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1. Introduction

Due to their rich algebraic structure, cyclic codes represent undoubtedly one of the 
most studied families of linear codes. Indeed, their polynomial interpretation as ideals 
of F [z]/(zn − 1) is central to the efficiency of encoding and decoding procedures, and 
it also allows to design codes with desired properties. Among these properties, several 
bounds on the minimum distance of cyclic codes have been established by using sets 
of consecutive elements in the defining set, which is the collection of the zeros of all 
the polynomials in the code. Out of the most famous bounds, we can certainly find the 
BCH [5,4,13], the Hartmann-Tzeng (HT) [12] and the Roos bound [31,30]. More recently, 
generalizations of these types of bounds have been proposed by embedding the code into 
a cyclic product code; see [32]. The idea of [32] is that one can find a lower bound on 
the minimum distance of a cyclic code by using a second auxiliary cyclic code and apply 
the HT bound to the minimum distance of the obtained product cyclic code. The bound 
obtained in this way is more general, and the HT bound for cyclic codes represents only 
a special instance.

Starting from the work of Boucher, Geiselmann and Ulmer [6], the notion of cyclicity 
has been then extended to codes defined over a skew polynomial ring; see also [7–9]. 
In particular, in [9] a BCH bound for skew-cyclic codes has been generalized, which 
works for both the Hamming and the rank metric. Later, in [11] the skew version of the 
HT bound has been proposed and in [1] a Roos-like bound for skew-cyclic codes in the 
Hamming and in the rank metric has been established. Moreover, these results confirmed 
that the rank metric is the natural measure inherited from the skew-polynomial structure 
of skew-cyclic codes.

Recently, codes endowed with the sum-rank metric have become popular due to their 
use in different applications; see for example [28,23,17,24,18]. From the theoretical point 
of view, the sum-rank metric is a generalization of both the Hamming metric and the 
rank metric. Formally, given a field extension F/E, the sum-rank metric is defined on Fn, 
with respect to a fixed partition (n1, . . . , n�) of length n. More precisely, the sum-rank of 
a vector v = (v(1), . . . , v(�)), where v(i) ∈ Fni , is defined as the sum of the rank weights 
of the vi with respect to the extension F/E. When � = 1, the sum-rank metric coincides 
with the rank metric on Fn, and when n1 = . . . = n� = 1 it coincides with the Hamming 
metric on F �. In 2020, Martínez-Peñas introduced the family of cyclic-skew-cyclic codes 
endowed with the sum-rank metric; see [22]. These codes coincide with cyclic codes when 
the sum-rank metric recovers the Hamming metric and with skew-cyclic codes when the 
sum-rank metric recovers the rank metric.

Inspired by the work of Martínez-Peñas [22] and by the bounds found in [32], we 
consider the tensor product of a cyclic code endowed with the Hamming metric with a 
skew-cyclic code endowed with the rank-metric, both defined over the same field F . Such a 
product code turns out to be a cyclic-skew-cyclic code, which naturally inherits the sum-
rank metric. For this reason, we first provide generalizations of the Roos bound and the 
Hartmann-Tzeng bound for cyclic-skew-cyclic codes endowed with the sum-rank metric. 
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This was listed among the open problems left in [22] as a result of independent interest. 
Furthermore, we study the tensor product mentioned above and use the generalized 
Roos and Hartmann-Tzeng bounds in order to derive new lower bounds on the minimum 
Hamming distance of the constituent cyclic code and on the minimum rank distance of 
the constituent skew-cyclic code.

The paper is structured as follows. Section 2 contains a brief recap on the notions and 
results needed for the rest of the paper. There, we recall the Hamming, rank and sum-
rank metric, as well as what is a cyclic-skew-cyclic code and its representation in a skew 
polynomial ring. In Section 3 we investigate the semilinear isometries for the sum-rank 
metric with respect to any partition of the length. This is needed for providing a group-
theoretical description of a cyclic-skew-cyclic code, which is a property invariant under 
the equivalence relation defined by the semilinear isometries. Section 4 focuses on lower 
bounds for the minimum sum-rank distance of a cyclic-skew-cyclic code. We provide the 
analogues of the Roos bound and of the Hartmann-Tzeng bound, exploiting the notion 
of defining sets for cyclic-skew-cyclic codes. In Section 5 we focus on tensor products of 
codes. We combine a cyclic code in the Hamming metric with a skew-cyclic code in the 
rank metric, and study the resulting product code with respect to the sum-rank metric. 
Finally, in Section 6 we combine the results on tensor product of codes with the Roos 
and the Hartmann-Tzeng bounds in order to obtain new lower bounds on the minimum 
distances of the constituent codes.

2. Preliminaries and setting

In this section we fix the framework that we are going to use in the rest of the paper 
and we recall the main tools and mathematical background needed for our purposes.

Let m, h be positive integers, let E be a field and consider K/E and F/E extension 
fields of finite degree, respectively h and m, such that K ∩F = E. Moreover, let L := FK. 
For convenience of the reader we will summarize the fields containment in Fig. 1, which 
will be recalled whenever it is necessary in the rest of the paper. Finally, let � be a 
positive integer and assume that x� − 1 splits into linear factors in K, i.e. K contains all 
the �-th roots of unity.

Note that throughout the paper, the field F will essentially always be the defining field 
for our linear codes. Nevertheless, we will also make a wide use of the other auxiliary 
fields, in order to control parameters and properties of such codes.

2.1. The Hamming and the rank metric

The Hamming weight on F� is defined as

wtH : F � −→ N

c �−→ |{i : ci �= 0}|,

i.e., wtH(c) is the number of coordinates in c that are different from 0.
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Fig. 1. Field extensions and their degree.

The Hamming weight induces a metric on F�, which is defined as dH(u, v) := wtH(u −
v) for any u, v ∈ F �. An [�, k, d]F (Hamming metric) code C is a k-dimensional F -subspace 
of F � and d = dH(C) := min{dH(u, v) | u, v ∈ C, u �= v}. If d is not known, we simply 
write [�, k]F code. The parameter � is the length of C, k is its dimension and d is called 
minimum Hamming distance of C.

Another well-known metric is the rank metric. Let F/E be the field extension defined 
above and let N be a positive integer. The rank weight for F/E is defined as the following 
map:

wtF/E
rk : FN −→ N

c �−→ dimE〈c0, . . . , cN−1〉E.

Also in this case, the rank weight wtF/E
rk induces a metric on the space FN with respect to 

the field extension F/E, known as rank distance and defined as dF/E
rk (u, v) := wtF/E

rk (u −v)
for any u, v ∈ FN . Furthermore, we define an [N, k, d]F/E rank-metric code C as a k-
dimensional F -subspace of FN , endowed with the rank metric. As for the Hamming 
metric case, the integer N is called the length of C, k is the dimension of C and d is 
defined as

d = dF/E
rk (C) := min{dF/E

rk (u, v) | u, v ∈ C, u �= v}

and is called the minimum rank distance of C. If d is not known we simply write that C
is an [N, k]F/E rank-metric code.

Clearly, one may also define the rank metric for other extensions. In this paper we 
will only consider it with respect to F/E and to L/K. It will always be clear from the 
context which extension we will be considering, and, in order to lighten the notation, 
from now on we will omit the field extension from the notation of rank weight and rank 
distance, writing only wtrk and drk, respectively.

