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ABSTRACT1
The rapid development of mobile internet technology has driven the widespread adoption of Mobility-2
on-Demand services like ride-hailing and ride-pooling, which are integral to daily travel. Ensuring3
the quality of these services is vital for Transportation Network Companies such as Uber, Lyft, and4
Didi, as it directly impacts user experience and revenue. One quality aspect is providing timely5
and precise predictions of waiting and driving times for users, as this information affects their6
decision-making. However, creating these predictions is conceptually and computationally chal-7
lenging in high-demand scenarios due to the dynamic nature of the services and exhaustive vehicle8
information processing. This paper introduces a machine learning-based model incorporating a9
three-dimensional encoding method based on pick-up likelihood, vehicle capacity, and detour de-10
gree to efficiently encode user requests and fleet status. A selection mechanism filters encoded11
information in temporal and spatial domains, reducing computational burden. The model employs12
an encoder-decoder architecture, with a Convolutional Neural Network encoding fleet status as an13
image and Fully Connected Networks decoding it for various predictions. A case study using the14
Manhattan taxi dataset demonstrates the model’s effectiveness, showing that spatial domain infor-15
mation significantly impacts predictive performance. The model achieves a True Negative Rate of16
approximately 90% in identifying unserviceable requests and outperforms heuristic algorithms in17
travel time prediction accuracy and efficiency, though it lags in waiting time prediction. Future18
research should explore nonlinear encoding for vehicle pick-up likelihood and test various neural19
network configurations to improve prediction performance and transferability.20

21
Keywords: Mobility-on-Demand, Machine learning, Offer prediction22
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INTRODUCTION1
With the rapid development of mobile internet technology, Mobility-on-Demand (MoD) services,2
such as ride-hailing (RH) and ride-pooling (RP), have gained widespread attention and become3
integral to people’s daily travel routines. According to Uber Technologies, Inc. (1), approximately4
9.4 billion trips were completed globally in 2023. In comparison, DiDi Global Inc. (2) reported5
serving 10.8 billion trips in China alone. RH offers users on-demand door-to-door transportation6
services, significantly enhancing travel flexibility and alleviating parking pressure from users in ur-7
ban areas. Building on this, RP allows multiple passengers with identical or similar routes to share8
a vehicle, partially combining their journeys. This method increases vehicle occupancy, thereby9
improving transportation efficiency, reducing the number of vehicles on the road, alleviating traffic10
congestion, and cutting carbon emissions.11

For Transportation Network Companies (TNCs) such as Uber, Lyft, and Didi, providing12
users with offers that are produced quickly and contain accurate forecasts for trip planning is cru-13
cial for ensuring a positive user experience and increasing revenue. When users access the MoD14
service app to input trip details such as origin, destination, and expected departure time, they expect15
the system to promptly provide essential information about available services, enabling effective16
travel planning. Based on real-time fleet status, such as the location and onboard passenger count17
of each vehicle, most TNCs provide users with estimated service details, including vehicle avail-18
ability, estimated pick-up time, estimated travel time, and estimated cost, before users commit to19
the service. This information has to be provided quickly, as lengthy computation times result in20
slow app response times and can frustrate users, thereby decreasing their willingness to use the21
services. Additionally, the predictions must be as accurate as possible to reflect the actual services22
provided later. Inaccurate predictions can lead to users making poor decisions, which, over time,23
can erode their trust in the MoD services, reducing overall acceptance and loyalty (3).24

This study contributes to the research on MoD offer prediction by:25
1. Describing the MoD offer creation problem.26
2. Proposing a machine learning (ML)-based offer prediction approach that employs an27

encoder-decoder architecture to enhance flexibility for different prediction tasks.28
3. Developing a three-dimensional encoding method based on pick-up likelihood, vehicle29

capacity, and detour degree to achieve efficient encoding of vehicle status.30
4. Introducing a selection mechanism that improves prediction efficiency by reducing the31

amount of information processed in both temporal and spatial domains.32
5. Conducting a case study using the publicly available New York City taxi dataset (4) to33

validate the performance of the proposed approach in terms of prediction accuracy and34
efficiency.35

The remainder of this paper is organized as follows. The LITERATURE REVIEW sec-36
tion summarizes and discusses the research progress of existing MoD simulation frameworks and37
the state-of-the-art ML applications in the MoD field. The METHODOLOGY section discusses38
the MoD offer creation problem and introduces the proposed approach, providing a detailed expla-39
nation of the design concepts and functionalities of the individual modules. The CASE STUDY40
section describes the experiments based on the Manhattan taxi dataset, presents the results, eval-41
uates the prediction accuracy and efficiency of the proposed approach, and discusses the reasons42
behind the model’s performance. Finally, the CONCLUSION AND FUTURE WORK section43
summarizes the research and outlines potential directions for future work.44
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LITERATURE REVIEW1
Modeling of MoD services2
Research on Mobility-on-Demand services has become a key focus in transportation studies. A3
scientometric analysis by Guo and Li (5) reviews the development and research directions of MoD4
systems. Similarly, Shaheen and Cohen (6) examine methodologies for studying MoD, evaluating5
the impacts of shared modes and autonomous MoD (AMoD) on public transportation. For instance,6
Paparella et al. (7) propose a time-invariant network flow model for two-person ride-sharing MoD7
systems, utilizing a Poisson process to describe trip requests and analyze ride-sharing in the spa-8
tiotemporal dimension. Pavone et al. (8) employ a fluid model and linear programming to devise9
an optimal real-time rebalancing policy, validated through simulations and hardware experiments.10

