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a b s t r a c t 

Stochastic dynamic vehicle routing problems have become an essential part of logistics and mobility ser- 

vices. In such problems, a sequence of vehicle routing decisions has to be made in reaction and anticipa- 

tion of newly revealed stochastic information. To this end, a variety of computational operations research 

methods has emerged in the literature, increasingly integrating potential future information in their de- 

cision making. The integration of information models into decision models via computational methods is 

known as prescriptive analytics, the most recent advance of business analytics. In this paper, we explore 

the existing work and future potential of prescriptive analytics for stochastic dynamic vehicle routing. We 

identify the characteristics of decision models and information models unique in stochastic dynamic ve- 

hicle routing and analyze how different methodology meets the characteristics’ requirements. We use the 

insights to derive recommendations about promising methodology when approaching specific stochastic 

dynamic vehicle routing problems. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Logistics and mobility services play a major role in all our lives. 

any of us use mobility services such as taxis, dial-a-ride, or ride- 

haring regularly and whenever we want. We order food or goods 

nline and expect near-instant gratification a short time after our 

rder is placed. And we order services to our homes, technicians 

epairing our internet router or nurses caring for our health. 

In all these cases, vehicle routing is required to fulfill the 

ustomer demand with fleet resources , usually in an urban en- 

ironment . In many cases, the information in the three dimen- 

ions is not static and deterministic, but changes over time, e.g., 

ore customers requesting service, streets congest unexpectedly, 

r even the fleet resources change, for example, due to crowd- 

ourced drivers entering or leaving the system spontaneously. 

uch frequent, disruptive, and stochastic information changes force 

roviders to dynamically renew their planning. However, mere re- 

ctions to information changes in one or more of the three di- 

ensions are insufficient. There is limited benefit in changing a 

river’s route when the vehicle is already stuck in traffic, leaving 
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 ride-sharing vehicle idling in a far distant corner of the city un- 

il a new customer demands service, or calling drivers for support 

hen lunch delivery orders are rolling in and no crowdsourced 

river is around for delivery. Instead, flexible, anticipatory plan- 

ing is required, preferably utilizing the vast amounts of data that 

ompanies have collected over the years. The incorporation of pre- 

ictive information models into decision making is known as pre- 

criptive analytics (PA), the most recent advance in the business 

nalytics-sequence of descriptive, predictive, and prescriptive ana- 

ytics ( Lepenioti, Bousdekis, Apostolou, & Mentzas, 2020 ). 

Business analytics (BA) has received tremendous attention in 

cademia and business ( Conboy, Mikalef, Dennehy, & Krogstie, 

020; Hindle, Kunc, Mortensen, Oztekin, & Vidgen, 2019; Holsap- 

le, Lee-Post, & Pakath, 2014 ). BA operates in the intersection be- 

ween computational technologies or computer science, decision 

aking in management, and quantitative mathematical methods 

compare Fig. 1 in Mortenson, Doherty, & Robinson, 2015 ). The goal 

f BA is to analyze available data, to derive predictive information 

odels, and to use the models for decision making. The first step, 

escriptive analytics, derives insights and patterns from past obser- 

ations (e.g., customer demand for delivery services). The second 

tep, predictive analytics, uses the insights and patterns to develop 

n information model that allows predictions of future develop- 

ents, for example, the likelihood customers request service dur- 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Prescriptive analytics, adapted from Mortenson et al. (2015) . 
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ng the day and over the service area. The final step, PA, integrates 

he information model into decision making, for example, evalu- 

ting assignment and routing decisions with respect to potential 

uture demand. To define PA in detail, we specify the depiction of 

ortenson et al. (2015) in Fig. 1 , positioning PA in the interface of

omputer science, mathematics, and management. More specific, 

A combines information modeling with decision modeling and 

omputational methods in a holistic way. The information models 

apture potential information changes and are provided by predic- 

ive analytics, the decision models define the management prob- 

em via mathematical modeling, and the computational methods 

erive decisions with respect to decision and information mod- 

ls. The holistic view provided by prescriptive analytics allows to 

hoose computational methods that fit the given decision and in- 

ormation models. That is, PA provides methods tailored to prop- 

rties and structure of the application’s information and decision 

odels ( Lustig, Dietrich, Johnson, & Dziekan, 2010 ). 

While logistics and mobility services might benefit from PA 

remendously, work on PA in stochastic dynamic vehicle routing 

roblems (SDVRPs) is still very limited ( Ulmer, Goodson, Mat- 

feld, & Thomas, 2020b ). Solving the decision models of vehicle 

outing problems is by itself challenging, even without changes 

n the available information. The stochasticity and dynamism add 

o the existing challenges since decisions now have to consider 

uture changes in the information and decision model. To cope 

ith the challenges, researchers develop problem-specific com- 

utational methods based on intuition and experience. Conse- 

uently, there is no “standard” PA-procedure to approach SDVRPs, 

et alone, commercial software. The foundation for such standard 

rocedures is to gather and classify the existing work and ex- 

erience and to derive insights in the performance of computa- 

ional methods with respect to decision and information models. 

eviews provided by Psaraftis, Wen, & Kontovas (2016) and Ulmer 

2017) present classifications of SDVRP literature with a focus on 

he considered problem and the applied computational methods. 

owell (2019) presents a general overview on computational meth- 

ds in stochastic optimization with a strong connection to the 

odeling of uncertainty. In our work, we aim to present a holis- 

ic PA-view that incorporates the interplay of problem and model 

haracteristics with methodology characteristics. Thus, our paper 

iscusses SDVRPs and their characteristics as presented in Ulmer 

2017) with the view and language of Fig. 1 and the available mod- 

ls and methodology of Powell (2019) . To this end, this paper takes 

he following steps, in accordance to Fig. 1 : 

1. It gives a short overview on the main sources of uncertainty in 

SDVRP and their characteristics in Section 2 . 
802 
2. It presents information models, decision models, and their in- 

terrelation in Section 3 . 

3. It describes and classifies the existing prescriptive methodology 

with respect to their exploitation of the information model in 

Section 4 . 

4. It uses the insights of information modeling, decision modeling, 

and computational methods for a (qualitative) recommendation 

when selecting a prescriptive method for a specific problem in 

Section 5 . 

In this process, we suggest that there is no “dominant” method 

o approach every SDVRP. Instead, the suitability of a prescriptive 

ethod depends on the characteristics of information and decision 

odel (compare, e.g., Spivey & Powell, 2004 ). 

. Stochastic dynamic vehicle routing problems 

In this section, we briefly discuss the main dimensions of SD- 

RPs. We spend a particular focus on the uncertainty observed by 

he service providers which forms the basis for the first two BA- 

teps, descriptive and predictive analytics. We also introduce an 

xample of a stochastic dynamic vehicle routing problem that we 

se throughout the article for illustration purposes. 

.1. Dimensions 

Applications areas for SDVRPs are vast (see Appendix A.1 , 

or an overview). In general, application areas of stochastic dy- 

amic vehicle routing problems span the transportation of goods 

 Ichoua, Gendreau, & Potvin, 20 0 0 ), the transportation of pas- 

engers ( Psaraftis, 1980 ), as well as the conduction of services 

t customers’ homes ( Larsen, Madsen, & Solomon, 2002 ). De- 

ending on the application, different objectives (e.g., cost, ser- 

ice rate) and restrictions are considered, for example, time win- 

ows ( Gendreau, Guertin, Potvin, & Taillard, 1999 ), working hours 

 Angelelli, Bianchessi, Mansini, & Speranza, 2009 ), or capacities 

 Sáez, Cortés, & Núñez, 2008 ). 

While the applications may differ, the problem settings share 

haracteristics. Stochastic dynamic vehicle routing problems occur 

n an operational level in a preset urban environment where re- 

ources like drivers and vehicles of the fleet are set. Decisions are 

ade about how to use the resources within the environment to 

atisfy customer demand which generates some reward for the ser- 

ice provider. The objective function is to maximize the reward 

enerated by satisfying customer demand or to minimize the re- 

ource usage required to serve a given demand. 

The three dimensions demand, resources, and environment are 

ketched in Fig. 2 . The left box in Fig. 2 represents potential cus- 

omer demand a service provider faces. Depending on the appli- 

ation area, customers ask for a transportation service, goods, or a 

ervice to be conducted at their homes. The right box in the fig- 

re depicts the resources of the service provider. These resources 

re typically vehicles of various types, like bikes or trucks, with 

ifferent characteristics as well as the staff that operates the vehi- 

les and conducts services. The environment, depicted in the cen- 

ral box in Fig. 2 , consists of the road and logistics network as well

s additional factors like weather conditions or traffic management 

ecisions about traffic signal strategies or road closures. 

All of the described dimensions may be subject to a change in 

nformation. This leads to several potential sources of stochasticity 

hich are described in the following. 

.2. Uncertainty 

As in static vehicle routing, decisions are made about the as- 

ignment of resources to demand and the implementation within 
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Fig. 2. Dimensions of vehicle routing problems faced by a service provider. 

Fig. 3. Sources of uncertainty in stochastic dynamic vehicle routing. 
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he surrounding environment. However, as we observe uncertain 

hanges in the information, decisions are not made once but are 

ade dynamically over time. Fig. 3 depicts the dimensions, de- 

and, resources, environment, and some typical uncertainties. This 

ncertainty can be modeled by means of an information model 

hat collects observations of the uncertainty and unites them in 

 model. To derive an information model, the observations must 

e analyzed and structured first, a task of descriptive analytics 

 Lustig et al., 2010 ). Based on the structures and insights, informa- 

ion models can then be determined via predictive analytics (see 

ection 3.2 ). Such an information model is able to depict the di- 

ensionality and heterogeneity of the uncertainty. Also, potential 

isruptivity and correlation can be described by means of an in- 

ormation model. In the following, we discuss typical sources of 

ncertainty in the different dimensions, their reasons and charac- 

eristics. 

Uncertain demand. For the service provider, uncertainty about 

he customer demand often consists of when and where a cus- 

omer requests, how much the customer requests, or how long 

he service will take. Uncertainty in demand may, for example, 

eal with the occurrence of customer demand for transportation, 

ome services, or the delivery of goods. In the resulting problem 

ettings, vehicles already serve customers while new customer re- 

uests arrive ( Agussurja, Cheng, & Lau, 2019; Sheridan et al., 2013 ). 

his source of uncertainty is a rather common one in times of 

odern communication and may occur in the three application 

reas of goods (as in same-day delivery), passengers (as in dial- 

-ride), and services (as in technician services). Requests can be 

ather heterogeneous or less heterogeneous both with respect to 

heir location and request time. In the second typical form, the de- 

and quantity of the customers, for example for gasoline, liquids, 

r other inventory, only becomes known when the driver arrives 

t the customer’s location. Here, uncertainty occurs in the form 

f unknown demand quantities ( Novoa & Storer, 2009 ). This uncer- 

ainty can be encountered by service providers offering the trans- 

ortation of goods or passengers. Uncertain service times especially 

ccur in the case of services conducted at the customer’s home 

 Larsen et al., 2002 ). 

