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Abstract—Within the development of 6G, so-called subnet-
works were proposed to serve special use cases like intra-vehicle
sensor-actuator communication, robot control in industrial en-
vironments, or health monitoring. These use cases are charac-
terized by extreme communication demands between the devices
served by a single subnetwork. Moreover, the subnetworks will be
densely deployed, with mobile and autonomous vehicles carrying
the subnetwork Access Points (APs). These properties necessitate
novel approaches for frequency planning in order to enable
reliable communication within all subnetworks and efficient
resource usage. In this context, the problem of dynamic frequency
planning for mobile 6G in-X subnetworks is investigated in
this paper. To this end, a multi-objective optimization problem
with the objectives of minimizing frequency subband usage and
subnetwork reconfigurations leveraging knowledge about future
interference scenarios is formulated. Afterward, the problem is
shown to be NP-hard, and two heuristic algorithms are developed.
Using realistic vehicular movement data from simulations, results
show that the heuristics outperform a State-of-the-Art (SotA)
benchmark. Moreover, the value of knowledge about future
interference scenarios is shown. Reconfigurations can be reduced
by 18.91 % when prioritizing subband usage and even by 33.02 %
when prioritizing reconfigurations if interference scenarios are
known for three time steps instead of one.

Index Terms—6G, Frequency Planning, Multi-Objective Opti-
mization, Resource Allocation.

I. INTRODUCTION

Since the very first generation of mobile communication
networks, frequency planning has been considered an ex-
tremely important task in the deployment and management of
mobile communication networks [1]–[4]. There exist two main
reasons for this: Firstly, in general, the available frequency
spectrum for radio communications is scarce [1], which ne-
cessitates reusing frequency spectrum to ensure high spectral
efficiency [4]. Secondly, reusing spectrum potentially causes
interference, which thus requires adequate frequency planning
for mitigating or preventing co-channel and adjacent channel
interference to enable stable communication links while using
the available resources in an effective way [3], [4].

For 6G networks, which are currently under development,
so-called subnetworks are envisioned to be deployed within
industrial environments, in vehicles, or carried by drones to
service users in geographically confined areas like cars, facto-
ries, or dense urban areas [5]–[9]. There exist three different
operation modes: In the standalone mode, the subnetwork
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Fig. 1. Illustration of mobile 6G subnetworks and their trajectories with the
subnetwork APs deployed in vehicles connecting sensors and actuators.

operates autonomously, while in the semi-autonomous or con-
nected mode, the subnetwork can receive control information
from the umbrella network, and the subnetwork Access Point
(AP) can act as a gateway to the umbrella network [9],
[10]. The goal of these subnetworks is to provide high data
rates, extremely low latency, reliability, and resilience for use-
cases like intra-vehicle sensor-actuator communication [5], [6],
robot control in industrial environments [8], [11], or in-body
networks for health monitoring [9], [10].

The main objective of subnetworks is to facilitate com-
munication between User Equipments (UEs) that are all in
the vicinity of the same subnetwork AP. Hence, subnetworks
are considered substantially different from pico- or femtocells
known from traditional cellular networking, which aim to
increase coverage and connect the UEs to the internet [7].
Moreover, 6G subnetworks fundamentally differ from relay
nodes, which do not use their own spectrum and merely
forward messages [12]. While standalone 6G subnetworks
are similar to private 5G networks which are completely
isolated [13], the focus of this work is semi-autonomous or
connected subnetworks. Thus, a new network architecture and
purpose are considered. Still, as for all radio communication
systems, also 6G subnetworks require frequency bands from
either licensed or unlicensed spectrum to offer their services.

Many 6G subnetworks will be mobile due to the deployment
of subnetwork APs within autonomous vehicles, Unmanned
Aerial Vehicles (UAVs), or robots. An illustration of such a
system is depicted in Fig. 1. The mobility of the subnetworks
makes the allocation of frequency spectrum to the subnetworks
a complicated task. Moreover, these networks are envisioned
to be deployed with extremely high densities of several tens of



thousands of subnetworks per km2 [10]. Nevertheless, the au-
tonomy of the vehicles carrying the subnetworks grants knowl-
edge about their future movement trajectories, which allows
predicting possible future interference scenarios between the
subnetworks. Hence, the operation of these networks requires
more advanced frequency planning methods exploiting this
knowledge to efficiently use the available frequency spectrum
and to guarantee interference-free operation of all subnetworks
within a certain geographical area at all times [7], [11], [14].

Several interesting questions arise related to the frequency
planning for mobile 6G subnetworks:

• Firstly, given the mobility trajectories of mobile subnet-
works, what is the optimal frequency subband allocation
to minimize the overall spectrum consumption and sub-
network reconfigurations while guaranteeing interference-
free operation of all subnetworks?

• Secondly, how does the amount of knowledge about fu-
ture interference scenarios influence the overall frequency
resource consumption over time?

