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A B S T R A C T   

An accurate determination of the product quality is one of the key challenges in lithium-ion battery (LIB) production. Since LIBs are complex, electrochemical 
systems, conventional quality control measures such as aging are time-intensive and costly. This paper presents the applicability of machine learning approaches for 
an early quality prediction and a classification of cells in production. Using inline measurement data of 29 NMC111/graphite pouch cells, linear regression models 
and artificial neural networks (ANNs) were compared regarding their prediction accuracy. From comprehensive electrochemical impedance spectroscopy (EIS) and 
cycling datasets, a total of 24 features were extracted, combined, and analyzed. The best ANN achieved a test error of 10.1% at an observation time of less than two 
days. For a classification into two cycle life groups, a maximum accuracy of 97% was reached. Moreover, a reliable classification of high-lifetime cells was achieved 
using only EIS measurements during wetting. The results highlight the great potential of data-driven models for the prediction of LIB quality in production as well as 
their implementation to increase the throughput and the overall cell quality.   

1. Introduction 

Reducing greenhouse gas emissions is one of the biggest current 
challenges for society, leading manufacturers to push the development 
of electric vehicles (EVs). For powering EVs, lithium-ion batteries (LIBs) 
as electrochemical storage devices have taken a predominant role due to 
their high energy density as well as their long cyclical and calendrical 
lifetime [1]. So far, high costs and safety concerns have limited broad 
market penetration. Increasing quality and reducing manufacturing 
costs within the battery production is therefore a key challenge [2]. 

Looking at the production chain, battery quality is primarily exam
ined in the final process steps: formation, aging, and end-of-line (EoL)- 
testing [2]. These steps are critical for ensuring high-quality LIBs but add 
a great expense to the manufacturing costs [3]. During the formation, 
the cell capacity is determined as the first indicator for the overall cell 
quality [4]. From the cell capacity, only major errors in production can 
be derived and no information about the expected cycle life is provided 
[5]. As LIBs must fulfill highest safety standards during several years of 
operations, the quality of the cells is determined in a time-consuming 
aging process [6]. During aging, cells are stored in climate chambers 
and monitored using battery test systems. A self-discharge of the LIBs 
during storage is observable, which generates a leakage current. The 
resulting leakage current is defined as the internal current after 
completion of the post-charge diffusion [7]. The leakage current is 

measured continuously and is usually used as an indicator for the quality 
of the cells. Defect cells are detectable by an increased leakage current 
and are removed in the subsequent EoL-test. However, the leakage 
current decreases non-linearly and converges below a critical threshold 
value after sufficient measuring time [8]. Therefore, a measuring time of 
up to 3 weeks is necessary for quality assurance [9]. With 28.7% of the 
total manufacturing costs, formation and aging account for a consider
able share [10]. One feasible approach is the use of predictive quality 
models to identify the cell quality before entering the aging step to 
reduce the process time or even eliminate the entire process step. Hence, 
methods for the early prediction of battery life based on production data 
are required. 

In recent years, several data-driven methods were proposed to 
analyze the state and quality of LIBs using a wide range of analysis 
methods [11]. To predict the lifetime or the remaining useful life (RUL), 
a variety of methods from the fields of stochastic processes, filtering, and 
artificial methods were applied [12]. In particular, feature-based ap
proaches are a promising solution [13]. For these approaches, cell data 
is collected using battery test systems, and suitable features are identi
fied and selected [14]. Based on these, machine learning models were 
developed and applied to determine correlations in the datasets [15]. 
The aim is to obtain a high correlation between features of the dataset 
and the lifetime of the cell [16]. 

The end of the cell lifetime is commonly defined at 80% of the initial 
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capacity [17]. The corresponding number of cycles (charging and dis
charging process) at which the final capacity is reached, is defined as the 
cycle life of the cell. Due to the increasing computing power, much effort 
is spent lately on the development of prediction models using machine 
learning and artificial intelligence approaches. 

Among the first, Wu et al. showed that an online RUL estimation is 
possible using a feed-forward neural network. They achieved an error of 
less than 5% in cycle life prediction within practical operation but were 
using the cycling data of two LIBs only [18]. Mansouri et al. examined 
the RUL of lithium polymer batteries based on voltage data analysis. By 
comparing linear and non-linear models, they concluded that non-linear 
models outperform linear models, even with optimization methods such 
as the “least absolute shrinkage and selection operator” (LASSO) [19]. 
Ren et al. achieved the best accuracy rate of 88.2% for RUL prediction 
with 21 extracted features and a deep neural network in comparison to 
linear regression, a Bayesian regression, and a support vector machine 
(SVM), and a high number of input cycles [20]. Besides the prediction of 
the RUL, the early classification of LIBs into high and low lifetime groups 
was investigated. Zhu et al. 2019 compared machine learning models 
like decision trees, SVM, and k-nearest-neighbor based on the accuracy 
of the lifetime prediction [21]. They achieved the highest accuracy of 
95.2% classifying commercial iron phosphate (LFP)/graphite LIBs in 
two groups with a threshold at 550 cycles using a decision tree model. 
Furthermore, the capacity difference between the initial two cycles was 
identified as the most important feature for the prediction. Tracing back 
the strongly fluctuating lifetime of the tested cells was not possible, since 
no information on production and material properties was given. Sev
erson et al. also classified commercial LFP/graphite LIBs at a threshold 
of 550 cycles using the features extracted from five input cycles. Using a 
logistic regression model and nine features, they achieved a test error of 
4.9% [22]. In addition, a cycle life prediction was performed with a 
linear regression model, achieving a test error of 9.1% with a very high 
number of 100 input cycles. 

The variety of battery cell systems and applied machine learning 
methods demonstrate the power of RUL prediction and cycle life clas
sification in LIB quality analysis. However, these models were applied to 
commercial cells only. Defective and short-lifetime cells were detected 
exclusively during the operation. This is highly problematic since LIBs 
are usually packaged or assembled into battery packs after production 
and defective cells cannot be removed despite accurate prediction. 
Therefore, a method for an early quality prediction during production is 
required to detect production errors before the cells are further 
processed. 

