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Abstract—This paper addresses the problem of remote moni-
toring of two-state Markov sources via a slotted ALOHA random
access channel, where the source statistics are not known a
priori to the receiver. We develop a joint model and state
estimation method using the Baum-Welch algorithm for two
different transmission strategies. In the first strategy, the nodes
transmissions are independent of the underlying state evolution
process (random policy). In the second strategy, the nodes trans-
mit an update only upon observing a state transition (reactive
policy). We show that the reactive approach is beneficial not
only in terms of reducing the state estimation error probability
(a result that was recently established under perfect knowledge
of the source statistics), but that it allows a faster learning of the
source statistics.

Index Terms—Remote Monitoring, Random Access, Slotted
Aloha, Expectation-Maximization, Markov Sources

I. INTRODUCTION

In the context of Internet of Things (IoT) systems, mon-
itoring the state of remotely located nodes is a challenging
task, especially in wireless sensor networks. These networks
often consist of numerous low-complexity, battery-powered
devices that collect data and transmit updates to a central
hub over a shared channel. The sporadic and irregular nature
of these transmissions, combined with energy limitations and
constraints of shared communication channels, pose significant
challenges on how to efficiently use channel resources.

Traditional grant-based access methods, which rely on chan-
nel negotiation and reservation procedures, are often inefficient
due to the large overhead. As a result, uncoordinated access
protocols, such as those based on slotted ALOHA [1], are
commonly employed to enable connectivity. However, the
challenge remains: how to ensure timely and accurate state
estimation of the sensed processes, especially when the shared
channel leads to packet collisions and communication delays.

To characterize these aspects, performance metrics like age
of information (Aol) have been widely adopted. Aol captures
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the freshness of information by measuring the time elapsed
since the last update from a process was received [2]. While
Aol has proven effective for evaluating timely delivery of
status updates, it does not account for the accuracy or the
relevance of a delivered message. Thus, it falls short in
scenarios where the monitored sources exhibit memory or non-
trivial dynamics, such as Markov processes.

To address these limitations, other metrics and strategies
have been proposed to enhance the accuracy and efficiency
of state estimation in various applications. Among them,
state estimation entropy and state estimation error probability
(SEEP) have gained attention [3]-[6]. State estimation entropy
quantifies the uncertainty at the receiver regarding the current
state of a monitored process, while SEEP directly measures
the probability that the receiver’s state estimate is incorrect.
In [7] additional semantic-aware metrics such as the Age of
Missed Alarm (AoMA) and Age of False Alarm (AoFA),
accounting for the costs associated with different types of
estimation errors were introduced. In turn, [8] explored the
role of sampling rates in maintaining information freshness.
The authors provided closed-form expressions for mean infor-
mation freshness and optimized sampling strategies to ensure
up-to-date and accurate state estimates. Similarly, [9] proposed
a randomized stationary sampling policy to minimize actuation
errors in Markov source monitoring. These results demon-
strate the effectiveness of state-aware policies in optimizing
sampling rates and reducing errors in real-time applications.
Finally, [10] addresses the challenge of state estimation in
networked control systems, studying the impact of packet loss
and time delay on the transmission of sensory information
from a stochastic source to a decoder.

In this work, we focus on the remote monitoring of two-state
Markov sources over a random access channel, where destruc-
tive collisions occur, preventing successful packet delivery.
This problem was initially introduced and analyzed in [6]
where the receiver is assumed to have perfect knowledge of the
sources’ model. However, in practical scenarios, such a priori
knowledge may not always be available. In this paper, we
address this limitation by developing a joint model and state
estimation approach, which extends the maximum a posteriori
(MAP) detectors from [6]. Our approach alternates between
a state estimation step and a model refinement step using
the Baum-Welch algorithm [11], [12], enabling the receiver
to dynamically learn both the state transition probabilities and



Fig. 1. Two-state Markov model for a generic source in the system.

the current state of the source. We investigate the performance
of two transmission strategies: a random transmission policy,
where nodes send updates independently of their state with
a fixed probability, and a reactive transmission policy, where
updates are only sent when a change in the source’s state
is detected. We consider both symmetric and asymmetric
sources. The results indicate that the estimation performance
for asymmetric sources is better than the symmetric ones
in both transmission policies. Between the two policies, the
reactive one shows superior performance in reducing state
estimation errors and model mismatch.