To answer these questions, this paper investigates the prob-
lem of frequency subband allocation for mobile 6G subnet-
works. To this end, a multi-objective optimization problem
with the objectives of minimizing spectrum consumption and
subnetwork reconfigurations is formulated, which ensures effi-
cient resource usage and minimal signaling overhead. Thereby,
the resource demand of every subnetwork provider is modeled
in a generic way to facilitate different allocation granularities.
Moreover, interference between two subnetworks is classified
as a binary input to the optimization, i.e., it is determined
whether or not there exists interference at a certain point
in time. This input classification allows for employing vari-
ous methods for interference classification. The optimization
problem is then analyzed and proven to be NP-hard. Subse-
quently, different general solution approaches are discussed
and two heuristic algorithms are developed. The different
solution methods are ultimately evaluated using simulations.
The presented results provide valuable insights for making
mobile subnetworks a reality in future 6G communication
systems. Specifically, the main contributions are:

• Formulating a multi-objective optimization problem for
frequency subband allocation to mobile 6G subnetworks
enabling interference-free operation (Section III);

• Proving the NP-hardness of the formulated optimization
problem and discussing its solution space (Section IV);

• Developing two heuristic algorithms to solve the opti-
mization problem in polynomial time (Section IV);

• Performing extensive simulations based on realistic vehi-
cle mobility patterns and highlighting the value of knowl-
edge about future interference scenarios (Section V).

II. RELATED WORK

Many works exist on resource management and interference
mitigation for 6G in-X subnetworks, mainly focusing on the
resources frequency subbands and transmission power. These
works can be categorized into centralized and distributed

decision-making, whereas the allocation problems are mainly
solved using heuristics or Machine Learning (ML).

The works focusing on transmission power selection or allo-
cation aim to optimize different communication quality aspects
like maximizing the achieved rates within subnetworks [15],
maximizing the overall network’s sum spectral efficiency [16],
[17], maximizing the control performance of plants based
on sensor-actuator communication [18], or minimizing the
sum interference-to-signal power ratios across all the subnet-
works [19]. The authors of [20] propose postponing message
transmissions and transmission power reduction to decrease
interference and increase the probability of medium access for
subnetworks operating on unlicensed spectrum. While some of
these works also guarantee minimum target rates or spectral
efficiencies using constraints during the optimization [15],
[17], interference-free communication is never targeted, which
might be necessary especially for life-critical services [14] or
scenarios with highly varying channel conditions.

Similarly to the works regarding power management, the re-
search on frequency (sub-)channel allocation focuses on, e.g.,
maximizing all subnetworks’ sum rates or minimizing the sum
interference-to-signal ratio over all subnetwork links. While
distributed approaches like [11], [21]–[28] support full auton-
omy of all subnetwork APs, these approaches cannot guarantee
interference-free operation even though some works consider
the possibility of selecting multiple (sub-)channels [15], [22],
[27]. Most of these works rely on Reinforcement Learning
(RL) or other ML approaches to select channels based on,
e.g., Received Signal Strength Indicator (RSSI) values or
interference power measurements [11], [21]–[24], [26], [28],
whereas there exist only few papers relying on heuristic
approaches [25], [27]. Centralized subband allocation is solved
using a Graph Neural Network (GNN) or a Deep Neural
Network (DNN) in [28] or [29], or using a sequential iterative
algorithm [30]. These works try to minimize the number of
interfering subnetworks, maximize the subnetworks achieving
their target data rates, or minimize the interference-to-signal-
ratios of the subnetworks given a limited amount of resources.
However, subnetwork reconfigurations are not considered.

Summarizing, to the best of the authors’ knowledge, guaran-
teeing interference-free operation while minimizing resource
consumption and performing resource allocation to subnet-
works also in the time domain, i.e., considering the reallo-
cation of frequency resources based on future interference
scenarios resulting in subnetwork reconfigurations, has not yet
been investigated. Tackling these open challenges constitutes
the motivation for the present work.

III. PROBLEM FORMULATION

In this section, first, the general subnetwork system model
and all parameters and symbols are introduced. Afterward,
the optimization problem is mathematically formulated. All
variables are listed in Table I in their order of appearance.