In this work, machine learning approaches were examined and used 
to predict cell cycle life using data from wetting, formation, and early 
cycling without the need for complex degradation models. In-house 
manufactured pouch cells with varied electrolyte quantities were eval
uated concerning the achievable cycle life. Since promising results in 
predicting cycle life were obtained in the literature with both an ANN 
and a linear regression model, both methods were examined and 
compared using a total of 24 input features. The most suitable model was 
chosen for quality classification as well as the prediction performance 
evaluation. Subsequently, a classification in groups with low and high 
cycle life was performed using data from the production processes and 
early cycling. The prediction and classification models were combined 
to generate a grading into four quality groups. Finally, production 
strategies are presented based on the prediction models to increase the 
throughput and enhance the overall quality. 

2. Experimental 

The large-format multilayer pouch cells used in this work were 
assembled on the semiautomatic manufacturing pilot line at the Tech
nical University of Munich [23]. For the production of the LIBs, 
commercially available double-sided coated cathode and anode coils 
were purchased. Detailed information on the electrode specifications 

and production are provided by Günter et al. [24]. The essential aspects 
are briefly summarized in the following. 

2.1. Cell assembly 

Cell assembly was performed inside a dry room with a dew point of 
less than -45 ◦C. Electrode roll material was separated using a laser 
cutting process with an automated material feed and a cutting speed of 
0.8 m/s. Anodes were cut to a format of 101 mm x 73 mm and cathodes 
to a format of 104 mm x 76 mm. The sheets were stacked by an auto
mated z-folding system with a commercial membrane separator (Cel
gard 2325) in between the electrodes. Each cell stack contained 13 
anode sheets and 12 cathode sheets. The current collector foils and the 
cell tabs were joined by ultrasonic welding (Branson Ultraweld L20). 
The welded cell stacks were packaged into a flexible, deep-drawn pouch 
bag foil and subsequently sealed at three sides. To ensure that the ppm of 
water molecules decreases sufficiently prior to the electrolyte filling, the 
packaged cell stacks were dried in a vacuum oven at 60 ◦C and 20 mbar 
in three repeating cycles. 

2.2. Electrolyte filling 

The electrolyte (LP572, BASF) consisted of 1 M LiPF6 in a mixture of 
ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a weight 
ratio of 3:7 for EC:EMC with 2 wt% vinylene carbonate (VC). The pouch 
cells were filled with a single dosing step since the amount of electrolyte 
can fit in the entire void volume of the cell. Before dosing, the filling 
chamber was flushed with nitrogen to reduce the ambient water con
centration. Subsequently, the electrolyte was injected with a pressure of 
80 mbar. The electrolyte quantity was intentionally varied to simulate 
process deviations. The number of cells per dosing volume with the 
respective electrolyte quantity are summarized in Table 1. The cells 
were subsequently sealed and positioned horizontally for the 180 min 
wetting procedure. 

2.3. Formation 

A battery cell test system (CTS, BaSyTec) was used for the formation 
of the cells. The temperatures, the voltages, and the currents were 
tracked with the corresponding BaSyTec software. The cell capacities 
were determined by the last discharge cycle during formation and are 
shown in Table 1. Table 2 shows the formation protocol. During SEI 
formation, gasses are produced which are directed into the gas bag by 
applying external pressure to the cell. This was achieved by a specially 
designed cell fixture that applies a constant mechanical pressure of 0.2 
MPa on the cell. After formation, the cells were degassed and subse
quently sealed. Degassing was done inside a nitrogen-flushed vacuum 
chamber at an evacuated pressure of 100 mbar. 

2.4. Cycle life testing 

Cycle life testing was performed inside a controlled climate chamber 
at a temperature of 25 ◦C using the same cell fixture for pressure 
application as in the formation process. Table 2 shows the cycling pro
tocol that contains 50 cycles at 1C with two recovery cycles at C/10 and 
C/2, respectively. Recovery cycles are implemented to determine the 
irreversible capacity loss. Fig. 1 shows the discharge capacity of the 1C 
cycles during cycle life testing. The course of the discharge capacity for 
increasing cycle numbers is displayed until the end-of-life capacity is 
reached. End-of-life capacity is defined at 80% of the initial capacity 
[17]. The corresponding number of cycles at which the end-of-life ca
pacity is reached is defined as the cycle life of the cell. Each cell is 
color-coded according to the respective cycle life. The inset displays the 
first 20 cycles, which are used as input data for the later prediction and 
classification. The strong variation in the cycle life can be attributed to 
variations in the electrolyte quantity. Depending on the electrolyte 
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quantity, the discharge capacity decreases at different rates and in a 
different progression. In the first 20 cycles, however, a trend is only 
evident for the cells with very short cycle lives. A detailed analysis on the 
dependency of the cycle life on the electrolyte quantity is provided by 
Günter et al. and addressed in detail in Section 4.2 [24]. The exact cycle 
life and electrolyte quantity for each cell is shown in the Supplementary 
Table A1. 

2.5. Electrochemical impedance spectroscopy 

During wetting, after formation, and after degassing, electro
chemical impedance spectroscopy (EIS) measurements were performed 
using a potentiostat (Interface 5000E, Gamry Instruments). At first, the 
open-circuit voltage (OCV) was measured for 15 s at a sample period of 
0.5 s. The subsequent EIS measurements had a frequency range from 
100 kHz to 1 Hz and an alternating current excitation signal amplitude 
of 10 mV (root mean square) around the OCV. Ten equally distributed 
sample points were taken per decade and the alternating current was 
summed with the direct current for the analysis. During wetting, alter
nating OCV and EIS measurements were repeated for at least 90 min as 
the wetting state influences the cell impedance [25]. After formation 
and after degassing, three subsequent measurement cycles were carried 
out since the cells were in a relatively stable state [24]. The results from 
the EIS measurement were analyzed using two different approaches. In 
the classification model, the data was processed unfiltered (see Section 
4.3). For the regression model, critical parameters such as the 
high-frequency resistance (HFR) and low-frequency resistance (LFR) 
were derived. The HFR is defined as the impedance value at which the 
imaginary part is zero [25]. The LFR is obtained by linear extrapolation 
of the low-frequency region in the Nyquist plot, referred to as Warburg 
impedance [26]. The real part of the impedance of the linear fit at a zero 
imaginary part gives the value for the LFR (see the Supplementary 
Figure A2 for further details). 

3. Methods 

In the methods section, the theory for understanding the prediction 
and classification models is presented, and the exact specifications 
explained to ensure easy transferability of the models to production. The 
production and testing data were first pre-processed to determine rele
vant parameters, which served as input data for the prediction and 
classification models. Subsequently, the linear regression model and the 
artificial neural network were created, and the individual specifications 
defined. 

