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Fatigue failure risk can be mitigated both by increasing the design fatigue capacity of the structural components
and by conducting more frequent inspection and maintenance actions. The optimal combination of these two
types of safety measure is structure dependent. It depends, among others, on the relative cost of the safety
measures, the consequences of failure, the level of redundancy, the number of deteriorating components and the
statistical dependence among components. In this article, a generic system representation is used to parametrise
deteriorating structures according to these system characteristics. Based on this system representation, we
investigate patterns of optimal life-cycle fatigue mitigation and provide recommendations for fatigue design.
Results show that it can be cost-efficient to achieve system-level safety requirements with high component
reliabilities at design and less frequent inspections. Furthermore, we show that the minimum requirements
for fatigue design that are typically prescribed in design standards to avoid the need for inspections are not

enough unless sufficient redundancy is ensured.

1. Introduction

The reliability of fatigue deteriorating structures can be affected by
mitigation measures at different stages of their life cycle. For instance,
the deteriorating components can be designed with higher or lower
reliability at the design stage. Moreover, inspection and maintenance
(I&M) actions can be conducted during the service life of the structure;
e.g., inspections can be used to identify fatigue damage, which can then
be repaired. In general, a combination of mitigation measures can be
specified in order to satisfy a certain safety level during the service
life of a structure. This implies that minimum requirements for fatigue
design should depend on life-cycle considerations, such as how often
inspections will be conducted.

Standards [1-3] and recommended practice guidelines [4,5] for the
fatigue design of steel components typically prescribe different safety
levels depending on the accessibility for inspections and repair. For
accessible fatigue hot spots, i.e., hot spots that can be inspected, the
damage-tolerant approach can be followed. According to this approach,
cracks are tolerated and expected to develop and grow as long as
they are controlled by a preventive I&M program. Safety requirements
for component fatigue design are typically specified by the fatigue
design factor, denoted FDF, which is defined as the ratio between the
deterministic fatigue life T, of the component and its design service
life Tg;, i.e., FDF = Tp;/Tg;. Generally, a fatigue design can be
specified for a component to satisfy a F DF. For example, the diameter
and wall thickness of a tubular beam can be enlarged to increase
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its FDF. Regarding the optimisation of the geometrical design of a
component to achieve a certain F DF, the reader is referred to Schafhirt
et al. [6], among others.

Although fatigue design depends on the accessibility for inspections
and repair, standards and guidelines do not provide clear recommen-
dations on how to efficiently combine design and I&M measures to
mitigate fatigue failures [7,8]. The interplay between I&M and fatigue
design has been addressed in the literature, mainly in relation to the
offshore oil and gas industry in the 90s [9,10] and more recently,
in relation to the offshore wind energy sector [11,12]. Sgrensen [11]
and Mérquez-Dominguez and Sgrensen [13] show that a significant
reduction of the FDF can be tolerated by reducing the interval be-
tween inspections in an application for fatigue design of offshore wind
turbines. It was found that for a target reliability index of 3.1, the FDF
can be reduced from 6.1 (case with no inspections) to 1 by setting
the interval between inspections to 2.5 years. An overview of relevant
research on reliability and risk-based life-cycle fatigue optimisation can
be found in Mendoza et al. [8], where it is concluded, in agreement
with Yang et al. [14], that research in this field has typically neglected
system effects. Furthermore, [8] shows that system effects should be
considered to inform optimal life-cycle mitigation decisions as they
affect the risk of failure and the efficiency of inspections. Similar
conclusions were drawn by Moan [7], who indicated that inspection
scheduling and design for robustness need to be simultaneously re-
garded to arrive at acceptable risks. Recent efforts have been devoted to
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the modelling and reliability assessment of deteriorating systems with
statistically dependent components, see among others [15-19].

The consideration of system effects and the simultaneous optimisa-
tion of design and I&M is conceptually complex and computationally
demanding [8]. Therefore, the implementation of these aspects in the
general engineering practice is challenging. In this paper, we simulta-
neously optimise the fatigue design and I&M plans for systems with
varying redundancy and number of deteriorating components. These
results are used to identify patterns on how these system characteristics
affect the optimal fatigue mitigation strategy based on reliability and
risk criteria. Based on the identified patterns, general recommendations
for fatigue design are given. The methodology is presented in Section 2.
So-called equivalent Daniels systems are used to parametrise structural
systems according to the corresponding system features of interest and
to evaluate their time-variant reliability. A parametric investigation,
which is specified in Section 3, is conducted to study the optimal
fatigue mitigation strategy as a function of the system parameters. The
results are shown in Section 4. Practical implications of the obtained
results are discussed in Section 5. The main outcomes of the article are
summarised in Section 6.

2. Methodology

The aim is to investigate how the optimal life-cycle strategy to mit-
igate fatigue failures varies for different structural systems. Structural
systems are parametrised according to relevant system features such as
the level of redundancy and the number of deteriorating components.
An efficient parametric representation of structural systems is presented
in Section 2.1. This system representation is then used to conduct
a parametric study, as described in Section 3. The considered life-
cycle strategies encompass design and I&M mitigation actions, which
are respectively specified by the FDF of the fatigue hot spots and
the frequency between inspection campaigns. The optimality of the
strategies is determined according to risk and reliability criteria. The
mathematical formulation of the corresponding objective functions is
presented in Section 2.2.

2.1. System idealisation with equivalent Daniels systems

Optimal fatigue mitigation depends on various system characteris-
tics. To arrive at meaningful recommendations on how to efficiently
mitigate fatigue deterioration, we study the patterns of the optimal fa-
tigue mitigation strategy as a function of relevant system characteristics
by means of a parametric study. For that purpose, structural systems are
to be conveniently parametrised. The desired system parametrisation
should allow to efficiently evaluate the system reliability as a function
of a mitigation strategy and the system parameters.

Generically, a structural system with n» components or fatigue hot
spots, and subject to extreme static and cyclic loads is considered. As
discussed in [20], an exact representation of the structural system,
e.g., as a combination of parallel subsystems in series [21], is not
conducive to general conclusions. As an alternative, the role of a given
component in the structural integrity of the system can be captured by
a set of features such as the importance of the component for structural
integrity, the number of deteriorating components and the dependence
among the deterioration processes at different locations within the
structure [20].