System Model and Frequency Subband Allocation: In
this work, a set of mobile subnetworks S(t) connected to a
single 6G umbrella network is considered during each time



TABLE I
LIST OF SYMBOLS

S(t) set of subnetws. in time step t t control var. for a time step
s control var. for a subnetw. amin

s min. freq. subband requirement of subnetw. s
B set of freq. subbands as,b(t) bin. var. for alloc. of freq. subband b to subnetw. s in time step t
as(t) vector aggregating the vars. as,b(t) for subnetw. s A(t) freq. subband alloc. matrix for time step t
b control var. for a freq. subband tn current time step
tf number of time steps for which future positions are known T set of time steps {tn + 1, ..., tn + tf}
is,q(t), I(t) var. indic. interference betw. subnetws. s and q in time step t,

matrix summarizing the interference indicators is,q(t)
b(t) number of used freq. subbands in time step t

r(t, t− 1) number of reconfigs. from time step t− 1 to time step t f1(t) first objective function, defined in (1a)
f2(t) second objective function, defined in (1b) wi weighting factor for objective fi(t)
c control var. for a color C set of colors used in the solution to a CGC problem
Sc(t) set of subnetws. colored with color c in time step t γs(t) var. indic. if subnetw. s’ color changed from time step t− 1 to t
cs(t) color of subnetw. s in time step t np number of graph permutations

step t (see Fig. 1). Every subnetwork s is associated with
a constant frequency subband requirement amin

s such that it
can offer services to its users. The required subbands are
allocated from the set of available frequency subbands B by
the umbrella network. It is assumed that enough subbands
are available to fulfill all subnetworks’ demands at all times.
Furthermore, it is assumed that the umbrella network and
the subnetworks communicate via an out-of-band backhaul
link. The allocation for a time step is summarized in the
matrix A(t) ∈ {0, 1}|S(t)|×|B| with elements as,b(t), where
as,b(t) = 1 specifies that frequency subband b is allocated to
subnetwork s at time step t, whereas as,b(t) = 0 indicates that
subband b cannot be used by subnetwork s at time step t.

Subnetwork Mobility and Interference: Since the subnet-
works are considered to be mobile in this work, their position
changes over time. It is assumed that the current position at
t = tn as well as the future positions up to t = tn + tf

are known for every subnetwork. The future time instances
for which the positions of all subnetwork APs are known are
aggregated in the set T = {tn + 1, ..., tn + tf}. Based on
these positions, it can be determined if two subnetworks s
and q interfere with each other during a time step t in case
they would use the same subbands. In case there would be
interference, is,q(t) = 1, and otherwise, is,q(t) = 0. Due
to the mobility of all subnetworks, the interference classi-
fication is,q(t) also changes over time.1 It is assumed that
there is no intra-subnetwork interference due to orthogonal
transmissions within each subnetwork.

Resource Usage and Subnetwork Reconfigurations: In
total, b(t) frequency subbands are used during a time step t.
Since frequency spectrum is, in general, a limited resource,
subbands should be reused in case two subnetworks do not
interfere with each other. Thus, to ensure resource efficiency
and interference-free operation for each subnetwork, the fre-
quency subband allocation A(t) needs to be adjusted over
time. However, the number of subnetwork reconfigurations,
i.e., reallocations of subbands from one time step to another,
denoted r(t, t − 1), should also be minimized to reduce the
amount of signaling overhead both inside a subnetwork and
from the umbrella network to the subnetworks. These two

1Note that the proposed optimization problem is agnostic to the method
used to determine whether there is interference between two subnetworks.

objectives are conflicting, which can be seen in the following
example: Allocating single-use frequency subbands to all
subnetworks would allow for no reconfigurations, however,
the maximum amount of resources would be used.

Based on the known interference classification for t ∈ T ,
the goal is to find these frequency subband allocations A(t)
that, on the one hand, minimize the overall subband consump-
tion, but, on the other hand, also minimize the number of
reconfigurations. These objectives are mathematically formu-
lated in the multi-objective optimization problem

P1: min
A(t),t∈T

f1(t) =
∑
t∈T

b(t), (1a)

min
A(t),t∈T

f2(t) =
∑
t∈T

r(t, t− 1) (1b)

s.t.
∑
b∈B

as,b(t) ≥ amin
s ,∀s ∈ S(t), t ∈ T , (1c)

is,q(t) · (as,b(t) + aq,b(t)) ≤ 1,

∀s, q ∈ S(t), b ∈ B, t ∈ T ,
(1d)

j+amin
s −1∏
b=j

as,b(t) = 1,∀s ∈ S(t), t ∈ T , (1e)

as,b(t) ∈ {0, 1},∀s ∈ S(t), b ∈ B, t ∈ T , (1f)

where j denotes the index of the first allocated subband.
In the problem formulation, the two objectives f1(t) and

f2(t), defined by (1a) and (1b), are to minimize the sum
over the used frequency subbands b(t) and the sum of the
subnetwork reconfigurations r(t, t− 1). The number b(t) can
be calculated by performing a logical OR operation over all
rows of the allocation matrix A(t) and then summing over the
resulting vector. The number of reconfigurations from one time
step to another r(t, t− 1) is determined by checking whether
the allocated subbands as(t) for subnetwork s changed, i.e.,
a single reconfiguration is counted if as(t) ̸= as(t − 1).
This check is done for all s ∈ S(t). Constraint (1c) ensures
that every subnetwork s is allocated enough subbands during
every time step t to serve its users. In case two subnetworks
would interfere with each other, they cannot use the same
subband, which is captured by (1d). Constraint (1e) guarantees
that all frequency subbands {j, ..., j + amin

s − 1} (at least
amin
s subbands) that are allocated to a single subnetwork s



during time step t are contiguous in the frequency domain.2

Lastly, (1f) merely states that the decision variables are binary.

