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A B S T R A C T

Accurate and transferable models of reaction kinetics are of key importance for chemical reactors on both
laboratory and industrial scale. Usually, setting up such models requires a detailed mechanistic understanding
of the reaction process and its interplay with the reactor setup. We present a data driven approach which
analyzes the influence of process parameters on the reaction rate to identify locally approximated effective rate
laws without prior knowledge and assumptions. The algorithm we propose determines relevant model terms
from a polynomial ansatz employing well established statistical methods. For the optimization of the model
parameters special emphasize is put on the robustness of the results by taking not only the quality of the fit but
also the distribution of errors into account in a multi-objective optimization. We demonstrate the flexibility
of this approach based on artificial kinetic data sets from microkinetic models. This way, we show that the
kinetics of both the classical HBr reaction and a prototypical catalytic cycle are automatically reproduced.
Further, combining our approach with experimental screening designs we illustrate how to efficiently explore
kinetic regimes by using the example of the catalytic oxidation of CO.
. Introduction

Detailed knowledge about reaction kinetics for large and industri-
lly relevant reaction networks are the basis for a rational design and
fficient operation of chemical reactors. However, when studying a
ew catalytic system the underlying mechanism is in general unknown.
oncentration profiles obtained at different reaction conditions contain
aluable information about the (inter-) dependence of reactants and
roducts. Extracting these dependencies to gain a deeper understanding
f the catalytic mechanism is of general importance in heterogeneous as
ell as in homogeneous thermal catalysis, on which we will focus here
ithout loss of generality. As illustrated in Fig. 1 the central observable

n form of a concentration profile is independent of the catalytic process
t hand. In homogeneous catalysis, reactions are usually performed in a
atch reactor. Probing the reaction mixture at different points in time
nd quenching the respective samples directly yields a concentration
rofile. When studying heterogeneous catalysts in a gas flow reactor
he same information is contained in profiles of concentrations versus
esidence time in the reactor bed. The residence time can be adjusted by
ither modulating the gas flow through the reactor or by taking samples
t different points along the reactor tube.

Researchers have several system parameters at their disposal to
nfluence the outcome of the reaction. These comprise feed concentra-
ions of the reactants, temperature, pressure, as well as a multitude of

∗ Corresponding author at: Fritz-Haber-Institut der Max–Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
E-mail address: scheurer@fhi-berlin.mpg.de (C. Scheurer).

reactor-specific technical parameters. By recording concentration time
profiles under different reaction conditions, information regarding the
reaction kinetics can be deduced. In mean-field chemical kinetics the
rate of a given reaction is generally expressed in form of rate laws for
the time-dependent concentrations [Xi](𝑡) of the 1 < 𝑖 < 𝑁 reaction
components (reactants and products),

𝑑[Xi]
𝑑𝑡

=
∑

𝑗
𝑘𝑗𝑀𝑖𝑗

∏

𝑚

(

[Xm]
𝑠𝑗𝑚

)

, (1)

where 𝑘𝑗 are rate constants, 𝑀𝑖𝑗 are the elements of the stoichiometric
matrix and 𝑠𝑗𝑚 are the stoichiometric coefficients of the reactants [1,2].
Even for complex reaction mechanisms, these rate laws can often be
asymptotically approximated by effective rate equations with only a
few dominating terms. An example would be

𝑑[P]
𝑑𝑡

∝ [A]𝜈A ⋅ [B]𝜈B , (2)

where [P] refers to the concentration of the product depending on the
reactant concentrations [A] and [B]. The powers 𝜈A, 𝜈B are then referred
to as (partial) apparent reaction orders. These simplified equations are
generally only valid in certain reaction regimes. A famous example for
such effective equations is the Lindemann mechanism [3]. It describes
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Fig. 1. Concentration–time profiles (e.g. from flow (left) or batch (right) measurements) as central quantity in the kinetic analysis of catalytic reactions.
the self-activation of gaseous species with a subsequent reaction of the
activated species. Under low pressure conditions this reaction can be
described by an effective second-order law, while under high pressure
the reaction is dominated by the subsequent step leading to an effective
first-order dependency.

A variety of methods has been developed in order to deduce such
effective kinetic equations from concentration and rate versus time
data. Particularly in heterogeneous catalysis, such methods often start
off from a detailed microkinetic model [4], either in mean field ap-
proximation [5] or within surface arrangement-resolved kinetic Monte
Carlo [6]. Establishing such a microkinetic model requires a detailed
mechanistic understanding of the reaction though, the lack of which is
typically one of the prime motivations for establishing effective kinetic
mechanisms in the first place. Furthermore, the more complex the
reaction network, the more kinetic parameters like activation barriers
or exponential prefactors need to be determined on the basis of ex-
perimental data. This can lead to questionable inference on the model
parameters or even overfitting due to the lack of available data [7]. In
homogeneous catalysis, Blackmond [8] established the concepts of re-
action progress kinetic analysis (RPKA) and graphical rate equations in
2005. This analysis investigates the dependence of the reaction rate on
regime-determining parameters like reactant concentrations. Building
on these ideas, methods like the variable time normalization analysis
(VTNA) by Burés et al. [9–11] and nonlinear fitting techniques [12,13]
have been introduced. They come with the advantage of directly op-
erating on the concentration time profiles to obtain effective reaction
orders in the individual components. Additionally, such analyses have
proven to be robust against sparse and noisy data, straightforward to
interpret and simple to perform [9]. There are, however, also some
severe caveats. Notably, a separate analysis of the kinetics in each
reactant completely neglects any potential interaction between multiple
species. In experimental design [14], parameters which influence the
outcome of an experiment and can be controlled by the experimenter
are referred to as factors. In order to estimate the interactions of these
factors, a proper factorial design is required that varies multiple factor
settings at the same time. Only if this or any prior knowledge of the
system shows that any potential interaction can be excluded, a separate
analysis of all factors is valid.