2.2. The sum-rank metric

In this subsection, we recall another metric, which is the natural combination of the 
Hamming and the rank ones. We will use the same field extensions defined in Fig. 1.
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Consider the field extension F/E and choose a partition of n as n = n1 + . . . + n�, 
which we denote by n = (n1, . . . , n�). For a given vector c ∈ Fn, this induces a partition 
of c as

c = (c(0) | . . . | c(�−1)), (1)

where c(i) = (c(i)0 , . . . , c(i)ni−1) ∈ Fni , for every i ∈ {0, . . . , � − 1}. With this notation 
in mind, we define the sum-rank weight for F/E with respect to the partition n =
(n1, . . . , n�) of n as the function

wtn,F/E
srk : Fn −→ N

c �−→
�−1∑
i=0

wtrk(c(i)).

The sum-rank weight induces a metric on Fn defined as dn,F/E
srk (u, v) := wtn,F/E

srk (u − v)
for any u, v ∈ Fn, which we call sum-rank distance.

Clearly, as for the rank metric, the same holds if we replace F/E with L/K. In this 
case we can define the sum-rank weight with respect to L/K, and we denote it as

wtn,L/K
srk : Ln −→ N.

In the rest of the paper, these two extensions will be the only ones considered when 
computing the sum-rank metric. Moreover, from now on, whenever the field extension is 
known, it will be omitted from the notation of sum-rank weight and sum-rank distance, 
and we will only write wtnsrk and dn

srk.
Note that sum-rank distance recovers the Hamming distance and the rank distance 

by setting n1 = . . . = n� = 1 and � = 1, respectively.

Definition 2.1. Let F/E be an arbitrary field extension and fix a partition of n to be 
n = (n1, . . . , n�). A (sum-rank metric) code C is an F -linear subspace of Fn endowed with 
the sum-rank metric. The minimum sum-rank distance is defined as usual as dn

srk(C) =
min{wtnsrk(c) | c ∈ C, c �= 0} or equivalently dn

srk(C) = min{dn
srk(u, v) | u, v ∈ C, u �= v}, 

where dn
srk and wtnsrk are defined with respect to F/E and to the partition n.

In this work, the sum-rank metric codes that we are going to define have underlying 
field F and the fixed partition will always be (N, . . . , N︸ ︷︷ ︸

� times

), except for Section 3, in which 

we deal with a general partition n.

2.3. Skew polynomial rings

We briefly recall the definition of skew polynomials rings. We refer to the seminal 
paper of Ore [29], where skew polynomials over division rings have been introduced.
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Consider the field extension L/K and its Galois group Gal(L/K). Let σ ∈ Gal(L/K)
be an automorphism of L. We define the skew polynomial ring as the ring L[z; σ] induced 
by σ over L. The multiplication rule over L[z; σ] is given by zizj = zi+j and za = σ(a)z, 
for all a ∈ L. Since L is a field, L[z; σ] is in particular a left and right Euclidean domain.

We also recall the evaluation of skew polynomials. A systematic approach to this 
concept was started in 1986 by Lam and Leroy. We refer the interested reader to [15,
16,14,10]. Here we are only interested in the following definition. Let f(z) ∈ L[z; σ] and 
a ∈ L. We define the evaluation of f(z) in a as the unique element f(a) such that

f(z) = q(z)(z − a) + f(a), (2)

where q(z) ∈ L[z; σ].

2.4. Cyclic-skew-cyclic codes

In this subsection we give the definition of cyclic-skew-cyclic codes in their vector and 
polynomial representations for arbitrary fields. The results presented here can be found 
for finite fields in [22].

Assume that L/K is a cyclic Galois extension and let σ ∈ Gal(L/K). Moreover, denote 
by θ the restriction σ|F of σ to F . Recall that � is a positive integer, such that the roots 
of x� − 1 belong to K and they are pairwise distinct.

We fix the setting of the previous subsection, choosing n = �N , and fixing the partition 
n = (N, . . . , N) of n. Accordingly, we partition every vector c ∈ Fn as in (1).

Define the block-shift operator ρ on Fn as

ρ(c(0) | . . . | c(�−1)) = (c(�−1) | c(0) | . . . | c(�−2)), (3)

and the θ-inblock shift operator φ on Fn as

φ(c(0) | . . . | c(�−1)) = (ϕ(c(0)) | . . . | ϕ(c(�−1))), (4)

where ϕ : FN → FN is given by

ϕ(v0, . . . , vN−1) = (θ(vN−1), θ(v0), . . . , θ(vN−2)).

With the setting fixed above, we recall the definition of cyclic-skew-cyclic codes, in-
troduced in [22].

Definition 2.2. A code C ⊆ Fn is called cyclic-skew-cyclic if ρ(C) ⊆ C and φ(C) ⊆ C. 
These are actually equalities.
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2.5. Skew polynomial representation of cyclic-skew-cyclic codes

As above, assume that L/K is a cyclic Galois extension of degree m. Let σ ∈ Gal(L/K)
and let θ be the restriction σ|F of σ to F . Moreover, consider the skew polynomial ring 
F [z; θ]. Let t be the order of θ. It is well-known that the center of F [z; θ] is Fθ[zt], where 
Fθ denotes the subfield of elements which are fixed by θ. Moreover, assume t = m, and 
Fθ = E and m divides N . Then, zN − 1 belongs to the center of F [z; θ] and therefore it 
generates a two-sided ideal. Define

S := F [z; θ]�(zN − 1),

R := S[x]�(x� − 1),

where it is easy to see that also (x� − 1) is a two-sided ideal of S[x].
At this point there is a natural identification of Fn with R, given by the map μ :

Fn −→ R, such that

μ(c(0) | . . . | c(�−1)) =
�−1∑
i=0

(N−1∑
j=0

c
(i)
j zj

)
xi.

One can see that it is also possible to interchange the order of the variables and 
consider another polynomial representation for Fn. Define

S ′ := F [x]�(x� − 1),

R′ := S ′[z; θ]�(zN − 1),

where we have extended θ to θ : F [x] → F [x], such that θ(x) = x. This map factors to a 
map from S ′ to itself, since θ(x� − 1) = x� − 1.

The identification is then given by the map ν : Fn −→ R′, defined as

ν(c(0) | . . . | c(�−1)) =
N−1∑
j=0

( �∑
i=1

c
(i)
j xi

)
zj . (5)

The definitions of the maps μ and ν allow to give the following characterization of 
cyclic-skew-cyclic codes.

Theorem 2.3. [22, Theorem 1] Let C ⊆ Fn be a code. The following are equivalent.

1. C is a cyclic-skew-cyclic code.
2. μ(C) is a left ideal of R.
3. ν(C) is a left ideal of R′.
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Remark 2.4. Note that, R and R′ are (canonically) isomorphic and moreover, whenever 
the characteristic of F does not divide �, R′ (and hence R) are principal ideal rings; 
see [22]. This implies that a cyclic-skew-cyclic code has a generator skew polynomial in 
S ′[z; θ].

2.6. Defining set and BCH bound

In this subsection we define the evaluation map on the �-th roots of unity in order 
to introduce the defining set of skew-cyclic-codes and the sum-rank BCH bound. Also 
for this part, the definitions and the results specialized to the case of finite fields were 
provided in [22].

Assume N = jm, for some positive integer j and let a ∈ K be an �-th root of unity. 
Define the following ring morphism:

Eva,z :
(
L[x]�(x� − 1)

)
[z;σ]

�(zN − 1) −→
(
L[x]�(x− a)

)
[z;σ]

�(zN − 1), (6)

such that Eva,z(f0(x) + · · · + fN−1(x)zN−1) = f0(a) + · · · + fN−1(a)zN−1. It is easy to 
verify that Eva,z is a ring homomorphism, that is

Eva,z(f(x, z)g(x, z)) = Eva,z(f(x, z))Eva,z(g(x, z)), (7)

due to the fact that a ∈ K is fixed by σ; see also [22]. Moreover, note that

(
L[x]�(x− a)

)
[z;σ]

�(zN − 1)
∼= L[z;σ]�(zN − 1).