IV. ANALYSIS AND SOLUTION APPROACHES

In the following, the optimization problem P1 is proven to
be NP-hard, and its solution space is analyzed. Subsequently,
different well-known multi-objective solution approaches are
discussed. Finally, two heuristic algorithms developed specif-
ically for the present optimization problem are proposed.

A. Optimization Problem Analysis

First, the NP-hardness of P1 is proven by proving the NP-
hardness of a single-dimension version of P1 in Result 1.

Result 1. Problem P1 is NP-hard.

Proof. It is sufficient to show that the single-dimension opti-
mization problem (1a) subject to constraints (1c)-(1f) is NP-
hard since any multi-objective problem is NP-hard if any of its
single-objective versions is NP-hard [31]. Assuming that the
time step set T only consists of a single time step removes
the time dimension of the problem. Furthermore, assuming
that all amin

s = 1 implies that constraint (1e) is fulfilled
for any solution fulfilling the other constraints. The resulting
optimization problem (1a) subject to constraints (1c), (1d), (1f)
now reduces to a graph coloring problem, where every sub-
network s corresponds to a vertex and two vertices s and q
are connected if is,q(t) = 1. Finding the chromatic number
of this graph corresponds to minimizing the overall subband
usage while guaranteeing that two interfering subnetworks do
not use the same subband. Given that finding the chromatic
number of a graph is NP-hard [32] concludes the proof.

In general, multi-objective optimization problems consider
multiple conflicting objective functions. For these kinds of
optimization problems, there usually exists no single optimal
solution, but rather multiple so-called Pareto optimal solu-
tions [33]. A Pareto optimal solution is a solution where a
single objective cannot be further improved unless another
objective is degraded. In Fig. 2, the general “continuous”
Pareto Frontier of P1 is depicted to visualize the dependency
of the two objectives f1(t) and f2(t). On the one hand,
it is discernible that it is possible to minimize the number
of reconfigurations, i.e., f2(t), to 0. However, this comes
at the cost of requiring

∑
t∈T amax(t) subbands over the

time steps t ∈ T , where amax(t) depends on the actual
interference scenario for these time steps. It can, however, be
upper bounded by the sum of all subnetwork demands, i.e.,

amax(t) ≤
∑

s∈S(t)

amin
s .

On the other hand, it can be identified that the number
of required subbands for t ∈ T can be minimized to∑

t∈T amin(t), where amin(t) again depends on the actual

2Note that it is not necessary to include (1c) in the problem formulation
during the optimization, as it is implicitly fulfilled in case (1e) is satisfied.
Nevertheless, (1c) is kept in the formulation of P1 for clarity reasons.
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Fig. 2. The general “continuous” Pareto Frontier for optimization problem P1,
where rmax(t, t− 1) denotes the worst case maximum number of reconfig-
urations from time step t to t − 1, and amin(t) and amax(t) stand for
the minimum possible number of used subbands allowing for interference-
free operation or maximum required number of subbands allowing for no
reconfigurations, respectively.

interference scenario, but can be lower bounded by the maxi-
mum required subbands of any subnetwork, i.e.,

max
s∈S(t)

amin
s ≤ amin(t).

Once more, there is a trade-off for this minimization of f1(t),
which is the cost of

∑
t∈T rmax(t, t−1) reconfigurations over

the time steps t ∈ T . Thereby, rmax(t, t − 1) again depends
on the actual interference scenario but can be upper bounded
by the number of subnetworks that are present in both time
step t and t− 1, which can mathematically be expressed as

rmax(t, t− 1) ≤ min (|S(t)| , |S(t− 1)|) .
Knowing the possible extreme objective values of optimization
problem P1, the task is now to find a single or multiple
Pareto optimal solutions along the Pareto Frontier. To this end,
various solution approaches are discussed in the following
subsection. In a real-world scenario, additionally, rules for
choosing one of multiple Pareto optimal solutions need to be
defined based on user preferences.

B. General Solution Approaches

The following introduces well-known solution approaches
for multi-objective optimization that are employed for solving
problem P1 during the simulations.