Uncertain environment. Uncertainties may also affect the envi- 

onment the service provider operates in. These uncertainties are 

sually independent of the application. Weather, traffic jams, and 

ther events can impact whether a road can be used and how 

ong it takes to traverse it, i.e., travel times ( Schilde, Doerner, & 

artl, 2014 ). Since travel times are required both for every road 
803 
nd every time, they are described using multiple dimensions. 

specially with the rise of air pollution monitoring, traffic admin- 

strations may increase the price for using certain roads by means 

f tolls for all or certain vehicles. They may even block roads 

or certain types of vehicles due to high pollution levels ( Köster, 

lmer, Mattfeld, & Hasle, 2018 ). In addition to uncertain travel 

imes, roads may therefore also be affected by uncertain fees such 

s tolls or by sudden disruptive events like road closures . 

Uncertain resources. For some providers, independent of the ap- 

lication area, the resources available to fulfill services are uncer- 

ain. Disruptive events like accidents or malfunctions are examples 

or a stochastic vehicle availability ( Xiang, Chu, & Chen, 2008 ). The 

ehicle then has to be replaced or repaired. Also, drivers can be ab- 

ent due to sick leave unexpectedly. Finally, self-employed drivers, 

lso known as occasional or crowdsourced drivers, can decide on 

heir own when they want to work and which jobs they want 

o fulfill ( Dayarian & Savelsbergh, 2020 ). Stochastic driver avail- 

bility is therefore another possible form of uncertain resources 

 Arslan, Agatz, Kroon, & Zuidwijk, 2019 ). Especially with the rise 

f electric vehicles, there exists uncertainty about the remaining 

ange , which impacts the availability of the resource vehicle. Such 

n uncertainty severely impacts the ability to serve customer re- 

uests because the possible length of the tours is not known in 

dvance. 

.3. Example: dynamic vehicle routing with stochastic customer 

equests 

In this following, we present an example that we use through- 

ut the paper for the illustration of application, modeling, and 

ethods. We consider a prominent problem from practice and lit- 

rature, the dynamic vehicle routing problem with stochastic cus- 

omer requests and therefore uncertainty in demand. The problem 

escribed here is an example of a broader class of problems that 

ary with respect to their focus ( Thomas, 2007; Ulmer, Goodson, 

attfeld, & Hennig, 2019 ). The customer requests could ask for the 

onduction of a service or for the collection of a parcel. Some re- 

uests are known in advance, but other customers request service 

uring the day. A single vehicle is available to serve customer re- 

uests in a given time horizon defined by the vehicle driver’s shift. 

hen a new request occurs, the service provider needs to decide 

hether the new request is accepted or rejected, and in case of ac- 

eptance, how to update the vehicle’s ongoing route to include the 
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Fig. 4. Stochastic dynamic decision processes, adapted from Meisel (2011) . 

n

t

c

m

m

i

r

t

d

s

h

3

n

T

o

i

t

s

W

h

3

q

p

m

m

i

 

 

i  

g

i

i

s  

t

o

v  

s

s

d

s

u

d

S

t

i

e

a

r

g

E

T

s

s

s

m

m

c

a

o  

d

b

m  

x  
ew request. The service provider aims at serving as many cus- 

omers over the time horizon as possible. 

The structure of the observed uncertainty depends on the appli- 

ation considered. If the service is the collection of express mail, 

any requests may accumulate in office districts and therefore 

ainly during office hours. If the service is maintenance or repair 

nstead, some customers may be known beforehand and additional 

equests are likely to occur more evenly spread over the city and 

ime of day. Thus, for the same problem type, heterogeneity and 

isruptivity of the uncertainty may vary significantly. In the next 

ection, we will describe how this problem can be modeled and 

ow such differences can be captured by the information models. 

. Modeling 

In the following, we describe how we model stochastic dy- 

amic vehicle routing problems as sequential decision processes. 

he modeling contains three steps, the transfer of the analyzed 

bserved uncertainty to a predictive information model, the def- 

nition of the decision model, and the modeling of their interac- 

ions. We first describe the general functionality of sequential deci- 

ion processes as an interaction of decision and information model. 

e then describe information model and decision model in detail, 

ighlighting their characteristics for SDVRPs. 

.1. Sequential decision process 

Stochastic dynamic decision problems can be modeled as se- 

uential decision processes ( Powell, 2011 ). A sequential decision 

rocess depicts a sequence of states where in each state a decision 

odel instance is solved based on realizations of the information 

odel. The functionality of a sequential decision process is shown 

n Fig. 4 . We define the components in Fig. 4 as follows: 

• The x-axis depicts the evolution of time where decisions are 

made at decision points k = 1 , . . . , K with respect to newly re-

vealed information. Parameter K depicts the final decision point 

and may be a random variable. 
• The information model � describes the uncertain changes over 

time. In a decision point k , a realization ω k of the information 

model becomes known. 
• The states s k describe the information available to the decision 

maker when making a decision . Each state is an instance of the 

problem’s decision model . 
• The decision x k represents a solution of the decision model 

instance. Such a decision usually contributes to the objective 

function either by providing a reward, R (s k , x k ) , or causing costs

(For the sake of simplicity, we focus on a maximization objec- 

tive in this work). We note that the reward may be an expected 

value. The combination of decision x and information model 
k 

804 
realization ω k +1 leads to a transition with transition function T 

to the new state s k +1 = T (s k , x k , ω k +1 ) at time t k +1 . 

A solution of a sequential decision process is a policy π . A pol- 

cy is a function that maps a state s k to a decision x k = X π (s k ) . The

oal for sequential decision processes is to find an optimal pol- 

cy π ∗ maximizing the expected sum of rewards. An optimal pol- 

cy satisfies the Bellman Equation in each state s k , maximizing the 

um of the immediate reward R (s k , x k ) and the expected sum over

he future rewards given s k and decision x k and when applying the 

ptimal policy π ∗ throughout: 

X 

π ∗
(s k ) = arg max x k ∈ X(s k ) { 

R (s k , x k ) + E 

[ 

K ∑ 

j= k +1 

R (s j , X 

π ∗
(s j )) | (s k , x k ) 

] } 

. (1) 

The second term of the Bellman Equation is often called the 

alue of either a state-decision pair, V (s k , x k ) or the post-decision

tate, V (s x 
k 
) that follows deterministically when choosing deci- 

ion x k in state s k . Knowing the value function V for every state- 

ecision pair (or post-decision state) allows to make optimal deci- 

ions with the Bellman Equation. 

The presented sequential decision process is generic and can be 

sed in many different areas. As we will describe in the remain- 

er of this section in detail, the sequential decision processes for 

DVRPs show particular characteristics in decision and informa- 

ion models. The information model represents potential changes 

n the three aforementioned dimensions resources, demand, and 

nvironment. The decision model represents problem-specific vari- 

nts of vehicle routing problems with decisions being (tentative) 

outing plans. For SDVRPs, there is usually a mixed-integer pro- 

ram that defines the decision model instance of a state s k . Thus, 

q. (1) could also be written as: 

max R (s k , x k ) + V (s x 
k 
) 

subject to A (s k ) x k ≤ b(s k ) , 

x k ∈ { 0 , 1 } n (s k ) 

(2) 

he first line is the Bellman Equation. The second part spans the 

et of potential decisions via the decision variables and the con- 

traints of the decision model instance, for example, routing con- 

traints or capacity constraints (We note that dependent on the 

odeling style and the problem at hand, parts of the variables 

ay be of real values). With respect to the sequential decision pro- 

ess model, for SDVRPs, both decisions and information model re- 

lizations change the system state and therefore the characteristics 

f A (s k ) and b(s k ) . We will illustrate this with the example intro-

uced in Section 2 later in this section. 

While every SDVRP (and every sequential decision process) can 

e modeled as shown in Fig. 4 , they differ in their information 

odel and their decision model, i.e., the structure of R (s k , x k ) , s k ,

 and ω and consequently the development of A (s ) and b(s ) .
k k k k 
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or an in-depth overview on modeling sequential decision pro- 

esses for SDVRPs, we refer to Ulmer et al. (2020b) . In the fol-

owing, we investigate information models and decision models for 

DVRPs in more detail. 

.2. Information model 

In this section, we describe how uncertainty can be modeled 

y means of an information model, a task of predictive analytics. 1 

ince the uncertainty is “external”, it is also referred to as “exoge- 

ous information” ( Powell, 2019 ) that becomes known over time. 

he information model � describes the stochastic information and 

ts dimensions and ω k describes the specific realization that be- 

omes known in decision point k . 

The information model in SDVRPs can represent uncertainty in 

he dimensions demand, the environment, or the resources. That 

s, information models can contain information for three dimen- 

ions. Waller & Fawcett (2013) also provide a list of several differ- 

nt logistics applications along with data that can be gathered. In 

he following, we discuss how the corresponding information can 

e modeled. We further illustrate that the information models dif- 

er in several characteristics such as dimensionality , heterogeneity , 

isruptivity , and correlation , always dependent on the underlying 

DVRPs. 

Stochastic demand. While stochastic customer requests may oc- 

ur at any time point and at any location in the service area, cer- 

ain patterns can be typically observed. For example, customer re- 

uests for personal goods or services occur rather in residential ar- 

as whereas requests for business-oriented services or goods also 

ccur in industrial areas. Correlation can occur for applications 

uch as food delivery, e.g., dependent on the weather. Customers 

lso place more requests for a meal delivery at actual meal times 

esulting in heterogeneity in demand over time and space. Stochas- 

ic customer request locations are either modeled by a set of dis- 

rete locations ( Albareda-Sambola, Fernández, & Laporte, 2014 ) or 

ia a continuous distribution over the service area ( Angelelli et al., 

009 ). The ratio between the number of stochastic requests and 

he overall number of requests can be described by the degree of 

ynamism (DOD, Larsen et al., 2002 ). This metric describes the ef- 

ect of stochastic requests, that is, the disruptivity that can be as- 

ociated with the stochasticity. With a small DOD, the main char- 

cteristics of Eq. (2) stay the same and decisions may only require 

light adaptions. With a high DOD and many new customers in the 

ystem, A (s k ) and b(s k ) change substantially and this disruption 

ikely renders the previous routing plan insufficient. Suitable distri- 

ution types for stochastic demand quantities depend on whether 

ontinuous items like liquids ( Hvattum, Løkketangen, & Laporte, 

007 ) or discrete items like parcels ( Secomandi, 2001 ) are consid- 

red. Besides the demand quantity, demand may contain additional 

imensions such as type of service or required equipment, again 

odeled via discrete distributions ( Chen, Thomas, & Hewitt, 2017 ). 

ervice times usually depend on customer features, like medical 

onditions in health care applications or the requested service. For 

xample, an installation may be faster than a repair. Also, the ser- 

ice times may be less variable for installations. Such stochastic 

emand quantities may change the b( s k ) by enforcing additional 

rips to the depot and by using resources. Also, by specifying cus- 

omer demands, they modify A (s k ) . For service times, an asymmet- 

ical continuous distribution can capture the rare cases where the 

ervice time is extremely high ( Maxwell, Restrepo, Henderson, & 
1 We note that while we assume the information model and its interrelation with 

he decision making to be known, this is not always the case. Bertsimas & Kallus 

2020) discuss decision making for problems with a single decision stage where the 

nformation model is not fully known, but auxiliary information is used for decision 

aking instead. 

p

t

m

m

m
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opaloglu, 2010 ). Dependent on the demand realizations, resources 

re consumed, changing the available resources in b (s k ) . Again, if 

he distributions are very volatile, this might lead to a disruption 

nd the requirement to entirely replan the routing. 