3.1. Data pre-processing 

Linear and non-linear machine learning models were created to 
predict the cycle life and to classify the LIBs in groups with varying cycle 
lives. In total, the datasets of 29 pouch cells were recorded and analyzed 
by machine learning models. The cells were randomly divided into 
training and test cells with a training-test ratio of approx. 70% to 30%, 
as suggested by Bhagwat et al. [27]. Of the 29 available cells, 20 cells 
were used for the training and 9 cells for the test of the models. Three 
different data sources were used, derived from measurements during 
wetting, formation, and subsequent cycling. At first, the datasets were 
pre-processed, and features were created. For each feature, the 

Table 1 
Controlled variation of the electrolyte quantity to simulate production errors and to obtain deviations in the cycle life. The values in the parentheses for the “number of 
cells” corresponds to the number of cells that were rebuilt in a second batch. The cell capacity was determined at 25 ◦C and the last formation cycle at a discharge 
current of 0.486 A.  

Number of cells 3 3 3 6 (3) 3 7 (4) 4 (4) 

Electrolyte quantity (7.11±0.05) ml (8.70±0.17) ml (10.98±0.05) ml (12.38±0.33) ml (14.26±0.19) ml (15.83±0.26) ml (19.62±0.53) ml 
Cell capacity (3.28±0.04) Ah (3.31±0.03) Ah (3.05±0.23) Ah (3.32±0.11) Ah (3.41±0.02) Ah (3.42±0.03) Ah (3.46±0.02) Ah  

Table 2 
Measurement procedures applied to the pouch cells. All procedures were per
formed in a controlled climate chamber at a temperature of 25 ◦C. During for
mation, the current was identical for all cells, whereas during cycling, the C-rate 
was determined based on the cell capacity after formation. Data points were 
recorded every 10 s. Abbreviations–CC–Constant current, CV – Constant voltage, 
Umax = 4.2 V, Umin = 2.7 V.  

Procedure Direction (Dis)charge Stop condition Cycles Loops 

Formation charge CC @ 0.486 A U > Umax    

charge CV @ Umax I < 0.243 A 2 1  
discharge CC @ 0.486 A U < Umin    

Cycling charge CC @ C/10 U > Umax    

charge CV @ Umax I < C/20 1   
discharge CC @ C/10 U < Umin    

charge CC @ C/2 U > Umax    

charge CV @ Umax I < C/20 1 20  
discharge CC @ C/2 U < Umin    

charge CC @ 1C U > Umax    

charge CV @ Umax I < C/20 50   
discharge CC @ 1C U < Umin    

Fig. 1. Capacity degradation of the examined cells. The figure shows the 
discharge capacity over sequential cycles for 29 NMC111/graphite pouch cells 
at 1C. The C-rate was calculated using the discharge capacity after formation, 
shown in Table 1. Each data line represents one cell and is color-coded ac
cording to the cycle life of the cell. Cycle life is defined as the cycle number in 
which the capacity drops below 80% of the initial capacity. The inset displays 
the first 20 cycles which are examined in detail in the paper. The strong vari
ation in the cycle life is due to variations in the electrolyte quantity to introduce 
process deviations. 
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Pearson’s ratio, also known as the correlation coefficient cor(x, y), were 
calculated [28]: 

cor(x, y) =
∑n

i=1(xi − x)(yi − y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(yi − y)2

√ (1) 

The correlation coefficient is restricted to values between -1 and 1, 
depending on a positive or negative correlation between two variables x 
and y. A value higher than |0.8| indicates a high correlation and a value 
below |0.5| shows a very weak correlation. In between a value of |0.5| 
and |0.8|, the correlation is moderate [21]. A horizontal bar above the 
variable denotes the arithmetic mean and the index i indicates the 
summation index. The features were then classified by their correlation 
and combined for better results. The features and the corresponding 
correlation coefficients are shown in the Supplementary Table A2. In 
addition to the feature extraction, a raw data approach was conducted in 
the classification. In this approach, the complete impedance spectros
copy dataset was provided unfiltered as an input feature set to the 
model. However, a larger feature set does not necessarily result in a 
better prediction due to the high dimensionality of the cell data. Espe
cially with a limited data set, there is a risk of reducing the accuracy of 
the models, since correlations are more difficult to detect [29]. To avoid 
this issue, the raw data approach was only applied to the EIS and the 
formation data, because the dimensionality is much lower than in the 
cycle life data. 

3.2. Linear regression model 

The features were used as input for a linear regression model. A 
linear relationship between the feature values xi and the predicted cycle 
lives y* is defined according to Eq. (2). Following the approach of Joshi 
et al., weight parameters w0 and wi were introduced to assign different 
weights to the features [30]. 

y* = w0 +
∑n

i=1
wixi (2) 

To avoid overfitting, a regularization technique was applied [30]. As 
a regularization method, the elastic net was used, because of its 
improved performance when high correlations between features are 
present [31]. Furthermore, the elastic net shows better performance 
when analyzing correlations with a higher number of predictors xi than 
observations y [32]. The elastic net is a combination of the LASSO 
regression and the ridge regression. Detailed information on regularized 
linear regressions is provided by Joshi et al [30]. The resulting loss 
function for the linear regression is shown in Eq. (3) [33]. 

J(w) =
1
2n

∑n

i=1

(
y*( xij

)
− yi

)2
+

(

rλ
∑p

j=1

⃒
⃒wj
⃒
⃒

)

+

(
1 − r

2
λ
∑p

j=1
w2

j

)

(3) 

The loss function consists of three terms. The first term is the square 
error between the predicted cycle life y* and the observed cycle life y. 
The second and third terms consist of the L1-penalty (

∑p
j=1

⃒
⃒wj
⃒
⃒) and the 

L2-penalty (
∑p

j=1w2
j ), respectively. By using the L1-penalty, the absolute 

value of the weight is added as a penalty term. The L1-penalty uses the 
squared value of the weight. For the combination between the L1- 
penalty and the L2-penalty, an additional parameter r and a hyper
parameter λ is required. In machine learning, a hyperparameter is 
defined as a parameter whose value is used to control the learning 
process [30]. To determine the optimal values for the hyperparameters r 
and λ, a 4-fold-cross-validation was applied, for which the training data 
was subdivided into four equal-sized groups, as addressed by Zhang 
et al. [34]. One group acted as the validation set and the other groups as 
training data. While varying the hyperparameters, the validation error 
was analyzed. The optimal values for minimizing the loss function and 
thereby the model error were determined. 

