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SUMMARY

The spinal cord is engaged in all forms of motor performance but its functions are
far from understood. Because network connectivity defines function, we
explored the connectivity of muscular, tendon, and tactile sensory inputs among
a wide population of spinal interneurons in the lower cervical segments. Using
low noise intracellular whole cell recordings in the decerebrated, non-anesthe-
tized cat in vivo, we could define mono-, di-, and trisynaptic inputs as well as
the weights of each input. Whereas each neuron had a highly specific input, and
each indirect input could moreover be explained by inputs in other recorded neu-
rons, we unexpectedly also found the input connectivity of the spinal interneuron
population to form a continuum. Our data hence contrasts with the currently
widespread notion of distinct classes of interneurons. We argue that this sug-
gested diversified physiological connectivity, which likely requires a major
component of circuitry learning, implies a more flexible functionality.

INTRODUCTION

The spinal cord contains a potentially highly complex but poorly understood neuronal circuitry. Because of

its position, it is pivotal to any aspect of brain action that involves movement (Crone et al., 2008; Bui et al.,

2013; Azim et al., 2014) and its potential contributions to brain function can be considered underestimated

(Loeb and Tsianos 2015). In addition, because of the tight linkage between cognitive development and the

development of movement (Diamond 2000; Chiaravalloti et al., 2020), the functional principles of the spinal

cord circuitry are potentially fundamental to many higher order functions by virtue of impacting how the

brain perceives the world (Rongala et al., 2018).

The spinal cord has motoneurons, which are connected to the muscles, and interneurons, which are not.

Major efforts have been directed to elucidate the organization of the spinal interneuronal network. One

of the first indications that there may be different types of spinal interneurons was the identification of

the Renshaw cells, which receive input from motoneurons and inhibit motoneurons (Eccles et al., 1954).

Later, the Ia inhibitory interneuron type was identified as a set of neurons receiving input from Ia afferents

and inhibiting motoneurons of antagonistic muscles as well as other Ia inhibitory interneurons (Hultborn

et al., 1971). Subsequent research focused on identifying additional types of spinal interneurons by their

input, by which connectivity pathway the input arrived at the neuron, by their location, and by their efferent

synaptic action (Reviewed by Jankowska (1992) and McCrea (1992)). Although we are not aware of a pub-

lication that explicitly describes a classification scheme that assigns all spinal interneurons into disjoint clas-

ses based on their connectivity, this type of attempted neurophysiological classification approach had the

aim of identifying all the specific interneuron types that could exist (McCrea 1992). The implied goal of this

major research endeavor was that eventually the resulting gigantic network puzzle of how all spinal inter-

neurons are connected was going to be solvable. More recently, some authors have indicated that the

identified classical types of spinal interneurons may not form distinct subsets because, for example,

some types clearly share some connectivity features with other types (Jankowska and Edgley 2010; Hult-

born 2001).

Following in the footsteps of this major research endeavor of classical neurophysiology, spinal interneurons

were found to be separable also on basis of their patterns of gene expression in early development (Jessell
iScience 25, 104083, April 15, 2022 ª 2022 The Authors.
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2000; Goulding 2009). More than fourteen different main classes of spinal interneurons have been identi-

fied on the basis of differences in gene expression (Zholudeva et al., 2021). Recent studies suggested that

the patterns of input connectivity, and thereby also the network formation, could be based on genetic pre-

programming, where chemoattractants emitted by one interneuron type would attract synaptic inputs from

a specific input source or specific interneuron types, suggesting that the neurophysiological and genetic

classification schemes could be mapped to each other (Chen et al., 2006; Pecho-Vrieseling et al., 2009; Bik-

off 2019).

Here we investigated the input connectivity of spinal interneurons throughout the lower cervical spinal cord

using intracellular recordings to define the synaptic linkage of their excitatory and inhibitory synaptic inputs

from peripheral input sources in vivo. Our findings suggest an absence of distinct rules of input connectiv-

ity, and that every spinal interneuron in principle could be unique in this respect. We argue that in adult

mammals the input connectivity, and therefore the function of the spinal cord circuitry, could to a large

extent be defined by learning.
RESULTS

We made 114 intracellular recordings of interneurons in spinal segments C6-T1 of the decerebrated cat

(Figure 1A). Neurons were recorded at depths between 1.31mm and 3.92 mm from the dorsal surface of

the spinal cord, corresponding to anatomical laminae III-VII (Figure 1B). Of these recordings, 68 were in

the whole cell mode, where the recording quality allowed the measurement of the amplitude of individual

synaptic responses. Thus, we could analyze the synaptic weight. Responses were evoked by stimulation of

the deep radial nerve and the skin. For the deep radial nerve, different stimulation intensities were

explored, expressed as multiples of the stimulation threshold T, so that input from Ia and Ib afferents could

be identified. The cutaneous afferents were stimulated to activate A-b fibers from the defined cutaneous

receptive field of the neuron. The cells were recorded with mild hyperpolarizing currents of 10pA 30pA

to prevent spiking, thereby facilitating the analysis of the synaptic responses evoked from the peripheral

sensory inputs. The general membrane physiology properties, from a subset of the neurons recorded in

the whole cell mode, were previously reported (Spanne et al., 2014).
Matching the shape of the recorded potentials to synaptic activations

Decerebration allowed the recordings to bemade in vivowithout anesthesia. This kind of animal model is a

system with spontaneous activity in both the spinal neurons and the sensory afferents. The intracellularly

recorded activity was characterized by a high number of spontaneous events (Figure 1C). These events oc-

casionally summed to sufficient depolarization to trigger discharge of an action potential in the recorded

neuron. The spontaneous events were typically found to have a shape that was congruent with other spon-

taneous events, and they all displayed a voltage-time shape similar to unitary excitatory postsynaptic po-

tentials (EPSPs) recorded in other parts of the central nervous system (Jörntell and Ekerot 2006; Bengtsson

and Jörntell 2009; Bengtsson et al., 2013). When multiple such events were averaged, it was clearer that

they had the typical shape of an EPSP (Figure 1D). Unitary responses evoked using electrical stimulation

of peripheral afferents at a sufficiently low intensity (near activation threshold) had the same shape. These

findings reveal that the spontaneous events with this shape were EPSPs, which could be triggered by spon-

taneously active external afferents or other spinal interneurons by electrical activation of peripheral sensory

afferents.
Evoked compound PSP responses and mapping of the input connectivity

For each recorded cell we could identify unitary inhibitory postsynaptic potentials (IPSPs) and EPSPs (Fig-

ure 1D). Averaging at least one-hundred such PSPs, for each recorded neuron, was used to create template

EPSPs and IPSP, respectively (Figure 2A). We observed that the time constants of template PSPs could

differ somewhat between different neurons, but the differences were not dramatic. Similarly, within each

neuron, different spontaneous EPSPs could potentially differ somewhat between different EPSP events,

but the template was designed to correspond to the average of these events. Using scaling of the template

PSPs, we could reconstruct the raw PSP responses evoked by the afferent stimulation. The scaling of the

template PSPs was done to capture the shape of the evoked PSPs also when they were due to the activation

of multiple synapses at the same time (Bengtsson et al., 2013). Pure monosynaptic EPSPs were readily iden-

tified by their distinct overlap with the template PSP (Figure 1D).
2 iScience 25, 104083, April 15, 2022



50 ms

3 mV

1 mV

10 ms

average

raw spontaneous

evoked by Ia

(scaled average)

B

A I

II

III

IV

V

VI

VII

VIII

IX

B

C

Decerebration

Whole cell patch clamp recording

Deep radial nerve
stimulation

Skin stimulation at site 
of maximum sensitivity

C3

T1

D
Ia a erent 
stimulation

]
m

m[ htpe
DD

e
]

m
m[ htp

Figure 1. Experimental setup, location of recorded neurons and unitary EPSPs

(A) In vivo preparation, sites of stimulations and recordings.

