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SUMMARY: Digital Twins (DTs) provide a promising solution for bridge operation, thanks to their ability to 

mirror the physical conditions into a digital representation. At the core of the DTs is a geometric-semantic model. 

The modeling process for existing bridges, however, requires extensive manual effort. Given the high number of 

bridges in operation worldwide, there is an urgent need for automating this process. Available low-effort capturing 

methods, including laser-scanning and photogrammetry, generate raw point cloud data (PCD) that requires 

further processing to achieve a high-quality model. This paper focuses on the semantic segmentation of the PCD, 

which is the essential first step in an automated processing pipeline. A novel deep learning model, called multi-

scale spatial feature descriptor network (MSFD-Net), is proposed for the semantic segmentation of PCD. The 

model is tested using the PCD of six bridges in Bavaria, Germany. The results show that MSFD-Net can automate 

semantic segmentation of bridges with mean accuracy (mAcc) of 98.29 % and mean intersection over union (mIoU) 

of 93.57 %. 
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1. INTRODUCTION 

In the transportation system of most countries, there is a large stock of aging bridges that require substantial 

attention to enable long-term operation. The recent ASCE report card (ASCE, 2021) illustrates that the amount of 

structurally deficient bridges in poor condition (46,154 or 7.5 % of ca. 617,000) is increasing as the deterioration 

rate exceeds the rate of repair, rehabilitation, and replacement. The National Bridge Inspection Standards (NBIS) 

require transportation agencies to evaluate the structural status of existing bridges periodically over the structure's 

service life. Currently, most of the processes involved with the inspection, operation, and maintenance of bridges 

are insufficiently supported by digital methods, thus increasing the costs associated with bridge evaluation and 

quality assurance (Sacks et al., 2016, 2018a, 2018b). Hence, the corresponding transportation operators are 

currently faced with heightened pressure to provide automated mechanisms for efficient coverage of the existing 

bridges. 

Bridge information modeling (BrIM) is a technique that generates the digital counterpart of bridges that represents 

the physical and functional characteristics of the structure. BrIM is capable of providing a visual management 

system for Accelerated Bridge Construction (ABC), Virtual Design and Construction (VDC), and structural 

analysis (McGuire et al., 2016; Jeong et al., 2017). BrIM can be employed in the pre-construction, under-

construction, and post-construction phases to facilitate the operation and management processes of bridges 

(Marzouk and Hisham, 2012; Shim et al., 2011; Rashidi and Karan, 2018). A bridge information model can also 

be extended and expressed as a digital twin (DT) through an access point and a link to handle bidirectional updates 

between the physical and the digital counterparts (Brilakis et al., 2019). Besides inheriting all the features of a 

bridge information model, the DT of a bridge also reflects geometric and semantic changes to the structure and the 

damages and deteriorations occurring over time (Vilgertshofer et al., 2022). In the current practice, technical 

drawings are commonly the primary resource for creating the geometric model underlying BrIM and DT. Despite 

the feasibility of 3D modeling based on conventional technical drawings, the drawings of most older bridges are 

not digitized and, in the worst cases, are not even available. Also, the geometry of a bridge might change due to 

aging or undocumented alterations and can, therefore, differ from the existing technical drawings. 

Photogrammetry and Terrestrial Laser Scanning (TLS) are two primary geodetic techniques that can capture 

existing bridges with comparatively low effort. Both methods generate point cloud data (PCD) that intuitively 

shows bridges' rough geometric and partial semantic information. PCD can be seen as an alternative or complement 

to drawings for the geometric modeling of bridges, especially in the operational phase of the structure 

(Mohammadi et al., 2021). However, the main challenge is that the resulting PCD needs to be enriched and 

abstracted to a geometric model fulfilling the requirements of the DT or BrIM. This process is performed manually 

and laboriously today, requiring effort that cannot be invested in thousands of bridges. To handle this challenge, 

this paper aims to automate the processing of PCD. 

Semantic segmentation is an essential first step in the pipeline for the automated 3D geometric modeling of bridges 

from PCD (Mafipour et al., 2023). This process differentiates the point cloud of a bridge into separate point clouds 

of the bridge’s elements, thereby paving the way for further extraction of geometric and semantic features. Despite 

the existence of tools and software programs for manual semantic segmentation of bridge point clouds, conducting 

this step is still error-prone and costly. To address this issue, this paper proposes a novel deep learning model, 

coined Multiscale Spatial Feature Descriptor (MSFD-Net), to automate the semantic segmentation process of 

bridge point clouds. MSFD-Net consists of various modules to extract local and global features and provides a 

mechanism for describing the pair-wise relationships between points. It also expresses the features in multiple 

scales to leverage the low-level and high-level features in the prediction process of labels. Thanks to the random 

sub-sampling strategy in the subsequent layers of the network and a U-shaped autoencoder, 

The key contributions of the paper are summarized as follows: 

• Proposal of MSFD-Net, a deep learning model to automate the semantic segmentation process of bridge PCD. 

