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Abstract

We apply the recently developed least squares stabilized symmetric Nitsche method for enforcement of Dirichlet boundary
onditions to the finite cell method. The least squares stabilized Nitsche method in combination with finite cell stabilization
eads to a symmetric positive definite stiffness matrix and relies only on elementwise stabilization, which does not lead to
dditional fill in. We prove a priori error estimates and bounds on the condition numbers.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Unfitted finite element methods allow for the geometry of the problem domain to cut through the underlying
omputational mesh in an arbitrary manner and avoid the use of standard meshing tools. Over recent years several
ethods that deal with the challenges of unfitted FEM in slightly different ways have been proposed, see for

nstance [1–5].
In this contribution we provide an analysis for an unfitted FEM, the finite cell method [1], when combined with

n improved technique for weakly imposing Dirichlet boundary conditions. Specifically, we address the following
wo central issues that naturally arise when developing unfitted FEMs:

. Enforcing Dirichlet boundary conditions. In contrast to classical FEMs the degrees of freedom in unfitted FEMs
re no longer nodal values coinciding with the boundary. A very elegant solution for dealing with this issue is weak
nforcement via Nitsche’s method, first introduced in 1971 by Nitsche in his seminal work [6]. Weak enforcement
f Dirichlet boundary conditions does seem to be a perfect match with unfitted methods and the elegance of this
articular method shows in optimal order error bounds using only a h−1 scaling of the penalty parameter. However,
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the stability analysis in [6] utilizes an inverse inequality that does not hold by default for unfitted finite elements,
whereby additional stabilization is required for a complete analysis.

2. Ensuring stability and accuracy. While there are clear modeling benefits of an unfitted FEM approach, a
drawback is that there may exist basis functions in our computational grid whose support has a negligible intersection
with the domain. This takes its expression in the form of two stability issues that are related but not the same:

• Stability of formulation. For elliptic PDE, as we consider in this contribution, this means a guaranteed coercive
method. If the method is not coercive, we cannot be sure we are actually solving the correct problem, even if
we may solve the resulting linear system of equations without any hassle.

• Stability of linear system of equations. This means there exists an upper bound on the condition number for
the stiffness matrix.

o mitigate these stability issues several approaches have been proposed in literature, for instance; ghost penalty sta-
ilization [3,7]; element merging [8]; removal of problematic basis functions [9]; and finite cell stabilization [10,11].

he finite cell method. As a framework for unfitted FEMs, addressing problems of discretization, quadrature, and
tability, the finite cell method (FCM) was originally introduced in [1] and has since successfully been applied to a
ide variety of applications, for instance in solid mechanics [5,12], structural analysis [13,14], and fluid–structure

nteraction [15]. In this work, the focus is on the stability issues and the mathematical analysis of the method.
he principal stabilization technique in FCM is based on adding a small virtual stiffness in parts of elements that
re exterior to the domain, and this we refer to as finite cell stabilization. In the case of Neumann conditions, an
nalysis of finite cell stabilization was provided in [10], while we in the present contribution provide an analysis
n the case of weakly enforced Dirichlet conditions.

ummary of contribution. In this paper we develop a new symmetric finite cell method which utilizes the
ecently developed least-squares stabilized Nitsche formulation (LS-Nitsche) [16] for weakly enforcing the Dirichlet
oundary conditions. We work in a higher regularity space V = H 2(Ω ) setting and we therefore consider C1 splines
onstructed on a background grid as our approximation space Vh . The following key considerations are taken into
ccount:

• Stability of formulation. The use of LS-Nitsche [16] appends the standard Nitsche formulation by certain least
squares terms in the vicinity of the boundary as well as control over the tangent gradient along the boundary,
yielding a formulation which is stable not only on the discrete space Vh but on V = H 2(Ω ). Effectively, this
means the method is coercive regardless of the cut situation even without any finite cell stabilization.

• Stability of linear system of equations. Since coercivity is ensured via LS-Nitsche, the focus of the finite cell
stabilization, i.e. the virtual stiffness added inside cut elements outside of the domain, is to guarantee stability of
the linear system of equations. If finite cell stabilization is not included, the norm in which coercivity is proven
will only be a seminorm on Vh since Vh in certain cut situations may include functions whose support has an
arbitrarily small intersection with the domain. This, in effect, gives a stiffness matrix which is only guaranteed
to be symmetric positive semidefinite, while including finite cell stabilization will move the stiffness matrix
to be symmetric positive definite (SPD). We include an error analysis, that identifies the suitable choice of the
finite cell stabilization parameter. Note that thanks to LS-Nitsche we already have coercivity and only very
weak virtual stiffness needs to be added to ensure that the stiffness matrix is SPD. Our results complements
[10] where Neumann conditions are analyzed.

• Implementation and use. In the method, all terms are assembled element-wise making for a very straightfor-
ward implementation. For this to hold the added smoothness of the spline space is utilized in the derivations
of the least-squares terms. A feature of LS-Nitsche that simplifies the use of the method is that the choice of
penalty parameter does not depend on the cut situation. Furthermore, a modest value for the penalty parameter
may be chosen which allows complex geometries even at the element level, without locking [16].
2
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Fig. 1. (a) The domain Ω of the model problem. (b) The domain of all active elements Ωh , i.e. the union of all elements with a non-empty
intersection with the domain Ω .