(B) Histological recovery of one recorded neuron with its location in the spinal cord grey matter and a detail image of the

recorded neuron with a visible soma and proximal dendrites. The image was acquired by a confocal microscope from a

50mm thick section from the spinal segment C8. Rexed laminae I-IX are tentatively indicated (Rexed 1952). Additional plot

of the depths of each recorded neuron with a random offset in the medial-lateral axis.

(C) Five raw traces of recordings from a spinal interneuron (approximate resting Vm = �60mV) with near threshold DR

stimulation (’Ia afferent stimulation’ at dashed vertical line). Blue arrowheads indicate prominent spontaneous EPSP-like

responses. The raw traces also illustrate examples of spontaneous spiking, which was reduced by mild hyperpolarizing

currents throughout recordings to facilitate the analysis of the evoked synaptic responses.

(D) Superimposed spontaneous EPSPs, their average and a comparison between the latter and superimposed EPSP re-

sponses evoked by Ia afferent stimulation (DR stimulation at 1.05 times threshold).
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Compound raw responses, resulting from the activation of partly overlapping EPSPs and IPSPs, were

analyzed by a template fitting process. The template fitting process consisted of scaling the template

PSP to the observed response, which thereby yielded a response amplitude and a response latency time

for that evoked event. In Figures 2B and 2C, example results of the fitting process are illustrated for re-

sponses evoked by skin input andmuscle afferent input, respectively. Because the responses of this neuron

to the two inputs were relatively consistent, we could in this illustration apply the template fitting even to

the average responses. The analysis was, however, applied to individual raw traces, using the same princi-

ples as illustrated in Figures 2B and 2C. In Figures 2D–2F, we show how this method was applied to the

single raw traces. In Figure 2D, the exact same stimulus intensity (2:5T , average response on top, in red,

same as in Figure 2C) evoked six main groups of responses. The earliest part was the monosynaptic

response component (+ 1, first blue dashed vertical line). The monosynaptic response actually consisted

of two separable components, likely because it contained afferents of two separate mean conduction ve-

locities (Bengtsson et al., 2013). The monosynaptic response was essentially invariant across the six groups,

i.e., it was evoked at the exact same response latency time as a response amplitude with low variance.
iScience 25, 104083, April 15, 2022 3
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Figure 2. Definition of input connectivity based on template reconstruction of sensory-evoked compound synaptic responses

(A) Excitatory postsynaptic potentials (EPSPs) were averaged to obtain a unit EPSP template. The same was done for inhibitory PSPs (IPSPs). These templates

were used to decompose compound evoked synaptic responses.

(B) An average PSP response evoked by stimulation of the deep radial nerve (black) that could be decomposed into a (monosynaptic, ’’1’’) EPSP and a

disyanptic IPSP (’’�2’’) based on amplitude scaling of the PSP templates.

(C) Decomposition of an averaged compound synaptic response evoked by skin stimulation. In this sample cell, the response was decomposed into amono-,

di- and trisynaptic EPSP and a disynaptic IPSP. The numbers indicate whether the input was mono-, di-, or trisynaptic, the sign indicates whether it was

excitatory or inhibitory.

(D) Average (red trace) and raw responses evoked by skin stimulation at 2:5T . Raw traces are grouped by their relative similarity. Brackets around numbers

indicate that the specific input was weak, whereas underscored input indicates that the input was strong.

(E) Average and raw responses evoked by skin stimulation at 1:1T . F Average and raw responses evoked by DR stimulation. Note that the IPSP partially

disappears at the lower DR stimulation intensity.

(G) Kernel density estimations of the synaptic weight distributions of excitatory (red) and inhibitory (black) PSPs across all neurons recorded. Additional plot

of individual weights with a random offset in the density axis, and a random offset from Uð�0:5; 0:5Þ in the weight axis.
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In comparison, di- and trisynaptic responses were more variable with respect to both amplitude and latency

(Figure 2D and also Figures 4A and 4B). This is to be expected for non-monosynaptic inputs as the transmission

is dependent on the (time-varying) excitability of the intercalated spinal interneurons at the time of sensor acti-

vation.Moreover, the intercalated neuronswill also lead to the response onset latency times being substantially
4 iScience 25, 104083, April 15, 2022
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longer than for the monosynaptic response, as measured from the time of arrival of the afferent input into the

spinal cord white matter. This can for example be seen for the disynaptic IPSP (� 2, average onset latency time

at the red dashed vertical line) which was essentially absent from the responses in groups 1 and 3, and much

more prominent in group 6. Later response components (+ 2and + 3) were also variable in their occurrence,

amplitude and response latency times. Figure 2E illustrates the raw responses to a stimulation intensity of

just above the threshold ð1:1TÞ. In this case, the monosynaptic EPSP and the disynaptic IPSP essentially did

not occur, but the more indirect excitatory synaptic responses remained. In this case, the wildly variable nature

of these indirect responses weremore clear. Figure 2F illustrates the raw responses evoked from thedeep radial

nerve (DR) at two different stimulation intensities. At the lower intensity ð1:1TÞ, the disynaptic IPSP was highly

variable, whereas at the higher intensity ð1:2TÞ, it was more consistently present. In contrast, themonosynaptic

EPSP remained constant across both intensities, even though the higher intensity evoked a compound EPSP

with a somewhat larger amplitude. For further analysis, synaptic weights weremeasured for each input connec-

tion as the average response amplitude. Figure 2G shows the distribution of these weights across all neurons

where the recording quality allowed the amplitude to bemeasured (236 excitatory and 74 inhibitory inputs in 68

neurons). The weight distribution is skewed, which is a commonly observed phenomenon among synaptic

weights that have been subject to learning (Barbour et al., 2007).