Gharaibeh et al. [22] propose to measure the importance of a
component based on the sensitivity of the system reliability to changes
in the component’s reliability, both in the intact and post-failure states.
These measures are useful to assess design for ultimate limit state (ULS).
However, they are not meaningful to assess mitigation of deterioration
mechanisms because they do not measure how the system reliability
is reduced by given component damage. For that purpose, we use the
single element importance S EI proposed in [20]:

SEI; =Pr(Fyy|Fn...0F,_ N Fn Fiyy 0.0 F) = Pr(Fyy, | 0, F), (1)

s
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which measures the increase of the structure’s probability of failure
resulting from failure of component i only. Note that F;, is the event of
system failure, and F; and F; indicate failure and survival of a compo-
nent j, respectively. The undamaged probability of system failure can
be alternatively expressed through the annual reliability index of the

undamaged system g as
Pr(Fyyl ﬂ?:] F)) = ®(=fpy), (2)

where ®(-) is the cumulative distribution function of the standard
normal distribution.

The SEI of the components, together with a joint probabilistic
representation of deterioration, load, and resistance can be used to
represent a deteriorating structural system. More specifically, Straub
and Der Kiureghian [20] use this information to emulate the effect of
the n components on the system reliability by means of n equivalent
Daniels systems (EDS) of the form of Fig. 1. The EDS representa-
tion is used there to compute the required component reliabilities
needed to satisfy a given system reliability. Here, this idealisation is
extended to consider time-variant system reliability, which is linked
to a physics-based model of fatigue deterioration. The extended repre-
sentation allows us to compute the updated system reliability resulting
from inspections and repair actions at discrete points in time. Thus, the
extended representation can be used to determine optimal combined
design and integrity management strategies to mitigate fatigue failures
for components with given importance within a system.

The EDS model of a component i consists of k independent and
statistically identical Daniels systems in series, see Fig. 1. A Daniels
system is a system composed of statistically identical elements in par-
allel that are equally loaded [23,24]. The k Daniels systems of an EDS
have n; elements and are subject to i.i.d. extreme annual loads L;, with
j = 1,2,...,k. The EDS elements have i.i.d. ultimate resistances R; ),
with I = 1,2,...,n;. As discussed in [20], the parameter n; represents
the redundancy of the structural system with respect to failure of
component i; while k provides information about the total number of
deteriorating components. By varying n; and k, the EDS serves as a
proxy for structural components with varying importance in systems
of different sizes.

The calibration of the EDS representation is elaborated hereafter.
The determination of the probability distribution of L; and R;, is pre-
sented in Section 2.1.1. The procedure to obtain the parameters n; and
k is explained in Section 2.1.2. The estimation of the annual probability
of system failure of the EDS is elaborated in Section 2.1.3. Furthermore,
the ability of the EDS idealisation to capture the behaviour of struc-
tural systems is studied with a case study in Appendix, which shows
that the estimated system reliability obtained from the idealisation is
sufficiently accurate to be used for reliability- and risk-based design.

2.1.1. Computation of L; and R;,

The loads L; and resistances R;;, of an EDS represent the char-
acteristics of the dominant load on the true structure and its global
ultimate capacity, respectively. For that purpose, they are modelled
with the same distribution type and coefficient of variation as per the
true structure. Let up be the mean of R;; and y; be the mean of L;
for the EDS of component i. The ratio yug n;/u,; is obtained iteratively
from the condition that the annual reliability index of the undamaged

EDS ﬁ}) S is equal to that of the true undamaged structure, i.e., f5¢ in
Eq. (2):
e =—0" (1-[1=Pr(CINp = 0)I) = fps, 3

where C denotes the event of failure of one of the k Daniels systems and
N is the number of elements failed due to fatigue in the same Daniels
system. The relation between Eq. (3) and the load and resistance
parameters of the EDS depends on the behaviour of the elements.
Formulations for ideal brittle and ductile elements are shown in Straub
et al. [20]. For ductile behaviour, it is

ni—np
Pr(C|NF=nF)=Pr< > R,—L50>, )
i=1
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Fig. 1. The equivalent Daniels system for a component i is composed of k statistically identical and serially connected Daniels systems, which consist of »; elements with capacities

R;; G €[1,kl.1 €[1,n]) that are uniformly loaded by L;.
Source: Figure adapted from [20].

where R; and L have the distributions of R;; and L;, respectively, for
the EDS of component i.

It is worth noticing that the assumptions on the material behaviour
are not critical provided that the load and resistance variables are
calibrated to a certain system reliability [20].

2.1.2. Computation of n; and k

The parameter n; is a measure of the importance of component
i within the real structure and therefore, of the redundancy of the
structure given failure of component i. The parameter »; is computed
from the condition that the EDS elements must have the same single
element importance SEI; of the corresponding component of the true
structure. The conditional probability of the true system given failure of
component i needed to assess SEI; from Eq. (1) can be computed from
pushover analysis, as explained in [8]. The SEI of an EDS element is
computed noting that all elements of a given EDS are equally important
and that the failures of the different Daniels systems are statistically in-
dependent. The following expression can then be employed to compute

n;

SEI;=1-[1-Pr(CINy =0)]*'[1 = Pr(C|Np = D] - &(-fpg),  (5)

where the conditional probabilities Pr(C|Ny = 0) and Pr(C|Np = 1)
are related to n; depending on the material behaviour, as explained in
Section 2.1.1.

The parameter k is computed as the aggregate of the contributions
of the EDS elements in their respective systems:

n
k:Z%.
i=1 1

It follows from this equation that larger » leads to larger k for constant
n;, with i 1,...,n. Thus, this parameter indirectly accounts for the
number of deteriorating components of the true system.

The parameters n;, k, L j and R i of the EDS representation are
iteratively computed according to the algorithm in [20].