In general, many of the existing kinetic modeling techniques thus
suffer from a priori model assumptions. The latter are prone to intro-
duce systematic errors and thus a non-normal error distribution in the
model predictions, in contrast to the Gaussian distributed error that
would be expected from statistical measurement errors. If the model
structure does not fit the physical problem underlying the data, the
distribution of prediction errors will correspondingly be skewed. This
may be due to an important reaction pathway missing in the assumed
mechanism, but also unnecessarily complicated models can be a source
2

of error. An analysis of the residual distribution would readily reveal
such issues, but unfortunately it is often neglected. In cases where the
residuals are indeed provided [7,13], systematic deficiencies of the
models become obvious immediately.

Within this perspective, we here introduce an algorithm for the
systematic investigation of formal kinetics from experimental data.
Effective rate laws are determined from concentration profiles acquired
at different reaction conditions. Performing these measurements ac-
cording to statistical design [14] allows the algorithm to quantitatively
evaluate interactions between different experimental parameters. Cen-
trally, applying well established statistical methods [15–17] we directly
incorporate the goal of normally distributed errors into the optimiza-
tion. At the same time, the algorithm determines relevant terms in
the model function automatically [18,19], making the approach to a
certain degree free of a priori model assumptions.

2. Theory

The apparent reaction order can be understood as a measure of the
sensitivity of the reaction rate to a change in reactant concentration [9].
Similar, sensitivity parameters can also be defined for other reaction
conditions and are sometimes interpreted as physical quantities. The
algorithm, proposed below, is designed to determine effective rate
laws by optimizing these sensitivity parameters. This basic idea is
closely related to VTNA. In VTNA, the determination of the order in a
certain reactant starts with a set of concentration versus time profiles at
different reactant concentrations. Then, if the time axes for all profiles
are normalized by the integral over the reactant concentrations raised
to the correct power, all profiles should coincide. Looking at Eq. (2), we
can identify this power (or exponent) as the apparent reaction order.
It is the sensitivity parameter of the reaction rate with respect to the
reactant concentration. In VTNA, the correct value is typically obtained
manually in a trial and error process or in a graphical manner, as
coinciding curves can be easily identified by visual inspection.

In contrast, our algorithm uses a more quantitative criterion to
identify the correct sensitivity parameters. VTNA works, because the
relation between the change in product concentration and the reac-
tant concentration becomes linear, if raised to its respective reaction
order. How linear a relation between two variables is, can easily be
analyzed by performing linear regression and observing the quality of
the resulting model. A well established method, based on the same
principle, is the Arrhenius plot. There, both temperature and rates are
scaled by a nonlinear transformation revealing a linear relationship
with a slope equal to the activation barrier of the process. In the case
of the Arrhenius problem, the nonlinear transformations are known
from the underlying theory and we are interested in the slope of the

resulting linear model. In contrast, if we want to determine effective
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rate laws, it is known that there should exist a set of transformations,
which leads to a linear relationship. Yet, this set of transformations
is not easily accessible without detailed knowledge of the reaction
mechanism. Notwithstanding, knowing that a linear relationship should
exist, the quality of the regression model can be used as a measure of
linearity and we can formulate an optimization problem to automat-
ically identify reaction orders and sensitivity parameters for various
factors influencing the reaction. These sensitivity parameters are the
key quantity in our approach, as they are supposed to capture all
nonlinear effects encountered in reaction kinetics.

We assign one of these sensitivity parameters to every factor, which
influences the rate of the reaction. For reactant concentrations, these
parameters correspond to their respective partial reaction orders. And,
as we will show in a later section, also the apparent barrier can be
identified as such a sensitivity parameter by rescaling the reaction tem-
peratures. In the regression model we want to set up, these parameters
are the exponents, which introduce nonlinear effects to every factor.
So, if we vary the concentration of reactant A ([A]) in a reaction, the
corresponding quantity, which enters our model, would be

{A} = [A]𝛼A , (3)

here {A} denotes the transformed reactant concentration and 𝛼A is
he corresponding sensitivity parameter. As this is a type of power
ransformation [16], we will also refer to these sensitivity parameters
𝛼) as transformation parameters. If reactant A contributes linearly to
he reaction rate, e.g. in a simple first order reaction, the corresponding
would be 1. For a second order reaction in A, on the other hand, the

ptimal 𝛼 should be close to 2.