We used stimulation of the deep radial nerve, which contains no skin afferents, to stimulate the Ia and the Ib

afferents of the supplied muscles, as previously described (Quevedo et al., 2000). Ia and Ib responses could

be separated, even though both inputs were activated through the same nerve. The identification of

whether a recorded neuron was receiving synaptic inputs from Ia or Ib afferents, or both, which did occur

in some cases, was based on several criteria similar to those previously described in the literature. With

nerves from the cat hind limb there is often a difference in threshold and conduction velocity between Ia

and Ib fibers (Bradley and Eccles 1953; Eccles et al., 1957a, 1957b; Laporte and Bessou 1957; McCrea

et al., 1995). Similar to these previous studies, we used field potential recordings in the extracellular tissue

outside the recorded neuron to identify the threshold of the Ia volley, where the Ia volley corresponds to the

field potential generated by the action potentials of a population of Ia afferents (Figure 3A). Monosynaptic

inputs could be defined on the basis of their very short delay relative to the local field potential (LFP), cor-

responding to the activation of the synapses on the spinal neurons, that was initiated about 0.5ms after the

onset of the Ia afferent volley. For the DR stimulation, a neuron activated at 1:0T � 1:1T was considered to

be activated by Ia afferents (Figure 3B), whereas a neuron that was activated distinctly only above 1:2T , typi-

cally well above this value, was considered to be activated by Ib afferents (Figure 3C). In addition to the

threshold criterion, for neurons activated monosynaptically, the responses latency times depended on

whether they were activated by Ia or Ib afferents, as defined by the threshold criterion (Figure 3C). These

criteria could also be used to identify neurons which had monosynaptic input from both Ia and Ib (Fig-

ure 3D). This convergent input is in agreement with a previous report based on more indirect observations

of such convergence (Jankowska and McCrea 1983).

We also checked whether repeated activations of afferent input led to changes in the response amplitudes of

the evoked PSPs. Over monosynaptic evoked PSPs that appeared at least twenty times at intervals of either 1s

or 334ms, the average coefficient of variation of the response amplitude was 0.122 ðSD = 0:041Þ. Also, we
could not find any significant evidence of depression or potentiation. A linear fit to the response amplitudes

has an average increase of �0.001mV per stimulation repetition ðSD = 0:01250Þ. We next analyzed the

response latency times for each identified input, across all neurons. Figures 4A and 4B shows that the responses

with longer response latency times also tended to have a substantially higher variance in their response latency

times (note the logarithmic scale in Figures 4A and 4B). This is an indication of a response beingmediatedmore

indirectly, over multiple synapses. When analyzing the distribution of the response latency times of the PSPs

evoked by the different types of afferents they tended to form clusters. For PSPs that were close to the cluster

boundaries, their classifications were additionally confirmed by their stimulation threshold (Figure 3). This

formed the basis for determining the input connectivity across all neurons recorded, whether the input connec-

tivity was mono-, di-, or tri-synaptic in addition to whether it was excitatory or inhibitory.
Clusterability of neurons by input connectivity

We next proceeded by making a systematic analysis of the input connectivity of all recorded neurons. The

purpose was to explore if the input connectivity across the neuron population formed clusters or classes.

First, we inspected plots of pairwise weighted input combinations. These input combinations were picked

from all recorded inputs that were either monosynaptic excitation or disynaptic inhibition. No classification
iScience 25, 104083, April 15, 2022 5
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Figure 3. Separation of responses from Ia and Ib afferents activated from the deep radial (DR) nerve. Black

vertical dashed lines indicate the onset of stimulation in all panels of this figure

(A) Definition of threshold intensity T for activating the Ia afferent nerve volley based on the local field potentials (LFP)

recorded within the spinal grey matter, outside the recorded neurons. Note that the response latency shortens slightly

with increased stimulation intensity.

(B) From the same experiment after establishing an intracellular recording, EPSPs evoked at and above T. Top, averages

of the responses evoked at four different intensities. Arrows indicate the Ia afferent volley and the onset of the EPSP

response. Below, superimposed raw responses evoked at 1:0T and 1:1T .

(C) From another experiment, average recordings of evoked EPSPs from two different neurons, recorded adjacently in the

same electrode track. Neuron#1 responded only at intensities >1:2T , and the EPSPs had a distinctly longer response

latency time than the preceding Ia synaptic LFP (starting at the red dashed line). Bottom set of recordings, Neuron#2

responded at all intensities above 0:99T . Green dashed line indicates response latency time for the evoked EPSP in

Neuron#1, red dashed line indicates response latency time for the evoked EPSP in Neuron#2. For Neuron#2, note that the

stimulation at higher intensities sometimes evoked a spike, which created the ripple in the later part of those responses.

Note that there was no clearly visible Ia volley in these two recordings.

(D) Recording from a neuron with monosynaptic input from both Ia and Ib afferents. Top, raw traces evoked at 1:5T , one of

which also contained an evoked spike when the clamping current was released for one of the simulation repetitions.

Average of responses at 1:4T and 1:5T show two summed EPSPs with amplitudes A1 and A2. The amplitude of A1 was the

same at 1:4T and 1:5T but the A2 amplitude was larger at 1:5T , which alongside the differences in latency times of the two

inputs indicate that response A1 was a Ia EPSP and A2 was a Ib EPSP.

ll
OPEN ACCESS

6 iScience 25, 104083, April 15, 2022

iScience
Article



A C E

FDB

Figure 4. Definition of input connectivity based on response latency times

(A and B) The average response latency time plotted against variance of the response latency time for EPSP (red) and IPSP (black) responses.

(C–F) The distribution of the average response latency times of the evoked PSPs for each recorded response component in each neuron (the data points are

given a small random offset along the density axis for better visualization of the density). A kernel density estimation of the density of responses at each given

response latency time is overlaid on the data points (0.1ms resolution in C and 0.2ms resolution in D–F). Latency times for responses evoked by the DR and

the skin stimulation were normalized by subtracting the latency time of the respective LFP. Separation of PSPs evoked by Ia and Ib afferents, respectively, is

indicated by dashed blue lines.
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by input connectivity was immediately obvious (Figure 5A), because none of the emerging distributions

formed any clusters. Instead, they rather resembled a continuous single modal distribution. Hence, these

findings did not indicate any specific rules of input connectivity.

To determine in a more standardized fashion if the spinal interneurons could be clustered on basis of their

input connectivity, we next utilized the SigClust and GapStatistics tests on the part of the dataset where

also the synaptic weights for each input could be defined (n= 68 neurons).

The SigClust test (Figure 5B) can be used to test if a dataset can be split into at least two clusters by

comparing the actual data to a number of random samples from a Gaussian distribution fitted to the data-

set. If the original dataset has a significantly smaller clustering index (blue arrow in Figure 5) than random

samples of the Gaussian fit (red arrows in Figure 5B), then the SigClust test returns a probability that the

dataset is containing clusters. Figure 5C shows the result of this test on our dataset. The cluster index, which

measures how well the dataset can be split into two clusters reported a value of 0.71. The average cluster

index of the distribution of random sample datasets was 0.729 with a standard deviation of 0.033. Hence,

the hypothesis that the dataset was not clusterable could not be rejected ðp = 0:31Þ.