Outline. The paper is organized as follows. In Section 2 we introduce our method; an unfitted finite element method
featuring least-squares stabilized Nitsche boundary conditions and finite cell stabilization. In Section 3 we prove
stability and error estimates in the energy and L2 norms. In Section 4 we derive a bound on the condition number.
In Section 5 we present illustrating numerical examples. Finally, in Section 6 we present our conclusions.

2. The finite cell method with LS-Nitsche

2.1. Model problem

Let Ω be a domain in Rd with smooth boundary ∂Ω , such as illustrated in Fig. 1(a), and consider the problem:
find u : Ω → R such that

− ∆u = f in Ω (2.1)

u = g on ∂Ω (2.2)

For sufficiently regular data there exists a unique solution to this problem and we will be interested in higher
rder methods and therefore we will always assume that the solution satisfies the regularity estimate

∥u∥H s+2(Ω) ≲ ∥ f ∥H s (Ω) + ∥g∥H s−1/2(∂Ω) (2.3)

for some s ≥ 0. Here and below a ≲ b means that there is a positive constant C independent of the mesh parameter
h and the cut situation such that a ≤ Cb.

2.2. The B-spline spaces

Definitions.

• Let T̃h , h ∈ (0, h0], be a family of uniform tensor product meshes in Rd with mesh parameter h.
• Let Ṽh = C p−1 Q p(Rd ) be the space of C p−1 tensor product B-splines of order p defined on T̃h . Such functions

are easily generated using the Cox–de Boor recursion formula. Let B̃ = {ϕi }i∈ Ĩ be the standard basis in Ṽh ,
where Ĩ is an index set.

• Let B = {ϕ ∈ B̃ : supp(ϕ) ∩ Ω ̸= ∅} be the set of basis functions with support that intersects Ω . Let
Vh = span{B}, Th = {T ∈ T̃h : T ∩ Ω ̸= ∅}, and Ωh = ∪T ∈Th T . An illustration of the basis functions in one
spatial dimension is given in Fig. 2 and Ωh is illustrated in Fig. 1(b).

1 2

• We will only consider p ≥ 2 corresponding to at least C splines. We then have Vh |Ω ⊂ V = H (Ω ).

3
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N

Fig. 2. C1 Q2(R) B-spline basis functions in one dimension. The set B of basis functions with non-empty support in Ω is indicated in deep
purple. Note that basis functions crossing the boundary of Ω are defined analogously to interior basis functions.

2.3. The method

Method. Find uh,α ∈ Vh such that

Ah,α(uh,α, v) = Lh(v) ∀v ∈ Vh (2.4)

The forms are defined as follows:

Ah,α(v,w) = ah(v,w) +

Finite cell stabilization  
α(∇v,∇w)Ωh\Ω (2.5)

−(∇nv,w)∂Ω − (v,∇nw)∂Ω + βbh(v,w)  
Nitsche BC terms

(2.6)

ah(v,w) = (∇v,∇w)Ω + τh2(∆v,∆w)Th,∂Ω∩Ω  
New LS interior term

(2.7)

bh(v,w) = (2 + τ−1)h−1(v,w)∂Ω + 2h(∇T v,∇Tw)∂Ω  
New LS boundary term

(2.8)

Lh(v) = ( f, v)Ω −τh2( f,∆v)Th,∂Ω∩Ω  
New LS interior term

−(g,∇nv)∂Ω + βbh(g, v)  
Nitsche BC terms

(2.9)

Parameters. The included parameters are:

• α ≥ 0 is the finite cell stabilization parameter, which we will define as α ∼ h2p−1 to obtain a scheme with
optimal order convergence. This stabilization provides a small virtual stiffness in exterior parts of cut elements
which, for the present method, is crucial for guaranteeing stability of the linear system of equations.

• β > 0 is a penalty parameter of moderate size, for instance β = 5 is sufficient, see [16].
• τ > 0 can be chosen in order to optimize accuracy, where typical values are in the range 0.01–1, see [16].

The effective parameter in front of the standard Nitsche penalty term h−1(v,w)∂Ω is β(2 + τ−1) and thus τ
trades control between the interior least squares term h2(∆v,∆w)Th,∂Ω∩Ω and the standard Nitsche penalty
term.

otation. We employed the following notation:

• ∇n = n · ∇ is the normal derivative on the boundary ∂Ω where n is the exterior unit normal to ∂Ω .
• ∇T = P∇ is the so-called tangent gradient on ∂Ω where P = (I − n ⊗ n) is the projection onto the tangent

plane of ∂Ω .
• Th,∂Ω ∩ Ω = ∪T ∈Th,∂Ω T ∩ Ω is the interior region of least squares stabilization, see Fig. 3, where the set
Th,∂Ω ⊂ Th is defined
Th,∂Ω = Th(Uh(∂Ω )) = {T ∈ Th : T ∩ Uh(∂Ω ) ̸= ∅} (2.10)