(6)

2.1.3. Probability of failure of the EDS

A simplified model to compute the annual probability of system fail-
ure is here regarded. On a system level, the integrity of any component
i is represented by a binary process with possible states: failed F;(r)
or not failed F(r). This implies that the integrity of the structure is
intact until any of its components fails. This simplification is acceptable
for systems subject to high-cycle fatigue for which structural collapse
is mainly driven by an extreme weather event [20], such as offshore
structures subject to cyclic wave loading. For a system with n compo-
nents, the deterioration state of the structure can then be determined
by a process ¥(r), which may take one of the 2" possible deterioration
states, ranging from the undamaged state, y; = {(._, F;}, to the state
with all components failed, y,, = {(17_, F;}, including all intermediate
combinations. Let Fs*ys(t) be the interval failure event, defined as the
event of system failure in (r — 1, 7] [25]. The interval failure probability
of the system Pr(F;, (1)) is given by the total probability theorem:

o
Pr (Fs*yx(t)> = 2{ Pr (Fyylw,) Pr (P() =w,). @
=

For an EDS with n;k elements, the number of unique deterioration
states is lower than 2", because all of its elements are statistically
interchangeable. Hence, a more convenient way of specifying a dete-
rioration state of an EDS, denoted ¥’ = v/, is by the number of failed
elements in each Daniels system N i =12k The outcome space
of ¥’ contains (n; + 1)¥ distinct states, ranging from v = (Np; =
0,....,Np; = 0} to W(,n,+l)k = {Np; = n;,...., Np, = n;}. For a given
deterioration state, the conditional probability of failure of the EDS is
computed as

Pr(Fodduy) = 1=TT[1-Pr () Np,w))]

Jj=1

=~

®

where C; is the event of failure of the jth Daniels system. The condi-
tional probability of failure of the jth Daniels system can be computed
using Eq. (4).

The probability of occurrence of a certain deterioration state, i.e.,
Pr(¥(t) = w,), depends on the deterioration condition of the compo-
nents. Let a(f) be a vector that collects the fatigue conditions of the
components of the system of interest: a(t) = {a, (), ay(?),...,a,()}. The
fatigue condition of the components can be expressed by their crack
lengths and their integrity can be evaluated by a fracture-mechanics
limit state function, as explained below in Section 3.2. The probability
of the system taking a certain deterioration state is then given by

Pr(‘l’(t)=!ll,,)=/ w(a)f (a®)da(), ©)]
(1)

a
where f,(a(?)) is the joint probability density function of the crack
lengths for all hot spots, and y(a(?)) is a map between the crack lengths
of the components and their integrity.

After the interval probability of failure is obtained from Egs. (7)-(9),
the cumulative probability of failure Pr(F ., (?) is computed to rep-
resent the history leading up to time ¢ [25]. The cumulative probability
of failure is approximated by the upper bound, in accordance with [8],
assuming that failures at different years are independent

Pr(Fyyycm®=1- [ 11 -

7€[0,1]

Pr(Fy ().

sys

10)

The annual probability of failure at year ¢ can now be computed as

Pr(Fsys,yr(t)) = Pr(Fsys,cum(t +1)- Pr(Fsys,cum(t))' (11)

2.2. Risk- and reliability-based fatigue design and 1&M planning

This section introduces the objective functions used to assess opti-
mal mitigation strategies. First, the cost model is presented, followed
by the risk- and the reliability-based objective functions. Lastly, the
selection of a target safety level for the current study is discussed.

2.2.1. Cost model

A set of N, alternative designs D = {D,,D,,...,Dy,} and a set of
N, I&M strategies S = {S),S,,..., Sy, } are considered. In this study, a
design D, consists of the specification of the FDF of the components
of the system; and a strategy S, is characterised by the specified time-
interval between inspection campaigns 4¢; and the decision rule that
any detected damage is subsequently repaired. A combination of D,
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and S, defines an integrated life-cycle mitigation strategy (ILMS). For
a given ILMS, the expected total life-cycle cost E[C] is the sum of
the design cost Cj, the expected cost of inspection and maintenance
E[Cg )] and the expected cost of failure E[C]:

E[Cr(Dy, S = Cp(Dy) + E[Crep(Dy, Sy)1 + E[Cr(Dy, S))1, (12)

where E[-] is the expectation operator.
The three cost terms are elaborated hereafter:

+ The design cost Cp(D,)) is the cost associated with designing and
constructing the structural components for fatigue given a design
specification D,. The cost associated with constructing a compo-
nent with a given FDF depends on the fatigue stresses that the
component is subject to. Consequently, for indeterminate systems,
the design cost depends on the configuration of the structural
system and the nominal cross-sections of the members [8].

The expected inspection and maintenance cost E[C g (D, S,)] is
the net present value cost of conducting an I&M strategy S, for a
given design D,. It is computed as the sum of the discounted costs
of starting an inspection campaign C., conducting individual
inspections C; and repairing the fatigue damage Cp:

E[Cienm Dy, SHO1 = E[C(S)O1 + E[C(S)] + E[Cr(D,, S)1. - (13)

Discounting of the costs is applied at the time of intervention
using an interest rate r and the discount function y(7):

y(1) = ﬁ a4

The expected cost of failure E[Cr(D,,S;)], also known as the
failure risk, is given by

TsL
E[Cr(Dy, S)] = Z Cr - y(®) - Pr (Fyy (D4, Si31) 5 15)
=1
where Cy is the cost of system failure and Pr(Fy,; ,,(D,, S, 1) is
the annual probability of system failure between years ¢ and ¢+ 1
associated with D, and S;.

2.2.2. Risk-based design

The optimal risk-based ILMS is given by the minimisation of the
expected total cost, which is defined in Eq. (12), i.e.,

{D, = gmm{]E[CT(Dd,S )} (16)

opt> opt}

d:l Nd

The minimisation of the expected life-cycle cost in Eq. (16) is
sequentially assessed according to [8]:

Let E[C;yr(Dy. Sy)] denote the inspection, maintenance and failure
(IMF) cost, defined as

ElCipmr(Dy, SO = E[Crgpm Dy, SO+ E[Cr(Dy, S))l. a7)

Given a certain design specification D,, the optimal I&M strategy

S,pi.a can be obtained by minimising the expected IMF cost:

S,

optd = opt

D, = argmln{E[ClMF(Dd’S . (18)

This optimisation is a well established problem and the subject of many
investigations, see e.g., [26-28].
The optimal ILMS {D,,, € D, S,,, € S, }, where S, is the vector

opt opt
Sopt = {Sopt,1>Sopt2s -+ » Sopr.n, }» 15 then computed as
{Dypt> Sopt} = argmln{E[CT(Dd, Sopra)l}- (19)

Ny
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2.2.3. Reliability-based design

A target annual reliability index on the deteriorated structural sys-
tem is introduced, denoted ﬂ[T) - An ILMS is considered acceptable if at
all times during the service life f,g > ﬂIT) - Two ways of performing
the reliability-based design are considered.