Let β ∈ L∗ and define the following evaluation map:

Evσ
β : L[z;σ]�(zN − 1) −→

L[z;σ]�(z − σ(β)β−1), (8)

where Evσ
β(g(z)) = g(σ(β)β−1), in the sense of (2).

Finally, by noting that L[z;σ]�(z − σ(β)β−1)
∼= L, we can define the composition of 

the maps defined in (6) and (8) as follows.

Definition 2.5. Let a ∈ K be an �-th root of unity and β ∈ L∗. Define the total evaluation 
map

Eva,β :
(
L[x]�(x� − 1)

)
[z;σ]

�(zN − 1) −→
(
L[x]�(x− a)

)
[z;σ]

�(z − σ(β)β−1) (9)

as the composition map Evσ
β ◦ Eva,z.
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Remark 2.6. To a skew polynomial f(z) =
∑r

i=0 fiz
i ∈ L[z; σ] we can associate a σ-

polynomial fσ(σ) =
∑r

i=0 fiσ
i ∈ L[σ]. Here, the evaluation in β ∈ L is given by

fσ(β) :=
r∑

i=0
fiσ

i(β).

With this in mind, it holds that Evσ
β(f) = f(σ(β)β−1) = fσ(β)β−1. In other words, the 

evaluation of a skew polynomial can be related to the usual evaluation of its associated 
σ-polynomial.

Example 2.7. In the case of finite fields, when L = Fqm and σ(β) = βq is the q-Frobenius 
automorphism, we have that the σ-polynomial fσ is the classical linearized polynomial 
fσ(y) =

∑r
i=0 fiy

qi .

In the following, we give the definition of the defining set for a cyclic-skew-cyclic 
code, as in [22]. As for cyclic codes, it is defined as the set of the zeros of the generator 
polynomial (in this case a skew polynomial) which define the code.

Definition 2.8. Let C ⊆ R′ be a cyclic-skew-cyclic code with generator skew polynomial 
g(x, z) ∈ S ′[z; θ]. Then, the defining set TC of C is the set

TC := {(a, β) ∈ K× L∗ | a� = 1,Eva,β(g(x, z)) = 0}.

Finally, we recall the sum-rank BCH bound for cyclic-skew-cyclic codes obtained in 
[22]. For this result we require that m = N .

Theorem 2.9 (Sum-rank BCH bound [22, Theorem 7]). Let b, δ, r, t be integers, such that 
gcd(n, t) = 1. Let a ∈ K be a primitive �-th root of unity and β be a normal element of 
L/K. Let n = m� and C ⊆ Fn be a cyclic-skew-cyclic code. If

{(ab+it, σit(β)) ∈ K× L∗ : 0 ≤ i ≤ δ − 2} ⊆ TC ,

then dsrk(C) ≥ δ.

3. Isometries and equivalence of sum-rank metric codes

In this section we describe the group of semilinear isometries for the sum-rank metric. 
This concept is known for the Hamming metric and also for the rank-metric and it is 
fundamental for describing equivalence of codes.

In order to be more consistent with the usual notation for permutations, in contrast 
with the rest of the paper in this section we use the vectors indices starting from 1
instead of 0. Also, in this section we consider a general partition n = (n1, . . . , nl) of the 
integer n.
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3.1. Equivalence of Hamming metric codes

Here we recall the notion of equivalence of codes in the Hamming metric and their 
automorphisms groups. Fix the field F and consider the metric space (F�, dH). It is 
well-known that the semilinear isometries of this space form a group given by (F∗)� �
(Aut(F) ×S�), where Aut(F) denotes the group of field automorphisms of F and S� the 
symmetric group on � elements. The action of this group on F� is described here:

((F∗)� � (Aut(F) × S�)) × F � −→ F �

((a, θ, π), v) �−→ (a1θ(vπ−1(1)), . . . , a�θ(vπ−1(�))).

Such an action can be naturally extended to an action on the set L(F�) = {C ⊆ F � :
C is F -linear} of F -subspaces of F�, denoted by

ΨH : ((F∗)� � (Aut(F) × S�)) × L(F �) −→ L(F �).

Definition 3.1. Two [�, k]F codes are called semilinearly (Hamming) equivalent if they 
belong to the same orbit of the action ΨH.

Notice that in the literature it is more often considered the notion of monomial equiv-
alence. This corresponds to the orbits of the action induced by the subgroup (F∗)� �S�, 
which only considers the linear isometries. Furthermore, the notion of permutation equiv-
alence is obtained by only taking the action of the symmetric group S�.

Definition 3.2. The automorphism (Hamming) group of an [�, k]F code C endowed with 
the Hamming metric is the stabilizer of C in ((F∗)� � (Aut(F) ×S�)) under the action of 
ΨH, and we denote it by AutH(C).

Remark 3.3. Let π̄ be the �-cycle (1 . . . �). With this notion, we can see that a code C is 
cyclic if and only if (1, id, ̄π) ∈ AutH(C). However, when studying properties of a code 
which are invariant under code equivalence, it is more convenient to consider when a code 
C is equivalent to a cyclic code, that is, when in the orbit of C there exists a cyclic code. 
This corresponds to the property that there exists an element g ∈ ((F∗)��(Aut(F) ×S�))
such that g−1(1, id, ̄π)g ∈ AutH(C). Moreover, it is clear that the subgroup Aut(F) leaves 
invariant the property of a code being cyclic. Hence, we can assume that the element g
is of the form g = (a, id, τ).

In conclusion, since the conjugacy class of an �-cycle in S� is the set of all �-cycles, we 
have that C is (equivalent to) a cyclic code if and only if there exists a b ∈ (F∗)�, and 
an �-cycle π such that (b, id, π) ∈ AutH(C).
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3.2. Equivalence of rank-metric codes

Now, we describe the notion of isometries and equivalence also for codes in the rank 
metric. Consider the metric space (FN , drk), where drk denotes the rank metric over F/E. 
The semilinear isometries of this metric space are given by the group (F∗×GL(N, E)) �
Aut(F), which is acting on FN via

((F∗ × GL(N,E)) � Aut(F)) × FN −→ FN

((α,M, θ), v) �−→ (θ(αv1), . . . , θ(αvN ))M.

Also in this case we extend this action to an action on the set L(FN ) = {C ⊆ FN :
C is F -linear} of F -subspaces of FN , denoted by

Ψrk : ((F∗ × GL(N,E)) � Aut(F)) × L(FN ) −→ L(FN ). (10)

Definition 3.4. Two [N, k]F codes are called semilinearly (rank) equivalent if they belong 
to the same orbit of the action Ψrk.

Definition 3.5. The automorphism (rank) group of an [N, k]F code C endowed with the 
rank metric over F/E is the stabilizer of C in ((F∗ × GL(N, E)) � Aut(F)) under the 
action of Ψrk, and it will be denoted by Autrk(C).

Remark 3.6. First, notice that if one restricts to F -linear codes, then the action of 
F∗ is trivial. Hence, in this case we can only consider rank isometries of the form 
(1, M, θ). Moreover, in this setting a code C is formally skew-cyclic with respect to θ
if (1, Pπ̄, θ) ∈ Autrk(C), where Pπ is the permutation matrix acting as π̄. Depending now 
on the interest in properties of the code which are invariant under Hamming equivalence 
or rank equivalence, one may prefer to study codes which are rank equivalent or Hamming 
equivalent to a skew-cyclic code with respect to θ. For us, the natural metric inherited 
by a skew-cyclic code is the rank metric, and hence we will consider a code C to be 
(equivalent to) a skew-cyclic code if there exists an element of the form (1, M−1PπM, θ)
in Autrk(C).