3.3. Artificial neural network 

Besides the linear regression model, ANNs were created to solve the 
regression and the classification problem. The main difference between 
a regression and a classification is the output. By solving a regression 
problem, the aim is to predict a continuous variable, e.g. the cycle life. A 
classification pursues the aim to allocate data to different groups. Since 
the cells were categorized in distinct groups with different cycle lives the 
variable was discrete. 

ANNs are based on the structure of neural networks in a biological 
brain. Therefore, artificial neurons are arranged in different layers and 
connected to each other [35]. An ANN consists of at least one input and 
one output layer [36]. The layers in between are called hidden layers 
and any number of hidden layers is possible in general. Using a 
feed-forward ANN, the information is transported from the input to the 
output layer. The algorithm which processes the information is a chain 
of different mathematical functions. At first, the input values in a neuron 
are summed up. The sum is used in an activation function, where the 
output of the neuron is calculated [30]. For the later classification task, 
the cells were divided into different cycle life groups. Thereby, the 
one-hot encoded representation was used for the different groups. 
One-hot defines the conversion to a vector with the elements 0 and 1. 
The value 1 represents the related category and 0 the other vector en
tries [30]. Thus, the number of elements equals the number of cate
gories. As a loss function for the regression, the mean squared error was 
used. For the classification, the categorical cross-entropy function L was 
applied [37]: 

L(y*, y) = −
∑

i
yilog

(
y*

i

)
(4) 

It measures the dissimilarity between the observed values y and the 
predicted values y* [37]. The significance of the models was evaluated 
by the percentage error, which is defined in Eq. 5: 

error =
1
n
∑n

i=1

⃒
⃒yi − y*

i

⃒
⃒

yi
⋅100 (5)  

3.3.1. Network architecture 
Fig. 2 shows the used ANN with five hidden layers. As the input and 

the output layer vary between the models, they are highlighted in blue. 
Existing ANNs for the battery cycle life prediction exhibit a simple 
network architecture with a small amount of hidden layers [38,39]. To 
determine a suitable network architecture, different feed-forward neural 
networks were created and compared based on their performance. Fig. 3 
presents an extract with the comparison of five network architectures for 
the classification problem. The structure of the ANNs is shown in 
Table 3. The loss function decreased strongly during the first epochs for 
all network configurations considered. The number of epochs defines the 
repetitions in which the learning algorithm runs through the entire 
training dataset. An increase in the loss function or strong fluctuations 
indicated inadequate network (net) structures for network 3 as well as 
network 1 and network 5. The best results were obtained with the ANN 
consisting of five hidden layers, while network 4 with two hidden layers 
showed the lowest fluctuations. Nevertheless, network 2 converged to 
the lowest value at slightly higher fluctuations. Therefore, network 2 
with five hidden layers was selected. Starting in the first hidden layer, 
the number of neurons was 40, 32, 24, 16, and 8. The results of the 
comparison of the same network architectures for the regression prob
lem are shown in the Supplementary Fig. 1. 

3.3.2. Activation function 
The rectified linear unit (RELU) function, shown in Eq. (6), was used 

as the activation function for all hidden layers [40]. 

θ(x) =
{

0, for x ≤ 0
x, for x > 0 (6) 
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Advantages of the RELU-function are efficiency in terms of compu
tation power and a faster convergence than other activation functions 
[41]. This results in a reduced training time. The activation function for 
the output layer of the regression problem was the linear function and 
the Softmax-function for the classification problem. Other frequently 
used activation functions like the Leaky RELU-function and Maxout 
were used but showed no improved results. 

3.3.3. Optimizer 
An optimization algorithm (optimizer) was used to improve the 

training speed and ensure the accuracy of the results [42]. The AdaMax 
algorithm was used as an optimizer, since it showed the best perfor
mance in comparison to other optimizers, like Adam, AdaGrad, and 
stochastic gradient descent (SGD). The AdaMax is a variant of the Adam 
optimizer and is based on the infinity norm [43]. 

3.3.4. Learning rate 
An adaptive learning rate is used for the model to adjust the step size 

at each iteration when approaching the minimum of the loss function 
[30]. Hence, the model can react to an increasing loss function by 
decreasing the learning rate, which reduces the error. A value of 0.1 for 
the adaptive learning rate was identified as suitable. 

3.3.5. Regularization method 
To reduce overfitting, early stopping was used as a regularization 

method because of the effectiveness and simplicity [44]. Training and 
test errors were calculated after every iteration. If the test error 
increased over a certain number of iterations, the running calculation 
was stopped. The parameters of the ANN are summarized in Table 4 and 
remain unchanged for the following investigations. 

4. Results 

To compare the predictive power of the presented machine learning 
models, the datasets were pre-processed, and features were extracted. 
Decisive features were chosen based on their correlation strength and 

combined to gain the minimum prediction error. Subsequently, several 
classification tasks were performed with varying amounts of production 
and cycling data as input. 

4.1. Data analysis 

Initially, the database, which is necessary for an accurate prediction, 
was identified. Since the complete dataset is too complex to be analyzed 
in the regression, features were extracted, which served as input for the 
machine learning models. An overview of all examined features, ordered 
by correlation strength, can be found in the Supplementary Material. A 
separation can be made into features extracted from the electrochemical 
impedance spectroscopy (resistance) and features extracted from the 
battery test system (voltage and current). Furthermore, the features can 
be divided according to their respective process step: wetting, forma
tion, or cycling. Features obtained from cycling are most commonly used 
in the literature. This is because most studies aim to determine the 

Fig. 2. Representation of the used ANNs. xi represents the extracted features, 
x(h)

n the neurons and yj the output values. Input and output layer are highlighted 
in blue. The number of hidden layers and respective neurons were constant for 
both the regression and the classification task. A detailed investigation on the 
structure of the hidden layers is provided in Fig 3. 

Fig. 3. Comparison of five network architectures. The number of epochs de
fines the repetitions in which the learning algorithm runs through the entire 
training dataset. Number and structure of the hidden layers varied for the 
respective nets and are listed in Table 3. The respective loss functions were 
determined using the classification task, presented in Section 4.3. A further 
evaluation using the prediction task can be found in the Supplementary Fig. 1. 