1. The minimum requirements for one of the decision parameters
can be prescribed as a function of the other. Finding the min-
imum acceptable decision parameter becomes a minimisation
problem when a discretised set of the parameter is considered.
In the following, we focus on the more intuitive case of a
maximum allowed inspection interval 4t; . for a given FDF.
Let [3’"”’ denote the minimum reliability index during service
life, i.e., g7 = min,_o; 7y, {Bps(®}. The maximum allowed
inspection 1nterval is estimated as

Dy = 811,0x(FDF) = arg min (B35S, D) = Bps) -

,,,,, N, (20)
s.t. ﬂ"””(SA,Dd) > ﬁDS

mm

2. The optimal reliability-based ILMS is defined as the one that
minimises the total mitigation cost Cr ,,, while satisfying the
target reliability:

(D> Sppe} = argmin [Crm(Dy. S
=1 Ny:
d=l,. N{l (21)
S.LAp(S, Dy) > B

The total mitigation cost Cy ,, is defined as the sum of the design
and expected inspection and maintenance cost:

Crm(Dy,Sy) = Cp(Dy) + E[Crgp (Dy, S, (22)

where E[C;g(Dy, Sy)]1 is defined in Eq. (13).

2.2.4. Selection of the target safety level

Institutions such as the International Organization for Standard-
ization (ISO) and the Joint Committee on Structural Safety (JCSS)
prescribe target safety levels in the form of target reliability indices
pT [29,30]. According to this criterion, a component or structure is
considered acceptable if its reliability index is larger than g’. For in-
stance, JCSS’s Probabilistic Model Code specifies ULS target reliability
indices for nine different classes. Classes are specified according to the
consequence of component failure (minor, moderate and large) and
the relative cost of the safety measure (small, normal and large). The
adoption of this classification in the current study is discussed in the
following.

The consequences of component failure are, for a given cost of
system failure, explicitly represented in the proposed system idealisa-
tion by the parameter n;. The classification according to the relative
cost of the safety measure does not accommodate for the simultaneous
consideration of two different safety measures. Pragmatically, one can
regard the most effective safety measure for categorisation.

In the current study, two different ULS are considered: ultimate load
limit state (STR) and fatigue limit state (FLS). Structural reliability for
STR is measured by the reliability index of the undamaged system .
The reliability during service life is measured by the reliability index
of the damaged system f,. During service life, the reliability of the
structure decreases over time due to deterioration if no actions are
taken, i.e., fpg < Pps. The reliability index of the damaged system
relates to both STR and FLS. It is unclear whether the prescribed target
reliability values in [29-31] refer to the undamaged or the damaged
system, i.e., if they are a direct constraint to f;g or fpg. On the one
hand, applying the requirement to fjg, i.e., ﬁT = g7, requires to
specify an additional annual target reliability 1ndex for the deteriorated
system ﬂD < with ﬁD s < < pT. On the other hand, applying it to fpyg,
ie., ﬂg 5 = BT, would leave fj as another degree of freedom of the
optimisation problem. The latter interpretation would greatly increase
the complexity of the problem.
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Typically, standards and recommended practice guidelines sepa-
rately prescribe required safety levels for FLS and STR. For example,
the Eurocode 0 [31] requires a 50-year cumulative reliability index for
FLS in the range 1.5 to 3.8 depending on the “degree of inspectability,
repairability and damage tolerance". Similarly, DNV [4] requires a
20-year cumulative reliability index for FLS between 2.3 and 3.7,
depending on the consequences of component failure. This separate
prescription of target reliabilities for FLS strengthens the argument
that the prescribed levels for ULS refer to the undamaged system.
Accordingly, we follow this interpretation and adopt the criterion
Bps > BT. We use the annual target f7 = 4.2 in the numerical inves-
tigation, since it is associated with the most common design class in
ISO 2394:2015 [29] and JCSS [30]. Additionally, the target reliability
index of the deteriorated system ﬁ[T) ¢ is set to a value relatively close
to 7. We choose ] = 4, which is approximately 5% lower than
T = 42 and that corresponds to the target reliability index set for
offshore structures in ISO 19902:2020 [3,32].

3. Characteristics of the numerical investigation

A parametric study is conducted over the parameters n; and k of the
EDS representation to find how the ILMS varies with »; and k. Optimal
ILMS is assessed by exhaustive search, i.e., by evaluating the system
reliability and the expected total life-cycle cost for all considered ILMS.
Despite the availability of more efficient optimisation algorithms, the
use of exhaustive search is preferable for the current application. This is
due to the fact that risk- and reliability-based optimal ILMS depend on
the cost model. Consequently, systematically evaluating all ILMS allows
to efficiently compute the optimum for any cost model by appropriately
scaling the results. This is convenient in the context of standardisation,
where prescriptions are given as a function of the relative cost of the
safety measures and the consequence class.

The optimisation searches within a discrete set of N, = 7 designs
D associated with FDF = {1,2,3,4,5,6,10}. These values cover the
typical range in design standards [33]. Note that FDF = 10 is of-
ten prescribed for non-accessible hot spots [1]. All n;k elements are
assigned the same FDF. A set of N, = 11 strategies S are consid-
ered, given by the inspection intervals between inspection campaigns
At; = {1,2,...,10} [years], plus the case with no inspections, here
denoted NI. All n;k EDS elements are inspected at every inspection
campaign and, as simplifying convention, every detected fatigue crack
is subsequently repaired. Repairs are assumed to restore the fatigue
condition to as-new, i.e., that of a component at time zero.

For each considered structural configuration and combination of
life-cycle mitigation measures, the annual probability of failure of the
EDS is computed using the sampling-based method proposed in [28].
It is noted that this method is computationally expensive. For each
design situation, 250 deterioration histories are sampled. In our im-
plementation in Matlab, this requires an average of around 35 s per
component by using the processor Intel Xeon Gold 6132. Thus, in order
to remain computationally feasible, the scope of the parametric study
needs to be carefully specified in terms of the discretisation of the
decision variables as well as the considered combinations of n; and k.