• Introduction of various modules for effective spatial encoding of points based on local, global, and pair-wise 

features. 

• The description of the extracted features in various scales to benefit from the low-level and high-level features 

in classifying points. 
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• Analysis of the performance of MSFD-Net in terms of prediction accuracy and training time. 

This paper is structured as follows: Section 2 outlines related works in the semantic segmentation of point clouds. 

Section 3 provides an overview of MSFD-Net, introduces the modules employed in the model, and describes them 

in detail. Section 4 presents the dataset of bridge point clouds and the statistical metrics for validation of the model 

and configures the hyperparameters. Section 5 reports the conducted experiments on MSFD-Net and demonstrates 

a numerical and visual comparison of this model with a state-of-the-art deep learning model. Section 6 evaluates 

the proposed modules' impact on the network performance. The paper ends with a conclusion in Section 7, 

discussing the development of our research, the significant findings, including known limitations and possible 

generalizations, and topics for future research. 

2. BACKGROUND AND RELATED WORK 

Various methods have been proposed to automate semantic segmentation of the bridge point clouds. The proposed 

methods can be categorized as bottom-up, top-down, and deep learning-based. This section provides a short 

overview of these approaches. 

2.1 Bottom-up semantic segmentation 

The bottom-up methods transform the low-level features into high-level features and leverage them to generate a 

more complex system at successively higher levels (Borenstein and Ullman, 2008). The low-level features are 

generally the raw attributes of PCD, such as the x, y, and z coordinates of points and the RGB color codes. The 

high-level features are typically the surface normal, meshes, surface planes/patches, non-uniform B-Spline 

surfaces, and voxels (Palop et al., 2010; Sampath and Shan, 2009; Marton et al., 2009; Zhang and Tang, 2015; 

Dimitrov et al., 2016; Dimitrov and Golparvar-Fard, 2015). There are multiple algorithms that are capable of 

utilizing these features for primitive detection and model reconstruction. Region growing (RG), RANdom SAmple 

Consensus (RANSAC), Hough-Transform (HT), and Octree-Based (OB) can be mentioned as dominant 

algorithms in this category. Many of these methods have been devoted to generating surface-based primitives, 

especially planar surfaces, as they exist more commonly in PCD (Patraucean et al., 2015). However, they have 

also been extended to other primitive shapes, such as the sphere, cylinder, cone, and torus (Schnabel et al., 2007), 

which can be defined mathematically in a closed-form formulation. The bottom-up algorithms have been used 

principally or partly in bridges' geometric digital twinning process. 

Truong-Hong and Lindenbergh (2022) proposed a cell- or voxel-based region growing (CRG/VRG) algorithm to 

extract the planar surfaces in the PCD of RC bridges. Qin et al. (2021) used the local and global density of points 

for semantic segmentation of bridge PCD and fitted cylindrical and cuboid shapes to the segmented point cloud of 

elements. Lee et al. (2020) detected planar surfaces using M-estimator SAmple Consensus (MSAC). They 

extracted the value of parameters for specific types of bridge decks by measuring the distance between each pair 

of planes. 

2.2 Top-down semantic segmentation 

Contrary to bottom-up, top-down methods start from a complex system and decompose it to subordinate systems 

or elements that are simpler to interpret (Kokkinos et al., 2006). Top-down approaches require hierarchical 

planning and deep insight into the system so that no coding can be started without a sufficient level of detail at 

least for some parts. The top-down approach is typically a heuristic approach based on a set of domain-specific 

information/criteria. This knowledge-based approach can leverage the existing information such as predefined 

constraints, parameters, object types/instances, and topological relationships to break down the initial complex 

model to a set of basic elements (Dore and Murphy, 2014; Pu and Vosselman, 2009; Koppula et al., 2011; Ahmed 

et al., 2014). These basic elements can be further refined in more detail and in many additional subsystem levels. 

A pioneering study using a top-down approach was REFAB (Reverse Engineering FeAture-Based)(Thompson and 

Owen, 1999), which uses parametric geometric constraints such as parallelism, connectivity, perpendicularity, and 

symmetry to convert points to mechanical solid models. 

The top-down approach has also been used for the geometric digital twinning of bridges. Lu et al. (2019) proposed 

a heuristic top-down approach for semantic segmentation of RC bridges based on directional geometric cuts and 

relative distance of points. Girardet and Boton (2021) described a visual programming approach to foster the 
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parametric modeling of bridges. Zhao et al. (2019) defined a heuristic algorithm using the horizontal histogram of 

density and a support vector machine (SVM) for portioning structural elements in RC bridges. Yan and Hajjar 

(2021) proposed a top-down heuristic method for semantic segmentation of steel girder bridges through the 

existing geometric and topological constraints in these bridges. Pan et al. (2019) described a top-down method 

based on graph construction and combined it with a rule-based classification algorithm to segment the main 

elements of heritage bridges. 