Table 3 
Structure of the compared network architectures. The selected “network 2′′, 
which is depicted in Fig. 2, is highlighted in gray.  

Layer 1 2 3 4 5 6 7 8 

Network 1 40 35 30 25 20 15 10 5 
Network 2 40 32 24 16 8 - - - 
Network 3 40 30 20 10 - - - - 
Network 4 40 20 - - - - - - 
Network 5 20 10 - - - - - -  

Table 4 
Summary of the specifications of the selected ANN.  

Parameter Specification 

Network architecture Five hidden layers 
(40 – 32 – 24 – 16 – 8 neurons) 

Activation function RELU-function 
Optimizer AdaMax 
Learning rate Adaptive learning rate 

(starting at 0.1) 
Regularization method Early-Stopping  
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remaining useful life by using commercially available cells. Hence, in
formation on cell production is not included, which limits the potential 
for early cycle life prediction. Regarding the cycle life prediction during 
initial cycling, Severson et al. and Zhu et al. have reported a number of 
promising features that were included in this work [21,22]. However, 
formation and wetting features have not been reported so far. Several 
features were therefore extracted from production data and examined 
regarding their suitability for early cycle life prediction and 
classification. 

Table 5 shows the two features from the respective sources with the 
highest correlations. Correlation coefficients were calculated using Eq. 
(1). Δ indicates the difference, while the variance describes the second 
momentum of the distribution. The features generated from the EIS and 
formation data show only a weak correlation. However, the features 
extracted from the cycling have the highest correlations due to the data 
obtained from multiple charge and discharge cycles. For all aging fea
tures, a relatively constant and high correlation was achieved when 
using a reference cycle number of 20. The number resulted from a 
sensitivity analysis, which is shown in Fig 4. 

The discharge capacity was chosen as a feature for the sensitivity 
analysis because it has the highest correlation Successively, the differ
ence in discharge capacity of two distinct cycles n and k was determined 
and the percentage error was calculated using the linear regression 
model. The percentage error is high when two cycles (n-k) with similar 
cycle numbers are used, because of the respective small amount of data. 
After approx. 50 cycles, a significant increase in the percentage error is 
observed. This effect is due to the two regeneration cycles with a lower 
C-Rate of C/10 and C/2, respectively (see Table 2). The lower C-rate 
results in an increased capacity, which significantly decreases the 
quality of the linear regression model. The small yellow section in the 
middle of the graph is explained by the regeneration cycles, as the cells 
partially recover, and the capacity is higher at the 1C cycles afterwards. 
The second section at approx. 75 cycles and the increase of the per
centage error in the upper right corner is attributable to the strong 
degradation of the cells. Since the capacity of cells with a small amount 
of electrolyte start decreasing early, the cells deviate strongly from a 
linear degradation (see Fig. 1). Looking at the inset, a significantly lower 
percentage error is obtained if cycle 1 is chosen as a reference. This is 
due to the regeneration cycles at the start of the measurement. In this 
case, the percentage error decreases in the following cycles. The short 
rate capability test, in the beginning, provides valuable information to 
the linear regression model since without the regeneration cycles worse 
results are obtained. Hence, the usage of cycle 1 as a reference for cycle k 
leads to an improved model performance. Further analysis on the 
required number of input cycles n is provided in the next section. 

4.2. Model comparison based on the regression 

To compare the performance of the linear regression model with the 
ANN, the test errors using varying numbers of features were evaluated. 
Fig. 5 shows the prediction error for the feature with the highest cor
relation to analyze the number of input cycles needed. The reference 
cycle corresponds to cycle n in Fig. 4, with cycle k=1 remains constant. 
For each data point, the respective model was re-trained with randomly 
selected datasets. Subsequently, the resulting percentage errors of five 
distinct test runs were averaged and the respective standard deviations 
calculated. One run involves training the model with 20 random cells 
and testing it with nine random cells. The specifications for the used 
ANN are listed in Table 4. Using only a few cycles as input, the per
centage error as well as the standard deviation is high for both, the linear 
regression and the ANN. For the linear regression, the percentage error 
rises for few reference cycles and then decreases continuously until a 
minimum is reached at reference cycle 19. A similar trend is observed for 
the ANN. However, the decrease is faster and fluctuates more for a small 
number of reference cycles. 

Despite the fluctuations, the percentage error of the ANN is smaller 
than the percentage error of the linear regression model and reaches the 
first minimum at cycle 16. The fluctuations are due to the non-linearity 
of the ANN. Each additional cycle trains the network, resulting in a 
different weighting. For an increasing number of reference cycles, the 
percentage error increases for the linear regression. This is due to the 
non-linear aging behavior of the battery cells, which is difficult to 
describe using a linear regression model. 

Yang et al. differentiated between linear and non-linear aging, 
depending on the degradation effect [45]. Linear aging arises from 
additional SEI formation in cycling due to cracking of the SEI [46]. This 
process consumes electrolyte as well as cyclable lithium, reducing the 
cell capacity. If a critical amount of electrolyte is depleted or the elec
trolyte quantity is insufficient, ion conductivity through the pores of the 
separator diminishes [47]. This results in lithium plating and causes 
non-linear aging of the cells, especially for smaller amounts of electro
lyte [24]. Thus, the degradation of the cells is non-linear and a 
non-linear model like the ANNs is superior in modeling the behavior. A 
cycle number of 20 is chosen for further evaluation and comparison of 
the models since at this point both models converge steadily and show a 
small test error. 

Table 6 shows an excerpt of the selected feature combinations. Test 
errors of the predicting models with different feature combinations were 
obtained using five test runs, each with re-trained models. Looking at the 
linear regression model, using only the feature “Δ discharge capacity” 
results in an average test error of 14.3%. Similar results were obtained 
with other high-correlation features like the variance of the discharge 
capacity, which exhibits a test error of 14.5%. The best result was gained 
using the combination of three input features, consisting of the differ
ence, the variance, and the kurtosis of the discharge capacity until cycle 
20. Using this feature combination, a test error of 13.9% was achieved. 
These results are in good agreement with Severson et al. who identified 
the variance of the discharge capacity as the feature with the highest 
correlation [22]. The high correlation of the other two features can be 
explained by the capacity losses during initial cycling. The losses are 
attributable to the electrolyte consumption and drying out of the 
insufficiently filled cells. 