In addition to mathematical models, comprehensive simulation frameworks have been de-11
veloped to simulate MoD fleet operations. Commercial solutions such as Aimsun (9) and PTV12
(10) have been launched, while researchers have increasingly focused on open-source frameworks.13
Ruch et al. (11) introduce AMoDeus, a software package within MATSim (12) for the quantitative14
analysis of AMoD systems. Auld et al. (13) develop POLARIS, integrating dynamic simulation15
of travel demand, network supply, and network operations. Kucharski and Cats (14) introduce16
MaaSSim, an agent-based simulator for two-sided mobility platforms, modeling urban mobility17
dynamics with agents such as travelers, drivers, and an intermediary platform matching demand18
with supply. FleetPy, developed by Engelhardt et al. (15), focuses on user-operator interactions19
and supports multiple operators within the transportation system, offering a modular structure for20
customization and transferability.21

Vehicle assignment is a core challenge for MoD services and is closely tied to offer cre-22
ation. This problem can be addressed using rules, heuristics, or optimization algorithms. Fagnant23
and Kockelman (16) tackle this problem by iteratively matching travelers with the nearest vehicles24
within a 5-minute travel time, expanding the search zone if necessary. Zhang and Guhathakurta25
(17) assign non-busy vehicles to travelers by selecting the vehicle that offers the lowest combined26
cost of time and fare. Alonso-Mora et al. (18) present a scalable mathematical model that dy-27
namically optimizes routes, starting with a greedy assignment and improving through constrained28
optimization for quick, high-quality solutions. Kucharski and Cats (19) use a demand-driven al-29
gorithm that matches trips into shared rides via a directed shareability multi-graph, narrowing the30
search space for efficient graph searches. Engelhardt et al. (20) introduce a speed-up algorithm to31
find the system’s optimal assignments at each decision time step. Hyland and Mahmassani (21) de-32
fine and model assignment strategies for RH, finding that optimization-based strategies and those33
incorporating en-route pickups and drop-offs reduce fleet miles and wait times, particularly during34
peak periods.35

Another crucial aspect of offer creation is the interaction between users and operators (22).36
To simplify this process, some models, like POLARIS (13), treat user on-demand requests as37
service bookings, assuming that users will invariably accept the operator’s offer. This approach re-38
duces the complexity of the offer creation problem, transforming it into a straightforward vehicle39
routing issue and allowing researchers to focus more specifically on vehicle assignment. Con-40
versely, models like SimMobility (23) also simulate the operator’s ability to reject requests. In41
these models, operators decide whether to fulfill a user’s request based on the current fleet sta-42
tus. However, in reality, the decision-making process between users and operators is bidirectional.43
Operators assess the feasibility of fulfilling user requests in real-time while users evaluate their44
options among various travel modes (24). The offers provided by operators play a crucial role in45
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users’ decisions to use MoD services. Models such as MaaSSim (14) and FleetPy (15) effectively1
simulate this bidirectional decision-making process.2

Nonetheless, most MoD simulation frameworks that offer mode choice functionality for3
users rely on comprehensive and precise simulation results as the basis for decision-making rather4
than quickly predicted offers. To generate these results, the model must evaluate all available vehi-5
cle data and determine the optimal vehicle assignments. The speed of this process is influenced by6
both fleet size and demand level, making rapid processing challenging in scenarios involving large7
fleets and high demand. Although Engelhardt et al. (15) employed heuristic algorithms to predict8
offers by integrating each passenger’s pick-up and drop-off locations into fleet routing plans and9
optimizing them based on the operator’s objectives, this approach still does not entirely mitigate10
the impact of fleet size and demand level. For such highly dynamic, data-intensive problems, ML11
offers a potentially superior solution (25).12

ML Approaches for MoD services13
ML offers innovative solutions for MoD services from a big data perspective. Chen et al. (26)14
propose UberNet, a deep learning convolutional neural network designed for short-term demand15
prediction for RH. Chu et al. (27) introduce Multi-Scale Convolutional Long Short-Term Memory16
(MultiConvLSTM), a deep learning model inspired by image and video processing techniques that17
treats travel demand as image pixel values to capture both temporal and spatial correlations. Ke18
et al. (28) propose the Fusion Convolutional Long Short-Term Memory Network (FCL-Net), in-19
tegrating convolutional LSTM layers, standard LSTM layers, and convolutional layers to capture20
spatiotemporal correlations while ranking variable importance using spatially aggregated random21
forest. Wang et al. (29) propose a Deep Spatio-Temporal ConvLSTM framework for travel de-22
mand forecasting, capturing both temporal and spatial dependencies with separate branches for23
closeness, period, and trend components, and employing a linear fusion method for final predic-24
tions. On the operational side, Lei et al. (30) combine optimization and ML to proactively relocate25
vehicles and ensure fair income distribution. Guo and Xu (31) propose a ride-sharing vehicle dis-26
patching and routing method, which includes vehicle routing decision-making through a Markov27
decision process with deep reinforcement learning, and request-vehicle assignment based on rout-28
ing learning values. However, offer prediction using ML remains an underexplored area.29

