Prior to program
termination, this hierarchy is stored as persistent nodes using the same methods used
to map CityGML objects onto graphs as outlined in Algorithms 1 and 2, since these
methods can be applied to any in-memory objects. In subsequent executions, these
R-tree nodes can be used to reconstruct the entire R-tree hierarchy in main memory
using the reverse mapping methods outlined in Algorithms 4 and 5.

6.3.4. Linking R-tree Nodes with Geometric Content

Nevertheless, both the persistent and in-memory representation of R-trees require a
method to link each element of a leaf node with a content node that provides the
geometric information. Is this research, two-dimensional footprints of top-level features
serve as the source of geometric content for this coupling. Each link is established
through a relationship connecting a geometry node and its corresponding node in the
R-tree. These one-to-one relationships between the R-tree nodes and footprints of top-
level features, as well as between the footprints and the top-level features themselves,
allow for efficient and unique identification of top-level features that intersect with a
given test region. Such queries are frequently employed during the change detection
and interpretation process. This coupling between the R-tree nodes and geometric
nodes, as illustrated in Figure 6.3, is performed during the mapping process.

Most CityGML datasets already contain bounding shapes for the entire city model
and top-level feature, such as buildings. These bounding boxes, being AABBs, can be
directly linked to an R-tree, which also employ AABBs. However, if such bounding
shapes are not available, they can be quickly calculated for each top-level feature
by extracting its boundary surfaces and comparing the coordinates of their vertices.
Bounding shapes of implicit geometries are computed based on their anchor points.

3A commonly used library for R-trees in Java can be found at https://github.com/davidmoten/rtree.

203

https://github.com/davidmoten/rtree

6. Optimization Strategies for Massive CityGML Datasets

L9

L8

L7

L6

L5

L4

L3

L2

L1

D

C

B

A

F

E

R9

R8

R7

R6

R5

R4

R3

R2

R1

B9

B8

B7

B6

B5

B4

B3

B2

B1

City
Model

Coupling relationships

R-tree
node

I
Bound-
ing box

Li
Leaf
element

Ri
Foot-
print Bi

Top-level
feature

Figure 6.3.: An illustration of the coupling mechanism between the footprints (blue)
of all top-level features (orange) of a given city model (white) and the leaf
elements (marked as red Li nodes) of an R-tree. These links (displayed
as green connections) provide the geometric data (on the right-hand side)
necessary for constructing the R-tree (on the left-hand side). The results of
queries performed on this R-tree can thus be traced back to these geometries,
as well as their corresponding top-level features. The root node (E and F)
of the R-tree covers the spatial extent of the entire city model.

204

6. Optimization Strategies for Massive CityGML Datasets

6.4. Transaction Management

In the graph database Neo4j, operations on the schema, indexes, or the graph entities
are performed within transactions. Neo4j’s support for full ACID properties ensures:

1. Atomicity: Failure on any part of a transaction leads to failure of the entire
transaction, causing all changes made by the transaction to be reverted back to a
prior state. This process is known as rollback. Changes can only be committed to
the database if the transaction executes without errors.

2. Consistency: The graph database is always in a consistent state between trans-
actions. Only transactions, whose effects comply with the existing rules and
constraints of the database, are accepted.

3. Isolation: Each graph entity can be modified by at most one transaction at a time.
A modifying transaction obtains a write lock on its elements, preventing other
operations from accessing them at the same time.

4. Durability: Once a transaction is successfully performed, its committed changes
are stored persistently in the graph database. This, combined with the automatic
transaction logging in Neo4j, allows for tracing and recovering database states
between committed transactions.

This section addresses Research Question RQD3 (Transaction Management) and
Research Question RQD4 (Concurrency Control).

6.4.1. Memory Management and Batch Transactions

To facilitate full ACID properties in Neo4j, all uncommitted data and intermediate
states of each transaction are first stored in main memory. They are only written to
the database once the transaction has been successfully executed. As a result, more
complex transactions may require more memory. Hence, large transactions that involve
a significant portion of a large graph database should generally be avoided. Instead,
smaller transactions are preferred. However, given that each transaction must be
committed, an excessive number of small transactions can lead to inefficiency due to
the high cost of write operations to the persistent data storage. Thus, finding a balance
between the size of transactions and the frequency of their commits is crucial.

In this study, when possible, methods and transactions are applied to top-level
features in CityGML. For example, the mapping of each building onto its graph rep-
resentation or the comparison of two buildings can be performed within a transaction.
This approach significantly reduces the number of commits needed in the database,
while simultaneously maintaining a small memory footprint for each transaction.

205

6. Optimization Strategies for Massive CityGML Datasets

Alternatively, a predetermined number n of small and repetitive operations can be
grouped into a single transaction. This means that a commit is only performed for
every n successful operations. Such transactions are known as batch transactions.
For instance, the mapping process outlined in Algorithm 1 can be applied to n = 10
CityGML top-level features, such as buildings, before their graph representations are
written to the database. This further reduces the write frequency to the database at
the expense of increased memory usage. Listing 6.6 shows an example of how such
batch transactions can be implemented in Java. However, batch transactions can only be
applied in cases where the member operations do not share their intermediate results
with each other, as newer versions of Neo4j prohibit any sharing of intermediate graph
data across transactions.� �

1 // Initialize citygml4j reader

2 CityGMLInputFactory in = initCityGMLInputFactory();

3 in.setProperty(CityGMLInputFactory.FEATURE_READ_MODE,

4 FeatureReadMode.SPLIT_PER_COLLECTION_MEMBER);

5 CityGMLReader reader = in.createCityGMLReader(citygmlFile));

6

7 // Read CityGML top-level features in batches

8 final int batchSize = 10;

9 List<CityGML> batch = new ArrayList<>();

10 while (reader.hasNext()) {

11 CityGML chunk = reader.nextChunk().unmarshal();

12 batch.add(chunk);

13 if (batch.size() == batchSize || !reader.hasNext()) {

14 // Perform batch transaction in auto-closable block

15 try (Transaction tx = graphDb.beginTx()) {

16 for (CityGML feature : batch) {

17 // Map each top-level feature chunk onto graphs

18 map(feature);

19 }

20 tx.commit();

21 }

22 // Reset batch

23 batch = new ArrayList<>();

24 }

25 }� �
Listing 6.6: Implementing a batch transaction for Neo4j in Java 7 or newer.

206

6. Optimization Strategies for Massive CityGML Datasets

6.4.2. Concurrency Control

Neo4j’s full support for ACID properties enables the execution of transactions in a multi-
threaded manner, as they are isolated and independent from each other. Parallelization
can enhance the performance of various processes employed in this thesis significantly.
However, transactions in Neo4j are single-threaded and cannot be distributed across
parallel threads. Consequently, the execution of each transaction must be completely
encapsulated within a single thread. As a result, transactions on top-level features or
batch transactions, as explained in Section 6.4.1, are ideally suited for parallelization.

While transactions are contained within individual threads, they can still access and
influence the same elements stored in the graph database. Allowing parallel methods
to modify the same node or relationship at the same time could lead to incorrect results
or unforeseen effects. Thus, concurrency control is crucial to prevent such scenarios.

Locking Mechanism

In Neo4j, locks serve as a mechanism to ensure the isolation of transactions and
consistency of data. A lock is automatically created and assigned to a graph entity
when it is being accessed by a transaction for the first time. Therefore, locks are
associated with the resources but can be granted to the transactions that access them.
Neo4j supports two main types of locks based on their isolation levels: read locks
(read-committed isolation level) and write locks (serializable isolation level) (Neo4j,
2023). These are described as follows:

1. Read locks: A read lock is activated when a transaction attempts to access a
graph entity without changing it. Read locks are less restrictive than write locks,
as read-only operations do not prevent others from reading or modifying the
associated resources. This means that multiple read locks can be granted to
parallel transactions that operate on the same graph node or relationship, offering
a significant speed advantage over write locks. As a result, read locks are sufficient
and employed in the majority of cases.

2. Write locks: A write lock is enabled when a transaction attempts to modify a
graph entity. In contrast to read locks, only one write lock can be assigned to
each graph node or relationship at a time, allowing only one write transaction
to execute and blocking other write transactions. Once the transaction holding
the lock has ended, the lock is released and can be granted to other pending
transactions. This explicit locking mechanism allows for the serial execution
of write transactions for the same graph elements. Thus, write locks are more
restrictive and slower than read locks.

207

6. Optimization Strategies for Massive CityGML Datasets

In Neo4j, the types of locks are determined by both the nature of the database
transactions and the structure of their associated resources, as summarized in Table 6.2.
Database transactions include operations such as retrieval, creation, deletion, and
updating of nodes, relationships, and their properties. Structurally, a node can be
categorized as ‘sparse’ or ‘dense’ (Neo4j, 2023). Neo4j considers a node as dense
if it is linked with more than a certain number of relationships (for example, 50
relationships) at any point during runtime. In contrast, a sparse node never exceeds
that number of relationships throughout the entire execution. This distinction between
dense and sparse nodes is crucial for enhancing efficiency. While sparse nodes can be
exclusively locked by a single transaction without a significant impact on the overall
performance, applying the same to a dense node may prevent a large number of
concurrent transactions from accessing it, causing a decline in the performance. Thus,
write locks on dense nodes are allowed to be shared internally among concurrent
transactions, forming a prevention lock that prevents the dense nodes from being
deleted during the lock’s duration.

Table 6.2.: An overview of database operations, resources, and their associated
locks in Neo4j. Extended and adapted from (Neo4j, 2023).

Operation On Resources Lock Types

Read
Node Read lock on the node

Relationship Read lock on the relationship

Update
Node label or property Write lock on the node

Relationship property Write lock on the relationship

Create

Node No lock

Relationship (sparse nodes1) Write lock on the nodes

Relationship (dense nodes2) Prevention lock on nodes’ deletion

Delete

Node Write lock on the node

Relationship (sparse nodes1)
Write lock on the relationship
Write lock on the nodes

Relationship (dense nodes2)
Write lock on the relationship
Prevention lock on nodes’ deletion

1 This applies to both start and end node of the relationship, if they are sparse.
2 This applies to both start and end node of the relationship, if they are dense.

208

6. Optimization Strategies for Massive CityGML Datasets

Deadlock Handling

The use of write locks and synchronization is crucial to prevent lost updates caused by
concurrent transactions that attempt to modify the same node or relationship. However,
this may lead to cases where two or more transactions mutually obstruct each other’s
access to the resources they require. Such transactions are in a state of deadlock.

A deadlock occurs in a system with single-instance resources if all of the following
conditions, known as the Coffman conditions (Coffman et al., 1971), are met:

1. ‘Mutual Exclusion’ Condition: Transactions are granted exclusive control over
the resources they require, thereby blocking others from accessing them.

2. ‘Wait For’ Condition: Transactions hold resources allocated to them while simul-
taneously requesting for additional resources held by other transactions.

3. ‘No Pre-emption’ Condition: Resources can only be released once their associated
transaction is complete.

4. ‘Circular Wait’ Condition: Two or more transactions form a dependency cycle,
where each transaction is holding resources requested by the next transaction in
the cycle.

Major strategies on handling deadlocks can be divided into two main categories:
reactive and proactive approach. The reactive approach allows deadlocks to occur
but aims to mitigate their effects. The detection technique is a prime example of this
approach. In systems like Neo4j that employ the detection techniques, resources
and transactions are periodically examined for deadlocks. If a deadlock is detected,
its locking transactions are aborted, thereby rolling back all changes made by these
transactions and releasing the resources until the deadlock is resolved. This technique
is used in systems where deadlocks cannot be completely ruled out, such as in the
presence of (directed) cycles in the underlying graph structure of the graph database.
This approach allows for graceful handling of deadlocks during runtime at the cost of
increased computational demands and reduced efficiency.

On the other hand, the proactive approach aims to prevent deadlocks from occurring
in the first place. The deadlock prevention and deadlock avoidance technique are two
prominent examples of this approach. The deadlock prevention technique eliminates
deadlocks by ensuring that at least one of the Coffman conditions cannot occur. On
the other hand, the deadlock avoidance accomplishes this by thoroughly analysing
all resources required by each transaction and determining whether a deadlock could
potentially occur once these resources are distributed. However, this is difficult to
achieve, as it requires full insight into the entire resource consumption profile of each
transaction.

209

6. Optimization Strategies for Massive CityGML Datasets

Therefore, this study employs the deadlock prevention technique to prevent dead-
locks from occurring. However, due to the fully supported ACID properties in Neo4j,
the ‘mutual exclusion’ and ‘no pre-emption’ condition, which are essential for the
presence of a deadlock, are always in effect for write transactions. As a result, the
deadlock prevention technique often relies on invalidating the ‘wait for’ or ‘circular
wait’ condition. In most cases in this study, this is achieved as follows:

1. Read-only Transactions: Transactions that require either no lock or only read
locks on the resources, such as creating a new node or retrieving an existing node
as shown in Table 6.2, can be executed in multi-threaded mode without causing
deadlocks. In these cases, no further actions are required.

2. Isolated Write Transactions: Transactions that require a write or prevention lock
can still be performed concurrently without causing any deadlock, if:

a) Their resources are isolated and do not share any nodes, and

b) Their results are not used as input for other concurrent transactions.

3. Single-threaded Transactions: If neither of the above conditions applies, transac-
tions are executed in single-threaded mode to ensure no deadlock can occur.

Table 6.3 gives an overview of the methods employed in this study and their corres-
ponding concurrency properties.

Table 6.3.: An overview of the methods introduced in this study and their corresponding
concurrency properties. Deadlock prevention techniques are applied.

Method Lock In-/Output Mode

map(source) R W II IO MT
resolveXLinks(graph) R W P II IO MT
toObject(node) R II IO MT

compare(left, right) R W II IO MT
findBest(left, right, ref) R W II IO MT

matchPatterns(changes, contents, rules)1 R W P II IO MT
matchPatterns(changes, contents, rules)2 R W P SI RO ST

R Read lock W Write lock P Prevention lock ST Single-threaded MT Multi-threaded
II Isolated input SI Shared input IO Isolated output RO Reused output
1 When applied to sub-elements up to top-level features
2 When applied to top-level features up to city model

210

6. Optimization Strategies for Massive CityGML Datasets

The use of single-threading and multi-threading across the processes presented in
this thesis is summarized as follows:

1. The method map(source): Large input CityGML documents are divided into
smaller chunks, each of which is mapped independently onto graphs within its
own separate database transaction. This implementation enables the processing
of the input and output of the method map(source) in isolation, allowing for full
multi-threading support.

2. The method resolveXLinks(graph): All graph nodes containing an XLink or an
identifier are retrieved from the database. The list of XLink nodes is then divided
into smaller distinct parts of equal length, with each part processed in a separate
batch transaction. When multiple XLinks reference the same identifier, temporary
locks are introduced to handle concurrent writes from multiple XLink nodes,
as well as the deletion of the identifier node. Therefore, this implementation
provides multi-threading support for the method resolveXLinks(graph).

3. The method toObject(node): Unlike other methods, the reconstruction of CityGML
objects requires only read access to the graph contents. As a result, both the input
and output of the method toObject(node) are processed in isolation, allowing for
full multi-threading support.

4. The methods compare(left, right) and findBest(left, right, ref): Both methods
compare(left, right) and findBest(left, right, ref) primarily require only read access to
the graph contents for matching. Write locks are introduced only when auxiliary
nodes, such as indicators for already matched geometries, are created and attached
to the content nodes in the database. A separate transaction is initiated for each
top-level feature from the old city model, in which the matching process takes
place. Thus, multi-threading support is implemented.

5. The method matchPatterns(changes, contents, rules): When applied to top-
level features or their sub-elements, the method matchPatterns(changes, contents,
rules) operates in multi-threaded mode, with each transaction processing the
changes and contents within a top-level feature. Write locks are employed to
handle concurrent attachment of interpreted changes to their corresponding
content nodes, while prevention locks are introduced to prevent the deletion of
content and memory nodes while interpreting rules. However, when applied to
elements higher in the semantic hierarchy, such as the city model, the method
matchPatterns(changes, contents, rules) transitions to single-threaded mode. This
is due to the significantly smaller number of content and memory nodes at this
stage, indicated by their high level of semantic concentration.

211

7. Application Results

This chapter showcases the orchestrated application of all methods proposed in this
research. The process begins with mapping CityGML documents onto graphs, followed
by comparing these graph representations. It then proceeds to create a rule network for
pattern definitions and match these among the detected changes. The ultimate objective
is to provide a comprehensible and meaningful insights into the changes between the
input original CityGML documents, tailored to specific stakeholders such as those
introduced in Section 2.4.

7.1. Implementation: An Overview

The open-source implementation of this thesis is available online as a repository1 on
GitHub, a popular platform that enables developers to build, publish, and share their
work. At the time of this writing, the project has over 6,000 lines of code spanning over
more than 50 classes and helper files. In addition, it leverages more than 15 third-party
libraries, the majority of which are open-source or free for non-commercial use. Given
the extensive nature of the project, this section only provides a concise overview of the
implementation.

All methods proposed in this study are implemented using Java SE 17 (LTS), lever-
aging the Neo4j Java Core API version 5.11.0. Cypher, Neo4j’s declarative graph query
language, is employed to construct rule networks, which contain rules for identifying
and matching patterns among changes.

To enhance usability and ease deployment, the entire program is available as a
Docker container. Docker is both a tool and a platform for developing, packaging, and
executing applications within lightweight, isolated environments known as containers
(Docker, Inc., 2024). The use of Docker containers offers a major advantage, as they
contain all information necessary for the deployment and execution of an application,
ensuring consistent performance across all host systems that are equipped with a
Docker engine.

While all compiled source codes are packaged within a container, persistent resources
consumed or produced by the application can be stored outside of the container, within

1https://github.com/tum-gis/citymodel-compare

212

https://github.com/tum-gis/citymodel-compare

7. Application Results

the host system. These resources include input CityGML datasets, output Neo4j
database instance, R-tree footprints, execution logs, as well as program configurations
and other settings. Figure 7.1 provides an overview of the directory structure of such
information. To enable the exchange of these data, a bridge is established between the
container and its host system using bind mounts or volumes.

7.1.1. Implementation of the Mapping Process

The mapping process employs the library citygml4j2, an open-source Java API for
CityGML, for reading and parsing CityGML documents, transforming them into in-
memory object-oriented representations. These in-memory objects are then mapped
onto graphs using the methods previously introduced in Chapter 3.

The tool citygml4j supports both CityGML versions 2.0 and 3.0, as well as CityJSON,
a JSON-based encoding for 3D city objects and a subset of the CityGML data model (Le-
doux et al., 2019). Moreover, the mapping process proposed in this thesis is capable of
mapping any in-memory object onto its corresponding graphs. As a result, documents
encoded in CityGML versions 2.0 or 3.0, as well as in CityJSON, can all be mapped
onto graphs using the same mapping techniques provided in this thesis.

As explained in Chapter 6, to deal with CityGML datasets that contain a vast number
of buildings, the citygml4j library enables the division of input CityGML documents
into smaller, more manageable chunks. Each chunk can be configured to contain either
a single CityGML feature, such as a boundary surface, or a single CityGML top-level
feature, such as a building, bridge, and tunnel.

In this research, each chunk is processed within a database transaction. On one hand,
initiating and terminating a transaction are time-consuming operations. On the other
hand, a transaction that holds a large amount of data can prevent other transactions
from accessing shared resources for its entire duration. To balance these aspects, this
study divides large input CityGML documents by each top-level feature, then groups
and processes these objects in batch transactions. This strategy effectively reduces
the number of transactions that need to be started and committed, while maintaining
relatively low memory consumption, thereby increasing the overall efficiency.

While small CityGML documents can be processed individually, larger datasets, such
as those covering an entire region or country, may exist as a collection of multiple
smaller CityGML documents, each storing city objects located within a spatial segment,
referred to as a tile. To allow for the mapping of such tiled datasets, they can first
be merged into a single document, such as using the 3DCityDB Importer/Exporter
(Yao et al., 2018), prior to their mapping onto graphs. However, this approach may
introduce numerous syntactic changes to the original datasets, such as alterations in

2https://github.com/citygml4j/citygml4j

213

https://github.com/citygml4j/citygml4j

7. Application Results

citymodel-compare

config

citygml.conf

neo4j.conf

input

hamburg

2016

tile-1.gml

tile-2.gml

2022

tile-1.gml

tile-2.gml

output

logs

run.log

neo4jDB

rtree-footprints

scripts

functions.js

pattern-rules.cql

src/main/java

Run configurations and database settings

Intput CityGML files or directories

Output directory produced by the application

Additional scripts other than source codes

JavaScript functions used to evaluate rule conditions

Cypher file containing pattern rules

Main Java source codes

Figure 7.1.: An overview of the persistent data used and produced by the implementa-
tion of this thesis. The core application is provided as a Docker container.

214

7. Application Results

the representation of a geometry, as permitted by the encoding standard. Moreover,
some thematic properties, such as creationDate, may also be overwritten during export.

To address these issues, the implementation of the mapping process has been exten-
ded to support the parsing and mapping of all CityGML documents given within a
tiled dataset. Once all member CityGML documents have been mapped, their respect-
ive top-level features are all connected to one common node representing the single
combined city model of all tiles.

7.1.2. Implementation of the Matching Process

For efficient differentiation of graph elements representing city objects in the old and
new CityGML documents, each graph element is assigned with an additional label.
This label, which is stored along with their actual type, indicates their originating
CityGML document. This label can be any identifier, such as partition index values 0
and 1 indicating the old and new CityGML document, respectively.

As explained in the mapping process above, it is crucial to maintain a balance between
the number of required transactions and their memory consumption. To achieve this,
the matching process minimizes the number of transactions by matching CityGML
documents based on their top-level features. It begins by retrieving all top-level feature
nodes from both old and new graphs. For each reference node in the old graph,
the process searches for the best match in the new graph. If a match is found, the
comparison is performed further within their subgraphs. If no match exists, it suggests
that the reference top-level feature may have been deleted. Once all top-level features of
the old graph have been processed, any remaining top-level features of the new graphs
are considered to have been recently inserted.

When matching geometries, especially 2D surfaces in 3D space, a number of geo-
metric and spatial libraries written in Java are employed, such as Apache Commons
Geometry3. This library is part of the open-source initiative Apache Commons and
provides powerful tools for geometric processing. It supports Euclidean space in 1D,
2D, and 3D, as well as spherical space in 1D and 2D. The core concept revolves around
the use of hyperplanes, which are geometric constructs with one dimension less than
that of the space they are located in. For instance, a hyperplane in 2D space is a 1D
line, while a hyperplane in a 3D space is a 2D plane. Hyperplanes divide elements in
its surrounding space into three groups: those ‘above’ it, ‘below’ it, or directly on it.

These hyperplanes form the foundation for Binary Space Partitioning (BSP) trees, a
powerful and flexible means to represent spatial partitioning of regions in space. BSP
trees allow for a variety of geometric and topological operations, such as area and
volume calculation, as well as union and intersection of complex shapes.

3https://commons.apache.org/proper/commons-geometry

215

https://commons.apache.org/proper/commons-geometry

7. Application Results

An alternative to the library Apache Commons Geometry is the JTS Topology Suite
(JTS)4, an open-source Java library for processing vector geometries. However, the
library does not provide full support for 3D geometries. Moreover, for the execution of
simple geometric operations, such as computing the Axis-aligned Minimum Bounding
Boxes (AABBs) or the centroids of top-level features, the basic mathematical operations
and data structures already available in Java, like arrays, are sufficient.

As Neo4j provides limited spatial support for points, this study requires support
for more complex geometries in higher dimensions. For earlier versions of Neo4j, the
community-driven Neo4j Spatial5 was often used to incorporate a spatial index, such
as an R-tree, onto existing graphs and perform spatial operations on them. A major
advantage was that the entire R-tree was stored as persistent nodes and relationships
in the graphs, allowing for the reuse of the index in subsequent deployments. However,
as of this writing, this library has not been updated to support newer versions of Neo4j,
rendering it incompatible with the implementation of this research.

Therefore, for the spatial indexing during the matching process, this study employs
rtree6, an open-source Java library that provides efficient implementation of immutable
R-trees and R*-trees. Listing 7.1 illustrates the instantiation and application of such
an R-tree for performing geometric and topological operations. The construction and
utilization of a spatial index using such an R-tree is described previously in Section 6.3.� �

1 // Create an R-tree with min. and max. number of children per node

2 RTree<String, Geometry> rtree

3 = RTree.minChildren(2).maxChildren(4).create();

4

5 try (Transaction tx = graphDb.beginTx()) {

6 // Add a building node and its 2D footprint to the R-tree

7 String nodeId = buildingNode.getElementId();

8 Rectangle bbox = getBoundingBox(buildingNode);

9 rtree = rtree.add(nodeId, bbox);

10 // Find buildings that match a reference footprint

11 List<Node> buildings = rtree.search(refFootprint)

12 .map(id -> tx.getNodeByElementId(id)).toList();

13 // Commit transaction

14 tx.commit();

15 }� �
Listing 7.1: An example of constructing and applying an R-tree for spatial indexing.

4https://github.com/locationtech/jts
5https://github.com/neo4j-contrib/spatial
6https://github.com/davidmoten/rtree

216

https://github.com/locationtech/jts
https://github.com/neo4j-contrib/spatial
https://github.com/davidmoten/rtree

7. Application Results

7.1.3. Implementation of the Interpretation Process

Like the mapping and matching process, the implementation of the interpretation
process revolves around the top-level features of CityGML documents. Initially, it
assesses changes within each top-level feature. Upon finding a matching pattern, it
aggregates these changes, then generates and attaches the interpretation nodes to the
corresponding content nodes, extending up to the representation node of this top-level
feature. Once all sub-elements have been processed, changes associated with the top-
level changes can be evaluated for global patterns. When these global patterns match,
their respective interpretation nodes are attached to the city model node.

This implies that the rules for identifying change patterns must allow for the propaga-
tion and concentration of knowledge acquired from interpreting changes within sub-
elements up to the encompassing top-level feature. This way, each top-level feature can
serve as an interpretation ‘hub’, containing and providing crucial information of all
changes that have occurred in its sub-elements. Moreover, to enhance efficiency, the
pattern rules should restrict scope calculation to top-level features only.

For instance, to detect whether a building has been shifted by a certain amount
(without changing its size and shape), and if all buildings within the same city model
have also been shifted by the same amount, the rules for identifying these patterns can
be summarized as follows. In this simplified textual description, only the change types
of rule nodes are shown. The arrows ‘→’ represent a rule relationship. For simplicity
purposes, node and relationship properties are omitted, while some redundancies are
introduced for ease of reading, such as the repeated mention of some change types.
A complete and redundancy-free graph representation of such rules can be found in
Section 5.3:

1. Polygon moved by v → Roof, wall, or ground moved by v

2. All roofs of a building have this same change→ All building roofs moved by v

3. All walls of a building have this same change→ All building walls moved by v

4. All grounds of a building have this same change→ All building grounds moved by v

5. All building roofs, walls, and grounds moved by v → (Top-level) Building moved by v

6. All buildings in the city have this same change→ (Global) All buildings moved by v

In this example, the interpretations for the translation of all building roof, wall, or
ground surfaces (green) are aggregated from the sub-elements within a building. These
interpretations are only attached to that building when the corresponding patterns
matched. This propagation and concentration of all relevant interpretations within the

217

7. Application Results

building allows for the retrieval of all necessary information from that building and its
sub-elements, without the need to traverse beyond the building node.

The rules for matching patterns among changes can be provided as Cypher queries
stored in an external script file. This file is then parsed and executed by the inter-
pretation process to generate corresponding rule nodes and relationships in the graph
database Neo4j. An example Java source code to parse and execute such Cypher queries
from a script file is provided in Listing 7.2.� �

1 // Read Cypher script file into a string

2 String query = null;

3 try {

4 query = Files.readString(Path.of("scripts/pattern-rules.cql"));

5 } catch (IOException e) {

6 logger.error("Could not read Cypher script file {}.", e.getMessage());

7 }

8

9 // Execute the Cypher script in a transaction

10 try (Transaction tx = graphDb.beginTx();

11 Result result = tx.execute(query)) {

12 // Process result

13 ...

14 // Check whether all rule nodes have been created

15 int count = tx.findNodes(NodeLabels.RULE).stream().count();

16 logger.info("Created {} rule nodes from Cypher file {}", count, file);

17 // Commit transaction

18 tx.commit();

19 }� �
Listing 7.2: Generating a rule network from a Cypher script file in Java.

When also considering rule node and relationship properties, the complexity of
the interpretation process increases significantly, particularly for the evaluation of join
conditions across all preceding changes required for the creation of the next higher-level
change. In real-world scenarios, these conditions can quickly become complex, such as
in cases where not all criteria need to be satisfied, but only a select few (a combination
of AND, OR, or even XOR operations). Additionally, complex spatial operations, such
as the computation of the overlapping volume of two 3D bounding boxes, may be
required at runtime. In the example above of interpreting a building’s translation,
the join conditions dictate that all building components, i.e., roof, wall, and ground
boundary surfaces, must have been shifted by the same translation vector.

218

7. Application Results

To address this problem, this study employs a JavaScript engine, such as the open-
source Nashorn JavaScript Engine7, for parsing and evaluating rule conditions during
interpretation. With this JavaScript engine, all valid boolean expressions can be evalu-
ated, regardless of their length or complexity. However, these conditions often contain
variables, whose values must be known prior to the evaluation.

To provide the JavaScript engine with all information necessary for the evaluation of
rule conditions, the following steps are performed prior to the evaluation process:

1. Creation of JSON Objects: JSON objects containing required information from
all preceding rule nodes and relationships are created. The names of these JSON
objects are the same as those of their corresponding rule relationships, and the
JSON contents are extracted from the properties propagated from the preceding
rule nodes, as described in Sections 5.3.3 and 5.3.4. This allows for sharing all
variables among converging rules.

2. Loading of Predefined Functions: All predefined JavaScript functions are loaded
into the engine’s context. These functions, provided in a separate script file, are
independent from the source codes and allow for specialized operations, such
as comparison of two 3D vectors while accounting or error tolerances. These
functions are highly customizable and adaptable for specific use cases. Such
helper functions are typically defined and utilized on an ad-hoc basis by the same
users that also define the rule network.

For example, the rule node representing a translated building requires three incoming
rule relationships, corresponding to three preceding rule nodes representing all moved
roof, wall, and ground surfaces. The content of these rule nodes are summarized below.
For simplicity purposes, only properties relevant in this context are mentioned:

1. All building roofs moved: This rule node contains a translation vector v, indicating
that all the roof surfaces of this building have been moved by the same vector.
The rule relationship outgoing from this rule node is named ‘roofs’ and has a
weight value of 1.

2. All building walls moved: This rule node contains a translation vector v, indicat-
ing that all the wall surfaces of this building have been moved by the same vector.
The rule relationship outgoing from this rule node is named ‘walls’ and has a
weight value of 1.

3. All building grounds moved: This rule node contains a translation vector v,
indicating that all the ground surfaces of this building have been moved by

7https://github.com/openjdk/nashorn

219

https://github.com/openjdk/nashorn

7. Application Results

the same vector. The rule relationship outgoing from this rule node is named
‘grounds’ and has a weight value of 1.

4. Building moved: This final rule node contains a join condition as follows:

vectEq(roofs.v, walls.v, 0.001) && vectEq(walls.v, grounds.v, 0.001)

The names ‘roofs’, ‘walls’, and ‘grounds’ refer to the preceding rule relationships.
The function vectEq(. . .) determines whether two given vectors are equal, with an
error tolerance of 0.001 length unit taken into account.

Generally, the vector v of these rule nodes may refer to different translation vectors
for roof, wall, and ground surfaces. However, the pattern of moved buildings requires
them to be equal. Listing 7.3 shows an example of the content of the JSON objects
representing these vectors. These objects are then provided to the JavaScript engine.� �

1 roofs = { v: [1.0, 0.0, 0.0] }

2 walls = { v: [0.999, 0.0, 0.0] }

3 grounds = { v: [1.0, 0.001, 0.0] }� �
Listing 7.3: Example JSON objects required for the evaluation of the join conditions

used for detecting translated buildings.

The function vectEq(. . .), along with any additional helper functions required for the
rule evaluation, can be provided by users in a single separate JavaScript file, such as the
file functions.js depicted in Figure 7.1. An example of the content of this file is presented
in Listing 7.4.� �

1 // File funtions.js: Helper functions in JavaScript

2

3 // Compare two vectors with error tolerance

4 function vectEq(v1, v2, errorTolerance) {

5 if (v1.length !== v2.length) return false;

6 for (let i = 0; i < v1.length; i++) {

7 if (Math.abs(v1[i] - v2[i]) >= errorTolerance) return false;

8 }

9 return true;

10 }

11

12 // Other helper functions

13 ...� �
Listing 7.4: Example helper functions needed for the evaluation of rule conditions.

220

7. Application Results

Upon completion of all processes, the Neo4j server is activated, allowing remote
clients outside of the host system of the Docker container to access its data. This is
achieved by establishing a secure Bolt connection between the client and the Neo4j
server (Neo4j, 2023).

This, in conjunction with the Docker container, allows for convenient deployment, as
well as comprehensive visual and interactive analysis of the graph content and structure.
Figure 7.2 shows the Graphical User Interface (GUI) of Neo4j Browser, an interface
for executing Cypher queries and visualizing results (Neo4j, 2023). Leveraging the
Bolt protocol, the Neo4j Browser acts as a remote client and can thus also be deployed
outside of the Docker container.

Figure 7.2.: The Graphical User Interface (GUI) of Neo4j Browser, an interface for
executing Cypher queries and visualizing results. Using the Bolt protocol,
the Neo4j Browser acts as a client that can establish a connection to a remote
Neo4j server.

221

7. Application Results

7.2. Test Environment and Datasets

The experiments in this chapter are conducted on a dedicated machine equipped with
the following hardware and software specifications:

1. Operating System: Ubuntu 22.04.3 LTS

2. Processor: Intel® Xeon® CPU E5-2667 v3 at 3.20 GHz (16 cores, 32 threads)

3. Main Memory: 1 TB of Random-access Memory (RAM) in total

The methods proposed in this thesis are evaluated using the real-world CityGML
datasets publicly provided by the German state of Hamburg8. These datasets, produced
in the years 2016 and 2022 and presented in LOD2, contain approximately 760 thousand
buildings in total, covering the entire area of Hamburg of circa 750 km2. The spatial
extent of the employed CityGML datasets is shown in Figure 7.3.

Figure 7.3.: The spatial coverage of Hamburg’s CityGML LOD2 datasets. Source: The
German Federal Agency for Cartography and Geodesy, 2022.

In addition, the datasets are provided as a collection of smaller, tiled files. The 2016
dataset consists of 788 tiles, while the 2022 dataset contains 887 tiles. The total size of
the old and new datasets are 7.61 GB and 8.25 GB, respectively.

8https://metaver.de

222

https://metaver.de

7. Application Results

In all these datasets, standardized roof shapes for buildings are automatically gen-
erated from airborne laser scanning, 3D building measurements from Amtliches
Liegenschaftskatasterinformationssystem (ALKIS) (the official real estate cadastre in-
formation system for Germany) (AdV, 2008), or the aerial image-based digital surface
model (LGV Hamburg, 2024). These shapes are then assigned to buildings based
on their alignment with the available roof ridges. On the other hand, the building
footprints are extracted from ALKIS and serve as the basis for the model’s positional
accuracy. The vertical accuracy is approximately ±1 metre.

In this application scenario, the Hamburg CityGML datasets from 2016 and 2022 are
first mapped onto corresponding graph representations, which are then matched to
identify changes. Comprehensive interpretations are derived based on these found
changes. The results of each of these three processes are presented in the following
sections.

7.3. Results of the Mapping Process

Section 7.3 provides a summary of the distribution of nodes per label created in the
graph database after the entire Hamburg CityGML datasets from 2016 and 2022 have
been mapped onto graphs.

Table 7.1.: An overview of the node distribution per label in the graph database after the
entire Hamburg CityGML datasets have been mapped onto graphs. CityGML
and geometry class names are displayed in orange and green, respectively.

Node Label Quantity Percentage

ArrayList 114,811,007 21.582 %
DirectPosition 114,811,007 21.582 %
PosOrPointPropertyOrPointRep 55,605,096 10.453 %
ChildList 39,704,538 7.464 %
PosOrPointPropertyOrPointRepOrCoord 33,722,237 6.339 %
SurfaceProperty 23,402,240 4.399 %
StringAttribute 15,902,775 2.989 %
BoundingShape 12,741,837 2.395 %
Envelope 12,741,837 2.395 %
Exterior 10,977,064 2.063 %
LinearRing 10,977,064 2.063 %
Polygon 10,977,064 2.063 %
BoundarySurfaceProperty 10,974,366 2.063 %

223

7. Application Results

MultiSurface 10,974,366 2.063 %
MultiSurfaceProperty 10,974,366 2.063 %
WallSurface 7,445,964 1.400 %
CurveProperty 6,628,977 1.246 %
LineString 6,628,977 1.246 %
Code 2,212,186 0.416 %
RoofSurface 2,078,017 0.391 %
CompositeSurface 1,450,810 0.273 %
Length 1,450,810 0.273 %
Solid 1,450,810 0.273 %
SolidProperty 1,450,810 0.273 %
MultiCurve 1,450,689 0.273 %
MultiCurveProperty 1,450,689 0.273 %
GroundSurface 1,450,385 0.273 %
BuildingPart 1,007,367 0.189 %
BuildingPartProperty 1,007,367 0.189 %
Building 758,429 0.143 %
CityObjectMember 758,429 0.143 %
ExternalObject 758,429 0.143 %
ExternalReference 758,429 0.143 %
Address 173,027 0.033 %
AddressDetails 173,027 0.033 %
AddressProperty 173,027 0.033 %
Country 173,027 0.033 %
CountryName 173,027 0.033 %
Locality 173,027 0.033 %
LocalityName 173,027 0.033 %
PostalCode 173,027 0.033 %
PostalCodeNumber 173,027 0.033 %
Thoroughfare 173,027 0.033 %
ThoroughfareName 173,027 0.033 %
ThoroughfareNumber 173,027 0.033 %
ThoroughfareNumberOrRange 173,027 0.033 %
XalAddressProperty 173,027 0.033 %
ThoroughfareNumberSuffix 56,727 0.011 %
StringOrRef 1,675 0.000 %
CityModel 2 0.000 %

Total number of nodes 531,975,220 100.000 %

224

7. Application Results

The graph representations of the old and new Hamburg datasets contain approxim-
ately 532 million nodes in total. This number does not include auxiliary nodes utilized
during the mapping process or in subsequent processes, such as nodes representing
the R-tree used for spatial indexing, which accounts for another 80 million nodes.