Stochastic environment. Travel times denote how long it takes to 

ravel between locations. If they change, they modify A (s k ) . Travel 

imes show spatial and temporal heterogeneity, for example, they 

iffer in rush hours and in downtown or rural areas. Further, there 

ay be disruptive binary events like heavy congestion, road clo- 

ures, or traffic management intervention ( Köster et al., 2018 ). An- 

ther challenge in stochastic travel times is the potential correla- 

ion between roads. If one road is congested, it is likely that ad- 

acent roads show congestion as well ( Schilde et al., 2014 ). Travel 

imes are usually modeled via asymmetrical long-tail distributions. 

owever, modeling correlation is challenging, for example, because 

oads may only be congested in one direction. 

Stochastic resources. Distributions about vehicle availability or 

bout drivers’ absences need to depict very rare, disruptive events. 

hanges in the resources lead to changes in b(s k ) . In the case of

rowdsourced drivers ( Arslan et al., 2019 ), spatio-temporal distri- 

utions describe when and where drivers are available. Such a 

river availability might show correlations with realized and ex- 

ected demand and may also depend on the last assignment. A 

istribution depicting the range of vehicles may have to consider 

actors like weather, altitude differences, or the traffic situation. 

Summary. Overall, the information models differ in a variety of 

actors. A suitable information model is necessary not only for the 

urposes of descriptive and predictive analytics, but also for pre- 

criptive analytics as it defines the information available for the 

ecision making. Some SDVRPs require information models of high 

imensionality to capture the specifics of the revealed uncertainty. 

ther SDVRPs require information models that can capture the dis- 

uptivity of a few events. In some cases, the information model 

ight require more detail because of spatial and temporal het- 

rogeneity. Finally, for some SDVRPs, correlation is important and 

herefore must be captured by the information model. 

.3. Decision model 

In a decision point of the sequential decision process, an in- 

tance of the decision model is solved. Here, information about all 

hree dimensions is available and describes the decision model in- 

tance via s k , A (s k ) , b(s k ) , x k , R (s k , x k ) , and V (s x 
k 
) . This contains,

or example, information about demand in the form of customer 

ocations or time windows, information about the environment, 

uch as travel times, and information about the available resources, 

or example the vehicle locations. The information that describes 

he decision model instance is equivalent to the information cap- 

ured in the state s k . The decision model contains an objective, de- 

ision variables, and constraints. In this section, we describe the 

hree components for SDVRPs and the underlying characteristics, 

he horizontal balance of the objective function, the complexity 

nd restrictiveness of the constraints, and the dimensionality and 

ange of the decision variables. 

Objective function. The objective function generally focuses on 

ither satisfying as much demand as possible with the given re- 

ources or minimize the used resources while satisfying all de- 

and. In contrast to static VRPs, the objective function contains 

wo parts, one representing the immediate reward R (s k , x k ) , the

ther the expected future reward V (s x 
k 
) . The type of “reward” de- 

ends on the problem and comprises, for example, maximizing 

he number of served customers ( Meisel, Suppa, & Mattfeld, 2011 ), 

aximizing the achieved revenue ( Albareda-Sambola et al., 2014 ), 

inimizing travel plus service costs/times ( Arslan et al., 2019 ), or 

inimizing customer inconveniences such as delays or travel time 

iolations ( Bertsimas & Van Ryzin, 1991 ). Dependent on the SD- 
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RPs, the balance between immediate reward and expected fu- 

ure reward varies. For example, in problems where demand oc- 

urs dynamically and over the entire time horizon, the immedi- 

te reward is usually significantly smaller than the expected future 

eward over the remainder of the time horizon ( Angelelli et al., 

009 ). Other problems have a more equal balance of immediate 

nd future rewards, for example, when time window violations are 

inimized ( Schilde et al., 2014 ). Finally, for some problems, a ma- 

or part of the objective value manifests already in the immedi- 

te reward when the first tentative route is planned, e.g. problems 

here travel times may change over time and the expected overall 

ravel times are minimized ( Köster et al., 2018 ). The initial reward 

epresents the main amount of travel times needed. Further deci- 

ions may change the routes but the reward of these decisions is 

ather a delta value. 

Decision variables. Decision variables x k generally determine 

ow the resources are used to satisfy demand in the environ- 

ent. Decisions usually include an assignment of customers to ve- 

icles and a tentative route for every vehicle. Furthermore, deci- 

ions may comprise offering customer a service ( Klapp, Erera, & To- 

iello, 2018 ), pricing different services ( Ulmer, 2020 ), determining 

nventory levels ( Brinkmann, Ulmer, & Mattfeld, 2019 ), and charg- 

ng ( Kullman, Goodson, & Mendoza, 2021 ) or repositioning idling 

ehicles ( Riley, Van Hentenryck, & Yuan, 2020 ). Decisions differ in 

heir dimensionality and in their range over the time horizon. For 

ome problems, decisions are “just” about routing the vehicle from 

ustomer to customer ( Larsen et al., 2002 ). In other cases, decisions 

ay comprise several additional dimensions, e.g., pickup and de- 

ivery, depot returns, charging, pricing, or inventory. Furthermore, 

or some SDVRPs such as dial-a-ride or taxi services, decisions only 

ange over a short horizon of time. For others, the (tentative) plan 

f a decision may span the entire time horizon, e.g., in dynamic 

elivery routing with time windows. 

Constraints. Constraints in the form of A (s k ) x k ≤ b(s k ) can be

mposed on resources, demand, and the environment. Constraints 

n resources are, e.g., vehicle capacity, travel speed, skills, or area 

ccessibility. Constraints on demand comprises for example the 

ervice itself, time windows, pickup before delivery, or demand 

olumes. Constraints on the environment capture the travel times, 

treet capacities, or the availability of urban infrastructure such as 

arking or micro-hubs. 

For different SDVRPs, the constraints are more or less com- 

lex and restrictive. For some problems, the decision space can 

e searched freely for a high quality decision. For other problems, 

he issue is rather the satisfyability of the constraints and finding 

 feasible decision of Eq. (2) at all. For example, a parcel pickup 

outing problem as presented in our example may only have con- 

traints about the travel times and the final return to the depot 

 Soeffker, Ulmer, & Mattfeld, 2019 ). For other problems, constraints 

re more complex, e.g., for a dial-a-ride problem where vehicle ca- 

acity, pickup before delivery, and customer time windows have to 

e considered ( Schilde et al., 2014 ). Finding a feasible solution is 

herefore significantly more challenging. 

Summary. Overall, the decision models of different SDVRPs dif- 

er in objective function, decision variables, and constraints. For 

ome problems, the major part of the objective value realizes at 

ime the decision is made, for others, it is balanced between now 

nd the future, and in some cases, the immediate reward is rel- 

tively small compared to the value of the future. Further, de- 

ision variables differ in their dimensionality and their range. In 

ome cases, the decision only comprises the routing component. In 

ther cases, additional dimensions have to be considered. Finally, 

he constraints differ in their complexity and their restrictiveness 

anging from pure routing constraints to a large number of differ- 

nt, very restrictive constraints with respect to resources, demand, 

nd environment. 
p

806 
.4. Example: modeling the dynamic VRP with stochastic customer 

equests 

In this section, we describe the sequential decision process, the 

nformation model, and the decision model for the example intro- 

uced in Section 2.3 . In this problem, the information model � de- 

cribes the probability distribution of customer requests over time 

nd space. An information model realization ω k in decision point 

 is a specific realization of this distribution and contains a new 

ustomer request with request time and location. As discussed in 

ection 2 , the spatial distribution as well as the temporal distri- 

ution are likely to depend on the service offered. Thus, for the 

ame problem type, heterogeneity and disruptivity of the informa- 

ion model may vary significantly. 

The decision model is an orienteering problem ( Vansteenwegen, 

ouffriau, & Van Oudheusden, 2011 ), an optimization problem in 

he form of Eq. (2) with an objective function in the form of the 

ellman Equation maximizing the number of customers served. 

he decision model instance in a state s k describes the specific op- 

imization problem in a decision point, that is, the current vehicle 

ocation, the locations of customers that need to be visited, and the 

ew request. The decision variables x k describe a tentative routing 

lan. The routing plan may span the entire horizon to ensure fea- 

ibility, but it can be modified in the next decision point. The con- 

traints A (s k ) x k ≤ b(s k ) are standard VRP constraints limiting the 

ime horizon, ensuring that all accepted requests are served, as 

ell as the subtour elimination constraints. After choosing a deci- 

ion, the transition to the next decision point occurs based on the 

tate, the decision taken, and the next information model realiza- 

ion, that is, a new customer request. Since an acceptance requires 

esources, such a decision impacts the constraints of the new de- 

ision model instance. 

As discussed, the distribution of the rewards for this problem 

lso depends on the underlying application. If only a small number 

f additional requests can be served over the overall horizon as 

or the maintenance and repair case, then the immediate reward 

s relatively large in comparison to the expected future reward. If 

any requests occur as for the express mail case, the relationship 

etween the immediate reward and the expected future rewards is 

ess balanced. 

. Computational methods 

Once problem, information model, and decision model are de- 

ned, we need to derive policies. As defined in Section 3 , a pol-

cy assigns a decision to every instance of the decision model (or 

tate). Because typically SDVRPs are too complex to be solved ex- 

ctly, heuristic computational methods are applied. In this section, 

e discuss the general types of such methods. 

All methods to solve SDVRPs prescribe decisions and there- 

ore are by definition methods of prescriptive analytics ( Lustig 

t al., 2010 ). However, they can be classified in their different 

xploitation of the information model. Methods may consider the 

nformation model in a descriptive way, just operating on the 

bserved information model realization in a state. Methods may 

xploit the information model in a predictive way, analyzing and 

sing the information model characteristics to derive decisions, e.g. 

ia scenarios ( Shmueli & Koppius, 2011 ). Finally, they can exploit 

he information model in a prescriptive way, not only analyzing 

he information model in isolation, but also its general interaction 

ith the decision model ( Bertsimas & Kallus, 2020 ). The latter two 

an further be differentiated in where the information model is 

onsidered; externally to derive a method (e.g., based on a-priori 

nalytical considerations) or internally when applying the method 

e.g. via sampling of realizations in a state). For our example 

roblem, an internal consideration may sample future customer 
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Table 1 

Method classification with respect to their exploitation of the information model. 

Information model use 

None External Internal 

Exploitation Descriptive Rolling horizon – –

Predictive – I Policy function approximation IIa Lookahead 

Cost function approximation Rollout 

Prescriptive – – IIb Policy iteration 

Value function approximation 
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equests to evaluate current decisions while an external consid- 

ration may have derived a classification of customers a-priori 

nd then uses this classification in a decision rule to decide about 

ffering service or not. Based on the three ways of exploiting the 

nformation model plus the differentiation of external or internal 

sage, we can classify the method classes for SDVRPs in Table 1 . 