4
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Fig. 3. Illustrations of geometrical regions used in the method and throughout the analysis. By construction (Uh (∂Ω ) ∩ Ω ) ⊆ (Th,∂Ω ∩ Ω )
and (Ωh \ Ω ) ⊆ (Uh (∂Ω ) \ Ω ).

and Uh(∂Ω ) is the tubular neighborhood

Uh(∂Ω ) =

⋃
x∈∂Ω

Bh(x) (2.11)

with Bh(x) the open ball with center x and radius h. Integrals over Th,∂Ω ∩Ω are evaluated elementwise such
that

(v,w)Th,∂Ω∩Ω =

∑
T ∈Th,∂Ω

(v,w)T ∩Ω (2.12)

emark 2.1. In practice, Th,∂Ω may be taken as the set of all elements that intersect the Dirichlet boundary ∂Ω
nd their neighbors, i.e., Th,∂Ω = Nh(Th(∂Ω )).

ommentary on LS terms. The added least-squares terms, h2(∆v,∆w)Th,∂Ω∩Ω and h(∇T v,∇Tw)∂Ω , provide
additional control on the elements in the vicinity of the boundary and along the boundary. The additional control
along the boundary may be interpreted as weak enforcement of Dirichlet boundary conditions in H 1/2(∂Ω ), the
race space of H 1(Ω ), and we note that

h−1
∥v∥2

∂Ω + h∥∇T v∥
2
∂Ω (2.13)

s a discrete version of ∥v∥2
H1/2(∂Ω)

, which is more precise compared to the standard Nitsche method due to the
resence of the second term. In the case when we do not have any cut elements we may employ an inverse inequality
o conclude that

h−1
∥v∥2

∂Ω + h∥∇T v∥
2
∂Ω ∼ h−1

∥v∥2
∂Ω (2.14)

and we recover the standard Nitsche penalty term. This is however not possible in the cut case where the additional
term plays a key role. Furthermore, for w ∈ H 1(Ω ) we have the standard estimate

|(∇nv,w)∂Ω | ≤ (∥∇v∥2
Ω + ∥∆v∥2

Ω )1/2
∥w∥H1(Ω) (2.15)

and thus for the left hand side to be well posed we need control of ∥∆v∥Ω in addition to ∥∇v∥Ω . We note that
2
h (∆v,∆w)Th,∂Ω∩Ω and h(∇T v,∇Tw)∂Ω provides such control close to the boundary, which turns out to be enough.

5
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Finally, if we do not have cut elements an inverse inequality gives

h2
∥∆v∥2

Ω ≲ ∥∇v∥2
Ω (2.16)

and thus in that case h2
∥∆v∥2

Ω is dominated by ∥∇v∥2
Ω , which is already present in the standard variational form.

3. Analysis of the method

3.1. Extension outside the domain

Throughout the analysis we need to evaluate functions in V = H 2(Ω ) not only within Ω but also a region
xterior to Ω , specifically within Uh(∂Ω ) \ Ω , see Fig. 3. For this we use the following known result; there is an
xtension operator E : W k

q (Ω ) → W k
q (Rd ), k ≥ 0 and q ≥ 1, such that (Ev)|Ω = v and

∥Ev∥W k
q (Rd ) ≲ ∥v∥W k

q (Ω) (3.1)

see [17]. In particular we use this extension on the exact solution u in our derivations below, where we let u on
h(∂Ω ) ∪ Ω be defined by u on Ω and by the extension Eu on Uh(∂Ω ) \ Ω .

3.2. Consistency

Galerkin orthogonality. With u ∈ V = H 2(Ω ) the solution to (2.1)–(2.2) and uh,α ∈ Vh the solution to
(2.4) it holds

Ah,α(u − uh,α, v) − α(∇u,∇v)Ωh\Ω = 0 ∀v ∈ Vh (3.2)

where the second term on the right hand side accounts for the inconsistent finite cell stabilization.

Proof. We first recall that for α = 0 the method is consistent, i.e. the exact solution u to (2.1)–(2.2) satisfies

Ah,0(u, v) = Lh(v) ∀v ∈ Vh (3.3)

since the standard Nitsche method with γ = 0 and τ = 0 is consistent and the added least squares terms are residual
erms:

∆u + f = 0 H⇒ τh2(∆u,∆v)Th,∂Ω∩Ω = −τh2( f,∆v)Th,∂Ω∩Ω (3.4)

u|∂Ω = g H⇒ 2h(∇T u,∇T v)∂Ω = 2h(∇T g,∇T v)∂Ω (3.5)

ext note that for v ∈ Vh we have

0 = Lh(v) − Ah,α(uh,α, v) (3.6)

= Ah,0(u, v) − Ah,α(uh,α, v) (3.7)

=
(

Ah,α(u, v) − α(∇u,∇v)Ωh\Ω

)
− Ah,α(uh,α, v) (3.8)

= Ah,α(u − uh,α, v) − α(∇u,∇v)Ωh\Ω ■ (3.9)

3.3. Energy norm

Recall that V = H 2(Ω ) and Vh |Ω ⊂ V , and define the following norms on V ,

|||v|||2h,α = |||v|||2h + α∥∇v∥2
Ωh\Ω (3.10)

|||v|||2h = ∥v∥2
ah

+ ∥v∥2
bh

(3.11)