METHODOLOGY30
This paper uses simulation to analyze the performance of two different methods to address the offer31
creation problem. This section formalizes the MoD offer creation problem, presents the simulation32
framework, briefly summarizes the insertion heuristic approach, and discusses in detail the design33
concepts and functionalities of the ML-based solution approach.34

Formulation of the MoD Offer Creation Problem35
The offer creation problem describes the task of an MoD operator to generate information about36
a possible trip with the service after a user sends a request with their app. In this task, the MoD37
operator controls a set of vehicles V in a street network G = (N,E), where N are the nodes and38
E are the edges containing travel distance and travel time costs. The operator has access to the39
current fleet state FS, which includes the position and onboard passengers of each vehicle, along40
with their assigned routing plans and any unprocessed requests. An app request R ⊂ R includes41
information about earliest departure times ted , origin po ∈ N, destination pd ∈ N, and the number42
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of passengers npax, i.e., R = (ted, po, pd,npax). When a new app request R is received, the MoD1
Offer Creation Problem must be solved, requiring the operator to generate an offer Op containing2
information on the expected pick-up time tepu, expected drop-off time tedo, and expected cost ce,3
i.e., Op = (tepu, tedo,ce). This problem can be very challenging.4

• For large-scale services, finding a reasonable solution for a new request based on the5
current fleet state can be computationally expensive.6

• MoD services receive new app requests dynamically, and future vehicle-user assignments7
can affect the service levels of previously assigned requests. Figure 1 illustrates how the8
dynamic mechanism works. At the simulation time step t0, the MoD operator receives a9
request R0 and decides to assign it to the vehicle v0, generating a routing plan V 0

rp_0 and10

a predicted offer O0
p = (t0

epu_0, t
0
edo_0)

1. The user accepts O0
p and decides to use the MoD11

service. At the simulation time step t1, the MoD operator receives a new request R1 and12
decides to combine R1 and R0 to form an RP. However, as R1 is added to V 0

rp_0, t0
epu_0 and13

t0
edo_0 of O0

p need to be updated as well, resulting in t0
epu_1 and t0

edo_1. As simulation time14

advances, the user of R0 is picked up at the moment t0
pu. It is at this precise moment that15

the realized pick-up time of this user can be truly determined. Similarly, when the user is16
dropped off at t0

do, the realized drop-off time becomes clear. Finally, it can be observed17
that the pick-up and drop-off time in O0

p and the realized service RS0 = (t0
pu, t

0
do) have18

unavoidable deviations due to the addition of other requests.19

FIGURE 1: The dynamic mechanism of offer creation

This study investigates a constrained version of the general problem with the following20
attributes:21

• Users must be picked up within the maximum waiting time tmw, i.e., (tepu − ted)≤ tmw.22
• The detour time factor generated by the MoD service, fdt = (tedo− tepu− tod)/tod , where23

tod denotes the direct travel time from origin to destination, cannot exceed the maximum24
detour time factor fmdt .25

• The number of passengers npax cannot exceed the number of vehicle’s available seats.26
If any of these conditions are not met by a vehicle, it will be marked as unable to provide27

service. If no vehicles in the fleet can provide service, the request will be rejected.28

1Pricing is not in the focus of this study and therefore omitted from now on.
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Simulation Framework1
In this study, FleetPy (15) is chosen to model the dynamics of realistic MoD services — including2
the interaction of operators with users. During the simulation, offer creation problems appear and3
have to be solved. FleetPy is an agent-based framework for MoD fleet simulation, as illustrated in4
Figure 2. Users send travel requests R to an MoD operator, who then provides offer predictions5
OIR

P based on the current fleet state FS. By default, FleetPy employs an insertion heuristic in the6
Immediate Response (IR) module, which integrates users’ pick-up and drop-off locations into each7
vehicle’s routing plan. Offer attributes are derived from the optimal plan according to the operator’s8
objectives. At predetermined intervals, all accepted offers are batch-optimized and reassigned to9
vehicles to ensure a better system-wide solution.10

FIGURE 2: The general workflow of FleetPy

The fleet state FS is described by routing plans Vrp for each vehicle. Besides the current11
position and onboard requests, Vrp consists of planned stops, denoted as si

v = (pi
ps, t

i
a, t

i
d,R

i
o,R

i
a).12

Here, pi
ps denotes the position of planned stop i, t i

a denotes the arrival time at planned stop i, t i
d13

is the departure time at planned stop i, Ri
o ⊂ R is the users on board the vehicle at the planned14

stop i, and Ri
a ⊂ R is the users alighting from the vehicle at the planned stop i. Collectively, these15

individual routing plans form the overall fleet state, i.e., Vrp ⊂ FS.16
Due to the dynamic nature of the underlying vehicle routing problem, there often is a17

deviation between FleetPy’s OIR
p and the realized service (RS) received by the users.18

ML-Model Architecture19
This study proposes an ML-based model to predict offers for MoD services. During the simulation,20
user requests R and the corresponding fleet status FS are recorded as input data for the model. The21
realized services RS provided for each request by fleetpy are documented as target values for the22
ML module. The model then predicts whether a service can be provided. If it can, the model23
outputs specific offer attribute values, OML