The GapStatistics test (Figure 5D) is anothermethod that can be used to test if a dataset can be clustered and in

addition it estimatesanappropriatenumberof clusters for thedataset. Theappropriatenumberof clusters isesti-

mated as the point where the gapmeasure between the dataset and random samples from a fitted uniform dis-

tribution is maximized (Figure 5D). However for our dataset of recorded neurons the gap continued to increase

with increasingnumberofclusters (Figure5E).When thegap just continues togrowwith thenumberofdatapoints

added, as in this case, it indicates that the data does not contain any clusters. Hence, all of these three analyses

indicated that our population of recorded interneurons did not contain any specific input connectivity classes.

Spinal network structure

Given that our data provided input connectivity data also for indirect, non-monosynaptic inputs, it implied

that some of the recorded neurons could be responsible for mediating the indirect input to other recorded

neurons. Hence, we also tested if the input connectivity observed across the full population of neurons
iScience 25, 104083, April 15, 2022 7



Figure 5. Absence of correlation patterns and clusterability of neurons by input combinations

(A) Kernel density estimations of absolute synaptic weights from distinct combinations of monosynaptic excitatory and disynaptic inhibitory inputs. (In:

Inhibitory, Ex: Excitatory) No subdivision between the neurons is visible, though for some combinations (Ia-In, Ia-Ex) there appears to be some correlation.

Additional plot of nonzero input weights at a random offset from Uð� 0:5;0:5Þ.
(B) Illustration of analysis method and the output of the SigClust test expected for a hypothetical dataset with clusters. The clustering index of the original

dataset (blue arrow) is compared to that of random samples from a Gaussian distribution (red arrows) fitted to the dataset (black arrow).

(C) The SigClust results for our set of recorded neurons. The clustering index for the dataset of recorded neurons (blue line) compared to the fitted Gaussian

distribution (black).

(D) Illustration of the GapStat analysis method and expected output for a hypothetical dataset with two clusters. The GapStat method first fits a uniform

distribution to the data. The samples are drawn from that distribution (blue arrows) and for each possible number of clusters the gap to the actual dataset

(red arrows) is computed. The number of clusters at which the gap to the actual dataset is maximized is the estimated number of clusters for the dataset.

(E) The GapStat results for our set of recorded neurons. The plot illustrates that the gap just continues to grow with the number of tested clusters. Hence, this

method does not find our data clusterable.

ll
OPEN ACCESS

iScience
Article
ðn = 114Þ could be explained by the pool of recorded input connectivity data.We first tested if the recorded

input connectivity could be explained by a pure feed-forward network.

We did this by reconstructing a hypothetical feed forward network, for all recorded input combinations

observed up to four sequential synapses away from the monosynaptic sensory input source. This analysis

built on the principle shown in Figure 6 for three exemplary neurons, i.e., for any neuron receiving non-

monosynaptic input, there must be predecessor neuron(s), which mediate(s) that input.

Figure 6A shows the input connectivity for three of our recorded neurons N1, N2 and N3. Neuron N1

received excitatory monosynaptic input from Skin and disynaptic inhibitory input from Skin. For the inhib-

itory input an inhibitory interneuron (Neuron P1) is necessary. Neuron N2received monosynaptic excitatory

input from Skin and Ib. Neuron N3 received the same input as N1 plus disynaptic inhibition from Ib. The

inhibitory input to N3 could then have been provided by the two inhibitory interneurons P2 and P3. The

input connectivity of Neuron N3 can be explained by the input connectivity of neurons N1and N2. If the

neuronN1 is assumed to be an inhibitory interneuron, then it could correspond to neuron P2. If the neuron

N2 is assumed to be an inhibitory interneuron, then it could correspond to neuron P3. (Figure 6B).

Hence, the network connectivity pattern observed in these three recorded interneurons could be readily

explained by our recording data. Note that the presence of P1 would not be possible to detect through
8 iScience 25, 104083, April 15, 2022



Figure 6. Matches between the input connectivity of individual target neurons and predecessor neurons explain

all inputs observed

(A) Input connectivity of three recorded neurons N1,N2 and N3.

(B) The input connectivity of neuron N3 can be explained by the input connectivity of neurons N1 and N2.
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the recording ofN3, as disinhibitory effects were not detectable, but its presence could be detected by the

N1 recording. For all but one of our recorded neurons, the input connectivity to each neuron could in each

case be explained by a recorded predecessor neuron, where a valid predecessor contained the necessary

input and in addition did not mediate input that was not observed in the recorded neuron. Therefore, all

recorded patterns of input connectivity could be explained by monosynaptic inputs plus the inputs

observed in other neurons in our data. Most of these connections were likely to be of a feed-forward

type, although, because of the lack of input classes, there were no indications of any specific layers within

the spinal cord circuitry.

Using a similar approach, we found that the number of potential disynaptic excitatory loop connections in

our recorded connectivity data was significantly reduced ðp<0:05Þ compared to chance (Figure 7).

Associations between neuronal inputs

Since correlations and anticorrelations in the input connectivity were visible in the analysis above (for

instance a possible linear relation between Ia-Ex and Ia-In in Figure 5A), we searched for any possible cor-

relation or anticorrelation in the inputs systematically, using an association rule analysis.

In our data, a spinal interneuron could receive input from the Ia, the Ib and the skin afferents as IPSPs and/or

as EPSPs. Note that this part of the analysis ignored whether the input was mono-, di-, tri-, or quadsynaptic.

Because only the binary absence or presence of input was considered, and not the weights of the inputs,

the full dataset of 114 neurons was used.

We tested if any of the resulting thirty possible input combinations (associations) were significantly

enhanced or reduced compared to a random distribution (Figure 8). The random distribution was gener-

ated by swap randomizing the input combinations of our dataset (Figure 8A). The position of the recorded

data in relation to the distribution of this randomized data was used to indicate if the presence of each spe-

cific connectivity pattern was enhanced or reduced compared to chance connectivity.

The threshold of significance for each test was adjusted for multiple comparisons so that the total signifi-

cance of all tests was p = 0:05. For both the Ia afferents, the Ib afferents and the skin input, the associations

between inhibition and excitation were significantly enhanced (Figure 8B, green panels). The association

between inhibitory input from the skin and Ia afferents were significantly enhanced (green panel). Some

combinations of Ia and Ib afferent input were significantly reduced (Figure 8B, red panels). None of the

other input combinations were found to be reduced or enhanced at a significant level (grey panels). Hence,

the association rule analysis suggested that overall there were only a few constraints on the probability of

specific input combinations among our set of recorded spinal interneurons.

DISCUSSION

Wemade intracellular recordings from a variety of spinal interneurons in the lower cervical segments in vivo.