3.3. Equivalence of sum-rank-metric codes

In this subsection we characterize the linear and semilinear isometries of a space 
endowed with the sum-rank metric. More precisely, let n := (n1, . . . , n�) be any partition 
of n, and let dn

srk be the sum-rank metric on the space Fn with respect to the partition n
and the field extension F/E. We are going to characterize the F -linear and the semilinear 
isometries of (Fn, dn

srk).
First, we introduce the following notation: for a given partition n = (n1, . . . , n�) of 

n, we associate the vector of positive integers λ(n), which counts the occurrences of 
the distinct entries of n. Formally, let N (n) := {n1, . . . , n�}, and let t := |N (n)|. Let 
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ni1 , . . . , nit be the distinct elements of N (n) and set λ(n) ∈ Nt to be the vector whose 
entries are

λj := |{k : nk = nij}|, for each j = 1, . . . , t.

Furthermore, we denote by l(n) = � the length of the partition n.
Now, we fix a vector of positive integers v = (v1, . . . , vr) ∈ Nr, we denote by Sv the 

direct product of the symmetric groups on vi elements, for each i, that is

Sv = Sv1 × . . .× Svr .

Observe that Sv is a subgroup of the symmetric group Sv, where v = v1 + . . . + vr. 
Furthermore, we denote by GL(v, E) the direct product of the general linear groups of 
degree vi over the field E, that is

GL(v,E) = GL(v1,E) × . . .× GL(vr,E).

With this notation, we are now ready for the main result. We determine the group of 
F -linear isometries of the space (Fn, dn

srk), which we denote by LISsrk(n, F/E). Notice 
that the special case n = (N, . . . , N) was already shown in [21, Theorem 2] (see also 
[27, Proposition 4.25] for the E-linear sum-rank isometries). Here we deal with the more 
general case, even though the strategy of the proof is essentially the same.

Theorem 3.7. Let n be a partition of n. The group of F-linear isometries of (Fn, dn
srk) is

((F∗)l(n) × GL(n,E)) � Sλ(n),

which is acting as

(a,M1, . . . ,Ml(n), π) · (c(1) | . . . | c(l(n))) �−→ (a1c
(π−1(1))M1 | . . . | al(n)c

(π−1(l(n)))Ml(n)).
(11)

Proof. It is immediate to observe that each element of the group ((F∗)l(n)×GL(n, E)) �
Sλ(n) describes an F -linear isometry of (Fn, dn

srk) via (11). Therefore, LISsrk(n, F/E) ⊇
((F∗)l(n) × GL(n, E)) � Sλ(n).

On the other hand, let f ∈ LISsrk(n, F/E). For each i ∈ {1, . . . , n}, denote by ei ∈ Fn

the ith standard basis vector. Moreover, we write I1, . . . , Il(n) to refer to the sets of 
indices of each of the coordinates blocks, where |Ij | = nj for each j. Since f is an 
isometry, we have wtsrk(f(ei)) = wtsrk(ei) = 1. Consider the vector e1. By definition of 
sum-rank metric, this means that v1 := f(e1) is zero on all but one coordinate blocks, 
i.e. there exists j such that v1 = (v(1) | · · · | v(l(n))) with wtrk(v(j)) = 1 and v(i) = 0
for each i �= j. Select now any other index t ∈ I1, and again, for the same reason, 
there exists jt such that for f(et) =: vt = (v(1) | · · · | v(l(n))) it holds wtrk(v(jt)) =
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1 and v(i) = 0 for each i �= jt. Now observe that 1, t ∈ I1 and therefore we have 
wtsrk(e1 + et) = wtrk(e(1)

1 + e
(1)
t ) = 1. Hence, we must have that the nonzero coordinate 

blocks of f(e1) and f(et) are the same, that is jt = j. Since this holds for each t ∈ I1 and 
we can do the same reasoning starting from each coordinate block Ij, this shows that f
induces a permutation πf between the coordinate blocks. Therefore, f also induces a map 
fj : Fnj → Fnπf (j) for each j. Since f is bijective, also fj must be bijective, and therefore 
|Iπf (j)| = nπf (j) = nj = |Ij |. Thus, the permutation πf permutes the coordinate blocks, 
by sending each block in another with the same cardinality. This implies that πf ∈ Sλ(n). 
Finally, by definition of sum-rank metric, each map fj has to be an F -linear isometry 
of (Fnj

, drk). These isometries are known to form the group (F∗ × GL(nj , E)), where 
fj acts as : v �−→ ajvMj , for some aj ∈ F∗, Mj ∈ GL(nj , E), as described by the 
linear part of the map Ψrk in (13); see [3, Theorem 1], [25, Proposition 1]. This shows 
that the F -linear isometry f acts as the element (a, M1, . . . , Ml(n), πf ), and therefore 
LISsrk(n, F/E) ⊆ ((F∗)l(n) × GL(n, E)) � Sλ(n), which concludes the proof. �

Theorem 3.7 immediately leads to the following corollary, which determines the group 
of semilinear isometries of (Fn, dn

srk).

Corollary 3.8. Let n be a partition of n. The group of semilinear isometries of (Fn, dn
srk)

is

(((F∗)l(n) × GL(n,E)) � Sλ(n)) � Aut(F),

which is acting as

(a,M1, . . . ,Ml(n), π, θ) · (c(1) | . . . | c(l(n)))

�−→ (θ(a1c
(π−1(1)))M1 | . . . | θ(al(n)c

(π−1(l(n))))Ml(n)).
(12)

It is well-known that already for the case � = 1 and n1 > 1, MacWilliams extension 
theorem does not hold (see e.g. [2, Example 2.9]). Thus, we give a global definition of 
equivalence of codes in the sum-rank metric, i.e. we only consider when they are related 
by an isometry of the whole ambient space. Define the map

Ψsrk : ((((F∗)l(n) × GL(n,E)) � Sλ(n)) � Aut(F)) × L(Fn) −→ L(Fn), (13)

as the extension of the map acting as in (12) to the set L(Fn) = {C ⊆ Fn : C is F -linear}
of F -subspaces.

Definition 3.9. Two [n, k]F codes are called semilinearly (sum-rank) equivalent if they 
belong to the same orbit of the action Ψsrk.

Definition 3.10. The automorphism (sum-rank) group of an [n, k]F code C endowed with 
the sum-rank metric dn

srk over F/E is the stabilizer of C in (((F∗)l(n) × GL(n, E)) �
Sλ(n)) � Aut(F) under the action of Ψsrk, and it will be denoted by Autsrk(C).
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Remark 3.11. Fix the partition n = (N, . . . , N). Then a code is cyclic-skew-cyclic with 
respect to the automorphism θ if and only if (1, (IN , . . . , IN ), ̄τ , id) and (1, (Pπ̄, . . . , Pπ̄),
id, θ) belong both to Autsrk(C), where τ̄ = (1 . . . �) and π̄ = (1 . . . n).