P , where Oml
p = (tml

ew, t
ml
et ). By directly learning from24

RS, the model can mitigate the effects of dynamic mechanisms. Figure 3 illustrates the overall25
workflow of the proposed model.26

The idea of this study’s approach is to guide and construct the input features representing27
vehicle availability for a user request along three dimensions: pick-up likelihood, vehicle capacity,28
and detour degree. In the data preprocessing phase, the model first encodes the input R and FS in29
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these three dimensions. Before being fed into the ML module, a selection mechanism is used to1
streamline the encoded data, thereby improving the processing speed and prediction accuracy.2

FIGURE 3: The overall workflow of the proposed model

Offer prediction involves two aspects: recognizing requests that cannot be served and pre-3
dicting the offer attribute values for the requests that can be served. This approach employs an4
encoder-decoder architecture to accommodate the specificity of the prediction task. The encoder5
module comprehends and refines the encoded information to generate request embeddings (RE).6
For different prediction needs, different decoder modules are used to decode the RE and output the7
corresponding prediction results. In the following, each module is discussed in detail.8

Pick-Up Score9
An effective offer needs to ensure that a vehicle can reach the user’s departure location within tmw.10
The pick-up score spu is proposed in Eq. (1) to assess a vehicle’s potential to fulfill this requirement.11
For each planned stop of the vehicle in the assigned routing plan, the vehicle’s pick-up ability is12
scored. The time for a vehicle to travel from a planned stop to pick up a user, tvpu, can be computed13
according to Eq. (2); it consists of two parts: tvo, the travel time from the stop to the user’s origin,14
and an additional component representing the time required for the vehicle to depart from the stop.15
The longer it takes a vehicle to pick up a user, the lower the spu. If the travel time exceeds tmw, the16
vehicle’s spu at that planned stop becomes 0.17

Calculating the spu for each of the m planned stops across all n vehicles in the fleet yields18
a pick-up score table Spu (3). This table reflects the fleet’s overall potential to reach passengers on19
time.20

spu = max(0,
tmw − tvpu

tmw
) (1)21

tvpu = tvo +(td − ted) (2)22

Spu =

 si
pu1

, . . . , si
pum

,
...

...
sn

pu1
, . . . , sn

pum

 (3)23
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Capacity Score1
To ensure that vehicles meet users’ travel needs, they must provide sufficient seating capacity. The2
status information of a vehicle at each planned stop includes details about passengers boarding and3
alighting. Changes in the number of passengers on board directly impact the vehicle’s ability to4
accommodate new riders. This method simplifies the impact of these changes by focusing on the5
number of available seats n f s as the vehicle departs each stop. The seating capacity is then scored6
using Eq. (4), where nm f s represents the vehicle’s maximum seating capacity. The more empty7
seats a vehicle has, the higher its score. Similar to the calculation of Spu, the capacity scores for all8
n vehicles across all m planned stops are computed, forming a capacity score table Scap (5), which9
reflects the overall seating capacity of the fleet in response to the request.10

scap =
n f s

nm f s −npax
(4)11

Scap =

 si
cap1

, . . . , si
capm

,
...

...
sn

cap1
, . . . , sn

capm

 (5)12

Detour Snapshot13
Another crucial factor in evaluating a vehicle’s service capability is detour time. This issue does14
not need consideration for RH, where vehicles and users are uniquely paired. However, in RP,15
where users share the vehicle with others, direct transportation from origin to destination is often16
not feasible. Users may need to stop at other passengers’ locations along the route, resulting in17
detours. Although a certain amount of detour is acceptable, as the reduced trip cost from sharing18
compensates for the increased travel time, excessively long detours can negatively impact the user19
experience. Therefore, it’s essential to factor in detour time for each vehicle and ensure it remains20
within a reasonable limit to maintain service quality.21

When constructing a new routing plan for each vehicle, the new planned stops Np for the22
vehicle include two types of key points: the planned stops in the vehicle’s current routing plan23
and the origin and destination points of the new user. By connecting these points and using the24
travel time between them as the edge lengths, we create a network that reflects the connectivity25
relationships along with travel times. This network represents all potential routes for the vehicle26
after incorporating the new user, forming what is known as a detour snapshot Sdt :27
Sdt = {t pi

p j
|pi, p j ∈ Np, pi ̸= p j} (6)28

Here, t pi
p j denotes the travel time between nodes pi and p j. By calculating detour snapshots for all29

vehicles, we compile a detour snapshot table Sdt, which reflects the fleet’s overall detour degree.30

Selection Mechanism31
Offer prediction needs to be accomplished in a very short time, so it is necessary to improve32
the computational efficiency of the model. This approach reduces the computational burden of33
the model by designing a selection mechanism that streamlines information in both temporal and34
spatial domains. In the temporal domain, the model reduces the feature dimensions of each vehicle,35
while in the spatial domain, it filters the number of vehicles considered for offer prediction.36

When assigning a vehicle to a user request, priority is given to nearby vehicles with suf-37
ficient capacity. By combining the Spu and Scap, we infer that a suitable vehicle has a non-zero38
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spu and scap at least at one of its planned stops. Therefore, vehicles with a spu or scap of 0 at all1
planned stops are filtered out from subsequent calculations. Additionally, each vehicle’s maximum2
spu is sorted, and only the top nmv vehicles are selected as candidates, retaining those closest to the3
user’s departure point.4