.1. Model function

As long as we are only interested in a single influencing factor, for
xample we only want to vary the concentration of one reactant, a
inear model is sufficient to describe the concentration profile, given the
orrect scaling of the input and output variables. In a more general case,
owever, we have multiple reactants and additional factors like pres-
ure or temperature which influence the rate of a chemical reaction.
urther, we would like to investigate the influence of these multiple
actors on the production rate of possibly even multiple product species.
herefore, we need a more complex model ansatz, which allows for
ossible interactions and higher order terms. For this reason, our
lgorithm relies on polynomial functions to describe effective kinetic
odels. Let us consider a simple reaction with two reactants A and B

orming the product P. The only factors we want to account for are the
oncentrations of these two reactants. In that case, the corresponding
olynomial would be
𝑑[P]
𝑑𝑡

= const.+𝑘1 ⋅{A}+𝑘2 ⋅{B}+𝑘3 ⋅{A}⋅{B}+𝑘4 ⋅{A}2+𝑘5 ⋅{B}2+⋯ (4)

with 𝑘𝑖 the unknown coefficients of the respective polynomial terms,
which need to be determined in the regression. Note that this is now
a function of the transformed factors, meaning the transformation
parameters (𝛼) are already contained in the terms of this sum. Such
a polynomial contains not only higher powers of the input variables
but, most importantly, also the necessary interaction terms between
multiple factors, meaning e.g. the product {A} ⋅ {B}. At the same
time, polynomial regression is still linear in the unknown parameters,
meaning that the quality of the model can still be used as a measure
of adequacy for the determined sensitivity parameters. However, being
too rigid with the functional form of our model may introduce sys-
tematic errors. To account for this we use the least absolute shrinkage
sparsification operator (LASSO) [18,19], to let the algorithm itself
decide, which polynomial term to include in the final model. LASSO is
a modification to the standard linear regression, which, by introducing
a regularization term, is able to set regression coefficients to 0. This
way, all terms which do not significantly contribute to the solution
3

based on the available data, are automatically canceled out. Further,
the remaining (non zero) coefficients not only tell us, which polynomial
terms contribute to the effective model. The magnitude of the LASSO
coefficients give us a measure of the relative importance of different
polynomial terms or, in this context, kinetic processes. Additionally,
the sign of the coefficient indicates a positive or negative influence on
the reaction rate.

Despite selecting only the significant terms from the polynomial
ansatz, we do not want to expand Eq. (4) to arbitrary order, as this
would result in a huge amount of available terms to choose from.
The final result will depend on the order up to which these ansatz
terms are expanded and not every expansion order is reasonable for
every problem. Hence, we need to define some guidelines to choose
an appropriate ansatz order. First of all, the order of the ansatz terms
should generally not exceed the number of factors in our reaction.
If we only consider two reactant concentrations for our model, an
expansion up to 3rd order would be pointless, as we cannot define
any 3-factor interactions in that case. Including e.g. temperature as a
third factor, such 3rd order terms could become relevant and should
be included in the ansatz. Further, we only consider interactions (or
multilinear) terms, meaning product terms of multiple different factors
like {A}⋅{B} as opposed to the purely quadratic ({A}2) or higher power
({A}3, {A}4,…) terms. The reasoning behind this is that in some cases
these terms are already captured by the power transformation in the
original factors. For example, a quadratic term with transformation
parameter 𝛼 = 1 is equivalent to a linear term with 𝛼 = 2
(

[A]1
)2 = {A}2𝛼A=1 = {A}𝛼A=2 =

(

[A]2
)1 . (5)

This, of course, does only hold for very simple systems with only one
polynomial term containing [A]. There are exceptions, where including
the purely quadratic terms can be beneficial though, for example,
when the target property (here the reaction rate) shows an extremal
(stationary) point within the region, we want to describe and we will
further illustrate and discuss this point below. In general, however, for
an initial analysis we neglect these terms. We focus on the remaining
pair and higher-order interaction terms. These are especially relevant
for factors which are reactant concentrations. In classical collision the-
ory [20], the collision probability of multiple species directly depends
on the product of their respective concentrations. This directly transfers
into chemical kinetics as a collision (or at least spatial proximity) is
an essential requirement for any kind of reaction to take place. This
is the reason, why these interaction terms often appear in kinetic rate
laws and hence we need to consider them in our model ansatz. The
probability of many-body collisions, of course, depends on the type
of reaction at hand. Orders of four or higher, however, do usually
not contribute significantly, and thus provide a natural upper bound.
Another important point is the amount and type of data available,
limiting the number of parameters, which can reasonably be esti-
mated. Adding higher order terms also introduces additional degrees
of freedom, giving the algorithm more flexibility. This can result in
a more accurate model, which in turn will be less interpretable due
to a multitude of selected terms. There are, thus, various things to
consider when choosing the order of the ansatz polynomial. In practice,
a reasonable rule of thumb is to choose a 2nd order ansatz for two input
features and a 3rd order ansatz for more than two features. A schematic,
showing how the initial factors translate into the target property for the
simple example A + B ←←→ P, is given in Fig. 2.

2.2. Cost function

For the optimization of the sensitivity parameters, a quantitative
objective is necessary. We want to obtain a statistically robust model,
which at the same time achieves a reasonable fit of the provided data.
The quality of the fit could be quantified by simply looking at the
residual norm of the model. However, at the same time, we want to
make sure, that the LASSO regression does not introduce systematic
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Fig. 2. Model structure for the relation between reaction factors and product rate.
The factors (or input features), in this case, are the concentrations of the reactants.
This is an example for a reaction with two reactants A and B and a single product P.
The reactant concentrations are transformed by the current guess of their respective
reaction orders (transformation parameters 𝛼). Based on these transformed variables,
a polynomial model is constructed. In the regression, LASSO selects only those terms,
which significantly contribute to the target variable, here the product rate.

errors into the model by choosing unreasonably complex polynomial
terms to enforce small residuals. To achieve this, we explicitly consider
the distribution of the model residuals in our cost function. As we
assume the statistical noise in the underlying data to be normally
distributed, we also want the residuals of our model to show such a
distribution. A normally distributed model error implies that everything
the model cannot explain is to be assumed as statistical noise. To quan-
tify this criterion, the probability plot correlation coefficient (PPCC)
introduced by Filliben [21] is used. The PPCC quantifies the normality
of a statistical distribution as a value between 0 and 1. The closer to 1,
the closer the distribution is to being normal.