∥v∥2
ah

= ah(v, v) = ∥∇v∥2
Ω + τh2

∥∆v∥2
Th,∂Ω∩Ω (3.12)

∥v∥2
bh

= bh(v, v) = (2 + τ−1)h−1
∥v∥2

∂Ω + 2h∥∇T v∥
2
∂Ω (3.13)
6
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Remark 3.1. Since Vh may contain basis functions whose support has an arbitrarily small intersection with Ω the
energy norm (3.11) is only guaranteed to be a semi-norm on Vh in the case α = 0 while it is a norm on Vh if α > 0.
For this reason we will need the finite cell stabilization to guarantee stability of the linear system of equations, see
Section 4.

3.4. Results on LS-Nitsche

Here we summarize the main results on the LS-Nitsche method [16], which is essentially our method (2.4) in the
case α = 0. The central estimate in the analysis presented in [16] is the following bound on the normal flux form,
from which coercivity and continuity results are readily established, requiring only minor adaptations to cover the
present method when α > 0.

Continuity of normal flux form. The following estimate holds⏐⏐(∇nv,w)∂Ω
⏐⏐ ≲ ∥v∥ah ∥w∥bh v,w ∈ V (3.14)

where the hidden constant is close to one for h sufficiently small.

Coercivity. For β > 0 sufficiently large the form Ah,α is coercive

|||v|||2h,α ≲ Ah,α(v, v) v ∈ V (3.15)

Continuity. The form Ah,α is continuous

Ah,α(v,w) ≲ |||v|||h,α|||w|||h,α v,w ∈ V (3.16)

Remark 3.2 (Coercivity). Note that the coercivity holds on the full space V = H 2(Ω ) and not only on the discrete
pace Vh as is the case in the standard analysis of Nitsche’s method. The reason is that the LS-Nitsche formulation
ircumvents the use of an inverse inequality in the proof of the coercivity estimate. Also note that β being sufficiently
arge for the LS-Nitsche method actually translates into a quite moderate number, for instance β = 5 is sufficient.
his is derived based on the good knowledge of the constant in (3.14). We refer to [16] for details.

emark 3.3 (Adaptation of proofs). In [16] the coercivity and continuity is established for α = 0 and it follows
irectly from the definition of Ah,α and the norm ||| · |||h,α that these results also hold for Ah,α . For instance,

|||v|||2h,α = |||v|||2h,0 + α∥∇v∥2
Ωh\Ω ≲ Ah,0(v, v) + α(∇v,∇v)Ωh\Ω = Ah,α(v, v) (3.17)

.5. Interpolation error estimates

Define the interpolant by

πh : H s(Ω ) ∋ u ↦→ Πh(Eu) ∈ Vh (3.18)

here Πh : H s(Ωh) ↦→ Vh is a spline space quasi-interpolant, see [18]. We have the standard a priori error estimate

∥v − πhv∥Hm (T ) ≲ hs−m
∥v∥H s (Nh (T )) (3.19)

here Nh(T ) = ∪ϕ∈B(T )supp(ϕ) and B(T ) = {ϕ ∈ B : T ⊂ supp(ϕ)}. We have the interpolation estimate

|||v − πhv|||h,α ≲ h p
∥v∥H p+1(Ω) (3.20)

or 0 ≤ m ≤ s ≤ p + 1.
7
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3.6. Error estimates

Theorem 3.1 (Energy norm error estimate). For u ∈ H p+1(Ω ) the following error estimate holds

|||u − uh,α|||h,α ≲ h p
∥u∥H p+1(Ω) + α1/2h1/2

∥u∥H2(Ω) (3.21)

and with

α ≲ h2p−1 (3.22)

we obtain

|||u − uh,α|||h,α ≲ h p
∥u∥H p+1(Ω) (3.23)

Proof. We first have

|||u − uh,α|||h,α ≲ |||u − πhu|||h,α + |||πhu − uh,α|||h,α (3.24)

≲ h p
∥u∥H p+1(Ω) + |||πhu − uh,α|||h,α (3.25)

where we used the interpolation estimate (3.20). In order to estimate the second term we start by using coercivity

|||πhu − uh,α|||h,α ≲ sup
v∈Vh

Ah,α(πhu − uh,α, v)
|||v|||h,α

(3.26)

≲ |||u − πhu|||h,α + sup
v∈Vh

Ah,α(u − uh,α, v)
|||v|||h,α

(3.27)

≲ |||u − πhu|||h,α + sup
v∈Vh

α(∇u,∇v)Ωh\Ω

|||v|||h,α
(3.28)

≲ h p
∥u∥H p+1(Ω) + α1/2h1/2

∥u∥H2(Ω) (3.29)

ere we added and subtracted an interpolant, used the identities

Ah,α(u − uh,α, v) = Ah,α(u, v) − Lh,α(v) = Ah,α(u, v) − Ah,0(u, v) = α(∇u,∇v)Ωh\Ω (3.30)

and finally the estimate

α(∇u,∇v)Ωh\Ω ≲ α1/2h1/2
∥u∥H2(Ω)|||v|||h,α (3.31)