4. Roos and Hartmann-Tzeng bounds for cyclic-skew-cyclic codes

In this section we provide a lower bound on the minimum sum-rank distance of cyclic-
skew-cyclic codes which generalizes the Roos bound for cyclic codes in the Hamming 
metric [30,31] and its skew-cyclic version for the rank metric [1]. Moreover, we also 
derive a sum-rank metric version of the Hartmann-Tzeng bound, generalizing the one 
known for the Hamming metric [12] and the more recent one for the rank metric [11]. 
From now on we fix the partition of n to be n = (m, . . . ,m︸ ︷︷ ︸

� times

), hence, we require N = m, 

as for the sum-rank BCH bound.
Let a ∈ K be an �-th root of unity and β ∈ L∗ be a normal element of L/K and 

let A := {1, a, . . . , a�−1}. Since βabi is still normal in L for every b ≥ 0 and every 
0 ≤ i ≤ � − 1, we can define new bases of L/K as

B̃i := {βabi, σ(β)abi, . . . , σm−1(β)abi}.

Let B̃ = (B̃0, . . . , B̃�−1) and for k ∈ {1, . . . , n}, define the matrix

D(A, B̃) = (D0| . . . |D�−1) ∈ Lk×n,

where n = �m and

Di =

⎛
⎜⎜⎜⎝

βabi σ(β)abi · · · σm−1(β)abi
σ(β)a(b+1)i σ2(β)a(b+1)i · · · βa(b+1)i

...
...

. . .
...

σk−1(β)a(b+k−1)i σk(β)a(b+k−1)i · · · σk−2(β)a(b+k−1)i

⎞
⎟⎟⎟⎠ . (14)

Then, D(A, B̃) is the generator matrix of a linearized Reed-Solomon code Cσ
k (A, B̃); see 

[19].
Let E = {β1, . . . , βm} be a basis of L/K, assume that � is coprime with the char-

acteristic of K and with m and let a ∈ K be an �-th root of unity. Fix b ≥ 0. Define 
B0, . . . , B�−1 bases of the extension L/K as

Bi := E · abi = {β1a
bi, . . . , βmabi}.

Lemma 4.1. Let t, r be positive integers and k0, . . . , kr ∈ {0, . . . , n − 1} be such that 
kr−k0 ≤ t +r−1 and kj−1 < kj for 1 ≤ j ≤ r. For any 0 ≤ i ≤ � −1 let α(i)

1 , . . . , α(i)
ji

∈ Bi

such that j0 + · · · + j�−1 = t + r. Then the matrix
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A0 = (D̃0| · · · |D̃�−1),

where

D̃i =

⎛
⎜⎜⎜⎜⎝
σk0(α(i)

1 )ak0i · · · σk0(α(i)
ji

)ak0i

σk1(α(i)
1 )ak1i · · · σk1(α(i)

ji
)ak1i

...
...

σkr (α(i)
1 )akri · · · σkr (α(i)

ji
)akri

⎞
⎟⎟⎟⎟⎠ (15)

has rank r + 1.

Proof. Define B̄ := (σk0(B0) · ak0i, . . . , σk0(B�−1) · ak0i) where σk0 is applied to each 
element of the bases Bi’s. Let A = {1, a, . . . , a�−1}. Consider the linearized Reed-Solomon 
code Cσ

r+t(A, B̄) with generator matrix D(A, B̄) = (D0| . . . |D�−1), where Di is defined 
as in Equation (14). Then, the matrix A0 is obtained from D(A, B̄) after deleting (t − 1)
rows of a full-size submatrix (t + r) × (t + r). Since Cσ

r+t(A, B̄) is an MDS code, it follows 
that the rank of the submatrix A0 is full, which concludes the proof. �

Before proceeding with the next auxiliary result, we introduce a useful map as follows. 
For a root of unity b ∈ K, for ς ∈ Gal(L/K) and integers t1, t2, define

ψ
(t1,t2)
b,ς : L�m −→ L�m

(c(0) | c(1) | . . . | c(�−1)) �−→ (ςt1(c(0)) | ςt1(c(1))bt2 | . . . | ςt1(c(�−1))b(�−1)t2).

Since b is fixed by ς, one can immediately see that the map ψ(t1,t2)
b,ς is L-linear and 

that ker(ψ(t1,t2)
b,ς ) = {0}. Moreover, it can be readily observed that

ψ
(t1,t2)
b,ς ◦ ψ(u1,u2)

b,ς = ψ
(t1+u1,t2+u2)
b,ς , (16)

where t1 + u1 is taken modulo ordK∗(b), and t2 + u2 is taken modulo ordAut(L)(ς).

Lemma 4.2. With the same assumptions of Lemma 4.1, let s be a positive integer coprime 
with � and m. Let A0 = (D̃0| . . . |D̃�−1), where D̃i’s are defined in (15), and let

Ai :=

⎛
⎜⎜⎜⎜⎝

D̃0 D̃1 · · · D̃�−1
σs(D̃0) σs(D̃1)as · · · σs(D̃�−1)a(�−1)s

...
...

...
σis(D̃0) σis(D̃1)ais · · · σis(D̃�−1)ai(�−1)s

⎞
⎟⎟⎟⎟⎠

for i ≤ t − 1. Then rk(Ai) ≥ r + i + 1. In particular, rk(At−1) = r + t.
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Proof. First observe that the claim holds for i = 0, since by Lemma 4.1, rk(A0) = r+1.
Define Ui := rowsp(Ai), and observe that they form a chain U0 ⊆ U1 ⊆ . . . ⊆ Ut−1. 

Suppose that there exists an i ≥ 1 such that dim(Ui−1) ≥ r+ i, but dim(Ui) < r+ i + 1. 
This implies that dim(Ui−1) = dim(Ui) = r + i and hence Ui−1 = Ui. However, due 
to the structure of the matrices Aj ’s, we have Ui = Ui−1 + ψ

(s,s)
a,σ (Ui−1). Therefore, 

ψ
(s,s)
a,σ (Ui−1) = Ui−1. Let v be the inverse of s modulo n = �m. Iterating v times the map 

ψ
(s,s)
a,σ and using (16), we obtain

Ui = Ui−1 = (ψ(s,s)
a,σ )v(Ui−1) = ψ(1,1)

a,σ (Ui−1).

From this, we also obtain that ψ(j,j)
a,σ (Ui−1) = Ui−1, for every j ∈ {1, . . . , i +r−1}. Hence, 

Ui contains the row space of the matrix

⎛
⎜⎜⎜⎜⎝

D̃0 D̃1 · · · D̃�−1
σ(D̃0) σ(D̃1)a · · · σ(D̃�−1)a(�−1)

...
...

...
σi+r−1(D̃0) σi+r−1(D̃1)ai+r−1 · · · σi+r−1(D̃�−1)a(i+r−1)(�−1)

⎞
⎟⎟⎟⎟⎠ .

From the above matrix, one can select the first row from each block and obtain the 
submatrix

X = (Ẽ0| · · · |Ẽ�−1),

where

Ẽi =

⎛
⎜⎜⎜⎜⎝

σk0(α(i)
1 )ak0i · · · σk0(α(i)

ji
)ak0i

σk0+1(α(i)
1 )a(k0+1)i · · · σk0+1(α(i)

ji
)a(k0+1)i

...
...

σk0+i+r−1(α(i)
1 )a(k0+i+r−1)i · · · σk0+i+r−1(α(i)

ji
)a(k0+i+r−1)i

⎞
⎟⎟⎟⎟⎠ .

By Lemma 4.1, X has rank r + i and we obtain a contradiction, which concludes the 
proof. �

We recall the following result which will be used for proving the Roos bound for the 
sum-rank metric. For this purpose, let C be an [n, k]K code and A ∈ GL(n, K), then 
define C ·A := {cA | c ∈ C}.

Theorem 4.3 ([20, Theorem 3]). Let C be an [n, k] sum-rank metric code w.r.t. the ex-
tension F/E and the partition (n1, . . . , n�) of n. Then

dsrk(C) = min{dH(C ·A) | A = diag(A1, . . . , A�), Ai ∈ GL(ni,E)}.
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We are now ready to prove the main result of the section which partially answers to 
Open Problem 2 in [22].