1) Scalarization
Scalarization is one of the most widely known methods for

multi-objective optimization, which relies on converting the
multi-objective optimization problem into a single-objective
problem. This is achieved by associating every single objective
fi(t) with a weight factor wi and taking the weighted sum
of the single objectives as the new objective [33]. Thus,
scalarizing problem P1 leads to

Pw
1 : min

A(t),t∈T

2∑
i=1

wifi(t) (2a)

s.t. (1c), (1d), (1e), (1f), (2b)

eqs:optimization
eqs:optimization
eqs:optimization
eqs:optimization
eqs:optimization
eqs:optimization
eqs:optimization
eqs:optimization
eqs:optimization


with a single objective comprising the weighted sum of the two
objectives f1(t) and f2(t). The great benefit of this method
is that the solution found for Pw

1 is guaranteed to be Pareto
optimal if all wi > 0 [33]. By choosing different weights
for the single objectives, different Pareto optimal solutions
can be found. Note that for non-convex problems, however,
it is possible that some Pareto optimal solutions cannot be
found no matter which weights are chosen. For a more detailed
discussion of scalarization, the reader is referred to [33].

2) Lexicographic Ordering
Lexicographic ordering describes the process of prioritiz-

ing the single objectives of the multi-objective optimization
problem according to the user’s preferences. During the op-
timization of a lexicographic optimization problem, first, the
most important objective is minimized. If the achieved solution
is unique, the optimization process is stopped. Otherwise,
the second-most important objective is minimized while not
deteriorating the most important objective. This procedure is
followed until a unique solution is found. Again, the solution
to a lexicographic optimization problem is Pareto optimal.
Hence, using this method allows for finding the extreme
optimal solutions along the various objective directions. Note
that in general, however, this method has the drawback of
not allowing for a large improvement of a lower-prioritized
objective at the cost of a small degradation of a higher-
prioritized objective [33].

3) Unified Non-Dominated Sorting Genetic Algorithm-III
The Unified Non-Dominated Sorting Genetic Algorithm-III

(U-NSGA-III) belongs to the class of evolutionary algorithms,
which imitate natural evolution like crossover or mutation
during the optimization process. Generally, advantages of
evolutionary algorithms are Pareto Frontier coverage and
solution diversity, while disadvantages are the bad ability
to handle constraints and the demand for problem-specific
parameter tuning [34]. U-NSGA-III was proposed in [35] as an
enhancement to Non-Dominated Sorting Genetic Algorithm-
III (NSGA-III) to improve handling bi-objective optimization
problems [34]. In principle, U-NSGA-III searches solutions
along reference directions specified in an M -dimensional
space, where M denotes the number of objectives. The
reference directions ideally cover the entire Pareto Frontier,
allowing also the solutions to represent the shape of the
Pareto Frontier. In contrast to scalarization and lexicographic
ordering, the generated solution set from a single optimization
run then provides the user with the possibility to select a single
preferred solution. However, it must be noted that the solutions
are not guaranteed to be optimal. For further information
on evolutionary algorithms and U-NSGA-III, the reader is
referred to [34], [35].

C. Heuristic Algorithms

Based on the knowledge that problem P1 can be reduced
to a Centralized Graph Coloring (CGC) problem for certain
cases, two heuristics relying on Greedy coloring the interfer-
ence matrix were designed. To this end, the interference matrix
is interpreted as an adjacency matrix of a graph, where two

vertices are connected via an edge if the two corresponding
subnetworks interfere with each other. The graph is then
colored with the minimum possible number of colors, and
all subnetworks with the same color are allocated the same
subbands. Generally, for every graph coloring solution using
colors c from the solution set C, the total frequency subband
demand is then determined as follows: First, find the maximum
frequency subband demand amin

s across all subnetworks s
colored with the same color c. The subnetworks per color
are grouped in the set Sc(t). Afterward, summing over these
maximum values gives the total subband demand

b(t) =
∑
c∈C

max
s∈Sc(t)

amin
s . (3)

Additionally, since it is assumed that the subband demand
of a subnetwork does not change over time, the number of
reconfigurations can simply be calculated by determining how
many subnetworks were colored differently compared to the
previous time step’s coloring, i.e.,

r(t, t− 1) =
∑

s∈S(t)

γs(t), (4)

where γs(t) = 1 if the color of subnetwork s changed,
i.e., cs(t − 1) ̸= cs(t), and γs(t) = 0 otherwise. The
following introduces the heuristic algorithms for finding the
graph colorings for single time steps.

1) Greedy Minimizing Reconfigurations (GMR)
Greedily minimizing the reconfigurations of subnetworks

only requires information about the interference scenario for
the next upcoming time step as input. Jointly minimizing the
reconfigurations and the resource usage can be done by taking
over the coloring from time step t − 1 and only adjusting
these colors that are not assignable anymore due to new
interference or that are not necessary anymore due to cleared
interference. The heuristic works as follows: Starting with
a single color, the number of available colors is increased
until the graph coloring problem is solvable. The coloring is
initialized with the solution from the previous time step if the
color is available and still valid, i.e., no adjacent neighbor
already has the same color. Then, the remaining vertices,
i.e., subnetworks, are colored one by one. Once a solution
is found, subnetworks with the same color are allocated the
same subbands, and the subband usage and the number of
reconfigurations can be calculated according to (3), (4). The
procedure to find a coloring for the upcoming time step is
summarized in Algorithm 1. Its computational complexity is
O(n4) since the while loop is run at most |S(t)| times and
the color validity check (line 5 and 11) has complexity O(n).
Thereby, n denotes the number of graph vertices, i.e., the
number of present subnetworks |S(t)|.