In order to choose the range of considered n; and k, their effect on
the SEI’ is assessed. Fig. 2 shows the SEI’ of EDS elements for varying
n; and k, which is computed using Eq. (5). Increasing »; from 1, i.e., no
redundancy or SEI' ~ 1, to say 5 reduces the SEI’ noticeably. Further
increasing n; has a smaller impact on the SE/’. Increasing k, which is
associated with the size of the true structure, also results in a reduction
of the SEI’, although its impact is overall less important than that of
n;. For these reasons, the parametric study presented in this article is
constrained to n; € [1,5] and k € [1,6]. The considered combinations
of n; and k are shown in Fig. 3. Thus, the total number of simulations
is 23-7-(10- 250+ 1) = 402661.
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Fig. 2. Single element importance SEI’ as a function of the equivalent Daniels system
parameters n; and k for a reliability index of the intact structure fg = 4.2.
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Fig. 3. Considered combinations of n; and k.

3.1. Probabilistic load and resistance model

The probabilistic model of the load and resistance variables is
chosen to be representative for offshore platforms. Nonetheless, the
proposed method can accommodate for the use of any other probabilis-
tic models. The n;k EDS elements are assumed to have ductile material
behaviour, with log-normal distributed resistances R. The coefficient
of variation of R is taken as 6 = 0.15, which is a representative
value according to [34,35]. The loads on the Daniels systems L is
represented with a Gumbel distribution with coefficient of variation
&y = 0.35. The probabilistic model of R and L is calibrated, as explained
in Section 2.1.1, to an annual reliability of the undamaged system
Pps = 4.2.

3.2. Fatigue component reliability

A stochastic physics-based model is used to assess the fatigue de-
terioration process. For a given hot spot, the crack length is used as
a physical indicator of fatigue deterioration. The crack length of a
hot spot is predicted using a fracture mechanics model based on prior
information. A brief description of the employed crack growth model
is here presented. The parameters and assumptions of the model are
described in more detail in [8]. The crack length of a hot spot at time
t is given by

_ A-m/2)7!
a(t):[(1—%)~C~ASZ”‘72/""/2-\/-t+a§)I m/2):| R (23)

where C and m are material parameters, v is the number of stress
cycles per year, q, is the initial crack length, and A4S, is the equivalent
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Table 1
Distribution of the variables of the fatigue deterioration model.

Variable Type Mean Standard deviation
ag Exponential 1 mm 1 mm

m Normal 3.5 0.3

Ink,g* Normal f(FDF) 0.22

A Deterministic 0.8 -

a., Deterministic 10 mm -

v Deterministic 10° cycles/year -

Tgp Deterministic 20 years -

Notes: *k,g has units of N/mm?; f(FDF) = function of FDF.
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Fig. 4. Calibrated mean value of the stress range Weibull parameter k¢ as a function
of the fatigue design factor FDF.

fatigue stress range, which represents the stress process. The values of
the deterioration parameters are shown in Table 1. The parameter C is
computed as InC = —1.567m — 27.517, according to Bismut et al. [36].

The fatigue stress process AS(t) is assumed to be represented by a
Weibull distribution with scale parameter k,¢ and shape parameter A.
The equivalent stress range A4S, is then given by

(1/m)
A4S, = E[AS@y"|V/™ = kg - T (1 + %) " (24)

where I'(-) is the gamma function.
The fatigue reliability of a component is assessed according to the
limit state function

&) = a, —a(®), (25)

which indicates component failure g. < 0 if the crack length a reaches
a critical magnitude a,.

Increasing the FDF of a hot spot decreases the fatigue stress range
that it experiences. This is accounted for in the model by calibrating
the mean value of the shape parameter k¢ so that the cumulative
probability of fatigue failure of the component at the end of service life
correctly represents its FDF [8], see Fig. 4. It is assumed that the global
response of the structure is independent of the F DF of the components.
This assumption should be verified on a case-by-case basis, specially for
very low and very high values of the FDF.

The parameters a,, m and k,g are statistically dependent among the
different hot spots. These dependencies are represented by the follow-
ing assumed linear correlation coefficients: p, = 0.5, p), = 0.6 and
Pk, = 0.8 for ay, m and kg, respectively. The statistical dependence is
efficiently represented by the hierarchical Bayesian Network developed
by Luque et al. [37].

3.3. Likelihood model of the inspection technique

Inspections can be conducted during the service life of the structure.
The outcomes of these inspections are imperfect, meaning that cracks
are not identified with absolute certainty. The employed likelihood
functions that are used to model the quality of the inspections are taken
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after [38]. The probability of detection (PoD) curve that is used to
assess the likelihood of detecting a crack with length a is:

PoD(a) = 1 —exp(—a/é), (26)

where ¢ is the expected minimum crack that can be detected. ¢ is
set to 10 mm, which corresponds to a relatively unreliable inspection
technique, such as visual inspections.

Furthermore, detected cracks are imperfectly measured. The mea-
surement of a crack, denoted z, is modelled by the following likelihood

function:
zZ—a
()
65

()

where ¢, = 0.1 mm is the measurement error and ¢(-) is the probability
density function of the standard normal distribution. The information
of the measurement of the crack length is propagated to the rest of
the hot spots of the system applying inference using the hierarchical
Bayesian Network.

fz1a(zla) = PoD(a) - for z > 0, 27)

3.4. System reliability

The system reliability is assessed according to an ultimate load limit
state. The probability of failure of the system conditional on a deteri-
oration state Pr (Fsyslu/[;), defined in Eq. (8), can be pre-computed for
the different (n; + 1)* deterioration states. It is assumed that the EDS
elements are ductile and thus, the term Pr(C;|Ny ;) in that equation
is computed using Eq. (4). It is noted that modelling the behaviour as
brittle would not lead to significantly different conclusions, since the
EDS is calibrated to a given system reliability.

As previously shown, the reliability of the system is time-dependent
and is influenced by the deterioration condition of the components.
A Bayesian Network (BN) is used to represent the causal structure
between mitigation measures of fatigue deterioration at the component
level and the system reliability. The employed BN is proposed in [8]
and based on original work in [28,37,38]. The reader can refer to these
publications for further information.