Among these nodes, 758,429 are labelled as buildings and additional 1,007,367 as
building parts. These objects contain 10,974,366 boundary surfaces in total, divided
into 2,078,017 roof surfaces, 7,445,964 wall surfaces, and 1,450,385 ground surfaces.

The graph database for the Hamburg datasets occupies approximately 97 GB of
disk space, excluding transaction logs. This space is allocated for the entire graph
representations of the CityGML datasets, all graph elements resulting from the change
and interpretation process, as well as database indexes, which allow for faster retrieval
of thematic and spatial information among the graphs at the cost of additional storage
space, as explained in Chapter 6.

7.4. Results of the Matching Process

An overview of more than 9 million edit nodes and base changes detected between
the graph representations of the entire Hamburg CityGML datasets can be found in
Table 7.2. More than half of these changes (56.07 %) are edit operations, including
inserted nodes, deleted nodes, inserted properties, deleted properties, and updated
properties, as introduced in Section 4.6. The remaining changes are geometric changes,
such as translations and size changes of 2D surfaces. In addition, the matching process
is also capable of detecting more complex geometric changes, such as a building being
divided into smaller, adjacent buildings with an equivalent footprint. All interpretations
in the subsequent processes are produced based on these edit operations and geometric
changes.

7.4.1. Detected Edit Nodes

Figure 7.4 provides a summary of the distribution of the detected edit nodes among
various city object types and attributes. The edit operations, represented by these edit
nodes, include inserted nodes, deleted nodes, inserted properties, deleted properties,
and updated properties. The CityGML objects affected by these changes are detailed as
follows:

1. Inserted Nodes: The majority (79 %) of node insertions are detected among
buildings and building parts, followed by thematic contents (11 %), such as object
names, roof types, addresses, and measured heights, and geometric objects (10 %),
which include terrain intersections, boundary surfaces, and solids.

225

7. Application Results

Table 7.2.: An overview of the edit nodes and base
changes detected in the Hamburg datasets.

Detected Change Quantity Percentage

Inserted Node 39,507 0.428 %
Deleted Node 1,780,953 19.279 %
Inserted Property 711 0.008 %
Deleted Property 768 0.008 %
Updated Property 3,357,679 36.347 %

Translation 1,143,966 12.383 %
Size Change 2,911,548 31.518 %

Top-level Split 2,692 0.029 %

Total number of changes 9,237,824 100.000 %

2. Deleted Nodes: Geometric objects like curves, surfaces, and solids account for
98 % of 1.8 million detected node removals. The remaining 2 % is found not
only in thematic elements, such as generic attributes9, roof types, addresses, and
measured heights, but also in complex features like buildings and building parts.

3. Inserted Properties: All identified property insertions refer to a single attribute:
the number of storeys above ground for buildings (99 %) and building parts (1 %).
The newly added values span from 1 to 15 storeys, with the majority (72 %) of
inserted numbers of storeys being 1 or 2.

4. Deleted Properties: Similarly, all property removals exclusively relate to the
number of storeys above ground for buildings (99 %) and building parts (1 %).
The deleted values range from 1 to 16 storeys, with the majority (82 %) of the
removed number of storeys being 1 or 2.

5. Updated Properties: In contrast to the similar composition of inserted and deleted
properties, the distribution of more than 3 million detected updated properties is
more diverse. Generic attributes, identifiers, and creationDate values each account
for approximately a quarter of all updated properties, while updated measured
heights make up another fifth. The remaining 6 % of all updated properties
include roof type values and addresses, as well as the number of storeys above
ground for both buildings and building parts.

9Node insertions and removals refer to how city objects are represented. For example, while generic
attributes are properties in the CityGML data model, they are stored as nodes in this thesis.

226

7. Application Results

Buildings and Building Parts

Thematic contents

Geometric objects

79 % 11 % 10 %

(a) Distribution of inserted nodes

Geometric objects

Others

98 % 2 %

(b) Distribution of deleted nodes

Buildings

Building Parts

99 % 1 %

(c) Distribution of inserted properties

Buildings

Building Parts

99 % 1 %

(d) Distribution of deleted properties

Generic Attributes

GMLID Creation Dates

Measured Heights

Others

26 % 24 % 24 % 20 % 6 %

(e) Distribution of updated properties

Figure 7.4.: The distribution of the detected edit nodes in the Hamburg datasets.

227

7. Application Results

Figure 7.5 visualizes the spatial distribution of top-level insertions and removals over
the entire area of Hamburg, where the 2D bounding boxes of inserted buildings are
displayed in green, while those of deleted buildings are shown in red. The figure shows
significantly more green bounding boxes than red ones, as there are approximately 30
thousand inserted buildings compared to 23 thousand deleted buildings. Leveraging
such spatial visualization, ‘hotspots’ with a strong increase in new inserted buildings,
or vice versa, can be visually identified.

Figure 7.6 illustrates one such hotspot with a significant increase in new buildings.
The deletion and insertion of buildings may indicate an improvement in the building
locations or actual demolition of old buildings and construction of newer ones.

Figure 7.7 shows the satellite images from 2015 and 2021 of the same area of Hamburg
given in Figure 7.6. The buildings displayed in the 2015 image align with the old
buildings (red) deleted from the datasets, while the buildings depicted in the 2021
images align with the new buildings (green) inserted to the datasets. Therefore, this
shows a rapid urban development of the area, where all old buildings have been
demolished and replaced with newer, more modern ones.

All updated generic attributes are observed to be string attributes. In the Hamburg
datasets, these generic string attributes provide additional thematic information for
buildings, building parts, and roof surfaces, as summarized in Table 7.3. Unlike others,
the attributes for source ground elevation and source roof height (DatenquelleBodenhoehe
and DatenquelleDachhoehe, respectively) can belong to both buildings and building parts.
The internal composition of these updated attributes and the coverage of their source
types in the datasets are summarized in Table 7.4.

Table 7.3.: The distribution of updated generic string attributes by name in
the Hamburg CityGML datasets.

Attribute Name English Translation Quantity Percentage

Gemeindeschluessel Municipality key 347,574 39.667 %
DatenquelleBodenhoehe Source ground elevation 318,179 36.312 %
DatenquelleDachhoehe Source roof height 167,800 19.150 %
Flaechengroesse Surface area 39,033 4.455 %
Flaechenneigung Surface inclination 3,619 0.413 %
Flaechenrichtung Surface orientation 23 0.003 %

Total number of changes 876,228 100.000 %

228

7. Application Results

Figure 7.5.: An illustration of inserted (green) and deleted (red) buildings detected in
the Hamburg datasets between 2016 and 2022. Visualized with Folium,
Leaflet, and OpenStreetMap (OSM).

229

7. Application Results

Figure 7.6.: An example of inserted (green) and deleted (red) buildings of an excerpt
area from the Hamburg datasets. The deletion and insertion of buildings
may indicate an improvement in the building locations or actual demolition
of old buildings and construction of newer ones. Visualized with Folium,
Leaflet, and OpenStreetMap (OSM).

230

7. Application Results

(a) From 2015

(b) From 2021

Figure 7.7.: Satellite images between 2015 and 2021 of the area given in Figure 7.6.
Visualized with historical data from 2015 and 2021 in Google Earth Pro.

231

7. Application Results

Table 7.4.: Internal composition and coverage of updated generic string attributes
by source type in the Hamburg CityGML datasets. The middle column
shows the percentage of each source type to which the updated generic
string attributes belong, while the right column provides the coverage of
those source types within the entire datasets.

Attribute Name Internal Composition Dataset Coverage

Gemeindeschluessel B 100.000 % B 99.598 %
DatenquelleBodenhoehe B 27.048 % P 72.952 % B 24.660 % P 47.630 %
DatenquelleDachhoehe B 27.296 % P 72.703 % B 13.125 % P 25.033 %

Flaechengroesse R 100.000 % R 8.082 %
Flaechenneigung R 100.000 % R 0.749 %
Flaechenrichtung R 100.000 % R 0.005 %

B Buildings P Building Parts R Roof Surfaces

7.4.2. Detected Geometric Changes

The matching process detected more than 1 million translations and approximately 3
million size changes in the geometric surfaces of the Hamburg datasets. Each translation
and size change contains the information about the translation offsets or change in
sizes across all three dimensions. For instance, a translation vector of (1, 1, 0) indicates
a shift of 1 m along each horizontal dimension x and y. On the other hand, a resize
vector of (0, 0, 1) represents a vertical change in size, where the surface’s height has
been increased upwards by 1 m.

An overview of all detected surface translations can be found in Figure 7.8. The
top-left figure visualizes the distribution of these translations by their total lengths,
which are calculated as the Euclidean lengths of their respective translation vectors. As
visualized, the majority of these translations fall between 0 m and 0.5 m, with decreasing
number of occurrences as the translation length increases. However, even at the farthest
value interval of between 2.5 m and 3 m empirically selected for the Hamburg datasets,
approximately 10 thousand surfaces are still affected by this change.

The bottom-right figure displays a similar distribution of these surface translations
by their vertical offsets, with positive and negative values indicating an increase
and a decrease in height, respectively. As explained in Section 4.5.4, the current
implementation allows for the matching of two surfaces that are located within a
maximum distance of 3 m. Beyond this threshold, they are considered as unrelated.
This is to reduce the number of false matches among unrelated, parallel surfaces.

232

7. Application Results

0 1 2 3
Length (m)

0

2 k

4 k

6 k

8 k

10 k

N
um

be
r

of
Su

rf
ac

es

Surface Translations

E

N

W

S
Angle (degree) and Length (m)

0.00.51.01.52.02.53.0

Horizontal Surface Translations

E

N

W

S
Angle (degree) and Frequency

200
400

600
800

Horizontal Surface Translations

-2.0 0.0 2.0
Projected Offset (m)

0

1 k

2 k

3 k

4 k

5 k

N
um

be
r

of
Su

rf
ac

es

Vertical Surface Translations

Figure 7.8.: An overview of more than 1 million surface translations detected in the
Hamburg datasets. Their distributions are visualized by total lengths
(top), horizontal orientations and projected lengths on xy-plane (top-right),
horizontal orientations and frequency (bottom-left), and vertical offsets
(bottom-right). The current implementation allows for matching two sur-
faces with a maximum distance of 3 m.

233

7. Application Results

A notable observation emerges from the top-right and bottom-left figure of Figure 7.8.
The bottom-left figure shows that the majority of horizontal translations occur in
the East-West directions. More specifically, the top-right figure shows the consistent
movement of more than 13 thousand surfaces approximately 10◦ clockwise from both
the East and West directions, indicated by the alignment of the points in the shape of a
straight line plotted in the figure. This could imply an adjustment or improvement in
the positions of buildings and building parts in the city model relative to the East-West
axis.

On the other hand, Figure 7.9 provides an overview of approximately 3 million
surface size changes detected in the Hamburg datasets. While most of size changes
along the x and y-dimension occur simultaneously, as shown in the top-left figure,
the majority of vertical size changes occur independently of changes in the other
dimensions, as shown in the top-right and bottom-left figure. These observations
coincide with the facts that (1) most size changes in ground and roof surfaces take
place in the xy-plane, thus resulting in changes in both the x and y-dimension, and (2)
wall surfaces, which account for the majority of surfaces in the city model, are typically
resized vertically as they are often directed perpendicularly to the ground. A size
change in a wall surface that also involves changes in the x and y-dimension could
suggest an additional horizontal enlargement or downsizing. The Venn diagram at the
bottom-right shows 470 such size changes with non-zero values in all dimensions.

Since (1) geometric changes are computed based on the axis-aligned bounding boxes
of surfaces, and (2) the increased complexity when also including rotations on top of
translations and size changes, which could require the calculation of transformation
matrices, the implementation of this study omits rotations between surfaces.

In addition to the translations and size changes mentioned above, the matching
process is also capable of detecting split changes in buildings, which result from a
division of a larger building into smaller, adjacent buildings, with total bounding boxes
corresponding to that of the original one. Figure 7.10 gives an overview of such split
changes identified in the Hamburg datasets. Figures 7.11 and 7.12 then provide some
example use cases of these split changes within the datasets.

As logical components of buildings, building parts can also be detached from their
original buildings to become separate buildings. This effect is similar to that of the
observed changes in split buildings. Thus, to investigate whether the new, smaller
buildings in a split change were originally building parts, all old buildings attached
with a split change are analysed. As a result, nearly half of all detected split buildings
do not have any building parts. Among the remaining split buildings, not all their
building parts spatially coincide with the new, smaller buildings, as illustrated in
Figures 7.13 and 7.14. Therefore, the detected split changes in building were not solely
due to the logical division of building parts from their original buildings.

234

7. Application Results

0 20 40
x-resize (m)

0

20

40

60

80

y-
re

si
ze

(m
)

Size Changes (xy-components)

0 20 40
x-resize (m)

−100

−75

−50

−25

0

25

50

75

z-
re

si
ze

(m
)

Size Changes (xz-components)

0 25 50 75
y-resize (m)

−100

−75

−50

−25

0

25

50

75

z-
re

si
ze

(m
)

Size Changes (yz-components)

3,001

3,473

75,920

2,823,987

1,184
785470

Non-zero x Non-zero y

Non-zero zx, z
x, y, z y, z

Intersection implies multiple
non-zero resize components

Non-zero xyz-Combinations

Figure 7.9.: An overview of approximately 3 million surface size changes detected in the
Hamburg datasets. They are visualized by their components xy (top-left),
xz (top-right), and yz (bottom-left). All combinations of these three resize
components are illustrated in a Venn diagram (bottom-right).

235

7. Application Results

Figure 7.10.: An illustration of split changes among buildings (red) in the Hamburg
datasets between 2016 and 2022. A split change is observed when an
existing building is replaced by smaller, adjacent buildings with equivalent
footprint. Visualized with Folium, Leaflet, and OpenStreetMap (OSM).

236

7. Application Results

Figure 7.11.: An example of building split changes of an excerpt area (Blakshörn) from
the Hamburg datasets. In this illustration, each old building (red) has
been replaced by two smaller, adjacent buildings (green) with equivalent
footprint. Visualized with Folium, Leaflet, and OpenStreetMap (OSM).

237

7. Application Results

Figure 7.12.: An example of building split changes of an excerpt area (Laubsängerweg)
from the Hamburg datasets. In this use case, the split changes (green)
among buildings (red) align with the creation of new addresses, such as
the new house numbers 17a-b, 19a-b, 21a-b, 21c-f, 23a-b, 23c-f, as well as
25a-d. Visualized with Folium, Leaflet, and OpenStreetMap (OSM).

238

7. Application Results

Figure 7.13.: An example of building split changes based on the area displayed in
Figure 7.11, additionally visualized with building parts (yellow) from the
old datasets (red). As shown, not all building parts spatially coincide
with the new split buildings (green). A more detailed comparison can
be achieved by examining their precise 3D geometries (not depicted).
Visualized with Folium, Leaflet, and OpenStreetMap (OSM).

239

7. Application Results

(a) Wireframe view in 2016 (b) Wireframe view in 2022

(c) Visualization in 2016 (d) Visualization in 2022

Figure 7.14.: Visualization of 3D geometries of a split building and its building parts,
as shown in Figure 7.13. The building is located at the intersection of
Blakshörn and St. Jürgernstraße, with all views depicted from the north-
west perspective. In the 2016 dataset (top left and bottom left), this single
building is composed of three building parts. However, in the 2022 dataset
(top right and bottom right), this building is divided into two smaller
buildings, each consisting of two building parts. This example illustrates
that not all building parts spatially coincide with the new split buildings.
Visualized with the KITModelViewer (KIT IAI, 2024).

240

7. Application Results

Figures 7.15 and 7.16 illustrate an area in Hamburg where buildings have been split
into between two and four new, smaller buildings. All these split changes of top-level
features are classified as the changes ObjectSplit, as discussed in Section 4.5.6 and
modelled in Section 5.2. Without these, more edit nodes would have been generated:
one top-level change DeletedNode for the old building, and at least two top-level changes
InsertedNode for the new buildings.

Therefore, based on the detected insertions and deletions of building objects, the
following interpretations can be derived:

1. Building Replacement: If a building from the old datasets is deleted and a
corresponding building from the new datasets is inserted, this typically indicates
a building replacement operation. This can be further categorized into:

a) Improvement in Buildings’ Locations: A replaced building object may
suggest an improvement in its spatial extent during the given time period,
possibly due to more accurate measurements.

b) Building Division: An older, larger building may be replaced by several
smaller buildings with equivalent combined footprints. This may indicate a
logical or physical division of the old buildings in the real world.

2. Building Construction and Demolition: These insertions and deletions may be
the actual result of newly constructed or demolished buildings in the city.

Like building division, a similar approach can be applied to detect merge changes,
where two or more buildings from the older datasets are merged into a new, larger one.
The current implementation only includes the handling of building split changes.

7.5. Results of the Interpretation Process

To provide a deeper understanding of the thematic and geometric changes detected
in the Hamburg datasets between 2016 and 2022, rules for detecting change patterns
among them must first be defined. The interpreter then applies these rules to all
changes and contents stored in the graph database. Both the intermediate and final
results of the interpretation process are stored in the same graph database. They are
either represented as new interpretation nodes if the patterns have been successfully
identified, or as memory nodes for patterns that have not yet been fully matched. These
memory nodes serve as a working memory created to keep track of the component
changes collected so far that are required for the creation of the next interpreted
changes, as dictated by the given change pattern rules. Lastly, these matched change
patterns and created interpretation nodes are then utilized and analysed, so that only
the most relevant changes are provided to specific groups of stakeholders.

241

7. Application Results

Figure 7.15.: An example of building split changes of an excerpt area (Kieler Straße)
from the Hamburg datasets. Despite the total area of the green bounding
boxes not equating to that of the original red ones, as these bounding
boxes are axis-aligned, such cases can still be detected by the matching
process. Visualized with Folium, Leaflet, and OpenStreetMap (OSM).

242

7.
A

pplication
R

esults

Figure 7.16.: A 3D view of building split changes of an excerpt area (Kieler Straße) from the Hamburg datasets
based on Figure 7.15. The buildings shown have been split into between two and four smaller adjacent
buildings (yellow texts and cyan wireframes). Source: Landesbetrieb Geoinformation und Vermessung
Hamburg, 2024.

243

7. Application Results

7.5.1. Employed Change Pattern Rules

The selection of change patterns and the corresponding rules to describe them may vary
based on the specific use cases and analysis requirements. Some of the most prominent
rules for detecting change patterns, empirically selected and employed in this thesis,
are summarized as follows:

1. Pattern id: If an updated property has been detected for a building or building
part and the property name is id, it indicates that the identifier of that building
or building part has been updated. If this change is observed in all non-deleted
buildings and building parts, it is classified as a global change.

→ A change in the identifiers of all top-level features within the city model or a
region may suggest a fundamental change in the software or the data operators.

2. Pattern creationDate: If an updated property has been detected for a building
or building part and the property name is creationDate, it indicates that the
modification date of that building or building part has been updated. If the
property creationDate has been updated for all non-deleted buildings and building
parts, it is classified as a global change.

→ A change in the modification date of a building or building part may poten-
tially indicate further changes within its sub-elements. If this type of change is
observed in all objects within a specific region, it could imply that the correspond-
ing segment of the city model has been extracted from the city model, modified,
and then reintegrated back into the city model, independent of the rest of the
datasets.

3. Pattern Coded Values: The CityGML data model allows for the storage of
thematic information, such as the class, function, and usage of various city objects.
For buildings, it can also store additional information about their roof types.
These values are coded as numbers or strings, each assigned with a distinct
meaning according to predefined code lists (Gröger et al., 2012). If an updated
property has been detected in the properties class, function, usage, or roofType, it
indicates a change in the assigned class, function, or usage of a city object, as well
as the roof type of a building, respectively.

→ Changes in these properties represent significant thematic changes, even
though they may not necessarily coincide with geometric changes, as they dictate
the important information of class, function, usage, and roof types of city objects
that cannot be derived elsewhere. For example, a change in a building’s function
from 1000 (residential) to 1150 (commercial) indicates either a repurposing or a
correction of a previously incorrect classification of that building. In addition,

244

7. Application Results

a change in a building’s roof type from and to 1000 (flat roof) may indicate an
increase or decrease in the building’s measured height. If such changes occur
consistently for all city objects within a region, it may suggest a policy of repur-
posing objects in that area. Given the hundreds of distinct values available in the
predefined code lists, a comprehensive analysis of changes for each possible pair
of code values would require a massive matrix with quadratic space. Therefore,
only some relevant code values for city objects are considered in this experiment.

4. Other Thematic Patterns: When a change in the form of an insertion or deletion is
detected for a thematic element of a building, such as its name, address, number
of storeys, and measured height, this change can be directly interpreted as an
enrichment or a loss of thematic information of that building.

→ In contrast to insertions and deletions, updates of a thematic element are
generally more difficult to interpret. This is due to the additional information
available about both the older or newer thematic values of the building, compared
to only one temporal state in insertions and deletions. On the other hand, the
interpretation of any changes to generic attributes requires prior knowledge about
the meaning of their names and values.

5. Pattern Translations: If a translation has been detected for a surface, it implies a
movement in a boundary roof, wall, or ground surface of a building or building
part, depending on the surface type. If such a shift with a consistent translation
vector is observed across all roof, wall, or ground surfaces of a building or
building part, it indicates that all roof, wall, or ground surfaces of that building
or building part have been translated by the same vector, respectively. If all
three types of boundary surfaces have been marked with the same translation,
it suggests that the entire building or building part has been relocated by that
vector. If all buildings and building parts within a specific region of a city model
have been moved by an identical vector, it may imply a systematic shift of that
entire region.

→ A translation is classified as vertical if its corresponding vector solely has a
non-zero z-component. Conversely, a translation is classified as horizontal if its
corresponding vector does not have a z-component (or it is zero). In addition,
translations in surfaces often also involve size changes of other adjacent surfaces.
For example, a raised roof is supported by the vertical enlargement of all its
corresponding wall surfaces.

6. Pattern Size Changes: If a size change has been detected for a surface, it indicates
a resizing of a boundary roof, wall, or ground surface of a building or building

245

7. Application Results

part, depending on the surface type. If such a resizing with consistent margins (in
3D) is observed across all roof, wall, or ground boundary surfaces of a building or
building part, it indicates that all roof, wall, or ground boundary surfaces of that
building or building part have been resized by the same margins, respectively.

→ A size change is classified as vertical if its corresponding margins solely have
a non-zero z-component. Conversely, a size change is classified as horizontal if its
corresponding margins do not have a z-component (or it is zero). Geometrically, it
is impossible for all boundary surfaces of a building or building part to be resized
by identical margins, as these surfaces have different orientations but collectively
form a closed three-dimensional shape. Similar to translations, size changes in
surfaces often also involve size changes and translations of other adjacent surfaces.
For example, a horizontally enlarged roof and ground surface are supported by
horizontally translated or horizontally enlarged wall surfaces.

7. Pattern Raised Roofs: The roof surfaces of a building or building part are
considered elevated vertically (without changing their shapes and sizes) by ∆h >

0, if (1) all roof surfaces have been translated upwards by ∆h, (2) all wall surfaces
have been enlarged vertically by ∆h, and (3) the value measuredHeight of that
building or building part has also been increased by ∆h.

→ Similar pattern rules can be defined for lowered roofs with ∆h < 0. In real-
world scenarios, as will be shown in the Hamburg datasets, it is possible that the
ground surfaces may also have been moved vertically, in addition to the vertical
shift of the roofs. In such cases, the new wall heights and the updated value
measuredHeight should account for both the vertical translations. In most cases,
except for actual renovations or events like earthquakes that cause buildings to
rise or sink, minor shifts in roof and ground surfaces are most likely due to
improved surface measurements or enhanced terrain models.

For each of the aforementioned rules, a scope is calculated to determine whether the
associated patterns apply locally, within specific regions, or globally. These rules can
be adjusted and extended to accommodate specific use cases.

Listing 7.5 gives an example Cypher query for defining and matching change pat-
terns on the building property creationDate. All rule nodes are labelled as RULE, while
their relationships have the unique type AGGREGATED_TO, indicating the aggreg-
ative nature of these patterns. Within a Cypher query, rule nodes can be created
once and then referenced by their unique names, such as ‘updated_property’ and ‘up-
dated_building_creation_date’. This allows them to be reused in subsequent pattern rules,
ensuring that only one rule node per type exists in the rule network. The corresponding
rule network created from this Cypher query can be found in Figure 7.17.

246

7. Application Results

� �
1 // Pattern in creationDate of buildings

2 MERGE (updated_property:RULE { // unique node names within the query

3 change_type: 'UpdatedProperty' // unique change type within the database

4 })-[:AGGREGATED_TO {

5 next_content_type: 'Building', // the label of the next content node

6 search_length: 0, // the updated property is inside the content node

7 conditions: 'NAME === "creationDate"', // JavaScript syntax

8 propagate: 'RIGHT_VALUE', // propagate only updated value

9 weight: 1

10 }]->(updated_building_creation_date:RULE {

11 change_type: 'UpdatedBuildingCreationDate',

12 calc_scope: 'RIGHT_VALUE' // calculate scope over this property

13 })-[:AGGREGATED_TO {

14 next_content_type: 'CityModel', // attach scope nodes to CityModel node

15 scope: 'global',

16 propagate: 'RIGHT_VALUE'

17 }]->(global_updated_building_creation_dates:RULE {

18 change_type: 'GlobalUpdatedBuildingCreationDates'

19 })� �
Listing 7.5: An example Cypher query for defining pattern rules on the property

creationDate of buildings. These notations are explained in Section 5.3.5. A
graph visualization is shown in Figure 7.17.

Figure 7.18 presents a visualization in Neo4j Browser of the entire rule network
employed in this research. The highest-level rule nodes (sink nodes) represent the
patterns of elevated roofs or moved buildings and building parts. Conversely, the
lowest-level rule nodes (source nodes) symbolize the base changes, such as the surface
size changes and translations, as well as updated node properties. Based on these three
lowest-level rule nodes, all pattern rules in this use case can be established. The full
description of this rule network in Cypher is available in Listing B.1.

7.5.2. Unchanged Buildings

To better evaluate the results of the interpretation process for the patterns provided
above, one of the first steps involves investigating the buildings that have remained
unchanged between 2016 and 2022 in the Hamburg datasets. A building is considered
unchanged if no change node is attached to any of its sub-elements. Listing 7.6 provides
a Cypher query used to search for such buildings within the old CityGML datasets.

247

7. Application Results

Updated
Property

Updated
Building
Creation

Date

Global
Updated
Building
Creation

Dates

next_content_type ’Building’
search_length 0
conditions ’NAME === "creationDate"’
propagate ’RIGHT_VALUE’
weight 1

next_content_type ’CityModel’
scope ’global’
propagate ’RIGHT_VALUE’

calc_scope ’RIGHT_VALUE’

Figure 7.17.: A visualization of the pattern rules given in Listing 7.5 used to detect
changes on the property creationDate of buildings. The relationship prop-
erties are shown in green, while the node properties are shown in blue.
For clarity, the node property values changeType are omitted.

� �
1 // Search for unchanged buildings

2 MATCH (b:Building:LeftDataset) // from old datasets

3 WHERE NOT exists((b)<-[*]-(:Change)) // non-deleted, non-split

4 AND NOT exists((b)-[*]->()<-[]-(:Change)) // without any changes

5 RETURN b // '*' represents paths of arbitrary length from/to b� �
Listing 7.6: A Cypher query for detecting unchanged buildings.

By applying this query, only 1,402 or approximately 0.4 % of all 348,976 non-deleted,
non-split buildings from the old datasets were detected to be unchanged. Figure 7.19
illustrates the spatial distribution of these unchanged buildings in Hamburg.

Among the three stakeholders introduced in Section 2.4, unchanged buildings could
reveal information useful to the city mayor, as they might represent older structures
(based on the available construction year) that could soon require repairs or renovations,
or they could represent historical buildings that must be preserved. Additionally,
unchanged buildings may also be of interest to data brokers, as they provide insights
into how city objects are stored and represented within the city model.

248

7. Application Results

Figure 7.18.: A visualization of the entire rule network employed to identify change
patterns in the Hamburg datasets. The yellow rule nodes represent the
patterns associated with raised roofs in a building (left) or a building part
(right). The purple rule nodes represent the patterns for a translated build-
ing (left) or building part (right). The cyan rule nodes denote the source
and lowest-level rule nodes for size changes (left), updated properties
(middle), and translations (right), upon which all rules are established.
Visualized with Neo4j Browser. The full implementation of this rule net-
work in Cypher is available in Listing B.1.

249

7. Application Results

Figure 7.19.: The spatial distribution of unchanged buildings (red) in Hamburg. The
majority of these buildings, both in terms of quantity and area, are located
in the upper half of Hamburg, including the boroughs Altona, Wandsbek,
and Hamburg-Mitte. Visualized with Folium, Leaflet, and OpenStreetMap
(OSM).

250

7. Application Results

For instance, between 2016 and 2022, no thematic or geometric changes were detected
for the Congress Center Hamburg, as shown in Figure 7.20. Notably, the building
underwent extensive renovations from 2017 until April of 2022 (CCH, 2022). However,
the new Hamburg datasets were created in February 2022, prior to the reopening of
the new Congress Center. As a result, despite the ongoing renovations, the building
remained unchanged in the city model, since the changes could not be recorded during
the time period. Therefore, in this context, an unchanged status may also indicate that
the building is already undergoing renovations, which may not yet be complete or
registered in the 3D city model.

The unchanged buildings identified in this case exhibit no changes, not even in their
identifiers. Thus, the existence of such 1,402 unchanged buildings implies that no
top-level change patterns can be detected on a global scale. Despite this, the analysis of
the spatial and thematic clustering of these change patterns may still provide valuable
insights.

7.5.3. Updated Identifiers of City Objects

Table 7.5 provides an overview of all buildings and building parts in the Hamburg
datasets that have been detected with and without updated identifiers.

Table 7.5.: An overview of buildings and building parts detected with and
without changed identifiers in the Hamburg datasets.

Buildings Building Parts

Total number (non-deleted, non-split) 348,976 100.0 % 487,340 100.0 %
Detected with changed identifiers 347,574 99.6 % 459,218 94.2 %
Without changed identifiers 1,402 0.4 % 28,122 5.8 %

The vast majority of buildings (99.6 %) and building parts (94.2 %) have changed
identifiers, with both old and new values starting with the prefix DEHH. Conversely,
only 1,402 buildings and 28,122 building parts have retained their original identifiers.

Notably, this number 1,402 of buildings without updated identifiers aligns with the
number of unchanged buildings (those without any changes attached to themselves or
their sub-elements). This implies that any building in the employed Hamburg datasets
that has retained its original identifiers have also remained completely unchanged
between 2016 and 2022.

Similar to the unchanged buildings shown in Figure 7.19, all 28,122 building parts
without updated identifiers are dispersed throughout the entire area of Hamburg.

251

7. Application Results

Figure 7.20.: A visualization of the Congress Center Hamburg (left), which was classi-
fied as unchanged between 2016 and 2022. However, the building under-
went extensive renovations between 2017 and 2022 (CCH, 2022), shortly
after the old and new datasets were created. Consequently, the renovations
of the facility were not recorded in the datasets, resulting in the unchanged
status. Visualized with Folium, Leaflet, and OpenStreetMap (OSM).

252

7. Application Results

7.5.4. Updated Property Values creationDate

In CityGML, the property creationDate of a feature, such as a building or a building
part, is often updated to indicate the time of the newest modifications made to that
object. This may occur to individual objects, objects within a specific region, or all
objects of the same type in the entire city model. Since no global change patterns could
be observed for the Hamburg datasets due to the existence of unchanged buildings, as
explained previously in Section 7.5.2, the objective is to further investigate the patterns
hidden behind updated creationDate values within clusters of buildings and building
parts.

Given that the pattern rules for the property values creationDate, as visualized
previously in Figure 7.17, also include a directive calc_scope to calculate the thematic
and spatial scope of buildings and building parts over creationDate, the interpretation
process groups buildings and building parts by their common updated creationDate
values.

As a result, 14 different clusters of buildings and building parts have been identified
in total, with each represented by a distinct value creationDate. These groups can
be derived by retrieving the scope nodes attached to the city model node after the
interpretation process is complete, as visualized in Figure 7.21. Each scope node
contains information about the updated creationDate value, the number of buildings
and building parts that share that new value, the bounding box containing all these
buildings and building parts, as well as additional metrics such as the thematic and
spatial coverage of the cluster over the entire city model. Furthermore, Table 7.6
presents an overview of these 14 groups of buildings and building parts grouped by
their updated creationDate values.

On average, each group consists of approximately 30 thousand buildings and 25
thousand building parts. The total number of buildings and building parts from these
creationDate groups, as shown in Table 7.6, coincide with the total number of buildings
and building parts with updated identifiers, as presented in Table 7.5. This suggests
that the property creationDate of all buildings and building parts is updated whenever
any modification, even as small as an individual updated identifier, is made to the
feature objects and their sub-elements.

As a result, these 14 creationDate groups can be thought of as ‘update batches’ of
the entire Hamburg datasets, performed gradually over 14 days by a data manager or
a GIS specialist. In each batch, the content and structure of all associated buildings
and building parts are modified. Thus, the patterns observed in these groups are of
significant importance to stakeholders such as data brokers and city model managers,
as they allow for backtracking and capturing the history of modifications made to the
city models over time.

253

7. Application Results

SCOPED_TO

S
C

O
P

E
D

_
T

O

S
C

O
P

E
D

_
T
O

S
C

O
P

E
…

S
C

O
P

E
D

_T
O

SCOPED_TO

SCOPED_TO

SCO
PED_TO

S
C

O
P
E

D
_TO

SCOPED_TO

SCOPED_TO

S
C

O
P

E
D

_
T
O

S
C

O
P

E
D

_
T

O

SCOPED_TO

80b01351-7be…Updated…

Updated…

Updated…

Updated…

Updated…

Updated…

Updated…

Updated…

Updated…

Updated…

Updated…

Updated…

Updated…

Updated…

Figure 7.21.: Visualization of scope nodes (orange) representing all 14 clusters of build-
ings. In each cluster, all buildings share the same updated creationDate
value. The information stored in each scope node includes the number
of buildings that share the same updated property value, the cumulative
bounding box containing all these buildings, as well as additional spatial
indicators such as the spatial and type coverage of the current cluster over
the entire city model. These scope nodes are attached to the city model
node (blue). Visualized with Neo4j Browser.

254

7. Application Results

Table 7.6.: An overview of buildings and building parts detected
with 14 different updated values creationDate in the
Hamburg datasets.

New creationDate Buildings Building Parts

2022-01-25 11,155 2.43 % 8,445 2.43 %
2022-01-26 44,085 9.6 % 36,141 10.4 %
2022-01-27 48,379 10.53 % 34,148 9.82 %
2022-01-28 47,230 10.28 % 34,069 9.80 %
2022-01-29 54,423 11.85 % 38,209 10.99 %
2022-01-30 51,375 11.19 % 35,054 10.09 %
2022-01-31 3,723 0.81 % 4,074 1.17 %
2022-02-05 35,378 7.70 % 26,580 7.65 %
2022-02-06 39,482 8.60 % 29,120 8.38 %
2022-02-07 32,744 7.13 % 24,160 6.95 %
2022-02-08 39,079 8.51 % 30,713 8.84 %
2022-02-09 34,842 7.59 % 31,817 9.15 %
2022-02-10 17,248 3.76 % 14,953 4.30 %
2022-02-21 75 0.02 % 91 0.03 %

Total 459,218 100.00 % 347,574 100.00 %

Figure 7.22 provides a visualization of the modified buildings grouped by the first
seven creationDate values, spanning from 2022-01-25 to 2022-01-31. Similarly, Figure 7.23
presents a visualization of the changed buildings associated with the remaining seven
dates, from 2022-02-05 to 2022-02-10 and 2022-02-21. In these figures, each creationDate
group is displayed as a vertical column on the map of Hamburg, arranged in ascending
temporal order from left to right. To distinguish between two adjacent groups, their
respective buildings are shown in two different alternating colours: red and orange.
Figure 7.24 offers a close-up visualization of a boundary area between two of such
adjacent groups.

Figures 7.22 to 7.24 show that the entire city model of Hamburg was modified during
the period between January 25, 2022 until February 21, 2022. During this timeframe,
the city model was updated in sequential segments, starting from the west boundary of
the upper half of Hamburg and progressing in vertical zones from left to right towards
the east boundary of the lower half of Hamburg. The update process then ended with
the modifications of buildings on the island of Neuwerk, located northwest of the city
of Hamburg.