Theorem 4.4. (Sum-rank Roos bound) Let n = m� and C ⊆ Fn be a cyclic-skew-cyclic 
code. Let b, s, δ, k0, . . . , kr be integers, such that gcd(n, s) = 1, ki < ki+1 for i = 0, . . . , r−
1, kr − k0 ≤ δ + r − 2. Let a ∈ K be a primitive �-th root of unity and β be a normal 
element of L/K. If

{(ab+si+kj , σsi+kj (β)) ∈ K× L∗ : 0 ≤ i ≤ δ − 2, 0 ≤ j ≤ r} ⊆ TC ,

then dsrk(C) ≥ δ + r.

Proof. Let c(x, z) =
∑m−1

t=0 ft(x)zt ∈ C, with ft(x) ∈ S ′. We can write

c(x, z) =
m−1∑
t=0

�−1∑
h=0

ft,hx
hzt,

where ft,h ∈ F . For any 0 ≤ i ≤ δ − 2 and 0 ≤ j ≤ r, let ui,j := ab+si+kj and 
vi,j := σsi+kj (β). Now, we apply the total evaluation map Evui,j ,vi,j defined in (9) to 
c(x, z), obtaining

0 = Evui,j ,vi,j (c(x, z)) =
m−1∑
t=0

(
�−1∑
h=0

ft,hu
h
i,j

)
σt(vi,j)v−1

i,j

=
�−1∑
h=0

(
m−1∑
t=0

ft,hσ
t(vi,j)

)
uh
i,jv

−1
i,j .

The expression above holds for every 0 ≤ i ≤ δ− 2 and 0 ≤ j ≤ r, which means that the 
codeword c(x, z) is in the left kernel of the matrix

⎛
⎜⎜⎜⎜⎝

E0 E1 · · · E�−1
σs(E0) σs(E1)as · · · σs(E�−1)as

...
...

...
σ(δ−2)s(E0) σ(δ−2)s(E1)a(δ−2)s · · · σ(δ−2)s(E�−1)a(δ−2)s

⎞
⎟⎟⎟⎟⎠ , (17)

where

Ei =

⎛
⎜⎜⎜⎝
σk0(β)a(b+k0)i σk0+1(β)a(b+k0)i · · · σk0+m−1(β)a(b+k0)i

σk1(β)a(b+k1)i σk1+1(β)a(b+k1)i · · · σk1+m−1(β)a(b+k1)i

...
... · · ·

...
kr (b+kr)i kr+1 (b+kr)i kr+m−1 (b+kr)i

⎞
⎟⎟⎟⎠ . (18)
σ (β)a σ (β)a · · · σ (β)a
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Let w ≤ δ + r − 1 and assume there is a codeword c̄(x, z) ∈ C of Hamming weight 
wt(c̄(x, z)) = w, which means that c̄(x, z) =

∑w
j=0 fj(x)zhj , where fj(x) ∈ S ′ and 

hj ∈ {0, . . . , m − 1}. By following the same reasoning of above, c̄(x, z) is in the left 
kernel of a matrix obtained from (18) by selecting only the columns corresponding to 
the nonzero positions of c̄(x, z). By Lemma 4.2 (with t = δ−1), such a selected submatrix 
has rank equal to w. This implies that c̄(x, z) = 0. So c̄(x, z) = 0 is the only codeword 
having Hamming weight at most δ + r − 1, which shows that dH(C) ≥ δ + r. Now, let 
A = diag(A0, . . . , A�−1) be any matrix with Ai ∈ GL(m, E). Observe that by multiplying 
the matrix in (17) with A, we obtain

⎛
⎜⎜⎜⎜⎝

E0A0 E1A1 · · · E�−1A�−1
σs(E0A0) σs(E1A1)as · · · σs(E�−1A�−1)as

...
...

...
σ(δ−2)s(E0A0) σ(δ−2)s(E1A1)a(δ−2)s · · · σ(δ−2)s(E�−1A�−1)a(δ−2)s

⎞
⎟⎟⎟⎟⎠ ,

where

EiAi =

⎛
⎜⎜⎜⎜⎝
σk0(α(i)

1 )a(b+k0)i σk0(α(i)
2 )a(b+k0)i · · · σk0(α(i)

m )a(b+k0)i

σk1(α(i)
1 )a(b+k1)i σk1(α(i)

2 )a(b+k1)i · · · σk1(α(i)
m )a(b+k1)i

...
... · · ·

...
σkr (α(i)

1 )a(b+kr)i σkr (α(i)
2 )a(b+kr)i · · · σkr (α(i)

m )a(b+kr)i

⎞
⎟⎟⎟⎟⎠ ,

and (α(i)
1 , . . . , α(i)

m ) := (β, σ(β), . . . , σm−1(β))Ai. Thus, applying the same reasoning as 
above together with Lemma 4.2, we get dH(C ·A) ≥ δ + r. We conclude the proof using 
Theorem 4.3. �

With the same strategy of the previous proof, we can show the Hartmann-Tzeng 
bound for the sum-rank metric, of which we omit the proof.

Theorem 4.5. (Sum-Rank HT bound) Let n = m� and C ⊆ Fn be a cyclic-skew-cyclic 
code. Let b, δ, r, t1, t2 be integers, such that gcd(n, t1) = 1, gcd(n, t2) < δ. Let a ∈ K be a 
primitive �-th root of unity and β be a normal element of L/K. If

{(ab+it1+st2 , σit1+st2(β)) ∈ K× L∗ : 0 ≤ i ≤ δ − 2, 0 ≤ s ≤ r} ⊆ TC ,

then dsrk(C) ≥ δ + r.

5. Product codes

Let C1 and C2 be two codes defined over the same field. In this section we study 
the metric properties inherited by the code C1 ⊗ C2 according to the metrics which are 
considered on C1 and C2. We show that if we fix the partition of n = �N given by 
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n = (N, . . . , N) and we consider C1 endowed with the Hamming metric and C2 with the 
rank metric, the tensor product C1 ⊗ C2 is naturally endowed with the sum-rank metric 
with respect to the partition n = (N, . . . , N). We, then, specialize to the case in which 
we consider the first code to be a cyclic code and the second one to be a skew-cyclic 
code.

5.1. Parameters of product codes

Given two linear codes defined over the same field, we recall the notion of product 
code. Consider the vector representation of a tensor product, defined as follows. Let �, N
be arbitrary positive integers. For u = (u0, . . . , u�−1) ∈ F �, v = (v0, . . . , vN−1) ∈ FN , we 
define a ⊗ b to be the vectorization in F�N of their tensor product, that is

u⊗ v := (u0v | u1v | . . . | u�−1v).

Definition 5.1. Let C1 be an [�, k1]F code and let C2 be an [N, k2]F code. The product 
code between C1 and C2 is the [�N, k1k2]F code

C1 ⊗ C2 := 〈{u⊗ v | u ∈ C1, v ∈ C2}〉F .

Equivalently, one can look at elements u ⊗ v without performing a vectorization pro-
cess, simply as matrices in F�×N . In this framework, the product code C1 ⊗ C2 consists 
of all matrices in F �×N whose columns belong to C1 and whose rows belong to C2.

Notice that, the product code C1 ⊗ C2 naturally inherits a partition of its entries as 
(N, . . . , N). Moreover, it also induces naturally a metric, which is inherited from the 
metrics we are equipping the two constituting codes. If we choose the first code C1 to 
be an [�, k1]F code endowed with the Hamming metric, and C2 to be an [N, k2]F code 
endowed with the rank metric for F/E, the product code is naturally endowed with the 
sum-rank metric for F/E, with respect to the partition n = (N, . . . , N). In other words, 
the sum-rank metric can be seen as the tensor product between the Hamming and the 
rank metric. This is formally explained in the following two results.