The first method class is rolling horizon reoptimization. Rolling 

orizon methods focus only on the current state information, in 

articular, the currently observed information model realization. 

uch methods solve the current decision model instance (based on 

he current information model realization) with the current reward 

s objective function (e.g., Branchini, Armentano, & Løkketangen 

2009) ; Gendreau, Guertin, Potvin, & Séguin (2006) ; Gendreau 

t al. (1999) ; Ichoua et al. (20 0 0) ). For our example, a rolling hori-

on method would always accept a request if feasible. Rolling hori- 

on methods assume that the observed information model realiza- 

ions will remain unchanged in the future. They exploit the in- 

ormation model only in a descriptive way and therefore provide 

yopic, often inflexible decisions. Thus, we refrain from discussing 

his method class in detail. 

Besides rolling horizon, we consider two categories with the re- 

pective method classes either considering the information (and 

ecision) model externally before defining the policy (category I), 

r internally in the policy (category II). The second category is fur- 

her differentiated in their exploitation of the information model, 

ither predictive (IIa) or prescriptive (IIb). 

Category I describes approaches where the problem and its 

unctionality are analyzed, often in a simplified way. Based on the 

nalysis, a policy is derived, e.g., hard coded decision rules such as 

aiting or threshold strategies. This policy is then applied in ev- 

ry state without additional considerations of future information 

odel realizations or decision model instances. However, because 

he structure of both are usually the foundation of finding the poli- 

ies, we see them exploiting the information model (at least) in a 

redictive way. 

In category II, the information model is used internally in the 

ethod, usually via sampling realizations. Category IIa summarizes 

pproaches that derive solutions considering information model 

ealizations by “looking ahead” into the future. However, they in- 

egrate future decision making only to a very limited extent and 

o not analyze the general dependencies between information and 

ecision model (i.e., predictive exploitation). Approaches from cat- 

gory IIb go one step further and consider the general interaction 

etween information model realizations and decision making (i.e., 

rescriptive exploitation). 

We illustrate the differences by extending Fig. 4 to Fig. 5 . The 

dditional boxes depict the basis for decision making in decision 

oint t 1 . The smallest light gray box with a dotted line depicts ap-

roaches from category I, not integrating any future developments 

nternally. The box in light gray dashed lines depicts approaches 

n category IIa, mainly focusing on future information model re- 

lizations. The largest box with solid light gray lines describes 

he information basis for approaches in category IIb that consider 

oth information model realizations and future decision model 

nstances. 
t

807 
In the following, we describe categories I, IIa, and IIb and how 

hey consider information model and decision model along with 

xamples. We discuss that the methods differ in the level of de- 

ail of information and decision model they capture as well as 

he length of the time horizon their considerations span. We also 

ketch corresponding methods for our SDVRP-example. 

.1. Category I: predictive and external exploitation of the 

nformation model 

Category I contains two method classes, policy function ap- 

roximation (PFA) and cost function approximation (CFA). Both are 

ased on preliminary analyses of the problem, often with sim- 

lified assumptions about information and decision models (e.g., 

homas, 2007 ). The derived insights are then used to define the 

ecision policy. 

The first idea is to follow some analytically derived concept 

r common-sense of what “good” solutions look like. Such poli- 

ies are called policy function approximations. While such strate- 

ies are very problem-specific, they all have in common that both 

urrent reward and future value are disregarded and a rule de- 

nes how to derive a decision for the current decision model in- 

tance. Examples are, amongst others, waiting strategies ( Branke, 

iddendorf, Noeth, & Dessouky, 20 05; Thomas, 20 07 ), pre-defined 

olicies that decide about the routing ( Pavone, Bisnik, Frazzoli, & 

sler, 2009 ), or methods that incentivize vehicles serving particular 

reas in the city ( Ichoua, Gendreau, & Potvin, 2006; Van Hemert 

 La Poutré, 2004 ). The resulting decisions may yield some flex- 

bility and anticipation of the future. However, the information 

odel is not considered internally in every state. Further, lim- 

ted effort is spent on searching the decision model instance in 

etail. 

The second idea is to alleviate the moypic and inflexible de- 

ision making of the rolling horizon reoptimization. This is done 

y manipulating either reward function R (s k , x k ) or constraints 

ia A (s k ) and b(s k ) to incentivize flexible decisions ( Riley et al.,

020; Ulmer, Nowak, Mattfeld, & Kaminski, 2020a ) and prohibit 

nflexible decisions ( Al-Kanj, Nascimento, & Powell, 2020 ). A com- 

on example are safety buffers ( Ulmer, Thomas, Campbell, & 

oyak, 2021 ). Such methods are called cost function approxi- 

ations. In CFAs, no additional information about the informa- 

ion model is used in a state. Instead, CFAs invest the com- 

utational resources into solving the current, but manipulated, 

ecision model instance as effectively as possible. To this end, 

eighborhood search ( Angelelli et al., 2009; Ulmer et al., 2020a; 

lmer et al., 2021 ) or metaheuristics ( Ichoua et al., 2006 ) are

pplied. 

Example: approaches in I for the dynamic VRP with stochastic 

ustomer requests For our example, a cost-function approximation 

ay change the available time in b(s k ) to integrate requests, for 

xample, based on their location in the service area. A policy 

unction approximation may define a detour-threshold and only 

ccept requests if the increase in tour duration lies below this 

hreshold. 
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Fig. 5. Approaches with their use of information model and decision model. 
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.2. Category IIa: predictive and internal exploitation of the 

nformation model 

There is a group of methods that consider future realizations of 

he information model internally but without fully considering fu- 

ure decision making. Thus, they exploit the information model in 

 predictive way. This idea is depicted in Fig. 5 as the light gray

oxes with the notation “IIa”. These boxes cover parts of the in- 

ormation model that lay in the future. Optionally, they may also 

over parts of the decision model instances in the future in a very 

imited way. The methods have in common that they integrate 

ampled information model realizations in their decision making. 

n the following, we describe the two main strategies, scenario- 

ased approaches and post-decision rollout algorithms in detail. 

In scenario-based approaches, information model realizations 

re sampled to create a set of scenarios (like in Azi, Gendreau, 

 Potvin (2012) ; Bent & Van Hentenryck (2004) ; Ghiani, Manni, 

uaranta, & Triki (2009) ; Hvattum, Løkketangen, & Laporte (2006) ; 

childe et al. (2014) ). Such scenarios are static and determinis- 

ic, thus potential changes in information and decision model over 

ime are ignored. Besides a few exceptions where a multi-stage de- 

ision problem is solved ( Ferrucci, Bock, & Gendreau, 2013 ), the 

cenarios are solved individually, either via mixed-integer solvers, 

eighborhood searches, or metaheuristics. Based on the individual 

cenario solution, a decision is derived. 

The most prominent scenario-based approach is the multiple- 

cenario approach (MSA), described in Algorithm 1 . Given a state 

Algorithm 1: Multiple scenario approach. 

Input : State s k , Information Model Realization Sequences { ω 

1 , . . . , ω 

m } 
Output : Decision x ∗

2 2 // Generate Scenario Solutions 
3 X ← ∅ // Set of Scenario Solutions 
4 for i = 1 , . . . , m do 

5 ˆ s ← Scenario (s k , ω 

i ) // Generate Scenario i 

6 ˆ x i ← Decision ( ̂ s ) // Solve Decision Model for Scenario i 

7 X ← X ∪ Reduce ( ̂ x i , s k ) // Add Decision Reduced to s k 

8 end 

10 10 // Selection 
11 M 

∗ ← 0 // Consensus Measure 
12 for all x i ∈ X do 

13 if ( Consensus (x i , X ) ≥ M 

∗) // Highest Consensus Value 
14 then 

15 x ∗ ← x i // Best Found Solution 
16 M 

∗ ← Consensus (x i , X ) // Highest Found Consensus Value 
17 end 

18 end 

19 return x ∗

 k and a set of m sampled information model realization sequences 

 ω 

1 , . . . , ω 

m } (e.g., future customer requests), the algorithm gener- 
808 
tes m scenarios via function Scenario (s k , ω 

i ) (e.g., by augmenting 

he set of current customers with the set of sampled customers). 

hen, for each scenario ˆ s , the augmented decision model realiza- 

ion is solved with respect to the immediate reward with function 

ecision ( ̂ s ) , e.g, via mixed-integer solvers or metaheuristics. Then, 

he solutions are reduced to omit any augmented information (e.g., 

y skipping sampled customers in the routes). This results in a 

et X of m potential decisions for state s k . To select one, the MSA 

raws on a consensus function Consensus (x i , X ) . This function mea- 

ures the similarity between a decision x i and the overall set of 

olutions X (e.g., the number of edges of decision x i that are used 

n other decisions). The most similar decision x ∗ is then applied to 

tate s k . 

Scenario-based approaches consider changes in the information 

odel explicitly, but do not consider their dynamism over the time 

orizon. They also spend significant effort in solving the individ- 

al scenarios in detail. There is an alternative method that fo- 

uses more on the dynamism over the time horizon and less on 

 detailed optimization within the scenarios. We call the methods 

ost-decision rollout algorithm (RA), compare Goodson, Thomas, & 

hlmann (2017) , but similar concepts are known as discrete event 

imulation ( Fishman, 2001 ) or Monte-Carlo-tree search ( Browne 

t al., 2012 ). The idea of an RA is, in every state, to preselect a set

f potential decisions, and approximate the value of each result- 

ng post-decision state via simulation of information model realiza- 

ions and decision model instances ( Goodson, Ohlmann, & Thomas, 

013; Ulmer et al., 2019 ). The approximated value is then used in 

he Bellman Equation to select one of the decisions. Within the 

imulation, generally a base policy, a simple, runtime efficient de- 

ision rule, is applied to solve the simulated decision model in- 

tances ( Novoa & Storer, 2009; Secomandi, 2001 ). Further, the sim- 

lation horizon is often limited to a number of steps because the 

imulations diverge increasingly from reality over the simulation 

orizon ( Brinkmann et al., 2019 ). 

The procedure of an RA is depicted in Algorithm 2 . In- 

uts are the state s k , the information model realization sequences 

 ω 

1 , . . . , ω 

m } , the horizon limit L , and the base policy πb . The RA

enerates a set of candidate decisions for state s k with function 

ecisions (s k ) (e.g., by applying a set of runtime-efficient policy- 

unction approximations). For each of the candidate decisions, the 

A generates the corresponding post-decision state, with func- 

ion PDS (s k , x ) and then approximates the value ˆ V for each post- 

ecision state. For approximation, m simulation runs are conducted 

hat consist of sequences of information model realizations and 

ecision model instances. Each simulation run i terminates ei- 

her when L decision points were simulated or when the process 

eached termination state s K . Else, the transition function T with 

urrent post-decision state s x and sampled realization ω 

i generates 

 new state. In every state s of the simulation, the basis policy 
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Algorithm 2: Post-decision rollout algorithm. 