We then end up with two separate objectives for the optimization,
the quality of the fit and the normality of the error distribution. To
avoid choosing one of these criteria over the other, we utilize the
multi-objective evolutionary algorithm NSGA-II [17]. A multi-objective
optimization usually does not result in one optimal set of parameters
satisfying all objectives at the same time. Instead, we rather end up
with a set of possible models forming the so called pareto front (PF) as
illustrated in Fig. 3. These pareto-optimal models display different trade
offs between the multiple objectives, where an increase in one objective
would lead to a lower score in another. Hence, it is not straightforward
to consider one pareto-optimal model to be better than any other one,
as it is not possible to find a model with a higher score in all objectives.

In this context, the perfect model would achieve a PPCC value of
1 and a residual norm of 0. Looking at the schematic pareto front
in Fig. 3, we see that these two objectives interfere with each other.
The ideal model would be located in the upper left corner of the plot,
within the infeasible region. Points on the pareto front, close to this
ideal model, would provide a reasonable choice. Solutions with even
lower residuals can only achieve this at the cost of neglecting the
error distribution. Going to the other end of the pareto front, there are
models which achieve an almost perfect normal distribution of errors
but cannot provide a reasonable fit anymore. Ultimately, the solution
offering the best trade off between all objectives needs to be chosen
based on additional criteria and information. Below, we will discuss
characteristic features of the pareto front, that can be taken as strong
indicators for valid choices. A schematic, summarizing all relevant steps
of our approach, is shown in Fig. 4.
4

Fig. 3. Schematic of a pareto front. The PF separates the objective space into the so
called feasible and infeasible regions. In our example, solutions located to the lower
right of the PF are feasible, meaning there are parameter combinations, which realize
such a objective value combination. Hypothetical solutions, located beyond the PF, are
infeasible. Hence, points in this region of the objective space cannot be realized by
any parameter combination. This is a result of the counteracting nature of the two
objectives. In practice, the feasible region is often reduced to only the PF, as those
points are the best possible feasible solutions. Within the feasible region, we distinguish
between the points located on the PF and those somewhere below the front. The points
on the front are referred to as non-dominated. In general, a solution A dominates
another solution B, if A is not worse in any objective compared to B and superior to
B in at least one objective. Therefore, the solutions on the PF are non-dominated, as
there are no points, which are strictly better. On the other hand, all points within the
feasible region but not on the PF are dominated.

3. Chemical processes

Three chemical processes are exemplarily studied in this work to
illustrate the suggested algorithm. Synthetic concentration versus time
data is obtained by numerically integrating the partial differential equa-
tions given by the reaction rate laws for these processes. A simplified
one-dimensional transient plug flow reactor (TPFR) model is simulated,
applying the method of lines [22] for the discretization along the
reactor axis. Numeric approximations to the time derivatives of the
concentrations have been obtained from central differences. For this
purpose, the reaction has been simulated at different flow rates. In our
idealized reactor model, a change in flow rate is equivalent to a change
in residence time. At constant volume (reactor length), a change in
residence time in a TPFR model is in turn equivalent to a change in
reaction time (time before quenching) in a batch reactor. Therefore, in
the limit of short residence times, we can estimate the reaction rate as
the change of the product concentration at the reactor exit

𝑑[P]
𝑑𝑡

∝
𝑑[P]𝑒𝑥𝑖𝑡
𝑑𝜏

𝑑[P]𝑒𝑥𝑖𝑡
𝑑𝜏

≈
[P]𝑒𝑥𝑖𝑡(𝜏 + 𝛿𝜏) − [P]𝑒𝑥𝑖𝑡(𝜏 − 𝛿𝜏)

2𝛿𝜏

(6)

where 𝑡 denotes the simulation time and 𝜏 refers to the residence
time in the reactor. 𝛿𝜏 is the finite change in residence time used to
approximate the derivative. As we are not interested in the absolute
values of the rates, in this work these derivatives with respect to the
residence time 𝜏 will be used as approximations to the actual rate.
The examples discussed in the following sections are all evaluated for
short residence times and thus describe the low conversion limit of the
respective chemical processes. In this limit, the overall concentrations
are still very sensitive to the chemical reaction kinetics rather than to
the transport through the reactor tube. After all, the effective models
we construct are designed to only describe the reaction kinetic part of
the reactor dynamics. Consequently, we generate training data for our
algorithm in a way that is most sensitive to kinetic quantities.