II. SYSTEM MODEL
A. Notation

We represent random variables using uppercase letters and
their realizations with lowercase letters. The probability of
the event X = z is indicated as P[X = x|, and the proba-
bility mass function for the random variable X is written
as P(x) = P[X = z]. For discrete-time, finite-state Markov
chains, the one-step transition probability from state 7 to state
J is represented by ¢;;, while the stationary probability of state
i is denoted by ;. We finally denote by @ = [g;;] the state
transition probability matrix.

B. System Model

We consider a system with M statistically independent
sources (nodes) sharing a common wireless channel to com-
municate with a receiver. Time is slotted, and all nodes are syn-
chronized to these slots. Each source k € {0,1,...,M — 1}
generates a random sequence of symbols

x®x® x|

where X ) belongs to the alphabet X = {0, 1}, representing
the random state of the source at time slot n. Each node
operates as a homogeneous two-state stationary Markov chain,
with transition probabilities

ay) =P | X = x, Zi}

for all (¢,5) € X x X, as shown in Fig. 1. The steady-state
distribution of the process is given by
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qo1
M =—, — (1)
q10 + qo1
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Nodes transmit update packets over the shared channel,
reporting their state to the receiver. We focus on random access
policies, specifically examining two variations of the slotted
ALOHA protocol [13], detailed in Sec. II-C.

Accordingly, three slot outcomes are possible at the re-
ceiver: i) idle, where no transmission occurs; ii) singleton,
where only one source transmits; and iii) collision, where
multiple packets are transmitted simultaneously. We follow the
collision channel model [13], where a status update is received
correctly in a singleton slot but cannot be decoded in the event
of a collision.

Furthermore, we assume that the receiver can detect colli-
sions but cannot determine how many packets were involved.
Each transmission includes a source identifier, enabling the
receiver to know the current state of the source upon decoding.
Moreover, re-transmissions are not considered, as nodes do not
receive feedback about their transmission attempts.

The receiver tries to maintain an accurate real-time under-
standing of the state of each source. To this aim, it is aware
that nodes evolve as two-state Markovian processes, but it
does not have any prior knowledge about the state-transition
probabilities ¢;; or their stationary distributions. For simplicity,
we focus on the source with index & = 0, and represent the
sequence of symbols it generates from time O to n by

X" =Xo X1 Xo ... X,

During this time, the receiver observes the output sequence
Y"=Yoh" Yy ... Y,

where Y, belongs to the alphabet V = {0, 1, S, C}. Here, 0 and
1 represent the observed states of the reference source without
collision. S instead, indicates a slot where the reference source
did not transmit, i.e. it corresponds to either an idle slot, or a
slot where a message from a node other than the reference
one was decoded. Finally, C indicates a collision between
transmissions from two or more sources, which may or may
not involve the reference source.

C. Transmission Strategies

We explore two different transmission policies: random and
reactive.

« Random Transmission Policy: In this approach, every
node decides to transmit or refrain from transmission
with probabilities o and 1 — «, respectively. Hence, the
transmission decision is independent of how the source
evolves. In this configuration, the number of messages
transmitted within a generic time slot follows a binomial
distribution with parameters M and «. Therefore, the
probability for a source to deliver an update is:

w=a(l—-a)M1t )

In this setting, the activation probability « is the same
across all sources and is selected to be a = M~ to
maximize the successful decoding probability stated in
equation (2).