To verify (3.31) we first note that

α(∇u,∇v)Ωh\Ω ≲ α∥∇u∥Ωh\Ω∥∇v∥Ωh\Ω ≲ α1/2
∥∇u∥Ωh\Ω |||v|||h,α (3.32)

By construction, and as illustrated in Fig. 3,

Ωh \ Ω ⊆ Uh(∂Ω ) \ Ω = ∪t∈[0,h]∂Ωt (3.33)

where ∂Ωt = {x ∈ Uh : ρ(x) = t} and ρ is the distance function to ∂Ω . Using this notation we have the estimates

∥∇u∥Ωh\Ω ≲ ∥∇u∥Uh (∂Ω)\Ω ≲ h1/2 sup
t∈[0,h]

∥∇u∥∂Ωt (3.34)

≲ h1/2 sup
t∈[0,h]

∥u∥H2(Ωt ) ≲ h1/2
∥u∥H2(Ωδ ) ≲ h1/2

∥u∥H2(Ω) (3.35)

where we used the trace inequality ∥v∥∂Ωt ≲ ∥v∥H1(Ωt ) with Ωt = Ω ∪ (∪s∈[0,t]∂Ωs) and v = ∇u, and at last we
sed the stability (3.1) of the extension operator. Combining (3.32) and (3.35) we obtain (3.31). Thus the proof is

omplete. ■

8
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Theorem 3.2 (L2 error estimate). For u ∈ H p+1(Ω ) the following estimate holds

∥u − uh,α∥Ω ≲ h p+1
∥u∥H p+1(Ω) + (α1/2h3/2

+ αh)∥u∥H2(Ω) (3.36)

and with α defined by (3.22) we obtain

∥u − uh,α∥Ω ≲ h p+1
∥u∥H p+1(Ω) (3.37)

Proof. Let φ ∈ V be the solution to the dual problem

−∆φ = ψ in Ω , φ = 0 on ∂Ω (3.38)

Posing this problem in variational form, testing with e = u − uh,α , and using that φ∂Ω = 0, gives us the identity

(e, ψ)Ω = Ah,0(e, φ) − τh2(∆e,∆φ)Th,∂Ω∩Ω (3.39)

For the first term in (3.39) we recall that with α = 0 we obtain a consistent method and then proceeding with the
obvious estimates

Ah,0(e, φ) = Lh(φ) − Ah,α(uh,α, φ) + α(∇uh,α,∇φ)Ωh\Ω (3.40)

= Lh(φ − πhφ) − Ah,α(uh,α, φ − πhφ) + α(∇uh,α,∇φ)Ωh\Ω (3.41)

= Ah,0(u, φ − πhφ) − Ah,α(uh,α, φ − πhφ) + α(∇uh,α,∇φ)Ωh\Ω (3.42)

= Ah,0(u − uh,α, φ − πhφ) + α(∇u,∇πhφ)Ωh\Ω (3.43)

≲ |||u − uh,α|||h,0|||φ − πhφ|||h,0 + α∥∇u∥Ωh\Ω∥∇πhφ∥Ωh\Ω (3.44)

≲ h|||u − uh,α|||h,0∥φ∥H2(Ω) + αh∥u∥H2(Ω)∥φ∥H2(Ω) (3.45)

≤ (h|||u − uh,α|||h,α + αh∥u∥H2(Ω))∥ψ∥Ω (3.46)

y the dual problem and the definition of the energy norm we readily get the bound for the second term in (3.39)

−τh2(∆e,∆φ)Th,∂Ω∩Ω ≤ τh2
∥∆e∥Th,∂Ω∩Ω∥∆φ∥Th,∂Ω∩Ω (3.47)

≲ τ 1/2h|||u − uh,α|||h,α∥ψ∥Ω (3.48)

inally, choosing ψ = e = u − uh,α and using the energy norm estimate (3.21) we obtain

∥e∥Ω ≲ h p+1
∥u∥H p+1(Ω) + (α1/2h3/2

+ αh)∥u∥H2(Ω) (3.49)

hich concludes the proof. ■

. Stability of the linear system of equations

We first recall some basic concepts and then we prove an inverse estimate and a Poincaré estimate, and finally
bound on the condition number of the stiffness matrix.

.1. Basic definitions

• The stiffness matrix Â is defined by

( Âv̂, ŵ)RN = Ah,α(v,w) ∀v,w ∈ Vh (4.1)

where N is the dimension of Vh and v̂ ∈ RN is the coefficient vector in the expansion

v(x) =

∑
i∈I

v̂iϕi (x) (4.2)

of v in terms of the basis functions B = {ϕi : i ∈ I }.
• The following equivalence holds

hd
∥̂v∥2 2
RN ∼ ∥v∥Ωh
v ∈ Vh (4.3)

9
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• The condition number of Â is defined by

κ = cond( Â) =
λmax

λmin
(4.4)

where λmax and λmin are the largest and smallest eigenvalues of Â.

We shall now derive an estimate of the condition number. In addition to the coercivity (3.15) and continuity
3.16) we will need an inverse estimate and a Poincaré estimate.