The annual probability of failure Pr(F,,, () is computed from
Eq. (11) as explained in Section 2.1.3. In addition to the annual
probability of failure, we introduce the hazard function h(r), which is
defined as the probability of system failure during (z,¢ + 1] conditional
on the system not having failed up to time-step ¢. The hazard function
is expressed mathematically as

Pr(Fyy (1)
1- Pr(FSys,cum(l)) ’

The difference between the hazard function and the annual prob-
ability of failure is illustrated in Fig. 5. It can be seen that both
Pr(F,, () and h(t) are practically identical when the cumulative
probability of failure is low, which is the case during the initial service
years. The difference between the two probabilities increases as the
system deteriorates, and is large for cases with low fatigue reliability,
say FDF < 3. In fact, the annual probability of failure starts decreasing
after a number of service years for FDF < 3, because the cumulative
probability of failure asymptotically approaches unity and therefore,
the rate at which it increases between two subsequent time steps
decreases. Because the annual probability of failure is not necessarily
monotonically increasing during the service life of the structure, we
use the hazard rate to estimate the annual reliability index of the
deteriorated structural system f¢(7) in this paper:

h(n) = (28)

Bps(®) = —@~" [A(®)]. (29)
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Fig. 5. Time evolution of the annual probability of system failure Pr(F, (1)) and

sys.yr
hazard function A(r) with no inspections for k =2 and n; = 1.

Table 2

Unitary cost input of reference cost model.

Cost Symbol Value
Inspection campaign cc 1 ke
Inspection 1 component [ 0.1 k€
Repair 1 component cr 0.3 k€
System failure cp 1,000 k€
Discount rate r 0.02
Cost per kg of steel ¢, 6 €

3.5. Cost input

The cost model has a large impact on the optimality of deci-
sions. Here, the expected life-cycle cost is linearly proportional to
the expected values of the different unitary costs model. Therefore,
translating the results to different situations is a matter of accordingly
scaling the different costs. The employed unitary cost model is shown in
Table 2. The unitary costs of inspection and repair actions are adopted
after [28], which uses them to represent an offshore structure. The
fatigue design cost is computed according to the model proposed in [8],
which is developed for structures consisting of tubular members. In that
model, the cross-section area of a hot spot, denoted A, is expressed
as a function of the mean equivalent fatigue stress range E[4S,] and
the equivalent internal fatigue load range AN,

AN, AN,

E[4S,] Bl ] E [r (1 . %)u/m)]

The parameter E[k,q] is a function of the FDF, as specified in Fig. 4.
Consequently, the fatigue design cost of a hot spot, denoted Cy g, is
also a function of the FDF and is estimated as

Ays(FDF) = (30)

3
Cpys = Tﬂpx-cx-AZ§, (31)

where p, = 7850 kg/m? is the density of steel and c, is the cost of steel
shown in Table 2, which includes the cost of welding.

The fatigue design cost is case dependent because it is a function
of the nominal load carried by the member of interest, among other
factors. Two costs models are employed here for the purpose of illus-
tration and to study the robustness of the results with respect to the cost
model (see Fig. 6): cost model C1 takes AN, = 0.6 MN; and cost model
C2 takes AN, = 1.25 MN, which corresponds to a three-fold increase
of the fatigue design cost associated with C1. In spite of using these
two cost models, most of the presented results are independent of the
fatigue design cost to strive for generalisation.

3.6. Regression model of the expected repair costs

The estimation of the expected I&M cost is associated with statistical
uncertainty, which have its origin in the limited number of Monte Carlo
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Fig. 6. Fatigue design cost Cj; ¢ as a function of the fatigue design factor FDF for the
two costs models C1 and C2.
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Fig. 7. Contour plot of the probability of conducting one repair p,,, as a function of
the interval between inspection campaigns 4t; and the fatigue design factor FDF.

simulations that are sampled to evaluate the stochastic deterioration
process. This statistical uncertainty primarily affects the estimation
of the expected repair costs. To reduce this uncertainty, a regression
model of the expected repair cost is developed from all the simulated
data, thereby taking advantage of the 402,661 simulations, instead
of just the 250 ones that are associated with a particular EDS and a
given ILMS. First, the expected number of repairs n,,, is calculated
for each tested combination of k and n; and as a function of the
mitigation parameters from 250 samples. The probability of conducting
a component repair during an inspection campaign, denoted p,,,, is
computed as

nrep
Droy = ——1__ (32)
e Pinsp.c * k- n;
where n;,,, . is the number of inspection campaigns, given by
Tgr —1
ninsp,c = [ At, J ’ (33)

with |-] being the flooring operator.

A power-law of the form p,,, = a-FDF’- At is fitted to the simulated
data. The regression parameters are computed using the maximum
likelihood method, resulting in ¢ = 0.100, b = —0.385 and ¢ = 0.209.
The fitted curve is shown in Fig. 7. Note that the validity of the curve
is bound to 1 < FDF < 10 and 1 < 4¢; < 10. The coefficient of
determination of the regression model is 0.6. This low value is partially
due to the large variability in the obtained number of repairs from the
numerical simulations. Nevertheless, using the model is justified since
we are only interested in the average cost of repair for decision making

purposes.
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Fig. 8. Annual reliability index of the deteriorated structural system f,¢(r = Ty;) at
the end of service life as a function of n, with no conducted inspections. Plots are given
for various values of k and FDF.

The expected cost of repair is then given by
Minsp
CR=CR“Prep - -my D vG - AP = Fyyy i - At ], (34)
j=1
where y is the discount function defined in Eq. (14). At a given
inspection time j - A7, the cost of repair is multiplied by the probability
of survival, since a repair will only be conducted if the structure is not
failed.

4. Results

The results of the parametric investigation are presented in this
section. First, the results of the reliability-based study are shown in
Section 4.1. The results of the risk-based optimisation are shown in
Section 4.2.

4.1. Reliability-based life-cycle optimisation
Fig. 8 shows the annual reliability index at the end of service life

Pps(t = Tg;) for varying n;, k and FDF when no inspections are
conducted. It is observed that the level of redundancy, measured via

10 10
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n;, is a crucial factor in assuring sufficient safety for systems that are
sensitive to fatigue deterioration. Even for FDF = 10, no redundancy
results in g being only around 3, which is significantly lower than
the undamaged reliability index f5¢ = 4.2.

Minimum requirements for the mitigation measures are computed
according to the target reliability index ﬁgs = 4. As an example,
Fig. 9 shows which combinations of the mitigation measures satisfy
this requirement for k = 4 and »n; = 1,2,3. The maximum acceptable
inspection interval is computed as a function of the FDF according to
Eq. (20). The results are displayed in Fig. 10. Note that the curves are
only plotted for the situations satisfying the target reliability criterion.