« Reactive Transmission Policy: In this approach, trans-
missions are only triggered by a change in the status of
the source. Accordingly, the probability for a source to



deliver an update over a generic slot can be captured by
the following approximation:

O~a(l—a)Mt 3)
where
- 2
G := ToQo1 + T1q10 = UL €]
qo1 + q10

is the average activation probability for a node under the
reactive transmission strategy. Note that the expression
will be exact in case of symmetric sources, i.e., o1 = ¢10-
Otherwise, the probability of success jointly depends on
the state of all sources at this time slot. The approxima-
tions in (3)-(4) has anyways been shown to be very tight
in the considered setting [6].
Such an event-triggered policy introduces an important
trade-off. On the one hand, it can mitigate the channel
congestion compared to a random transmission strat-
egy by avoiding transmission in the absence of a state
change. Furthermore, observations of slots that do not
deliver a message from the reference source will still
be informative. For instance, the channel observation S
is indicator of no-state change for the reference source.
On the other hand, when the source changes state in-
frequently, collisions can result in prolonged intervals
without successfully transmitting updates, causing delays
in the delivery of new information.
To effectively analyze the transmission strategies in our sys-
tem, we formulate the problem using a hidden Markov model
(HMM). In fact, the state of the source—whether it has
changed or not—cannot be directly observed by the receiver;
instead, the receiver can only infer it from the channel obser-
vations. For the random transmission strategy, the observations
S, C can both be regarded as non-informative. In other words,
the occurrence of a collision or successful delivery of another
source does not provide any information about the evolution
of the reference source. Moreover, the probability of an output
observation depends only on the current state and not on the
prior ones. As a result, the emission probabilities under the
random transmission strategy can be characterized as:

w ify, =X,
1 —w Otherwise.

In (5) the first condition corresponds to decoding the current
state of the reference sources, which happens with probability
w. In turn, the second specifies that P(Y,, = 0|X,, = 1) =
P(Y, = 1|X,, = 0) = 0, as the source only transmits its
current value.

On the other hand, with the reactive transmission strategy,
observation Y;, € {S,C} can provide side information about
the state of the sources. For instance, by observing Y,, = S
the receiver can infer that X,, = X,,_1. In other words, the
probability of each emission depends on the evolution of all
the sources. In fact, the number of other sources in a given
state (e.g. state 0) along with the state of the reference source

will form the state space of the HMM. This will lead to
an HMM with 2M states and a size 4 x (2M)? emission
probability matrix. To simplify the analysis of the HMM, we
follow the approach mentioned in [4], [6] to approximate it
with a surrogate myopic model where we assume that only the
reference source employs the reactive transmission approach
and the other M — 1 sources adopt a random transmission
policy with activation probability &. This in turn will result
in an HMM with 2 states and an emission probability matrix
with 4 x 22 dimension. Using this myopic approximation, if
the reference source does not change state (i.e., X,, = X,,—1),
the only possible outcomes are an idle or collision observation.
The probability of observing an idle slot is

ne1) =(1— @)

+ (M -Da(l-a)M=2  (6)

P(Y, =8|X, =

while the probability of a collision is
PY,=ClX,=X,-1)=1-P(,=8|X, =X,,—1). (7

Conversely, if the reference source changes state, the outcome
is either a successful delivery with probability

PYn=X,Xn=1-Xa])=(1-@)M ' @8
or a collision with probability

P(Y, =C|X, =1 -X,_1])

D. Maximum A Posteriori Estimator

A maximum a posteriori (MAP) estimator is used to es-
timate the hidden state of a source based on observed data.
In our case, the MAP estimator finds the most likely state
of the source, Z,, at time n given the sequence of channel
observations y™. The MAP estimate is defined as:

i, = argmax P(z, | y"). (10)

z,€{0,1}
Using this estimate, we also study the state estimation error
probability (SEEP), which refers to the probability that the
estimated state differs from the true state. The metric is defined
as

SEEP = Y

gl

LS e,

where N is the duration of the considered time horizon.

E. Kullback-Leibler Divergence

To assess the accuracy of the receiver’s estimation of the
transition probabilities, we use the Kullback-Leibler (KL)
divergence [14]. More specifically, in our context, the KL
divergence is used to quantify the discrepancy between the
true transition probability matrix @) of the Markov source and
the estimated transition probability matrix Q obtained from
the Baum-Welch algorithm, as discussed in Sec. III.