.2. Inverse and Poincaré estimates

• The following inverse estimate holds

|||v|||h,α ≲ h−1
∥v∥Ωh (4.5)

roof. Recall that

|||v|||2h,α = ∥v∥2
ah

+ α∥∇v∥2
Ωh\Ω + ∥v∥2

bh
(4.6)

sing standard inverse estimates

∥v∥2
ah

+ α∥∇v∥2
Ωh\Ω = ∥∇v∥2

Ω + τh2
∥∆v∥2

Th,δ∩Ω
+ α∥∇v∥2

Ωh\Ω (4.7)

≤ (1 + α)∥∇v∥2
Ωh

+ τh2
∥∆v∥2

Ωh
(4.8)

≲ h−2
∥v∥2

Ωh
(4.9)

nd using the inverse trace inequality ∥v∥2
∂Ω∩T ≲ h−1

∥v∥2
T , v ∈ Vh , we get

∥v∥2
bh

= h−1
∥v∥2

∂Ω + h∥∇T v∥
2
∂Ω (4.10)

≲ h−2
∥v∥2

Th (∂Ω) + ∥∇v∥2
Th (∂Ω) (4.11)

≲ h−2
∥v∥2

Th (∂Ω) (4.12)

≲ h−2
∥v∥2

Ωh
■ (4.13)

• The following Poincaré estimate holds

αh−2
∥v∥2

Ωh\Ω + ∥v∥2
Ω ≲ |||v|||2h,α (4.14)

and as a consequence

min(1, αh−2)∥v∥2
Ωh

≲ |||v|||2h,α (4.15)

Proof. Using a standard Poincaré estimate we have

∥v∥Ω ≲ |||v|||h,0 (4.16)

It remains to estimate α∥v∥2
Ωh\Ω , adding and subtracting the extension ve

= v ◦ p, where p : Uh → ∂Ω is the
closest point mapping, and using the obvious bounds we obtain

α∥v∥2
Ωh\Ω ≲ α∥v − ve

∥
2
Ωh\Ω + α∥ve

∥
2
Ωh\Ω (4.17)

≲ αh2
∥∇v∥2

Ωh\Ω + α∥ve
∥

2
Uδ\Ω (4.18)

≲ αh2
∥∇v∥2

Ωh\Ω + αh∥v∥2
∂Ω (4.19)

≲ h2α∥∇v∥2
Ωh\Ω + (αh2)h−1

∥v∥2
∂Ω (4.20)

≲ h2 max(1, α)|||v|||2h,α (4.21)

which for α < 1 gives

αh−2
∥v∥2

Ωh\Ω ≲ |||v|||2h,α (4.22)
Together (4.16) and (4.22) give (4.14). ■

10
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4.3. Condition number estimate

Theorem 4.1 (Condition number scaling). The condition number κ = cond( Â) satisfies

κ ≲ max(h−2, α−1) (4.23)

and with α ∼ h2p−1,

κ ≲ h−(2p−1) (4.24)

Proof. In view of the definition (4.4) of the condition number κ = cond( Â) we need to estimate λmax and λ−1
min.

1. To estimate λmax we use the definition (4.1) of the stiffness matrix to pass over to the bilinear form and then we
use continuity (3.16) and the equivalence (4.3) as follows

λmax = max
v∈Vh\0

( Âv̂, v̂)RN

∥̂v∥2
RN

= max
v∈Vh\0

Ah,α(v, v)
∥̂v∥2

RN

≲ max
v∈Vh\0

|||v|||2h,α

∥v∥2
Ωh

≲ h−2 (4.25)

2. To estimate λ−1
min we again use the definition (4.1) of the stiffness matrix to pass to the bilinear form, then we

use coercivity (3.15), and the equivalence (4.3),

λ−1
min = max

v∈Vh\0

∥̂v∥2
RN

( Âv̂, v̂)RN
= max

v∈Vh\0

∥̂v∥2
RN

Ah,α(v, v)
≲ max

v∈Vh\0

∥v∥2
Ωh

|||v|||2h,α
≲ (min(1, αh−2))−1 (4.26)

. Combining the estimates (4.25) and (4.26) we obtain

κ = λmaxλ
−1
min ≲ h−2(min(1, αh−2))−1

= h−2 max(1, α−1h2) = max(h−2, α−1) (4.27)

hich completes the proof. ■

emark 4.1 (Finite cell stabilization trade-off). As seen in the analysis above, the choice of how the finite cell
tabilization parameter α scales with h is a trade-off between optimal order error estimates and stiffness matrix
ondition number scaling. This property stems from the fact that the finite cell stabilization is inconsistent (3.2),
nd is not specific to the least-squares stabilized Nitsche formulation. For instance, choosing α ∼ h2 would give
he standard condition number scaling of h−2 but would on the other hand sacrifice the optimal order of the error
stimates. In this paper we instead prefer to keep the error estimates of optimal order at the cost of a suboptimal
caling of the condition number (4.24). The idea is to either remedy the condition number via preconditioning, or to
se a direct solver. In the numerical results below we consider both approaches, where we utilize diagonal scaling
s a simple preconditioner.