The proposed algorithm is designed to operate on experimentally
measured data. According to the central limit theorem [23], the accu-
mulated effect of various noise sources in an experimental setup tends
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Fig. 4. Schematic of the sparse approximation approach. The proposed applications of the resulting kinetic models will be discussed in the following.
to result in a normally distributed measurement error. This gets more
and more pronounced, the larger the data set is. As our algorithm
relies on such normally distributed noise, we need to ensure that this
distributional assumption is also valid for our artificial data sets. To
simulate statistical noise of the experimental setup, a noise term based
on normally distributed random numbers is therefore added to the
computed rate data. The magnitude of this noise term is 1% of the mean
value of the respective rate data set. Details on the influence of the mag-
nitude of this noise term are shown in the SI. Measurement errors for
reaction rates around 1% to 2% are encountered in literature [24,25]
and a value of 1% lies well within the region, where the fitted rate
models are not significantly affected by the noise.

The resulting data sets consist of the reactant concentrations at
the reactor exit as well as the change in concentration or rate of the
5

product species at different reaction conditions. In the examples shown
in this work, these reaction conditions are characterized by differences
in the feed composition (reactant concentrations) and temperature. It
is important to properly sample these conditions, in order to be able to
capture especially the interaction effects at play. For this reason we
apply factorial experimental designs [14]. In these factorial designs,
instead of keeping all but one factor fixed and vary each individually,
all factors are varied at the same time. The simplest example of such
a design is called a full factorial design (FFD). In a FFD, all possible
combinations of factor settings are sampled. Again, we look at the
example of the simple reaction A + B ←←→ P. If we want to vary the
feed concentration of A and B, we first have to decide, how many
settings we want to allow. Suppose we want to look at three different
concentrations of both A and B, the corresponding FFD would dictate
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Fig. 5. Reaction network of the catalytic cycle model. Reactants A and B form an
ctivated complex with a catalyst (*), which reacts to form the reaction product P in
subsequent step. The 𝑘𝑖 are rate constants for the respective elementary steps.

⋅ 3 = 9 necessary experiments to sample all possible combinations.
However, the amount of experiments for a FFD quickly becomes in-
feasible, if we increase the number of levels or factors. Therefore, such
FFDs are only applicable for simple experimental setups or, in our case,
simple reaction examples. The advantage of the FFD is that it contains
the maximum amount of information possible about higher order and
interaction effects. For more complex problems, we can often reduce
the number of experiments by sacrificing information on effects beyond
a certain order. Such designs are then generally referred to as fractional
factorial designs. Most of the test cases in this study deal with simple
reactions with only two to three factors. For these cases, we will use
FFDs to sample the respective reaction conditions. In a later example,
we will make use of a very efficient screening design, to reduce the
number of required experiment for a slightly more complex chemical
system.

3.1. Hydrogen bromine reaction

Hydrogen (H2) and bromine (Br2), in gas phase, can undergo a
reaction to form hydrogenbromide (HBr),

H2 + Br2 ←←→ 2 HBr . (7)

This reaction is a classic example, where the apparent initial reaction
orders are not obvious from the stoichiometric coefficients in the formal
reaction equation. This indicates that a more complex microkinetic
mechanism takes place. Bodenstein and Lind [26] described an effective
rate law for the formation of HBr as
𝑑[HBr]

𝑑𝑡
∝ [H2] ⋅ [Br2]1∕2 . (8)

his law was found to be valid in the early stages of the reaction
n a regime, where [HBr] ≪ [Br2]. It corresponds to an effective
eaction order of 1.5 which could later be explained by the, now well
stablished, radical reaction mechanism [27].

.2. Catalytic cycle

The second reaction process consists of a simple model catalytic
ycle. Two reactants A and B form a complex with the catalyst in a pre-
quilibration step. A subsequent reaction forms the reaction product
and restores the catalyst’s initial state. Reaction mechanisms of this

ype are frequently encountered in homogeneous catalysis and enzy-
atic reactions. The reaction equations are given in Fig. 5. This specific

eaction model is based on work by Pollice [13]. We differentiate
etween two cases: the undisturbed catalytic reaction and the cycle
ith a side reaction (𝑘6 ≠ 0) leading to a decomposition of reactant
.

6

able 1
odel parameters and objective values for five selected pareto-optimal HBr models

rom the pareto front in Fig. 6.
𝛼[Br2 ] 𝛼[H2 ] Residual PPCC Dominating LASSO term

Solution 1 0.658 1.273 0.259 0.961 {Br2} ⋅ {H2}
Solution 2 0.518 0.985 0.321 0.989 {Br2} ⋅ {H2}
Solution 3 0.486 0.916 0.352 0.995 {Br2} ⋅ {H2}
Solution 4 −4.066 2.908 1.258 0.995 {H2}
Solution 5 −7.121 4.511 1.867 0.996 {H2}

3.3. CO oxidation on Pt

The catalytic oxidation of carbon monoxide to carbon dioxide is
a classical example for a reaction following a Langmuir–Hinshelwood
mechanism [28]:

CO + * ⇌ *CO
O2 + 2 * ←←→ 2 *O

O + *CO ←←→ CO2 + 2 *
(9)

The oxidation of CO exhibits several interesting kinetic phenomena.
For example, CO oxidation on a Pt catalyst is known for its oscillatory
kinetics. The simple irreversible kinetic model used in this work is
based on kinetic equations by Ertl and coworkers [29]. The detailed
mechanism with all elementary steps and rate constants is included in
the SI.

4. Results and discussion

4.1. Isothermal hydrogen bromine reaction

As a first test, we apply our algorithm to determine an effective rate
law for the hydrogen bromine reaction at constant temperature. A set of
concentration and rate data obtained at 25 different feed compositions
is used to deduce the reaction orders in both reactants. This data set as
well as the underlying data sets for the following sections are explicitly
provided in the SI.