255

7. Application Results

Figure 7.22.: An illustration of the modified buildings of Hamburg grouped by their
respective creationDate values (first seven dates). Each group is represented
as a vertical column, arranged in ascending temporal order from left to
right. The groups are distinguished by colours. Visualized with Folium,
Leaflet, and OpenStreetMap (OSM).

256

7. Application Results

Figure 7.23.: An illustration of the modified buildings of Hamburg grouped by their
respective creationDate values (last seven dates). Each group is represented
as a vertical column, arranged in ascending temporal order from left to
right. The groups are distinguished by colours. Changes on the last date
were made on the island of Neuwerk (top-left). Visualized with Folium,
Leaflet, and OpenStreetMap (OSM).

257

7.
A

pplication
R

esults

Figure 7.24.: A detailed visualization of the boundary area between two adjacent groups of modified buildings
(red and orange) distinguished by their associated creationDate values. Although each group generally
occupies a vertical region on the map, their boundaries do not strictly adhere to a straight line.
Visualized with Folium, Leaflet, and OpenStreetMap (OSM).

258

7. Application Results

7.5.5. Updated Coded Property Values

The Hamburg datasets incorporated coded values for feature properties such as function
and roofType. These values originate from comprehensive code lists provided by the
Working Committee of the Surveying Authorities of the Laender of the Federal Republic
of Germany (AdV) (AdV, 2022). These lists cover a wide range of object types and
their thematic properties. For demonstration purposes, a subset containing some
values relevant to this use case is utilized, including those associated with residential,
commercial, and industrial use, as outlined in Table 7.7.

Based on these values, the function and usage of a building can be determined,
thereby allowing for the analysis of the dynamics between the city’s available space
for residential, commercial, and industrial purposes. For instance, Table 7.8 presents
a matrix for interpreting the changes in these function values of buildings, providing
insights into the repurposing of buildings and its impact on the city.

Thus, rules can be defined for identifying change patterns in residential, commercial,
or industrial space, as outlined in Listing 7.7.� �

1 // Pattern for conversion of residential to commercial space

2 MERGE (updated_property:RULE {

3 change_type: 'UpdatedProperty'

4 })-[:AGGREGATED_TO {

5 next_content_type: 'Code',

6 search_length: 0,

7 conditions: 'NAME === "value" ' +

8 '&& LEFT_VALUE >= 1000 && LEFT_VALUE <= 1025' + // residential

9 '&& RIGHT_VALUE >= 2000 && RIGHT_VALUE < 2100', // commercial

10 weight: 1

11 }]->(residential_to_commercial_code:RULE {

12 change_type: 'ResidentialToCommercialCode'

13 })-[:AGGREGATED_TO {

14 next_content_type: 'Building',

15 not_contains: 'BuildingPart', // only in buildings

16 weight: 1

17 }]->(residential_to_commercial_building:RULE {

18 change_type: 'ResidentialToCommercialBuilding'

19 })� �
Listing 7.7: Pattern rules in Cypher to detect conversion of available residential to

commercial space. This can be extended for other values.

259

7. Application Results

Table 7.7.: Examples of relevant coded values for the property function of buildings and
building parts. These values are divided into three categories according to
their residential, commercial, and industrial use. Excerpt from (AdV, 2022).

(a) Code 10xx: Residential Use

Code Description

1000 Residential building
1010 Residential house
1020 Residential home
1021 Children’s home
1022 Senior citizens’ home
1023 Nurses’ home
1024 Student dormitory
1025 School hostel

(b) Code 21xx: Industrial Use

Code Description

2100 Trade-industry facility
2110 Production building
2111 Factory
2112 Operational building
2113 Brewery
2114 Distillery
2120 Workshop
2121 Sawmill
2130 Gas station
2131 Car wash
2140 Storage facility
2141 Cold storage
2142 Storage building
2143 Warehouse
2150 Logistics building
2160 Research facility
2170 Extraction facility
2171 Mine
2172 Salt mine
2180 Company social hub

(c) Code 20xx: Commercial Use

Code Description

2000 Commercial building
2010 Trade and service building
2020 Office building
2030 Credit institution
2040 Insurance company
2050 Business building
2051 Department store
2052 Shopping centre
2053 Market hall
2054 Shop
2055 Kiosk
2056 Pharmacy
2060 Exhibition hall
2070 Lodging building
2071 Hotel, motel, guest-house
2072 Youth hostel
2073 Cabin (with lodging)
2074 Campsite building
2080 Buildings for catering
2081 Restaurant, diner
2082 Cabin (without lodging)
2083 Canteen
2090 Leisure venue
2091 Banquet hall
2092 Cinema
2093 Bowling alley
2094 Casino
2095 Arcade

260

7. Application Results

Table 7.8.: An example matrix for interpreting changes in buildings’
function values and their impact on the city’s available space
for living, commerce, and industry. The rows represent old
values, while the columns represent new ones.

10xx 20xx 21xx

10xx
↑ Business space ↑ Industry space
↓ Living space ↓ Living space

20xx
↑ Living space ↑ Industry space
↓ Business space ↓ Business space

21xx
↑ Living space ↑ Business space
↓ Industry space ↓ Industry space

Out of the 140,676 detected changes in the function values of buildings in the
Hamburg datasets, 26,320 (18.7 %) are updates exclusively within the selected code
values 10xx, 20xx, and 21xx. When grouping all 10xx codes as residential, 20xx codes
as commercial, and 21xx codes as industrial, the majority (96.4 %) of these changes are
updates within the same group. For example, there are 13,885 changes from code 1000
(residential building) to 1010 (residential house), and 5,193 changes from 2020 (office
building) to 2010 (trade and service building). These changes do not affect the overall
number of buildings per residential, commercial, and industrial use. Therefore, the
remaining 945 changes that actually alternate between the three given building function
groups are further analysed.

Figure 7.25 provides an overview of the dynamics of the repurposing of buildings
between the three selected groups. The net increase or decrease in the number of
buildings for each group is determined by subtracting the number of buildings conver-
ted from this group to others from the number of buildings this group gained from
conversions of buildings from other groups. For instance, 349 and 165 of residential
buildings were repurposed as industrial and commercial buildings, respectively, while
36 and 98 buildings were gained from the industrial and commercial group, respectively.
As a result, the residential group has a net loss of 380 buildings. On the other hand,
both the industrial and commercial group have a net gain of 254 and 126 buildings,
respectively.

Such interpretations are valuable to various stakeholders, such as data brokers, but
most importantly the city mayor, as it provides crucial data for informed decision
making and policy strategies, thereby allowing for more effective planning in the city
of Hamburg.

261

7. Application Results

Residential

Commercial

Industrial

165

349

98

119

36 178

Figure 7.25.: A visualization of the gains and losses of buildings per category for
residential (green), commercial (blue), and industrial use (orange). Each
connection starts from the right side of one group and ends on the left side
of another, representing a conversion of buildings from the initial group
to the target group. The number of buildings repurposed is indicated by
the width of each connection. This illustration only considers changes in
building function values where both the original and updated values fall
within the selected three categories.

The calculations presented above are based solely on the number of repurposed
buildings, without further considering their actual space allocated for residential,
commercial, and industrial use. Demonstrations of how exact fluctuations in such
residential, commercial, or industrial space can be computed are provided in Section 7.6.
Moreover, the interpretations illustrated in this experiment are derived from the mod-
ified function values of buildings, but the same can also be applied to the updated
roofType values and some generic attributes of buildings and building parts that are
also encoded using predefined code lists (AdV, 2022).

262

7. Application Results

7.5.6. Raised Roofs of Buildings and Building Parts

By applying the rules given in Section 5.3 and illustrated in Figures 5.5 and 5.6, the
interpretation process searches for patterns of elevated roofs among all geometric
translations and size changes in buildings and building parts of the entire Hamburg
datasets. A building or a building part is considered to have raised roofs if the following
conditions are met:

1. All its boundary roof surfaces have been vertically elevated without any change
in their size or shape,

2. All its boundary ground surfaces have been moved upwards, downwards, or
remained stationary,

3. The heights of all boundary wall surfaces have been adjusted to accommodate
the translations of the roof and ground surfaces, and

4. The measured height of that building or building part has been updated accord-
ingly to reflect the new height.

The Cypher query employed to describe this pattern rule among buildings (without
building parts) can be found in Listing 7.8. Due to limited space, the definitions for
the preceding rule nodes corresponding to the aforementioned conditions are omitted.
They include:

1. Rule node translated_building_roofs_no_bparts for moved roof surfaces of a building
that contains no building parts,

2. Rule node translated_building_grounds_no_bparts for moved ground surfaces of a
building that contains no building parts,

3. Rule node resized_building_walls_no_bparts for resized wall surfaces of a building
that contains no building parts, and

4. Rule node updated_building_measured_height for updated measured height of a
building.

Furthermore, the function approxEquals(a, b), which appears throughout the query, is
used to compare two numeric values a and b with a predetermined error tolerance
taken into account. Unlike other internal functions employed during the mapping,
matching, and interpretation process, this function can be defined by users and stored
separately in a JavaScript file, which can then be parsed by the script engine within the
interpreter in runtime. This allows for more flexibility, modularity, and extendability
when defining complex rule conditions. The location of this script file in the current
implementation can be found in Figure 7.1.

263

7. Application Results

� �
1 // Pattern for raised roofs of buildings (without building parts)

2 MERGE (updated_building_measured_height)-[:AGGREGATED_TO {

3 next_content_type: 'Building',

4 name: 'rule_height',

5 conditions: 'RIGHT_VALUE - LEFT_VALUE > 0',

6 propagate: 'LEFT_VALUE;RIGHT_VALUE',

7 weight: '1'

8 }]->(raised_building_roofs:RULE { // create once, reuse later

9 change_type: 'RaisedBuildingRoofs',

10 join: 'approxEquals(rule_resized_walls.z,

11 rule_height.RIGHT_VALUE - rule_height.LEFT_VALUE)

12 && approxEquals(rule_translated_roofs.z,

13 rule_resized_walls.z + rule_translated_grounds.z)'

14 })

15 MERGE (translated_building_roofs_no_bparts)-[:AGGREGATED_TO {

16 next_content_type: 'Building',

17 name: 'rule_translated_roofs',

18 conditions: 'approxEquals(x, 0) && approxEquals(y, 0)',

19 propagate: 'x;y;z',

20 weight: '1'

21 }]->(raised_building_roofs) // reference existing rule node

22 MERGE (translated_building_grounds_no_bparts)-[:AGGREGATED_TO {

23 next_content_type: 'Building',

24 name: 'rule_translated_grounds',

25 conditions: 'approxEquals(x, 0) && approxEquals(y, 0)',

26 propagate: 'x;y;z',

27 weight: '1'

28 }]->(raised_building_roofs) // reference existing rule node

29 MERGE (resized_building_walls_no_bparts)-[:AGGREGATED_TO {

30 next_content_type: 'Building',

31 name: 'rule_resized_walls',

32 conditions: 'approxEquals(x, 0) && approxEquals(y, 0)',

33 propagate: 'x;y;z',

34 weight: '1'

35 }]->(raised_building_roofs) // reference existing rule node� �
Listing 7.8: Pattern rules in Cypher to detect raised building roofs. The same can be

applied to detect raised roofs in building parts.

264

7. Application Results

The join conditions in the rule node raised_building_roofs specify the necessary criteria
that all preceding rule nodes must satisfy to allow for the creation of the new interpreted
change of raised building roofs. These conditions are evaluated based on a temporary
context memory, which collects all information about the contents of the preceding
rule nodes, as dictated by the property propagate utilized in each rule relationship.
To differentiate attributes from different rule nodes that have the same name within
this shared context, each rule node and all their attributes can be assigned with a
unique name, as determined by the property name in each rule relationship shown
in Listing 7.8. For instance, the name rule_height is assigned to the preceding rule
node updated_building_measured_height and can be utilized as rule_height.LEFT_VALUE
to retrieve the old measured height value of the building before its update.

Once the interpretation process is complete and all pattern rules have been applied,
simple Cypher queries can be performed to retrieve the interpretation nodes created for
raised building roofs, thereby allowing for more complex analyses based on available
data linked to these nodes. For instance, Listing 7.9 presents an example query that
provides an overview of all detected raised building roofs, including the minimum and
maximum raise value, as well as the number of detected interpretation nodes.� �

1 // Retrieve an overview of identified raised building roofs

2 MATCH (c:Change {change_type: "RaisedBuildingRoofs"})

3 WITH n.RIGHT_VALUE - n.LEFT_VALUE AS dh // updated measured height

4 RETURN min(dh), max(dh), count(dh) // minimum, maximum, and quantity� �
Listing 7.9: An example Cypher query to provide an overview of all detected raised

building roofs. While the information itself is challenging to derive without
any pre-processing, the query remains simple and manageable due to the
available interpretation nodes created for raised building roofs.

Figure 7.26 shows a visualization in Neo4j Browser of a building with raised roofs,
as defined by the pattern rules given in Figure 5.6. A total number of 50,390 buildings
(without building parts), which account for approximately 14 % of all non-deleted
non-split buildings, have been detected with elevated or lowered roofs. For building
parts, a total number of 148,505 instances, or approximately 31 % of all non-deleted
building parts, have been identified with raised roofs. As mentioned in Section 4.5.4,
a maximum threshold of 3 m for translations is employed to reduce the number of
false matches among parallel surfaces. If this threshold is exceedingly large, parallel
wall surfaces of a building would be matched to each other, even though they are
different geometries. Thus, the height increases and decreases of all roof surfaces range
from −3 m to 3 m, as illustrated in Figure 7.27. Roofs shifted by more than 3 m can be
detected in buildings with footprints matched within the translation threshold.

265

7. Application Results

Figure 7.26.: A visualization in Neo4j Browser of a building (blue) with raised roofs
that satisfy the pattern rules from Figure 5.6. The four lower interpretation
nodes indicate changes in the identifier and creationDate. The upper five
interpretation nodes represent geometric change patterns that involve
translated roof and ground surfaces, resized wall surfaces, as well as the
increase in the building’s measured height. The topmost interpretation
node signifies a detected pattern of raised roofs. These interpretation nodes
are attached to their corresponding building node (orange connections),
allowing for efficient retrieval of interpreted data.

266

7. Application Results

-3.0 to -2.0 -2.0 to -1.0 -1.0 to 0.0 0.0 to 1.0 1.0 to 2.0 2.0 to 3.0
Length (m)

0

5 k

10 k

15 k

20 k

25 k

30 k

35 k

40 k

N
um

be
r

of
Bu

ild
in

gs

0 11

8,510

38,321

2,677
871

Raised Roofs of Buildings (in 1 m intervals)

-3.0 to -2.0 -2.0 to -1.0 -1.0 to 0.0 0.0 to 1.0 1.0 to 2.0 2.0 to 3.0
Length (m)

0

20 k

40 k

60 k

80 k

100 k

N
um

be
r

of
Bu

ild
in

g
Pa

rt
s

3 30

34,892

104,008

6,499 3,073

Raised Roofs of Building Parts (in 1 m intervals)

Figure 7.27.: The distribution of detected raised roofs in buildings and building parts in
1 m intervals based on the pattern rules given in Listing 7.8. The maximum
translation length employed by the implementation is 3 m.

267

7. Application Results

The movement of the roofs of a building may be influenced by the translation of
its ground surfaces. For instance, a roof raise of 2 m may be the result of an elevated
ground surface by that same amount, leading to no changes in the living space of that
building. Thus, to investigate the actual changes in height of a building, the vertical
size changes in wall surfaces are also considered, which correspond to the differences
between the (signed) roof and ground translations. In the majority of cases, these
resize values of walls also align with the changes in the buildings’ measured heights,
represented by the property measuredHeight.

Figure 7.28 visualizes the distribution of such changes in wall heights. Their values
range from 0.001 m to 4.782 m for buildings (without building parts) and from 0.001 m
to 4.679 m for building parts. The current implementation allows an error tolerance of
0.001 m for lengths and translations. Any length values smaller than this threshold are
considered equal to length zero.

The majority of these height offsets (91 % for buildings and 88 % for building parts)
fall below 1 m, with the number of these changes decreases as the wall height offset
increases. At the maximum height difference, 6 buildings and 37 building parts were
detected with wall heights increased by over 4 m.

No buildings or building parts were found with decreased wall heights, even though
more than 8,500 buildings have been observed with lowered roofs. This means that
the ground surfaces of these buildings must also have been shifted downwards with a
greater offset, resulting in an overall increase in building heights. Such changes can be
interpreted as a correction in the elevation of the roof and ground surfaces of building.

These elevated roofs and increased wall heights may indicate newly added storeys,
resulting in increased living space. This is illustrated in the example use case of the
building Grüner Bunker (translated as the Green Bunker) in Hamburg. The building
was constructed as a flak bunker in 1942. After the Second World War, it became a
historical building and is under monumental protection. Construction work for five
new pyramid-shaped storeys on top of the building began in 2019, and by the end of
2023, trees had been planted on the added levels as one of the first steps to convert the
building into a city garden above the rooftops of Hamburg (EHP, 2023).

A 3D visualization of this building from the Hamburg datasets 2016 and 2022 is
shown in Figure 7.29. Satellite images of the building before and during the construction
work in 2019 and 2021, respectively, are displayed in Figure 7.30.

In the Hamburg datasets, the building Grüner Bunker is represented as a collection
of ten building parts, as visualized in Figure 7.31. Each yellow rectangle represents the
2D bounding box of a building part. The measurements associated with each bounding
box depict the consistent height increase in metres of all walls within the corresponding
building part. These increases range from 3.8 m to 12.5 m. In addition, ground surfaces
of all building parts have been moved downwards by the same offset of 1.5 m.

268

7. Application Results

0.0 to 1.0 1.0 to 2.0 2.0 to 3.0 3.0 to 4.0 4.0 to 5.0
Length (m)

0

10 k

20 k

30 k

40 k

50 k

N
um

be
r

of
Bu

ild
in

gs

46,077

3,357
872 78 6

Increases in Wall Height of Buildings (in 1 m intervals)

0.0 to 1.0 1.0 to 2.0 2.0 to 3.0 3.0 to 4.0 4.0 to 5.0
Length (m)

0

20 k

40 k

60 k

80 k

100 k

120 k

140 k

N
um

be
r

of
Bu

ild
in

g
Pa

rt
s

131,002

13,571
3,518 377 37

Increases in Wall Height of Building Parts (in 1 m intervals)

Figure 7.28.: The distribution of the increases in wall heights of buildings and building
parts in 1 m intervals, computed from (signed) translations of roof and
ground surfaces.

269

7. Application Results

(a) Top view in 2016 (b) Top view in 2022

(c) Side view in 2016 (d) Side view in 2022

Figure 7.29.: The 3D models of the building Grüner Bunker in 2016 (left) and 2022
(right), displayed in top view (top) and side view (bottom). The visu-
alization shows an overall increase in the building’s height. Visualized
in Google Earth Pro using the 3D building models exported from the
3DCityDB.

The increases in roof elevations and wall heights discussed above can be extracted and
analysed using the detected thematic and geometric changes and their interpretations
attached directly to the graph representations of each building part. Figure 7.32
provides an illustration of such nodes in the graph database Neo4j.

In the real world, a sufficiently large elevation in the roofs of a building or a building
part often coincides with a change in the number of its storeys. This correlation in
the datasets can be evaluated by searching for buildings and building parts that are
attached with both a change in the roof elevation and a change in the number of storeys.
The results are illustrated in Table 7.9. A total number of 80 such buildings and 511

270

7. Application Results

(a) Before construction work in 2019

(b) During construction work in 2021

Figure 7.30.: Satellite images of the building Grüner Bunker before and during con-
struction work for new storeys in 2019 and 2021, respectively. Visualized
with historical data from 2019 and 2021 in Google Earth Pro.

271

7. Application Results

Figure 7.31.: A visualization of the bounding boxes of all ten building parts contained
in the building Grüner Bunker. The depicted values above refer to the
changes in the heights of all walls of each building part. In addition, all
ground surfaces have been shifted downwards by 1.5 m. Visualized with
Folium, Leaflet, and OpenStreetMap (OSM).

272

7. Application Results

buildingPart

elem
entD

ata

AR
R
AY

_M
EM

BER

ob
je

ct

m
e
a
su

re
d
H

e
ig

h
t

51
93

73
22

3 7
3
6
7
2
2
6
7
6

boundedBy

envelope

boundedBySurface

elementData

lo
d2

Te
rr
ai

nI
nt

er
se

ct
io

n

object

51
93

73
73

9

ge
ne

ric
A
ttr

ib
ut

e

elementData

lod2Solid

object 519232874

RIGHT_NODE

519232835

RIG
HT_NODE

S
AV

E
D

_F
O

R

AUX

7
3

6
7

3
4

7
5

2

A
G

G
R

E
G

A
T
E

D
_T

O

AU
X

7
3
6
7
3
5
1
1
8

AG
G

R
E
G

AT
E
D

_T
O

AGGREGATED_TO

A
G

G
R

E
G

A
T

E
D

_
T

O

A
G

G
R

E
G

A
T

E
D

_
T
O

A
U

X

73
67

35
10

9

AG
G

R
E
G

AT
E
D

_T
O

A
U

X

AGGREGATED_TO

SAVED_FOR

A
R

R
A

Y
_
M

E
M

B
E

R

o
b

je
c
t

boundedBy
envelope

genericA
ttribute

elem
entD

ata

boundedBySurface

elementData

lo
d
2
T
e
rr

a
in

In
te

rs
e
ct

io
n

ob
je

ct

5
1

9
2

3
1

1
8

1

lo
d
2
S

o
lid

ob
je
ct

m
e
a
su

re
d
H

e
ig

h
t

5
1

9
2

2
9

5
7

2

7
3
6
7
2
0
2
5
8

519104881

RIG
HT_NODE

51
91

04
89

6

RIGHT_NODE

7
3
6
7
3
2
4
8
9

A
U

X

A
G

G
R

E
G

A
T

E
D

_
T

O

S
A

V
E

D
_
F

O
R

A
U

X
7
3
6
7
3
5
1
0
3

A
G

G
R

E
G

A
T

E
D

_
T

O

A
U

X

A
G

G
R

E
G

A
T
E

D
_
T
O

SAVED_FOR

A
U

X

736735081

A
G

G
R

E
G

A
T

E
D

_
T
O

A
G

G
R

E
G

A
T

E
D

_
T
O

AGGREGATED_TO

AG
G

REG
ATED_TO

A
R

R
AY

_M
E
M

B
E
R

object

lo
d
2
T
e
rra

in
In

te
rse

c
tio

n

ob
je

ct 5
1
9
1
0
4
6
3
9

m
easuredH

eight

5
1
9
1
0
3
8
4
3

736716880

lo
d2

S
ol

id

o
b
je

ct

boundedBy

envelope

roofType

519103916

g
e
n
e
ri
cA

tt
ri
b
u
te

elementD
ata

boundedBySurface

elementData

51
60

01
80

7

R
IG

H
T

_
N

O
D

E

5
1
6
0
0
1
8
0
3

R
IG

H
T_

N
O

D
E

S
A

V
E

D
_
F

O
R

A
U

X

736735034

A
G

G
R

E
G

A
T

E
D

_
T
O

AUX

AGGREGATED_TO

AGGREGATED_TO

AGGREGATED_TO

736732484

A
G

G
R

E
G

ATE
D

_TO

A
U

X

SAVED_…

A
U

X

7
3
6
7
3
5
0
2
0

AGGREGATED_TO

AG
G

R
E
G

ATE
D
_TO

ARRAY_MEMBER

object

measuredHeight

516001558

73
67

08
50

9

genericAttribute

elementData

roofType

516001574

boundedBySurface
elementData

lod2TerrainIntersection

object

516001719

lo
d
2
S

o
lid

ob
je

ct

b
o
u
n
d
e
d
B

y

en
ve

lo
pe

515999971

RIG
HT_NODE 51

59
99

98
3

RIGHT_NODE

SAVED_FOR

A
U

X

AUX

AUX

AU
X

736734967

AUX

A
G

G
R

E
G

A
T

E
D

_
T
O

AUX

AGGREGATED_TO

736702398

AUX

AGGREGATED_TO

S
A

V
E

D
_
F

O
R

S
A

V
E

D
_
F

O
R

ARRAY_MEMBER object

b
o
u
n
d
e
d
B

y

envelope

measuredHeight

514961818

736705339

lod2TerrainIntersection

object

515999789

boundedB
yS

urface

e
le

m
e
n
tD

a
ta

genericAttribute

elem
entD

ata

lo
d2

S
ol

id

o
b
je

ct

514958754

RIGHT_NODE

514958779

R
IG

H
T
_N

O
D

E

S
A
V

E
D

… AUX

AUX

AUX

736729450
AGGREGATED_TO

736734866

AGGREGATED_TO

AGGREGATED_TO

AUX

736734877

AGGREGATED_TO

AGGREGATED_TO

AGGREGATED_TO

A
G

G
R

E
G

A
T
E

D
_
T
O

SAVED_FOR

ARRAY_MEMBER

object

measuredHeight

514957317
736701161

boundedBySurface
elementData

lo
d
2
S

o
lid

o
b
je

ct

boundedBy

envelope

genericAttribute

elementData

lod2TerrainIntersection

object

514958245

514754041

R
IG

H
T

_
N

O
D

E

5
1
4
7
5
4
0
5
5

R
IG

H
T_N

O
D
E

73
67

29
07

1

AGGREGATED_TO

AUX

SAVED_FOR

AUX

73
67

34
84

2

AGGREGATED_TO

A
G

G
R

E
G

A
T

E
D

_
T
O

AGGREGATED_TO

A
G

G
R

E
G

A
T

E
D

_
T
O

AUX

736734837

AUX

AGGREGATED_TO

AGGREGATED_TO

S
A

V
E

D
…

A
R

R
A
Y

_
M

E
M

B
E

R

o
b
je

ct

boundedB
yS

urface

elementData

m
ea

su
re

dH
ei

gh
t

51
47

51
80

0

7
3
6
6
9
7
5
0
9

lo
d2

Te
rr
ai

nI
nt

er
se

ct
io

n

object

51
47

53
19

8

lod2Solid

object

boundedBy
envelope

genericAttribute

el
em

en
tD

at
a

5
1
4
7
4
5
0
3
8

R
IG

H
T

_
N

O
D

E

51
47

45
08

3

R
IG

H
T_N

O
D

E

7
3
6
7
3
4
8
2
8

A
G

G
R

E
G

A
T

E
D

_
T

O

A
U

X

AGGREGATED_TO

AG
G

R
E
G

ATE
D

_TO

A
G

G
R

E
G

A
T
E

D
_
T
O

S
A

V
E

D
…

A
U

X

A
U

X
7
3
6
7
3
4
8
2
4

A
G

G
R

E
G

A
T

E
D

_
T
O

A
G

G
R

E
G

A
T

E
D

_
T
O

AUX

S
A
V

E
D

_
F
O

R

7
3
6
7
2
6
4
4
7

A
G

G
R

E
G

A
T
E

D
_T

O

A
R

R
A
Y

_
M

E
M

B
E

R

o
b
je

ct

lo
d
2
S

o
lid

o
b
je

ct

boundedBySurface

elementData

genericAttrib
ute

e
le

m
e
n
tD

a
ta

boundedBy

envelope

m
e
a
su

re
d
H

e
ig

h
t

5
1
4
6
7
2
5
6
1

736694282

lo
d2

Te
rr

ai
nI

nt
er

se
ct

io
n

object

5
1
4
6
7
3
5
2
0

514667443

R
IG

H
T

_
N

…

514667426

R
IG

H
T

_
N

O
D

E

7
3
6
7
2
4
6
8
2

A
G

G
R

E
G

A
T

E
D

_
T

O

A
G

G
R

E
G

A
T
E

D
_…

7
3
6
7
3
4
8
0
5

A
G

G
R

E
G

A
T
E

D
_
T
O

A
G

G
R

E
G

AT
E

D
_T

O

A
U

X

A
G

G
R

E
G

A
T

E
D

_
T
O

7
3
6
7
3
…

A
G

G
R

E
G

A
T
E

D
_
T
O

AG
G

REG
AT…

736734…

A
G

G
R

E
G

ATE
D

_TO

A
U

X

A
U

X

S
A

V
E

D
_
F

O
R

7
3
6
7
3
4
8
0
8

A
G

G
R

E
G

AT
E

D
_T

O

A
G

G
R

E
G

A
T

E
D

_
T

O

A
G

G
R

E
G

AT
E

D
_TO

AGGREGATED_TO

ARRAY_MEMBER

object

genericAttribute

elementD
ata

lo
d2

S
ol

id

o
b
je

ct

m
easuredH

eight

5
1
4
6
6
6
3
9
3

736689049

boundedBySurfa…

e
le

m
e
n
tD

a
ta

lo
d
2
T
e
rra

in
In

te
rse

c
tio

n

o
b
je

c
t514667039

boundedBy

enve
lope

5
1
2
9
4
5
8
4
2

R
IG

H
T

_
N

O
D

E

5
1
2
9
4
5
8
1
6

R
IG

H
T

_
N

O
D

E

SAVED_FOR

AUX

736734790

AUX

AGGREGATED_TO

A
G

G
R

E
G

A
T

E
D

_
T

O

AGGREGATED_TO

AG
G

R
E
G

ATE
D

_TO

736734787

A
G

G
R

E
G

A
T

E
D

_
T

O

AUX

AGGREGATED_TO

S
A

V
E

D
_
F

…

AUX

736724678

A
G

G
R

E
G

AT
E

D
_TO

ARRAY_MEMBER

object

lod2Solid

object

boundedBy

enve
lope

genericAttrib
ute

elementData

measuredHeight

512943681

736678698

bo
un

de
dB

yS
ur

fa
ce

el
em

en
tD

at
a

lod2TerrainIntersection

object

512945194

5
1
0
4
7
2
8
4
7

R
IG

H
T_

N
O

D
E

5
1
0
4
7
2
8
2
9

R
IG

H
T

_
N

O
D

E

736734765

AUX

AG
G

REG
ATED_…

AGGREGATED_TO

AUX

SAVED_FOR

7
3

6
7

3
4

7
7

0

AGGREGATED_TO

AG
G

R
EG

ATED
_TO

AUX

A
U

X

A
G

G
R

E
G

A
T

E
D

_
T
O

AGGREGATED_TO

736712371

AUX

AGGREGATED_TO

S
A
V

E
D

_
F
O

R

AG
G

REG
…

LEFT_N
O

D
E

736735254

LEFT_NODE A
G

G
R

E
G

…

LEFT_NODE

A
G

G
R

E
G

AT
E

D
…

AG
G

R
EG

ATED
_TO

LE
FT

_N
O

D
E

A
G

G
R

E
G

…

LE
F
T
_N

O
D

E

AGGREGA…

L
E

F
T

_
N

O
D

E

AGGREGATED_TO

LE
F
T
_N

O
D

E

AGGREGATED_TO

LEFT_N
O

D
E

S
A

V
E

D
_
F

O
R

A
G

G
R

E
G

A
T

E
D

_
T
O

LEFT_NODE

AG
G
REG

A…

LE
F
T
_N

O
D

E

SAVED_FOR
DEHH_06659b…

UpdateP…

Updated…

6

DeleteN…

3

DEHH_000e31…

Translat…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

Translat…

Translat…

SizeCha…

Updated…

3

6

DeleteN…

UpdateP…

Updated…

DEHH_000e32…

Translat…

Translat…

SizeCha…

Updated…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

DeleteN…

UpdateP…

Updated…

UpdateP…

3

6

DEHH_000e32…

Translat…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

Updated…

Translat…
UpdateP…

Updated…

3

UpdateP…

9

DeleteN…

DEHH_000e32…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

Translat…

Translat…

Updated…

UpdateP…

Updated…

DeleteN…

6

3

DEHH_000e32…

Updated…

SizeCha…

Translat…

Translat…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

UpdateP…

Updated…

6

3

DeleteN…

DEHH_000e32…

Translat…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

Translat…

Updated…

SizeCha…

6

UpdateP…

Updated…

DeleteN…

3

DEHH_000e32…

SizeCha…

SizeCha…
SizeCha…

SizeCha…

Updated…

SizeCha…

Translat…

Translat…

6

3

UpdateP…

Updated…

DeleteN…

DEHH_000e31…

RaisedB…

Translat…

Updated…

SizeCha…

Translat…

Translat…

Translat…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

3

UpdateP…

Updated…

6

DeleteN…

DEHH_000e32…

Translat…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

Translat…

SizeCha…

Updated…

3

UpdateP…

Updated…

6

DeleteN…

DEHH_000e32…

Translat…

Translat…

SizeCha…

SizeCha…

SizeCha…

SizeCha…

Updated…

SizeCha…

10

37.893

UpdateP…

UpdateP…

31.243

UpdateP…

UpdateP…

38.033

1000

UpdateP…

UpdateP…

40.039

3100

UpdateP…

UpdateP…

37.773

UpdateP…

UpdateP…

37.893

UpdateP…

UpdateP…

38.023

UpdateP…
UpdateP…

39.872

UpdateP…

UpdateP…

31.337

UpdateP…UpdateP…

38.011

UpdateP…

UpdateP…

Figure 7.32.: A visualization in Neo4j Browser of the changes and their interpretation
nodes (orange) in the graph representations of the building Grüner Bunker
between 2016 and 2022. There are 20 building parts shown (blue), with 10
from each dataset. Changes are connected within a network and attached
to corresponding building part nodes, allowing for efficient querying and
analysis. The base changes include updated measured heights, increased
wall heights, translated ground surfaces, deleted roof surfaces, inserted
roof surfaces, and raised roof surfaces. The orange node in the middle
with many incoming red relationships represents a consistent downward
shift of 1.5 m of the ground surfaces in all building parts.

273

7. Application Results

such building parts have been detected. While the changes associated with a roof raise
are geometrically consistent, such as the height offsets of roof surfaces and the size
changes of wall surfaces, the changes in the number of storeys of a building or building
part often do not align with these geometric changes.

Table 7.9.: Example buildings (top) and building parts (bottom) detected with both
raised roofs and changed number of storeys. As shown in the top table,
while the height of a building is increased by 2.435 m, its number of storeys
decreases by 1. Similarly, as shown in the bottom table, an increase of 5
storeys does not align with a small 0.164 m increase in height.

(a) Example buildings with both raised roofs and changed storeys

Before Update After Update Difference in
Height (m) Storeys Height (m) Storeys Height (m) Storeys

30.826 6 34.358 7 3.532 1
5.903 2 8.649 3 2.746 1

15.596 4 18.031 3 2.435 −1
7.924 1 9.876 2 1.952 1

21.906 3 23.827 5 1.921 2
. . .

(b) Example building parts with both raised roofs and changed storeys

Before Update After Update Difference in
Height (m) Storeys Height (m) Storeys Height (m) Storeys

21.728 1 23.563 6 1.835 5
21.714 1 21.878 6 0.164 5
22.125 1 22.345 6 0.220 5
24.175 5 24.946 9 0.771 4
26.851 5 28.155 9 1.304 4

. . .

For example, as shown in Table 7.9a, although the height of a building is increased
by over 2 m, its number of storeys decreases by 1. This could suggest a change in the
internal structure of the building or simply a correction of a previous inconsistency in
the data. Similarly, as shown in Table 7.9b, an increase of 5 storeys does not align with
a negligible 0.164 m increase in height.

Furthermore, in the use case of the building Grüner Bunker above, no information
about the number of storeys is stored in any building parts. Thus, no changes in the

274

7. Application Results

number of storeys could be found for this building, despite the added new storeys in
the real city.

Similar to the number of storeys, changes in the roof elevation may also be correlated
with other properties, such as the functions, roof types, or any other relevant generic
attributes available in buildings and building parts. However, while the functions and
roof types are defined in the CityGML encoding standard, the thematic meaning of
generic attributes often depends strongly on the use case and employed datasets.

Lastly, the interpretations of a roof raise carry significant importance, as one such
interpretation can represent all translations and size changes within a building or a
building part. As depicted in Table 7.10, each single interpretation of a roof raise in a
building can represent an average of 10 and up to 447 base changes detected during the
matching process. In total, these interpretations in buildings and building parts alone
cover more than 1.5 million changes, which account for nearly one fifth of all detected
changes and one third of all detected geometric changes.

Table 7.10.: An overview of changes represented by raised roofs in
buildings and building parts. These base changes were
detected during the matching process and are required for
the creation of the interpretation nodes for raised roofs.

Buildings Building Parts

Changes interpreted per roof raise
Minimum 4 4
Maximum 447 33
Average 10 7

Total number of
Raised roofs 50,390 148,505
Represented changes 486,065 1,068,370

Among represented changes
Updated properties 50,390 148,505
Translated surfaces 100,780 297,010
Resized surfaces 334,895 622,855

The pattern rules and examples presented in this use case are employed for identify-
ing an increase in the roof elevation of a building or building part. The same can be
applied to detect lowered roofs, as well as raised and lowered ground surfaces.

275

7. Application Results

7.6. Leveraging Interpretation Results for Further Analyses

When a pattern among detected changes is identified, interpretation nodes are created
and attached to the source content nodes. This not only enables efficient and direct
access to the interpretation results stored in the graph database, as demonstrated previ-
ously, but also allows these results to be further utilized for more complex calculations
and analyses, such as calculating the changes in the existing residential, commercial,
and industrial space of Hamburg. Such a task would have been significantly difficult
and time-consuming using ‘only’ the raw data provided by the original datasets. How-
ever, by leveraging the interpretation nodes produced, such analyses can be performed
quickly and efficiently. In addition, the interpretation results can also be employed to
assess the coverage of interpreted changes over all detected changes.