. Numerical experiments

In this section we illustrate the stability and accuracy of the method using a 2D problem. Note however, that
oth the method and analysis are applicable also to problems in 3D or higher dimensions.

mplementation. The finite cell method in 2D is implemented in MATLAB and the linear system of equations is
olved using a direct solver (MATLAB’s \ operator). In all experiments we use tensor product quadratic B-spline
asis functions, i.e. C1-splines, on a uniform background grid. The geometry of the domain Ω is described as a high
esolution polygon. When computing condition numbers the stiffness matrix Â is first converted to a full matrix on
hich MATLAB’s eig is applied.

arameter choices. For the penalty parameter β we choose a fix value β = 5, since according to the analysis
bove this results in a method that is guaranteed coercive in any cut situation. We vary the stabilization parameter
, which trades weight between the least-squares bulk stabilization and the effective penalization of the boundary
ondition in the Nitsche penalty term, see Table 1. For comparison in the results below we also include experiments
sing standard Nitsche boundary conditions in the finite cell method, i.e. the method (2.4) but without the new least
11
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g

Fig. 4. Shifted background grid. Three example cut computational meshes (h = 0.1) for the unit disc constructed by shifting the background

rid (sh, sh/3) where s ∈ [0, 1] is a parameter.

Table 1
Nitsche penalty. The effective Nitsche penalty parameter for various
values of the least-squares bulk stabilization parameter τ when β = 5.

Least-squares stabilization Nitsche penalty
τ β(2 + τ−1)

1 15
0.1 60
0.01 510
0.001 5010

Fig. 5. Solution. Numerical solutions for the manufactured problem on the computational mesh presented in Fig. 4(c). Parameters here are
β = 5 and τ = 0.1 and the solution in (a) takes into account the new least-squares stabilization terms while the solution in (b) does not.
The plotted solution outside the domain in (b) suggests some instabilities when not including the least-squares terms in this particular cut
situation and choice of parameters.

squares stabilization terms. For a, in some sense, fair comparison, we let the effective Nitsche penalty parameter
be the same so the Nitsche penalty term in both cases takes the form

β(2 + τ−1)h−1(v,w)∂Ω (5.1)

but note that we take no measures to ensure that the standard method is actually coercive.
For the finite cell stabilization in parts of the elements outside the domain, in accordance with (3.22), we set the

finite cell stabilization parameter to α = 0.001h2p−1 where p = 2 for the quadratic B-spline basis functions.
According to the analysis this should yield optimal order convergence rates of O(h p) and O(h p+1) in energy

2 −(2p−1)
respectively L norms, but a suboptimal condition number scaling of O(h ).

12
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s

E

Fig. 6. Convergence. Worst case convergence for a finite cell method with least squares stabilized Nitsche boundary conditions respectively
tandard Nitsche boundary conditions, both with the same effective penalty parameter.

xperiments. We manufacture a problem with known analytical solution on the unit disc Ω = {(x, y) : x2
+ y2 < 1}

via the ansatz

u(x, y) =
1
10
(sin(2x) + x cos(3y)) (5.2)

from which we derive data f : Ω → R and g : ∂Ω → R. To increase the probability of encountering problematic
cut situations, for a given mesh size we perform computations on meshes extracted from 100 different shifts of the
background grid and select the worst case. Specifically, the background grid is shifted (sh, sh/3) where s ∈ [0, 1]
is a parameter that we vary from 0 to 1 in 100 increments. Three example meshes are presented in Fig. 4. Finite
cell solutions to the manufactured problem in one cut situation are presented in Fig. 5 with least-squares Nitsche
stabilized boundary conditions respectively standard Nitsche boundary conditions. In this example we note an
additional smoothness of the solution when we include the least-squares terms.

Convergence. To illustrate the optimal order error estimates (3.23) and (3.37) in Fig. 6 we present convergence
results in H 1 seminorm and in L2 norm for the manufactured problem using various values of τ for the finite cell
method with least-squares stabilized Nitsche boundary conditions respectively standard Nitsche boundary conditions.
For each mesh size h the largest error among the 100 different cut situations is presented, yielding a sort of worst

case convergence. When using least-squares stabilized Nitsche boundary conditions the finite cell method achieves

13
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Fig. 7. Condition number scaling. Worst case scaling of the condition number for a finite cell method with least squares stabilized Nitsche
boundary conditions respectively standard Nitsche boundary conditions, both with the same effective penalty parameter. The dashed lines
are the corresponding condition numbers after preconditioning using diagonal scaling.

optimal order convergence for all values of τ , while the method with standard Nitsche boundary conditions fails
in this task for the larger values τ = 1 and τ = 0.1. The reason is most likely that the standard Nitsche method is
then non-coercive in the worst cut situations. For lower values of τ , which means a larger effective Nitsche penalty,
we do not see this failure when using standard Nitsche boundary conditions. We do, however, see an increasing
magnitude for the errors as τ is lowered which we attribute to locking due to the geometry being curved inside
elements in combination with an increasing magnitude of the effective Nitsche penalty. Overall we achieve the best
performance in this experiment using τ = 0.1 and least-squares stabilized Nitsche boundary conditions.