Each vehicle may have multiple planned stops in its routing plan. Since these stops are5
visited sequentially, the likelihood of a vehicle being able to arrive at these stops and then reach6
the user’s departure point within tmw diminishes for later stops. Therefore, this approach only7
considers the first nmps stops of each vehicle, ignoring the subsequent stops to reduce the feature8
dimensions of each vehicle.9

The Encoder-Decoder Architecture10
The encoder-decoder architecture is considered one of the most rational neural network designs11
and is widely used in deep learning, particularly in models like the Transformer (32). The encoder12
is responsible for understanding and processing the input information to create information em-13
beddings. The decoder, on the other hand, provides the ML model with the flexibility to handle14
various tasks. Depending on the task requirements, different decoder networks, tailored to the15
specific task scenario, can be employed and combined with the encoder to form a complete neural16
network prediction module.17

The encoded information of the user’s request and the corresponding fleet state is stored18
in a matrix, where each row represents a vehicle, and the columns contain encoded information in19
three dimensions: pick-up likelihood, vehicle capacity, and detour degree. This matrix serves as20
a snapshot of the current fleet state, akin to an image that can be processed using machine vision21
techniques. In this study, a Convolutional Neural Network (CNN) (33) is selected for extracting22
and embedding the encoded information due to its effectiveness in handling such image-like data.23

For each request, the offer prediction needs to be performed at most twice. First, it must be24
determined whether the request can be adequately served with the current fleet state. If it can, the25
specific offer attribute values need to be predicted. To meet these two-aspect prediction require-26
ments, two different Fully Connected Networks (FCN) (34) are employed: one for identifying27
rejected requests and the other for predicting the values of specific offer attributes.28

CASE STUDY29
This section outlines the experimental design of the study, presents the results, and concludes with30
a brief discussion of the findings.31

Experimental Design32
FleetPy33
To train the ML model, we configure FleetPy’s simulation environment and construct the dataset34
based on the results of FleetPy’s runs. Table 1 shows all the key configurations of FleetPy. It is35
important to note that tmw is set to 600 seconds, meaning that all users must be picked up within36
10 minutes after their ted . Additionally, fmdt is set to 40%, indicating that the detour time incurred37
by the RP services must be at most 40% of the tod; otherwise, the user’s request will be rejected.38
All vehicles in the fleet have a maximum capacity nmpax of 4 passengers.39

The operating area for the MOD service is confined to Manhattan, NYC. The network is40
extracted from OpenStreetMap. To reflect real road traffic conditions, all link travel times are dy-41
namically scaled based on the simulation time. The shortest paths between nodes are precomputed,42
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and a lookup table is created to represent the travel times between all origin and destination pairs.1
The MoD demand in this study is derived from the New York City taxi dataset (4), a widely2

used open-source resource. We utilize taxi trip data from November 11 to November 18, 2018,3
selecting trips that both start and end in Manhattan. To reduce computational complexity, 10% of4
these trips are randomly sampled and treated as RP demand, resulting in a total of 320,434 trip5
requests. To ensure robustness, we generate three sets of trip data using three different random6
seeds. All results presented in the following sections are the averaged outcomes from these three7
datasets.8

Additional details on the processing of network and trip data can be found in the work of9
Engelhardt et al. (35).10

TABLE 1: Configurations of FleetPy

Parameter Symbol Value
Simulation duration tsim 24 h
Simulation step tstep 1 s
Fleet size fs 200
Maximum waiting time tmw 600 s
Maximum detour time factor fdt 40%
Demand D Manhattan taxi data, from Nov. 11 to Nov. 18 2018
Network G Manhattan network
Vehicle capacity nmpax 4

Dataset11
During the FleetPy simulation, the fleet state at ted of each request is recorded and combined12
with the request information to form the feature dataset. At the end of the simulation, acceptance13
or rejection of requests, realized waiting times, and realized travel times are used to construct14
the corresponding target dataset. Data from the entire week of November 12 to November 18 is15
utilized to build the training and testing sets, with a split ratio of 70% for training and 30% for16
testing. Additionally, data from the entire day of November 11 is used to construct the validation17
set. Figure 4 shows the distribution of features and targets for each dataset.18

It can be observed that the rejection rate of user requests in all the datasets is approximately19
14%, indicating that the FleetPy configurations are sufficient to meet the travel demand used in this20
study. The distributions of travel time and waiting time are consistent across all datasets, with the21
mean travel time being around 644 seconds and the mean waiting time approximately 371 seconds.22

Scenario Specification23
The role of the selection mechanism is primarily defined by the parameters nmv and nmps. In the24
spatial domain, nmv controls the maximum number of vehicles the model considers. In the temporal25
domain, nmps limits the scope of the model’s perspective on the vehicle routing plan.26

By analyzing the FleetPy simulation results, Figure 5 illustrates the distribution of the num-27
ber of available vehicles corresponding to requests and the order of the planned stop at which newly28
incoming requests are inserted into existing vehicle routes. It can be observed that while the fleet29
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(a) (b)

(c)