7.6.1. Calculating Changes in the Living Space of the City

Firstly, the total net change of all available 2D space or area of Hamburg between 2016
and 2022 can be computed as follows:

A = I + D + S (7.1)

Where:

1. A is the net change of all available space in Hamburg.

2. D is the negative total ground area of all deleted buildings and building parts.

3. I is the positive total ground area of all inserted buildings and building parts.

4. S is the net sum of all detected size changes in the ground surfaces.

All I, D, S, and consequently A can be either positive or negative, indicating a net
increase or decrease in the areas, respectively. The calculation of I, D, and S involves
the ground surface area of each building and building part, which can be determined
either by using their 2D bounding boxes or the measured surface areas given in the
generic attributes of the ground surfaces.

The first option can always be performed, as the bounding boxes of buildings
and building parts are automatically calculated and mapped onto graphs during the
mapping process described in Chapter 3. However, this method generally can only
provide an approximation of the actual results, as bounding boxes are axis-aligned
while ground surfaces can have any orientations in the horizontal plane. Using the
actual geometries like polygons available in the datasets would lead to more accurate
results (Harter, 2021; Kaden, 2014), at the cost of increased computational complexity.

276

7. Application Results

The second option can produce more reliable results, as it employs ground surface
areas that were measured using additional methods and tools. However, such inform-
ation, often stored as generic attributes in the ground surface, may not always be
available, as in the case of Hamburg, without the use of additional tools such as the
3DCityDB. Therefore, the first option involving bounding boxes is employed for the
calculation of ground surface areas of buildings and building parts.

In contrast to I and D, the computation of S additionally depends on the signed
margin offsets in each dimension, which are provided by each base size change detected
during the matching process. These margins specify the extent to which the bounding
box of the surface expands in each direction. For example, a margin vector (1,−1, 0)
indicates that the new bounding box is 1 m wider in the x-dimension and 1 m narrower
in the y-dimension. For a 2D bounding box of sizes (X, Y) from the old datasets and
its resize margins (∆x, ∆y), the net change s in the ground surface area of a building or
building part is computed as follows:

s = (X + ∆x) (Y + ∆y)− XY (7.2)

Similarly, Equations (7.1) and (7.2) can be extended to include the third dimension
to allow for the calculation of the total net change V = I′ + D′ + S′ in all available
volumes of buildings and building parts in Hamburg. This can be performed based
on either their 3D bounding boxes or their recorded number of storeys. However, not
every building or building part is available with this number of storeys, as in the case
of Hamburg, where only 56 % of all buildings have this attribute. Therefore, in this
experiment, the 3D bounding boxes of buildings and building parts are employed
instead.

The computed changes in the total ground surface areas and volumes of buildings
and building parts within the Hamburg datasets are summarized in Table 7.11. As
shown in this table, the city underwent a decrease of approximately 9 km2 but at the
same time an increase of 12 km2 in total ground surface areas, resulting in a net gain
of 3 km2. Similarly, the city saw both a decrease of 81 million cubic metres and an
increase of 133 million cubic metres in total volumes of buildings and building parts,
resulting in a net increase of 52 million cubic metres. The major driving factor for
these increases can be attributed to the newly inserted buildings and building parts,
whose total ground surface areas and volumes outweigh those of deleted and resized
buildings and building parts combined.

Notably, existing buildings (without building parts) that underwent a size change
saw an increase in ground areas (634 m2), but a decrease in volumes (−40,399 m3). This
might indicate that, on average, these buildings tend to become larger horizontally but
shorter vertically. In contrast, existing building parts that underwent a size change
saw a decrease in ground areas (−13,542 m2), but a significant increase in volumes

277

7. Application Results

Table 7.11.: Changes in the ground surface areas (top) and volumes (bottom) of all
buildings and building parts of the entire Hamburg datasets.

(a) Changes in ground areas

Ground Area (m2) Decrease Increase Net Change

D All deleted
Buildings only 6,515,813 0 −6,515,813
Building Parts 2,246,003 0 −2,246,003

I All inserted
Buildings only 0 11,322,486 11,322,486
Building Parts 0 610,432 610,432

S All resized
Buildings only 737 1,371 634
Building Parts 42,578 29,036 −13,542

A Total change in areas 8,805,131 11,963,325 3,158,194

(b) Changes in volumes

Volume (m3) Decrease Increase Net Change

D′ All deleted
Buildings only 53,704,133 0 −53,704,133
Building Parts 27,422,302 0 −27,422,302

I′ All inserted
Buildings only 0 123,114,498 123,114,498
Building Parts 0 9,737,172 9,737,172

S′ All resized
Buildings only 115,954 75,555 −40,399
Building Parts 234,712 734,401 499,689

V Total change in volumes 81,477,101 133,661,626 52,184,525

(499,689 m3). This could suggest that these building parts tend to become narrower
horizontally but taller vertically, indicating a trend towards verticalization of building
parts in the city. Such information is of great interest to many stakeholders, particularly
the urban planners and city mayor.

Lastly, the calculations presented above can be extended to further differentiate
between residential, commercial, and industrial space or volume based on the property
values function. While this attribute is available in every building in the Hamburg
datasets, it is present in none of the building parts. Therefore, the functions of building
parts are derived from those of the buildings they belong to. Table 7.12 summarizes
the computed changes in the ground areas and volumes of buildings and building
parts, divided into each category of the three categories: residential, commercial, and
industrial.

278

7. Application Results

Table 7.12.: Changes in the residential (Res.), commercial (Com.), and industrial (Ind.)
ground surface areas (top) and volumes (bottom) of all buildings and
building parts in the Hamburg datasets.

(a) Changes in ground areas

Ground Area (m2) Deleted Inserted Resized Net Change

Res.
Buildings only −1,401,275 4,027,089 −157 2,625,657
Building Parts −455,107 123,378 −6,371 −338,100

Com.
Buildings only −501,083 1,014,970 −420 513,467
Building Parts −341,101 101,694 −4,724 −244,131

Ind.
Buildings only −1,300,185 1,618,744 119 318,678
Building Parts −430,627 125,298 −795 −306,124

Total change in areas −4,429,378 7,011,173 −12,348 2,569,447

(b) Changes in volumes

Volume (m3) Deleted Inserted Resized Net Change

Res.
Buildings only −13,140,040 47,926,052 −3,887 34,782,125
Building Parts −5,018,904 1,483,282 294,233 −3,241,389

Com.
Buildings only −5,670,587 16,790,807 −8,756 11,111,464
Building Parts −5,151,485 1,663,301 104,811 −3,383,373

Ind.
Buildings only −12,566,693 20,044,279 964 7,478,550
Building Parts −5,654,800 1,511,743 24,979 −4,118,078

Total change in volumes −47,202,509 89,419,464 412,344 42,629,299

Table 7.12 shows that among these three categories, residential space saw the largest
net expansion in Hamburg between 2016 and 2022, both in terms of area and volume.
This is followed by the net increase in both commercial area and volume. On the
other hand, the industrial area remains nearly unchanged, while the volume increases
notably. This trend might suggest that during this timeframe, the focus of the city was
primarily on creating more living space, followed by increasing sufficient amount of
commercial space, while the industrial space barely expanded horizontally but saw a
growth in vertical size.

279

7. Application Results

7.6.2. Assessing Interpretation Coverage among Detected Changes

When interpreting a large number of detected changes based on a large number of
predefined pattern rules, one common query arises as how to determine the coverage of
matched patterns over all changes, as well as how to identify changes that still remain
uninterpreted. A change is considered interpreted if it has been aggregated or acquired
for the creation of a next higher-level change. Thus, a change is considered uninter-
preted if it has not been aggregated to construct any higher-level changes, indicating
that it has not yet been found in any change patterns by the interpreter. As described
in Chapter 5, each time a new interpreted change is created, a connection is also
established between it and all its preceding components. Therefore, such relationships
in the graphs can be utilized to identify both interpreted and uninterpreted changes.
Listing 7.10 presents a Cypher query to detect such interpreted and uninterpreted
changes based on the results of the interpretation process.� �

1 // Search for interpreted changes (both base and intermediate changes)

2 MATCH (c:Change)

3 WHERE exists ((c)-[:AGGREGATED_TO]->()) // has been aggregated

4 RETURN c

5

6 // Search for uninterpreted changes

7 MATCH (c:Change)

8 WHERE NOT exists((c)-[:AGGREGATED_TO]->()) // not yet aggregated

9 AND NOT exists (()-[:AGGREGATED_TO]->(c)) // not an aggregation

10 RETURN c� �
Listing 7.10: A Cypher query used to search for interpreted and uninterpreted changes

among all detected changes.

Table 7.13 provides an overview of the coverage of interpreted changes over all detec-
ted changes in the use case of Hamburg. The table considers a change as interpreted if
it belongs to at least one predefined pattern. Changes that are part of multiple patterns
are counted only once in this table (the interpretation process, however, considers all
potential patterns for each change regardless of whether it has been previously found
in any patterns). The patterns employed in this experiment are outlined in Section 7.5.1.

As shown in the table, even with a small set of patterns used, more than 5 out of
9 million detected changes could be interpreted. Furthermore, alone the geometric
pattern (and its intermediate components) for detecting raised roofs in buildings and
building parts already accounts for 90.2 % of all surface translations, 74.2 % of all surface
size changes, and 30.5 % of all updated measured heights of buildings and building
parts.

280

7. Application Results

Table 7.13.: An overview of the coverage of interpreted edit nodes and base changes over
all detected changes in the use case of Hamburg. A change is considered
interpreted if it belongs to at least one identified pattern. The change
patterns employed in this experiment are outlined in Section 7.5.1.

Base Change Detected Interpreted Coverage

Inserted Node

Address 930 930 100.0 %
Boundary surface 2,659 1,515 57.0 %
Building 30,532 30,532 100.0 %
Building name 1,553 1,553 100.0 %
Building part list 696 696 100.0 %
Measured height 704 704 100.0 %
Roof type 971 971 100.0 %
Other geometries 1,462 0 0.0 %

Deleted Node

Address 1,792 1,792 100.0 %
Building 23,322 23,322 100.0 %
Building part 13,904 13,904 100.0 %
Boundary surface 1,079,091 2,476 0.2 %
Generic attribute 2,088 2,088 100.0 %
Measured height 696 696 100.0 %
Roof type 694 694 100.0 %
Other geometries 659,366 0 0.0 %

Inserted Property Number of storeys 711 711 100.0 %

Deleted Property Number of storeys 768 768 100.0 %

Updated Property

Address 6,100 0 0.0 %
Building name 663 0 0.0 %
Building function 140,676 26,319 18.7 %
Generic attribute 876,228 0 0.0 %
Identifier 806,792 806,792 100.0 %
Measured height 653,154 198,895 30.5 %
Modification date 806,792 806,792 100.0 %
Number of storeys 2,246 0 0.0 %
Roof type 65,028 0 0.0 %

Geometric Change
Translation 1,143,966 1,032,293 90.2 %
Size change 2,911,548 2,161,053 74.2 %
Top-level split 2,692 2,692 100.0 %

Total number and coverage 9,237,824 5,118,188 55.4 %

281

7. Application Results

Notably, inconsistencies were detected while parsing and matching the geometric
contents of 2D surfaces in the original datasets, where all points of a surface are
collinear, preventing the matching process from constructing a plane and normal vector
for the given surface. In such cases, these geometries are considered invalid, thus not
eligible for matching. This issue was observed in 2,476 surfaces from the 2016 datasets
and 1,515 surfaces from the 2022 datasets. This leads to 2,476 deleted surfaces and
1,515 inserted surfaces, which are marked as interpreted in Table 7.13. Other deleted
boundary surfaces include those that exceed the allowed thresholds for translation and
rotation, as well as those differing in sizes and shapes from the newer ones.

The patterns used for interpreting the repurposing of buildings in Hamburg within
the residential, commercial, and industrial space involves the code values in the ranges
of [1000, 1025], [2000, 2100), and [2100, 2200), respectively, as detailed in Section 7.5.5.
These patterns account for approximately one fifth of all updated building function
values, as shown in Table 7.13.

7.7. Multi-perspective Change Interpretation

Based on the stakeholders introduced earlier in Section 2.4 and their varying interests
in different types of changes discussed throughout this chapter, a semantic change-
stakeholder network representing the relevance relations between these stakeholders
and interpreted changes can be established, as detailed in Section 5.5 and visualized in
Figure 7.33.

The figure demonstrates how the complex and hidden interrelations between stake-
holders and changes can be captured in one single graph. Starting from a node
representing a stakeholder or an actor role on the left, paths can be traced across
adjacent layers until the nodes representing changes on the right are reached. The
existence of fully traced paths between the left and right layers indicates that relevance
relations have been found between the corresponding stakeholders and changes.

For instance, the city planning department, represented by the city mayor, is interested
in processes that may have an impact on the city’s available living space, such as
building repurpose, building renovation, floor addition, or historic preservation of
buildings. These actions are reflected in the datasets through changes such as updated
building functions, elevated roofs of buildings and building parts, as well as unchanged
buildings (which might also be caused by an already ongoing renovation such as in the
case of the Congress Center Hamburg detailed in Section 7.5.2).

Although the traced paths in this example are shown in the direction from left to
right, the network is bidirectional, allowing for both forward and backward path-tracing
techniques.

282

7. Application Results

Change Type
Layer (L1)

Reasoning
Layer (L2)

Actor Role
Layer (L3)

Stakeholder
Layer (L4)

0.4

Identifier
Changed

0.6

Date
Changed

0.8

Building
Unchanged

0.7

Function
Changed

0.9

Roof
Raised

0.4

Batch
Update

0.5

Data
Improvement

0.7

Historic
Preservation

0.9

Building
Repurpose

0.8

Building
Renovation

0.8

Floor
Addition

0.7

Data
Broker

0.8

City Model
Manager

0.6

Urban
Planner

0.9

City
Mayor

0.4

Real Estate
Appraiser

0.5

Fire Safety
Officer

0.7

Technology
Company

0.8

Mapping
Agency

0.9

City Planning
Department

0.6

Real Estate
Company

0.5

Fire and Rescue
Department

Figure 7.33.: A network visualization of the relevance relations between given stake-
holders (two left-most layers) and interpreted changes (right-most layer)
in the example of Hamburg. For a specific stakeholder, relevant changes
can be found by tracing paths within the network from left to right (blue).
Conversely, for a specific change, interested stakeholders can be discovered
by tracing paths from right to left (not highlighted in this figure). For
visual clarity, only normalized node weights are shown.

283

7. Application Results

Moreover, even if two stakeholders share an interest in the same change, their levels
of interest may differ. These interest or relevance levels can be represented by the
weights of both the relationships and nodes in the network, as detailed in Section 5.5.2.
For visual clarity, only normalized node weights are shown in Figure 7.33.

The normalized weights of the relationships within this network can be found in
Figure 7.34, which provides a visualization of the network in Neo4j Browser. For visual
clarity, only relationships in the backward direction from the Stakeholder Layer L4 to
the Change Type Layer L1 are shown.

Listing 7.11 gives an example of how such a network, along with the weights of its
nodes and relationships, can be constructed using Cypher. The weights assigned to
nodes and relationships indicate the relevance levels of the concepts they represent,
with higher values meaning higher relevance. All weight values provided in this
example can be adjusted based on individual use cases. Furthermore, while only one
path-tracing direction is selected, the same techniques can be applied to the other
direction.� �

1 // Create nodes in the Change-Stakeholder Network (CSN)

2 MERGE (city_planning_department:STAKEHOLDER:CSN {

3 name: "City Planning Department", weight: 0.9})

4 MERGE (city_mayor:ACTOR_ROLE:CSN {

5 name: "City Mayor", weight: 0.9})

6 MERGE (building_repurpose:REASONING:CSN {

7 name: "Building Repurpose", weight: 0.9})

8 MERGE (function_changed:CHANGE_TYPE:CSN {

9 name: "Function Changed", weight: 0.7})

10

11 // Create relationships for backward path-tracing

12 MERGE (city_planning_department)-[:BACKWARD {

13 weight: 0.9}]->(city_mayor)

14 MERGE (city_mayor)-[:BACKWARD {

15 weight: 0.9}]->(building_repurpose)

16 MERGE (building_repurpose)-[:BACKWARD {

17 weight: 1.0}]->(function_changed)� �
Listing 7.11: An example Cypher query for constructing a network representing stake-

holders, changes, and their semantic relations.

A complete compilation of all Cypher queries employed in this thesis to construct
the entire network can be found in Listing C.1. As the network is a type graph, this
step only needs to be performed once.

284

7. Application Results

0.7

0.8

0.7

0.9

0.9

0.6

0.5

0.7

0.6

0.8

0.
8

0.9

0.6

0.7

0.
2

0.4

0.8

0.6
0.9

0.7

0.6

0.9

0.2

0.4

1.0

1.0

0.
3

0.6

0.8

0.8

Identifier
Chang…

Date
Chang…

Building
Uncha…

Function
Chang…

Roof
Raised

Batch
Update

Data
Impro…

Historic
Preser…

Building
Repur…

Building
Renov…

Floor
Addition

Data
Broker

City
Model
Man…

Urban
Planner

City
Mayor

Real
Estate
App…

Fire
Safety
Offi…

Technol…

Mapping
Agency

City
Planning
Dep…

Real
Estate
Co…

Fire and
Rescue

Dep

Figure 7.34.: A visualization in Neo4j Browser of the change-stakeholder network in-
troduced in Figure 7.33. For clarity, only normalized relationship weights
from left to right are shown, and connections from the change type nodes
(green) to its instances detected between the datasets are omitted.

285

7. Application Results

Based on the constructed change-stakeholder network, path-tracing techniques can
be employed to determine, for example, which changes may be relevant to the city
mayor representing the city planning department. These techniques were introduced in
Section 5.5.3 and are illustrated in the following Cypher query shown in Listing 7.12.� �

1 // Stakeholder-Change analysis

2 // Find all change types reachable from a given stakeholder

3 MATCH p=(city_planning_department:STAKEHOLDER {

4 name: "City Planning Department"

5 })-[:BACKWARD*]->(c:CHANGE_TYPE)

6 // Display paths and calculate their accumulated weights

7 RETURN reduce(name="", r in relationships(p)

8 | name + "(" + endNode(r).name + ")") AS traced_path,

9 round(reduce(weight=0, r in relationships(p)

10 | weight + startNode(r).weight * r.weight), 1) AS weight

11 // Sort traced paths by their weights in descending order

12 ORDER BY weight DESC� �
Listing 7.12: Path-tracing analysis in Cypher to evaluate relevance levels of changes for

a specific stakeholder.

The query begins with a stakeholder node representing the city planning department
on the left side of the network. It then traces all paths leading to change types on
the right. The length of the paths, and consequently the number of layers in the
network, can be arbitrary, as allowed by the notation ‘∗’ in the query. The relationship
type BACKWARD implies the use of backward path-tracing techniques in a consistent
direction, from the Stakeholder Layer L4 to the Change Type Layer L1. Finally, the fully
traced paths are evaluated based on their accumulated weights using Equation (5.1).
The results are presented in Figure 7.35.

The results show that, based on the node and relationship weights in this specific
example, the city mayor is primarily interested in buildings that may have been
repurposed, such as those transitioned from industrial to residential use, as indicated
by the updated function values of the buildings. On the other hand, an urban planner,
another representative of the city planning department, is more interested in unchanged
buildings that are part of a historic preservation program.

Each change type node at the end of the fully traced paths represents all instances
of that change type. Listing 7.13 provides an example Cypher query for connecting
such a change type node with its corresponding instances stored in the graphs. For
instance, the node Function Changed represents all 140,676 buildings with updated
function values, as showcased previously in Section 7.5.5.

286

7. Application Results

Figure 7.35.: The Cypher results of the path-tracing analysis for the stakeholder City
Planning Department. All traced paths are evaluated and sorted by their
accumulated weights. The traced path through the nodes City Mayor,
Building Repurpose, and Function Change has the highest accumulated
weight of 2.5, indicating that repurposed buildings are of the greatest
interest to the city mayor. On the other hand, unchanged buildings, with
an accumulated weight of 1.6, are of the least interest to the city mayor
among the listed paths.

287

7. Application Results

� �
1 // Connect a change type node with all instances

2 MERGE (:CHANGE_TYPE:CSN {name: "Function Changed"})<-[:INSTANCE]

3 -(:CHANGE {change_type: "UpdatedBuildingFunction"})� �
Listing 7.13: An example Cypher query for connecting a change node type with all

its instances previously created during the matching and interpretation
process.

These changes, aggregated by the interpretation process based on predefined change
pattern rules, are attached directly to building nodes. As a result, buildings affected by
a given change can be efficiently retrieved using their existing connection, as illustrated
in Listing 7.14.� �

1 // Retrieve all repurposed buildings

2 MATCH (b:BUILDING)<-[:ATTACHED]-(:CHANGE)

3 -[INSTANCE]->(:CHANGE_TYPE:CSN {name: "Function Changed"})

4 RETURN b� �
Listing 7.14: An example Cypher query for retrieving all buildings corresponding to a

change type node. This requires existing connections between the change
type node and all its instances.

Since all individual changes and their interpreted changes are connected within a
change network, the path-tracing techniques can trace from a starting stakeholder node
all the way to individual building nodes and even further to the smallest, lowest-level
individual changes stored deep within the database. This automatic approach requires
no expert knowledge of the database structure when performing path-tracing analyses.

However, this may require a significant number of new relationships. In the example
above, with the change type node Function Changed, 140,676 additional relationships are
created. This also means that any newly interpreted change must also be linked to its
type node, leading to high maintenance costs if the interpretation process is performed
multiple times.

Alternatively, the explicit relationships between change type nodes and their instances
can be omitted. Building nodes can be queried at runtime based on the change type by
leveraging semantic indexing on node labels and properties. This approach avoids a
high number of additional relationships, thereby eliminating the need to repeatedly
link newly created change instances with their corresponding type nodes. However,
querying using semantic indexes is generally slower than using explicit connections.
Moreover, this approach cannot be automatically applied when integrated into the
path-tracing analyses between stakeholders and changes.

288

7. Application Results

7.8. Runtime Complexity and Scalability

To evaluate the runtime complexity and scalability of all methods proposed in this
research, several subset datasets, in addition to the full Hamburg datasets, are also
employed. These subsets are created by selecting the first 25 %, 50 %, and 75 % of tiles
from the complete datasets, arranged in ascending alphabetical order.10 Each tiled
dataset is named using an ordered unique identifier, ensuring that a lexicographical
sort also corresponds to a spatial sort of the tiles.

However, despite the number of selected tiled documents being proportional, the
number of buildings and the total disk size of each subset dataset may not be pro-
portional to 25 %, 50 %, and 75 % of those of the full datasets. This is due to the fact
that many tiled documents may be empty, such as those located between the island of
Neuwerk and the city of Hamburg, as shown in Figure 7.23. A summary of all datasets
employed in this study is shown in Table 7.14.

Table 7.14.: An overview of all CityGML datasets used for as-
sessing the processes proposed in this research.

Employed Nr. of Nr. of Total
Dataset Tiles Buildings Size

Hamburg 2016
- subset 25 % 197 81,923 1.61 GB
- subset 50 % 394 196,595 4.06 GB
- subset 75 % 591 304,341 6.25 GB
- subset 100 % 788 374,990 7.61 GB

Hamburg 2022
- subset 25 % 222 73,224 1.51 GB
- subset 50 % 443 197,890 4.36 GB
- subset 75 % 665 312,527 6.81 GB
- subset 100 % 887 383,439 8.25 GB

In this experiment, the complete workflow, containing the mapping, matching, and
interpretation process, was performed three times for each dataset. An average runtime
was then calculated to provide a more reliable value. These average values of the total
runtime, along with the runtime of each process, are visualized in Figure 7.36.

10An alternative approach involves importing all tiled datasets from both 2016 and 2022 into two separate
database instances of the 3DCityDB, followed by re-exporting them as CityGML datasets representing
the same spatial region. This ensures that the exported subsets are spatially comparable.

289

7. Application Results

0 100 200 300 400
Time (minutes)

3.12

8.42

13.06

15.86

D
at

as
et

(G
B)

52.3

161.3

335.6

461.6

Runtime of the Mapping, Matching, and Interpretation Process (stacked)

map
match
interpret

3.12 8.42 13.06 15.86
Dataset (GB)

0

50

100

150

200

250

300

Ti
m

e
(m

in
ut

es
)

8.1 23.0
34.5 43.619.1

43.8
71.7

90.4

25.1

94.5

229.4

327.6

y = 2.7x− 0.4

y = 5.6x− 0.3

y = 1.6x2 − 1.8x + 16.7

Runtime of the Mapping, Matching, and Interpretation Process (trend)

map
match
interpret

Figure 7.36.: A visualization of the average runtime of the mapping, matching, and
interpretation process employed for the Hamburg datasets from 2016 and
2022. While the runtime for the mapping and matching process exhibits a
linear growth (blue and orange), the runtime of the interpretation process
follows a quadratic polynomial trend (green).

290

7. Application Results

The mapping of the entire Hamburg datasets of 2016 and 2022 took approximately
44 minutes. This corresponds to a mapping speed of 290 buildings per second. More
than 30 % of the total runtime for mapping is allocated for resolving XLinks, a process
that connects all isolated graph representations of CityGML objects to form a cohesive
connected graph, as described in Section 3.4.

The process of matching these fully mapped datasets took an additional 1.5 hours.
This corresponds to a comparison speed of 140 buildings per second or a detection
speed of more than 1,700 changes per second.

Additional 5.5 hours were needed to match, identify, and interpret the predefined
patterns among detected changes, which corresponds to an interpretation speed of
nearly 40 buildings per second or an aggregation speed of 470 changes per second. A
substantial part of this time was allocated for the evaluation of complex conditions
required for the creation of the next higher-level changes using a JavaScript engine. The
script engine allows for comprehensive use and parsing of complex boolean expressions,
along with the application of user-defined functions, at the cost of additional runtime.

The mapping, matching, and interpretation process of the entire Hamburg datasets
account for 10 %, 20 %, and 70 % of the total runtime, respectively. While the runtime
of the mapping and matching process exhibits a linear trend, the runtime of the
interpretation process follows a quadratic polynomial trajectory, as approximated at
the bottom of Figure 7.36.

The polynomial fitting functions of these process are detailed as follows:

Mapping Process : y = 2.7x− 0.4 (7.3)

Matching Process : y = 5.6x− 0.3 (7.4)

Interpretation Process : y = 1.6x2 − 1.8x + 16.7 (7.5)

In the fitting functions depicted above, the x values denote the disk sizes of the
employed datasets (in gigabytes), and the y values represent their corresponding
runtime (in minutes). As observed at both the top and bottom of Figure 7.36, despite
being selected proportionally to the number of tiled documents, the disk sizes of
the employed datasets are disproportional to the number of their respective tiles, as
indicated by the unequal spacing between the datasets in the figures.

As previously discussed in Section 4.1.3, the graph and subgraph isomorphism
problem generally pose significant challenges due to its high complexity, particularly
in large graphs. However, by leveraging optimization and heuristic strategies based on
the semantic and geometric information available in CityGML documents, the graph
matching methods proposed in this thesis demonstrate an efficient linear runtime
complexity, as shown in Figure 7.36 and Equation (7.4).

291

8. Conclusion and Outlook

This chapter summarizes the methods proposed in this thesis, discusses their strengths
and limitations, and highlights the contributions of this research to other studies within
similar fields. Lastly, the chapter outlines how the work can be adjusted, extended, and
utilized in future applications and studies.

8.1. Summary of this Work

Within the context of smart cities and semantic 3D city modelling, this thesis introduces
the concepts of Urban Digital Twins (UDTs) in general and emphasizes those that
utilize a semantic 3D city model, predominantly given in CityGML, as one of their core
components for the virtual representation of the physical city. As one of the defining
features of an urban digital twin, the bidirectional data flow between the physical city
and its virtual counterpart requires automatic and efficient change detection between
different temporal versions of both the real world and its virtual city model. With
the focus on the virtual side, this research shows the challenges and complexities of
not only detecting changes in CityGML documents but also deciphering them to gain
valuable insights into their interrelationships. Thus, this research further explores how
the detected changes can be interpreted by revealing and studying their hidden patterns,
and how these interpretations can be leveraged to benefit various stakeholders.

The thesis addresses this problem by first highlighting the structural similarities
between CityGML documents and graphs. It proposes an efficient method for mapping
text-based CityGML documents onto graphs stored in a graph database. The use
of graphs allows for not only efficient querying but also interactive visualization of
CityGML objects and their complex interrelationships. The mapping process causes no
information loss in all tested datasets and can be employed to map all objects across all
fourteen thematic modules and all five different Level of Details (LODs) of CityGML.
To manage large CityGML datasets, as in the case of Hamburg, the input documents
are first divided into smaller pieces, each of which can then be mapped concurrently
onto graphs. However, the resulting graphs become disconnected due to these pieces
being separated from the original CityGML document. To address this, XLinks can
be resolved to reconnect generated subgraphs. This resolution process can also be

292

8. Conclusion and Outlook

employed to replace existing XLink connections with explicit graph relationships, such
as between a solid and its boundary surfaces each referenced through an XLink.

Given both the complexities and limitations of directly comparing CityGML docu-
ments in their text form, this thesis proposes employing their graph representations as
a basis for the comparison of the original CityGML documents. However, matching
graphs, a problem often referred to as the graph and subgraph isomorphism problem
in graph theory, presents numerous challenges, especially in large graphs. To address
this, optimization and heuristic strategies are introduced, such as those that utilize the
semantic labelling of nodes and relationships, as well as spatial indexing for efficient
querying of city objects with geometric content. Despite these optimizations, multiple
matching candidates may still exist for a reference object, especially in one-to-many and
many-to-many relationships. The optimal match among these matches is determined
based on its semantic and geometric similarity levels to the reference object. For in-
stance, among all points located within the vicinity of a reference point, the point with
the minimum distance is considered the best match. A surface is considered an optimal
match if it has minimum difference in orientation and overlapping volume with the
reference surface in 3D space. During these geometric calculations, error tolerances,
such as for lengths, angles, areas, and volumes are taken into account. Additionally, the
matching process also considers the possibility of translations and size changes among
geometric objects in 3D space, as well as split changes of top-level features. Whenever
a change is detected, a node representing this change is created and attached to the
source nodes where the change occurred, enabling efficient retrieval of these changes
and their context.

Identifying changes is only half of the solution; the other half is to understand them.
The matching process of large CityGML datasets often results in millions of changes,
rendering them impossible for humans to comprehend. While an individual, isolated
change may not provide any crucial information, collectively, they can reveal hidden
patterns with valuable insights. However, a pattern may consist of numerous changes,
while a change may be part of multiple patterns at the same time. Therefore, a rule
network is proposed to allow for describing all rules for matching such complex change
patterns in one centralized type graph, thereby eliminating any redundancies. Rule
nodes and relationships can be assigned with various properties and directives to
guide the interpretation process, such as specifying the next content type to search
for while navigating within the graphs. These rules are aggregative, reducing a
large number of low-level changes into a significantly smaller number of higher-level
semantic changes. As a result, a single interpreted change may represent hundreds or
thousands of lower-level changes, as observed with the patterns for raised building
roofs. Like changes, when a pattern has been matched, a new interpretation node is
created and attached to the corresponding source content nodes. Given the reduced

293

8. Conclusion and Outlook

number of interpreted changes and their high semantic levels, the interpretation
results become more manageable for both humans and machines. Based on these
generated interpretation nodes, meaningful interpretations and efficient analyses can
be performed.

However, the perception of these changes varies significantly among stakeholders.
While a data broker may be interested in the changes made to the geometric represent-
ations of buildings, a city mayor has great interest in changes that could impact the
city on a broader scale, such as fluctuations in the city’s residential, commercial, and
industrial space. Even when two stakeholders share an interest in the same change,
their levels of interest may differ. Such complex interrelations between stakeholders
and changes, as well as within stakeholders and changes themselves, can be captured
in one semantic layered network. Each layer can represent all changes, the actions that
may have caused them, or the stakeholders. These layers are serially connected with
bidirectional relationships, allowing for analyses between stakeholders and changes
in both directions: (1) given a change, find interested stakeholders, and (2) given a
stakeholder, identify relevant changes. This can be achieved by employing path tracing
among layers, a technique that allows for the efficient identification of reachable nodes
in the network from a starting node.

Optimization strategies for dealing with massive CityGML datasets are proposed.
These strategies leverage both the built-in thematic indexing provided by the graph
database Neo4j and the implemented spatial indexing using an R-tree. Moreover, to
improve runtime efficiency, parallel execution of the mapping, matching, and inter-
pretation process is performed. To avoid concurrency issues such as deadlocks, the
processes are executed in separate database transactions with isolated input and output
resources.

Finally, the methods proposed in this thesis are evaluated using the massive CityGML
datasets of Hamburg from 2016 and 2022. Detected changes and their corresponding
patterns are shown and analysed. Some interesting findings and observations about
the Hamburg datasets are also discussed and visualized. The research demonstrates
how these interpreted changes can be utilized for further analyses, such as calculating
the changes in residential, commercial, and industrial space in the city.

8.2. Discussion and Contributions

This section discusses the strengths and limitations of the mapping, matching, and
interpretation process. It then highlights the scientific contributions of this thesis to
relevant research fields.

294

8. Conclusion and Outlook

8.2.1. Strengths and Limitations

All methods in this research are graph-based and operate on the same centralized graph
consisting of two subgraphs for the old and new CityGML documents. The mapping
process generates these graphs that account for circular references, ensuring accurate
representations of the original CityGML documents. However, for the subsequent
processes to terminate, these graphs must be acyclic. As a result, the matching and
interpretation process are applicable only to CityGML version 2.0 datasets, which is
the focus of this thesis, as version 3.0 datasets often include circular links. Moreover, to
guarantee that all information is processed, all content nodes of a CityGML document
must be reachable from the source node representing its city model. As a result,
CityGML graphs are weakly connected. These prerequisites, as outlined in Research
Question RQA3 (Graph Data Model for CityGML), were addressed in Section 3.2.

The Mapping Process

A major advantage of the proposed mapping methods is their generic nature, allowing
for graphs to be generated from across all fourteen thematic modules in five different
LODs of CityGML. This was proposed in Research Question RQA4 (Mapping Methods
and Evaluation). Although the primary focus of this research is on CityGML version
2.0, the mapping process has been successfully employed to produce lossless graph
representations of CityGML documents in version 3.0. These graphs enable further
analyses and applications, such as multi-modal navigation within the city using the
graph representations of the new street space models in CityGML version 3.0 (Olbrich,
2023; Olbrich et al., 2024). In addition to CityGML, these methods can also be applied
to map other document types and exchange formats, including CityJSON, onto graphs.

While spatial RDBMSs offer a wide range of geometric and topological capabilities
that Neo4j lacks, Neo4j, like most graph databases, is schema-less, providing great
flexibility when performing write operations. For instance, neighbourhood relationships
between building nodes can be created to represent physical proximity, a task easily
handled in graph databases but difficult using a relational structure.

In response to Research Question RQA7 (Reconstruction of Graphs to CityGML
Objects), methods for reconstructing generated graphs back into their original in-
memory CityGML objects are also proposed. This is particularly useful when handling
geometric objects that can be defined in various syntactic ways. These reverse methods
can be further extended to allow for both the import of CityGML documents into
the graph database and the export of the generated graphs back into their original
CityGML documents. This enhanced set of functionalities opens up new possibilities
for a comprehensive graph database management system for urban objects.

295

8. Conclusion and Outlook

However, while the mapping methods are independent of programming languages,
only a select few languages can effectively realize these. These languages must fully
support object-oriented modelling, allow for the chunk-wise reading and parsing of
CityGML documents, and grant complete access to the internal structure and content
of in-memory objects. As a result, Java was chosen due to its extensive support for
object-oriented programming, the library citygml4j for reading and parsing CityGML
documents, and the capability of the Java Reflection API for accessing and manipulating
the internal structure and content of objects. Moreover, the employed graph database
Neo4j is also written in Java (Neo4j, 2023).

The Matching Process

One of the biggest strengths of the matching process is its ability to quickly identify
the best match for a given subgraph, as required by Research Question RQB8 (Finding
Best Match). This is achieved by utilizing the rich semantic content available in the
graphs as well as thematic and spatial indexing among graph entities. Moreover, in
response to Research Question RQB5 (Syntactic Ambiguities), the matching process
is able to match geometric objects regardless of how they were originally defined in
the CityGML documents. In addition, the comparison of these geometries considers
both potential translations and size changes of surfaces in three dimensions, with error
tolerances taken into account. This corresponds to Research Question RQB6 (Geometric
Uncertainties) and Research Question RQB7 (Geometric Transformations).

Despite the high complexity of the graph and subgraph isomorphism problem, the
matching process presented in this study exhibits linear runtime complexity. This
efficiency is achieved through a combination of various optimization and heuristic
strategies introduced throughout this thesis, which leverage the semantic and geometric
information available in the graph representations of CityGML documents. This
refers to Research Question RQB2 (Graph and Subgraph Isomorphism) and Research
Question RQB3 (Advantages and Challenges of CityGML Graphs).