Input : State s k , Information Model Realization Sequences { ω 

1 , . . . , ω 

m } , Limit 

L , Base Policy πb 

Output : Decision x ∗

1 X ← Decisions (s k ) // Generate Set of Decisions 
2 for all x ∈ X do 

3 s x 
k 

← PDS (s k , x ) // Generate Post-Decision State 

4 ˆ V (s x ) ← 0 // Initialize Value Function 
6 6 // Simulation 
7 for (i = 1 , . . . , m ) // m Simulation Runs per Post-Decision State 
8 do 

9 s x ← s x 
k 
, l ← 0 

10 while AND ((s x 	 = s K ) , (l ≤ L )) // Termination of Run 
11 do 

12 s ← T (s x , ω 

i ) // Transition Function 
13 x ← X πb (s ) // Solve Decision Model via Base Policy 

14 ˆ V (s x 
k 
) ← ̂

 V (s x 
k 
) + 

1 
m 

R (s, x ) // Update Value Function 
15 s x ← PDS (s, x ) 

16 l ← l + 1 

17 end 

18 end 

19 end 

21 21 // Selection 
22 R ∗ ← −bigM 

23 for all x ∈ X do 

24 if (R (s k , x ) + ̂

 V ( PDS (s k , x )) ≥ R ∗) // Bellman Equation 
25 then 

26 x ∗ ← x // Best Found Solution 

27 R ∗ ← R (s k , x ) + ̂

 V ( PDS (s k , x )) // Best Found Value 
28 end 

29 end 

30 return x ∗
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b is used to derive decisions X πb (s ) . The corresponding reward 

s added to the approximated value ˆ V proportionately. After the 

alues for all post-decision state candidates are approximated, the 

ellman Equation is used to select a decision x ∗. 

In essence, MSAs and RAs incorporate future information model 

ealizations in much detail but only for a very limited horizon. Fur- 

her, while searching the current decision model instance receives 

ignificant attention, future decision making is either ignored en- 

irely or simplified substantially. Due to the solution effort of the 

cenarios, MSAs and RAs require a high computational effort in a 

ecision point. 

Example: approaches in IIa for the dynamic VRP with stochastic 

ustomer requests In an MSA for the example from Section 2.3 , pos- 

ible future requests are sampled and both the actual new request 

nd the sampled artificial ones are added to the current orienteer- 

ng problem. This problem (including potential future requests) is 

olved and the sampled requests are removed from the solutions. 

rom the possible routing plans, the MSA chooses the one that is 

ost similar to the others. The new request is accepted in case 

t is part of this solution. While the MSA can search large solu- 

ion spaces, it is limited with respect to the consideration of fu- 

ure dynamics. For an RA, first, a small set of possible decisions is 

elected. For example, only the acceptance part of the decision is 

onsidered and the planned route is determined by an insertion 

rocedure. Then, for the two decisions, future demand is simu- 

ated and as long it is feasible integrated via an insertion proce- 

ure. When comparing the two procedures, we observe that the 

SA spends more effort on searching the routing solution space 

hile the RA focuses more on dynamism. This observation is com- 

on for the two types of scenario-based methods. 

.3. Category IIb: prescriptive and internal exploitation of the 

nformation model 

There are methods that consider future changes in both infor- 

ation model realizations and decision model (and their interac- 
809 
ions) in their decision making. Thus, they exploit the information 

odel in a prescriptive way. The methods in this category are de- 

icted in Fig. 5 by the box with solid lines surrounding the entire 

hart. The corresponding methods fall in the broader category of 

einforcement learning, e.g., value function approximation (for ex- 

mple in Schmid, 2012 ), policy iteration (as in Secomandi, 20 0 0 ),

r Q-learning ( Chen, Ulmer, & Thomas, 2021 ). The approaches ap- 

roximate a policy or the value function by iteratively simulat- 

ng through the time horizon. Because the repeated simulation re- 

uires substantial computation time, it is usually done in an offline 

anner, that is, in advance of the actual decision making. Once 

he offline learning is complete, the learned policy can be applied 

ithout additional, runtime-expensive simulations as long as the 

nformation model remains valid. 

Within the offline simulations, information model realizations 

re sampled and every decision model instance is solved based on 

he learned experience of previous simulations. After each simu- 

ation run, the learned experience is updated in terms of the ob- 

erved states, decisions, and rewards. This procedure alleviates the 

urse of dimensionality in the information space ( Powell, 2011 ). 

or the decision space, a pre-selection of decision candidates is re- 

uired, as for the RA. The state space is aggregated to a set of fea-

ures and the values for the features are stored, either in groups or 

n functional form, in an approximation architecture. 

In the following, we focus on value function approximation as a 

epresentative of offline learning approaches. We first present the 

lgorithmic procedure and then discuss the forms of aggregation 

pplied to SDVRPs. 

.3.1. General procedure 

The procedure of value function approximation (VFA) is de- 

icted in Algorithm 3 . Inputs are a (large) set of information 

Algorithm 3: Value function approximation. 

Input : Information Model Realization Sequences ω 

1 , . . . , ω 

N , Initial Values ̂  V 

Output : Values ̂  V 

1 // Initialization 
2 O ← ∅ // Observations 
3 for ( j = 1 , . . . , N) // Simulation of N Realizations (Learning) 
4 do 

5 O 

j ← ∅ // Observations in run j 

6 s x ← s x 0 // State Initialization for the next Realization 
7 while (s x 	 = s K ) // Simulation of one Realization 
8 do 

9 s ← T (s x , ω j ) // Next State 
10 x k ← Decision (s, ̂  V , O) // Solve Decision Model 
11 O 

j ← O 

j ∪ { Aggregate ( PDS (s, x k )) } // Save Aggregated Observation 
12 R ← R ∪ { R (s, x k ) } // Save Reward 
13 s x ← PDS (s, x k ) 

14 end 

15 // Update Values 
16 O ← UpdateObservations (O 

j , R ) 

17 ̂ V ← UpdateValues ( ̂  V , O) 

18 end 

19 return ̂  V 

odel realization sequences ω 

1 , . . . , ω 

N and an initial value func- 

ion 

̂ V . Initially, the set of stored observations O is empty. The 

FA iteratively simulates the N realization sequences to learn the 

alue function. Every simulation run starts in the initial state s x 
0 
. 

hen, a sequence of information model realizations and decision 

odel instances is simulated. The decisions are derived based on 

he approximate value function and the already encountered ob- 

ervations via function Decision (s, ̂  V , O) . This function can use the 

ellman Equation or exploration methods that aim on encounter- 

ng new observations. We note that only a small set of candidate 

ecisions is searched rather than the entire decision space. After a 
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ecision is selected, the post-decision state PDS (s, x k ) and the re- 

ard accumulated up to this point R is stored. This storage hap- 

ens in an aggregated way (see Section 4.3.2 ). After each simu- 

ation run, the set of observations O is updated with respect to 

he observed post-decision states O 

j and rewards R via function 

pdateObservations . Then, the value function ̂

 V is updated with re- 

pect to O in function UpdateValues . The specific update proce- 

ure depends on the VFA-tuning and the underlying approximation 

rchitecture. 

.3.2. Aggregation 

For SDVRPs, the post-decision state space is vast and each post- 

ecision state consists of a large number of dimensions, for exam- 

le, time of day, vehicle locations and planned routes, or customer 

ocations, potentially with additional information. As discussed ear- 

ier, post-decision states are aggregated to a set of features. Fea- 

ures are chosen that are assumed to have a meaningful relation- 

hip with the values. Examples are the current time in the decision 

orizon, the available capacity of vehicles, or information about 

ow many customers still have to be visited. The resulting vector 

f features is then mapped to a value. The mapping depends on 

he approximation architecture used ( Bertsekas & Tsitsiklis, 1996 ), 

or example, a lookup table, linear functions, or neural nets. In the 

ollowing, we analyze feature selection and approximation archi- 

ecture for SDVRPs. 

Feature selection. In Section 2.1 , we discussed the three dimen- 

ions where uncertainty can occur, demand, resources, and en- 

ironment. Consequently, features should reflect the state of the 

hree dimensions, especially in case of uncertainty. While some 

eatures specifically refer to one of the three dimensions, other fea- 

ures may combine information from multiple dimensions. 

Until now, there is no work applying a solution approach from 

Ib to a problem with stochasticity in the resources or in the en- 

ironment . Features relating to the environment are therefore not 

onsidered in the literature yet. However, since the demand has 

n effect on the resources, the resources are often captured by the 

eatures as well. 

In literature on stochastic service times ( Maxwell et al., 2010; 

chmid, 2012 ), resource-features consider the vehicle locations, the 

vailable vehicles, as well as information on the available vehicles 

n the future. Information about the demand is depicted by fea- 

ures describing customer orders that need to be served, customer 

emand that cannot be reached, as well as expected future de- 

and. 

In literature considering stochastic demand quantities ( Pandelis, 

yriakidis, & Dimitrakos, 2012; Secomandi, 20 0 0; Secomandi & 

argot, 2009 ), information about the available resources is de- 

icted by the current vehicle location and the remaining capacity. 

nformation about the demand is represented via the service-status 

f the customers and about the expected future demand. 

When considering stochastic customer requests , information 

bout the resources is often depicted in terms of the remaining 

ime capacity (slack) ( Meisel et al., 2011; Ulmer, Mattfeld, & Köster, 

018a ), the currently available vehicles ( Agussurja et al., 2019 ), the 

ehicle locations ( Thomas & White, 2004 ), and the vehicles that 

re available in the future ( Maxwell et al., 2010 ). The demand is

epicted by means of the service-status of the potential customers 

n the system ( Meisel et al., 2011; Thomas & White, 2004 ) or fea-

ures describing the customer orders waiting to be served ( Schmid, 

012 ). More detailed information and a table summarizing the fea- 

ures applied in the literature can be found in A.2 . 

In general, while the features represent important information 

bout vehicles and customers, they lack detail, for example, spatial 

ustomer information ( Ulmer et al., 2018a ) or the distribution of 

ehicles within the city ( Al-Kanj et al., 2020 ). 
810 
Approximation architecture. After choosing features, the mapping 

etween the aggregated states and the values needs to be deter- 

ined. This mapping therefore builds the bridge between the fea- 

ures and the values as depicted in Fig. 6 . For this mapping, dif- 

erent approximation architectures can be chosen. For the sake of 

implicity, the one depicted in Fig. 6 is a lookup table. 

Possible ways to depict such a relationship between features 

nd values are either parametric or non-parametric dependencies. 

on-parametric architectures can be, for example, lookup tables 

 Thomas & White, 2004; Ulmer, Soeffker, & Mattfeld, 2018b ) and 

heir variants, decision trees, or state representatives ( Agussurja 

t al., 2019; Soeffker et al., 2019 ). Non-parametric architectures 

ave the advantage that they can capture complex value func- 

ion structures, often observed in stochastic dynamic vehicle rout- 

ng. However, they do not scale well and require many simula- 

ion runs to learn ( Ulmer & Thomas, 2020 ). In the case of para-

etric dependencies between states and values, the type of rela- 

ionship has to be defined, possible options here are linear ( Meisel 

t al., 2011; Secomandi, 20 0 0 ), weighted combinations of basis 

unctions ( Maxwell et al., 2010; Schmid, 2012 ), or, theoretically, 

onlinear dependencies. Parametric architectures allow a faster ap- 

roximation, but often fail to fully capture the structure of the 

alue function ( Ulmer & Thomas, 2020 ). There is also an increas- 

ng amount of work using neural net architectures ( Chen et al., 

021; Joe & Lau, 2020 ). Neural nets can be seen as a hybrid

lass between non-parametric and parametric, because they are 

uned via parameters while the value function does not neces- 

arily follow any functional form. However, training them often 

equires a large number of simulation runs and the interpreta- 

ion of the outcome is generally difficult. More information about 

he approximation architectures used in literature can be found 

n A.3 . 