FIGURE 4: The distribution of features and targets for each dataset. (a) shows the distribution of
travel time, (b) shows the distribution of waiting time, and (c) shows the ratio of requests rejected
by FleetPy in each dataset, with the numbers above indicating the quantities.

size is 200 vehicles, over 95% of requests only have at most 60 vehicles potentially offering ser-1
vice. Moreover, most requests are picked up before the vehicle’s fifth planned stop.2

This study designs various scenarios from these two aspects to explore the performance3
of the proposed model and selection mechanism, respectively. Table 2 summarizes the model4
configurations for these scenarios. In the base scenario (BS), nmv is set to 60 vehicles, and nmps5
is set to 5 planned stops. NV-20, NV-40, NV-100, and NV-200 represent different scales of nmv,6
ranging from considering only the 20 vehicles in the user’s neighborhood to considering the entire7
fleet to examine the role of the selection mechanism in the spatial domain. NPS-2, NPS-3, NPS-4,8
NPS-6, and NPS-7 explore the role of selection mechanisms in the temporal domain, ranging from9
considering only the 2 planned stops of each vehicle to considering 5 planned stops.10

Each of the aforementioned scenarios includes two ML modules: one decoder is designed11
as an FCN dealing with the classification problem (i.e. user acceptance or rejection), and the other12
is an FCN capable of outputting two predicted offer attribute values (i.e. waiting and travel time).13
The encoder of both modules is a CNN. For the classification problem, the ML module employs14
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(a) (b)

FIGURE 5: The distribution of available vehicle numbers and valid planned stop order. (a) shows
the number of available vehicles for each request, and (b) illustrates the order of the planned stop
at which the newly incoming request is served.

TABLE 2: Scenario Configurations

Scenario name nmv nmps

Base scenario (BS) 60 5

NV-200 200 5
NV-100 100 5
NV-40 40 5
NV-20 20 5

NPS-7 60 7
NPS-6 60 6
NPS-4 60 4
NPS-3 60 3
NPS-2 60 2

Binary Cross Entropy (BCE) as the loss function, while for the offer attribute values prediction, it1
uses Mean Squared Error (MSE). The model is trained using Adaptive Moment Estimation (Adam)2
(36) as the optimizer, with a learning rate of 0.001.3

Key Performance Indicators4
To compare the model’s prediction performance across scenarios, Key Performance Indicators5
(KPIs) need to be defined. The results are compared with both OIR

P and RS to evaluate the model’s6
performance. When predicting request acceptance, it is crucial to avoid misclassifying unfeasible7
requests as feasible, as this significantly impacts users’ ride experiences. In the dataset, served8
requests are labeled as 1 (positive), while rejected requests are labeled as 0 (negative). Therefore,9



Ding, Dandl, and Bogenberger 14

the model should prioritize accurately identifying rejected requests by increasing true negative1
(TN) counts and decreasing false positive (FP) counts. Additionally, true positive (TP) and false2
negative (FN) requests should also be considered to enhance the overall benefit for TNCs.3

The True Negative Rate (TNR) (7) assesses the model’s ability to recognize rejected re-4
quests. Precision (8) evaluates the model’s prediction accuracy for served requests, while Recall5
(9) indicates the model’s tendency to underreport. However, since approximately 86% of requests6
are served, relying solely on a single metric does not fully capture the model’s performance on pos-7
itive cases. Therefore, the F1-Score (10), which combines Precision and Recall, is more suitable8
for assessing the model’s overall performance.9

For predicting the attribute values of offers, two key features are considered: waiting time10
and travel time. The Mean Absolute Error (MAE) of these two attributes is used to evaluate11
the model’s overall prediction performance. Additionally, heat maps of the joint distribution of12
absolute errors for these two attributes are used to visualize the model’s prediction accuracy at the13
individual offer level.14

Beyond accuracy, the efficiency of the prediction process is also crucial. The offer predic-15
tion time of the proposed model, tml

op , is the combined duration of data preprocessing, data selection,16
and ML processing. This approach provides a realistic and comprehensive view of the model’s ef-17
ficiency, making the evaluation practical and applicable to real-world applications. Based on the18
processing time of the IR module, t ir

op, the Efficiency Improvement Rate (EIR) (11) is used as a19
KPI to evaluate the improvement in predictive efficiency of the proposed model.20

TNR =
T N

T N +FP
(7)21

Precision =
T P

T P+FP
(8)22

Recall =
T P

T P+FN
(9)23

F1 = 2× Precision×Recall
Precision+Recall

(10)24

EIR =
t ir
op − tml

op

t ir
op

×100 (11)25

Results26
This section discusses the model’s results across various scenarios, focusing on three key aspects27
of offer prediction. The first part analyzes the model’s ability to accurately recognize rejected28
requests. The second part evaluates the model’s accuracy in predicting offer attribute values. The29
third part examines the model’s operational efficiency.30

Recognition31
According to the FleetPy configuration used in this study, requests are determined to be serviceable32
only by the IR module. Therefore, this study assumes the recognition results of the IR module33
as ground truth and trains and validates the model based on these results. Figure 6 shows the34
recognition performance of the model in all scenarios.35

In BS, the model achieves a TNR of approximately 90%, indicating its effectiveness in36
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(a) (b)