The implementation of the matching process relies on external geometry libraries for
handling complex geometric objects in 3D space, such as merging adjacent coplanar 2D
surfaces or the calculation of their normal vectors. Despite their effectiveness, these
libraries do not provide additional handling for invalid geometries, such as when all
points of a surface are collinear or not all points are coplanar. Such cases can occur, as
observed in the Hamburg datasets. In these cases, the matching process simply marks
the invalid geometries as unmatched. Moreover, while the use of various thematic and
spatial indexing allows for efficient retrieval of indexed nodes and relationships, it
requires additional disk space storage. For example, the R-tree for indexing building
footprints in Hamburg alone consists of approximately 80 million nodes.

296

8. Conclusion and Outlook

The Interpretation Process

During the interpretation process, the rule network serves as both a descriptor for
the complex interrelations among changes and a repository of predefined rules for
matching patterns among these changes. Since the rule network is a type graph, each
of its nodes represents all instances of a specific change type. This enables the capture
of the dependencies among all patterns without redundancy, addressing Research
Question RQC3 (Rule Definition for Change Patterns).

One of its major advantages is that, despite its compact size, a rule network can be
applied to entire graphs as the interpreter searches for all instances represented by
each rule node. Another advantage is its adaptability, allowing users to construct their
own rules for matching change patterns using the predefined node and relationship
properties. Complex conditions and user-defined functions required for the creation
of higher-level interpreted changes are supported, which are then evaluated using an
internal script engine.

However, in its current state, the rule network can only describe aggregative patterns
among changes. While more complex user-defined functions given in an external script
file are supported, they only have access to the data directly linked to the changes they
process, such as properties stored in change nodes. Thus, complex computations that
involve data stored deeper within the graphs, such as the calculation of the bounding
box of each building, must be performed first during the matching process before their
results can be utilized by the patterns. In addition, while the script engine plays a
crucial role in processing complex boolean expressions with shared local parameters
among adjacent rule nodes, it requires time to initialize and evaluate every condition,
leading to increased runtime.

While the interpretation process can provide significant insights into the change
patterns, it is limited to identifying only those patterns that are provided in the rule
network. Moreover, despite the interpretation process being fully automatic, additional
post-processing steps may be performed to leverage the interpretation results for further
analyses, such as those proposed in Research Question RQC6 (Change-Stakeholder
Model) and Research Question RQC7 (Graph-based Change-Stakeholder Analysis).

While the proposed framework offers robust tools for defining rules, its results would
benefit from an empirical investigation into changes in semantic 3D city models. Key
aspects include when changes occur, their types, who causes them, the real-world
changes they reflect, and typical scopes for certain types of objects and changes.

As observed in the use case of Hamburg in Section 7.5.5, not all patterns need to be
overly complex to reveal valuable insights. For instance, an updated building function
from residential to commercial indicates its repurposing, resulting in a decrease in
living space and an increase in commercial space. Similarly, while the modification

297

8. Conclusion and Outlook

date of a single building may seem minor, a shared update among all buildings within
a region may indicate a mass update.

On the other hand, changes can sometimes reveal the opposite of what they appear
to represent. For instance, a building that remained unchanged in the datasets could
still be undergoing renovations in the real world, as these real-world changes may not
yet be reflected in the datasets, as observed in the case of the Congress Center Hamburg
explained in Section 7.5.4.

8.2.2. Scientific Contributions

This thesis stands at the intersection of multiple disciplines, offering scientific contribu-
tions to each of these fields through its introduction of novel concepts and methods.
The disciplines benefiting from this work include Geographic Information System (GIS),
Computer Science, and Graph Theory.

Contributions to the Field of Geographic Information System (GIS)

This research aligns with numerous other studies in demonstrating the potential and
usability of graphs for storing, representing, managing, analysing, and processing
urban data. These graphs may be referred to by different terms, such as ontology or
knowledge graphs (Ding et al., 2024), or semantic networks (Nguyen & Kolbe, 2022),
but they essentially originate from the same concept: a centralized, attributed graph
capable of storing various types of information of the entire city. To enable the creation
of such graphs, this study provides a novel method to map any city models or objects
onto graphs. These graphs can then be enriched with additional information over time,
allowing for condensing all types of information in one place. Based on these graphs,
complex urban analyses can be performed.

This study is one of the first to provide a full implementation for mapping both
CityGML versions 2.0 and 3.0 completely onto graphs in Neo4j. The methods are
designed for parallelization in multicore systems, enabling high-performance mapping
of massive city models, such as the mapping of the entire Hamburg datasets containing
over 750 thousand buildings in under 45 minutes. Additionally, the research is also
among the first to address the challenges of both comparing semantic 3D city models
and interpreting their changes with respect to different perspectives of stakeholders.

Contributions to the Field of Computer Science

When handling massive datasets, this study employs a number of efficient algorithms
and data structures for its methods, especially during the matching process. In many-to-
many relationships, a brute-force approach could lead to the comparison of all possible

298

8. Conclusion and Outlook

pairs (a Cartesian product between the sets of matching candidates). To avoid this,
the matching process leverages an R-tree for determining matching candidates from
millions of others in logarithmic time. However, this often results in multiple candidates
found. To further reduce this number to a single optimal match, this study introduces
the concept of similarity levels, a metric used to categorize and sort matching pairs of
objects based on their geometric and semantic resemblance. The matching pairs with
the minimum or maximum similarity level (depending on the implementation) are
considered the best match.

During the interpretation process, as a pattern is being processed and its components
are being collected, a memory node is created and attached to a content node that
corresponds to this pattern. This memory node stores temporary information crucial
to the interpretation process, such as the type of the current pattern, the number of
each change components required to activate this pattern, and the number of change
components acquired thus far. To some extent, these memory nodes are functionally
similar to the global working memory utilized in Rete networks. However, these
memory nodes are decentralized and only keep track of the counts of collected elements,
a mechanism similar to those in Petri nets. Unlike the standard Petri nets, where tokens
are indistinguishable, each change component can be identified based on it type,
attributes, and its location in the graphs. This combination of the strengths of both
Rete networks and Petri nets allows the interpretation methods to efficiently process all
detected changes without repetition, thereby enhancing the runtime complexity and
reducing the memory consumption.

Contributions to the Field of Graph Theory

The methods for matching massive graph representations of CityGML documents
presented in this thesis demonstrate how semantic and spatial information of the graph
contents can be combined as heuristic optimizations to boost the performance of graph
matching, a problem that is generally challenging in the field of graph theory.

The syntactic ambiguities allowed in CityGML often cause a typical problem when
matching subgraph representations of CityGML objects, where an object can be defined
using different syntactic methods, resulting in different subgraphs of the same content.
In such cases, a subgraph isomorphism would fail to deliver a match. To address
this issue, the matching process compares not only the structure of subgraphs but
also their semantic contents, such as when comparing the graph representations of
two geometrically equivalent polygons that were defined in different syntactic ways.
Once two subgraphs are identified as a match using this approach, there is no longer a
need to compare their internal structure and sub-elements. This strategy contributes to
improved runtime complexity of the matching process.

299

8. Conclusion and Outlook

8.3. Extendability and Future Work

In the context of Urban Digital Twins (UDTs) with a semantic 3D city model as one of
their core components, the concepts proposed in this study can be utilized to enable
automatic detection and interpretation of changes across different temporal versions of
the virtual city model. The resulting interpretations can not only reveal insights into
changes in the past, but also predict planned changes to be made to the real city in
the future, such as those resulting from a simulation. However, the applicability of the
concepts and methods proposed in this research is not limited to urban digital twins.
They can be adapted, modified, and applied to other application domains, where the
ability to detect and interpret changes in the systems is required.

The graph-based nature of CityGML largely originates from its inheritance from
GML, which is based on the International Organization for Standardization (ISO)
19100 series. Therefore, all concepts and methods introduced in this thesis can also be
extended and applied to domains with datasets based on GML or those conforming to
the ISO 19100 series (Cox et al., 2004), including ALKIS (AdV, 2008) and IndoorGML
(Jang et al., 2023; Lee et al., 2020). This also extends to datasets with comparable
semantic and geometric contents, such as those found in the built environment sector,
including Building Information Modelling (BIM) and Industry Foundation Classes
(IFC) standards (Esser, 2024; Kolbe & Donaubauer, 2021).

The edit operations produced during the matching process can be utilized to update
the old CityGML document to the state of the new one. These edit operations can be
either employed directly in the graphs or converted into SQL-based operations to update
relational representations of CityGML objects, such as those in the 3D City Database
(3DCityDB). Additionally, the interpretation results can also be utilized to filter these
edit operations prior to updating, such as to allow only changes that reflect actual
changes in the physical world. Together with the mapping process and its methods
for reconstructing graphs back into CityGML objects, the processes introduced in this
thesis can be employed to implement a comprehensive graph database management
system for urban objects.

Since changes are attached directly to source nodes in the graphs during the matching
process, it is possible to pinpoint the exact location and extract the content related
to these detected changes. By using a combination of the function toObject(node)
proposed in Section 3.6 to convert any subgraph representation back into its original
in-memory CityGML object, and the library citygml4j to convert it to its corresponding
XML-encoded element, both the states before and after the change of a city object
can be retrieved and exported in CityGML format. This is particularly useful when,
for example, enriching an existing CityGML document, such as the newer one, with
the Version and VersionTransition features that explicitly capture all changes between

300

8. Conclusion and Outlook

the older and newer document, as conceptualized in the new versioning module of
CityGML 3.0 (Kolbe et al., 2021). However, this requires that both the matching and
interpretation process are compatible with the newer version of CityGML.

While the methods for the matching and interpretation process proposed in this thesis
were designed and tested for CityGML 2.0, they can be extended and upgraded for the
newer version 3.0 in future development without extensive effort. This is due to three
main reasons: (1) the matching process is generic and can already detect all changes
in node properties as well as graph structure at its most basic level, (2) both versions
2.0 and 3.0 of CityGML utilize the same GML geometries conforming to the ISO 19100
series, and (3) the rule networks employed during the interpretation process have their
own structure independent of CityGML. However, since the implementation of this
thesis employs the CityGML classes from the library citygml4j, which assigns different
naming schemes to object classes between version 2.0 and 3.0, the same city objects that
exist in both versions may still belong to different classes. Thus, the necessary step to
upgrade the matching and interpreting process for CityGML version 3.0 is to use the
correct class names and their respective functions for each version.

Furthermore, while the rule network was initially designed to describe and define
rules for identifying patterns among changes, it can also be employed to define rules for
examining the consistency and validity of the data provided in CityGML documents,
as well as their changes. For instance, a rule can be constructed to determine whether
a vertical increase in size of the walls of a building coincides with its new measured
height. If these do not coincide, a geometric inconsistency has been detected. This
approach can also be leveraged to enable quality control in CityGML documents.

One of the primary objectives in the conceptualization of the rule network is to
ensure its adaptability, thereby enabling users to define their own rules for pattern
matching. This rule network can be extended to meet the specific requirements of
various use cases, either manually on an ad-hoc basis or automatically using grammar-
based machine learning (Dehbi & Plümer, 2011). Chapter 7 not only demonstrates how
these rules can be defined and applied, but also showcases the techniques for evaluating
and interpreting their results. Even in different use cases with different pattern rules,
these same techniques can still be applied. Similarly, the stakeholders presented in the
semantic layered networks throughout this thesis serve as examples. They illustrate how
the relevance relations between any given change and stakeholder can be evaluated.
Based on the same concepts, these stakeholders and their corresponding networks can
be adapted and extended to accommodate specific use cases.

Due to their structural similarities, the graph representations of CityGML documents
employed in this thesis can be further utilized as training datasets for deep learning
and other research in artificial intelligence for cities in the future.

301

Publications

The list of publications produced over the course of this thesis, all of which were
peer-reviewed with the author serving as the lead contributor, is presented as follows.
All but the last underwent a double-blind process:

1. Nguyen, S. H., & Kolbe, T. H. (2024, September). Identification and Interpretation
of Change Patterns in Semantic 3D City Models [18th 3D GeoInfo Conference
2023, Technical University of Munich (TUM), Munich, Germany]. In T. H. Kolbe,
A. Donaubauer & C. Beil (Eds.), Recent Advances in 3D Geoinformation Science
(pp. 479–496). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-
43699-4_30.

2. Nguyen, S. H., & Kolbe, T. H. (2022, October). Path-tracing Semantic Networks to
Interpret Changes in Semantic 3D City Models [17th International 3D GeoInfo
Conference 2022, University of New South Wales (UNSW), Sydney, Australia]. In
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences (pp. 217–224, Vol. X-4/W2-2022). Copernicus GmbH. https://doi.org/
10.5194/isprs-annals-x-4-w2-2022-217-2022. Best Young Researcher Paper Award.

3. Nguyen, S. H., & Kolbe, T. H. (2021, October). Modelling Changes, Stakeholders
and their Relations in Semantic 3D City Models [16th International 3D GeoInfo
Conference 2021, New York University (NYU), NY, USA]. In ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 137–144,
Vol. VIII-4/W2-2021). Copernicus GmbH. https://doi.org/10.5194/isprs-annals-
viii-4-w2-2021-137-2021. Outstanding Paper Award.

4. Nguyen, S. H., & Kolbe, T. H. (2020, September). A Multi-Perspective Approach to
Interpreting Spatio-Semantic Changes of Large 3D City Models in CityGML using
a Graph Database [15th International 3D GeoInfo Conference 2020, University
College London (UCL), London, UK]. In ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences (pp. 143–150, Vol. VI-4/W1-
2020). Copernicus GmbH. https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-
143-2020.

5. Nguyen, S. H., Yao, Z., & Kolbe, T. H. (2017, October). Spatio-Semantic Com-
parison of Large 3D City Models in CityGML Using a Graph Database [12th

302

https://doi.org/10.1007/978-3-031-43699-4_30
https://doi.org/10.1007/978-3-031-43699-4_30
https://doi.org/10.5194/isprs-annals-x-4-w2-2022-217-2022
https://doi.org/10.5194/isprs-annals-x-4-w2-2022-217-2022
https://doi.org/10.5194/isprs-annals-viii-4-w2-2021-137-2021
https://doi.org/10.5194/isprs-annals-viii-4-w2-2021-137-2021
https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-143-2020
https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-143-2020

8. Conclusion and Outlook

International 3D GeoInfo Conference 2017, University of Melbourne, Melbourne,
Australia]. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences (pp. 99–106, Vol. IV-4/W5). Copernicus GmbH. https:
//doi.org/10.5194/isprs-annals-iv-4-w5-99-2017.

6. Nguyen, S. H., Yao, Z., & Kolbe, T. H. (2018). Spatio-Semantic Comparison
of Large 3D City Models in CityGML Using a Graph Database. In gis.Science
(pp. 85–100, Vol. 3). Wichmann Verlag. https://gispoint.de/artikelarchiv/gis/
2018/gisscience-ausgabe-32018.html.

The following list contains publications with the author serving as a contributor. While
not directly related to the topics discussed in this thesis, they maintain a thematic
relevance within the field of city modelling and urban data management:

1. Olbrich, F., Beil, C., Nguyen, S. H., & Kolbe, T. H. (2024, March). Multimodale Nav-
igationsanwendungen für CityGML 3.0-konforme 3D-Straßenraummodelle mittels
Graphdatenbanken. In T. P. Kersten & N. Tilly (Eds.), DGPF-Jahrestagung 2024 -
Stadt, Land, Fluss - Daten vernetzen, 44. Wissenschaftlich-Technische Jahresta-
gung der DGPF (pp. 357–369, Vol. 32). Deutsche Gesellschaft für Photogrammetrie,
Fernerkundung und Geoinformation (DGPF) e.V.. https://doi.org/10.24407/KXP:
1885708890.

2. Chaturvedi, K., Matheus, A., Nguyen, S. H., & Kolbe, T. H. (2019, December).
Securing Spatial Data Infrastructures for Distributed Smart City Applications
and Services. In Future Generation Computer Systems (pp. 723–736, Vol. 101).
Elsevier BV. https://doi.org/10.1016/j.future.2019.07.002.

3. Chaturvedi, K., Matheus, A., Nguyen, S. H., & Kolbe, T. H. (2018, October).
Securing Spatial Data Infrastructures in the Context of Smart Cities. In 2018 Inter-
national Conference on Cyberworlds (CW) (pp. 403–408). Institute of Electrical
and Electronics Engineers (IEEE). https://doi.org/10.1109/cw.2018.00078.

The implementation of this thesis is available in the following open-source GitHub
repositories:

1. 3DCityKG: An automatic, high-performance tool to generate knowledge graphs
from semantic 3D city models

URL: https://github.com/tum-gis/3dcitykg

2. citymodel-compare: A graph-based tool to detect and interpret changes in large
semantic 3D city models

URL: https://github.com/tum-gis/citymodel-compare

303

https://doi.org/10.5194/isprs-annals-iv-4-w5-99-2017
https://doi.org/10.5194/isprs-annals-iv-4-w5-99-2017
https://gispoint.de/artikelarchiv/gis/2018/gisscience-ausgabe-32018.html
https://gispoint.de/artikelarchiv/gis/2018/gisscience-ausgabe-32018.html
https://doi.org/10.24407/KXP:1885708890
https://doi.org/10.24407/KXP:1885708890
https://doi.org/10.1016/j.future.2019.07.002
https://doi.org/10.1109/cw.2018.00078
https://github.com/tum-gis/3dcitykg
https://github.com/tum-gis/citymodel-compare

Appendices

304

A. Assessing the Mapping of FZK-Haus and
Railway-Scene Datasets

Table A.1 presents the complete evaluation of the preservation of thematic and structural
content in the generated graph representations of the CityGML datasets FZK-Hause
(KIT IAI, 2017) and Railway-Scene (Häfele & Nagel, 2015). This table describes the
mapping patterns for each CityGML element. These descriptions use the following
symbols:

1. Node : Create either a single node or a source node of a subgraph

2. Rel : Create an outgoing relationship from the current node

3. Prop : Insert a property to the current node

4. L : Use the name from the left column in ‘CamelCase’ without namespace prefix

5. l : Use the name from the left column in ‘camelCase’ without namespace prefix

To distinguish between elements and attributes that share the same name but be-
long to different namespaces, the (shortened) package names of their corresponding
Java classes in citygml4j can be used. For instance, the elements bldg:GroundSurface
and tun:GroundSurface have identical names without the namespace prefixes. Thus,
their corresponding nodes in the graph can be labelled as building.GroundSurface and
tunnel.GroundSurface, where building and tunnel are the (shortened) names of their
packages. However, these package names are omitted in the following descriptions for
simplicity, if the element and attribute names are unique and not shared by any other
elements or attributes. For example:

1. core:CityModel Node L
Create a node with the label CityModel.

2. core:cityObjectMember Rel l
Create a relationship with the type cityObjectMember.

3. core:creationDate Prop l
Insert a property with the name creationDate to the current node.

305

A.

4. bldg:measuredHeight Prop l + Node Length
Create a relationship with the type measuredHeight and a node with the label
Length. The new relationship connects the current node with the new node.

5. xlink:href Rel object → Node found by href
Create a relationship with the type object and point it to an existing node that has
the same identifier as the value of href (without ‘#’).

All non-zero cells of Table A.1 are blue. This indicates that the generated graph
representations of all CityGML datasets have achieved the value of 100 % for the type,
instance, and relationship coverage, as well as the XLink replacement, leading to the
total preservation of thematic and structural data of the original CityGML documents.

An excerpt version of this table was shown in Table 3.2.

306

A
.

Table A.1.: Assessing the preservation of thematic and structural content in the generated graph representations of
the CityGML datasets FZK-Haus (KIT IAI, 2017) and Railway-Scene (Häfele & Nagel, 2015). The total
number of occurrences of each CityGML element and attribute per dataset is shown in the cells located
in the respective rows and columns. Cells with full coverage are shown in blue.

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

CityGML elements in ascending XML levels:
00 core:CityModel Node L 1 1 1 1 1 1
01 app:appearanceMember∗ Rel l + Node L 0 0 0 0 2 151
01 core:cityObjectMember∗ Rel l 1 1 1 1 1 52
01 gml:boundedBy Rel l 1 1 1 1 1 0
01 gml:namet Rel l 1 1 1 1 1 0
02 app:Appearance Node L 0 0 0 0 2 151
02 bldg:Building Node L 1 1 1 1 1 3
02 brid:Bridge Node L 0 0 0 0 0 4
02 dem:ReliefFeature Node L 0 0 0 0 0 1
02 frn:CityFurniture Node L 0 0 0 0 0 11
02 gen:GenericCityObject Node L 0 0 0 0 0 2
02 gml:Envelope Node L 1 1 1 1 1 0
02 grp:CityObjectGroup Node L 0 0 0 0 0 1
02 tran:Railway Node L 0 0 0 0 0 10
02 tun:Tunnel Node L 0 0 0 0 0 4
02 veg:SolitaryVegetationObject Node L 0 0 0 0 0 15
02 wtr:WaterBody Node L 0 0 0 0 0 1
03 app:surfaceDataMember∗ Rel l 0 0 0 0 2 151
03 app:themet Prop l 0 0 0 0 0 151

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

307

A
.

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

03 bldg:address Rel l 1 1 1 1 1 0
03 bldg:boundedBy Rel l 0 0 7 7 7 40
03 bldg:classt Rel l + Node Code 1 1 1 1 1 0
03 bldg:functiont,∗ Rel l + Node Code 1 1 1 1 1 1
03 bldg:interiorRoom∗ Rel l 0 0 0 0 7 0
03 bldg:lod0FootPrint Rel l 1 0 0 0 0 0
03 bldg:lod0RoofEdge Rel l 1 0 0 0 0 0
03 bldg:lod1Solid Rel l 0 1 0 0 0 0
03 bldg:lod2Solid Rel l 0 0 1 0 0 0
03 bldg:lod3Solid Rel l 0 0 0 1 0 0
03 bldg:lod4Solid Rel l 0 0 0 0 1 0
03 bldg:measuredHeightt Rel l + Node Length 1 1 1 1 1 0
03 bldg:outerBuildingInstallation∗ Rel l 0 0 0 0 0 56
03 bldg:roofTypet Rel l + Node Code 1 1 1 1 1 0
03 bldg:storeysAboveGroundt Prop l 1 1 1 1 1 0
03 bldg:storeysBelowGroundt Prop l 1 1 1 1 1 0
03 bldg:usaget,∗ Rel l + Node Code 1 1 1 1 1 0
03 bldg:yearOfConstructiont Rel l + Node LocalDate 1 1 1 1 1 0
03 brid:classt Rel l + Node Code 0 0 0 0 0 2
03 brid:functiont,∗ Rel l + Node Code 0 0 0 0 0 2
03 brid:lod3MultiSurface Rel l 0 0 0 0 0 4
03 brid:outerBridgeConstruction∗ Rel l 0 0 0 0 0 3
03 brid:outerBridgeInstallation∗ Rel l 0 0 0 0 0 2
03 core:creationDatet Prop l 1 1 1 1 1 52

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

308

A
.

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

03 core:relativeToTerraint Rel l + Node L 1 1 1 1 1 46
03 core:relativeToWatert Rel l + Node RelativeToWater 0 0 0 0 0 1
03 dem:lodt Prop l 0 0 0 0 0 1
03 dem:reliefComponent∗ Rel l 0 0 0 0 0 1
03 frn:functiont,∗ Rel l + Node Code 0 0 0 0 0 11
03 frn:lod3Geometry Rel l 0 0 0 0 0 11
03 gen:functiont,∗ Rel l + Node Code 0 0 0 0 0 1
03 gen:lod3Geometry Rel l 0 0 0 0 0 2
03 gen:measureAttribute∗ Rel l + Node L 1 1 1 1 1 0
03 gen:stringAttribute∗ Rel l + Node L 2 2 2 2 2 0
03 gml:boundedBy Rel l 0 0 0 0 0 51
03 gml:descriptiont Rel l + Node StringOrRef 1 1 1 1 1 5
03 gml:lowerCornert Rel l + Node DirectPosition 1 1 1 1 1 0
03 gml:namet,∗ Rel l + Node Code 1 1 1 1 1 40
03 gml:upperCornert Rel l + Node DirectPosition 1 1 1 1 1 0
03 grp:groupMembert,∗ Rel l 0 0 0 0 0 14
03 tran:functiont,∗ Rel l + Node Code 0 0 0 0 0 10
03 tran:lod3MultiSurface Rel l 0 0 0 0 0 10
03 tun:boundedBy Rel l 0 0 0 0 0 24
03 tun:outerTunnelInstallation∗ Rel l 0 0 0 0 0 8
03 veg:classt Rel l + Node Code 0 0 0 0 0 14
03 veg:functiont,∗ Rel l + Node Code 0 0 0 0 0 1
03 veg:lod3ImplicitRepresentation Rel l 0 0 0 0 0 15
03 veg:speciest Rel l + Node Code 0 0 0 0 0 15

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

309

A
.

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

03 wtr:boundedBy Rel l 0 0 0 0 0 2
03 wtr:classt Rel l + Node Code 0 0 0 0 0 1
04 app:ParameterizedTexture Node L 0 0 0 0 0 66
04 app:X3DMaterial Node L 0 0 0 0 2 85
04 bldg:BuildingInstallation Node L 0 0 0 0 0 56
04 bldg:GroundSurface Node L 0 0 1 1 1 3
04 bldg:OuterCeilingSurface Node L 0 0 0 0 0 3
04 bldg:OuterFloorSurface Node L 0 0 0 0 0 1
04 bldg:RoofSurface Node L 0 0 2 2 2 8
04 bldg:Room Node L 0 0 0 0 7 0
04 bldg:WallSurface Node L 0 0 4 4 4 25
04 brid:BridgeConstructionElement Node L 0 0 0 0 0 3
04 brid:BridgeInstallation Node L 0 0 0 0 0 2
04 core:Address∗ Rel l + Node L 1 1 1 1 1 0
04 core:ImplicitGeometry Node L 0 0 0 0 0 15
04 dem:TINRelief Node L 0 0 0 0 0 1
04 gen:valuet Prop l 3 3 3 3 3 0
04 gml:Envelope Node L 0 0 0 0 0 51
04 gml:MultiSurface Node L 2 0 0 0 0 27
04 gml:Solid Node L 0 1 1 1 1 0
04 tun:ClosureSurface Node L 0 0 0 0 0 8
04 tun:GroundSurface Node L 0 0 0 0 0 4
04 tun:RoofSurface Node L 0 0 0 0 0 4
04 tun:TunnelInstallation Node L 0 0 0 0 0 8

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

310

A
.

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

04 tun:WallSurface Node L 0 0 0 0 0 8
04 wtr:WaterGroundSurface Node L 0 0 0 0 0 1
04 wtr:WaterSurface Node L 0 0 0 0 0 1
05 app:borderColort Rel l + Node ColorPlusOpacity 0 0 0 0 0 66
05 app:diffuseColort Rel l + Node Color 0 0 0 0 2 85
05 app:emissiveColort Rel l + Node Color 0 0 0 0 2 84
05 app:imageURIt Prop l 0 0 0 0 0 66
05 app:specularColort Rel l + Node Color 0 0 0 0 2 85
05 app:target∗ Rel l 0 0 0 0 0 13,933
05 app:targett,∗ Rel l 0 0 0 0 5 31,808
05 app:textureTypet Rel l + Node L 0 0 0 0 0 66
05 app:transparencyt Prop l 0 0 0 0 2 84
05 app:wrapModet Rel l + Node L 0 0 0 0 0 66
05 bldg:boundedBy Rel l 0 0 0 0 48 0
05 bldg:functiont,∗ Rel l + Node Code 0 0 0 0 0 56
05 bldg:interiorFurniture∗ Rel l 0 0 0 0 15 0
05 bldg:lod2MultiSurface Rel l 0 0 7 0 0 0
05 bldg:lod3Geometry Rel l 0 0 0 0 0 56
05 bldg:lod3MultiSurface Rel l 0 0 0 7 0 40
05 bldg:lod4MultiSurface Rel l 0 0 0 0 7 0
05 bldg:lod4Solid Rel l 0 0 0 0 7 0
05 bldg:opening∗ Rel l 0 0 0 13 13 43
05 bldg:roomInstallation∗ Rel l 0 0 0 0 10 0
05 brid:functiont,∗ Rel l + Node Code 0 0 0 0 0 4

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

311

A
.

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

05 brid:lod3Geometry Rel l 0 0 0 0 0 5
05 core:creationDatet Prop l 0 0 0 0 0 136
05 core:referencePoint Rel l 0 0 0 0 0 15
05 core:relativeGMLGeometry Rel l 0 0 0 0 0 3
05 core:relativeGMLGeometryt Rel l 0 0 0 0 0 12
05 core:relativeToTerraint Rel l + Node L 0 0 0 0 0 48
05 core:relativeToWatert Rel l + Node RelativeToWater 0 0 0 0 0 60
05 core:transformationMatrixt Rel l + Node TransMatrix4x4 0 0 0 0 0 15
05 core:xalAddress Rel l 1 1 1 1 1 0
05 dem:lodt Prop l 0 0 0 0 0 1
05 dem:tin Rel l 0 0 0 0 0 1
05 gml:boundedBy Rel l 0 0 0 0 0 136
05 gml:descriptiont Rel l + Node StringOrRef 0 0 1 1 8 0
05 gml:exterior Rel l 0 1 1 1 1 0
05 gml:lowerCornert Rel l + Node DirectPosition 0 0 0 0 0 51
05 gml:namet,∗ Rel l + Node Code 0 0 7 7 14 101
05 gml:surfaceMember∗ Rel l 2 0 0 0 0 38,666
05 gml:upperCornert Rel l + Node DirectPosition 0 0 0 0 0 51
05 tun:functiont,∗ Rel l + Node Code 0 0 0 0 0 8
05 tun:lod3Geometry Rel l 0 0 0 0 0 8
05 tun:lod3MultiSurface Rel l 0 0 0 0 0 24
05 wtr:lod3Surface Rel l 0 0 0 0 0 2
06 app:TexCoordList Node L 0 0 0 0 0 13,933
06 bldg:BuildingFurniture Node L 0 0 0 0 15 0

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

312

A
.

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

06 bldg:CeilingSurface Node L 0 0 0 0 8 0
06 bldg:ClosureSurface Node L 0 0 0 0 6 0
06 bldg:Door Node L 0 0 0 2 2 9
06 bldg:FloorSurface Node L 0 0 0 0 7 0
06 bldg:IntBuildingInstallation Node L 0 0 0 0 10 0
06 bldg:InteriorWallSurface Node L 0 0 0 0 27 0
06 bldg:Window Node L 0 0 0 11 11 34
06 gml:CompositeSurface Node L 0 1 1 1 1 2
06 gml:Envelope Node L 0 0 0 0 0 136
06 gml:MultiSurface Node L 0 0 7 7 7 136
06 gml:Point Node L 0 0 0 0 0 15
06 gml:Polygon Node L 2 0 0 0 0 38,666
06 gml:Solid Node L 0 0 0 0 7 0
06 gml:TriangulatedSurface Node L 0 0 0 0 0 1
06 xAL:AddressDetails Node L 1 1 1 1 1 0
07 app:textureCoordinatest,∗ Rel l + Node L 0 0 0 0 0 14,106
07 bldg:functiont,ast Rel l + Node Code 0 0 0 0 25 0
07 bldg:lod3MultiSurface Rel l 0 0 0 13 0 43
07 bldg:lod4Geometry Rel l 0 0 0 0 25 0
07 bldg:lod4MultiSurface Rel l 0 0 0 0 61 0
07 bldg:opening∗ Rel l 0 0 0 0 19 0
07 core:creationDatet Prop l 0 0 0 0 0 43
07 core:relativeToTerraint Rel l + Node L 0 0 0 0 0 37
07 core:relativeToWatert Rel l + Node RelativeToWater 0 0 0 0 0 5

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

313

A
.

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

07 gml:boundedBy Rel l 0 0 0 0 0 43
07 gml:descriptiont Rel l + Node StringOrRef 0 0 0 0 25 0
07 gml:exterior Rel l 2 0 0 0 7 38,666
07 gml:interior∗ Rel l 0 0 0 0 0 153
07 gml:lowerCornert Rel l + Node DirectPosition 0 0 0 0 0 136
07 gml:namet,∗ Rel l + Node Code 0 0 0 13 85 17
07 gml:post,∗ Rel l + Node DirectPosition 0 0 0 0 0 15
07 gml:surfaceMembert,∗ Rel l 0 6 14 29 29 4,692
07 gml:trianglePatches Rel l 0 0 0 0 0 1
07 gml:upperCornert Rel l + Node DirectPosition 0 0 0 0 0 136
07 xAL:Locality Rel l + Node L 1 1 1 1 1 0
08 bldg:Door Node L 0 0 0 0 8 0
08 bldg:Window Node L 0 0 0 0 11 0
08 gml:CompositeSurface Node L 0 0 0 4 11 0
08 gml:Envelope Node L 0 0 0 0 0 43
08 gml:LinearRing Node L 2 0 0 0 0 38,819
08 gml:MultiSurface Node L 0 0 0 13 86 43
08 gml:Polygon Node L 0 6 7 5 5 4,692
08 gml:Triangle Node L 0 0 0 0 0 22,022
08 xAL:LocalityNamet,∗ Rel l + Node L 1 1 1 1 1 0
08 xAL:PostalCode Rel l + Node L 1 1 1 1 1 0
08 xAL:Thoroughfare Rel l + Node L 1 1 1 1 1 0
09 bldg:lod4MultiSurface Rel l 0 0 0 0 19 0
09 gml:exterior Rel l 0 6 7 5 5 26,714

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

314

A
.

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

09 gml:interior∗ Rel l 0 0 0 0 0 56
09 gml:lowerCornert Rel l + Node DirectPosition 0 0 0 0 0 43
09 gml:namet,∗ Rel l + Node Code 0 0 0 0 15 0
09 gml:posListt Rel l + Node DirectPositionList 2 0 0 0 0 38,819
09 gml:surfaceMember∗ Rel l 0 0 0 205 14,511 167
09 gml:upperCornert Rel l + Node DirectPosition 0 0 0 0 0 43
09 xAL:PostalCodeNumbert,∗ Rel l + Node L 1 1 1 1 1 0
09 xAL:ThoroughfareNamet,∗ Rel l + Node L 1 1 1 1 1 0
09 xAL:ThoroughfareNumbert,∗ Rel numberOrRange + Node L 1 1 1 1 1 0
10 gml:CompositeSurface Node L 0 0 0 0 16 0
10 gml:LinearRing Node L 0 6 7 5 5 26,770
10 gml:MultiSurface Node L 0 0 0 0 19 0
10 gml:OrientableSurface Node L 0 0 0 0 70 0
10 gml:Polygon Node L 0 0 0 205 14,425 167
11 gml:baseSurfacet Rel l 0 0 0 0 70 0
11 gml:exterior Rel l 0 0 0 205 14,425 167
11 gml:interior∗ Rel l 0 0 0 13 36 24
11 gml:post,∗ Rel l + Node DirectPosition 0 0 37 33 33 0
11 gml:posListt Rel l + Node DirectPositionList 0 6 0 0 0 26,770
11 gml:surfaceMember∗ Rel l 0 0 0 0 232 0
12 gml:LinearRing Node L 0 0 0 218 14,461 191
12 gml:OrientableSurface Node L 0 0 0 0 16 0
12 gml:Polygon Node L 0 0 0 0 216 0
13 gml:baseSurfacet Rel l 0 0 0 0 16 0

t Contains texts ∗ Multi-instances Left value in l ‘camelCase’ or L ‘CamelCase’ Continued on next page

315

A
.

Assessing preservation of thematic and structural content in generated graphs (continued)

Lvl.
Name of CityGML Corresponding Node Label, FZK-Haus in LOD Rail-
Element or Attribute Rel Type, or Prop Name 0 1 2 3 4 way

13 gml:exterior Rel l 0 0 0 0 216 0
13 gml:interior∗ Rel l 0 0 0 0 11 0
13 gml:post,∗ Rel l + Node DirectPosition 0 0 0 1,364 70,420 0
13 gml:posListt Rel l + Node DirectPositionList 0 0 0 0 0 191
14 gml:LinearRing Node L 0 0 0 0 227 0
15 gml:post,∗ Rel l + Node DirectPosition 0 0 0 0 1,302 0

CityGML attributes:
codeSpace Prop l 4 4 4 4 4 0
gml:id Prop l 1 1 22 458 29,383 110,047
name Prop l 3 3 3 3 3 0
orientation Rel l + Node Sign 0 0 0 0 86 0
ring Prop l 0 0 0 0 0 14,106
srsDimension Prop l 5 9 3 3 3 66,025
srsName Prop l 1 1 1 1 1 230
Type Prop L 2 2 2 2 2 0
uom Prop l 2 2 2 2 2 0
uri Prop l 0 0 0 0 0 13,933
xlink:href Rel object→ Node found by href 0 0 7 20 106 26

Total preservation of thematic and structural content 2� 2� 2� 2� 2� 2�

CityGML module prefixes: Core (core), Appearance (app), Building (bldg), Bridge (brid), Relief (dem), CityFurniture (frn), Generics (gen), CityObject-
Group (grp), LandUse (luse), TexturedSurface (tex) (deprecated), Transportation (tran), Tunnel (tun), Vegetation (veg), and WaterBody (wtr) (Gröger
et al., 2012). XML specification prefixes: GML (gml) (Cox et al., 2004), xAL (xAL) (CIQ TC, 2002), and XLink (xlink) (W3C, 2006).
Node Represented as a node Rel Represented as a relationship Prop Stored as a node property
l Value of the left column in ‘camelCase’ (without namespace) L Value of the left column in ‘CamelCase’ (without namespace)

t Element contains text content ∗ Multiple instances may exist

316

B. List of Employed Rules in Cypher for
Detecting Change Patterns

Listing B.1 provides a full compilation of all change pattern rules in Cypher employed
in the implementation of this thesis. The definitions of these rules can be found in
Section 5.3. The rule network containing these patterns was visualized in Figure 7.18.
General guidelines on the construction of such rule networks were provided in Sec-
tions 7.1.3 and 7.5.1. Excerpts of this network were shown throughout Chapter 7.� �

1 // Pattern in id of buildings

2 MERGE (updated_property:RULE {

3 change_type: 'UpdatedProperty'

4 })-[:AGGREGATED_TO {

5 next_content_type: 'Building',

6 search_length: 0,

7 conditions: 'NAME === "id"',

8 propagate: 'NAME',

9 weight: 1

10 }]->(updated_building_id:RULE {

11 change_type: 'UpdatedBuildingId',

12 calc_scope: 'NAME'

13 })-[:AGGREGATED_TO {

14 next_content_type: 'CityModel',

15 scope: 'global'

16 }]->(global_updated_building_ids:RULE {

17 change_type: 'GlobalUpdatedBuildingIds',

18 })

19

20 // Pattern in creationDate of buildings

21 MERGE (updated_property)-[:AGGREGATED_TO {

22 next_content_type: 'Building',

23 search_length: 0,

24 conditions: 'NAME === "creationDate"',

25 propagate: 'RIGHT_VALUE',

317

B.