Example: approaches in IIb for the dynamic VRP with stochastic 

ustomer requests Ulmer et al. (2018a) presents a VFA for our ex- 

mple. Decisions are reduced to acceptance of requests, routing is 

onducted by a runtime-efficient insertion procedure. Post-decision 

tates are aggregated to two features, point of time and slack. Slack 

ndicates the free time available to serve additional requests, once 

ll existing customers are served. Both features indicate changes in 

he value function. With increasing point of time, the expected fu- 

ure demand decreases, as does the value function. With decreas- 

ng slack, the possibility to integrate future demand decreases, as 

oes the value function. As approximation architecture, a lookup 

able is chosen because the functional dependencies between time, 

lack and value function are complex, especially in case of spatial 

eterogeneity in the information model. 

. Recommendation 

In the previous sections, we illustrated that every SDVRP 

ollows the same structure, a sequential process with iterations 

f information model realizations and decision model instances. 

owever, they differ substantially in the characteristics of infor- 

ation and decision model. We further illustrated the available 

rescriptive analytics (PA) methodology, their functionality, and 

heir strengths and weaknesses. In this section, we combine the 

nsights of models and methodology to derive recommendations 

bout how to approach a specific SDVRP with prescriptive an- 

lytics. We first give an anecdotal evidence and then a general 

ecommendation. 

.1. The impact of information model heterogeneity 

In the following, we show how the heterogeneity within the in- 

ormation model impacts the performance of different PA-methods 

or the stochastic dynamic vehicle routing problem with stochastic 
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Fig. 6. Depicting the relationship between features and values by means of an approximation architecture. 

Fig. 7. Relative performance of an MSA compared to a VFA for varying heterogeneity in the information model, Ulmer et al. (2019) . 
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equests described in the example in Section 2.3 (details on prob- 

em, methods, and results can be found in Ulmer et al., 2019 ). We

ecall that decisions are made about accepting and routing cus- 

omer requests with the objective to maximize the expected num- 

er of served customers per day. 

The tested PA-methods are a value function approximation 

from category IIb) and a variant of the multiple-scenario ap- 

roach (from category IIa) as described in the examples in 

ections 4.2 and 4.3 . The VFA aggregates post-decision states to 

wo features, the point of time and slack. The MSA samples a set 

f near-future requests and evaluates decisions with respect to the 

umber of sampled requests that can be served. Thus, both meth- 

ds treat the information model very differently. The VFA incor- 

orates the information model highly aggregated without explicit 

onsideration of spatial information such as vehicle or customer 

ocations. However, due to the frequent simulations of entire days, 

he VFA captures longer term effects of decisions and many differ- 

nt (potentially disruptive) realizations of the information model. 

he MSA considers the available and sampled information in full 

etail but only a few realizations and over a very limited time 

orizon. 

Ulmer et al. (2019) compare the two methods for varying het- 

rogeneity in the information model, namely, the spatial distribu- 

ion of the customer requests. They generate instances stepwise 

hifting from a fully homogeneous spatial distribution where cus- 

omers are uniformly distributed over the city to a very heteroge- 

eous distribution where customers accumulate in three compact 

lusters. Both methods are applied to the different instances and 

he relative performance of the MSA compared to the VFA is calcu- 

ated. The results are depicted in Fig. 7 . The x -axis depicts the het-

rogeneity of the instances from fully homogeneous (0%) to very 

eterogeneous (100%). The y -axis shows the relative performance 

f the MSA. Values below 1 indicate that the VFA performs better, 

alues above 1 indicate that the MSA provides better results. 

We observe a nearly linear dependency between heterogeneity 

nd relative performance. The VFA is superior for homogeneous 

nstances and the MSA is superior for instances with significant 

eterogeneity when the more detailed consideration of the infor- 

ation model becomes important. This experiment highlights that 
811 
here is not one dominant PA-method for the problem but that the 

uitability of the method depends on the heterogeneity in the in- 

ormation model and how well the method can depict such het- 

rogeneity in detail. While this observation is rather anecdotal ev- 

dence, we will use it as motivation for the following general con- 

iderations. 

.2. Generalization 

In this paper, we illustrated that information models and deci- 

ion models differ in several characteristics for different SDVRPs. 

e also illustrated by means of examples that PA-methods con- 

ider decision and information model in their decision making in 

ifferent level of detail and with a different time horizon. We 

ow connect models to methodology by analyzing when detail and 

orizon in information and decision model are important and how 

hey are treated by the different methods. 

Information models can be characterized with respect to di- 

ensionality, heterogeneity, correlation, and disruptivity. Dimen- 

ionality represents the number of different information dimen- 

ions a realization reveals. Heterogeneity indicates the differences 

n the realized information, e.g., in time and space. Correlation in- 

icates that realized information might be correlated, e.g., again 

ver time and space. And disruptivity means that two subsequent 

nformation model realizations differ substantially. As motivated by 

he example of the previous section, the information model char- 

cteristics require different treatment. This treatment should con- 

ider the level of detail spent on the information model realization 

nd the time horizon over that future realizations are integrated in 

ecision making. Detail is required in case of high dimensionality 

nd heterogeneity as well as correlation. A longer time horizon is 

equired in case of high disruptivity to anticipate potentially severe 

hanges in the information model realizations. 

Decision models differ in their objective function, their deci- 

ion variables, and their constraints. The objective functions differ 

n how immediate reward and future value are balanced . Decision 

ariables differ in their dimensionality and their time range . The 

onstraints result in different complexity and restrictiveness , and 

herefore, the potential of finding feasible solutions fast. As for the 
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Table 2 

Overview methodology. 

Category Method Information model Decision model 

Detail Horizon Detail Horizon 

Rolling-Horizon Reoptimization +++ − +++ −
I Cost Function Approximation ++ + ++ + 

Policy Function Approximation − ++ − ++ 

IIa Multiple Scenario Approach ++ + ++ + 

Rollout Algorithm + ++ ++ ++ 

IIb Value Function Approximation + +++ + +++ 
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nformation model, the different characteristics require a different 

reatment of detail and horizon of the decision model. If the cur- 

ent reward is relatively marginal and a large amount of reward 

anifests in the future value, based on future decision making, a 

onger horizon is required. If decisions have a large number of di- 

ensions, a more detailed consideration of the decision model is 

eeded. In case decisions span a larger time range into the future, 

 longer horizon is required as well. Decision models with very 

omplex and restrictive constraints also require a detailed consid- 

ration, e.g., just to find a feasible solution. 

We established that the requirement of considering detail and 

ime horizon varies depending on the characteristics of informa- 

ion and decision model. In Section 4 , we illustrated that methods 

iffer in which level of detail and time horizon they capture. We 

resent an (qualitative) assessment of the methods’ capabilities in 

able 2 . The table depicts the three method categories with the 

ethods described in this paper. It further depicts a method’s abil- 

ty to capture detail and horizon of information model and decision 

odel. We differentiate between no capability (“-”), slight capa- 

ility (“+”), good capability (“++”), and excellent capability (“+++”). 

e note that the assessment is not validated by quantitative mea- 

ures but is based on conceptual considerations and experience de- 

cribed earlier in this paper. 

Rolling-horizon reoptimization can fully capture the details of 

urrent information model realizations and decision model in- 

tances, but ignores changes over the time horizon. The cost func- 

ion approximation can capture decision model and information 

odel now and, implicitly based on analytical considerations, in 

he near future. Thus, the overall level of detail is relatively high 

ut the horizon comparably short. The policy function approxima- 

ion disregards detail in information and decision model and se- 

ects a decision fast and straightforwardly. However, because the 

ecision making is based on analytical or practical considerations, 

uch decisions capture effects of information and decision model 

ver a longer horizon. Similar to the cost-function approximation, 

he multiple scenario approach considers decision and information 

odel now and in the near future in detail, but disregards longer 

erm effects. The rollout algorithm evaluates only a few candidate 

ecisions of the current decision model instance, but with explicit 

ntegration of future changes in information and decision model 

ver a (limited) time horizon. Finally, the value function approxi- 

ation captures general, long term horizon effects due to the man- 

fold simulation runs. However, the information is highly aggre- 

ated and decision making is reduced to a set of few candidate 

ecisions. Thus, the level of detail is rather limited. 

When comparing the methods in Table 2 , we observe that 

here is no dominant method. Instead, the method selection should 

e made based on the characteristics of information and deci- 

ion model. If they require consideration of detail, e.g. because of 

imensionality, heterogeneity, correlation, or complex constraints, 

ethods such as cost function approximation or multiple scenario 

pproach are promising choices. If they require consideration of 

onger term effects, e.g., because of disruptions or because the fu- 

ure reward is substantially higher than the immediate rewards, 
t

812 
ethods such as policy function approximation or value function 

re likely the better choice. If they are mixed, a rollout algo- 

ithm might provide a sufficient consideration of detail and hori- 

on while the other methods fall short in one of them. Essentially, 

hen approaching a new SDVRP, we recommend to first analyze 

he characteristics of information and decision model, then deter- 

ine the requirements of detail and horizon based on the charac- 

eristics, and finally select a method that matches the requirements 

ith the its strengths. 

. Outlook 

In this paper, we have analyzed the work on stochastic 

ynamic vehicle routing problems (SDVRPs) in the light of pre- 

criptive analytics (PA). PA for SDVRPs combines decision modeling 

ith information modeling. A SDVRP can be seen as a mutually 

ependent sequence of iterations between information model 

ealizations and decision model instances. Information model 

nd decision model implement the characteristics of the specific 

DVRP. We have concluded that dependent on the characteristics, 

ifferent consideration should be given to the level of detail 

nd time horizon of information and decision model. We have 

urther presented a classification of the SDVRP-methodology with 

espect to prescriptive analytics, i.e., the treatment of information 

odel and decision model. We have finally given a guideline 

o the methods’ suitability with respect to the characteristics of 

nformation and decision model. 

There are plenty of opportunities for future work in the field of 

DVRPs, e.g., due to the vast number of new e-commerce and ur- 

an mobility applications. Working on these problems will provide 

mportant methodological insights and managerial impact. From a 

ethodological view, it might also be valuable to consider prob- 

ems with an incomplete or inaccurate information model, but 

ith auxiliary information that can be used instead ( Bertsimas & 

allus, 2020 ). We see another important avenue in validating and 

efining the proposed interdependencies between characteristics of 

nformation and decision model and the performance of the com- 

utational methods. First, the qualitatively derived characteristics 

f information and decision model require quantitative measures 

o differentiate problems and instances. Second, the conceptual 

valuation of the methods in Table 2 requires quantitative valida- 

ion. Because this requires significant conceptual work in combi- 

ation with the development and testing of different methods on 

DVRPs with different characteristics, this will undergo cumulative 

esearch of the community. 
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ppendix A. 

In the appendix, we provide further information on differ- 

nt application areas in Section A.1 , the choice of features in 

ection A.2 , on approximation architectures in Section A.3 , and on 

he modeling of uncertainties in Section A.4 . We provide a summa- 

izing list of literature classified according to the proposed features 

n Section A.5 . 