The KL divergence between Q and @ is given by [15]:
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where the conditional divergence S(X» | Xy =) is:
S(Xo | Xi=1)=Y qylog ZJ (13)
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III. JOINT MODEL AND STATE ESTIMATION

The Baum-Welch (BW) algorithm [11], [12], a special
case of the expectation-maximization (EM) algorithm [16],
is employed to iteratively estimate the parameters of the
reference Markov chain that best explain the observed data.
Once these parameters are estimated, the algorithm also helps
in computing the most likely state of the reference source,
which in our case is the variable X,. The BW algorithm
involves two main steps, performed in successive manner:

« Expectation Step (E-Step): the algorithm calculates the
expected value of the likelihood of the observed data,
given the current estimates of the model parameters.
This step requires calculating two key sets of values that
capture the likelihood of being in a particular state at a
given time, based on both recent and future observations.
These values are computed using the forward-backward
algorithm [12], [17].

o Maximization Step (M-Step): Using the expected values
computed in the E-Step, the algorithm re-estimates the
model parameters to maximize the likelihood of the
observed data. This includes re-estimating the transition
probabilities between states and the emission probabilities
that relate the hidden states to the observed data.

The algorithm begins with an initial guess for the transition
probability matrix Q and the emission probabilities given the
transmission strategy implemented for channel contention, and
recursively performs the aforementioned steps to refine these
estimates until convergence. At every slot, we run the BW
algorithm using the entire output sequence up to that slot, in
order to refine the model estimation and estimate the latest
state of the reference source with such model.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present the results of simulations con-
ducted to compare the performance of the two transmission
strategies and assess the impact of model mismatch on state
estimation. The estimator starts with arbitrary initial guess
of go1 = G0 = 0.5. Monte Carlo simulations were run
for a duration of 10* time slots and repeated across 100
realizations. We varied the number of sources (nodes) in the
network, with node counts of M = 10 and M = 100 nodes,
to explore the effects of network size on convergence and
estimation accuracy. Furthermore, we consider both symmetric
and asymmetric sources. We aim to provide insight into the
interplay between these factors and determine which trans-
mission strategy performs better under different network and
source conditions.
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Fig. 2. The estimated state transition probability evolution when the source
is symmetric with actual transition probability of gop1 = qi10 = 0.01. The
random and reactive strategy convergence are showed with blue and red
curves, respectively.

A. Symmetric Sources

We start with symmetric sources to clarify how the re-
ceiver’s estimation of the transition probability g;;s evolve.
Considering sources with transition probabilities gg1 = q190 =
0.01, Figure 2 reports the evolution of the mean estimates
G;; over time. The blue dashed lines represent the random
transmission policy, while the red solid lines correspond to
the reactive transmission policy. Plots with markers indicate
M = 100 nodes, whereas unmarked curves represent M = 10
nodes. From this figure, it is evident that when the reactive
transmission policy is employed, ¢;; will immediately drop
to a low value. In fact, with the initial guess ¢;; = 0.5 the
receiver expects that the sources will transmit at every slot
with a probability of 0.5. Such belief immediately changes
when the receiver observes the earliest channel outputs, which
are likely to be idle. As time evolves, the estimator gradually
refines its underestimated §;;. The more successfully decoded
packets and collisions are observed, the more the estimator
tends to increase its estimate for the transition probabilities.
On the other hand, under a random transmission strategy the
observation of collisions or idle slots does not affect the belief
about the ¢g;;s and the estimator can improve its estimate only
by having more successfully decoded updates of the reference
source. This leads to a steadier, yet much slower, convergence
of the ¢;;. Moreover, we see that by increasing the network
size, the convergence speed of both policies decrease, due
to reduced informative observations caused by the harsher
contention.

As the BW algorithm converges to the true transition proba-
bilities g;;, the MAP estimator naturally achieves the same
SEEP as it would if the receiver had direct access to the
source’s model. Let us know focus on the performance of the
estimated models during the BW training process. We aim at
understanding how discrepancies between the estimated and
true models impact the SEEP of the state estimator while the
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Fig. 3. SEEP and KL divergence of the approximated models when the

source is symmetric with actual transition probability of go1 = g10 = 0.01.
The random and reactive strategy convergence are shown with blue and red
curves, respectively.