We recorded their synaptic input connectivity from a variety of input sources and defined the synaptic link-

ages by which the inputs were provided. The inputs to each individual spinal interneuron were well orga-

nized, with large to very large compound synaptic responses for the input that was present, but absent or
iScience 25, 104083, April 15, 2022 9
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Figure 7. Disynaptic excitatory loops were suppressed compared to chance

(A and B) Two example input combinations.

(C) Two neurons with input combination A could potentially be connected to each other, as our recording data could not detect inhibited synaptic excitation.

(D) Neurons with input combinations A and B could not be connected to each other as the added disynaptic Ia excitation (and added trisynaptic skin

excitation) would have been detected in our recording data. Hence, we can use our recording data to estimate the number of potential reciprocal excitatory

loops.

(E) Comparison of the observed number of potential excitatory loops in the recorded data (blue line) compared to the swap randomized datasets. Reciprocal

excitation was significantly reduced ðp<0:05Þ compared to chance, i.e., the swap randomized dataset of connectivity.
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very weak input for all other inputs. However, across the population of spinal interneurons the synaptic

input patterns formed a great diversity. This provided no support for specific sets of spinal interneuron

input classes. Instead, the patterns of input connectivity to the spinal interneurons was better described

as a continuum. The only exceptions were a reduced association between Ia and Ib excitation and an

enhanced association between excitation and inhibition for inputs from the same source (Ia, Ib, and

skin). As discussed below, a spinal cord with a continuum of input combinations, rather than a limited

set of fixed entities, indicates that much of the input connectivity is most likely shaped by learning. This

carries the advantage of making the spinal cord circuitry better geared to cope with complex motor tasks

and flexibility in motor control.

Methodological considerations

Because we kept the skin almost entirely intact, except for a small incision around the deep radial (DR)

nerve, we could manually identify the skin area of maximum sensitivity for each recorded interneuron. It

is known that each spinal interneuron can receive different types of synaptic inputs from different skin areas,

i.e., excitation from one skin area and inhibition from another (Weng and Schouenborg 1996). Therefore,

we know that we have underestimated the complexity of the skin input connectivity to our neurons. More-

over, because of our requirement to keep the skin as intact as possible, an experimental short-coming was

that we could only use the DR nerve for stimulation of muscle afferents. The DR nerve supplies a high num-

ber of muscles in the forearm and paw, but not all. Hence, there were several muscles for which we could

not test the presence of muscle afferent input. Also, we could not be certain whether the inputs provided

from Ia and Ib afferents, and excitatory versus inhibitory synaptic inputs, were from the samemuscle or not.

The interactions between antagonists and agonists could also not be studied. The skin inputs were limited

to tactile receptors, which provide input over A-b fibers. These include rapidly and slowly adapting sub-

types with various end organs. Hence, we again underestimated the diversity of skin inputs. Therefore,

even though our data shows a highly complex connectivity, it is clear that our data represents an underes-

timate of that complexity. We only focused on the input connectivity. If we in addition had been able to take

the output connectivity into account, i.e., what other neurons in the spinal cord and in supraspinal struc-

tures they were connected to (Geborek et al., 2013; Jörntell 2017), then our population of recorded neurons

would appear at least as diverse. Had we additionally taken into account factors which are not directly

related tomotor control, such as the expression of cell adhesion molecules, then our population of neurons

would also appear at least as diverse, if not more than described here.
10 iScience 25, 104083, April 15, 2022
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Figure 8. Estimation of the observed input combinations compared to chance

(A) The input connectivity of the recorded neurons is represented as a matrix of binary elements (left column) where each line represents the input to one

recorded neuron. In this analysis, we only considered input from the three main sensory sources and whether the input was excitatory or inhibitory. Swap

randomization was used to construct randommatrices with equal number of connections as in the observed data for each respective neuron. The scrambled

data is used to build a distribution of random connectivities (red arrows) against which the confidence of the recorded connectivity patterns can be

compared (blue arrow).

(B) For each possible combination of inputs, the confidence of the specific input combination of the data versus the distribution of confidence of the swap

randomized data is shown. Associations that are significantly enhanced are marked green, significantly reduced associations are marked red. Input

combinations that were not significantly enhanced or reduced are shown in grey. The individual significance tests are corrected for multiple comparisons

such that the total significance level is at 0.05.
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Our in vivo intracellular recordings provided many advantages for the study of the physiological connec-

tivity (anatomical connectivity combined with the weights of the synaptic inputs) of the fully developed

mammalian spinal cord. First, decerebration rather than anesthesia provided the advantage that anes-

thesia-induced suppression of neural and synaptic activity was omitted and hence also low strength synap-

tic responses with multiple synaptic relays could be reliably recorded. The low recording noise of the whole

cell patch clamp technique also provided substantial advantages regarding the resolution of the record-

ings. For example, even unitary synaptic potentials could be recorded, compared to the classical neuro-

physiological recordings where such weaker inputs would have been at substantially higher risk of being

missed. The combination of these two methodological advantages could be a main explanation for why

we could see a continuum in the synaptic input connectivity rather than distinct classes of interneurons

in terms of their inputs.

Relation to the classical neurophysiological literature

In our data, one could see traces hinting at a classification scheme, based on input connectivity. For

instance, the concept of separated Ia interneurons and Ib interneurons could have arisen as a consequence

of the fact that we found convergent connections of Ia and Ib afferents to be reduced compared to chance

(Figure 8). We found extensive convergence between cutaneous and proprioceptive afferents. The orga-

nization of cutaneous afferent inputs is considered to be a major remaining gap in the understanding of

spinal motor systems (Loeb and Tsianos 2015). While, it has been noted that spinal interneurons can receive

cutaneous inputs in addition to proprioceptive inputs, the cutaneous inputs have typically been grouped

under the flexor reflex afferent (FRA) concept (Jankowska 1992; McCrea 1992). Hence, their contribution to

the spinal cord connectivity has not been explored in great detail except for the topographical organiza-

tion of cutaneous afferent inputs to the spinal cord (Levinsson et al., 2002) and the input-output relationship

between skin input and controlled movement (Petersson et al., 2003). Our study could not reveal how input

from different cutaneous afferents is organized, because we did not explore A-delta and C-fiber inputs and

because we did not explore laminae I-II where these inputs dominate (Todd 2010; Abraira et al., 2017;

Häring et al., 2018).

Relation to classification schemes proposed based on gene expression patterns

More recently, a classification scheme for spinal interneurons has been proposed based on their gene

expression associated with the initiation of spinal interneuron differentiation in embryonic development
iScience 25, 104083, April 15, 2022 11
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(Alstermark and Isa 2012; Zampieri et al., 2014; Azim et al., 2014; Gabitto et al., 2016; Zholudeva et al., 2021).