2.3 Deep learning-based semantic segmentation 

Following the breakthrough results of applying deep learning (DL) models to images, there has been a strong 

interest to adapt such models to 3D geometric data such as meshes or point clouds. Contrary to images, a raw point 

cloud is an unstructured dataset without any underlying grid. Thus, its features cannot be extracted simply by 

passing through the convolution and pooling layers (Wang et al., 2019). To address this issue, the initial DL models 

mostly relied on transforming input point clouds to either multi-view images or volumetric data that are readable 

by 2D and 3D convolutions (Zhou and Tuzel, 2018; Xie et al., 2015; Su et al., 2015). However, the complexity 

and memory issues arising from the intermediate representations restricted the capability of these models. 

PointNet (Qi et al., 2017a) is the first 3D DL model with the ability to process and extract features from points 

directly. This architecture uses a transformer to make the model invariant to rigid transformations and a symmetric 

function to achieve permutation stability to conquer the unordered point cloud input. From this model onward, 3D 

DL architectures have been developed in three parts: sampling strategy, feature extraction, and encoding-decoding 

process (Landrieu and Simonovsky, 2018; Qi et al., 2017b; Zhao et al., 2021; Thomas et al., 2019; Lin et al., 2020; 

Li et al., 2020; de G´elis et al., 2023; Shinde et al., 2021). Thanks to the sub-sampling and up-sampling in 

subsequent layers of a U-shaped autoencoder (Ronneberger et al., 2015), the recent architectures are even capable 

of inferring per-point semantics for large-scale point clouds (Hu et al., 2020). The encoder of these models has 

been also used for real-time semantic segmentation and model-to-cloud fitting of primitive shapes (Li et al., 2019). 

Most recently, DL models have been also employed in the geometric digital twinning of bridges (Jing et al., 2022; 

Mafipour et al., 2022). 

Hu et al. (2021) employed a multi-view convolutional neural network (CNN) to extract features from 

photogrammetry and to link it with a multi-layer perceptron (MLP) to segment the point cloud of a bridge. Lee et 

al. (2021) added contextual features by kd-tree and K-nearest neighbors (KNN) search to PointNet (Qi et al., 

2017a) and deep graph convolutional network (DGCNN) architectures (Wang et al., 2019) and improved the 

performance of these models for the semantic segmentation of bridges. Xia et al. (2022) used the local reference 

frame (LRF) of points and proposed a local descriptor to extract the features of points and to segment the PCD of 

bridges. Jing et al. (2022) augmented the point cloud dataset of bridges with synthetic point clouds and proposed 

Bridge-Net as a 3D DL model for semantic segmentation of arch bridge point clouds. They also used RANSAC 

for model-to-cloud fitting and to extract the parameters’ values. Yang et al. (2022) also augmented the point cloud 

dataset of bridges with synthetic data and developed a DL model based on the super point graph (SPG) architecture 

(Landrieu and Simonovsky, 2018) for semantic segmentation of bridge PCD.  

 

 

Figure 1: Architecture of MSFD-Net. 
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However, these approaches are limited as they can be equipped with cutting-edge AI modules/layers such as non-

local attention, self-attention, and contextual attention for ecient encoding of points. Also, most existing models 

only encode local neighborhoods and cannot provide the existing spatial relationships between points located far 

from each other.  

3. MSFD-NET ARCHITECTURE 

MSFD-Net has been designed to capture the local and global spatial relations among points and model the existing 

patterns in various scales. It requires the coordinates of the points (x,y,z) and their corresponding normal vectors 

(nx, ny, nz) as input to determine the semantic label of the bridge point clouds. Other features, such as RGB color 

codes, density, and even learned latent features, can also be added and processed by this network. As shown in 

Figure 1, the architecture of MSFD-Net is basically an auto-encoder (U-Net) expressed in several scales. The 

encoder of the model includes a spatial features descriptor (SFD) module followed by random sub-sampling in 

sequential layers. Leveraging the sub-sampling and aggregation mechanisms, MSFD-Net can process large-scale 

point clouds. 

The SFD module receives point features to generate a geometric representation of the local spatial neighborhoods. 

It also aggregates the generated local features and global features and increases the receptive field of points. The 

bottleneck is a non-local attention module providing global awareness about the spatial features in the latent space. 

The decoder has also been expressed in multi-scales to fuse the high-level feature map of points with the basic 

features generated by the initial and intermediate layers. The first scale of this model is a plain decoder collecting 

features from all the layers of the network, while the next scales ignore some of the intermediate blocks to provide 

a better perception of the initial layers. The decoded spatial features are attentively fused in the end to generate a 

feature map from all the scales. These modules are further described in the following sections. 