1. Application areas 

In the following, we give a brief overview on application areas 

here stochastic dynamic problems emerge. We classify those ar- 

as in transportation of goods, passengers, and services at the cus- 

omer’s location. While in all three areas customer demand is ful- 

lled by the provider’s resources, they differ in the fulfillment pro- 

ess and the customers’ involvement. Thus, they often differ in re- 

trictions and goal. In Fig. A.1 , these three broad application areas 

long with some exemplary applications are depicted. In the fol- 

owing, we discuss the three application areas in more detail and 

ighlight some special characteristics inherent to the application 

reas. 

Transportation of goods. The most prominent applications of 

tochastic dynamic vehicle routing problems dealing with trans- 

orting goods are courier services ( Ichoua et al., 20 0 0 ), food de-

ivery, or same-day delivery ( Voccia, Campbell, & Thomas, 2019 ). 

In such settings, a fleet of vehicles serves customers in a service 

rea by either picking up or delivering goods. While the goods are 

oved through time and space, the customer is only involved in 

he first or final step of the fulfillment process, the pickup or de- 

ivery. For such problems, goal and restrictions spread along the 

ickup and delivery process, e.g., time windows ( Gendreau et al., 

999 ), working hours ( Angelelli et al., 2009 ), or vehicle capacity 

 Van Hemert & La Poutré, 2004 ). In the case of delivery problems

 Secomandi, 20 0 0 ), the depot has to be visited before the customer

isit to load the customer’s good onto the vehicle. And in the case 

f the pickup and delivery problem ( Mitrovi ́c-Mini ́c, Krishnamurti, 

 Laporte, 2004 ), the pickup location has to be visited before the 

elivery location. 

Passenger transportation. The second application area is the 

roup of passenger transportation problems, for example, dial-a- 

ide problems ( Psaraftis, 1980 ), emergency transportation of pa- 

ients ( Schmid, 2012 ), or ride-sharing ( Agussurja et al., 2019 ). Usu-

lly, they are pickup and delivery problems where customers have 

o be driven from an origin to a destination within a short amount 

f time. Thus, the customer is involved in nearly the entire service 

rocess. The transportation of passengers poses additional restric- 

ions on the problem settings. Customers have to be picked up be- 

ore dropping them off at their destination and time windows may 

e to be considered. Also, vehicles can only carry a small num- 

er of people at the same time (imposing capacity restrictions, 

áez et al., 2008 ) and detours, both spatial and temporal, have 
Fig. A1. Application areas within stoc
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o be kept small to avoid customer inconvenience ( Schilde et al., 

014 ). In emergency transport applications, profitability is only of 

econdary interest as fast response times and safety are the main 

oals and serving customers is mandatory. Since only individual re- 

uests are served at a time and those have to be processed as fast 

s possible, decisions are rather made about how to allocate ve- 

icles within the service area than about routing plans ( Maxwell 

t al., 2010 ). 

Services. Finally, the provision of services such as technician 

ervices ( Larsen et al., 2002 ) or health care services ( Demirbilek, 

ranke, & Strauss, 2021 ) at a customer’s home is becoming more 

nd more relevant. In contrast to transportation services, a ma- 

or part of the fulfillment process takes place at the customer’s 

ocation and the service itself is often more complex. Here, the 

ualification of the vehicle driver has to match the service to be 

rovided ( Demirbilek et al., 2021 ). Healthcare services usually de- 

ne non-urgent problems where patients have to be visited regu- 

arly ( Demirbilek et al., 2021 ). Customer time windows and driver- 

ustomer consistency might be considered to provide regularity 

o patients ( Song, Ulmer, Thomas, & Wallace, 2020 ). Especially in 

ealth care services, service times might be rather long and may 

epend on the driver’s familiarity with the patient ( Ulmer et al., 

020a ). In emergency problem settings, patients sometimes are not 

nly transported, but are also treated medically ( Maxwell et al., 

010; Schmid, 2012 ). Due to the connection with the patient trans- 

ort, capacity restrictions have to be considered. 

2. Feature selection 

In the following, we analyze the literature with respect to how 

he features relate to the source of uncertainty. We are not aware 

f such methods in literature considering stochastic travel times or 

tochastic resources and therefore only consider stochastic service 

imes, stochastic demand quantities, and stochastic requests. All of 

hese are sources of uncertainty concerning the customer demand 

hich utilizes the resources in different ways. In the following and 

n Fig. A.1 , we describe which features are chosen by literature for 

he different sources of uncertainty. 

Stochastic service times. Work on stochastic service times is 

resented in Maxwell et al. (2010) and Schmid (2012) . In these 

rticles, stochastic service times are combined with stochastic 

ustomer requests and decisions are made about how to redeploy 

mbulances after serving a customer. Stochastic service times 

mpact the time when (and where) vehicles will be available again 

or the service provider. Thus, information about this time and 

he locations is required. Because customer requests are uncertain, 

nformation about demand is required as well, and how well this 

emand can be served by the fleet. Both articles describe the 

patial and temporal utilization of the ambulances by means of 

irect or indirect information about the locations of the vehicles 

nd the remaining customer requests that still need to be served. 
hastic dynamic vehicle routing. 
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Table A1 

Features within the dimensions resources and demand used when considering stochastic demand quantity (upper part) or stochastic requests (lower part). 

Resources Demand 

Slack Vehicle 

location 

Available 

vehicles 

Vehicles 

available in 

future 

Remaining 

capacity 

Status of all 

customers 

Orders waiting 

to be served 

Demand not 

reachable 

Expected 

future 

demand 

Secomandi (2000) � � � � 

Secomandi & Margot 

(2009) 

� � � 

Pandelis et al. (2012) � � ( � ) 

Thomas & White 

(2004) 

� � 

Maxwell et al. (2010) ( � ) ( � ) � � � 

Meisel et al. (2011) � � 

Schmid (2012) ( � ) � � 

Ulmer et al. (2018a) � ( � ) 

Ulmer et al. (2018b) � ( � ) 

Agussurja et al. (2019) � � 

Chen et al. (2021) ( � ) ( � ) ( � ) 

Soeffker et al. (2019) � ( � ) 

Ulmer et al. (2019) � ( � ) 

Van Heeswijk, Mes, & 

Schutten (2019) 

� � 

Al-Kanj et al. (2020) � � ( � ) 

Joe & Lau (2020) ( � ) ( � ) ( � ) 

Ulmer (2020) � ( � ) ( � ) ( � ) 

Ulmer & Thomas 

(2020) 

� � ( � ) 

M

d

s

t

t
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axwell et al. (2010) combines the two aspects of resources and 

emand in the following features. These are 

• the number of customers that have been assigned to a vehicle 

and cannot be served on time (1), 
• the numbers of requests that are located such that currently no 

vehicle is in reach (2) and is on its way into the area (3), 
• the numbers of requests that cannot be served because vehicles 

within reach are already occupied (4) and vehicles that will be 

in reach soon are already occupied (5). 

While Maxwell et al. (2010) focus on specific requests and con- 

ider vehicles implicitly, Schmid (2012) selects features reflecting 

he vehicles in the service area and the time horizon. To this end, 

he service area is divided into subareas and the time horizon into 

ntervals of equal length. Then, the number of idle vehicles and the 

umber of pending requests are counted per subarea of the service 

rea within a certain time interval. 

Table A.1 lists all features used in the literature considering 

tochastic service times, stochastic demand quantities, or stochastic 

equests. Since the articles considering stochastic service times also 

onsiders stochastic requests, they are listed in this lower section 

f the table together with the other articles considering stochas- 

ic requests. Articles considering stochastic demand quantities are 

isted in the upper half of the table. We combine the literature as 

any features describing the resources or the demand overlap. As 

entioned, since the environment is not considered stochastic, it 

s not described by means of features. 

Stochastic demand quantities. Work considering stochastic de- 

and quantities is considered in Secomandi (20 0 0) , Secomandi & 

argot (2009) , and Pandelis et al. (2012) . If demand quantities at 

ustomer locations are stochastic, it is unclear if a vehicle in a spe- 

ific location with a remaining fill level of goods can fully serve 

he next customer’s demand or has to return to the depot. This 

eans that it is unclear how much of the resources travel time 

nd goods are required to serve all customer demand. Thus, infor- 

ation about the currently remaining capacity is mandatory to de- 

ict the currently available resources. This feature is incorporated 

n all considered articles. Also, information about the current ve- 

icle locations is required as it also describes the resources of the 
814 
rovider. This feature is also depicted in all articles. In the case 

f anticipatory decision making that allows returns to the depot 

t any point in the tour, information about the customer locations 

hat still have to be visited is relevant as well because it indirectly 

escribes how much demand is still unsatisfied. Since the cus- 

omers are known in these articles, the articles consider the status 

f all customers (served, partially served, not served yet). While 

ecomandi (20 0 0) and Secomandi & Margot (2009) consider this 

nformation explicitly, it is considered implicitly in Pandelis et al. 

2012) by means of the current location and a predefined tour. In 

ddition to the remaining locations, Secomandi (20 0 0) also consid- 

rs the expected demand of the remaining customers. 

Thus, in all articles, information about the resources in the form 

f the vehicle’s current location and the remaining capacity as well 

s some information about the demand in the form of the set of 

remaining) customers is utilized. The work on stochastic demand 

uantities along with the used features is listed in Table A.1 . 

Stochastic requests. A larger number of articles considers 

tochastic customer requests. In the case of stochastic customer re- 

uests, the resource that can be spent is usually the time of the 

rivers. This resource is used to serve the occurring demand, that 

s, the customer requests. Therefore, information about the avail- 

ble resource driver time is necessary. 

• The tour already planned in combination with the current 

time provides information about the resources that are already 

planned and about the resources that are still free. The remain- 

ing time is also called “slack”, this feature is used in the litera- 

ture. 
• Another possible feature depicting the use of this resource is 

the current vehicle location. However, this feature is only rarely 

used in literature. 
• Alternatively, the aggregated information about the vehicles 

available currently or in the future can be used. While infor- 

mation about the available vehicles is rather common, the fu- 

ture availability is only implicitly considered by Maxwell et al. 

(2010) . 

lso, information about the existing and expected future demand 

or the resource driver time is required. 
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Table A2 

Approximation architectures used. 

Parametric Non-parametric Neural nets 

Linear Weighted comb. Lookup table Representatives 

Thomas & White (2004) � 

Secomandi & Margot (2009) � 

Maxwell et al. (2010) � 

Secomandi (2000) � 

Meisel et al. (2011) � 

Schmid (2012) � 

Ulmer et al. (2018a) � 

Ulmer et al. (2018b) � 

Agussurja et al. (2019) � 

Chen et al. (2021) � 

Soeffker et al. (2019) � 

Al-Kanj et al. (2020) � 

Joe & Lau (2020) � 

Ulmer (2020) � � 

Ulmer & Thomas (2020) � � 

Table A3 

Modeling stochastic travel times. 

Work Discrete Continuous Correlated Time-dependent 

Haghani & Jung (2005) � � 

Chen, Hsueh, & Chang (2006) � � 

Potvin, Xu, & Benyahia (2006) � � 

Pureza & Laporte (2008) � � 

Xiang et al. (2008) � � 

Lorini, Potvin, & Zufferey (2011) � � 

Ghannadpour, Noori, & Tavakkoli-Moghaddam (2013) � 

Ferrucci & Bock (2014) � 

Schilde et al. (2014) � � � 

Köster, Ulmer, & Mattfeld (2015) � ( � ) � 

Kim, Ong, Cheong, & Tan (2016) � � 

Köster et al. (2018) � � 

Table A4 

Modeling stochastic service times. 