The combination of nine features did not improve the results due to 
the high dimensionality. Thus, it is essential to consider which features 
are combined in the linear regression. For the ANN, the combination of 
features has less influence on the test error, since the values are within 
the respective standard deviation for combinations with up to nine 
features. Using a few features slightly reduced the test errors in com
parison to the linear regression. The improvement becomes apparent 
when more features are used. In contrast to the linear regression model, 
the lowest test error (10.1%) of the ANN was obtained with 29 input 
features. These consist of nine features with a high or moderate 

Table 5 
Comparison of correlation values of exemplary features. Correlation coefficients 
were calculated between the respective feature and the cycle life using the in
formation depicted in the parenthesis for each cell in the dataset. Features 
generated by the difference of two cycles are separated by a ",". A listing of all 
analyzed features is shown in the Supplementary Table A2. The reference cycle 
cref for the aging features is varied in the range of cycle 15 and cycle 25.  

Feature Pearson correlation 

Wetting  
High frequency resistance (after wetting) + 0.14 
Low frequency resistance (after wetting) + 0.11 
Formation  
Difference discharge capacity (formation) -0.40 
Variance Discharge difference (formation) +0.39 
Cycling  
Δ Discharge capacity (cycle 1, cref) -0.92 
Variance discharge capacity (cycle 1 - cref) -0.89  
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correlation to the cycle life and the discharge capacity of the first 20 
cycles. However, for each combination, the test error of the ANN is lower 
than the linear regression model. A complete list of all features used and 
their respective correlations can be found in the Supplementary Table 
A2. 

In summary, the ANN allows for a lower percentage error with a 
higher amount of input features than the linear regression model. 
Therefore, the ANN was used for the subsequent classification tasks. The 

discharge capacity and its second and third moments were identified as 
suitable features to predict the cycle life. Accordingly, manufacturers 
should consider these features initially when predicting cell quality. 
Since several cycles are required for an accurate prediction, it is exam
ined in the following whether an early classification with production 
data is possible. 

4.3. Classification task 

For the first classification task, the cells were divided into two 
different groups: A low cycle life group with a cycle life smaller than 250 
cycles and a high lifetime group with a cycle life higher than 250 cycles. 
Using the ANN, a classification of the cells with a varying amount of 
input data was performed and the results were compared. The test re
sults of the individual classifications are shown in Fig. 6a-d and a 
quantitative comparison in Table 7. For the first case (Fig. 6a), only data 
from EIS after wetting was used. Since the extracted EIS features showed 
a rather small correlation (see Table 5), a raw data approach was chosen, 
and the complete dataset from wetting was provided unfiltered into the 
neural network. In the second case (Fig. 6b), the data from the formation 
process was added. The data was also provided unfiltered since the 
features showed a medium correlation strength (see Table 5). In the 
third and fourth case (Figs. 6c & 6d), the dataset was augmented with 

Fig. 4. Prediction error in dependence of two distinct cycles. The percentage errors are obtained with the input feature “Δ Discharge capacity” between cycle n and 
cycle k (n>k) using the linear regression model. The inset located below, displays an enlarged section of the full diagram. The percentage errors are color-coded from 
yellow to blue for high to low values. The artefacts at cycle k=1 and between cycle n=50 and n=70 are due to regeneration cycles at a lower C-Rate (see Table 2). 

Fig. 5. Prediction error depending on the number of input cycles. The per
centage errors are obtained using the input feature “Δ discharge capacity” 
between cycle one and a reference cycle. for each data point, 5 runs containing 
9 test cells each were performed using a re-trained model. The resulting per
centage errors were averaged, and the standard deviation of the runs 
was calculated. 

Table 6 
Comparison of test errors for the two prediction models using an increasing 
number of features. The feature information for the combinations is shown in the 
Supplementary Table A2.  

Number of features Test error linear regression Test error ANN 

1 14.3 (± 1.4)% 12.9 (± 2.6)% 
3 13.9 (± 2.3)% 13.1 (± 3.4)% 
9 18.7 (± 3.3)% 13.5 (± 2.5)% 
29 - 10.1 (± 1.1)%  
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the values from the discharge capacity of the first 5 and 20 cycles, 
respectively. 

To evaluate the reliability and the performance of the model, the 
calculations were repeated five times using random training and test 
data in each run. Next to the classification itself, the probabilities were 
analyzed to determine the certainty of the model. The probabilities 
indicated how certain the ANN classifies the cells and allowed a more 
precise analysis of the performance. A probability close to 1 indicated 
that the cell is very likely to belong to the high lifetime group and a 
probability close to 0 indicated that the cell is more likely to belong to 
the low lifetime group. At a value close to 0.5, the ANN was not able to 
make a clear distinction between the high and low lifetime groups. 
Hence, plotting the probability over the lifetime as done in Figs. 6a-d, a 
classification in the lower left and the upper right quadrant was correct; 
a classification in one of the other two quadrants was incorrect. The 
incorrect quadrants were highlighted in gray. The mean classification 
accuracies are summarized Table 7. 

Fig. 6a shows the classification results for case 1 (EIS data from 
wetting). For most cells, the ANN returned a probability close to 0.5, 
which indicated a rather uncertain classification. Nevertheless, most of 
the cells were classified correctly, resulting in an accuracy of 80%. Ac
curacy is defined as the correct classifications divided by the total 
number of classifications. Considering that no currents were applied so 
far, the predominantly correct classification indicates the high relevance 
of the EIS data. Furthermore, incorrect classifications occurred in the 
area of false positives only. This means that cells classified below 250 
cycles actually have a cycle life of less than 250 cycles. The implications 
for battery production are further discussed in Section 5. 

Adding the formation data increased the accuracy of the classifica
tion to 88%. As seen in Fig. 6b, a slight shift in probability away from 0.5 
is visible for the classified cells. Similar to the prior classification, no 

false negatives occurred. Although the results were improved by adding 
the formation data, a significant number of cells were still misclassified. 

Fig. 6c shows the classification results using the production data and 
the datasets of the first 5 cycles of the subsequent cycling. For the first 
time, false positives occurred and a shift of the probabilities closer to 0.5 
is visible. Consequently, the classification accuracy decreases to 82%, 
which is mainly due to the increasing C-Rates during initial cycling. This 
is consistent with the observations in Fig. 4, where a minimum of 10 
cycles is required to improve the prediction result. 