As we deal with two factors (the concentrations of H2 and Br2) in
this first example, we choose a 2nd order ansatz for the isothermal HBr
problem. Feeding reactant concentrations and product rates into our
algorithm, we obtain the pareto front shown in Fig. 6(a).

Each point on the pareto front resembles a possible solution to
the modeling problem. These solutions differ in the transformation
parameters 𝛼 on the reactant concentrations, i.e. the apparent partial
reaction orders, and they differ in the set of dominant model terms
selected by LASSO. Recall that these model terms are combinations of
reactant concentrations which themselves are subject to a nonlinear
transformation through the reaction order. For the isothermal HBr
problem, the pareto front is composed of three distinct domains of so-
lutions. The majority of solutions show comparably small residuals and
are spread over a wide range of PPCC values. The other two domains
show a slight increase in PPCC at the cost of a significant increase in
model residuals. The transformation parameters, i.e. the reaction orders
in the dominating regression term, for five representative solutions are
given in Table 1. Solutions 1, 2 and 3 are located within the major
domain of the front. All three models show reaction orders for Br2 close
to 0.5 and for H2 roughly equal to 1. They thus reproduce the effective
rate law from Bodenstein and Lind [26] with the underlying radical
reaction mechanism. Solutions 4 and 5 are located in other domains of
the front. They show vastly different parameter sets which cannot be
reasonably interpreted as reaction orders.

Fig. 6(b) shows that this structure of the pareto front is also found
in parameter space, where the distribution of possible reaction orders
is arranged in three domains. This means, that all solutions within one
domain of the pareto front show very similar transformation parame-
ters. Switching from one domain to another does not only go with a
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Fig. 6. (a) Pareto front for the isothermal HBr problem. The NSGA-II optimization is performed on a population of 1000 individuals. Five representative pareto-optimal solutions
are highlighted with their respective effective reaction orders and model parameters given in Table 1. (b) Distribution of reaction orders 𝛼 for both H2 and Br2 over the entire
population. (c) Parity plot (predicted reaction rates vs. reference rates from microkinetic model) for solution 2. (d) Residual distribution for solution 2. (e) LASSO regression
coefficients for solution 2.
change in parameters. Also the dominating LASSO coefficients change,
meaning the model has an overall different functional form. For all
solutions located in domain 1, only the interaction term {Br2} ⋅ {H2}
contributes predominantly to the rate law, while the largest coefficient
in solutions 4 and 5 corresponds only to the concentration of hydrogen
{H2}. This behavior exemplifies the flexibility of our approach. As soon
as all possible trade-offs for a fixed functional form are exhausted,
LASSO allows for the switching to an alternative model which can pro-
vide additional pareto-optimal solutions. This discontinuous structure
of the pareto front also allows for a selection of interesting solutions
without prior knowledge on the desired result. Pareto solutions located
close to a discontinuity of the front resemble an extremum. These points
describe either the maximum PPCC value, or the minimal residual norm
for a given set of LASSO terms. Changing the transformation parameters
(𝛼) any further, would result in the LASSO optimization converging
towards another set of terms and hence a different functional form
of the resulting rate law. Further, the ideal solution should show a
high PPCC value while maintaining a reasonably small residual norm.
For most pareto fronts generated by our algorithm, these solutions are
located in the upper left corner (e.g. in Fig. 6). For the HBr test case,
the pareto front shows a clear kink in this region, followed by a large
discontinuity. Following this reasoning for a chemically reasonable
region of the pareto front, we should find the best possible solution
at the upper edge of domain 1. And indeed solution 3 does show
the expected reaction order of almost exactly 3/2. In the following
sections we will show, that following such a heuristic does also result
in chemically reasonable solutions for other systems, where we do not
know the expected outcome in advance.

A closer look at the prediction quality of solution 2 is shown in
Fig. 6(c). The partially negative values for the reaction rate in this
figure result from the rescaling and shifting of the data during the
modeling procedure. This is a technical requirement and details are
given in the SI. Within the limits of 25 available data points, the error
distribution for this model shown in Fig. 6(d) roughly resembles a
7

Gaussian shape, resulting in its high PPCC value. While the LASSO
regression is relatively robust against small sample sizes, evaluating
this PPCC value will become the bottleneck of the proposed algorithm
with respect to the required amount of data points. As the PPCC value
ultimately compares two distributions, its significance depends on how
well the shape of these distributions is captured by the available data.
While the quality of the PPCC increases with larger data sets, it is
generally capable of distinguishing between different distributions with
remarkably small data, way below 100 points [21]. The 25 data points
used in this example, however, are probably close to a minimum size in
order to obtain reasonable results. A closer look at the convergence of
the PPCC value with respect to the number of data points is provided
in the SI. Further, the model error is small with a relative root mean
squared error (RMSE) of 4.2%. Another interesting result is, that the
LASSO algorithm chooses exactly only one polynomial term for this
model of the HBr rate, perfectly reproducing the literature known
effective kinetic law.