(c) (d)

FIGURE 6: F1-Score and TNR for all scenarios. (a) and (b) illustrate the model’s recognition
performance for different nmps, and (c) and (d) show the effect of nmv on the model’s performance.

recognizing the majority of requests that need to be rejected, despite the rejection rate being only1
around 14% in the dataset. NPS-4 slightly outperforms BS in temporal domain selection. As2
shown in Figure 5, only about 2% of the requests are served at the fifth planned stop of the vehicle.3
This suggests that ignoring this stop allows the model to focus on the first four stops, which contain4
more relevant information. As the number of planned stops considered by the selection mechanism5
decreases, the model’s recognition rate for rejected requests declines. This reduction is attributed6
to the loss of information in the shortened field of view, leaving the ML model with insufficient7
features to make accurate judgments. Specifically, nearly 22% of the requests are served at the8
vehicle’s third planned stop, and ignoring this stop’s feature information in NPS-2 results in a TNR9
of about 82%. In scenarios where the selection mechanism considers additional planned stops,10
such as NPS-6 and NPS-7, the model’s TNR decreases. This decline occurs because all requests11
in the dataset are serviced by or before the vehicle’s fifth planned stop, making information about12
subsequent stops a distraction that interferes with the model’s judgment.13

The model exhibits similar performance trends in selecting information in the spatial do-14
main. Overly reducing or increasing the number of considered vehicles diminishes the model’s15
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TNR. Notably, the model’s performance exhibits different sensitivities to information selection1
across the spatial and temporal domains, with spatial information selection having a greater im-2
pact. When the amount of temporal information is scaled down to 70%, as in NPS-2, the model still3
achieves a TNR higher than 82%. Conversely, when spatial information is scaled down to 70%, as4
in NV-20, the model’s accuracy in correctly identifying rejected requests drops to approximately5
57%, which is only slightly better than random guessing.6

This pattern is also observed in the model’s ability to determine which requests can be7
served. Compared to BS, NPS-4, which considers one less planned stop, achieves a higher F1-8
Score of over 0.92. As nmps increases or decreases, the model’s F1-Score decreases. The selection9
mechanism in the spatial domain causes more significant changes in the F1-Score. Particularly in10
NV-20 and NV-200, although the F1-Score exceeds 0.94 in both scenarios, higher than in all other11
scenarios, this occurs because the model either receives too little valid information or too much12
irrelevant information, impairing its ability to make accurate judgments. Consequently, the model13
tends to classify more requests as serviceable, which is a more prevalent category in the dataset.14

Offer Attributes15
In FleetPy, OIR

P is the prediction of RS. Therefore, in this study, RS is considered the ground16
truth on which the model’s training and validation are based. By comparing the mean error of the17
model’s predicted values with RS, we can evaluate the model’s predictive performance. Addition-18
ally, by comparing the predicted values of the model with OIR

P , we can determine how optimized19
the proposed model is compared to the IR module. Figure 7 illustrates these two comparisons of20
the model for all scenarios.21

In the FleetPy configuration, tmw is set to 600 seconds. In BS, the model’s mean prediction22
error for this attribute is approximately 130 seconds. The best prediction result is observed in23
NPS-4, where one less planned stop is considered in the temporal domain, reducing the error to24
around 112 seconds. The model’s prediction accuracy declines as the selection mechanism further25
scales down the data in the temporal domain. It is notable that reducing the number of planned26
stops considered has a more detrimental effect on the model’s prediction accuracy than increasing27
the temporal domain information.28

In the spatial domain, both reducing or increasing the number of vehicles considered by the29
model diminishes its predictive performance. Particularly in NV-20 and NV-200, insufficient fleet30
information fails to provide adequate support for the model’s predictions, while excessive infor-31
mation dilutes the model’s focus. This demonstrates that the selection mechanism can effectively32
filter out key information to aid the model in predicting accurate offer attribute values. Addition-33
ally, spatial information selection has a more significant impact on the model’s prediction accuracy34
compared to temporal information selection.35

In the dataset, the average travel time for all requests is about 644 seconds. In BS, the36
model’s mean prediction error for this attribute is around 60 seconds. The best prediction result is37
again observed in NPS-4, with an error of approximately 52 seconds. The impact of the selection38
mechanism on the model’s prediction accuracy for travel time, whether in the temporal or spatial39
domain, follows the same trend as its impact on the prediction accuracy for waiting time. The40
worst result is observed in NV-20, where the mean error reaches about 135 seconds.41

The model’s prediction results are compared with OIR
P . For travel time prediction, the IR’s42

mean prediction error is approximately 85 seconds, while the proposed model’s prediction error43
is consistently lower across most scenarios, with the smallest error of about 52 seconds in NPS-4.44
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(a) (b)

(c) (d)

FIGURE 7: Comparison of mean errors in waiting time and travel time. Figures (a) and (b) show
the mean errors of the model with different nmps values; Figures (c) and (d) show the mean errors
of the model with different nmv values.