BW algorithm is still refining its estimates. To explore this, we
propose the following approach: we halt the BW training at
an arbitrary time n, even if the current estimate of the model
may still differ from the true source dynamics. From time n
onward, we use the model obtained at this intermediate stage
(i.e. Qn) to continue estimating the reference source’s state for
n+1,n42,.... This approach allows us to examine how the
SEEP of this mismatched model, obtained at time n, compares
to that of the true model. By evaluating the SEEP during
different stages of training, we can explore the sensitivity of
the MAP estimator to model imperfections and determine the
point at which further BW iterations yield diminishing returns
in terms of state estimation accuracy, and accordingly gain
insights into the trade-off between the length of the training
period and the accuracy of state estimation.

Figure 3 illustrates this comparative performance across
different stages of model refinement. The curves without
markers show for each training duration n the SEEP obtained
using the corresponding model, whereas the ones with markers
delineate the KL divergence of the estimated models from the
true source’s model. The figure highlights how the SEEP sen-
sitivity to model mismatch differs under reactive and random
transmission policies. The reactive strategy’s KL divergence
stabilizes quite quickly. In the case of the random strategy,
the approximated transition probabilities ¢19 and ¢o; might be
far from the actual ones, but relatively close to each other
(e.g., 0.4 for both transitions), which yields a SEEP close to
the one with exact model knowledge.

B. Asymmetric Sources

Consider now a setting where the sources are asymmetric,
with g19 = 0.1 and ¢p; = 0.01. Figure 4 shows the evolution
over time of the estimate §;¢ using the BW algorithm. The
blue dashed lines represent the random transmission policy,
and the red solid lines correspond to the reactive transmission
strategy. The plots with markers indicate A/ = 100 nodes,
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Fig. 4. Estimated value of gio vs. time. Asymmetric sources with actual
transition probability of go1 = 0.01 and gq190 = 0.1. The reactive and random
strategy convergence are shown with blue and red curves, respectively.

while the unmarked curves represent M/ = 10 nodes. Similar
to the symmetric case, the reactive transmission strategy
consistently leads to faster convergence and performs better in
handling larger networks compared to the random transmission
strategy. A notable fact can be seen in the random transmission
strategy. Since the source spends more time in state 0—due
to the higher likelihood of transitions from state 1 to state
0—the BW estimator initially attributes the more frequent 0O
observations to a higher transition probability from state 1
to 0. This leads to inflated estimates of ¢1o9. As more data
is observed, the overestimation gradually decreases, and the
estimator converges toward the true transition probabilities.

Finally, Figure 5 shows the evolution of SEEP and KL
divergence for 10 asymmetric sources. Curves and markers
are akin to those described for Figure 3. The results indicate
that while the reactive transmission strategy leads to faster
convergence of the estimated parameters, it takes longer for
the BW estimator to achieve the SEEP that would be expected
with exact model knowledge. This is primarily due to the
fact that, under the reactive transmission policy, discrepancies
in the estimated model also affect the emission probabilities.
Since these probabilities depend on the source’s state transition
probability matrix, any inaccuracies in the model parameter
estimate introduce errors in the approximated transition prob-
abilities as well.

In contrast, under the random transmission strategy, the
emission probability matrix is independent of the state tran-
sition parameters. Therefore, even in the presence of model
mismatches, the emission probabilities remain accurate. This
allows the BW algorithm to perform more consistently during
the estimation process. This fundamental difference in how the
emission matrix is affected by model discrepancies explains
why, despite the reactive strategy’s faster parameter conver-
gence, it can initially result in higher SEEP compared to the
random strategy until model estimates are more accurate.

Furthermore, compared to the case of symmetric sources,
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the SEEP is more robust against model imperfections in the
case of asymmetric sources. This robustness stems from the
imbalance between the transition probabilities, which allows
the MAP estimator to distinguish the states more effectively.
As a result, the state estimator yields a performance closer
to that of the MAP estimator with perfect model knowledge,
even before the model estimation algorithm fully converges.

CONCLUSIONS

In this paper, we investigated the performance of random
and reactive transmission policies for joint model and state es-
timation of a two-state Markov source with unknown transition
probabilities over slotted ALOHA channels, focusing on the
SEEP and KL divergence of the estimated states and models.
The results indicate the superiority of the reactive strategy in
both tasks. Future studies will consider higher-order Markov
sources and enhanced transmission protocols for this scenario.
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