Lemma 5.2. For every u ∈ F �, v ∈ FN , we have wtsrk(u ⊗ v) = wtH(u) wtrk(v).

Proof. For u = (u0, . . . , u�−1), we write u ⊗ v = (u0v | . . . | u�−1v). By definition, we 
have

wtsrk(u⊗ v) =
�−1∑
i=0

wtrk(uiv) =
∑

i:ui �=0

wtrk(uiv) = wtH(u) wtrk(v). �

Proposition 5.3. Let C1 be an [�, k1]F code and let C2 be an [N, k2]F/E code. Then

dsrk(C1 ⊗ C2) = dH(C1) drk(C2).
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Proof. Let t := dH(C1). For ease of exposition, consider a nonzero codeword c in C1 ⊗C2
as a matrix in F �×N , where each column belongs to C1 and each row belongs to C2. We 
denote the rows of c as c(1), . . . , c(�), which is consistent with (1). Since c is nonzero, then 
there exists at least a nonzero column. Such a column is an element of C1, and therefore 
has at least t nonzero entries, say i1, . . . , it. The corresponding rows are therefore nonzero 
elements of C2. Hence,

wtsrk(c) =
t∑

j=1
wtrk(c(ij)) ≥

t∑
j=1

drk(C2) = t · drk(C2) = dH(C1) drk(C2).

Since for any u ∈ C1, v ∈ C2, the element u ⊗v belongs to C1 ⊗C2, then by Lemma 5.2
we get the equality. �

Notice that a similar tensor-product decomposition of the sum-rank metric into the 
Hamming and rank metrics has been observed for convolutional codes in [26].

Remark 5.4. Observe that the above discussion and results on tensor products is valid 
in a more general setting. The proofs of Lemma 5.2 and of Proposition 5.3 are still true 
if we substitute the rank metric on the second code with any other metric dx, and the 
sum-rank metric in the ambient space F�N with a metric obtained from wtx by extending 
it on � copies of FN using additivity. More precisely, let wtx : FN → R≥0 be a weight 
function that induces a metric dx : FN × FN → R≥0 given by dx(a, b) := wtx(a − b). 
One can define the map

wtsx : F �N −→ R≥0

(c(1) | . . . | c(�)) �−→
�∑

i=1
wtx(c(i)).

Analogously, dsrk(a, b) := wtsrk(a − b). With this setting, for every u ∈ F�, v ∈ FN , we 
have wtsrk(u ⊗ v) = wtH(u) wtrk(v), and for every [�, k1]F code C1 and [N, k2]F code C2, 
we have

dsx(C1 ⊗ C2) = dH(C1) dx(C2).

In other words,

(F �N ,dsx) = (F �,dH) ⊗ (FN ,dx). (19)

5.2. Algebraic structure of cyclic-skew-cyclic codes

Proposition 5.3 shows that the tensor product of a rank-metric code and a Hamming-
metric code naturally inherits a structure of a sum-rank metric code, as also explained 
in Remark 5.4 in a more general setting; see (19).
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However, the metric properties are not the only properties that behave well with 
the tensoring operation. Indeed, we are going to see that also the cyclicity structure is 
somehow preserved. More precisely, we aim to show that the tensor product of a cyclic 
code and a skew-cyclic code is a cyclic-skew-cyclic code. We first prove the following 
result on the automorphism group.

Proposition 5.5. Let C1 be an [�, k1]F code and let C2 be an [N, k2]F/E code. Then

Autsrk(C1 ⊗ C2) ⊇ 〈ιH(AutH(C1)), ιrk(Autrk(C2))〉,

where,

ιH : ((F∗)� � (Aut(F) × S�)) −→ (((F∗)� × GL(n,E)) � Sλ(n)) � Aut(F)
(a, θ1, π) �−→ (a, IN , . . . , IN︸ ︷︷ ︸

� times

, π, θ1),

ιrk : GL(n,E) � Aut(F)) −→ (((F∗)� × GL(n,E)) � Sλ(n)) � Aut(F)
(M, θ2) �−→ (1,M, . . . ,M︸ ︷︷ ︸

� times

, id, θ2).

Proof. Consider a nonzero codeword c in C1⊗C2 as a matrix in F �×N , where each column 
belongs to C1 and each row belongs to C2. We denote the rows of c as c(1), . . . , c(�) ∈ C2
and the columns of c as c(1), . . . , c(N) ∈ C1. Let ψH := (a, θ1, π) ∈ AutH(C1) and let 
ψrk : (M, θ2) ∈ Autrk(C2) be arbitrary. We only need to show that ιH(ψH), ιrk(ψrk) ∈
Autsrk(C1 ⊗ C2).

First, consider ιH(ψH) acting on c. Writing

c =
(
c(1) . . . c(N)

)
,

we have that ιH(ψH) acts on each c(i) as ψH. Since ψH ∈ AutH(C1), then each column of 
ιH(ψH)(c) still belongs to C1, and thus ιH(ψH)(c) ∈ C1 ⊗ C2. For the arbitrariness of the 
codeword c, we deduce that ιH(ψH) ∈ Autsrk(C1 ⊗ C2).

Now consider ιrk(ψH) acting on c. Writing

c =

⎛
⎜⎜⎝

c(0)

...
c(�−1)

⎞
⎟⎟⎠ ,

we have that ιrk(ψrk) acts on c as

ιrk(ψrk)(c) =

⎛
⎜⎜⎝

θ2(c(0))M
...

θ (c(�−1))M

⎞
⎟⎟⎠ .
2
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Therefore, ιrk(ψrk) naturally acts on each row of c as ψrk, showing that ιrk(ψrk)(c) ∈ C1⊗
C2. For the arbitrariness of the codeword c, we deduce that ιrk(ψrk) ∈ Autsrk(C1⊗C2). �

We first give a group-theoretic proof of the fact that the tensor product of a cyclic 
code and a skew-cyclic code is cyclic-skew-cyclic.

Proposition 5.6. Let C1 be a cyclic code of length � over F and let C2 be a skew-cyclic 
code of length N over F . Then, C1 ⊗ C2 is (equivalent to) a cyclic-skew-cyclic code.

Proof. By assumption, C1 is cyclic, so (1, π1, id) ∈ AutH(C1), where π1 = (1 2 · · · �) is 
the right-shift operator on F�. Furthermore, C2 is skew-cyclic with respect to θ, hence 
(P, θ) ∈ Autrk(C2), where P is the N ×N permutation matrix associated to (1 2 · · · N). 
By Proposition 5.5, we have that ιH(1, π1, id), ιrk(P, θ) ∈ Autsrk(C1 ⊗ C2). However, it is 
easy to see that

ιH(1, π1, id) = ρ, ιrk(P, θ) = φ,

where ρ and φ are given in (3) and (4), respectively. Hence, C1⊗C2 is a cyclic-skew-cyclic 
code. �

In the case described in Proposition 5.6, in principle one might have difficulties in 
understanding the structure of the code C1 ⊗ C2 starting from the structure of C1 and 
C2. Also the proof does not really help, since it is based on group theory. However, as 
mentioned in Remark 2.4, when char(F) does not divide �, it was shown in [22] that the 
ring

R′ :=
(
F [x]�(x� − 1)

)
[z; θ]

�(zm − 1)

is a principal left ideal ring. The good news is that in this case we can determine the 
generator polynomial of ν(C1 ⊗ C2).