Adding the datasets of the first 20 cycles of the subsequent cycling 
improved the classification significantly to an accuracy of 97%. Mis
classifications were greatly reduced and only one cell with a cycle life 
close to the 250 cycles threshold was incorrectly classified. Considering 
the observed cycle lives of many cells being close to the 250 cycles 
threshold, the classification using the enhanced dataset shows excellent 
results. The increasing probabilities indicate a high reliability of the 
model. 

Next to the classification into two groups, the cells were classified in 
three different cycle life groups for a closer examination. The three 
groups were chosen in regard to a comparable number of cells per group. 
The first group has a cycle life of less than 150 cycles, the second in the 
range of 150 - 300 cycles, and the third greater than 300 cycles. The 
results of the three-way classification are summarized in Table 7. In 
contrast to the classification in two groups, the model with the forma
tion and wetting data as input had the lowest classification accuracy of 
64%. Using only the wetting data resulted in a slightly higher accuracy 
of 67%. Adding the datasets of the first 20 cycles improved the accuracy 
significantly. However, the classification in two groups achieved a 
higher accuracy for all databases due to the limited number of training 
cells. 

4.4. Grading task 

In addition to the classification tasks, a cycle life prediction was 
performed with a subsequent grading dependent on the predicted cycle 
life. The ANN was used to predict the cycle life and grade the cells in four 
different quality groups as an example. The classification algorithm lost 
a considerable degree of accuracy when the number of classification 
groups increased (see Table 7). This is due to the decreasing ratio of 
training cells to classification possibilities. Since an early prediction is 
favorable, only formation and wetting data were used for the first 
grading. The data set was identical to the second case in Section 4.3. 

Fig. 6. Classification into two groups with high and low cycle life. (a-d) The probability reflects the certainty of the ANN in classifying the individual cells in the high 
cycle life group (cycle life > 250 cycles). A value close to 1 indicates a high probability that the cell has a cycle life greater than 250 cycles, while a value close to 
0 indicates a high probability of obtaining a cycle life less than 250. A value close to 0.5 reflects an uncertainty in the prediction. The results of the classification task 
a-c were obtained with a varying amount of input data. for each graph, 5 test runs were performed with the ANN being re-trained each time. The false positive (upper 
left) and false negative (bottom right) quadrants are highlighted in dark gray. The average classification accuracies based on a number of 20 test runs are shown 
in Table 7. 

Table 7 
Accuracy for classification tasks in two and three groups, respectively. Classi
fication accuracies were calculated with a different set of input data and a 
number of 20 test runs, using a re-trained ANN for each run.  

Data Accuracy 2 groups Accuracy 3 groups 

After wetting 80% 67% 
Formation 88% 64% 
5 cycles 81% 69% 
20 cycles 97% 89%  
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Subsequently, the cycling data of the first 20 cycles was added, and a 
second grading was performed. The results are shown in Figs. 7a-c. Here 
the range of low cycle life cells (Quality D) spanned from 0 to 200 cycles. 
The other quality groups C – A were defined exemplarily in increasing 

steps of 100 cycles. Cells that have a predicted cycle life in the range of 
the observed cycle life group were correctly graded (white area). 
Incorrectly graded cells are placed in the gray area. The best prediction 
result is an arrangement of data points on the diagonal of the graph. 

By using the formation and wetting data only, all cells with a cycle 
life less than 200 cycles were correctly graded at Quality D. However, at 
higher cycle lives, the prediction accuracy decreases to an overall ac
curacy of 62%. Fig 7a shows that all the cells with a cycle life greater 
than 400 cycles were misplaced at Quality B instead of Quality A. Hence, 
the data base after formation seems to be insufficient for an exact 
grading into multiple quality groups, but cells with low cycle life were 
reliably detected. 

Adding the datasets of the first 5 cycles enabled a more accurate 
prediction for cells with a higher cycle life. The previously strongly 
scattered cells were arranged closely along the ideal diagonal. As seen in 
Fig 7b., misclassification still occurred in different quality grades, 
resulting in an overall accuracy of 83%. This is consistent with the un
certainty of the regression model, when using a few numbers of cycles 
(compare Fig 4). Nevertheless, in comparison to the classification into 
two groups, the results can be improved using datasets from cycling. 

Fig. 7c shows the grading results when the datasets of the first 20 
cycles are added. Again, the difference between observed and predicted 
cycle life was small. Misclassifications occurred rarely and only for cells 
with a cycle life near the boundaries between two quality grades, 
resulting in an overall accuracy of 86%. In all gradings, the classification 
accuracy was smaller than in the classification task (see Fig. 6). This is 
due to the presence of four groups instead of two and the strictly defined 
thresholds. However, all misclassified cells are located very close to the 
respective boundary. Consequently, an accurate grading using the ANN 
was possible, which enables the application of data-driven early quality 
classification in the production of LIBs. 

5. Discussion 

A major challenge in the production of LIBs is ensuring the cell 
quality. The conventional quality measures such as aging are time- 
consuming and costly [6]. Therefore, the potential of the data-driven 
predictive quality models for industrial battery production as well as 
the impact on the process chain are the scope of the following 
discussion. 

5.1. Early detection of process deviations 

As shown in Table 1, the amount of electrolyte was intentionally 
varied in the experiments to obtain process deviations. An insufficient 
amount of electrolyte results in an incomplete wetting state of the cell. 
This leads to significant problems in the subsequent formation, as SEI 
cannot be formed homogeneously on all particles of the anode active 
material [48]. The resulting inhomogeneous SEI can lead to strong layer 
thickness fluctuations, which possibly induces partial layer detachments 
[49]. Furthermore, an insufficient electrolyte quantity result in the cells 
drying out during cycling, which has a negative effect on the capacity 
and cycle life [50]. Although the neural network was not given any in
formation about the amount of electrolyte, it was possible to classify the 
majority of cells with a reduced cycle life correctly, using only imped
ance data from wetting and formation data (see Figs. 6a,b & Fig. 7a). In 
conventional production lines, the depicted process deviations are most 
likely apparent in the aging or EoL-test, since there were no significant 
variations in the capacities of the cells observable after the formation 
(see Table 1). Since aging takes up to 3 weeks [9], if the process de
viations are detected late, it may result in the production of defective 
cells during a period of process instability. The delayed detection leads 
to high scrap costs. This demonstrates the great potential of data-driven 
analysis to detect process defects already during wetting and formation 
in comparison with time-consuming quality assurance processes. 