3.1 Spatial features descriptor (SFD) 

SFD aims to extract and learn the spatial geometric features of points. It also combines the local geometric features 

with the global input features to provide a more comprehensive description of the scene. The framework of the 

SFD has been inspired by the local feature aggregation module proposed in RandLA-Net (Hu et al., 2020). 

However, its spatial encoder is different and consists of two blocks named local spherical representation (LSpR) 

and local surface representation (LSuR). The details of these blocks are elaborated in the next sections, then, a 

general overview of the feature aggregation module is provided. 

3.1.1 Local spherical representation (LSpR) 

Existing point-based models generally adopt Cartesian coordinates as the input, while the relative position of points 

is highly sensitive to the possible transformations and normalization in this coordinate system. On the contrary, 

the spherical coordinate system can simply represent the position of a point by two angles limited in the range of 

[0,2π] and a radius/distance. Figure 2a shows the local neighborhood of the query point pi and its K neighbors 

{p1
i,p2

i,...,pK
i } obtained by the K-nearest neighbors (KNN) algorithm. The relative position of pi with respect to 

its neighbors can be expressed in the spherical coordinate system (ri
k,ϕk

i ,θi
k) as below: 

 

where ( ) are the relative coordinates of  in the Cartesian coordinate system with center pi. 
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 (a) (b) 

Figure 2: Local representation of a neighborhood: (a) local spherical representation (LSpR); (b) local surface 

representation (LSuR). 

3.1.2 Local surface representation (LSuR) 

The generated features by LSpR describe the relative position of points in a local neighborhood. However, they 

can not provide adequate information about the representative surface by the points. To handle this problem, a 

local Darboux frame can be defined, and the underlying surface on which the points are positioned is approximated 

(Rusu et al., 2008). A Darboux frame is a dynamic/moving frame constructed on a surface. It is the analog of the 

Frenet–Serret frame and can represent the curvature, normal curvature, and relative torsion of the surface. Figure 

2b illustrates the query point pi with the 

normal vector ⃗ni as well as the neighboring points  and normals { ⃗n1
i,⃗n2

i,...,⃗nK
i }. A Darboux frame 

with the axes (⃗uk
i ,⃗vi

k,w⃗i
k) can be defined for each pair of (pi,pk

i ) as below (Rusu et al., 2008): 

 , (4) 

where ||.||2 is the L2 norm of the vectors connecting the centroid point to the neighboring points. 

Based on the defined Darboux frame, the dependencies between each pair ) can be defined by three angles 

, and  as follows (Rusu et al., 2008): 

 , (5) 

3.1.3 Feature aggregation 

As shown in Figure 3, the SFD module receives a point cloud containing N points, each described by d features 

(coordinates, RGB color, etc.), i.e. F = {f1,...,fi,...,fN}, where F ∈ RN×d. This feature set is passed through a shared 

MLP (M) to provide a global description of the input features (M(fi)). In parallel, the neighboring points are 

gathered by a simple KNN and the global features are distributed over the local neighborhoods ( ). The 

neighboring points and normals are also sent to the LSpR and LSuR blocks to generate the local features. These 

features are concatenated, and a shared MLP is applied as below: 

,         (6) 

where ⊕ is the concatenation operation. 

The feature set ri
k has been mostly defined based on rotation angles that, in turn, aid the network in learning local 

features and achieving more robust performance in practice. The local features ri
k and the global features fi

k are 

concatenated eventually (fi
k ⊕ri

k) to generate the new set 𝐹̂𝑖 = {𝑓̂𝑖
1, … , 𝑓̂𝑖

𝑘 , … , 𝑓̂𝑁
𝐾} describing the spatial features 
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of points in each neighborhood. Symmetric functions such as mean and max can be applied to summarize the 

features of the neighborhoods. 

However, to emphasize the more important features, the weighted summation of features is calculated while the 

weights are also learnable parameters for the network. This process, which is called attentive pooling, can be 

described as (Hu et al., 2020): 

 

where g() consists of a 1×1 convolution layer followed by a softmax to generate attention scores, and W is the 

learnable weights of the shared MLP. Contrary to RandLA-Net, which generates the weights W through a fully 

connected layer, MSFD-Net uses a convolution layer. This simple step can eliminate the need for changing the 

shape of tensors and speed up the performance of the network to a large extent. 

 

 

Figure 3: Spatial feature descriptor (SFD). 

The SFD module leads to a set of features that encapsulates the geometric and semantic features of points. To 

collect residuals and preserve the lowersemantic information incoming to the module, a skip connection is used 

and two sets of features are stacked in each layer. As a result, the receptive field of points increases, and the 

generated features can be propagated over the neighborhoods. 

3.2 Global awareness 

The SFD module represents every point based on a set of local and global features collected from its local 

neighborhood. It also stacks the features and propagates them to the surrounding neighborhoods to increase the 

receptive fields. To preserve the computation efficiency of the model, the number of stacks is generally limited 

and cannot be increased. This limitation gradually reduces the impact radius of points, and as a result, the pairwise 

dependencies (global awareness) cannot be expressed completely for the points placed at large distances. 