2) Permutation-Based Greedy Coloring (PBGC)
The PBGC is based on generating np graph permutations

which are then colored using a Greedy coloring algorithm. Us-
ing the various colorings of the permuted interference matrices
of single time steps, the best combination of these colorings
can then be determined in terms of the subband demand and
the number of reconfigurations by employing scalarization

eqs:objectiveweighted
eqs:optimization


Algorithm 1 Greedy Minimizing Reconfigurations (GMR)
Input: Interference matrix I(t)
Output: Graph coloring c(t)

1: Number of colors nc = 1
2: while CGC problem not solvable do
3: c(t) = −1
4: for s ∈ S(t) do
5: if cs(t− 1) ≤ nc and cs(t− 1) valid then
6: cs(t) = cs(t− 1)

7: for s ∈ S(t) do
8: if cs(t) = −1 then
9: c = 1

10: for c ≤ nc do
11: if color c valid for subnetwork s then
12: cs(t) = c; break
13: c = c+ 1

14: if cs(t) = −1 then
15: nc = nc + 1; go to Line 3
16: return c(t)

Algorithm 2 Permutation-Based Greedy Coloring (PBGC)
Input: Interference matrix I(t) ∀t ∈ T
Output: Graph coloring c(tn + 1)

1: for t ∈ T do
2: Greedily find min. number of colors for I(t)
3: Generate np graph perm. and greedily color them
4: Generate all comb. of colorings for the time series T
5: for all coloring combinations do
6: Calc. f1(t) acc. to (3), f2(t) acc. to (4)
7: Use scalarization or lexicographic ordering to find the best

coloring combination, return c(tn + 1)

or lexicographic ordering. The pseudo-code for this solution
approach is summarized in Algorithm 2. Its computational
complexity is given as O(ntf

p · tf · n), where n again denotes
the number of graph vertices, i.e., |S(t)|. The complexity is
exponential in tf , however, since tf usually takes small values
(tf ≤ 5), it can be interpreted as a constant, making the overall
complexity of the proposed heuristic polynomial.

V. PERFORMANCE EVALUATION

In this section, first, the simulation setup and input data
generation are described. Subsequently, a State-of-the-Art
(SotA) benchmark based on CGC is introduced. Finally, the
simulation results are presented and analyzed in detail.

A. Simulation Setup

To generate mobility data, vehicular movement based on
the Manhattan Mobility Model [36] was simulated using the
simulation framework SUMO [37]. The Manhattan grid was
chosen to have a size of four vertices on the x-axis and three
vertices on the y-axis, respectively. The vertices are equally
spaced with an edge/street length of 50 m. Vehicle routes
were generated randomly, and vehicles were generated with

an arrival rate of 0.5 arrivals per second, which resulted in an
average of 14.74 and a maximum of 20 present vehicles per
time step. Based on the results from the vehicular movement
simulation, which contain a position per vehicle per time step
(second), the binary interference matrix was calculated. In case
there exists a Line Of Sight (LOS) path between two vehicles,
the Signal-to-Interference-plus-Noise Ratio (SINR) at a re-
ceiver spaced 2.5 m apart from its serving subnetwork AP was
determined, which reflects a receiver positioned at the front
or back of the vehicle. To this end, the received interference
power from the second subnetwork was calculated using the
LOS path loss formula for the Indoor Hotspot (InH) scenario
defined in [38]. It is assumed that all subnetworks use the same
transmission power. Based on the SINR, a binary decision
for interference classification was taken. In case the SINR
was larger than 10 dB, the considered two subnetworks do
not interfere with each other. Otherwise, the two subnetworks
were classified to be interfering, meaning that they cannot
use the same frequency subbands. The threshold value 10 dB
was chosen to allow for reliable communication with adequate
throughput, i.e., to allow for a Channel Quality Indicator (CQI)
value of 10, based on the mapping table from [39]. Using the
described procedure, a binary interference matrix specifying
whether two subnetworks interfere with each other during
a single time step was determined for a total of 1050 time
steps, ensuring sufficient randomness and variance for robust
evaluation. The average number of interfering subnetworks is
2.65 per time step, while the maximum is 14. Lastly, to model
the subband demand of each subnetwork, a random number
was drawn from a discrete uniform distribution U{1, 10} upon
the arrival of a vehicle in the network.