First, we introduce the standard polynomial representations for cyclic and skew-cyclic 
codes. We define the map μH : F � → S ′ as

μH(u0, . . . , u�−1) =
�−1∑
i=0

uix
i,

and the map νrk : FN → S as

νrk(v0, . . . , vN−1) =
N−1∑
j=0

vjz
j .

Here we give the explicit description of the generator polynomial of ν(C1 ⊗ C2) ⊆ R′

in terms of the generator polynomials of μH(C1) and νrk(C2).
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Theorem 5.7. Suppose that � and char(F) are coprime. Let C1 be an [�, k1]F cyclic code 
with μH(C1) = (f1(x)) and let C2 be an [N, k2]F/E skew-cyclic with νrk(C2) = (f2(z)). 
Then, ν(C1 ⊗ C2) = (f1(x)f2(z)).

Proof. Let g(x, z) := f1(x)f2(z) and define I := (g(x, z)) ⊆ R′. First, observe that 
degx(g) = degx(f1) = � − k1 and degz(g) = degz(f2) = N − k2. Now, consider the set

P := {xizjg(x, z) : 0 ≤ i ≤ k1 − 1, 0 ≤ j ≤ k2 − 1},

which is clearly contained in I. Moreover, ν−1(P) is a set of F -linearly independent 
vectors in F �N : to see that, choose any term ordering on the monomials {xizj : i, j ∈ N}. 
The elements of P have all distinct leading monomials, and one can immediately deduce 
that they are F -linearly independent. Therefore,

dimF (ν−1(I)) ≥ |P| = k1k2.

Now it is enough to show that ν−1(I) ⊆ C1 ⊗ C2 to deduce that they coincide. In 
particular, we only need to show that ν−1(g(x, z)) ∈ C1 ⊗ C2. If we write

f1(x) =
�−1∑
i=0

aix
i, f2(z) =

N−1∑
j=0

bjz
j ,

then

f1(x)f2(z) =
∑
i,j

aibjx
izj

and the matrix representation of ν−1(f1(x)f2(z)) is

(
b0a

� . . . bN−1a
�
)

=

⎛
⎜⎜⎝

a0b

...
a�−1b

⎞
⎟⎟⎠ = a� ⊗ b,

where a = (a0, . . . , a�−1), b = (b0, . . . , bN−1). Thus, it is clear that ν−1(f1(x)f2(z)) ∈
C1 ⊗ C2. �
6. Product bounds for cyclic and skew-cyclic codes

We can now determine the defining set of the tensor product of a cyclic code and a 
cyclic-skew-cyclic code, under a certain assumption on the first code. We introduce the 
following notation. Let X, Y be two sets, and A ⊆ X, B ⊆ Y . We denote by A �B the 
set
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A �B := (A× Y ) ∪ (X ×B) = {(x, y) ∈ X × Y | x ∈ A or y ∈ B}.

We recall that, for an [�, k]F cyclic code C1 such that μH(C1) = (f1(x)), the defining 
set is

TH
C1

= {a ∈ L | a� = 1, f1(a) = 0}.

Furthermore, for an [N, k]F/E skew-cyclic code C2 such that νrk(C2) = (f2(z)), the 
defining set is

T rk
C2

= {β ∈ L∗ | Evσ
β(f2(z)) = 0}.

Theorem 6.1. Let C1 be an [�, k1]F cyclic code with μH(C1) = (f1(x)) and let C2 be an 
[N, k2]F skew-cyclic code with νrk(C2) = (f2(z)). Moreover, assume that f1(x) ∈ E[x]. 
Then,

TC1⊗C2 = TH
C1

� T rk
C2
.

Proof. Let g(x, z) = f1(x)f2(z). By Theorem 5.7 we have that ν(C1 ⊗ C2) = (g(x, z))
and

TC1⊗C2 = {(a, β) ∈ K× L∗ | a� = 1,Eva,β(g(x, z)) = 0}.

However, we have

Eva,β(g(x, z)) = Evσ
β(Eva,z(g(x, z))) = Evσ

β(Eva,z(f1(x)f2(z)))

= Evσ
β(f1(a)f2(z)) = f1(a)Evσ

β(f2(z)),

where the second to last equality follows from (7). From this, we immediately conclude 
the proof. �

We are now going to combine the Roos bound and the Hartmann-Tzeng bound for 
cyclic-skew-cyclic codes obtained in Section 4, with the results on the minimum sum-
rank distance of a product code of Proposition 5.3. This allows to derive new bounds on 
the minimum (Hamming) distance of cyclic codes and on the minimum (rank) distance 
of skew-cyclic codes, and it will be done with the aid of Theorem 6.1.

Theorem 6.2 (Roos Product Bound). Let C1 be an [�, k1, dH]F cyclic code whose gener-
ator polynomial belongs to E[x] and let C2 be an [m, k2, drk]F/E skew-cyclic code. Let 
b, s, δ, k0, . . . , kr be integers, such that gcd(�m, s) = 1, ki < ki+1 for i = 0, . . . , r − 1, 
kr−k0 ≤ δ+r−2. Let a ∈ K be a primitive �-th root of unity and β be a normal element 
of L/K. If
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{(ab+si+kj , σsi+kj (β)) ∈ K× L∗ : 0 ≤ i ≤ δ − 2, 0 ≤ j ≤ r} ⊆ TH
C1

� T rk
C2
,

then

dH ≥
⌈
δ + r

drk

⌉
and drk ≥

⌈
δ + r

dH

⌉
.

Proof. Let us consider the product code C1 ⊗ C2. By Theorem 5.7, C1 ⊗ C2 is a cyclic-
skew-cyclic code whose defining set is TC1⊗C2 = TH

C1
� T rk

C2
, by Theorem 6.1. Using the 

Roos bound for sum-rank metric codes of Theorem 4.4, we hence deduce that

dsrk(C1 ⊗ C2) ≥ δ + r.

On the other hand, by Proposition 5.3, we also know that

dsrk(C1 ⊗ C2) = dH(C1) drk(C2).

Combining this with the previous inequality, we obtain the desired bounds. �
We remark that clearly the two bounds of Theorem 6.2 are equivalent. However, 

we decided to explicitly state both in order to emphasize the fact that we can lower 
bound both the minimum Hamming distance of the cyclic code C1 and the minimum 
rank distance of the skew-cyclic code C2. In particular, depending on the situation, we 
may design a suitable skew-cyclic (resp. cyclic) code to obtain new lower bounds on the 
minimum Hamming (resp. rank) distance of a given cyclic (resp. skew-cyclic) code.

We conclude this section deriving in the same way an Hartmann-Tzeng product bound. 
The result is based on Theorem 4.5 instead of Theorem 4.4, but the rest of its proof is 
completely analogous to the proof of Theorem 6.2. For this reason we omit it.

Theorem 6.3 (Hartmann-Tzeng Product Bound). Let C1 be an [�, k1, dH]F/E cyclic code 
whose generator polynomial belongs to E[x] and let C2 be an [m, k2, drk]F skew-cyclic 
code. Let b, δ, r, t1, t2 be integers, such that gcd(�m, t1) = 1, gcd(�m, t2) < δ. Let a ∈ K

be a primitive �-th root of unity and β be a normal element of L/K. If

{(ab+it1+st2 , σit1+st2(β)) ∈ K× L∗ : 0 ≤ i ≤ δ − 2, 0 ≤ s ≤ r} ⊆ TH
C1

� T rk
C2
,

then

dH ≥
⌈
δ + r

drk

⌉
, drk ≥

⌈
δ + r

dH

⌉
.
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