These genetic classes have been associated with specific functions and involvement in specific tasks. In

addition, matches between the classical neurophysiological input classification scheme with the genetic

classification scheme have been suggested to exist (Brownstone and Bui 2010; Bikoff 2019). However,

what would seem as a significant caveat to the notion of a genetically predefined wiring of the spinal inter-

neuron circuitry, is that the equivalent of the spinal cord developed 420 million years ago, when the phylo-

genetic line leading to mammalians diverged from the elasmobranchs (Grillner 2018; Jung et al., 2018). It

was noted that ‘‘the skate spinal cord has the same interneuronal building blocks available to form the lo-

comotor network as seen in mammals’’ (Grillner 2018), which encompasses animals of a great somatic

anatomical diversity and variety of non-overlapping movement patterns. Furthermore, the spinal cord cir-

cuitry is able to adapt to such dramatic biomechanical changes as a reconfiguration of the arrangement of

muscles (Loeb 1999). Such observations indicate that if there is a genetic pre-configuration of the spinal

cord circuitry, it must be possible to overwrite even during the adult life span. Further evidence is that

the distribution of the primary afferent fibers is correlated with the usage of the corresponding muscles

(Fritz et al., 1989).

Transcriptomics data shows that spinal interneurons in laminae V-VII, a subset of the laminae which we re-

corded from, do not cluster well based on their transcriptomic profile (Russ et al., 2021). This is in line with

our results and another piece of evidence that learning could be an important factor in this part of the spinal

cord. However, it is not clear how learning in this region of the spinal cord could be implemented at the

molecular level. Transcriptomics data also shows an uneven distribution of gene expression of a subset

of molecules commonly associated with learning (Russ et al., 2021). It is unclear how this gene expression

varies over development, when the networks that we studied were formed. Neither is it clear how gene

expression could determine patterns of convergent proprioceptive and cutaneous input connectivity.

Even in the dorsal horn, developmental afferent wiring is activity dependent (Granmo et al., 2008), which

indicates that even early structuring of the spinal cord circuitry is to a large extent influenced by learning

and activity.

Implications for the functional interpretation of the spinal cord circuitry

The relatively unique input connectivity of each spinal interneuron strongly suggests that these inputs were

a consequence of learning. Because of the diversity, innate, or genetically defined patterns of input con-

nectivity is an unlikely explanation of our results, although a combination of innate patterns with extensive

modification through learning can of course not be ruled out by the present set of experiments.

An important consequence of learning is that the circuitry becomes more adaptable to the biomechanical

properties of the body. A previous spinal cord model was constructed using the limited number of spinal

neuron classes defined in the literature. Already this type of spinal cord system provides the possibility to

generate a great diversity of temporally coherent movements using simple descending control (Raphael

et al., 2010). To rebuild such a model without neuron classes and instead with a focus on a diversity of input

connections would be expected to perform at least as good in this respect, because all neurons that would

be representative for a class would still be present in addition to a wide diversity of other input connectiv-

ities. Such diversity of connectivities could enrich the repertoire of possible muscle activation patterns and

could help resolve long standing controversies around synergy control (Tresch and Jarc 2009). Whereas the

dominant solutions in the spinal cord circuitry to descending motor commands would equal our most

commonly observed movement patterns or synergies (Santello et al., 2013), a great variety of spinal inter-

neurons would help preventing the system from getting stuck in only those movement patterns and pro-

vide the motor control systems of the central nervous system with a major potential flexibility to generate

movements that are still coherent and organized.

Limitations of the study

The study was limited by the stimulation sources. The DR nerve supplies a high number of muscles, but

does not contain antagonists. We could not be certain that the inputs from Ia and Ib afferents and excit-

atory versus inhibitory synaptic inputs, were from the same muscle or not, and interactions between antag-

onists and agonists could also not be studied. In the analysis, there could be confusion between a small

number of high threshold Ia and low threshold Ib inputs. The stimulation of the skin was limited to the

site of maximum sensitivity. Other skin sites could have provided synaptic inputs of another type of input

connectivity. Therefore, our data represents an underestimate of the complexity of the input connectivity to
12 iScience 25, 104083, April 15, 2022
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the spinal interneurons. The analysis of the spinal network structure, especially the analysis of recurrent

excitatory connections, relies on the input connections being limited to the input connections that we

found.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Cats N/A N/A

Deposited data

Recording data This study https://doi.org/10.5281/zenodo.6257949

Software and algorithms

Custom Software This study https://doi.org/10.5281/zenodo.6257949

Spike 2 CED https://ced.co.uk/

MATLAB MathWork https://www.mathworks.com/

Python Python https://www.python.org/

R R https://www.r-project.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Matthias Kohler (kohler@in.tum.de).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d The data has been deposited at Zenodo and is publicly available as of the date of publication. The DOI is

listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication.

The DOI is listed in the key resources table. The code uses the R packages cluster (Maechler et al.,

2019) and sigclust.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The procedures of all experiments were approved in advance by the local Swedish Animal Research Ethics

Committee (permits M32-09 and M05-12). Eighteen adult cats of both sexes (>6 months) were prepared,

similar as reported previously (Jörntell and Ekerot 2002,2006; Spanne et al., 2014), as follows. After an initial

anesthesia with propofol (Diprivan�Zeneca Ltd, Macclesfield Cheshire, UK), the animals were decere-

brated at the intercollicular level and the anesthesia was discontinued. The animals were artificially venti-

lated and the end-expiratory CO2, blood pressure and rectal temperature were continuously monitored

and maintained within physiological limits. Mounting in a stereotaxic frame, drainage of cerebrospinal

fluid, pneumothorax and clamping the spinal processes of a few cervical and lumbar vertebral bodies

served to increase the mechanical stability of the preparation. To verify that the animals were decere-

brated, we made EEG recordings using a silver ball electrode placed on the surface of the superior parietal

cortex. Our EEG recordings were characterized by a background of periodic 1kHz–4kHz oscillatory activity,

periodically interrupted by large-amplitude 7kHz–14kHz spindle oscillations lasting for 0.5s or more. These

forms of EEG activities are normally associated with deep stages of sleep (Niedermayer and Lopes Da Silva

1993). The pattern of EEG activity and the blood pressure remained stable, also on noxious stimulation,

throughout experiments (see also (Jörntell and Ekerot 2006)). Laminectomies were performed from spinal

segments C3 to T1. Clamps were put on vertebra T1 and around vertebrae L1-L3. The dura was cut and a

local, stabilizing coil of Teflon-coated silver wire was put on the surface of the recording area.We alsomade

small openings in the pia mater in order to facilitate penetration of the patch clamp pipettes. The recording
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region was covered with agarose attached to the bone of the vertebrae in order to dampen tissue move-

ments. See Figure 1A for an illustration of the general experimental setup.
METHOD DETAILS

Stimulations

In order to study synaptic integration in the recorded neurons, we used a set of input sources which were

electrically stimulated to evoke synaptic inputs to the recorded neurons. These consisted of the deep radial

(DR) nerve, for the activation of muscle afferent inputs of type Ia and of type Ib (corresponding to muscle

spindle afferents and Golgi tendon organ afferents, respectively), and the skin area that by manual identi-

fication could be identified as themost sensitive for that specific neuron. The DR nerve does not contain any

skin afferents but supplies the Extensor carpi radialis brevis, Supinator, Posterior interosseous nerve

(a continuation of the deep branch after the supinator), Extensor digitorum, Extensor digiti minimi,

Extensor carpi ulnaris, Abductor pollicis longus, Extensor pollicis brevis, Extensor pollicis longus and the

Extensor indicis. A bipolar stimulation electrode was mounted around the DR nerve, which was dissected

to gain access to wrap the stimulation electrode around it but otherwise leaving the DR nerve intact. The

nerve and the stimulation electrodes were embedded in cotton drenched in paraffin oil to prevent spread

of stimulation current into the surrounding tissue.