Non-local attention is a module first proposed to encode the spatial dependencies among pixels in images (Wang 

et al., 2018). This block has also been recently used in the spatial encoding of point clouds as well (Liu et al., 

2020). Non-local networks generally consist of three 1 × 1 convolution layers to provide different representations 

of the input in the latent space of the problem. As shown in Figure 4, the non-local attention module of MSFD-Net 

receives the input feature map Fin ∈ RN×C and generates the output feature map Fout ∈ RN×C that contains not only 

the initial inputs but also the spatial dependencies. 

This non-local attention module only generates two representations, F1 and F2, through two shared MLPs 

containing a 1×1 convolution layer followed by batch normalization and a Rectified Linear Activation (ReLU) 

function. These convolution layers generate a single feature for each point representing its spatial position in the 

latent space, i.e., F1, F2, ∈ RN×1. The batch normalization layer provides more stability, and the ReLU activation 

function adds non-linearity and limits the weights to positive values. The first feature map, F1, is multiplied by the 
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transposed of the second feature map, F2, and the attention matrix 𝐹̃= F1 ⊗ F2
T (where 𝐹̃ ∈ RN×N) is obtained that 

encapsulates the pairwise relationship between points. This matrix is passed through a softmax function to be 

normalized and further multiplied element-wise by the input feature map Fin, leading to the feature map 𝐹̂ = 

Softmax(𝐹̃) ⊙ Fin. To tune the impact of 𝐹̂ on the input feature map Fin, it is passed through a 1 × 1 convolution 

layer, and the resulting feature map is summed with Fin to generate the output feature map Fout. This implementation 

of the non-local attention module can provide more stability as the attention matrix F˜ is directly multiplied by the 

input feature map Fin. It also provides a more efficient mechanism to alleviate or augment the pair-wise 

relationships through a convolution layer before the final summation. 

 

Figure 4: Non-local attention layer. 

3.3 Multi-scale network fusion 

The decoder of MSFD-Net consists of different scales, and the number of scales changes with respect to the number 

of layers. These scales provide various feature maps that not only contain high-level features but also low-level 

features (Qiu et al., 2021; Liu et al., 2020). As shown in Figure 1, the first scale of MSFD-Net collects the extracted 

features from all the layers, while the next scales ignore some of the intermediate SFD blocks to reduce the level 

of details. To increase the global awareness of points, the extracted features from all the scales are passed through 

the non-local attention block. The resulting feature map is concatenated with the extracted features from the 

corresponding encoder layer through a skip link. These features are up-sampled by nearest interpolation and then 

passed through a 1 × 1 transposed convolution layer. To emphasize the more important scales in the learning 

process of MSFD-Net, the weighted summation of the feature maps is calculated while the weights are also 

learnable parameters. Given the feature maps F = {F1,...,Fi,...FS}, Fi ∈ RN×d, where S is the total number of scales, 

N is the number of points, and d is the number of features in the last layer, the weighted summation of the feature 

maps can be calculated as follows: 

 

where F˜ is the final feature map, g() is a function consisting of a 1×1 convolution layer followed by a softmax to 

generate scale attention scores and W is the learnable weights of the shared MLP. 

RandLA-Net has approximately 1.2 million parameters to be trained. With 700.000 parameters, MSFD-Net has a 

significantly lower number of parameters. The network achieves efficient segmentation by reducing the number 

of parameters significantly compared to other deep learning models used for similar tasks. This efficiency is due 
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to the use of local feature aggregation, random point sampling, and efficient attention mechanisms, which help 

process large point clouds while maintaining performance and minimizing memory and computation requirements. 

4. EXPERIMENTAL SETUP 

The point cloud data of six single-span RC highway bridges, located in Bavaria, Germany, is used for 

evaluating the proposed model. This dataset has been acquired through UAV photogrammetry and processed by 

Structure from Motion (SfM). As shown in Figure 5, the samples comprise a bridge deck, abutments, railings, and 

background; thus, these four classes are considered for semantic segmentation. For comparing the performance of 

the new architecture with that of an existing one, RandLA-Net (Hu et al., 2020), a well-known deep learning 

model, is also trained on the bridge samples. 

4.1 Data preparation 

The raw point cloud of the bridges contains x,y,z coordinates, and RGB color codes. To reduce the processing load, 

each sample is subsampled by a uniform grid subsampling method with a grid size of 5 cm which is a good 

compromise between accuracy and reducing the amount of data in this scenario. To process the point clouds with 

MSFD-Net, normals are also calculated through a kd-tree and KNN search algorithm. Note that the normals are 

only used in the LSuR block of the network. All the bridge samples are translated to the origin of the coordinate 

system and all the input values are normalized in the range of zero to one. Due to the different number of points 

in each class (imbalanced dataset), class weights are computed based on the number of points over all the training 

samples in each class. Subsequently, a higher weight is assigned to the classes with a lower number of points and 

vice versa. 