26 weight: 1

27 }]->(updated_building_creation_date:RULE {

28 change_type: 'UpdatedBuildingCreationDate',

29 calc_scope: 'RIGHT_VALUE'

30 })-[:AGGREGATED_TO {

31 next_content_type: 'CityModel',

32 scope: 'global',

33 propagate: 'RIGHT_VALUE'

34 }]->(global_updated_building_creation_dates:RULE {

35 change_type: 'GlobalUpdatedBuildingCreationDates'

36 })

37

38 // Pattern in measuredHeight of buildings

39 MERGE (updated_property)-[:AGGREGATED_TO {

40 next_content_type: 'Length',

41 search_length: 1,

42 conditions: 'NAME === "value"',

43 propagate: 'LEFT_VALUE;RIGHT_VALUE',

44 weight: 1

45 }]->(updated_measured_height:RULE {

46 change_type: 'UpdatedMeasuredHeight'

47 })-[:AGGREGATED_TO {

48 next_content_type: 'Building',

49 search_length: 1,

50 propagate: 'LEFT_VALUE;RIGHT_VALUE',

51 weight: 1

52 }]->(updated_building_measured_height:RULE {

53 change_type: 'UpdatedBuildingMeasuredHeight',

54 calc_scope: '*'

55 })-[:AGGREGATED_TO {

56 next_content_type: 'CityModel',

57 scope: 'global'

58 }]->(global_updated_building_measured_heights:RULE {

59 change_type: 'GlobalUpdatedBuildingMeasuredHeights'

60 })

61

62 // Pattern for translated surfaces

63 MERGE (translated_polygon:RULE {

64 change_type: 'TranslatedPolygon'

318

B.

65 })-[:AGGREGATED_TO {

66 next_content_type: 'SurfaceProperty',

67 search_length: 1,

68 propagate: 'x;y;z',

69 weight: 1

70 }]->(translated_surface:RULE {

71 change_type: 'TranslatedSurface'

72 })

73

74 // Pattern for translated roofs

75 MERGE (translated_surface)-[:AGGREGATED_TO {

76 next_content_type: 'RoofSurface',

77 propagate: 'x;y;z',

78 weight: 1

79 }]->(translated_roof:RULE {

80 change_type: 'TranslatedRoof'

81 })

82

83 // Pattern for translated walls

84 MERGE (translated_surface)-[:AGGREGATED_TO {

85 next_content_type: 'WallSurface',

86 propagate: 'x;y;z',

87 weight: 1

88 }]->(translated_wall:RULE {

89 change_type: 'TranslatedWall'

90 })

91

92 // Pattern for translated grounds

93 MERGE (translated_surface)-[:AGGREGATED_TO {

94 next_content_type: 'GroundSurface',

95 propagate: 'x;y;z',

96 weight: 1

97 }]->(translated_ground:RULE {

98 change_type: 'TranslatedGround'

99 })

100

101 // Pattern for translated roofs of building parts

102 MERGE (translated_roof)-[:AGGREGATED_TO {

103 next_content_type: 'BuildingPart',

319

B.

104 conditions: 'x;y;z',

105 propagate: 'x;y;z',

106 weight: '*'

107 }]->(translated_building_part_roofs:RULE {

108 change_type: 'TranslatedBuildingPartRoofs'

109 })-[:AGGREGATED_TO {

110 next_content_type: 'Building',

111 conditions: 'x;y;z',

112 propagate: 'x;y;z',

113 weight: '*'

114 }]->(translated_building_roofs_with_bparts {

115 change_type: 'TranslatedBuildingRoofs_WithBParts'

116 })

117

118 // Pattern for translated walls of building parts

119 MERGE (translated_wall)-[:AGGREGATED_TO {

120 next_content_type: 'BuildingPart',

121 conditions: 'x;y;z',

122 propagate: 'x;y;z',

123 weight: '*'

124 }]->(translated_building_part_walls:RULE {

125 change_type: 'TranslatedBuildingPartWalls'

126 })-[:AGGREGATED_TO {

127 next_content_type: 'Building',

128 conditions: 'x;y;z',

129 propagate: 'x;y;z',

130 weight: '*'

131 }]->(translated_building_walls_with_bparts {

132 change_type: 'TranslatedBuildingWalls_WithBParts'

133 })

134

135 // Pattern for translated grounds of building parts

136 MERGE (translated_ground)-[:AGGREGATED_TO {

137 next_content_type: 'BuildingPart',

138 conditions: 'x;y;z',

139 propagate: 'x;y;z',

140 weight: '*'

141 }]->(translated_building_part_grounds:RULE {

142 change_type: 'TranslatedBuildingPartGrounds'

320

B.

143 })-[:AGGREGATED_TO {

144 next_content_type: 'Building',

145 conditions: 'x;y;z',

146 propagate: 'x;y;z',

147 weight: '*'

148 }]->(translated_building_grounds_with_bparts {

149 change_type: 'TranslatedBuildingGrounds_WithBParts'

150 })

151

152 // Pattern for translated building parts

153 MERGE (translated_building_part_roofs)-[:AGGREGATED_TO {

154 next_content_type: 'BuildingPart',

155 name: 'rule_translated_roofs',

156 propagate: 'x;y;z',

157 weight: 1

158 }]->(translated_building_part:RULE {

159 change_type: 'TranslatedBuildingPart',

160 join: 'approxEquals(rule_translated_roofs.x, rule_translated_walls.x)

161 && approxEquals(rule_translated_roofs.y, rule_translated_walls.y)

162 && approxEquals(rule_translated_roofs.z, rule_translated_walls.z)

163 && approxEquals(rule_translated_roofs.x, rule_translated_grounds.x)

164 && approxEquals(rule_translated_roofs.y, rule_translated_grounds.y)

165 && approxEquals(rule_translated_roofs.z, rule_translated_grounds.z)'

166 })

167 MERGE (translated_building_part_walls)-[:AGGREGATED_TO {

168 next_content_type: 'BuildingPart',

169 name: 'rule_translated_walls',

170 propagate: 'x;y;z',

171 weight: 1

172 }]->(translated_building_part)

173 MERGE (translated_building_part_grounds)-[:AGGREGATED_TO {

174 next_content_type: 'BuildingPart',

175 name: 'rule_translated_grounds',

176 propagate: 'x;y;z',

177 weight: 1

178 }]->(translated_building_part)

179

180 // Pattern for translated buildings (with building parts)

181 MERGE (translated_building_part)-[:AGGREGATED_TO {

321

B.

182 next_content_type: 'Building',

183 conditions: 'x;y;z',

184 propagate: 'x;y;z',

185 weight: '*'

186 }]->(translated_building_with_bparts:RULE {

187 change_type: 'TranslatedBuilding_WithBParts',

188 calc_scope: 'x;y;z'

189 })-[:AGGREGATED_TO {

190 next_content_type: 'CityModel',

191 scope: 'global',

192 propagate: 'x;y;z'

193 }]->(global_translated_buildings_with_bparts:RULE {

194 change_type: 'GlobalTranslatedBuildings_WithBParts'

195 })

196

197 // Pattern for translated surfaces of buildings (without building parts)

198 MERGE (translated_roof)-[:AGGREGATED_TO {

199 next_content_type: 'Building',

200 not_contains: 'BuildingPart',

201 conditions: 'x;y;z',

202 propagate: 'x;y;z',

203 weight: '*'

204 }]->(translated_building_roofs_no_bparts:RULE {

205 change_type: 'TranslatedBuildingRoofs_NoBParts'

206 })

207 MERGE (translated_wall)-[:AGGREGATED_TO {

208 next_content_type: 'Building',

209 not_contains: 'BuildingPart',

210 conditions: 'x;y;z',

211 propagate: 'x;y;z',

212 weight: '*'

213 }]->(translated_building_walls_no_bparts:RULE {

214 change_type: 'TranslatedBuildingWalls_NoBParts'

215 })

216 MERGE (translated_ground)-[:AGGREGATED_TO {

217 next_content_type: 'Building',

218 not_contains: 'BuildingPart',

219 conditions: 'x;y;z',

220 propagate: 'x;y;z',

322

B.

221 weight: '*'

222 }]->(translated_building_grounds_no_bparts:RULE {

223 change_type: 'TranslatedBuildingGrounds_NoBParts'

224 })

225

226 // Pattern for translated buildings (without building parts)

227 MERGE (translated_building_roofs_no_bparts)-[:AGGREGATED_TO {

228 next_content_type: 'Building',

229 name: 'rule_translated_roofs',

230 propagate: 'x;y;z',

231 weight: 1

232 }]->(translated_building_no_bparts:RULE {

233 change_type: 'TranslatedBuilding_NoBParts',

234 join: 'approxEquals(rule_translated_roofs.x, rule_translated_walls.x)

235 && approxEquals(rule_translated_roofs.y, rule_translated_walls.y)

236 && approxEquals(rule_translated_roofs.z, rule_translated_walls.z)

237 && approxEquals(rule_translated_roofs.x, rule_translated_grounds.x)

238 && approxEquals(rule_translated_roofs.y, rule_translated_grounds.y)

239 && approxEquals(rule_translated_roofs.z, rule_translated_grounds.z)',

240 calc_scope: 'x;y;z'

241 })

242 MERGE (translated_building_walls_no_bparts)-[:AGGREGATED_TO {

243 next_content_type: 'Building',

244 name: 'rule_translated_walls',

245 propagate: 'x;y;z',

246 weight: 1

247 }]->(translated_building_no_bparts)

248 MERGE (translated_building_grounds_no_bparts)-[:AGGREGATED_TO {

249 next_content_type: 'Building',

250 name: 'rule_translated_grounds',

251 propagate: 'x;y;z',

252 weight: 1

253 }]->(translated_building_no_bparts)

254 MERGE (translated_building_no_bparts)-[:AGGREGATED_TO {

255 next_content_type: 'CityModel',

256 scope: 'global',

257 propagate: 'x;y;z'

258 }]->(global_translated_buildings_no_bparts:RULE {

259 change_type: 'GlobalTranslatedBuildings_NoBParts'

323

B.

260 })

261

262 // Pattern for translated buildings (with or without building parts)

263 MERGE (translated_building_with_bparts)-[:AGGREGATED_TO {

264 next_content_type: 'Building',

265 name: 'rule_with_bparts',

266 propagate: 'x;y;z',

267 weight: 1

268 }]->(translated_building:RULE {

269 change_type: 'TranslatedBuildings',

270 join: 'rule_with_bparts || rule_no_bparts',

271 calc_scope: 'x;y;z'

272 })

273 MERGE (translated_building_no_bparts)-[:AGGREGATED_TO {

274 next_content_type: 'Building',

275 name: 'rule_no_bparts',

276 propagate: 'x;y;z',

277 weight: 1

278 }]->(translated_building)

279 MERGE (translated_building)-[:AGGREGATED_TO {

280 next_content_type: 'CityModel',

281 scope: 'global',

282 propagate: 'x;y;z'

283 }]->(global_translated_buildings:RULE {

284 change_type: 'GlobalTranslatedBuildings'

285 })

286

287 // Pattern for resized polygons

288 MERGE (:RULE {

289 change_type: 'ResizedPolygon'

290 })-[:AGGREGATED_TO {

291 next_content_type: 'SurfaceProperty',

292 propagate: 'x;y;z',

293 weight: 1

294 }]->(resized_surface:RULE {

295 change_type: 'ResizedSurface'

296 })

297

298 // Pattern for resized surfaces

324

B.

299 MERGE (resized_surface)-[:AGGREGATED_TO {

300 next_content_type: 'RoofSurface',

301 propagate: 'x;y;z',

302 weight: 1

303 }]->(resized_roof:RULE {

304 change_type: 'ResizedRoof'

305 })

306 MERGE (resized_surface)-[:AGGREGATED_TO {

307 next_content_type: 'WallSurface',

308 propagate: 'x;y;z',

309 weight: 1

310 }]->(resized_wall:RULE {

311 change_type: 'ResizedWall'

312 })

313 MERGE (resized_surface)-[:AGGREGATED_TO {

314 next_content_type: 'GroundSurface',

315 propagate: 'x;y;z',

316 weight: 1

317 }]->(resized_ground:RULE {

318 change_type: 'ResizedGround'

319 })

320

321 // Pattern for resized roofs of building parts

322 MERGE (resized_roof)-[:AGGREGATED_TO {

323 next_content_type: 'BuildingPart',

324 conditions: 'x;y;z',

325 weight: '*'

326 }]->(resized_building_part_roofs:RULE {

327 change_type: 'ResizedBuildingPartRoofs'

328 })-[:AGGREGATED_TO {

329 next_content_type: 'Building',

330 conditions: 'x;y;z',

331 weight: '*'

332 }]->(resized_building_roofs_with_bparts:RULE {

333 change_type: 'ResizedBuildingRoofs_WithBParts',

334 calc_scope: '*'

335 })-[:AGGREGATED_TO {

336 next_content_type: 'CityModel',

337 scope: 'global'

325

B.

338 }]->(global_resized_building_roofs_with_bparts:RULE {

339 change_type: 'GlobalResizedBuildingRoofs_WithBParts'

340 })

341

342 // Pattern for resized walls of building parts

343 MERGE (resized_wall)-[:AGGREGATED_TO {

344 next_content_type: 'BuildingPart',

345 conditions: 'x;y;z',

346 weight: '*'

347 }]->(resized_building_part_walls:RULE {

348 change_type: 'ResizedBuildingPartWalls'

349 })-[:AGGREGATED_TO {

350 next_content_type: 'Building',

351 conditions: 'x;y;z',

352 weight: '*'

353 }]->(resized_building_walls_with_bparts:RULE {

354 change_type: 'ResizedBuildingWalls_WithBParts',

355 calc_scope: '*'

356 })-[:AGGREGATED_TO {

357 next_content_type: 'CityModel',

358 scope: 'global'

359 }]->(global_resized_building_walls_with_bparts:RULE {

360 change_type: 'GlobalResizedBuildingWalls_WithBParts'

361 })

362

363 // Pattern for resized grounds of building parts

364 MERGE (resized_ground)-[:AGGREGATED_TO {

365 next_content_type: 'BuildingPart',

366 conditions: 'x;y;z',

367 weight: '*'

368 }]->(resized_building_part_grounds:RULE {

369 change_type: 'ResizedBuildingPartGrounds'

370 })-[:AGGREGATED_TO {

371 next_content_type: 'Building',

372 conditions: 'x;y;z',

373 weight: '*'

374 }]->(size_changed_building_grounds_with_bparts:RULE {

375 change_type: 'ResizedBuildingGrounds_WithBParts',

376 calc_scope: '*'

326

B.

377 })-[:AGGREGATED_TO {

378 next_content_type: 'CityModel',

379 scope: 'global'

380 }]->(global_resized_building_grounds_with_bparts:RULE {

381 change_type: 'GlobalResizedBuildingGrounds_WithBParts'

382 })

383

384 // Pattern for resized roofs of buildings (without building parts)

385 MERGE (resized_roof)-[:AGGREGATED_TO {

386 next_content_type: 'Building',

387 not_contains: 'BuildingPart',

388 conditions: 'x;y;z',

389 weight: '*'

390 }]->(resized_building_roofs_no_bparts:RULE {

391 change_type: 'ResizedBuildingRoofs_NoBParts',

392 calc_scope: '*'

393 })-[:AGGREGATED_TO {

394 next_content_type: 'CityModel',

395 scope: 'global'

396 }]->(global_size_changed_buildings_roofs_no_bparts:RULE {

397 change_type: 'GlobalResizedBuildingRoofs_NoBParts'

398 })

399

400 // Pattern for resized walls of buildings (without building parts)

401 MERGE (resized_wall)-[:AGGREGATED_TO {

402 next_content_type: 'Building',

403 not_contains: 'BuildingPart',

404 conditions: 'x;y;z',

405 weight: '*'

406 }]->(resized_building_walls_no_bparts:RULE {

407 change_type: 'ResizedBuildingWalls_NoBParts',

408 calc_scope: '*'

409 })-[:AGGREGATED_TO {

410 next_content_type: 'CityModel',

411 scope: 'global'

412 }]->(global_resized_buildings_walls_no_bparts:RULE {

413 change_type: 'GlobalResizedBuildingWalls_NoBParts',

414 })

415

327

B.

416 // Pattern for resized grounds of buildings (without building parts)

417 MERGE (resized_ground)-[:AGGREGATED_TO {

418 next_content_type: 'Building',

419 not_contains: 'BuildingPart',

420 conditions: 'x;y;z',

421 weight: '*'

422 }]->(resized_building_grounds_no_bparts:RULE {

423 change_type: 'ResizedBuildingGrounds_NoBParts',

424 calc_scope: '*'

425 })-[:AGGREGATED_TO {

426 next_content_type: 'CityModel',

427 scope: 'global'

428 }]->(global_size_changed_building_grounds_no_bparts:RULE {

429 change_type: 'GlobalResizedBuildingGrounds_NoBParts',

430 })

431

432 // Pattern for raised roofs of buildings (without building parts)

433 MERGE (updated_building_measured_height)-[:AGGREGATED_TO {

434 next_content_type: 'Building',

435 name: 'rule_height',

436 conditions: 'RIGHT_VALUE - LEFT_VALUE > 0',

437 propagate: 'LEFT_VALUE;RIGHT_VALUE',

438 weight: '1'

439 }]->(raised_building_roofs:RULE {

440 change_type: 'RaisedBuildingRoofs',

441 join: 'approxEquals(rule_size_changed_walls.z,

442 rule_height.RIGHT_VALUE - rule_height.LEFT_VALUE)

443 && approxEquals(rule_translated_roofs.z,

444 rule_size_changed_walls.z + rule_translated_grounds.z)',

445 calc_scope: '*'

446 })

447 MERGE (translated_building_roofs_no_bparts)-[:AGGREGATED_TO {

448 next_content_type: 'Building',

449 name: 'rule_translated_roofs',

450 conditions: 'approxEquals(x, 0) && approxEquals(y, 0)',

451 propagate: 'x;y;z',

452 weight: '1'

453 }]->(raised_building_roofs)

454 MERGE (translated_building_grounds_no_bparts)-[:AGGREGATED_TO {

328

B.

455 next_content_type: 'Building',

456 name: 'rule_translated_grounds',

457 conditions: 'approxEquals(x, 0) && approxEquals(y, 0)',

458 propagate: 'x;y;z',

459 weight: '1'

460 }]->(raised_building_roofs)

461 MERGE (resized_building_walls_no_bparts)-[:AGGREGATED_TO {

462 next_content_type: 'Building',

463 name: 'rule_resized_walls',

464 conditions: 'approxEquals(x, 0) && approxEquals(y, 0)',

465 propagate: 'x;y;z',

466 weight: '1'

467 }]->(raised_building_roofs)-[:AGGREGATED_TO {

468 next_content_type: 'CityModel',

469 scope: 'global'

470 }]->(global_raised_building_roofs:RULE {

471 change_type: 'GlobalRaisedBuildingRoofs'

472 })

473

474 // Pattern for raised roofs of building parts

475 MERGE (updated_measured_height)-[:AGGREGATED_TO {

476 next_content_type: 'BuildingPart',

477 search_length: 1,

478 propagate: 'LEFT_VALUE;RIGHT_VALUE',

479 weight: 1

480 }]->(updated_building_part_measured_height:RULE {

481 change_type: 'UpdatedBuildingPartMeasuredHeight'

482 })-[:AGGREGATED_TO {

483 next_content_type: 'BuildingPart',

484 name: 'rule_height_bp',

485 conditions: 'RIGHT_VALUE - LEFT_VALUE > 0',

486 propagate: 'LEFT_VALUE;RIGHT_VALUE',

487 weight: '1'

488 }]->(raised_building_part_roofs:RULE {

489 change_type: 'RaisedBuildingPartRoofs',

490 join: 'approxEquals(rule_resized_walls_bp.z,

491 rule_height_bp.RIGHT_VALUE - rule_height_bp.LEFT_VALUE)

492 && approxEquals(rule_translated_roofs_bp.z,

493 rule_resized_walls_bp.z + rule_translated_grounds_bp.z)'

329

B.

494 })

495 MERGE (translated_building_part_roofs)-[:AGGREGATED_TO {

496 next_content_type: 'BuildingPart',

497 name: 'rule_translated_roofs_bp',

498 conditions: 'approxEquals(x, 0) && approxEquals(y, 0)',

499 propagate: 'x;y;z',

500 weight: '1'

501 }]->(raised_building_part_roofs)

502 MERGE (translated_building_part_grounds)-[:AGGREGATED_TO {

503 next_content_type: 'BuildingPart',

504 name: 'rule_translated_grounds_bp',

505 conditions: 'approxEquals(x, 0) && approxEquals(y, 0)',

506 propagate: 'x;y;z',

507 weight: '1'

508 }]->(raised_building_part_roofs)

509 MERGE (resized_building_part_walls)-[:AGGREGATED_TO {

510 next_content_type: 'BuildingPart',

511 name: 'rule_resized_walls_bp',

512 conditions: 'approxEquals(x, 0) && approxEquals(y, 0)',

513 propagate: 'x;y;z',

514 weight: '1'

515 }]->(raised_building_part_roofs)� �
Listing B.1: Rules for detecting change patterns in Cypher employed in the implement-

ation of this thesis.

330

C. Cypher Queries for Constructing a
Change-Stakeholder Network

Listing C.1 provides all the Cypher queries employed to construct a network represent-
ation of stakeholders, changes, and their semantic relations, as introduced in Section 5.5
and visualized in Figures 7.33 and 7.34. Each node and relationship is assigned with
a normalized weight ranging between 0 and 1. All weights can be adjusted based on
individual use cases. Moreover, the path-tracing direction in this example is set from
the Stakeholder Layer L4 to the Change Type Layer L1. However, the same techniques
can be applied for the opposite direction.� �

1 // Change Type Layer (L1)

2 MERGE (identifier_changed:CHANGE_TYPE:CSN {

3 name: "Identifier Changed", weight: 0.4})

4 MERGE (date_changed:CHANGE_TYPE:CSN {

5 name: "Date Changed", weight: 0.6})

6 MERGE (building_unchanged:CHANGE_TYPE:CSN {

7 name: "Building Unchanged", weight: 0.8})

8 MERGE (function_changed:CHANGE_TYPE:CSN {

9 name: "Function Changed", weight: 0.7})

10 MERGE (roof_raised:CHANGE_TYPE:CSN {

11 name: "Roof Raised", weight: 0.9})

12

13 // Reasoning Layer (L2)

14 MERGE (batch_update:REASONING:CSN {

15 name: "Batch Update", weight: 0.4})

16 MERGE (data_improvement:REASONING:CSN {

17 name: "Data Improvement", weight: 0.5})

18 MERGE (historic_preservation:REASONING:CSN {

19 name: "Historic Preservation", weight: 0.7})

20 MERGE (building_repurpose:REASONING:CSN {

21 name: "Building Repurpose", weight: 0.9})

22 MERGE (building_renovation:REASONING:CSN {

23 name: "Building Renovation", weight: 0.8})

331

C.

24 MERGE (floor_addition:REASONING:CSN {

25 name: "Floor Addition", weight: 0.8})

26

27 // Actor Role Layer (L3)

28 MERGE (data_broker:ACTOR_ROLE:CSN {

29 name: "Data Broker", weight: 0.7})

30 MERGE (city_model_manager:ACTOR_ROLE:CSN {

31 name: "City Model Manager", weight: 0.8})

32 MERGE (urban_planner:ACTOR_ROLE:CSN {

33 name: "Urban Planner", weight: 0.6})

34 MERGE (city_mayor:ACTOR_ROLE:CSN {

35 name: "City Mayor", weight: 0.9})

36 MERGE (real_estate_appraiser:ACTOR_ROLE:CSN {

37 name: "Real Estate Appraiser", weight: 0.4})

38 MERGE (fire_safety_officer:ACTOR_ROLE:CSN {

39 name: "Fire Safety Officer", weight: 0.5})

40

41 // Stakeholder Layer (L4)

42 MERGE (technology_company:STAKEHOLDER:CSN {

43 name: "Technology Company", weight: 0.7})

44 MERGE (mapping_agency:STAKEHOLDER:CSN {

45 name: "Mapping Agency", weight: 0.8})

46 MERGE (city_planning_department:STAKEHOLDER:CSN {

47 name: "City Planning Department", weight: 0.9})

48 MERGE (real_estate_company:STAKEHOLDER:CSN {

49 name: "Real Estate Company", weight: 0.6})

50 MERGE (fire_and_rescue_department:STAKEHOLDER:CSN {

51 name: "Fire and Rescue Department", weight: 0.5})

52

53 // Relationships from L4 to L3

54 MERGE (technology_company)-[:BACKWARD {

55 weight: 0.7}]->(data_broker)

56 MERGE (mapping_agency)-[:BACKWARD {

57 weight: 0.8}]->(city_model_manager)

58 MERGE (city_planning_department)-[:BACKWARD {

59 weight: 0.7}]->(urban_planner)

60 MERGE (city_planning_department)-[:BACKWARD {

61 weight: 0.9}]->(city_mayor)

62 MERGE (real_estate_company)-[:BACKWARD {

332

C.

63 weight: 0.9}]->(real_estate_appraiser)

64 MERGE (fire_and_rescue_department)-[:BACKWARD {

65 weight: 0.6}]->(fire_safety_officer)

66

67 // Relationships from L3 to L2

68 MERGE (data_broker)-[:BACKWARD {

69 weight: 0.5}]->(batch_update)

70 MERGE (data_broker)-[:BACKWARD {

71 weight: 0.7}]->(data_improvement)

72 MERGE (city_model_manager)-[:BACKWARD {

73 weight: 0.6}]->(data_improvement)

74 MERGE (urban_planner)-[:BACKWARD {

75 weight: 0.8}]->(historic_preservation)

76 MERGE (city_mayor)-[:BACKWARD {

77 weight: 0.8}]->(historic_preservation)

78 MERGE (city_mayor)-[:BACKWARD {

79 weight: 0.9}]->(building_repurpose)

80 MERGE (city_mayor)-[:BACKWARD {

81 weight: 0.6}]->(building_renovation)

82 MERGE (city_mayor)-[:BACKWARD {

83 weight: 0.7}]->(floor_addition)

84 MERGE (real_estate_appraiser)-[:BACKWARD {

85 weight: 0.2}]->(historic_preservation)

86 MERGE (real_estate_appraiser)-[:BACKWARD {

87 weight: 0.4}]->(building_repurpose)

88 MERGE (real_estate_appraiser)-[:BACKWARD {

89 weight: 0.8}]->(building_renovation)

90 MERGE (real_estate_appraiser)-[:BACKWARD {

91 weight: 0.6}]->(floor_addition)

92 MERGE (fire_safety_officer)-[:BACKWARD {

93 weight: 0.9}]->(building_renovation)

94 MERGE (fire_safety_officer)-[:BACKWARD {

95 weight: 0.7}]->(floor_addition)

96

97 // Relationships from L2 to L1

98 MERGE (batch_update)-[:BACKWARD {

99 weight: 0.6}]->(identifier_changed)

100 MERGE (batch_update)-[:BACKWARD {

101 weight: 0.9}]->(date_changed)

333

C.

102 MERGE (data_improvement)-[:BACKWARD {

103 weight: 0.2}]->(identifier_changed)

104 MERGE (data_improvement)-[:BACKWARD {

105 weight: 0.4}]->(date_changed)

106 MERGE (historic_preservation)-[:BACKWARD {

107 weight: 1.0}]->(building_unchanged)

108 MERGE (building_repurpose)-[:BACKWARD {

109 weight: 1.0}]->(function_changed)

110 MERGE (building_renovation)-[:BACKWARD {

111 weight: 0.3}]->(building_unchanged)

112 MERGE (building_renovation)-[:BACKWARD {

113 weight: 0.6}]->(function_changed)

114 MERGE (building_renovation)-[:BACKWARD {

115 weight: 0.8}]->(roof_raised)

116 MERGE (floor_addition)-[:BACKWARD {

117 weight: 0.8}]->(roof_raised)� �
Listing C.1: Cypher queries for constructing a network representing stakeholders,

changes, and their semantic relations.

334

Glossary

citygml4j An open-source Java API for CityGML. 37–39, 52, 53, 62, 71, 72, 81, 84, 88,
89, 105, 191, 193, 213, 296, 300, 301, 305, 341

CityJSON A JSON-based encoding for a subset of the CityGML data model. 40, 213,
295

Cypher Neo4j’s declarative query language. 88, 164, 165, 194–196, 198, 199, 212, 214,
218, 221, 246–249, 259, 263–265, 280, 284, 286–288, 317, 330, 331, 334, 343, 345, 346,
348, 349

Docker A tool to automate and deploy applications in containers. 212, 214, 221

GeoSPARQL A Geographic Query Language for RDF Data. 46

IndoorGML An OGC Standard for Indoor Spatial Information. 46, 89, 300

nauty A program for computing automorphism groups of graphs and digraphs. 97,
100

Neo4j A graph database management system developed by Neo4j, Inc. 43, 44, 46–49,
51, 52, 56, 60, 62, 77, 79, 83, 86–88, 99, 100, 103, 106, 114, 123, 164, 183, 189, 192,
194, 197–201, 203, 205–210, 212, 213, 216, 218, 221, 270, 294–296, 298, 341, 346, 348

Neo4j Browser An interface for executing Cypher queries and visualizing results. 65,
68–70, 221, 247, 249, 254, 265, 266, 273, 284, 285, 341, 343–345

NoSQL Non-relational, or non-SQL, or sometimes Not Only SQL databases. 43

Oracle A proprietary multi-model database management system. 40

PostGIS A free and open-source extension for PostgreSQL that adds support for
geospatial data. 40

PostgreSQL A powerful, free, and open-source object-relational database management
system. 40

335

Glossary

R-tree A tree data structure for efficient spatial indexing. 87, 122, 123, 200–204, 213,
216, 225, 294, 296, 299, 343

Traces A program for computing automorphism groups of graphs. 97, 100

336

Acronyms

3DCityDB 3D City Database. 2, 40, 43, 46, 67, 90, 94, 213, 270, 277, 289, 300, 341

AABB Axis-aligned Minimum Bounding Box. 114, 117, 120, 201, 203, 216

ACID Atomicity, Consistency, Isolation, Durability. 43, 205, 207, 210

ADBMS Active Database Management System. 140

ADE Application Domain Extension. 37, 40, 46, 144

ADT Abstract Data Type. 42, 92

AdV Working Committee of the Surveying Authorities of the Laender of the Federal
Republic of Germany. 259

ALKIS Amtliches Liegenschaftskatasterinformationssystem. 14, 15, 223, 300

ANN Artificial Neural Network. 177

API Application Programming Interface. 37, 191, 212, 213, 296

B-Rep Boundary Representation. 32

BIM Building Information Modelling. 1, 8, 47, 93, 145, 300

BSP Binary Space Partitioning. 215

BVH Bounding Volume Hierarchy. 200

CAD Computer-aided Design. 42

CAM Computer-aided Manufacturing. 42

CityGML City Geography Markup Language. 2, 8–15, 17–19, 21–24, 26–65, 67–81,
83–95, 98–114, 116, 117, 120, 121, 123–126, 128–137, 139, 143–149, 152–154, 156,
161, 162, 187, 190–193, 199, 203, 205, 206, 211–215, 217, 222, 223, 225, 226, 228, 232,
244, 247, 253, 275, 289, 291–296, 298–301, 305–316, 341–343, 346–348

337

Acronyms

CPU Central Processing Unit. 222

CRS Coordinate Reference System. 2, 80, 148, 200

DAG Directed Acyclic Graph. 41, 44, 86

DOM Document Object Model. 190, 191

DTD Document Type Definition. 38

ECA Event Condition Action. 24, 140

EDA Event-driven Architecture. 140

FIFO First In First Out. 166, 187

GCS Geographic Coordinate System. 113

GIS Geographic Information System. 7, 15, 42, 93, 96, 253, 298

GML Geography Markup Language. 10–12, 14, 15, 22, 23, 27, 30, 32, 38, 40, 43, 46, 47,
60, 62, 63, 67, 71, 76, 80, 91, 92, 99, 100, 109, 110, 114, 116, 133, 147, 300, 301, 316

GUI Graphical User Interface. 221, 343

HTML HyperText Markup Language. 190

IFC Industry Foundation Classes. 8, 47, 93, 300

IoT Internet of Things. 3

ISO International Organization for Standardization. 15, 30, 147, 300, 301

JAXB Jakarta XML Binding. 36, 37, 191, 193

JAXP Java API for XML Processing. 191, 193

JSON JavaScript Object Notation. 40, 44, 46, 49, 213, 219, 220, 348

JTS JTS Topology Suite. 216

LCA Lowest Common Ancestor. 169, 170

338

Acronyms

LOD Level of Detail. 10, 11, 18, 21, 31, 33–35, 47, 65–71, 73–76, 81, 82, 85, 86, 88, 128,
145, 149, 150, 187, 222, 292, 295, 307–316, 341, 343, 348

MDA Model-driven Architecture. 147

OGC Open Geospatial Consortium. 9, 30, 44, 46

OSM OpenStreetMap. 46, 89, 229, 230, 236–239, 242, 250, 252, 256–258, 272

OWL Web Ontology Language. 46

PCS Projected Coordinate System. 113

RAM Random-access Memory. 222

RDBMS Relational Database Management System. 38, 44, 295

RDF Resource Description Framework. 46

SAX Simple API for XML. 191

SQL Structured Query Language. 38, 43, 46, 300

SRDBMS Spatially-enhanced Relational Database Management System. 77

StAX Streaming API for XML. 191

UDT Urban Digital Twin. 3, 4, 6, 175, 180, 292, 300, 341

UML Unified Modelling Language. 10, 31, 32, 46, 125, 127, 145–147, 341, 342

uom unit of measurement. 104, 151

URI Uniform Resource Identifier. 112

UTC Coordinated Universal Time. 105

WGS World Geodetic System. 200

WKB Well-known Binary. 77

WKT Well-known Text. 77

xAL Extensible Address Language. 67, 76, 316

339

Acronyms

XLink XML Linking Language. 10–13, 15, 22, 33, 34, 41, 44, 45, 50, 52, 55, 59–63, 65, 67,
70, 72, 76, 80, 83, 86, 88, 90, 92, 130, 149, 192, 193, 197, 211, 291–293, 306, 316, 341,
343

XML Extensible Markup Language. 10, 11, 23, 30, 33, 36–38, 40, 43, 44, 46, 59, 63, 65,
67, 73, 76, 91, 92, 105, 133, 190, 191, 300, 307, 316, 346

XSD XML Schema Definition. 10, 36–38, 46, 144

XSLT Extensible Stylesheet Language Transformations. 38

340

List of Figures

1.1. An overview of an Urban Digital Twin (UDT). 4
1.2. An illustration of an Urban Digital Twin (UDT) over time. 6

2.1. An illustration of the graph structure of CityGML documents. 13
2.2. An example of geometric changes in semantic 3D city models. 16
2.3. An illustration of the dynamic two-way process of interpreting changes

from the perspectives of various stakeholders. 20
2.4. An overview of the workflow presented in this thesis. 28

3.1. An overview of the modular structure of CityGML thematic modules,
represented as a UML package diagram. 32

3.2. The topological differences between geometric aggregates, complexes,
and composites in 2D in CityGML. 33

3.3. An illustration of the CityGML building model FZK-Haus in LOD2. . . 34
3.4. The contents of a building object in CityGML parsed by citygml4j. . . . 39
3.5. A graph representation of the CityGML building model FZK-Haus given

in Listing 3.1 and illustrated in Figure 3.3. 45
3.6. An example of a building and its bounding shape represented as nodes

and relationships in Neo4j. 49
3.7. A flowchart visualization of the method isSimple(source). 58
3.8. An illustration of the resolution of XLinks in the graph representation of

a solid’s CompositeSurface in CityGML. 61
3.9. Interior visualization of the FZK-Haus datasets in LOD3 and LOD4 using

the KITModelViewer. 66
3.10. Visualization of a segment from the Railway-Scene dataset using the

3DCityDB Web Map Client. 67
3.11. Visualization in Neo4j Browser of the graph representation of the FZK-