Work Discrete Continuous Symmetric Asymmetric 

Bertsimas & Van Ryzin (1991) � 

Bertsimas & Van Ryzin (1993a) � 

Bertsimas & Van Ryzin (1993b) � 

Papastavrou (1996) � � 

Tassiulas (1996) � 

Larsen et al. (2002) � � 

Xiang et al. (2008) � 

Maxwell et al. (2010) � � 

Smith, Pavone, Bullo, & Frazzoli (2010) � 

Pavone, Frazzoli, & Bullo (2011) � 

Schmid (2012) � � 

Zhang, Ohlmann, & Thomas (2018) � � 

Ulmer et al. (2021) � � 

Table A5 

Modeling stochastic demand quantities. 

Work Discrete Continuous 

Secomandi (2000) � 

Secomandi (2001) � 

Hvattum et al. (2007) � 

Novoa & Storer (2009) � 

Secomandi & Margot (2009) � 

Pandelis et al. (2012) � 

Goodson et al. (2013) � 

Goodson, Thomas, & Ohlmann (2016) � 

Sarasola, Doerner, Schmid, & Alba (2016) � 

Brinkmann et al. (2019) � 
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Table A6 

Modeling stochastic customer requests. 

Work Discrete Continuous Time-dependent 

Uniform Other 

Psaraftis (1980) � 

Powell, Sheffi, Nickerson, Butterbaugh, & Atherton (1988) � 

Bertsimas & Van Ryzin (1991) � 

Bertsimas & Van Ryzin (1993a) � 

Bertsimas & Van Ryzin (1993b) � 

Papastavrou (1996) � 

Tassiulas (1996) � 

Savelsbergh & Sol (1998) � 

Gendreau et al. (1999) � � 

Swihart & Papastavrou (1999) � 

Ichoua et al. (2000) � � 

Mahmassani, Kim, & Jaillet (2000) � 

Larsen et al. (2002) � 

Bent & Van Hentenryck (2003) � 

Bent & Van Hentenryck (2004) � 

Mitrovi ́c-Mini ́c et al. (2004) � 

Thomas & White (2004) � � 

Van Hemert & La Poutré (2004) � � 

Yang, Jaillet, & Mahmassani (2004) � 

Branke et al. (2005) � 

Haghani & Jung (2005) � 

Chen & Xu (2006) � � 

Chen et al. (2006) � � 

Gendreau et al. (2006) � � 

Hvattum et al. (2006) � � 

Ichoua et al. (2006) � � 

Potvin et al. (2006) � � 

Bent & Van Hentenryck (2007) � 

Hanshar & Ombuki-Berman (2007) � � 

Hvattum et al. (2007) � 

Thomas (2007) � 

Pavone, Frazzoli, & Bullo (2007) � 

Pureza & Laporte (2008) � � 

Sáez et al. (2008) � 

Xiang et al. (2008) � 

Angelelli et al. (2009) � � 

Branchini et al. (2009) � � 

Ghiani et al. (2009) � 

Pavone et al. (2009) � 

Maxwell et al. (2010) � � 

Smith et al. (2010) � 

Wen, Cordeau, Laporte, & Larsen (2010) � 

Lorini et al. (2011) � � 

Meisel et al. (2011) � 

Pavone et al. (2011) � 

Azi et al. (2012) � 

Schmid (2012) � � 

Ferrucci et al. (2013) � � 

Ghannadpour et al. (2013) � � 

Sheridan et al. (2013) � � � 

Albareda-Sambola et al. (2014) � 

Ferrucci & Bock (2014) � 

Schilde et al. (2014) � 

Sarasola et al. (2016) � 

Ulmer, Mattfeld, Hennig, & Goodson (2016) � � 

Billing, Jaehn, & Wensing (2018) � � 

Klapp et al. (2018) � 

Ulmer et al. (2018a) � � 

Ulmer et al. (2018b) � � 

Zou & Dessouky (2018) � � 

Agussurja et al. (2019) � 

Arslan et al. (2019) � � 

Brinkmann et al. (2019) � � 

Chen et al. (2021) � � 

Soeffker et al. (2019) � 

Ulmer et al. (2019) � � 

Van Heeswijk et al. (2019) � 

Voccia et al. (2019) � � 

Al-Kanj et al. (2020) � � 

Joe & Lau (2020) � 

Riley et al. (2020) � 

Ulmer (2020) � � 

Ulmer & Thomas (2020) � 

Ulmer et al. (2020a) � 

Demirbilek et al. (2021) � 

Ulmer et al. (2021) � 
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Table A7 

Summary. 

Problem domain Uncertainty Solution approach 

Psaraftis (1980) p r - 

Powell et al. (1988) g r - 

Bertsimas & Van Ryzin (1991) s r, s I 

Bertsimas & Van Ryzin (1993a) s r, s I 

Bertsimas & Van Ryzin (1993b) s r, s I 

Papastavrou (1996) s r, s - 

Tassiulas (1996) s r, s I 

Savelsbergh & Sol (1998) g r - 

Gendreau et al. (1999) g r - 

Swihart & Papastavrou (1999) p r I 

Ichoua et al. (2000) g r I 

Mahmassani et al. (2000) g r - 

Secomandi (2000) g d IIa, IIb 

Secomandi (2001) g d IIa 

Larsen et al. (2002) s r, s - 

Bent & Van Hentenryck (2003) g r IIa 

Bent & Van Hentenryck (2004) g r IIa 

Mitrovi ́c-Mini ́c et al. (2004) g r I 

Thomas & White (2004) g r IIb 

Van Hemert & La Poutré (2004) g r I 

Yang et al. (2004) g r - 

Branke et al. (2005) - t I 

Haghani & Jung (2005) g r, t - 

Chen & Xu (2006) g r - 

Chen et al. (2006) g r, t I 

Gendreau et al. (2006) g r - 

Hvattum et al. (2006) g r IIa 

Ichoua et al. (2006) g r IIa 

Potvin et al. (2006) g r, t I 

Bent & Van Hentenryck (2007) g r IIa 

Hanshar & Ombuki-Berman (2007) g r - 

Hvattum et al. (2007) g r, d IIa 

Pavone et al. (2007) s r I 

Thomas (2007) g r IIa 

Pureza & Laporte (2008) g r, t I 

Sáez et al. (2008) p r IIa 

Xiang et al. (2008) p r, t, s, v - 

Angelelli et al. (2009) g r I 

Branchini et al. (2009) g r I 

Ghiani et al. (2009) g r IIa 

Novoa & Storer (2009) g d IIa 

Pavone et al. (2009) s r I 

Secomandi & Margot (2009) g d IIb 

Maxwell et al. (2010) p, s r, s IIb 

Smith et al. (2010) s r, s I 

Wen et al. (2010) g r - 

Lorini et al. (2011) g r, t - 

Meisel et al. (2011) g r IIb 

Pavone et al. (2011) s r, s I 

Azi et al. (2012) g r IIa 

Pandelis et al. (2012) g d IIb 

Schmid (2012) p, s r, s IIb 

Ferrucci et al. (2013) g r IIa 

Ghannadpour et al. (2013) g r, t - 

Goodson et al. (2013) g d IIa 

Sheridan et al. (2013) p r I 

Albareda-Sambola et al. (2014) g r IIa 

Ferrucci & Bock (2014) g r, t, v I 

Schilde et al. (2014) p r, t IIa 

Goodson et al. (2016) g d IIa 

Köster et al. (2015) g t - 

Kim et al. (2016) g t IIa 

Sarasola et al. (2016) g r, d IIa 

Ulmer et al. (2016) g r IIa 

Billing et al. (2018) g r IIa 

Klapp et al. (2018) g r IIa 

Köster et al. (2018) g t IIa 

Ulmer et al. (2018a) g r IIb 

Ulmer et al. (2018b) g r IIb 

Zhang et al. (2018) s s IIa 

Zou & Dessouky (2018) g r IIa 

Agussurja et al. (2019) p r IIb 

Arslan et al. (2019) g r, dr - 

Brinkmann et al. (2019) g d, r IIa 

Chen et al. (2021) g r IIb 

Soeffker et al. (2019) g r IIb 

( continued on next page ) 
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Table A7 ( continued ) 

Problem domain Uncertainty Solution approach 

Ulmer et al. (2019) g r IIb 

Van Heeswijk et al. (2019) g r IIb 

Voccia et al. (2019) g r IIa 

Al-Kanj et al. (2020) p r IIb 

Joe & Lau (2020) g r IIb 

Riley et al. (2020) p r IIa 

Ulmer (2020) g r IIb 

Ulmer & Thomas (2020) g r IIb 

Ulmer et al. (2020a) g r I 

Demirbilek et al. (2021) s r IIa 

Ulmer et al. (2021) g r, s I 
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C  
• Since the requests are not known in advance, listing status in- 

formation about all customers is not applicable. 
• Instead, information about the requests waiting to be served is 

considered as this depicts which demand has to be served. 
• As discussed above, Maxwell et al. (2010) also use information 

about demand that cannot be served. 
• In addition to known customer requests, many articles incor- 

porate the expected future demand. The current time implicitly 

provides information about how much demand for the driver 

time is likely to occur in the remaining time horizon, articles 

considering the future demand in this form are denoted by a 

“( � )” in Table A.1 . 

It can be seen that all articles consider information about the 

esources as well as about the demand. In the lower part of 

able A.1 , the literature is listed with the features used. 

3. Approximation architectures 

Table A.2 lists approximation architectures used in the literature 

n stochastic dynamic vehicle routing and shows where they are 

sed in the literature. We observe a broader range of architectures. 

4. Information model characteristics 

In this section, we list the literature according to their source 

f uncertainty and depict how the information about this uncer- 

ainty was modeled. Table A.3 describes whether travel times are 

odeled being discrete or continuous. Also, it is denoted whether 

orrelation between arcs close to each other and time-dependency 

re modeled. Table A.4 depicts how service times are modeled in 

he considered articles. It specifically describes whether the service 

imes are modeled as being discrete or continuous and whether 

hey are symmetric or asymmetric. In Table A.5 , the literature con- 

idering stochastic demand quantities is listed and it is denoted 

hether the demand quantities are considered to be discrete or 

ontinuous. Table A.6 finally depicts how stochastic customer re- 

uests are modeled. Here, it is distinguished whether the requests 

re considered to be coming from discrete locations or from a con- 

inuous plane. For a continuous modeling, it is further separated 

hether the locations are distributed uniformly or in a different 

ay. Also, we denote whether a time-dependency is considered. 

5. Summary 

In this section, the resulting overview about the considered lit- 

rature is provided in Table A.7 . For each article, the problem do- 

ain, the considered uncertainty, and the solution approach are 

lassified. The problem domain corresponds to one of the appli- 

ation areas goods (“g”), passengers (“p”), or services (“s”). The 

ncertainty considered can be any combination of demand quan- 

ity (“d”), requests (“r”), service time (“s”), travel time (“t”), vehicle 
818 
vailability (“v”), or driver availability (“dr”). The classification of 

he solution approaches follows the categories described in the ar- 

icle (“-” for rolling-horizon reoptimization, and categories “I”, “IIa”, 

r “IIb”). 
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