In order to activate A-b tactile afferent input from the identified skin receptive field of the recorded

neuron, we inserted a pair of bipolar skin stimulation needle electrodes (separated by about 5mm to

7mm) into the epidermis and used single pulse electrical bipolar stimulation of an intensity between

two and ten times the stimulation threshold, as explored before in a similar preparation (Bengtsson

et al., 2013). This stimulation intensity corresponded to a stimulation current typically of 0.5mA but at

most 2 mAat a 0.14ms pulse width. At the highest of these stimulation intensities an activation of A-d af-

ferents, which typically have a conduction velocity between 1=10 and 1=5 of the A-b tactile afferents

(Harper and Lawson 1985; Pogatzki et al., 2002), cannot be guaranteed to be excluded. However, because

their conduction velocity is more than three times slower than that of the A-b tactile afferents, even any

possible monosynaptic response from A-d afferents would have been slower than the longest latency

times for the slowest, quadsynaptic inputs we observed. We did not observe any monosynaptic responses

compatible with A-d inputs.
Obtaining recordings

Patch clamp pipette electrodes were pulled to impedances of 4MU to 14MU (Jörntell and Ekerot 2006;

Spanne et al., 2014). The pipettes were back-filled with an electrolyte solution containing potassium glu-

conate (135mM), HEPES (10mM), KCl (6.0mM), Mg-ATP (2mM), EGTA (10mM). The solution was titrated to

7.35–7.40 using 1M KOH. The recording electrodes were inserted vertically through the dorsal surface of

the exposed spinal cord and spinal neurons were recorded from the lower cervical segments (C6-C8) at

depths of 1.3 mm to 3.9mm, corresponding to laminae III-VIII (Figure 1B) (Rexed 1952). Since all but two

of the recordings were made above the depth of the alpha-motoneurons they were from putative spinal

interneurons. The recording signal was amplified using the HEKA EPC 800 (HEKA, Reutlingen, Germany)

and converted to a digital signal with the analog-to-digital converter Power 1401 mkII from Cambridge

Electronic Design (CED, Cambridge, UK). The neural recordings were continuous and sampled at

100kHz with the software Spike 2 from CED. The criteria used for inclusion or termination of an intracel-

lular recording were a stable membrane potential of less than �50mV and stable maximal peak ampli-

tudes of spontaneous EPSPs (>2mV, varying between neurons). In order to facilitate the analysis of

evoked excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs), a mild

(10–30 pA) hyperpolarizing bias current was injected through the recording electrode to suppress spiking

activity. Before and after the neuron was recorded intracellularly, we also recorded extracellularly to allow

a field potential analysis of the inputs evoked by the sensory stimulations.

We recorded from 114 spinal interneurons, with 68 spinal interneuron recordings in the whole cell mode,

where the recording quality allowed the identification of the amplitude of individual synaptic responses,

and thus permitted a synaptic weight analysis (Figure 2). The remainder of the recordings (n = 46) were

not fully under whole cell control but still partially intracellular and were hence used as additional material

in the analysis of the input connectivity of the peripheral inputs to the spinal interneurons.
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Analysis of PSPs

To identify a threshold stimulation intensity T for each response component, each input was activated at a

number of different intensities, with a high number of repetitions for each intensity. All responses were

analyzed using a custom-made software, which allowed a template-based identification of EPSPs and

IPSPs (Figures 1D and 2A). These templates were created from spontaneous unitary EPSPs or spontaneous

IPSPs, which were also congruent with unitary PSPs evoked at low-threshold stimulation of peripheral affer-

ents. Evoked responses were analyzed using fitting of the template PSP shapes through scaling. The anal-

ysis aimed to define the input connectivity to each neuron. This means whether the input was mono-, di- or

trisynaptic, in addition to whether it was excitatory or inhibitory.

Two types of field potentials were used to determine PSP latency. First, the afferent fiber volley, which is the

field potential evoked by action potentials from the afferents entering the spinal cord. Second, the synaptic

local field potential (LFP) which is caused by synaptic currents evoked by the afferent fiber volley.

Also the respective minimal threshold intensities for evoking a response were identified in this way.

Response latency times were analyzed as the relative time to these field potential latency times, which

made the identification of monosynaptic responses straight forward (Figures 2D and 2F) (Quevedo

et al., 2000; McCrea et al., 1995). In addition, monosynaptic responses could be separated from non-mono-

synaptic responses by their lower variability in response latency time and peak amplitude. Di-synaptic re-

sponses could be identified by their relatively minor difference of the response latency time compared to

themonosynaptic response. Trisynaptic responses were separable from di-synaptic responses again in part

on the differences in response latency times and relative latency to a di-synaptic response. The analysis of

indirect PSP responses that were preceded by earlier PSP response components was supported by the

identification of the template shapes of the EPSPs and IPSPs of each neuron. In particular, indications of

rapid changes in the membrane potential that were incompatible with the expected decay phase of the

template PSPs, and which was followed by the apparent addition of a new PSP component, based on tem-

plate-shape identification, was taken as an indication of an another evoked PSP with a longer synaptic

linkage.

QUANTIFICATION AND STATISTICAL ANALYSIS

Classes of spinal interneurons

We used statistical tests and machine learning algorithms to determine if the spinal interneurons fell into

well separated classes and to find patterns indicative of any formative process that could explain the input

connectivity to the neurons. These tests did not assume a priori that a subdivision or any specific pattern

must exist, hence allowing an unbiased evaluation of the input connectivity to the spinal interneurons.

In order to determine if an input-based subdivision of the neurons existed we used two conceptually similar

but separate tests. The first method, SigClust (Liu et al., 2008) tests the hypothesis that the data comes from

a single Gaussian distribution (Figure 5B). To achieve this, the clusterability of the actual dataset is

compared to that of data generated by sampling (n = 10000) from a Gaussian distribution. The Gaussian

distribution was constructed by fitting it to the data, so that themean and the variance were identical to that

of the recorded data. The cost of a clustering, also called clusterability, is defined as the sum of the dis-

tances, of each datapoint to the mean of its assigned cluster. The cluster index is the fraction between

the cost of clustering the data into two cluster and into one cluster. The cluster indices of the generated

data are computed, giving a distribution of cluster indices. If the clustering index of the original dataset

falls into the 0.05 quantil of the distribution, then the hypothesis can be rejected and the actual dataset

is determined to be clusterable into at least two clusters. This method is suitable for high dimensional,

low sample size data and has been applied previously in the context of biological data analysis (Liu

et al., 2008; Verhaak et al., 2010; Burstein et al., 2015; Prat et al., 2010).