Condition number. To illustrate the condition number scaling (4.24) we, analogously to the convergence experiment,
present worst case scalings for the stiffness matrix condition number in Fig. 7. In accordance with theory the finite
cell method with least-square stabilized Nitsche boundary conditions produce condition numbers that scales as
O(h−(2p−1)), while the method with standard Nitsche boundary conditions fails to achieve this bound when τ is
large (τ = 1, τ = 0.1). As in the case of the worst case convergence we suspect that the standard method is
non-coercive in those situations. While we do not see such failures in the standard method when using smaller
values of τ , we note that choosing a smaller τ seems to have a significant effect of increasing the magnitude of the
condition numbers. We also note that diagonal scaling seems to work very well as a preconditioner for the method.

In Fig. 8 we get a view of how the condition numbers vary over 500 different cut situations for the disc on a
fixed mesh size, and we see the least-squares stabilization seems to have a very positive effect for larger values
of τ . Again, we see the effectiveness of diagonal scaling. In particular, the combination of finite cell stabilization,
LS-Nitsche and diagonal scaling seems confidence inspiring. However, in (d)–(f) at around s = 0.35, we see some
minor disturbance and discontinuity, which could warrant further investigation, but we believe this is likely caused
by extreme cut situations.

Finally, in Fig. 9 we investigate the condition number in two special cases. Both cases are constructed such that
the elements with the smallest intersection with the domain is ∼ δ2 of a full element, and the parameter δ > 0 is
varied. Further details of the two cases are given in the caption. In these experiments we also consider different
values for the finite cell stabilization parameter, including zero, as well as preconditioning by diagonal scaling. For
the first special case, Figs. 9(a)–9(c), it becomes apparent that without finite cell stabilization, the condition number
can become arbitrarily high, and this is not solved by the preconditioning. Including only a small amount of finite
cell stabilization seems sufficient to bound the condition number. In the second special case, Figs. 9(d)–9(f), the
condition number of the system seems bounded even without finite cell stabilization. The effect of the least-squares
stabilization terms does not seem to be essential in these experiments, but they generally give some improvement.
Diagonal scaling on the other hand seems to work well as long as some finite cell stabilization is included.
14
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6

a

Fig. 8. Condition number variation. Condition numbers for the stiffness matrices on the unit disc assembled using 500 different shifts of
the background grid (h = 0.13).

. Conclusions

In this contribution we have used a least-squares stabilized Nitsche formulation to enforce Dirichlet bound-
ry conditions in the finite cell method with C1 splines. Our analysis and numerical experiments show the

following:

• The method is symmetric and features guaranteed coercivity in every cut situation, a property that does not
depend on choosing a large penalty parameter. Since both the finite cell stabilization and the least-squares
Nitsche stabilization terms are added element-wise, implementation in element based codes is straightforward.

• In numerical experiments the method exhibits remarkable stability, both regarding convergence and condition-
ing, even in extreme cut situations using a moderate effective Nitsche penalty parameter (∼ 10).

• The finite cell stabilization guarantees a symmetric positive definite stiffness matrix, but due to inconsistency
(3.2) it gives a suboptimal h-scaling of the condition number when tuned for optimal order error estimates
(α ∼ h2p−1). We therefore suggest to combine the method with a suitable preconditioner or to use a direct
solver.

• Diagonal scaling seems to work quite well as a preconditioner for the method. While during our numerical
experiments we have not seen a case where it breaks down when both the least-squares Nitsche stabilization
terms and finite cell stabilization are included, we assume the method is not immune to the effect of cut basis
functions being almost linearly dependent, in particular for higher order basis functions, see [19,20].

Overall, this combination of techniques for enforcing Dirichlet conditions in unfitted FEMs seems very

promising.
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Fig. 9. Condition numbers in two special cases. Here two cases have been artificially constructed such that we create in a controlled way
elements with an arbitrary small intersection with the domain depending on a parameter δ > 0, where smaller δ means a smaller intersection.
The finite cell stabilization is here varied to show its effect on the condition numbers. Note that to the values α = {0, 1e-6, 1e-3} stated in
the legends of these plots, the scaling h2p−1 is also applied, and hence these values correspond to effective finite cell parameters of roughly

= {0, 10−10, 10−7
} in both cases. First case: The geometry and mesh (h = 0.09) are illustrated in (a), where the background grid is

laced so that all cut elements are precisely half elements, after which the geometry is shifted diagonally (δh, δh)/
√

2 creating arbitrarily
small cut elements on the upper right side whose area is ∼ δ2 of a full element. The condition numbers for this case are presented in (b)
and (c), where crosses denote condition numbers after diagonal scaling. Second case: The geometry and mesh (h = 0.07) are illustrated
in (d), where the background grid is placed perfectly matching the geometry, after which the geometry is shifted diagonally (δ, δ) creating
arbitrarily small cut elements on the right and upper sides whose area is ∼ δ of a full element and a corner element whose area is ∼ δ2 of

full element. The condition numbers for this case are presented in (e) and (f), where crosses denote the corresponding condition numbers
fter diagonal scaling.
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