Haus dataset in LOD2. 68
3.12. Visualization in Neo4j Browser of the graph representation of the build-

ing from the FZK-Haus dataset in LOD2. 69
3.13. Visualization in Neo4j Browser of the graph representation of a polygon

from the FZK-Haus dataset in LOD2 after all XLinks have been resolved,
as described in Algorithm 3. 70

341

List of Figures

3.14. An illustration of the building node generated from the FZK-Haus dataset
and metadata stored as its additional properties. 81

3.15. An illustration of a node representation of an array of polygons with
additional metadata. 82

4.1. An illustration of isomorphic graphs. 95
4.2. Matching points by calculating their Euclidean distances or direct com-

parison of their coordinates in 2D, with an error tolerance ϵ. 113
4.3. An illustration of the process of matching line segments. 115
4.4. An example of a polygon with one single interior and two interiors. . . 116
4.5. Matching two surfaces with a translation offset d and a rotation angle θ. 118
4.6. An illustration of two overlapping solid geometries of identical size,

potentially subjected to a translation. 121
4.7. Examples of edit nodes in graphs between the old and new graph

representation of CityGML objects. 126
4.8. A UML class diagram of edit operations. 127

5.1. An illustration of the change interpretation process. 138
5.2. An example of a Petri Net in its different configurations. 142
5.3. A UML class diagram of changes in CityGML documents. 146
5.4. A content network of a simplified building model, representing multiple

one-to-many relations between a building and its boundary surfaces. . 155
5.5. An example of a rule network. 157
5.6. A rule network for detecting raised roofs of buildings, which is extended

from that of Figure 5.5 by also considering translation and size changes
of all boundary surfaces. 163

5.7. An overview of the pattern matching algorithm. 168
5.8. An example of origin comparison among changes based on their corres-

ponding content nodes. 170
5.9. An illustration of a memory node used for matching the pattern rules

for RoofRaised, as defined in Figure 5.5. 172
5.10. An example of the results of the pattern matching process based on the

content network shown in Figure 5.4 and the rule network shown in
Figure 5.5. 174

5.11. An example of a bidirectional change-stakeholder network. 176
5.12. An illustration of a change-stakeholder network employed for the mod-

elling and analysis of changes, stakeholders, and their relations. 179

342

List of Figures

5.13. An example of a two-way path-tracing analysis over changes, stakehold-
ers, and their relevance within the change-stakeholder network given in
Figure 5.12. 182

5.14. An example of a directed network with three layers and five nodes. . . 186

6.1. Visualizing the processes: From segmenting a large CityGML document
into chunks, to mapping these chunks onto graphs, and resolving XLinks
between these subgraphs. 193

6.2. An example of an R-tree with a block size of three that contains nine
rectangles labelled from R1 to R9. 202

6.3. An illustration of the coupling mechanism in an R-tree. 204

7.1. An overview of the persistent data used and produced by the imple-
mentation of this thesis. 214

7.2. The Graphical User Interface (GUI) of Neo4j Browser, an interface for
executing Cypher queries and visualizing results. 221

7.3. The spatial coverage of Hamburg’s CityGML LOD2 datasets. 222
7.4. The distribution of the detected edit nodes in the Hamburg datasets. . . 227
7.5. An illustration of inserted and deleted buildings detected in the Hamburg

datasets between 2016 and 2022. 229
7.6. An example of inserted and deleted buildings of an excerpt area from

the Hamburg datasets. 230
7.7. Satellite images between 2015 and 2021 of the area given in Figure 7.6. . 231
7.8. An overview of more than 1 million surface translations detected in the

Hamburg datasets. 233
7.9. An overview of approximately 3 million surface size changes detected in

the Hamburg datasets. 235
7.10. An illustration of split changes among buildings in the Hamburg datasets

between 2016 and 2022. 236
7.11. An example of building split changes of an excerpt area (Blakshörn)

from the Hamburg datasets. 237
7.12. An example of building split changes of an excerpt area (Laubsängerweg)

from the Hamburg datasets. 238
7.13. An example of building split changes based on the area displayed in

Figure 7.11, additionally visualized with building parts from the old
datasets. 239

7.14. Visualization of 3D geometries of a split building and its building parts,
as shown in Figure 7.13. 240

343

List of Figures

7.15. An example of building split changes of an excerpt area (Kieler Straße)
from the Hamburg datasets. 242

7.16. A 3D view of building split changes of an excerpt area (Kieler Straße)
from the Hamburg datasets based on Figure 7.15. 243

7.17. A visualization of the pattern rules given in Listing 7.5 used to detect
changes on the property creationDate of buildings. 248

7.18. A visualization of the entire rule network employed to identify change
patterns in the Hamburg datasets. 249

7.19. The spatial distribution of unchanged buildings in Hamburg. 250
7.20. A visualization of the Congress Center Hamburg, which was classified

as unchanged between 2016 and 2022. 252
7.21. Visualization of scope nodes representing all 14 clusters of buildings. . 254
7.22. An illustration of the modified buildings of Hamburg grouped by their

respective creationDate values (first seven dates). 256
7.23. An illustration of the modified buildings of Hamburg grouped by their

respective creationDate values (last seven dates). 257
7.24. A detailed visualization of the boundary area between two adjacent

groups of modified buildings distinguished by their associated creation-
Date values. 258

7.25. A visualization of the gains and losses of buildings per category for
residential, commercial, and industrial use. 262

7.26. A visualization in Neo4j Browser of a building with raised roofs that
satisfy the pattern rules from Figure 5.6. 266

7.27. The distribution of detected raised roofs in buildings and building parts
in 1 m intervals based on the pattern rules given in Listing 7.8. 267

7.28. The distribution of the increases in wall heights of buildings and building
parts in 1 m intervals, computed from (signed) translations of roof and
ground surfaces. 269

7.29. The 3D models of the building Grüner Bunker in 2016 and 2022, displayed
in top view and side view. 270

7.30. Satellite images of the building Grüner Bunker before and during con-
struction work for new storeys in 2019 and 2021, respectively. 271

7.31. A visualization of the bounding boxes of all ten building parts contained
in the building Grüner Bunker. 272

7.32. A visualization in Neo4j Browser of the changes and their interpreta-
tion nodes in the graph representations of the building Grüner Bunker
between 2016 and 2022. 273

7.33. A network visualization of the relevance relations between given stake-
holders and interpreted changes in the example of Hamburg. 283

344

List of Figures

7.34. A visualization in Neo4j Browser of the change-stakeholder network
introduced in Figure 7.33. 285

7.35. The Cypher results of the path-tracing analysis for the stakeholder City
Planning Department. 287

7.36. A visualization of the average runtime of the mapping, matching, and
interpretation process employed for the Hamburg datasets from 2016
and 2022. 290

345

List of Tables

2.1. An overview of all research questions and their corresponding sections
in this thesis. 26

3.1. Mapping between some XML schema data types and Java data types. . 37
3.2. Assessing the preservation of thematic and structural content in the

generated graph representations of the CityGML datasets FZK-Haus and
Railway-Scene (excerpt). 73

4.1. Similarity levels for matching nodes and subgraphs they represent,
shown in ascending order. 109

4.2. Comparison results for FZK-Haus document. 133

5.1. An overview of properties available in rule nodes. 156
5.2. An overview of properties available in rule relationships. 160
5.3. Rule nodes and relationships in Cypher notations. 164
5.4. A comparison between the proposed pattern matching methods and

related concepts with respect to the key requirements described in Sec-
tion 5.3.1. 173

6.1. The use of thematic database indexes to enhance query time of specific
node labels and their properties. 197

6.2. An overview of database operations, resources, and their associated locks
in Neo4j. 208

6.3. An overview of the methods introduced in this study and their corres-
ponding concurrency properties. 210

7.1. An overview of the node distribution per label in the graph database
after the entire Hamburg CityGML datasets have been mapped onto
graphs. 223

7.2. An overview of the edit nodes and base changes detected in the Hamburg
datasets. 226

7.3. The distribution of updated generic string attributes by name in the
Hamburg CityGML datasets. 228

346

List of Tables

7.4. Internal composition and coverage of updated generic string attributes
by source type in the Hamburg CityGML datasets. 232

7.5. An overview of buildings and building parts detected with and without
changed identifiers in the Hamburg datasets. 251

7.6. An overview of buildings and building parts detected with 14 different
updated values creationDate in the Hamburg datasets. 255

7.7. Examples of relevant coded values for the property function of buildings
and building parts. 260

7.8. An example matrix for interpreting changes in buildings’ function values
and their impact on the city’s available space for living, commerce, and
industry. 261

7.9. Example buildings and building parts detected with both raised roofs
and changed number of storeys. 274

7.10. An overview of changes represented by raised roofs in buildings and
building parts. 275

7.11. Changes in the ground surface areas and volumes of all buildings and
building parts of the Hamburg datasets. 278

7.12. Changes in the residential, commercial, and industrial ground surface
areas and volumes of all buildings and building parts in the Hamburg
datasets. 279

7.13. An overview of the coverage of interpreted edit nodes and base changes
over all detected changes in the use case of Hamburg. 281

7.14. An overview of all CityGML datasets used for assessing the processes
proposed in this research. 289

A.1. Assessing the preservation of thematic and structural content in the
generated graph representations of the CityGML datasets FZK-Haus and
Railway-Scene. 307

347

List of Code Listings

3.1. An excerpt of the CityGML building model FZK-Haus in LOD2. 35

4.1. Before changing the order of generic attributes. 128
4.2. After changing the order of generic attributes. 128
4.3. Before changing the order of boundary surfaces. 129
4.4. After changing the order of boundary surfaces. 129
4.5. Before changing the order of the solid’s surfaces. 130
4.6. After changing the order of the solid’s surfaces. 130
4.7. Before converting the unit of measurement. 131
4.8. After converting the unit of measurement. 131
4.9. Before updating building ID. 131
4.10. After updating building ID. 131
4.11. Before moving surfaces ‘upwards’ by 1 height unit. 131
4.12. After moving surfaces ‘upwards’ by 1 height unit. 132
4.13. Before changing syntactic representation of rings. 132
4.14. After changing syntactic representation of rings. 132

5.1. An example Cypher query for defining pattern rules on the identifiers of
buildings. 165

6.1. Querying by node labels and relationship types in Cypher. 194
6.2. Using range indexes on node properties in Cypher. 195
6.3. Using full-text indexes on node and relationship properties in Cypher. . 196
6.4. Creating and dropping indexes in Cypher. 198
6.5. Applying a point index in Cypher. 199
6.6. Implementing a batch transaction for Neo4j in Java 7 or newer. 206

7.1. An example of constructing and applying an R-tree for spatial indexing. 216
7.2. Generating a rule network from a Cypher script file in Java. 218
7.3. Example JSON objects required for the evaluation of the join conditions

used for detecting translated buildings. 220
7.4. Example helper functions needed for the evaluation of rule conditions. 220

348

List of Code Listings

7.5. An example Cypher query for defining pattern rules on the property
creationDate of buildings. These notations are explained in Section 5.3.5.
A graph visualization is shown in Figure 7.17. 247

7.6. A Cypher query for detecting unchanged buildings. 248
7.7. Pattern rules in Cypher to detect conversion of available residential to

commercial space. 259
7.8. Pattern rules in Cypher to detect raised building roofs. 264
7.9. An example Cypher query to provide an overview of all detected raised

building roofs. 265
7.10. A Cypher query used to search for interpreted and uninterpreted changes

among all detected changes. 280
7.11. An example Cypher query for constructing a network representing

stakeholders, changes, and their semantic relations. 284
7.12. Path-tracing analysis in Cypher to evaluate relevance levels of changes

for a specific stakeholder. 286
7.13. An example Cypher query for connecting a change node type with all

its instances previously created during the matching and interpretation
process. 288

7.14. An example Cypher query for retrieving all buildings corresponding
to a change type node. This requires existing connections between the
change type node and all its instances. 288

B.1. Rules for detecting change patterns in Cypher employed in the imple-
mentation of this thesis. 317

C.1. Cypher queries for constructing a network representing stakeholders,
changes, and their semantic relations. 331

349

Bibliography

Agoub, A., Kunde, F., & Kada, M. (2016). Potential of Graph Databases in Represent-
ing and Enriching Standardized Geodata. In T. P. Kersten (Ed.), Dreiländer-
tagung der SGPF, DGPF und OVG - Lösungen für eine Welt im Wandel, 36.
Wissenschaftlich-Technische Jahrestagung der DGPF (pp. 208–216, Vol. 25).
Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinforma-
tion (DGPF) e.V.

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1976, March). On Finding Lowest Common
Ancestors in Trees. In SIAM Journal on Computing (pp. 115–132, Vol. 5). Society
for Industrial & Applied Mathematics (SIAM). https://doi.org/10.1137/0205011

Aho, A. V., & Hopcroft, J. E. (1974, January). The Design and Analysis of Computer
Algorithms (1st ed.). Addison-Wesley Longman Publishing Co., Inc.

Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik
Deutschland (AdV). (2008, April). Dokumentation zur Modellierung der Geoin-
formationen des amtlichen Vermessungswesens (GeoInfoDok) - Hauptdoku-
ment. Version 6.0.

Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik
Deutschland (AdV). (2022). Dokumentation zur Modellierung der Geoinform-
ationen des amtlichen Vermessungswesens (GeoInfoDok) - Ausleitung des
Objektartenkataloges für das AAA-Anwendungsschema. Version 7.1.2.

Arlazarov, V. L., Zuev, I. I., Uskov, A. V., & Faradzhev, I. A. (1974, January). An
Algorithm for the Reduction of Finite Non-oriented Graphs to Canonical Form.
In USSR Computational Mathematics and Mathematical Physics (pp. 195–201,
Vol. 14). Elsevier BV. https://doi.org/10.1016/0041-5553(74)90114-1

Babai, L. (2016, June). Graph Isomorphism in Quasipolynomial Time [Extended Ab-
stract]. In Proceedings of the Forty-eighth Annual ACM Symposium on Theory
of Computing (pp. 684–697). Association for Computing Machinery (ACM).
https://doi.org/10.1145/2897518.2897542

Babai, L., Grigoryev, D. Y., & Mount, D. M. (1982). Isomorphism of Graphs with
Bounded Eigenvalue Multiplicity. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing (pp. 310–324). Association for
Computing Machinery (ACM). https://doi.org/10.1145/800070.802206

350

https://doi.org/10.1137/0205011
https://doi.org/10.1016/0041-5553(74)90114-1
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/800070.802206

Bibliography

Babai, L., & Luks, E. M. (1983, December). Canonical Labeling of Graphs. In Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing (pp. 171–
183). Association for Computing Machinery (ACM). https://doi.org/10.1145/
800061.808746

Bayer, R., & McCreight, E. (1970, November). Organization and Maintenance of Large
Ordered Indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control (pp. 107–141). Association
for Computing Machinery (ACM). https://doi.org/10.1145/1734663.1734671

Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990, May). The R*-Tree:
An Efficient and Robust Access Method for Points and Rectangles. In ACM
SIGMOD Record (pp. 322–331, Vol. 19). Association for Computing Machinery
(ACM). https://doi.org/10.1145/93605.98741

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Cöltekin, A. (2015, December).
Applications of 3D City Models: State of the Art Review. In ISPRS International
Journal of Geo-Information (pp. 2842–2889, Vol. 4). MDPI AG. https://doi.org/
10.3390/ijgi4042842

Bodlaender, H. L. (1990, December). Polynomial Algorithms for Graph Isomorphism
and Chromatic Index on Partial k-trees. In Journal of Algorithms (pp. 631–643,
Vol. 11). Elsevier BV. https://doi.org/10.1016/0196-6774(90)90013-5

Bomze, I. M., Budinich, M., Pardalos, P. M., & Pelillo, M. (1999). The Maximum Clique
Problem. In Handbook of Combinatorial Optimization: Supplement Volume A
(pp. 1–74). Springer US. https://doi.org/10.1007/978-1-4757-3023-4_1

Bourret, R. (2005). XML and Databases. Retrieved March 26, 2024, from http://www.
rpbourret.com/xml

Cayley, A. (1857, March). XXVIII. On the Theory of the Analytical Forms Called Trees.
In The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science (pp. 172–176, Vol. 13). Informa UK Limited. https://doi.org/10.1080/
14786445708642275

Chamberlin, D. D., & Boyce, R. F. (1976, May). SEQUEL: A Structured English Query
Language. In Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Work-
shop on Data Description, Access and Control (pp. 249–264). Association for
Computing Machinery (ACM). https://doi.org/10.1145/800296.811515

Chaturvedi, K., Matheus, A., Nguyen, S. H., & Kolbe, T. H. (2018, October). Securing
Spatial Data Infrastructures in the Context of Smart Cities. In 2018 International
Conference on Cyberworlds (CW) (pp. 403–408). Institute of Electrical and
Electronics Engineers (IEEE). https://doi.org/10.1109/cw.2018.00078

Chaturvedi, K., Matheus, A., Nguyen, S. H., & Kolbe, T. H. (2019, December). Securing
Spatial Data Infrastructures for Distributed Smart City Applications and Ser-

351

https://doi.org/10.1145/800061.808746
https://doi.org/10.1145/800061.808746
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/93605.98741
https://doi.org/10.3390/ijgi4042842
https://doi.org/10.3390/ijgi4042842
https://doi.org/10.1016/0196-6774(90)90013-5
https://doi.org/10.1007/978-1-4757-3023-4_1
http://www.rpbourret.com/xml
http://www.rpbourret.com/xml
https://doi.org/10.1080/14786445708642275
https://doi.org/10.1080/14786445708642275
https://doi.org/10.1145/800296.811515
https://doi.org/10.1109/cw.2018.00078

Bibliography

vices. In Future Generation Computer Systems (pp. 723–736, Vol. 101). Elsevier
BV. https://doi.org/10.1016/j.future.2019.07.002

Chawathe, S. S., & Garcia-Molina, H. (1997, June). Meaningful Change Detection in
Structured Data. In Proceedings of the 1997 ACM SIGMOD international con-
ference on Management of data - SIGMOD ’97 (pp. 26–37, Vol. 26). Association
for Computing Machinery (ACM). https://doi.org/10.1145/253260.253266

Cheng, Y., Ding, P., Wang, T., Lu, W., & Du, X. (2019, November). Which Category is
Better: Benchmarking Relational and Graph Database Management Systems.
In Data Science and Engineering (pp. 309–322, Vol. 4). Springer Science and
Business Media LLC. https://doi.org/10.1007/s41019-019-00110-3

Cobena, G., Abiteboul, S., & Marian, A. (2002, August). Detecting Changes in XML
Documents. In Proceedings 18th International Conference on Data Engineering
(pp. 41–52). IEEE Comput. Soc. https://doi.org/10.1109/icde.2002.994696

Cobham, A. (1965). The Intrinsic Computational Difficulty of Functions. In Y. Bar-Hillel
(Ed.), Logic, Methodology and Philosophy of Science: Proceedings of the 1964
International Congress (pp. 24–30). North-Holland Publishing Company.

Codd, E. F. (1970, June). A Relational Model of Data for Large Shared Data Banks. In
Communications of the ACM (pp. 377–387, Vol. 13). Association for Computing
Machinery (ACM). https://doi.org/10.1145/362384.362685

Coffman, E. G., Elphick, M., & Shoshani, A. (1971, June). System Deadlocks. In ACM
Computing Surveys (pp. 67–78, Vol. 3). Association for Computing Machinery
(ACM). https://doi.org/10.1145/356586.356588

Colbourn, C. J., & Booth, K. S. (1981, February). Linear Time Automorphism Algorithms
for Trees, Interval Graphs, and Planar Graphs. In SIAM Journal on Computing
(pp. 203–225, Vol. 10). Society for Industrial & Applied Mathematics (SIAM).
https://doi.org/10.1137/0210015

Combined Communications-Electronics Board (CCEB). (2010, October). ACP 121(I),
Communication Instructions - General. Retrieved August 7, 2024, from http:
//www.rpbourret.com/xml

Congress Center Hamburg. (2022). The New CCH - Congress Center Hamburg: Great
Location, Leading-edge Architecture, Top Technology. Retrieved February 27,
2024, from https://www.cch.de/en/news- details/article/das- neue- cch-
congress-center-hamburg-beste-lage-moderne-architektur-und-hochwertige-
technik

Conte, D., Foggia, P., Sansone, C., & Vento, M. (2004, May). Thirty Years Of Graph
Matching In Pattern Recognition. In International Journal of Pattern Recognition
and Artificial Intelligence (pp. 265–298, Vol. 18). World Scientific Pub Co Pte Lt.
https://doi.org/10.1142/s0218001404003228

352

https://doi.org/10.1016/j.future.2019.07.002
https://doi.org/10.1145/253260.253266
https://doi.org/10.1007/s41019-019-00110-3
https://doi.org/10.1109/icde.2002.994696
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/356586.356588
https://doi.org/10.1137/0210015
http://www.rpbourret.com/xml
http://www.rpbourret.com/xml
https://www.cch.de/en/news-details/article/das-neue-cch-congress-center-hamburg-beste-lage-moderne-architektur-und-hochwertige-technik
https://www.cch.de/en/news-details/article/das-neue-cch-congress-center-hamburg-beste-lage-moderne-architektur-und-hochwertige-technik
https://www.cch.de/en/news-details/article/das-neue-cch-congress-center-hamburg-beste-lage-moderne-architektur-und-hochwertige-technik
https://doi.org/10.1142/s0218001404003228

Bibliography

Cook, S. A. (1971, May). The Complexity of Theorem-Proving Procedures. In Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing (pp. 151–
158). Association for Computing Machinery (ACM). https://doi.org/10.1145/
800157.805047

Corneil, D. G., & Gotlieb, C. C. (1970, January). An Efficient Algorithm for Graph
Isomorphism. In G. Salton (Ed.), Journal of the ACM (pp. 51–64, Vol. 17).
Association for Computing Machinery (ACM). https://doi.org/10.1145/321556.
321562

Cox, S., Daisey, P., Lake, R., Portele, C., & Whiteside, A. (2004, February). OpenGIS(R)
Geography Markup Language (GML) Implementation Specification [OGC 03-
105r1, Version 3.1.1, Recommendation Paper]. Open Geospatial Consortium
(OGC). https://doi.org/10.13140/2.1.2846.2401

Customer Information Quality Technical Committee (CIQ TC). (2002, July). Extensible
Address Language (xAL) Standard Description Document for W3C DTD/S-
chema (Version 2.0) [Approved Committee Specification]. OASIS. https://www.
immagic.com/eLibrary/ARCHIVES/TECH/OASIS/XAL_V2.PDF

Czerwiński, W., & Orlikowski, Ł. (2022, February). Reachability in Vector Addition
Systems is Ackermann-complete. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS) (pp. 1229–1240). Institute of Electrical
and Electronics Engineers (IEEE). https://doi.org/10.1109/focs52979.2021.00120

Davoudian, A., Chen, L., & Liu, M. (2018, April). A Survey on NoSQL Stores. In ACM
Computing Surveys (pp. 1–43, Vol. 51). Association for Computing Machinery
(ACM). https://doi.org/10.1145/3158661

Dehbi, Y., & Plümer, L. (2011, March). Learning Grammar Rules of Building Parts from
Precise Models and Noisy Observations. In ISPRS Journal of Photogrammetry
and Remote Sensing (pp. 166–176, Vol. 66). Elsevier BV. https://doi.org/10.
1016/j.isprsjprs.2010.10.001

Devopedia. (2023). Duck Typing (8). Retrieved March 14, 2024, from https://devopedia.
org/duck-typing

Dijkstra, E. W. (1959, December). A Note on Two Problems in Connexion with Graphs.
In Numerische Mathematik (pp. 269–271, Vol. 1). Springer Science; Business
Media LLC. https://doi.org/10.1007/bf01386390

Ding, L., Xiao, G., Pano, A., Fumagalli, M., Chen, D., Feng, Y., Calvanese, D., Fan,
H., & Meng, L. (2024, April). Integrating 3D City Data through Knowledge
Graphs. In Geo-spatial Information Science (pp. 1–20). Informa UK Limited.
https://doi.org/10.1080/10095020.2024.2337360

Dittrich, K. R., Gatziu, S., & Geppert, A. (1995, June). The Active Database Management
System Manifesto: A Rulebase of ADBMS Features. In T. Sellis (Ed.), Rules

353

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/321556.321562
https://doi.org/10.1145/321556.321562
https://doi.org/10.13140/2.1.2846.2401
https://www.immagic.com/eLibrary/ARCHIVES/TECH/OASIS/XAL_V2.PDF
https://www.immagic.com/eLibrary/ARCHIVES/TECH/OASIS/XAL_V2.PDF
https://doi.org/10.1109/focs52979.2021.00120
https://doi.org/10.1145/3158661
https://doi.org/10.1016/j.isprsjprs.2010.10.001
https://doi.org/10.1016/j.isprsjprs.2010.10.001
https://devopedia.org/duck-typing
https://devopedia.org/duck-typing
https://doi.org/10.1007/bf01386390
https://doi.org/10.1080/10095020.2024.2337360

Bibliography

in Database Systems (pp. 1–17, Vol. 985). Springer Berlin Heidelberg. https:
//doi.org/10.1007/3-540-60365-4_116

Docker, Inc. (2024). Docker Docs. Retrieved February 6, 2024, from https://docs.docker.
com

EHP Erste Hanseatische Projektmanagement GmbH. (2023). Bunker St. Pauli. Retrieved
March 16, 2024, from https://www.bunker-stpauli.de

Eppstein, D. (1999, November). Subgraph Isomorphism in Planar Graphs and Related
Problems. In Journal of Graph Algorithms and Applications (pp. 1–27, Vol. 3).
World Scientific Publishing. https://doi.org/10.7155/jgaa.00014

Esser, S. (2024). Inkrementelle Versionskontrolle verteilt vorliegender Objektmodelle im
Bauwesen [Doctoral dissertation, Technical University of Munich].

Esser, S., Vilgertshofer, S., & Borrmann, A. (2022, August). Graph-based Version Control
for Asynchronous BIM Collaboration. In Advanced Engineering Informatics
(p. 101664, Vol. 53). Elsevier BV. https://doi.org/10.1016/j.aei.2022.101664

Euler, L. (1736). Solutio Problematis Ad Geometriam Situs Pertinentis (The Solution of
a Problem Relating to the Geometry of Position). In Commentarii Academiae
Scientiarum Petropolitanae (pp. 128–140, Vol. 8). Petropoli, Typis Academiae.

Euler, L. (1995, January). From the Problem of the Seven Bridges of Königsberg. In
R. Calinger (Ed.), Classics of Mathematics (pp. 503–506). Prentice Hall.

Falkowski, K., & Ebert, J. (2009). Graph-based Urban Object Model Processing. In
U. Stilla, F. Rottensteiner & N. Paparoditis (Eds.), City Models, Roads and
Traffic (CMRT ’09): Object Extraction for 3D City Models, Road Databases
and Traffic Monitoring - Concepts, Algorithms and Evaluation (pp. 115–120,
Vol. 38). International Society for Photogrammetry and Remote Sensing (ISPRS).
https://www.isprs.org/proceedings/xxxviii/3-w4

Fernandes, D., & Bernardino, J. (2018). Graph Databases Comparison: AllegroGraph,
ArangoDB, InfiniteGraph, Neo4J, and OrientDB. In Proceedings of the 7th Inter-
national Conference on Data Science, Technology and Applications (pp. 373–
380). SCITEPRESS - Science and Technology Publications. https://doi.org/10.
5220/0006910203730380

Filotti, I. S., & Mayer, J. N. (1980, April). A Polynomial-Time Algorithm for Determining
the Isomorphism of Graphs of Fixed Genus. In Proceedings of the Twelfth
Annual ACM Symposium on Theory of Computing (pp. 236–243). Association
for Computing Machinery (ACM). https://doi.org/10.1145/800141.804671

Forgy, C. L. (1982, September). Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem. In Artificial Intelligence (pp. 17–37, Vol. 19).
Elsevier BV. https://doi.org/10.1016/0004-3702(82)90020-0

354

https://doi.org/10.1007/3-540-60365-4_116
https://doi.org/10.1007/3-540-60365-4_116
https://docs.docker.com
https://docs.docker.com
https://www.bunker-stpauli.de
https://doi.org/10.7155/jgaa.00014
https://doi.org/10.1016/j.aei.2022.101664
https://www.isprs.org/proceedings/xxxviii/3-w4
https://doi.org/10.5220/0006910203730380
https://doi.org/10.5220/0006910203730380
https://doi.org/10.1145/800141.804671
https://doi.org/10.1016/0004-3702(82)90020-0

Bibliography

Fortune Business Insights. (2023). Digital Twin Market Size, Share, Growth and Forecast
2030. Retrieved January 24, 2024, from https://www.fortunebusinessinsights.
com/digital-twin-market-106246

Garey, M. R., & Johnson, D. S. (1979, January). Computers and Intractability: A Guide
to the Theory of NP-Completeness (1st ed.). W. H. Freeman & Co.

GNU, Free Software Foundation. (2023). GNU General Public License (3.0). Retrieved
August 27, 2023, from https://www.gnu.org/licenses/gpl-3.0.en.html

Goodrich, M. T., & Tamassia, R. (2014). Algorithm Design and Applications (1st ed.).
Wiley Publishing.

Grieves, M., & Vickers, J. (2016, August). Digital Twin: Mitigating Unpredictable, Un-
desirable Emergent Behavior in Complex Systems. In F.-J. Kahlen, S. Flumerfelt
& A. Alves (Eds.), Transdisciplinary Perspectives on Complex Systems: New
Findings and Approaches (pp. 85–113). Springer International Publishing. https:
//doi.org/10.1007/978-3-319-38756-7_4

Grochowski, K., Breiter, M., & Nowak, R. (2020, March). Serialization in Object-Oriented
Programming Languages. In K. Sud, P. Erdogmus & S. Kadry (Eds.), Introduc-
tion to Data Science and Machine Learning. IntechOpen. https://doi.org/10.
5772/intechopen.86917

Gröger, G., Kolbe, T. H., Czerwinski, A., & Nagel, C. (2008, August). OpenGIS(R) City
Geography Markup Language (CityGML) Encoding Standard [OGC 08-007r1,
Version 1.0.0, International Standard]. Open Geospatial Consortium (OGC).
https://portal.ogc.org/files/?artifact_id=28802

Gröger, G., Kolbe, T. H., Nagel, C., & Häfele, K.-H. (2012, April). OGC City Geography
Markup Language (CityGML) Encoding Standard [OGC 12-019, Version 2.0.0,
International Standard]. Open Geospatial Consortium (OGC). https://portal.
ogc.org/files/?artifact_id=47842

Grohe, M. (2010, July). Fixed-Point Definability and Polynomial Time on Graphs with
Excluded Minors. In 2010 25th Annual IEEE Symposium on Logic in Computer
Science (pp. 179–188). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/lics.2010.22

Grohe, M., & Schweitzer, P. (2015, October). Isomorphism Testing for Graphs of Bounded
Rank Width. In 2015 IEEE 56th Annual Symposium on Foundations of Com-
puter Science (pp. 1010–1029). Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/focs.2015.66

Grosan, C., & Abraham, A. (2011). Rule-Based Expert Systems. In Intelligent Systems:
A Modern Approach (pp. 149–185). Springer Berlin Heidelberg. https://doi.
org/10.1007/978-3-642-21004-4_7

Guttman, A. (1984, June). R-Trees: A Dynamic Index Structure for Spatial Searching
[Proceedings of the 1984 ACM SIGMOD International Conference on Manage-

355

https://www.fortunebusinessinsights.com/digital-twin-market-106246
https://www.fortunebusinessinsights.com/digital-twin-market-106246
https://www.gnu.org/licenses/gpl-3.0.en.html
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.5772/intechopen.86917
https://doi.org/10.5772/intechopen.86917
https://portal.ogc.org/files/?artifact_id=28802
https://portal.ogc.org/files/?artifact_id=47842
https://portal.ogc.org/files/?artifact_id=47842
https://doi.org/10.1109/lics.2010.22
https://doi.org/10.1109/focs.2015.66
https://doi.org/10.1007/978-3-642-21004-4_7
https://doi.org/10.1007/978-3-642-21004-4_7

Bibliography

ment of Data]. In ACM SIGMOD Record (pp. 47–57, Vol. 14). Association for
Computing Machinery (ACM). https://doi.org/10.1145/971697.602266

Häfele, K.-H., & Nagel, C. (2015). CityGML Example Railway Scene. Institute for
Automation, Applied Computer Science (IAI), Karlsruhe Institute of Technology
(KIT) and virtualcitysystems GmbH. Retrieved August 7, 2024, from https :
//github.com/3dcitydb/importer-exporter

Harel, D., & Tarjan, R. E. (1984, May). Fast Algorithms for Finding Nearest Common
Ancestors. In SIAM Journal on Computing (pp. 338–355, Vol. 13). Society for
Industrial & Applied Mathematics (SIAM). https://doi.org/10.1137/0213024

Harold, E. R. (2003, September). An Introduction to StAX. Retrieved October 18, 2023,
from https://www.xml.com/pub/a/2003/09/17/stax.html

Harold, E. R., Means, W. S., & Petrycki, L. (2000, December). XML in a Nutshell: A
Desktop Quick Reference (1st ed.). O’Reilly & Associates, Inc.

Harter, H. M. (2021). Lebenszyklusanalyse der Technischen Gebäudeausrüstung großer
Wohngebäudebestände auf der Basis semantischer 3D-Stadtmodelle [Doctoral
dissertation, Technical University of Munich].

Hausdorff, F. (1914, March). Grundzüge der Mengenlehre (1st ed.). Verlag von Veit &
Comp.

Haverkort, H. J. (2004, May). Results on Geometric Networks and Data Structures
[Doctoral dissertation, Utrecht University].

Heckel, R. (2006, February). Graph Transformation in a Nutshell. In Electronic Notes
in Theoretical Computer Science (pp. 187–198, Vol. 148). Elsevier BV. https:
//doi.org/10.1016/j.entcs.2005.12.018

Held, M., & Karp, R. M. (1970, December). The Traveling-Salesman Problem and
Minimum Spanning Trees. In Operations Research (pp. 1138–1162, Vol. 18).
INFORMS.

Herring, J. R. (2011, May). OpenGIS(R) Implementation Standard for Geographic
Information - Simple Feature Access - Part 1: Common Architecture [OGC
06-103r4, Version 1.2.1, Implementation Standard]. Open Geospatial Consortium
(OGC). https://portal.ogc.org/files/?artifact_id=25355

Herring, J. R. (2020, August). Features and Geometry - Part 1: Feature Models [17-
087r13, Version 1.0, Abstract Specification]. Open Geospatial Consortium (OGC).
http://www.opengis.net/doc/AS/FG/P1/FM/1.0

Hogan, A., Blomqvist, E., Cochez, M., D’Amato, C., Melo, G. D., Gutierrez, C., Kirrane,
S., Gayo, J. E. L., Navigli, R., Neumaier, S., Ngomo, A.-C. N., Polleres, A.,
Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., & Zimmermann,
A. (2021, July). Knowledge Graphs. In ACM Computing Surveys (pp. 1–37,
Vol. 54). Association for Computing Machinery (ACM). https://doi.org/10.
1145/3447772

356

https://doi.org/10.1145/971697.602266
https://github.com/3dcitydb/importer-exporter
https://github.com/3dcitydb/importer-exporter
https://doi.org/10.1137/0213024
https://www.xml.com/pub/a/2003/09/17/stax.html
https://doi.org/10.1016/j.entcs.2005.12.018
https://doi.org/10.1016/j.entcs.2005.12.018
https://portal.ogc.org/files/?artifact_id=25355
http://www.opengis.net/doc/AS/FG/P1/FM/1.0
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772

Bibliography

Hopcroft, J. E., & Wong, J. K. (1974, April). Linear Time Algorithm for Isomorphism of
Planar Graphs (Preliminary Report). In Proceedings of the Sixth Annual ACM
Symposium on Theory of Computing (pp. 172–184). Association for Computing
Machinery (ACM). https://doi.org/10.1145/800119.803896

Horowitz, E., & Sahni, S. (1983, January). Fundamentals of Data Structures (4th ed.).
Computer Science Press.

Hsieh, S.-M., Hsu, C.-C., & Hsu, L.-F. (2006). Efficient Method to Perform Isomorphism
Testing of Labeled Graphs [Proceedings, Part V]. In M. L. Gavrilova, O. Gervasi,
V. Kumar, C. J. K. Tan, D. Taniar, A. Laganá, Y. Mun & H. Choo (Eds.), Computa-
tional Science and Its Applications - ICCSA 2006 (pp. 422–431). Springer-Verlag
Berlin Heidelberg.