This indicates that the model outperforms the IR module in predicting travel time. For waiting time1
prediction, the IR’s mean prediction error is around 37 seconds, whereas the proposed model’s2
minimum prediction error is 112 seconds. This shows that the model’s prediction accuracy for3
waiting time is not as good as that of the IR. Theoretically, waiting time is primarily influenced4
by Spu in the fleet encoding information. However, in this study, the proposed model employs a5
relatively simple linear equation to calculate spu. This linear mapping may not fully reflect the6
complexities of real-world vehicle pick-up capabilities.7

Figures 8 and 9 illustrate the joint distribution of absolute errors for waiting time and travel8
time at the individual offer level. The horizontal axis represents the absolute prediction error for9
waiting time, while the vertical axis represents the absolute prediction error for travel time for each10
offer. From both figures, it can be observed that scenarios with lower mean errors also have more11
concentrated joint absolute error distributions at the individual offer level. The heat map for NPS-12
4, in particular, shows the most concentrated highlighted area in the lower left corner, indicating13
that most offers have relatively low absolute errors for both attributes.14
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(a) NPS-2 (b) NPS-3

(c) NPS-4 (d) NPS-5 (BS)

(e) NPS-6 (f) NPS-7

FIGURE 8: Impact of nmps on model performance. Figures (a) to (f) present the joint distribution
of absolute errors in the model’s predictions across various scenarios characterized by different
nmps values.
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(a) NV-20 (b) NV-40

(c) NV-60 (BS) (d) NV-100

(e) NV-200

FIGURE 9: Impact of nmv on model performance. Figures (a) to (f) present the joint distribution
of absolute errors in the model’s predictions across various scenarios characterized by different
nmv values.
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Efficiency1
Another important indicator of the model’s performance is efficiency. Using EIR, the predictive2
efficiency of the proposed model is compared to that of the IR module. Figure 10 presents the3
detailed comparison results.4

Overall, by leveraging the selection mechanism to reduce the amount of information, the5
proposed model improves prediction efficiency by approximately 47% to 78% in most scenarios6
compared to the IR module. However, in NV-200, where the model needs to encode data from7
all vehicles, prediction efficiency is significantly impacted, resulting in an average prediction time8
of about 8% longer than that of the IR module. Notably, the model also does not achieve optimal9
prediction performance under NV-200.10

The trend in efficiency changes indicates that reducing the amount of information in both11
the temporal and spatial domains generally enhances the model’s prediction efficiency. However,12
considering prediction accuracy, indiscriminately reducing information is not recommended.13

(a) (b)

FIGURE 10: Comparison of EIR. (a) shows the EIR for the model across different values of nmps;
(b) shows the EIR for the model across different values of nmv.

CONCLUSION AND FUTURE WORK14
Ensuring the quality of services is crucial for TNCs like Uber, Lyft, and Didi, as it directly impacts15
user experience and revenue. A key challenge lies in providing fast and precise offer predictions16
based on user requests and fleet conditions. Response strategies solving vehicle routing problems17
for each incoming request struggle to deliver timely predictions in high-demand scenarios. The18
exponential growth in MoD demand and fleet sizes further complicates this task, underscoring the19
need for more efficient and scalable predictive methods.20

This study proposes a machine learning-based model to effectively address these issues.21
The model encodes fleet state combined with user request information from three dimensions:22
pick-up likelihood, vehicle capacity, and detour degree, resulting in pick-up score, capacity score,23
and detour snapshot. By designing a selection mechanism, the model filters the encoded informa-24
tion in both temporal and spatial domains. This refined encoded information reduces the computa-25
tional burden on the model, enhancing prediction efficiency and preventing the model’s attention26
from being dispersed, thereby improving prediction accuracy. Given that offer prediction involves27
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two aspects: identifying unserviceable requests and predicting specific offer attribute values, the1
model employs an encoder-decoder architecture. Fleet status is treated as an image, and a CNN2
is used in the encoder to embed image information. Different FCNs are then used to decode the3
embedded information, making various predictions.4

Using FleetPy to simulate MoD services, a case study is conducted based on the Manhattan5
taxi dataset. Different scenarios are tested by controlling the selection mechanism’s intensity in6
the temporal and spatial domains. Analysis and comparison of model results show that the selec-7
tion mechanism critically impacts the model’s predictive performance. Moreover, spatial domain8
information has a greater impact on the model’s predictive performance than temporal domain9
information. When considering only 60 vehicles near the user and only the status of the first10
four stops for each vehicle, the model achieves a True Negative Rate of approximately 90% in11
identifying rejected requests, effectively recognizing requests the fleet cannot serve. Additionally,12
it outperforms the heuristic approach in both travel time prediction accuracy and prediction effi-13
ciency. However, the model’s prediction error for waiting time is worse than the heuristic approach.14
This discrepancy is attributed to the model’s use of a simple linear equation for encoding vehicle15
pick-up capability, which has limited expressive power.16

Future research can improve the model’s prediction performance for waiting time by using17
nonlinear encoding for vehicle pick-up capability. Additionally, different encoders and decoders18
can be tested to study the impact of various neural networks on the model’s predictive ability.19
Furthermore, the model can be applied to different FleetPy configurations or tested under different20
networks and demands to examine its transferability. Finally, fleet control algorithms need to21
be adapted to work with a machine learning-based offer module; unlike the insertion heuristic-22
based offer module currently employed in FleetPy, machine learning-based approaches will accept23
requests, for which — according to the original constraints — no feasible vehicle-routing solution24
can be found.25
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