4.2. Temperature-dependent hydrogen bromine reaction

In a second data set, additionally also the temperature of the
Hydrogen Bromine reaction is varied to illustrate the effect of tem-
perature as another factor. A total of 45 concentration profiles were
full factorially simulated within a temperature range between 840 K
and 860 K. This temperature window is chosen to be that small, as
the HBr reaction shows a very high sensitivity with respect to changes
in temperature. Keeping the temperature variations small results in an
effect on the reaction rate of similar magnitude compared to variations
in feed concentrations. This prevents one factor from dominating the
LASSO regression. Nevertheless, larger temperature ranges can also be
realized within certain limits. A detailed discussion of this point, as
well as the complete data set are provided in the SI. We can, however,
not directly use the temperature data in order to determine its effect
in our approach. If we assume an Arrhenius-like behavior for the



Chemical Engineering Journal 433 (2022) 134121F. Felsen et al.
Fig. 7. (a) Pareto front for the temperature-dependent HBr problem. The NSGA-II optimization is performed on a population of 1000 individuals. Five representative pareto-optimal
solutions are highlighted with their respective sensitivity parameters given in Table 2. (b) Distribution of reaction orders 𝛼 for H2, Br2 and the scaled temperature values 𝑇̂ over
the entire population. (c) Parity plot for solution 2. (d) Residual distribution for solution 2. (e) LASSO regression coefficients for solution 2. 𝑘1 indicates the regression coefficient,
which significantly contributes to the solution. The resulting approximate rate law is given in Eq. (11).
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temperature dependency of a general rate constant 𝑘, we can rearrange
the corresponding Arrhenius equation as follows

𝑘 = 𝑘0 ⋅ exp
(

−𝐸A
𝑅 ⋅ 𝑇

)

= 𝑘0 ⋅
(

exp
( −1
𝑅 ⋅ 𝑇

))𝐸A

= 𝑘0 ⋅
(

exp(−𝛽𝑀 )
)𝐸A = 𝑘0 ⋅ 𝑇̂

𝐸𝐴

𝛽𝑀 = 1
𝑅𝑇

, 𝑇̂ = exp (−𝛽𝑀 )

(10)

with 𝑘0 the pre-exponential factor and 𝑅 the universal gas constant and
𝑇 the temperature. We define 𝑇̂ as the rescaled temperature values
exp(−𝛽𝑀 ) and will use this notation in the following for brevity. By
this rearrangement we can identify the apparent barrier 𝐸A as the
sensitivity parameter of the reaction rate to a change in 𝑇̂ . Thus, by
feeding the algorithm these scaled temperatures additionally to the
reactant concentrations, an estimate for the reaction barrier can be
obtained. As we now have an additional input feature in terms of the 𝑇̂
values, we choose a 3rd order polynomial ansatz for this temperature-
dependent problem. Fig. 7 shows the resulting pareto front for this data
set. The general structure of this front is similar to that of the isothermal
problem.

Model parameters for five representative solutions are again given
in Table 2. By means of the heuristics discussed for the isothermal case,
solution 2 is located in the chemically reasonable area of the pareto
front. Its reaction orders for hydrogen and bromine again reproduce
the expected literature rate law of 3/2. The apparent activation barrier
results in a sensitivity parameter of 0.438. Taking into account the
proper rescaling of the 𝑇̂ values, this inherently dimensionless sensi-
tivity parameter directly translates into an activation barrier of 43.8
kcal/mol. Details on this scaling procedure are provided in the SI.

Levy [30] performed an experimental study on the high temperature
kinetics of the HBr formation in the range between 600 K and 1400 K,
extending the original study by Bodenstein and Lind [26] which was
8

t

Table 2
Model parameters and objective values for five selected temperature-dependent pareto
optimal HBr models corresponding to the pareto front in Fig. 7.

𝛼[Br2 ] 𝛼[H2 ] 𝛼𝑇̂ Residual PPCC

Solution 1 0.546 1.085 0.430 0.077 0.991
Solution 2 0.550 1.094 0.438 0.082 0.996
Solution 3 0.551 1.103 0.442 0.084 0.997
Solution 4 0.546 1.115 0.449 0.097 0.997
Solution 5 7.221 0.860 0.631 0.375 0.999

performed at around 500 K. The artificial data set created in this work
was sampled around 800 K well within this high temperature regime. In
experiment an apparent activation barrier of around 40.6 kcal/mol [30]
was found, which is in reasonable agreement with the 43.8 kcal/mol
determined by our algorithm. Looking at the resulting LASSO coeffi-
cients for this solution (Fig. 7(e)), now the 3-body interaction of all
factors is dominating. For this solution the effective rate law would
correspondingly have the form
𝑑[HBr]

𝑑𝑡
∝ 𝑘1 ⋅

(

[Br2]0.550 ⋅ [H2]1.094 ⋅
(

exp (−𝛽𝑀 )
)0.438

)

(11)

ith 𝑘1 the LASSO coefficient for the dominant term as indicated in
ig. 7(e).

.3. Model catalytic cycle without side reaction

As a second prototypical case for reaction kinetics we now turn to a
imple model catalytic cycle. One or more reactant molecules form an
ctive complex with the catalyst in a pre-equilibrium. This active com-
lex then irreversibly reacts to form the product in a rate-determining
tep, regenerating the catalyst. To test, whether our algorithm is able

o capture the kinetics of such a catalytic process, we create test
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Fig. 8. (a) Effective reaction orders versus excess in reactant B for the model catalytic
cycle without side reaction. (b) LASSO coefficients for the selected solutions at different
A:B ratios. The coloring indicates the magnitude of the coefficients, which corresponds
to the significance of this term to the overall solution. At a feed ratio of 1:1 only the
interaction between A and B contributes to the corresponding rate law, while with
increasing excess in B the linear term in A becomes more and more dominant.

data based on the model reaction network given in Fig. 5. The first
test deals with the catalytic cycle without any side reaction (𝑘6 =
0). Concentration profiles are obtained for a range of different feed
compositions starting at a 1:1 ratio of A to B up to a tenfold excess
in B. For each feed ratio, 25 data points based on variations in the
feed concentrations of A and B are simulated and an analysis using
the modeling algorithm with a second-order ansatz for the considered
LASSO terms is performed. For each analysis, one model is selected
from the pareto front with the same heuristics regarding discontinuities
in mind as discussed before for the HBr problem. The resulting reaction
orders in A and B for these selected solutions are shown in Fig. 8.