Huan, J., Wang, W., & Prins, J. (2003, December). Efficient Mining of Frequent Subgraphs
in the Presence of Isomorphism. In Third IEEE International Conference on
Data Mining (pp. 549–552). IEEE Comput. Soc. https://doi.org/10.1109/icdm.
2003.1250974

Hunt, J. W., & Szymanski, T. G. (1977, May). A Fast Algorithm for Computing Longest
Common Subsequences. In Communications of the ACM (pp. 350–353, Vol. 20).
Association for Computing Machinery (ACM). https://doi.org/10.1145/359581.
359603

Institute for Automation and Applied Computer Science (IAI), Karlsruhe Institute of
Technology (KIT). (2017). CityGML Example FZK-Haus. Retrieved November
15, 2023, from https://www.citygmlwiki.org

Institute for Automation and Applied Computer Science (IAI), Karlsruhe Institute of
Technology (KIT). (2024). KITModelViewer. Retrieved August 5, 2024, from
https://www.iai.kit.edu/4561.php

International Organization for Standardization (ISO). (2019a, February). ISO 8601-1:2019
Date and Time - Representations for Information Interchange - Part 1: Basic
Rules (1st ed., Vol. 01.140.30) [International Standard]. https://www.iso.org/
standard/70907.html

International Organization for Standardization (ISO). (2019b, February). ISO 8601-
2:2019 Date and Time - Representations for Information Interchange - Part 2:
Extensions (1st ed., Vol. 01.140.30) [International Standard]. https://www.iso.
org/standard/70908.html

Ireland, C., Bowers, D., Newton, M., & Waugh, K. (2009). A Classification of Object-
Relational Impedance Mismatch. In 2009 First International Confernce on Ad-
vances in Databases, Knowledge, and Data Applications (pp. 36–43). Institute
of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/dbkda.
2009.11

357

https://doi.org/10.1145/800119.803896
https://doi.org/10.1109/icdm.2003.1250974
https://doi.org/10.1109/icdm.2003.1250974
https://doi.org/10.1145/359581.359603
https://doi.org/10.1145/359581.359603
https://www.citygmlwiki.org
https://www.iai.kit.edu/4561.php
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70908.html
https://www.iso.org/standard/70908.html
https://doi.org/10.1109/dbkda.2009.11
https://doi.org/10.1109/dbkda.2009.11

Bibliography

Jaccard, P. (1912, February). The Distribution of the Flora in the Alpine Zone. In New
Phytologist (pp. 37–50, Vol. 11). Wiley. https : / / doi . org / 10 . 1111 / j . 1469 -
8137.1912.tb05611.x

Jang, H., Yu, K., & Park, S. (2023). Managing 3D GIS Data for Indoor Environment
Using Property Graph Database. In IEEE Access (pp. 37216–37228, Vol. 11).
Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.
1109/access.2023.3266519

Jensen, K. (1987, May). Coloured Petri Nets. In W. Brauer, W. Reisig & G. Rozenberg
(Eds.), Petri Nets: Central Models and Their Properties (1st ed., pp. 248–299).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-47919-2_10

Kabsch, W. (1976, September). A Solution for the Best Rotation to Relate Two Sets of
Vectors. In Acta Crystallographica Section A (pp. 922–923, Vol. 32). International
Union of Crystallography (IUCr). https://doi.org/10.1107/s0567739476001873

Kaden, R. (2014). Berechnung der Energiebedarfe von Wohngebäuden und Modellier-
ung energiebezogener Kennwerte auf der Basis semantischer 3D-Stadtmodelle
[Doctoral dissertation, Technical University of Munich].

Kajiya, J. T. (1986, August). The Rendering Equation. In ACM SIGGRAPH Computer
Graphics (pp. 143–150, Vol. 20). Association for Computing Machinery (ACM).
https://doi.org/10.1145/15886.15902

Kawaguchi, K., Vajjhala, S., Fialli, J., & Grigoriadi, R. (2017). The Java Architecture for
XML Binding (JAXB) 2.3 Specification. Oracle Corporation. Retrieved September
27, 2023, from https://www.jcp.org/en/jsr/detail?id=222

Keller, W. (1997). Mapping Objects to Tables - A Pattern Language. In F. Buschmann
& D. Riehle (Eds.), Proc. Of European Conference on Pattern Languages of
Programming Conference (EuroPLOP) ’97. Siemens AG.

Kleppe, A. G., Warmer, J., & Bast, W. (2003, April). MDA Explained: The Model
Driven Architecture: Practice and Promise (Revised). Addison-Wesley Longman
Publishing Co., Inc.

Kolbe, T. H. (2009). Representing and Exchanging 3D City Models with CityGML. In
J. Lee & S. Zlatanova (Eds.), 3D Geo-Information Sciences (pp. 15–31). Springer.
https://doi.org/10.1007/978-3-540-87395-2

Kolbe, T. H., & Donaubauer, A. (2021). Semantic 3D City Modeling and BIM. In W. Shi,
M. F. Goodchild, M. Batty, M.-P. Kwan & A. Zhang (Eds.), Urban Informatics
(pp. 609–636). Springer Singapore. https://doi.org/10.1007/978-981-15-8983-
6_34

Kolbe, T. H., Gröger, G., & Plümer, L. (2008). CityGML - 3D City Models and their
Potential for Emergency Response. In S. Zlatanova & J. Li (Eds.), Geospatial
Information Technology for Emergency Response (pp. 257–274). Taylor & Francis.
https://www.taylorfrancis.com/books/9780429224065

358

https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1109/access.2023.3266519
https://doi.org/10.1109/access.2023.3266519
https://doi.org/10.1007/978-3-540-47919-2_10
https://doi.org/10.1107/s0567739476001873
https://doi.org/10.1145/15886.15902
https://www.jcp.org/en/jsr/detail?id=222
https://doi.org/10.1007/978-3-540-87395-2
https://doi.org/10.1007/978-981-15-8983-6_34
https://doi.org/10.1007/978-981-15-8983-6_34
https://www.taylorfrancis.com/books/9780429224065

Bibliography

Kolbe, T. H., Kutzner, T., Smyth, C. S., Nagel, C., Roensdorf, C., & Heazel, C. (2021,
September). OGC City Geography Markup Language (CityGML) Part 1: Con-
ceptual Model Standard [20-010, Version 3.0.0, International Standard]. Open
Geospatial Consortium (OGC). https://www.opengis.net/doc/IS/CityGML-
1/3.0

Kuramochi, M., & Karypis, G. (2004, September). An Efficient Algorithm for Discovering
Frequent Subgraphs. In IEEE Transactions on Knowledge and Data Engineering
(pp. 1038–1051, Vol. 16). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/tkde.2004.33

Kutzner, T. (2016, December). Geospatial Data Modelling and Model-driven Transform-
ation of Geospatial Data based on UML Profiles [Doctoral dissertation, Technical
University of Munich].

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski, A., & Vitalis, S. (2019,
June). CityJSON: A Compact and Easy-to-use Encoding of the CityGML Data
Model. In Open Geospatial Data, Software and Standards (Vol. 4). Springer
Science and Business Media LLC. https://doi.org/10.1186/s40965-019-0064-0

Lee, J., Li, K.-J., Zlatanova, S., Kolbe, T. H., Nagel, C., Becker, T., & Kang, H.-Y. (2020,
November). OGC(R) IndoorGML 1.1 [19-011R4, Version 1.1, Standard Imple-
mentation]. Open Geospatial Consortium (OGC)". http://www.opengis.net/
doc/IS/indoorgml/1.1

Lei, B., Janssen, P., Stoter, J., & Biljecki, F. (2023, March). Challenges of Urban Digital
Twins: A Systematic Review and a Delphi Expert Survey. In Automation in
Construction (p. 104716, Vol. 147). Elsevier BV. https://doi.org/10.1016/j.
autcon.2022.104716

Leroux, J. (2022, February). The Reachability Problem for Petri Nets is Not Primitive
Recursive. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS) (pp. 1241–1252). Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/focs52979.2021.00121

Lipton, R. (1976). The Reachability Problem Requires Exponential Space. In Research
Report (Vol. 62). Department of Computer Science, Yale University.

Luks, E. M. (1982, August). Isomorphism of Graphs of Bounded Valence can be Tested
in Polynomial Time. In Journal of Computer and System Sciences (pp. 42–65,
Vol. 25). Elsevier BV. https://doi.org/10.1016/0022-0000(82)90009-5

Mäntylä, M. (1988, January). An Introduction to Solid Modeling (1st ed.). W. H. Freeman
& Co.

Mao, B., & Li, B. (2019, December). Graph-Based 3D Building Semantic Segmentation
for Sustainability Analysis. In Journal of Geovisualization and Spatial Analysis
(Vol. 4). Springer Science and Business Media LLC. https://doi.org/10.1007/
s41651-019-0045-y

359

https://www.opengis.net/doc/IS/CityGML-1/3.0
https://www.opengis.net/doc/IS/CityGML-1/3.0
https://doi.org/10.1109/tkde.2004.33
https://doi.org/10.1186/s40965-019-0064-0
http://www.opengis.net/doc/IS/indoorgml/1.1
http://www.opengis.net/doc/IS/indoorgml/1.1
https://doi.org/10.1016/j.autcon.2022.104716
https://doi.org/10.1016/j.autcon.2022.104716
https://doi.org/10.1109/focs52979.2021.00121
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1007/s41651-019-0045-y
https://doi.org/10.1007/s41651-019-0045-y

Bibliography

Masri, N., Sultan, Y. A., Akkila, A. N., Almasri, A., Ahmed, A., Mahmoud, A. Y., Zaqout,
I., & Abu-Naser, S. S. (2019). Survey of Rule-based Systems. In International
Journal of Academic Information Systems Research (IJAISR) (pp. 1–22, Vol. 3).
International Journal of Academic Information Systems Research (IJAISR).

McCluskey, G. (1998, January). Using Java Reflection. Retrieved October 8, 2023, from
https://www.oracle.com/technical- resources/articles/java/javareflection.
html

McCulloch, W. S., & Pitts, W. (1943, December). A Logical Calculus of the Ideas
Immanent in Nervous Activity. In The Bulletin of Mathematical Biophysics
(pp. 115–133, Vol. 5). Springer Science and Business Media LLC. https://doi.
org/10.1007/bf02478259

McKay, B. D. (1978). Computing Automorphisms and Canonical Labellings of Graphs.
In Combinatorial Mathematics (pp. 223–232, Vol. 686). Springer Berlin Heidel-
berg. https://doi.org/10.1007/bfb0062536

McKay, B. D. (1980). Practical Graph Isomorphism. In Congressus Numerantium
(pp. 45–87, Vol. 30). Combinatorial Press.

McKay, B. D., & Piperno, A. (2014, January). Practical Graph Isomorphism, II. In
Journal of Symbolic Computation (pp. 94–112, Vol. 60). Elsevier BV. https :
//doi.org/10.1016/j.jsc.2013.09.003

McKay, B. D., & Piperno, A. (2023, November). nauty and Traces User’s Guide (Version
2.8.8). Retrieved August 9, 2024, from https://pallini.di.uniroma1.it

Metaver Metadatenverbund, Landesbetrieb Geoinformation und Vermessung (LGV)
Hamburg. (2024). 3D-Gebäudemodell LoD2-DE Hamburg. Retrieved January
18, 2024, from https://metaver.de

Michelson, B. M. (2006, February). Event-driven Architecture Overview - Event-driven
SOA is Just Part of the EDA Story. Patricia Seybold Group and Elemental Links,
Inc. https://doi.org/10.1571/bda2-2-06cc

Miller, G. (1980, April). Isomorphism Testing for Graphs of Bounded Genus. In Pro-
ceedings of the Twelfth Annual ACM Symposium on Theory of Computing
(pp. 225–235). Association for Computing Machinery (ACM). https://doi.org/
10.1145/800141.804670

Miyazaki, T. (1997). The Complexity of McKay’s Canonical Labeling Algorithm. In
L. Finkelstein & W. M. Kantor (Eds.), Groups and Computation II, DIMACS
Series on Discrete Mathematics and Theoretical Computer Science (pp. 239–256,
Vol. 28). American Mathematical Society.

Murthy, R., Liu, Z. H., Krishnaprasad, M., Chandrasekar, S., Tran, A.-T., Sedlar, E.,
Florescu, D., Kotsovolos, S., Agarwal, N., Arora, V., & Krishnamurthy, V. (2005,
June). Towards an Enterprise XML Architecture. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data (pp. 953–957).

360

https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bfb0062536
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003
https://pallini.di.uniroma1.it
https://metaver.de
https://doi.org/10.1571/bda2-2-06cc
https://doi.org/10.1145/800141.804670
https://doi.org/10.1145/800141.804670

Bibliography

Association for Computing Machinery (ACM). https ://doi .org/10 .1145/
1066157.1066300

Myers, E. W. (1986, November). An O(ND) Difference Algorithm and Its Variations. In
Algorithmica (pp. 251–266, Vol. 1). Springer Science and Business Media LLC.
https://doi.org/10.1007/bf01840446

Neo4j, Inc. (2023). Neo4j Licensing. Retrieved August 27, 2023, from https://neo4j.com/
licensing

Neo4j, Inc. (2023). The Neo4j Operations Manual v5. Retrieved October 22, 2023, from
https://neo4j.com/docs/operations-manual/5

Neuen, D. (2016). Graph Isomorphism for Unit Square Graphs. In P. Sankowski & C. D.
Zaroliagis (Eds.), 24th Annual European Symposium on Algorithms, ESA 2016,
August 22-24, 2016, Aarhus, Denmark (70:1–70:17, Vol. 57). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ESA.2016.70

Newman, M. E. J. (2003, January). The Structure and Function of Complex Networks.
In SIAM Review (pp. 167–256, Vol. 45). Society for Industrial & Applied Math-
ematics (SIAM). https://doi.org/10.1137/s003614450342480

Nguyen, S. H., & Kolbe, T. H. (2020, September). A Multi-Perspective Approach to In-
terpreting Spatio-Semantic Changes of Large 3D City Models in CityGML using
a Graph Database [15th International 3D GeoInfo Conference 2020, University
College London (UCL), London, UK]. In ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences (pp. 143–150, Vol. VI-4/W1-
2020). Copernicus GmbH. https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-
143-2020

Nguyen, S. H., & Kolbe, T. H. (2021, October). Modelling Changes, Stakeholders and
their Relations in Semantic 3D City Models [16th International 3D GeoInfo
Conference 2021, New York University (NYU), NY, USA]. In ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 137–
144, Vol. VIII-4/W2-2021). Copernicus GmbH. https://doi.org/10.5194/isprs-
annals-viii-4-w2-2021-137-2021

Nguyen, S. H., & Kolbe, T. H. (2022, October). Path-tracing Semantic Networks to
Interpret Changes in Semantic 3D City Models [17th International 3D GeoInfo
Conference 2022, University of New South Wales (UNSW), Sydney, Australia]. In
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences (pp. 217–224, Vol. X-4/W2-2022). Copernicus GmbH. https://doi.org/
10.5194/isprs-annals-x-4-w2-2022-217-2022

Nguyen, S. H., Yao, Z., & Kolbe, T. H. (2017, October). Spatio-Semantic Comparison of
Large 3D City Models in CityGML Using a Graph Database [12th International
3D GeoInfo Conference 2017, University of Melbourne, Melbourne, Australia]. In
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information

361

https://doi.org/10.1145/1066157.1066300
https://doi.org/10.1145/1066157.1066300
https://doi.org/10.1007/bf01840446
https://neo4j.com/licensing
https://neo4j.com/licensing
https://neo4j.com/docs/operations-manual/5
https://doi.org/10.4230/LIPICS.ESA.2016.70
https://doi.org/10.1137/s003614450342480
https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-143-2020
https://doi.org/10.5194/isprs-annals-vi-4-w1-2020-143-2020
https://doi.org/10.5194/isprs-annals-viii-4-w2-2021-137-2021
https://doi.org/10.5194/isprs-annals-viii-4-w2-2021-137-2021
https://doi.org/10.5194/isprs-annals-x-4-w2-2022-217-2022
https://doi.org/10.5194/isprs-annals-x-4-w2-2022-217-2022

Bibliography

Sciences (pp. 99–106, Vol. IV-4/W5). Copernicus GmbH. https://doi.org/10.
5194/isprs-annals-iv-4-w5-99-2017

Nguyen, S. H. (2017, May). Spatio-semantic Comparison of 3D City Models in CityGML
using a Graph Database [Master’s thesis, Technical University of Munich].

Nguyen, S. H., & Kolbe, T. H. (2024, September). Identification and Interpretation of
Change Patterns in Semantic 3D City Models [18th 3D GeoInfo Conference
2023, Technical University of Munich (TUM), Munich, Germany]. In T. H. Kolbe,
A. Donaubauer & C. Beil (Eds.), Recent Advances in 3D Geoinformation Science
(pp. 479–496). Springer Nature Switzerland. https://doi.org/10.1007/978-3-
031-43699-4_30

Nguyen, S. H., Yao, Z., & Kolbe, T. H. (2018). Spatio-Semantic Comparison of Large
3D City Models in CityGML Using a Graph Database. In gis.Science (pp. 85–
100, Vol. 3). Wichmann Verlag. https://gispoint.de/artikelarchiv/gis/2018/
gisscience-ausgabe-32018.html

Nicola, M., & van der Linden, B. (2005, August). Native XML Support in DB2 Universal
Database. In Proceedings of the 31st International Conference on Very Large
Data Bases (pp. 1164–1174). VLDB Endowment.

Obe, R. O., & Hsu, L. S. (2017). PostgreSQL: Up and Running: A Practical Guide to the
Advanced Open Source Database (3rd ed.). O’Reilly Media, Inc.

Olbrich, F. (2023, November). Multimodal Navigation Applications for CityGML 3.0
using a Graph Database [Master’s thesis, Technical University of Munich].

Olbrich, F., Beil, C., Nguyen, S. H., & Kolbe, T. H. (2024, March). Multimodale Naviga-
tionsanwendungen für CityGML 3.0-konforme 3D-Straßenraummodelle mittels
Graphdatenbanken. In T. P. Kersten & N. Tilly (Eds.), DGPF-Jahrestagung
2024 - Stadt, Land, Fluss - Daten vernetzen, 44. Wissenschaftlich-Technische
Jahrestagung der DGPF (pp. 357–369, Vol. 32). Deutsche Gesellschaft für Photo-
grammetrie, Fernerkundung und Geoinformation (DGPF) e.V. https://doi.org/
10.24407/KXP:1885708890

Pearson, K. (1900, July). X. On the Criterion That a Given System of Deviations from the
Probable in the Case of a Correlated System of Variables is Such That It Can Be
Reasonably Supposed to Have Arisen from Random Sampling. In The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science (pp. 157–
175, Vol. 50). Informa UK Limited. https://doi.org/10.1080/14786440009463897

Pédrinis, F., Morel, M., & Gesquière, G. (2014, November). Change Detection of Cities. In
M. Breunig, E. Al-Doori Mulhim and Butwilowski, P. V. Kuper, J. Benner & K.-H.
Häfele (Eds.), 3D Geoinformation Science (pp. 123–139). Springer International
Publishing. https://doi.org/10.1007/978-3-319-12181-9_8

Petri, C. A. (1962, June). Kommunikation mit Automaten [Doctoral dissertation, Tech-
nical University of Darmstadt].

362

https://doi.org/10.5194/isprs-annals-iv-4-w5-99-2017
https://doi.org/10.5194/isprs-annals-iv-4-w5-99-2017
https://doi.org/10.1007/978-3-031-43699-4_30
https://doi.org/10.1007/978-3-031-43699-4_30
https://gispoint.de/artikelarchiv/gis/2018/gisscience-ausgabe-32018.html
https://gispoint.de/artikelarchiv/gis/2018/gisscience-ausgabe-32018.html
https://doi.org/10.24407/KXP:1885708890
https://doi.org/10.24407/KXP:1885708890
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1007/978-3-319-12181-9_8

Bibliography

Pfaltz, J. L., & Rosenfeld, A. (1969, May). Web Grammars. In Proceedings of the 1st
International Joint Conference on Artificial Intelligence (pp. 609–619). Morgan
Kaufmann Publishers Inc.

Piperno, A. (2011). Search Space Contraction in Canonical Labeling of Graphs. arXiv.
https://doi.org/10.48550/ARXIV.0804.4881

Ponomarenko, I. (1988, January). The Isomorphism Problem for Classes of Graphs that
are Invariant with Respect to Contraction. In Zap. Nauchn. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI) (pp. 147–177, Vol. 174).

Powałka, L., Poon, C., Xia, Y., Meines, S., Yan, L., Cai, Y., Stavropoulou, G., Dukai,
B., & Ledoux, H. (2024). cjdb: A Simple, Fast, and Lean Database Solution for
the CityGML Data Model. In T. H. Kolbe, A. Donaubauer & C. Beil (Eds.),
Recent Advances in 3D Geoinformation Science (pp. 781–796). Springer Nature
Switzerland. https://doi.org/10.1007/978-3-031-43699-4_47

Pratt, T. W. (1971, December). Pair Grammars, Graph Languages and String-to-Graph
Translations. In Journal of Computer and System Sciences (pp. 560–595, Vol. 5).
Elsevier BV. https://doi.org/10.1016/s0022-0000(71)80016-8

Python Software Foundation. (2023). marshal - Internal Python object serialization.
Retrieved September 24, 2023, from https ://docs .python.org/3/library/
marshal.html

Redweik, R., & Becker, T. (2014, November). Change Detection in CityGML Documents.
In M. Breunig, M. Al-Doori, E. Butwilowski, P. V. Kuper, J. Benner & K.-H.
Häfele (Eds.), 3D Geoinformation Science (pp. 107–121). Springer International
Publishing. https://doi.org/10.1007/978-3-319-12181-9_7

Reisig, W. (2013, July). Understanding Petri Nets: Modeling Techniques, Analysis
Methods, Case Studies (1st ed.). Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-642-33278-4

Ryan, V., Seligman, S., & Lee, R. (1999, October). RFC2713: Schema for Representing
Java(TM) Objects in an LDAP Directory. Network Working Group, The Internet
Society. Retrieved August 7, 2024, from https://www.rfc-editor.org/rfc/rfc2713.
html

Rys, M. (2005, June). XML and Relational Database Management Systems: Inside
Microsoft(R) SQL Server(TM) 2005. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data (pp. 958–962). Association for
Computing Machinery (ACM). https://doi.org/10.1145/1066157.1066301

Schade, S., & Cox, S. J. D. (2010, July). Linked Data in SDI or How GML is not
about Trees. In M. Painho, M. Y. Santos & H. Pundt (Eds.), Proceedings of
the 13th AGILE International Conference on Geographic Information Science -
Geospatial Thinking. Association of Geographic Information Laboratories for
Europe (AGILE).

363

https://doi.org/10.48550/ARXIV.0804.4881
https://doi.org/10.1007/978-3-031-43699-4_47
https://doi.org/10.1016/s0022-0000(71)80016-8
https://docs.python.org/3/library/marshal.html
https://docs.python.org/3/library/marshal.html
https://doi.org/10.1007/978-3-319-12181-9_7
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://www.rfc-editor.org/rfc/rfc2713.html
https://www.rfc-editor.org/rfc/rfc2713.html
https://doi.org/10.1145/1066157.1066301

Bibliography

Schwab, B., Beil, C., & Kolbe, T. H. (2020, May). Spatio-Semantic Road Space Model-
ing for Vehicle-Pedestrian Simulation to Test Automated Driving Systems. In
Sustainability (p. 3799, Vol. 12). MDPI AG. https://doi.org/10.3390/su12093799

Sellis, T. K., Roussopoulos, N., & Faloutsos, C. (1987, September). The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects. In P. M. Stocker, W. Kent &
P. Hammersley (Eds.), Proceedings of the 13th International Conference on Very
Large Data Bases (pp. 507–518). Morgan Kaufmann Publishers Inc.

Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C., LeMoigne, J., & Wang, L.
(2010, November). DRAFT Modeling, Simulation, Information Technology &
Processing Roadmap - Technology Area 11. National Aeronautics and Space
Administration (NASA). https://www.emacromall.com/reference/NASA-
Modeling-Simulation-IT-Processing-Roadmap.pdf

Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022, November).
Digital Twins: State of the Art Theory and Practice, Challenges, and Open
Research Questions. In Journal of Industrial Information Integration (p. 100383,
Vol. 30). Elsevier BV. https://doi.org/10.1016/j.jii.2022.100383

Shields, R. (2012, July). Cultural Topology: The Seven Bridges of Königsburg, 1736.
In Theory, Culture & Society (pp. 43–57, Vol. 29). SAGE Publications. https:
//doi.org/10.1177/0263276412451161

Skiena, S. S. (2008). The Algorithm Design Manual (2nd ed.). Springer London. https:
//doi.org/10.1007/978-1-84800-070-4

Stadler, A., & Kolbe, T. H. (2007). Spatio-semantic Coherence in the Integration of
3D City Models. In A. Stein (Ed.), Proceedings of the 5th International ISPRS
Symposium on Spatial Data Quality ISSDQ 2007 in Enschede, The Netherlands,
13-15 June 2007. International Society for Photogrammetry and Remote Sensing
(ISPRS).

Stadler, A., Nagel, C., König, G., & Kolbe, T. (2009, January). Making Interoperability
Persistent: A 3D Geo Database Based on CityGML. In 3D Geo-Information
Sciences (pp. 175–192). Springer Berlin Heidelberg. https://doi.org/10.1007/
978-3-540-87395-2_11

Stouffs, R., Tauscher, H., & Biljecki, F. (2018, August). Achieving Complete and Near-
Lossless Conversion from IFC to CityGML. In ISPRS International Journal of
Geo-Information (p. 355, Vol. 7). MDPI AG. https://doi.org/10.3390/ijgi7090355

Trudeau, R. J. (1994, February). Introduction to Graph Theory (2nd Revised ed.). Dover
Publications Inc.

Turing, A. M. (1936, November). On Computable Numbers, with an Application to
the Entscheidungsproblem. In Proceedings of the London Mathematical Society
(pp. 230–265, Vol. s2-42). Wiley. https://doi.org/10.1112/plms/s2-42.1.230

364

https://doi.org/10.3390/su12093799
https://www.emacromall.com/reference/NASA-Modeling-Simulation-IT-Processing-Roadmap.pdf
https://www.emacromall.com/reference/NASA-Modeling-Simulation-IT-Processing-Roadmap.pdf
https://doi.org/10.1016/j.jii.2022.100383
https://doi.org/10.1177/0263276412451161
https://doi.org/10.1177/0263276412451161
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1007/978-3-540-87395-2_11
https://doi.org/10.1007/978-3-540-87395-2_11
https://doi.org/10.3390/ijgi7090355
https://doi.org/10.1112/plms/s2-42.1.230

Bibliography

Ullmann, J. R. (1976, January). An Algorithm for Subgraph Isomorphism. In Journal of
the ACM (pp. 31–42, Vol. 23). Association for Computing Machinery (ACM).
https://doi.org/10.1145/321921.321925

Umeyama, S. (1991, April). Least-squares Estimation of Transformation Parameters
between Two Point Patterns. In IEEE Transactions on Pattern Analysis and
Machine Intelligence (pp. 376–380, Vol. 13). Institute of Electrical and Electronics
Engineers (IEEE). https://doi.org/10.1109/34.88573

United Nations Department of Economic and Social Affairs (UN DESA). (2019). World
Urbanization Prospects: The 2018 Revision. United Nations. https://www.un-
ilibrary.org/content/books/9789210043144

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., & Wilkins, D. (2010, April). A
Comparison of a Graph Database and a Relational Database: A Data Provenance
Perspective. In Proceedings of the 48th Annual Southeast Regional Conference.
Association for Computing Machinery (ACM). https ://doi .org/10 .1145/
1900008.1900067

Vinasco-Alvarez, D., Samuel, J., Servigne, S., & Gesquière, G. (2024, May). Towards an
Automated Transformation of an nD Urban Data Model to a Computational
Ontology Network: From UML to OWL, From CityGML 3.0 to "CityOWL". In
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences (pp. 231–238, Vol. X-4/W4-2024). Copernicus GmbH. https://doi.org/
10.5194/isprs-annals-x-4-w4-2024-231-2024

Volk, R., Stengel, J., & Schultmann, F. (2014, March). Building Information Modeling
(BIM) for Existing Buildings - Literature Review and Future Needs. In Automa-
tion in Construction (pp. 109–127, Vol. 38). Elsevier BV. https://doi.org/10.
1016/j.autcon.2013.10.023

Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., & Partner, J. (2014). Neo4j in Action (1st
ed.). Manning Publications Co.

Wagner, R. A., & Fischer, M. J. (1974, January). The String-to-String Correction Problem.
In Journal of the ACM (pp. 168–173, Vol. 21). Association for Computing
Machinery (ACM). https://doi.org/10.1145/321796.321811

Wang, Y., DeWitt, D. J., & Cai, J. Y. (2003, March). X-Diff: An Effective Change Detection
Algorithm for XML Documents. In Proceedings 19th International Conference
on Data Engineering 2003 (pp. 519–530). Institute of Electrical and Electronics
Engineers (IEEE). https://doi.org/10.1109/icde.2003.1260818

Werbos, P. (1974, August). Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences [Doctoral dissertation, Harvard University].

West, D. (2000, August). Introduction to Graph Theory (Subsequent ed.). Pearson.
Willenborg, B., Sindram, M., & Kolbe, T. H. (2017, October). Applications of 3D City

Models for a Better Understanding of the Built Environment. In M. Behnisch

365

https://doi.org/10.1145/321921.321925
https://doi.org/10.1109/34.88573
https://www.un-ilibrary.org/content/books/9789210043144
https://www.un-ilibrary.org/content/books/9789210043144
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.5194/isprs-annals-x-4-w4-2024-231-2024
https://doi.org/10.5194/isprs-annals-x-4-w4-2024-231-2024
https://doi.org/10.1016/j.autcon.2013.10.023
https://doi.org/10.1016/j.autcon.2013.10.023
https://doi.org/10.1145/321796.321811
https://doi.org/10.1109/icde.2003.1260818

Bibliography

& G. Meinel (Eds.), Trends in Spatial Analysis and Modelling (pp. 167–191,
Vol. 19). Springer International Publishing. https://doi.org/10.1007/978-3-319-
52522-8_9

Wood, L., Hors, A. L., Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I., Nicol,
G., Robie, J., Sutor, R., & Wilson, C. (2000, September). Document Object Model
(DOM) Level 1 Specification (Second Edition) - W3C Working Draft. Retrieved
August 7, 2024, from https://www.w3.org/TR/2000/WD-DOM-Level-1-
20000929

World Wide Web Consortium (W3C). (2006, May). XML Linking Language (XLink) 1.1.
Retrieved August 7, 2024, from https://www.w3.org/TR/xlink11

Wysocki, O., Schwab, B., & Willenborg, B. (2022, January). Awesome CityGML: The
Ultimate List of Open Data Semantic 3D City Models (Version 1.0). Zenodo.
https://doi.org/10.5281/zenodo.5899096

Yao, Z. (2020, January). Domain Extendable 3D City Models - Management, Visualiza-
tion, and Interaction [Doctoral dissertation, Technical University of Munich].

Yao, Z., & Kolbe, T. H. (2017). Dynamically Extending Spatial Databases to Support
CityGML Application Domain Extensions using Graph Transformations. In T. P.
Kersten (Ed.), Kulturelles Erbe erfassen und bewahren - Von der Dokumenta-
tion zum virtuellen Rundgang, 37. Wissenschaftlich-Technische Jahrestagung
der DGPF (pp. 316–331, Vol. 26). Deutsche Gesellschaft für Photogrammetrie,
Fernerkundung und Geoinformation (DGPF) e.V.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi, T.,
& Kolbe, T. H. (2018, May). 3DCityDB - A 3D Geodatabase Solution for the
Management, Analysis, and Visualization of Semantic 3D City Models based on
CityGML. In Open Geospatial Data, Software and Standards (pp. 1–26, Vol. 3).
Springer Science and Business Media LLC. https://doi.org/10.1186/s40965-
018-0046-7

Zhang, K. (1993). A New Editing based Distance between Unordered Labeled Trees.
In A. Apostolico, M. Crochemore, Z. Galil & U. Manber (Eds.), Combinatorial
Pattern Matching (pp. 254–265, Vol. 684). Springer-Verlag. https://doi.org/10.
1007/BFb0029810

366

https://doi.org/10.1007/978-3-319-52522-8_9
https://doi.org/10.1007/978-3-319-52522-8_9
https://www.w3.org/TR/2000/WD-DOM-Level-1-20000929
https://www.w3.org/TR/2000/WD-DOM-Level-1-20000929
https://www.w3.org/TR/xlink11
https://doi.org/10.5281/zenodo.5899096
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.1007/BFb0029810
https://doi.org/10.1007/BFb0029810

	Acknowledgments
	Abstract
	Contents
	Introduction
	Changes in Semantic 3D City Modelling
	Digital Changes in an Urban Digital Twin (UDT)
	Interpretation of Changes in Semantic 3D City Models
	Interrelations and Patterns among Changes
	Human-centric Interpretation of Changes

	Problem Statement and Scope

	Challenges of Comprehending Changes in Semantic 3D City Models
	The Complexity of the CityGML Data Model
	The Complex Data Model of CityGML
	The Graph Characteristics of CityGML
	Large Sizes of CityGML Documents

	The Complexity of Matching CityGML Documents
	The Graph and Subgraph Isomorphism Problem
	Identifier-independent Matching
	Syntactic Ambiguities allowed by GML and CityGML
	Uncertainties in Detecting Geometric Changes

	The Challenging Task of Interpreting Detected Changes
	Large Sets of Low-level Detected Changes
	Hidden and Intercorrelated Patterns among Changes
	Multiple Perspectives when Interpreting Changes
	Stakeholders' Varying Interests in Changes

	Use Case Example: Introduction of Stakeholders
	Research Questions and Objectives
	Outline of the Thesis

	Graph Representation of Semantic 3D City Models
	Foundations and Related Work
	The City Geography Markup Language (CityGML)
	Object-oriented Representations of CityGML Models
	Relational Representations of CityGML Models
	The Concept of Graphs and the Graph Data Structure
	The Graph-based Nature of CityGML
	Existing Graph Representations for GML and CityGML
	The Graph Database Neo4j

	Graph Data Model for CityGML
	Requirements on Input CityGML Documents
	Modelling Nodes
	Modelling Relationships

	Methods for Mapping CityGML Objects onto Graphs
	Recursive Mapping
	Avoiding Circular References
	Preventing Repeated Mapping
	Mapping Arrays
	Extracting Sub-elements
	Evaluating Sub-elements' Complexity

	Resolving XLinks
	Separation of Graphs for each City Model
	Strategies on Finding Nodes for Interlinking
	Connecting href and Referenced Nodes

	Evaluating Information Preservation in Generated Graphs
	Assessing Mapped Thematic Content
	Assessing the Semantic Structure of Mapped Graphs
	Evaluation Results of all 14 CityGML Modules and 5 LODs

	Reconstruction of CityGML Objects from Graphs
	Enriching Graph Representations of CityGML Objects
	Key Characteristics of the Reconstruction Methods

	Summary and Discussion

	Change Detection in Semantic 3D City Models
	Foundations and Related Work
	Existing diff Algorithms for XML, GML, and CityGML
	Graph Isomorphism
	The Graph and Subgraph Isomorphism Problem

	Advantages and Challenges of Using CityGML Graphs
	Methods for Comparing CityGML Graphs
	Recursive Matching
	Semantic Matching
	Comparing Node Properties
	Matching Child Nodes and Subgraphs
	Direct Attachment of Change Nodes to Graphs

	Node and Subgraph Similarity
	Finding the Best Potential Match
	Matching Generic Attributes
	Matching Points
	Matching Line Segments
	Matching Surfaces
	Matching Solids
	Matching Buildings
	Matching Other Types of Objects

	Edit Operations and Edit Nodes
	Change Detection: Illustrative Examples
	Summary and Discussion

	Change Interpretation in Semantic 3D City Models
	Foundations and Related Work
	ECA Rules and Rete Networks
	Petri Nets
	Graph Transformation Systems

	Hierarchical Modelling of Changes in CityGML
	Appearance Changes
	Semantic Changes
	Geometric Changes
	Topological Changes
	Structural Changes
	LOD Changes
	Syntactic Changes
	Scope Changes

	Defining Rules for Identifying Change Patterns
	Requirements for the Pattern Matching Process
	Definitions
	Properties of Rule Nodes
	Properties of Rule Relationships
	Rule Notations in Cypher

	Matching Change Patterns
	Successive Processing of Changes
	Handling of Semantic and Graph Origin of Changes
	Managing Scopes of Changes
	The Use of Aggregative Memory Nodes

	Change-Stakeholder Analysis
	Requirements for Evaluating Change-Stakeholder Relations
	Change-Stakeholder Network Definition
	Graph-based Path-tracing Analysis
	Evaluating Traced Paths

	Summary and Discussion

	Optimization Strategies for Massive CityGML Datasets
	Chunk-wise Mapping
	Splitting Massive CityGML Documents
	Reconnecting Graph Representations of CityGML Chunks

	Leveraging Thematic Indexes
	Token Lookup Index
	Range Index
	Text Index
	Full-text Index
	Combining Thematic Indexes

	Spatial Indexing
	Point Index
	R-trees for Indexing More Complex Geometries
	Employing R-trees in a Graph Database
	Linking R-tree Nodes with Geometric Content

	Transaction Management
	Memory Management and Batch Transactions
	Concurrency Control

	Application Results
	Implementation: An Overview
	Implementation of the Mapping Process
	Implementation of the Matching Process
	Implementation of the Interpretation Process

	Test Environment and Datasets
	Results of the Mapping Process
	Results of the Matching Process
	Detected Edit Nodes
	Detected Geometric Changes

	Results of the Interpretation Process
	Employed Change Pattern Rules
	Unchanged Buildings
	Updated Identifiers of City Objects
	Updated Property Values creationDate
	Updated Coded Property Values
	Raised Roofs of Buildings and Building Parts

	Leveraging Interpretation Results for Further Analyses
	Calculating Changes in the Living Space of the City
	Assessing Interpretation Coverage among Detected Changes

	Multi-perspective Change Interpretation
	Runtime Complexity and Scalability

	Conclusion and Outlook
	Summary of this Work
	Discussion and Contributions
	Strengths and Limitations
	Scientific Contributions

	Extendability and Future Work

	Publications
	Appendices
	Glossary
	Acronyms
	List of Figures
	List of Tables
	List of Code Listings
	Bibliography