 

 

(a)                                      (b)    (c) 

 

 (d)                                                 (e)    (f) 

Figure 5: Photogrammetric PCD of six single-span RC bridges. 

4.2 Validation method 

To evaluate the performance of the model completely, extensive tests are conducted on MSFD-Net and RandLA-

Net (Hu et al., 2020) simultaneously through the leave-one-out cross-validation (LOOCV) method. Six folds are 

adopted for training each model. One sample is held out for testing in every fold, and the models are trained on 
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the five remaining samples. Accuracy (Acc) and intersection over union (IoU) are reported for each class of the 

unseen sample. Assuming the number of N classes, the Acc and IoU of the class i can be calculated as below: 

  (9) 

 , (10) 

where TP, FN, and FP are the total number of true positive, false negative, and false positive predictions by the 

model, respectively. 

In addition to the class-wise evaluation, the overall performance of the models can be summarized through mean 

accuracy (mAcc) and mean intersection over union (mIoU). These metrics are simply the average of Acc and IoU 

over classes as follows: 

 , (11) 

 , (12) 

where N is the total number of classes and i refers to points. 

4.3 Hyperparameters 

MSFD-Net and RandLA-Net both require a set of hyperparameters to be configured. These parameters include the 

number of sampling layers and their ratio, the number of neighbors for KNN, and the dimension of features in the 

input layer. The remaining parameters, such as batch size, the maximum number of points in each batch, and the 

learning rate, are associated with the training phase of the model. All these hyperparameters are obtained through 

an empirical process, and the values leading to the best results are reported. Both of the models showed their best 

performance with the same value of hyperparameters. Four sampling layers with a ratio of 1/4 are considered so 

that only 25 % of the points in each layer are retained. 16 neighbors are selected for the KNN algorithm, and a 

number of eight features are adopted for the input layer. A batch size of 2 with a maximum of 60,000 points with 

100 steps per epoch is considered so that the samples can be evaluated more precisely. The models are trained by 

the Adam optimizer (Kingma and Ba, 2014) algorithm with a learning rate of 0.001 for 300 epochs. 

5. SEMANTIC SEGMENTATION RESULTS 

MSFD-Net and RandLA-Net are trained on a single GPU (RTX 3080) with 16 GB RAM. The performance of both 

models is tested on exactly the same unseen samples through the LOOCV method and their Acc, IoU, mAcc, and 

mIoU are compared. Both of the models need to be capable of processing largescale point clouds as most of the 

samples still have more than two million points after the initial uniform grid sub-sampling (N ≥ 2 × 106). 

Table 1 demonstrates the comparative results of MSFD-Net (ours) and RandLA-Net (Hu et al., 2020) in terms of 

Acc and IoU per class throughout the LOOCV method. The last column of this table shows the value of mAcc 

and mIoU resulting from the models in each test. The last row also illustrates the average of all the tests describing 

the overall performance of the models in the LOOCV test. Considering this row, MSFD-Net has been capable of 

gaining the overall mAcc 98.29 % and mIoU 93.57 %. RandLA-Net has also obtained the mAcc 97.16 % and 

mIoU 88.92 %. 

This conveys that MSFD-Net has improved the overall value of mAcc by ∆ = 1.12 % and mIoU by ∆ = 4.65 %. 

This row also shows a summary of the resulting values of Acc and IoU per class. As can be seen, MSFD-Net has 

obtained higher values in all the classes. The Acc of classes abutment, deck, railing, and background has increased 

from 99.57 % to 99.75 % (∆ = 0.18 %), 94.76 % to 97.53 % (∆ = 2.77 %), 96.09 % to 97.34 % (∆ = 1.25 %), and 
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98.25 % to 98.54 % (∆ = 0.30 %), respectively. Their IoU has also enhanced from 91.91 % to 94.79 % (∆ = 2.88 

%), 93.26 % to 96.04 % (∆ = 2.78 %), 75.15 % to 86.25 % (∆ = 11.10 %), and 95.36 % to 97.18 % (∆ = 1.83 %), 

respectively. 

The lower values of Acc and IoU obtained for the class Railing show that it has been the most difficult class for 

both of the models to predict. This is mainly due to the lower number of points this class has compared to the other 

classes. Although applying weights can solve this problem to some extent, the models would have a lower chance 

to observe and learn the spatial features of the local neighborhoods belonging to this class. MSFD-Net has also 

obtained the highest improvement for the class railing implying this model can learn the local neighborhoods more 

precisely, thanks to its LSpR and LSuR modules. These modules aid the model to highlight the underlying surface 

at places where the railings are connected to the bridge deck. Thus, the model can recognize the intersection parts 

and segment the elements more properly. 

Table 1: Comparative results of MSFD-Net and RandLA-Net in LOOCV (%). 