Optimal reliability-based mitigation strategies are then computed
according to Eq. (21). The optimal reliability-based ILMS are marked
in red and blue in Fig. 10 for the cost models C1 and C2, respectively.
It can be seen that an increase of a factor of three in the design
cost model has a minimal impact in the optima for the employed
discretisation of the design parameter. The optimal allocation of the
total mitigation cost Cr,, among the design and I&M measures is
plotted for cost C1 in Fig. 11, where the expected I&M cost E[C¢ /]
is divided into the campaign C., inspection C; and repair Cy costs.
When the optimal ILMS is associated with very frequent inspections
(see k = 1,n; = 1), the total mitigation cost is driven by the I&M
cost. In particular for this case, the I&M cost is largely associated with
the inspection campaign cost, which is explained by (a) the campaign
cost is ten times larger than the cost of inspecting one component;
and (b) most inspections will lead to not detecting a crack because
of the large FDF value and thereby, to not conducting many repairs.
Furthermore, it is seen that for systems with large redundancy, one
can afford to do without preventive inspections. For multi-components
systems with some redundancy, a balance between design and I&M
mitigation measures is optimal. For these cases, the optimal inspection
interval is large, and as consequence, the repair cost tends to take a
large share of the total mitigation cost, due to fact that the probability
of detecting cracks increases.

4.2. Risk-based life-cycle optimisation

The expected life-cycle cost E[Cy] is computed according to Eq. (12)
for the considered combinations (see Fig. 3) and plotted for k = 1 and
n; = 1,2,5 in Fig. 12 as a function of the inspection interval 4Ar; and
for the different FDF. It is observed that the expected life-cycle cost
curve becomes flatter around the optimum I&M strategy for increasing
FDF. It is also seen that increasing »; eventually reduces the efficiency
of increasing the FDF to reduce the life-cycle cost.

The optimal inspection interval for given FDF is summarised in
Fig. 13. It is cost-efficient from a risk-based perspective to conduct

NI=No
inspections

Il Satisfy

I Not satisfy

1 23 4 5 610
FDF

Fig. 9. Colour-map representing which combinations of the mitigation measures satisfy or not the reliability criterion given by a target reliability index of the deteriorated structure
ﬂgs =4, ie., prn > ﬂlT)S. Note that for n, = 1,k = 4 no mitigation strategy satisfy the criterion.

DS
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Fig. 10. Maximum acceptable inspection interval Ar; as a function of the fatigue design factor FDF and for given k and n;. A target reliability index of the deteriorated structure
B} =4 is used. The resulting combined optimal reliability-based FDF and 4r; are marked for cost models C1 and C2.
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Fig. 11. Allocation of the total mitigation cost associated with the optimal reliability-based mitigation strategy for cost model C1 (marked in red in Fig. 10) among the design
cost Cp, and the expected inspection and maintenance cost E[C,g,,], which is the sum of the costs of campaign C, inspection C, and repair Cr. Only the mitigation strategies

that satisfy the minimum reliability requirements are plotted.
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Fig. 12. Expected total life-cycle cost E[C;] for different structural systems, parametrised by n;, and k, as a function of the inspection interval 4t,. The different curves correspond
from higher to lower costs to FDF =1,2,3,4,5,6,10. Minimal expected total cost for given FDF is marked with a red dot. Note that NI refers to no inspections.
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Fig. 13. Risk-based optimal inspection interval 4t;,, as a function of the fatigue design factor FDF for all considered values of k and n;.

inspection campaigns for systems with no redundancy (n; = 1), even
for components with FDF = 10, which indicates that it might be
cost-efficient to reach larger safety levels than the ones prescribed in
standards for this situation [1,4].

5. Discussion

The current fatigue design practice focuses on the specification
of component design parameters and is not thoroughly preoccupied
with the simultaneous prescription of the associated posterior integrity
management. The fact that requirements for the I&M program are
not specified for a given fatigue design suggests that one should, at
later stages of the life cycle, identify and choose an I&M program that
satisfies the reliability requirements. Generally, this approach leads to
sub-optimal decisions. In this paper, we showed that the consideration
of system effects and life-cycle mitigation alternatives at the design
phase has the potential to significantly lower the expected total cost.
However, additionally taking these aspects into account is computa-
tionally demanding. In this paper, we have studied patterns of optimal
life-cycle mitigation strategies to provide simplified recommendations
that can be followed in practice.

We use and extend the EDS representation proposed by Straub
et al. [20] to idealise and differentiate structural configurations ac-
cording to selected key features. The employed level of abstraction is
appropriate for the purpose of standardisation and code-calibration.
The obtained results can be used by code-makers for the prescription
of mitigation measures at the design stage and to bring attention to
the important issue of accounting for system effects for the design of
deteriorating systems. Furthermore, the results of the study show the
potential improvement in efficiency of fatigue mitigation associated
with using structural redundancy as an additional design parameter.

The optimisation of fatigue mitigation measures has been separately
conducted in accordance with reliability- and risk-based criteria, as
both criteria are relevant to engineering practice. Following one cri-
terion or the other is a choice of the designer, infrastructure owner,
and operator, provided that the applicable regulations allow for such
choice. In principle, reliability-based design is coherent with the risk-
based criterion as long as the employed target probability of failure is
calibrated by risk-based optimisation.

Minimum requirements for inspection plans to satisfy the target
reliability index ﬁg s = 4 throughout the service life are studied as a

10

function of the FDF. Fig. 10 shows that the specification of low FDF
(in the range 3 to 4) is acceptable for systems with some redundancy
and when accompanied by frequent inspections (every 1 to 3 years).
Nevertheless, the results in Figs. 10 and 11 indicate that it is optimal
to specify larger FDF at design. Therefore, for structures that are
identified with the employed cost models, which can be the case for
offshore structures, we recommend to design the fatigue components
with high reliability (FDF ~ 10) and subsequently find an appropriate
inspection plan.

The results in Fig. 10 also show that hot spots that cannot be
inspected need to be designed with FDF > 10 and that, additionally,
certain structural redundancy must be assured in order to satisfy the
reliability requirements. Systems with no redundancy can only satisfy
the imposed reliability requirements when there is one single deterio-
rating component (k = 1) and by specifying FDF > 10 together with a
strict I&M program. This suggests that minimum requirements in most
design standards are associated with lower system reliability than the
target that is used in the current study, i.e., ﬁlT) =4

Optimal risk-based I&M strategies for given design are explored in
Fig. 13. It is shown that optimal risk-based ILMS are less strict than the
reliability requirements discussed above. For instance, results for FDF
in the range 2 to 4 are associated with a reliability index between 2.4
to 3.6, which is significantly lower than ﬂzT)s = 4. These results can
be particularly useful for the design of unmanned structures with low
consequences of failure, such as offshore wind turbines.