B. Benchmark: Centralized Graph Coloring (CGC)

To evaluate the performance of the proposed heuristic
algorithms, similarly to the works [24]–[26], [28], [40], a
benchmark based on CGC is used. To this end, the interference
matrix I(t) is taken as the graph representation with vertices
(subnetworks) connected via edges in case the subnetworks
interfere with each other (is,q(t) = 1). For every time step t of
the simulation, the graph coloring problem is optimally solved
using backtracking. Afterward, the subband usage and the
number of reconfigurations are calculated according to (3), (4).
If multiple optimal graph coloring solutions achieve the same
minimum subband usage, a single solution is randomly chosen
from this set of solutions, disregarding the reconfigurations.

C. Simulation Results

First, to verify the theoretical Pareto Frontier introduced in
Fig. 2, the optimization problem P1 was solved using lexico-
graphic ordering and scalarization from Gurobi [41]. In total,
P1 was solved for 1050 time steps for tf ∈ {1, 2, 3} using
the interference matrices determined based on the mobility
data as input.3 Fig. 3 shows the averaged results from time
steps 50 to 1050 in order to account for the warm-up phase

3Higher values of tf prevented the employed solver from achieving optimal
results within a reasonable timeframe.
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of the vehicular movement simulation. Most importantly, it
can be observed that better results are achieved the more
information about future interference scenarios is available.
Almost all depicted solutions for tf = 1 are dominated
by solutions for tf = 2, which in turn are dominated by
solutions for tf = 3. It is important to note that results
for the same scalarization weights for different tf are not
directly comparable to each other due to the higher influence
of subband usage for higher tf . Nevertheless, sweeping over
all possible weights for f2(t) would result in all solutions with
lower tf being dominated by solutions with higher tf .

Since the subband resource consumption can be minimized
independently of tf , the results for lexicographic ordering
prioritizing the first objective f1(t) achieve the same minimum
resource usage of 13.65 subbands. However, lower numbers of
reconfigurations can be obtained for higher tf . The improve-
ment from tf = 1 to tf = 3 is 18.91 %.

As opposed to the theoretical minimum of zero reconfig-
urations shown in Fig. 2, this minimum cannot be seen in
Fig. 3. The reason is that P1 is solved for every time step
of the simulation. The average minimum achievable number
of reconfigurations is larger than zero even when strictly
prioritizing f2(t). The reason is that the current allocation
A(tn) is taken as input to calculate r(tn + 1, tn) for the
first upcoming time step, and, in some cases, it is not pos-
sible to find an allocation A(tn + 1) that allows for zero
reconfigurations. Again, the more information about future
interference scenarios is available, the less is the average
number of reconfigurations. For lexicographic ordering with
priorities (0, 1), the gain from tf = 1 to tf = 3 is 33.02 %,
which, however, increases subband resource usage by 8.95 %.

Considering solutions found in the middle of the Pareto
Frontier, e.g., scalarization with weights (1, 2) for tf = 1 and
with weights (1, 5) for tf = 3, the improvement in terms of
subband usage and reconfigurations is 2.77 % and 19.58 %.

Lastly, in the zoomed region of Fig. 3, it can be seen
that the scalarization result for the weights (1, 11) achieves a
slightly lower number of reconfigurations than the results for
the weights (1, 15) and for lexicographic ordering prioritizing
reconfigurations. Although this might seem irrational, the
reason is again the current allocation A(tn) that is taken as
input to problem P1, which can result in allocations for earlier
time steps that lead to later subband allocations allowing for
a slightly smaller average number of reconfigurations.

Next, since, in general, scalarization and lexicographic
ordering do not allow for a polynomial-time solution and
only result in a single solution along the Pareto Frontier,
U-NSGA-III [35], [42] was employed to solve problem P1.
Reference directions were generated as equally spaced vectors
between the extreme points of the Pareto Frontier. Although
multiple parameter sets for the parameters number of reference
directions and population size were investigated based on the
reference numbers from [35] and the stopping criteria based
on the objective value change were drastically relaxed [42],
the algorithm did not find more than one solution for most of
the time steps for any tf ∈ {1, 2, 3}. This can be explained

Fig. 3. Average results of 1000 time steps for scalarization (S) with the corre-
sponding weights of the objective functions f1(t) and f2(t) (wf1(t), wf2(t))
and for lexicographic ordering (LO) with the corresponding priorities of the
objective functions f1(t) and f2(t) (pf1(t), pf2(t)) for tf ∈ {1, 2, 3}.