 

 



 

 

 
ITcon Vol. 29 (2024), Mafipour et al., pg. 925 

Comparing the values of mAcc and mIoU resulting from each test sample also shows the superior performance of 

MSFD-Net. The value of mAcc has improved in bridge samples 01 to 06 from 98.81 % to 99.37 % (∆ = 0.56 %), 

95.39 % to 97.54 % (∆ = 2.15 %), 94.75 % to 96.53 % (∆ = 1.77 %), 97.29 % to 98.28 % (∆ = 0.99 %), 98.41 % 

to 99.19 % to (∆ = 0.78 %), and 97.16 % to 98.24 % (∆ = 1.08 %), respectively. The value of mIoU has also 

increased from 91.50 % to 95.38 % (∆ = 3.88 %), 89.48 % to 93.50 % (∆ = 4.02 %), 85.99 % to  92.62 % (∆ = 

6.62 %), 91.22 % to 93.91 % (∆ = 2.69 %), 87.56 % to 91.69 % (∆ = 4.13 %), and 87.75 % to 94.30 % (∆ = 

6.54 %), respectively. 

To evaluate the Acc and IoU per class of the test samples, the radar diagrams of both models are depicted in Figures 

6 and 7. As shown in these figures, the radar diagram of MSFD-Net has spread more and is placed out of RandLA-

Net’s diagram. This demonstrates the higher Acc and IoU of MSFD-Net in classifying the points. Comparing the 

radar diagrams also shows that MSFD-Net has not seen sharp changes in prediction conveying the more stable 

performance of this network. Among the classes, the highest difference in Acc can be seen in the class deck, more 

specifically the bridge samples 2 and 3 with around 5 % difference. The IoU of the models has shown even a 

higher difference in Figure 7. This case is more notable for the classes abutment and railing where the difference 

between the diagrams is around 10 % for some of the samples. 

The closest performance in terms of IoU can be seen in the class background. This can be due to the higher number 

of points in this class which increases the chance of learning. The summary of the diagrams can be seen in Figure 

8 representing the mAcc and mIoU of the bridge samples. Despite the competitive performance in mAcc, MSFD-

Net has significantly improved the value of mIoU in prediction. 

 

  

Figure 6: Class-wise Acc of the models: (a) abutment; (b) deck; (c) railing; (d) background. 

The numerical differences resulting from the models can be observed visually as well. Figure 9 illustrates a 

visual comparison between MSFD-Net and RandLA-Net in which the wrongly predicted parts have been shown 

in a circle. As can be seen, MSFD-Net has been more successful than RandLA-Net in predicting the correct label 

of the points. The prediction results of MSFD-Net throughout the LOOCV test have been shown in Figure 10 in 

which most of the points have been labeled correctly. 
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Figure 7: Class-wise IoU of the models: (a) abutment; (b) deck; (c) railing; (d) background. 

 

Figure 8: mAcc and mIoU of MSFD-Net and RandLA-Net shown by radar diagrams: (a) mAcc; (b) mIoU. 
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Figure 9: Visual comparison of MSFD-Net with RandLA-Net: ground truth (left); RandLA-Net (middle); MSFD-

Net(ours) (Right). 

 

Figure 10: Prediction results of MSFD-Net on all the six samples: original point cloud (left); ground truth 

(middle); prediction (right). Class color: abutments(blue); railings(yellow); background(red); bridge deck(green). 
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6. PARAMETRIC STUDY 

To analyze the impact of the proposed modules on the performance of the network, a base model is created and 

each module is added to this model. Then, the performance of the models is tested on an unseen bridge sample. In 

total five models are proposed to observe the effectiveness of the modules. The first model (Model 1) consists of 

an architecture similar to the first scale of MSFD-Net, however, with a plain shared MLP in the bottleneck and a 

spatial feature encoder similar to RandLA-Net but with a simple mean function for pooling. The second model 

(Model 2) is RandLA-Net and benefits from the attentive pooling layer instead of the mean function in the base 

model. Model 3 is different than model 2 in the encoding process, as it uses the proposed LSuR and LSpR modules 

in MSFD-Net. Model 4 is the expression of Model 3 in multiscales fused by the scale attention layer. Model 5 also 

contains the nonlocal attention module in the bottleneck and represents MSFD-Net. Considering the added 

modules to the based model, Model 2-5 evaluate the impact of the attentive pooling layer, LSuR as well as LSpR, 

multiscale fusion, and non-local attention layer, respectively. 

Table 2: The impact of the proposed modules on the performance of the base model. 