6. Conclusions

In this paper, the efficiency of life-cycle fatigue mitigation measures
have been assessed as a function of two selected system features,
namely the redundancy and the number of deteriorating components.
Considered mitigation measures are the specification of the fatigue
design factor for the hot spots and the fixed time-interval between
inspection campaigns. Reliability-based requirements for the mitiga-
tion measures and risk-based optimal mitigation strategies have been
studied within a parametric study over the system features. Results
show the potential reduction of the expected total cost that can be
achieved by considering life-cycle mitigation alternatives and assessing
structural design from a system perspective. Based on a cost model
that is representative for offshore structures, we showed that it is
optimal to design the fatigue hot spots with high reliabilities (FDF
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around 10) and to prescribe a corresponding inspection plan to satisfy
the system reliability requirements. Furthermore, specifying FDF =
10 for the components of non-redundant structures is not sufficient
to avoid preventive inspections. Lastly, we showed that optimal risk-
based designs are associated with lower reliabilities than the optimal
reliability-based designs, which can be used as arguments to lower
the requirements for unmanned structures with low consequences of
failure.

The results of the present study are subject to the applicability of
the employed probabilistic load and resistance models. Further studies
could be carried out for different probabilistic models to study how
these choices affect the conclusions. Moreover, future studies could
implement more sophisticated risk-acceptance criteria, such as the
marginal life-saving costs criterion, to assess acceptability as a function
of the expected number of fatalities given the societal budget for safety.
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Appendix. Model validation

The EDS representation was shown in [20] to perform well for
the calibration of the reliability index of deteriorating components
given safety level requirements for the system. In that case, the de-
terioration condition was represented by a random variable with two
states: “failed” and “safe”. As a consequence, the deterioration process
leading to failure of the components was neglected. To assess optimal
inspection planning, the evolution of an observable indicator, such as
the fatigue cracks, needs to be explicitly considered. We present in
this section a validation example to evaluate the performance of the
EDS representation in comparison to the assessment of the complete
structural system (CSS).

Exemplary, the lattice structure in Fig. A.14 is considered. This
structure is analysed in detail in [8]. It consists of six tubular members
connected by welded joints and a horizontal, rigid beam at the top.
The structure is redundant with respect to single member failure. The
structure is subject to an extreme environmental load with annual max-
imum Q, which is represented by a Gumbel distribution with coefficient
of variation §, = 0.35. The resistance of the structural members is
assumed to be deterministic. The reliability index of the undamaged
structure is fpg = 4.6. In addition to the extreme environmental load-
ing, the structure is subject to cyclic loading. Four hot spots (HS1-HS4)
are identified near the welded connections, see Fig. A.14. It is assumed
that the remaining connections have a sufficiently large reliability and
are not sensitive to fatigue failure. The four hot spots are associated
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Fig. A.14. Structure used for the validation example of the equivalent Daniels system
representation.
Source: Edited from [8].

with SET = 0.0030. The cyclic load induces fatigue stress ranges 45S;(t)
at the hot spots. 4S;(¢) is represented by a Weibull distributed process
with shape parameter k,,; and 4, as per the parametric study above.

The validation example is conducted for two situations: (1) all hot
spots have FDF = 5, and (2) all hot spots have FDF = 10. The
fatigue integrity of the hot spots is assessed using a critical crack depth
a, = 10 mm. The parameters n; and k of the EDS representation are
calculated as explained above, see Egs. (5) and (6), resulting in n; = 2
and k = 2 for all components.

A.1. Accuracy of the reliability estimation

The error in the estimation of the annual reliability index of the
deteriorating system f is investigated. This reliability index is com-
puted as explained in Section 2.1.3. Eq. (7) is used to compute the
interval failure probability, which requires summing over 2* = 16
deterioration states for the CSS and over (2 + 1)> = 9 deterioration
states for the EDS. The probability of system failure conditional on
the deterioration state is computed from pushover analysis for the true
structure and Eq. (8) is used for the EDS. For both the CSS and the
EDS, Egs. (10) and (11) are used to compute the annual probability
of system failure. The annual reliability index g, is computed from
the hazard function, see Egs. (28) and (29). The results are shown in
Fig. A.15. If no inspections are conducted, the error of the EDS model
grows in time and for decreasing FDF. At the last year, the relative
error is 3.5% for FDF = 5 and 2% for FDF = 10, which is below
the 5% maximum model error recommended by JCSS [30]. Departing
from the undamaged system increases the likelihood of combinations
of failure modes that the EDS model can only approximate. Thus,
in general lines, the error increases for increasing deterioration; in
other words, for decreasing f,g. When inspections are conducted, the
deviation between the two models tends to be lower for decreasing
inspection interval A¢;. It is nonetheless noted that a significant part
of the deviation is attributed to the variability associated with the
sampling technique. This part of the deviation would disappear if the
same inspection outcome histories would be sampled for both models.

We argue in this article that the target safety level for the deterio-
rated structure should be somewhat close to the one prescribed for the
non-deteriorated one. If that criterion is employed, the use of the EDS
model incurs only a small error in comparison to assessing the complete
structural system.
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Fig. A.16. Results of the computation of the expected cost of inspections, maintenance and failure risk E[C;,, ] and the failure risk obtained by assessing the complete structural

system and the equivalent Daniels system (EDS) are compared.

A.2. Accuracy of the estimation of risk-based inspection planning

The performance of the EDS model is also tested for optimal risk-
based inspection planning. The individual costs in Table 2 are used to
build the cost model. The expected total inspection and maintenance
cost E[C;,, ] and the risk of failure are plotted in Fig. A.16 for different
inspection intervals 4z;. It is seen that both models predict the same
optimal inspection interval, which is eight years for FDF =5 and not
to conduct inspections for FDF = 10. It is noted that due to the error
in the estimation of the reliability index (and consequently the risk
of failure) the EDS will assess different optimal inspection interval for
some situations. This disagreement is expected to be more accentuated
when the E[C},, ] curve is flatter around the optimal decision due to
the optimisation problem being ill-conditioned.

A.3. Conclusion of the validation example

It is concluded that the use of the EDS representation results in an
estimation of the reliability index that is sufficiently accurate for the
reliability- and risk-based prescription of optimal mitigation of fatigue
failure risk for standardisation purposes.
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