The secondmethod, GapStatistics (Tibshirani et al., 2001), is conceptually similar to the SigClust method. It

compares the actual data to a random distribution (Figure 5D). Additionally, the GapStatistics determines

the correct number of clusters. A possible outcome is that the number of clusters is estimated to be only

one cluster or that there is as many clusters as there are datapoints. In both these cases the dataset is

considered unclusterable. The GapStatistics measures how far the clustering cost of the dataset differs

from the clustering cost of the reference random distribution (a uniform distribution fitted to the actual da-

taset) for any given number of clusters. To achieve this, random samples (n = 2000) are drawn from the
18 iScience 25, 104083, April 15, 2022
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reference distribution, and their average clustering cost is computed. Then the original data is clustered

and the clustering cost is computed. The gap is the difference between the logarithmic value of the clus-

tering cost of the actual dataset and the logarithmic value of the average clustering cost of the random

samples. The number of clusters is estimated as the number which maximizes the gap. This method has

also been applied to analyze biological data (Tothill et al., 2008; Grün et al., 2015; Viventi et al., 2011).
Associations between neuronal inputs

In order to find patterns of input connectivity we used Association Rule Mining (Agrawal et al., 1993). This

method finds associations between binary properties in a given dataset. In the present context a binary

property is the presence or absence of a specific input connectivity to a spinal interneuron. A potential as-

sociation of two input connectivities is encoded as a so called association rule P10P2, where P1 and P2 are

two connectivities from afferents to neurons. Such a rule is to be read as that if a neuron has connectivity P1

then it also has connectivity P2. If a neuron has connectivity P1 then the rule applies to the neuron. If a

neuron has connectivity P1 and connectivity P2 then the rules applies to the neuron and holds true. If the

neuron has connectivity P1 but does not have connectivity P2, then the rule applies to the neuron, but

does not hold true.

For example, connectivity P1 is a monosynaptic Ia afferent input, and an inhibitory disynaptic Ib afferent

input. Consider four different imaginary neurons and the rule P10P2. Neuron one has a monosynaptic

Ia afferent input and an inhibitory disynaptic Ib afferent input. Neuron two does not have Ia input but

does have Ib inhibitory input. Neuron three has the Ia input but not the Ib input. Neuron four has neither

input. The rule applies to neuron one and three, but does no apply to neuron two and four. The rule holds

true for neuron one and does not hold true for neuron three.

For a set of neurons S the support of the rule P10P2 is

suppðP10P2Þ = jfn˛SjNeuron n has connectivity P1gj
jSj :

The support is the fraction of neurons where the rule applies.

The confidence of a rule

conf ðP10P2Þ = jfn˛S j Neuron n has connectivity P1 and P2gj
jfn˛S j Neuron n has connectivity P1gj ;

is the fraction between the number of neurons where the rule applies and where the rule holds true.

Graph structure analysis

We also designed a data analysis method to gain insight into the spinal interneuron network structure. Each

neuron gives a glimpse of a fraction of the network connectivity. Our method works by searching for neu-

rons whose input connectivity allows for possible connections between them. Each neuron is characterized

by its input connectivity which is a subset of all possible input connectionsA = fIa;Ib;Sking3 f� 4;.; � 1; 1;

.4g. Here the inputs a neuron receives are encoded as a tuple consisting of the afferent where the input

comes from and the number of synapses over which the input is transmitted. Inputs over more than four

synapses are ignored. Inhibition is encoded as a negative number.

If a neuronN04A gives excitation via n consecutive synaptic linkages to a neuronN, then neuronN receives

the following set of excitatory inputs

anðN0Þ : = fðm; l + nÞ jðm; lÞ˛N0; l >0; l + n% 4g4N

If a neuron N04A gives inhibition via n synapses to a neuron N, then neuron N receives the following set of

inhibitory inputs

a�nðN0Þ : = fðm; �ðl + nÞÞ j ðm; lÞ˛N0; l > 0; l + n% 4g4N

In both cases neuron N0 receives all excitatory input connections thatN receives over nmore synapses and

in the case that Ninhibits N0, N0 receives the input connection as inhibition.

In a network where two neurons N1;N24A are connected to each other, the following facts hold.
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� IfN1 andN2 are connected to each other with excitatory synapses, then a+ 1ðN1Þ4N2 and a+ 1ðN2Þ4
N1.

� If N1 is connected to N2 with an excitatory synapse and N2 is connected to N1 with an inhibitory syn-

apse then a�1ðN1Þ4N2 and a+ 1ðN2Þ4N1.

These facts allow us to count the number of neurons in the dataset which could be part of such a two neuron

circuit, by counting the number of recorded neurons where another recorded neuron exists, so that one of

the facts hold.

Each neuron receives its input either monosynaptically from the inputs or non-monosynaptically via other

neurons. These neurons that transmit this inputmust at least receive the input they are transmitting but with

one shorter synaptic linkage. These neurons, which are the minimal requirement for a predecessor neuron,

to a neuron N are called the virtual neurons.

VðNÞ = W
ðm;lÞ˛N

fðm; l0Þ j l0 ˛ f1;.; l� 1gg:

For a neuron N to receive its input completely over a feed forward network in contrast to transmission via

network containing loops, for every virtual neuron NV˛VðNÞ there must be a matching neuron N0 such that

the following two conditions hold. The neuronN0 receives the inputNV receives,NV4N0. IfNV transmits its

input over n synapses to N then N must contain all inputs that N0 receives transmitted over n synapses

anðN0Þ if the transmitted input at N is excitatory or a�1ðN0Þ if the transmitted action at N is inhibitory.

This kind of analysis relies on the assumption that only the patterns of convergence that we found exist.

It is unlikely that the complete set of connectivity within the spinal cord circuitry was mapped in this study.
Swap randomization

In order to determine if the associations and graph structures quantified by the measures described in the

previous sections are by chance, we compared the measures to datasets generated by swap randomiza-

tion. The swap randomized datasets are created by virtually swapping inputs between neurons under

the following constraints, as previously described (Gionis et al., 2007). Each neuron receives the same num-

ber of inputs as in the original dataset. Each input contacts the same number of neurons as in the original

dataset. If the measure obtained from the recorded dataset is smaller than the average of the measure on

the swap randomized datasets, we call the measure reduced. In the opposite case we call it enhanced. Let

M be the value of a measure computed on the recorded dataset. Let a and b be the number of swap ran-

domized datasets where the measure is smaller than M respectively larger than M. The significance of the

comparison to the swap randomized datasets is computed as the empirical p value

p =
1

1+ n
minfa;b + 1g ;

where n= 107 is the number of swap randomized datasets.
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