by the fact that the decision space that the U-NSGA-III
explores is tremendously larger than the solution space of the
optimization problem P1 due to the interference and contiguity
constraints (1d) and (1e). Even though the algorithm converges
to a feasible solution quite quickly, it only finds a solution
that almost solely allocates single-use frequency subbands to
the subnetworks. The average subband resource usage and
reconfiguration results for tf ∈ {1, 2, 3} are summarized in
Table II. The parameters were set as 20 reference directions
and a population size of 200, and the termination tolerance
was set to 5 · 10−3, evaluated every 5th generation for a
window of 30 generations. For all other parameters, standard
settings were chosen [42]. For every optimization run, the
initial population was either randomly sampled or the final
population from the previous time step was taken over as the
initial population. Initializing the population with the previous
final population allows for almost no reconfigurations since the
vehicular mobility simulations start with a single subnetwork
and thus allow the U-NSGA-III to find an optimal solution for
the first few time steps from where it can evolve. Moreover,
the number of reconfigurations slightly decreases for higher tf ,
however, the subband usage increases. For randomly initialized
populations, the U-NSGA-III is not able to use the information
about future interference scenarios and achieves bad results
overall. These results show that the U-NSGA-III is not able to
sufficiently explore the solution space and adequately exploit
the information about future interference scenarios.

Finally, the performance of the heuristic algorithms GMR
and PBGC is evaluated. Simulation results for various numbers
of graph permutations np are depicted in Fig. 4. Note that in
all three subplots, the data point for GMR is the same, as
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Fig. 4. Average results of 1000 time steps for GMR and PBGC using scalarization (S) with weights (wf1(t),wf2(t)) and lexicographic ordering (LO) with
priorities (pf1(t), pf2(t)) for tf ∈ {1, 2, 3} for different np.

TABLE II
RESOURCE USAGE AND RECONFIGURATIONS FOR tf ∈ {1, 2, 3}

ACHIEVED WITH U-NSGA-III

Init. Pop.
tf 1 2 3

Rand. Sampling Subband Res. Usage 45.73 46.40 46.76
Reconfig. 7.85 10.99 11.81

Prev. Fin. Pop. Subband Res. Usage 39.55 44.51 44.09
Reconfig. 0.37 0.36 0.29

the heuristic does not depend on np. It can be observed that,
despite its simplicity, the GMR heuristic performs very well
compared to the Pareto optimal results. It achieves an average
subband resource usage of 18.34 while only requiring an aver-
age of 1.57 subnetwork reconfigurations. For a similar subband
usage, the minimum achievable number of reconfigurations for
tf = 1 is 0.86, obtained with scalarization weights (1, 3).

Examining the PBGC heuristic, even for a small np, see
Fig. 4a), the minimum achieved subband usage is 14.69, which
is only 7.61 % worse than the optimal value achieved with
lexicographic ordering. Note that it is impossible to achieve
the Pareto optimal results depicted in Fig. 3, as solving P1

using CGC and afterward allocating the number of subbands
according to the maximum demand of a subnetwork from the
set Sc(t) is a simplification of the original optimization prob-
lem. This can also be seen when comparing the lexicographic
ordering results of PBGC against the optimal CGC coloring,
which achieves an average subband resource usage of 14.68.

In general, it must be noted that the average number of
reconfigurations lies between 1.5 and 3.5 for all numbers of
graph permutations np, which is, on average, twice as high
as the optimal results. The reason is that applying Greedy
coloring to various graph permutations still only provides a
small subset of possible solutions. Nevertheless, better results
are achieved the larger the number of permutations np is.

Lastly, even though the number of reconfigurations achieved
with the PBGC heuristic is generally higher, the algorithm is

capable of exploiting the information about future interference
scenarios. Solutions for tf = 1 are again dominated by
solutions for tf = 2, and in turn are dominated by solutions for
tf = 3. Looking at the results from Fig. 4c) for scalarization
with weights (1, 3) for tf = 1 and with weights (1, 2) for
tf = 3, the improvement in terms of subband usage and recon-
figurations is 0.93 % and 2.88 %. This validates the approach
of considering multiple time steps for frequency resource
allocation to subnetworks in order to minimize the overall
resource consumption and subnetwork reconfigurations while
guaranteeing interference-free operation of all subnetworks.

VI. CONCLUSION

In this paper, an optimization problem for centralized fre-
quency subband allocation to mobile 6G in-X subnetworks
in the coverage area of an umbrella network was formulated.
The novel approach of considering movement trajectories of
the vehicles carrying the subnetwork APs allows for safely
predicting future interference scenarios, which enables the
joint minimization of subband usage and subnetwork recon-
figurations. Employing various multi-objective optimization
solution methods and two heuristic algorithms called GMR
and PBGC in a realistic simulation, the value of the knowledge
about future interference scenarios was highlighted. Specif-
ically, depending on the optimization goal, the reconfigura-
tions can be reduced by 18.91 % when primarily minimizing
subband usage, by 19.58 % while reducing subband usage
by 2.77 %, and even by 33.02 % when primarily minimizing
reconfigurations, if the interference scenarios are known for
the upcoming three time steps instead of only a single time
step. When using the PBGC heuristic, reconfigurations can
still be reduced by 2.88 % while reducing the subband usage
by 0.93 %. Developing a heuristic or employing ML for
distributed channel selection considering knowledge about
future interference scenarios is seen as possible future work.
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