 

Table 2 shows the results of the models in terms of Acc, mAcc, IoU, and mIoU in semantic segmentation of the 

same unseen bridge sample (Bridge 01). Each row of the table represents a model and the module added to the 

prior model. As can be seen, the value of mAcc and mIoU has been increased from 97.33 % to 99.37 % (∆ = 2.05 

%) and 85.47 % to 95.38 % (∆ = 9.91 %), respectively, after adding all the proposed modules to the base model 

(from Model 1 to Model 5). The results of the table show that adding attentive pooling has enhanced the value of 

mAcc and mIoU from 97.33 % to 98.81 % (∆ = 1.49 %) and 85.47 % to 91.50 % (∆ = 6.03 %), respectively. This 

implies that attentive pooling can provide a better mechanism for describing the local neighborhoods than a simple 

mean or max pooling function. Comparing the results of Model 2 with Model 3 demonstrates almost the same 

values of mAcc while the value of mIoU has been increased from 91.50 % to 95.05 % (∆ =3.54 %). This 

improvement shows that using LSuR and LSpR in the encoder of RandLA-Net can improve the value of mIoU. 

Note that the encoder of RandLANet encodes 10 features comprising the absolute coordinate of the neighboring 

points and the centroid point, the relative position of points in the Cartesian coordinate system, and the distance 

from the centroid point to the neighbors while MSFD-Net encodes only six features, five out of six have been 

expressed in angle. This conveys that the local neighborhoods can be expressed more properly with an even lower 

number of features. Model 4 shows the impact of multiscale fusion by ∆ = 0.26 % improvement in the value of 

mAcc and a slight improvement in the value of mIoU by ∆ = 0.08 %. This shows that low-level features generated 

in the initial and intermediate layers of the network can aid the network to learn the scene more accurately. Model 
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5 also represents the effectiveness of the non-local attention module. As can be seen, this module has also enhanced 

the mAcc and mIoU from 99.06 % to 99.37 % (∆ = 0.31 %) and 95.12 % to 95.38 % (∆ = 0.26 %). 

 

Figure 11: Class-wise comparison of the models: (a) Acc; (b) IoU. 

To evaluate the class-wise performance of the models, Figure 11 has been depicted. As can be seen, Model 5 

(MSFD-Net) has shown a higher performance in terms of IoU and Acc than Model 2 (RandLA-Net) in all the 

classes. From Model 1 to 5 the improvement in the performance of the model can be seen in the classes, especially 

the classes of abutments and railing. From Model 3 onward, the performance of the models is more competitive, 

and each model has been able to perform very well in the prediction of a class. For instance, Model 4 with a simple 

shared MLP in the bottleneck has been capable of achieving the highest statistical metrics in the prediction of 

points belonging to the class Background. Nonetheless, MSFD-Net is still outperforming the models in most 

classes and in terms of mIoU and mAcc. 

In has to be notited that the investigated bridges are not part of the same highway. However, highway bridges in 

Germany are, to a certain extent, standardized with respect to the construction types and general design. This fact 

results in similarities between the bridges, which is the main motivation for applying a machine-learning approach 

here. At same time, bridges 2 and 3 show deviations from these quasi-standards that result in a lower performance 

of the network. 

The performance of the models can be compared in terms of training time as well. To this end, three metrics of the 

number of iterations per second (iter/sec), training time per epoch, and the total training time of the models are 

measured. Table 3 shows the obtained results for the models after training. As can be seen, MSFD-Net has achieved 

a faster performance than RandLA-Net based on all three metrics. This is mainly due to the used attentive pooling 

layer in MSFDNet whose weights are generated by a simple 1 × 1 convolution layer. 

Table 3: Comparing the training time of RandLA-Net and MSFD-Net. 

 

7. CONCLUSION 

This paper presented a novel deep learning model, coined multiscale spatial feature descriptor network (MSFD-

Net). It has been proposed to automate the semantic segmentation process of bridge point clouds. MSFD-Net 

benefits from a multiscale descriptor that not only highlights the high-level features of the points but also the low-

level features generated in the initial and intermediate layers of the network. This model also represents the 

underlying surface of the local neighborhoods which in turn increases the accuracy of the model in practice. 

Comparing the results of this model with those of RandLA-Net (Hu et al., 2020) throughout the leave-one-out 
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cross-validation (LOOCV) method shows the superior performance of MSFD-Net with 1.12 % improvement in 

the value of mean accuracy (mAcc) and 4.65 % in the value of mean intersection over union (mIoU). Evaluation 

of the modules and the required training time also shows the efficient and fast performance of the model in 

processing largescale point clouds. As a result, the proposed model can be used for automating the semantic 

segmentation of bridge point clouds. However, this model can be improved and, moreover, it could be combined 

with a module for creating the geometric model of the bridge elements. The employed subsequent random sampling 

in MSFD-Net results in the fast performance of this network in processing large-scale point clouds. Nonetheless, 

this sampling strategy might drop out important features in the training process of the model, especially in classes 

with a low number of points. In the future, a module is proposed to sample points based on the extracted features 

from the SFD layers. In doing so, the network can not only learn the spatial features but also recognize the points 

boosting the learning process. Also, the performance of the model will be tested on more complex bridges such as 

multi-span curved bridges with more classes to cover a wider variety of bridge types. 
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