Fig. 7. Classification into quality grades. Predicted cycle life over observed 
cycle life and classification in quality groups with formation data (a), cycling 
data of the first 5 cycles (b), and cycling data of the first 20 cycles (c). for each 
graph, five test runs were performed with the ANN being re-trained each time. 
If the cycle life prediction is accurate, the predicted cell is located close to the 
diagonal. Quality grades were defined exemplarily every 100 cycles, starting at 
200 cycles, and a letter A-D was assigned for each grade. 
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5.2. Increase in throughput 

Besides analyzing process deviations, data-driven analysis helps to 
detect defective cells at an early stage and thus increases the production 
throughput. The later a defective cell is detected, the greater are the 
associated costs due to further refinement and the blocking of plant 
capacity. Especially the latter point is a critical aspect in cell finishing as 
the processes are time-intensive and cells require single processing sta
tions (e.g. a test channel during the self-discharge measurement). This 
leads to a reduction in throughput and longer depreciation times and 
costs. It was shown that neural networks help to determine the quality of 
LIBs, in terms of cycle life, before the time- and resource-intensive aging 
step. Information from the wetting and the formation is hereby sufficient 
for a first quality classification (see Fig. 6). Although some cells were 
misclassified (20%), only a few false negatives occurred (<2%). Cells 
classified as defective are indeed defective and can be regarded as 
inferior or scrap. These cells can be rejected without further refinement, 
which results in increased processing capacities for higher quality cells 
and thus an improvement of the overall throughput. 

5.3. Extended data basis for the quality determination 

A classification into two distinct groups is preferred when trying to 
detect cells with inferior quality that have to be regarded as scrap [51]. 
Minor defects in the production of LIBs do not necessarily cause the 
complete failure of a cell, but rather reduce the cycle life or charging 
capability. However, homogeneity of quality is a decisive factor for the 
customer, particularly in the increasingly important application areas of 
electromobility. A single inferior cell significantly affects the perfor
mance of the entire battery pack and makes an early replacement 
necessary [52]. Therefore, manufacturers must ensure high quality 
within production and are obliged to specify a minimum service life or a 
minimum number of achievable cycles. Since manufacturers cannot 
cover all use cases, cycle life can only be guaranteed if standardized 
environmental and operational conditions are applied. This frequently 
translates into test procedures using full charge/discharge cycles at a 
fixed C-Rate and temperature to determine the cycle life of a cell. With 
the presented prediction and classification methods, the manufacturer 
can exploit the production data and achieve early quality assurance 
without time-consuming cycling. Predicting early cycle life is therefore a 
different challenge than determining the exact RUL, which is often used 
in dynamic battery operation in the application [12]. 

From a production point of view, a classification into multiple quality 
grades is advantageous. The underlying principle is that cells with low 
quality can be additionally refined or sold as lower graded goods (e.g. 
second grade). By using measurement data from the wetting and forma
tion process, an early classification into quality grades “A-D” was per
formed (see Fig. 7a). Here, almost all cells with a low service life were 
correctly assigned, but cells with a high service life were not. The addition 
of subsequently cycling data from the first 20 charge-discharge cycles at 
1C, which corresponds to a cycling time of two days, resulted in signifi
cantly better classification. Only a few cells (all with cycle lives close to 
the defined classification limits) were misclassified. Manufacturers can 
use the data-driven analysis to supplement the quality determination 
from aging and the EoL-test to obtain an improved quality determination. 

5.4. Alternative process routes 

As mentioned, LIBs are aged for up to three weeks due to the high- 
quality requirements. However, since no refining is performed and 
plant capacity during aging is a key factor in increasing the overall 
throughput, the process step has great potential for streamlining. It was 
shown by Severson et al. that an accurate classification into two or more 
quality grades is possible after only a few charge-discharge cycles [22]. 
An accuracy of 97% was achieved for classification into two groups, 
whereas wrong classifications occurred only within 10 cycles of the 

threshold (see Figs. 6c, 6d, and Table 7). Analyzing the classification 
probability, the ANN correctly grouped many cells using less than 20 
cycles. If an accurate classification is possible after a few cycles, a short 
cycling period instead of time-intensive aging could be favorable in 
terms of processing costs and throughput. The use of process and cell 
data from previous process steps in combination with a neural network 
and cycling data could allow for the prediction of the cycle life in 
real-time. As soon as a cell is reliably grouped into a quality grade during 
the cycling period, the cell can be sold according to the quality group. 
However, further research is needed to evaluate whether the cyclization 
approach performs better than the conventional aging, regarding the 
quality determination, and if this method is economically viable. 

6. Conclusion 

In this work, data-driven machine learning approaches were used for 
an early quality prediction and classification in battery production. 
Linear regression models and artificial neural networks (ANNs) were 
compared regarding their prediction accuracy using diverse datasets of 
29 NMC111/graphite pouch cells. The favorable ANN achieved a min
imum test error of 10.1% for a total of 29 input features. Nevertheless, 
the linear regression shows comparable test errors of approx. 13% when 
only a few input features are used. 

In a second step, the preferable ANN was selected for classification 
into lifetime groups according to the cycle life of the cells. The best 
classification model obtained an accuracy of 97% for classification into 
two cycle life groups. By using the measurement data after wetting (EIS 
data) and after formation (EIS & formation data), a classification accu
racy of 80% and 88% was achieved, respectively. Since there were 
almost no false negatives in all classifications, the reliable detection of 
defective cells was indicated. Finally, the capability of data-driven 
neural networks was demonstrated by predicting the cells’ cycle life 
and subsequently grading into quality groups. Although the neural 
network had no information on cell chemistry or degradation mecha
nisms, a high degree of accuracy was achieved by extracting features 
from electrical and electrochemical analysis. 

The findings may be used in the future to detect defective cells at an 
early stage in lithium-ion battery production, increasing throughput and 
enhancing overall quality. Process errors can be detected quickly, and 
the process flow can adapt based on the quality prediction. Further 
research will focus on the increase of the prediction accuracy in wetting 
and formation as well as the quantification of the cost reduction through 
cycle-based aging. 
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