While initially the orders in both reactants are close to 1 at a feed
ratio of 1:1, the sensitivity of the reaction rate to the concentration of
B quickly decreases to zero. The overall reaction order thus decreases
from an initial second-order process to a first order for large excess
values. This is to be expected, as ultimately the reaction rate only
depends on the concentration of the limiting reactant. This simple
example illustrates that the algorithm is capable of identifying such
changes in the reaction regime, as clearly visible by the change in
reaction orders. Further, as can be seen from Fig. 8(a), the sensitivities
with respect to the individual reaction orders are observed individually.
While the apparent order in reactant B steadily decreases with an
increasing excess in B, the order in A only shows a slight decrease. The
overall reaction order concomitantly switches from initially a second-
order process depending on A and B to an effective first-order reaction
limited only by A. This way it may easily be deduced which reactant is
limiting the overall rate without any initial assumptions. Further insight
can be provided by the LASSO regression coefficients, as illustrated in
Fig. 8(b). With increasing excess, the dominating LASSO term switches
from the product of both reactant concentrations to purely the concen-
tration of A. This also explains the increasing deviations of the reaction
order in B from the expected behavior, as the overall kinetic model
becomes less and less sensitive to the concentration of reactant B. In
the extreme case of an A:B ratio of 1:11, the term {B} does almost not
contribute to the overall model anymore and hence also the reaction
order in B is not well defined.
9

4.4. Model catalytic cycle with substrate decomposition

In a next step, we introduce the decomposition of reactant A as a
side reaction. This leaves us with two target variables, the reaction rate
towards product P and side product D. First, we set up a data set of 25
points varying only the feed concentrations at a constant temperature of
700 K. For the model ansatz again 2nd order terms are used, as we have
two input features in the concentrations of A and B. It is straightforward
to generalize our algorithm to identify surrogate rate laws for multiple
targets. The main difference is an increase in the dimensionality of the
objective space for the optimization, as now PPCC values for both 𝑑[P]

𝑑𝑡
and 𝑑[D]

𝑑𝑡 need to be considered. Consequently, this also entails a higher-
dimensional pareto front, complicating the selection of a final solution.
The resulting pareto front is shown in the SI and exhibits a similar
structure as the previously analyzed 2D examples. Hence, at least for
this 3D example, a manual model selection by visual inspection was
still possible as before.

The optimum solution according to the heuristics discussed before
yields the following rate laws for equal feed of A and B
𝑑[P]
𝑑𝑡

∝ [A]1.03 ⋅ [B]1.07

𝑑[D]
𝑑𝑡

∝ [A]1.03 .
(12)

Again, the algorithm accurately captures the expected behavior. The
rate towards the reaction product P is identified to be dependent on
both reactants A and B, while only A contributes to the formation of
side product D. Additionally introducing temperature effects as done
for the HBr example leads instead to complications. In principle, it
would also be possible to obtain the two activation barriers for the
individual reactions within one model by using the scaled temperatures
as an input variable twice. However, to make sure, that only one
temperature term contributes to each rate expression, such that the two
barriers are disentangled, would result in a constrained LASSO [31]
problem. Unfortunately, algorithms for the constrained problem are not
yet commonly implemented in customary statistics packages. In fact,
the same issue arises for the partial reaction orders of the reactants if
the reaction network of interest contains different reaction pathways
with drastically different kinetics. If, for example, the decomposition
of A would be a second order process, e.g. due a self activation of
the reactant being necessary, we would require two different trans-
formation parameters for the concentration of A. In that case, as
discussed before, the LASSO would need to be constrained to ensure
disentangled results for the two reaction products. A workaround is to
fit two independent models for both product species. We perform this
individual analysis of the two target rates based on one data set. For this
set we vary not only the feed concentrations but also the temperature
to enable an estimation the activation barrier. Sampling these three
factors in a 3-level FFD, we end up with 27 data points, cf. SI. Having
one additional input feature, the rescaled temperatures, we increase
the order of ansatz terms in this analysis to three. For both target
variables, the rate towards P and the rate towards D, the algorithm
produces a (now 2D) pareto front and a final solution can be selected
as before. The resulting model parameters for these individual solutions
are given in Table 3. The activation barrier for the product formation is
identified to be 6.60 kcal/mol, corresponding to the barrier of the rate
limiting decomposition of the activated catalyst complex. This is in nice
agreement with the barrier for this step in the microkinetic model of
6.00 kcal/mol. Also for the side reaction, an activation barrier of 5.10
kcal/mol is obtained, in accordance with the reference value of 5.00
kcal/mol.

4.5. CO oxidation on Pt

In industrial applications, the question frequently arises under
which conditions the regime of the reaction system may change. This
is important for the optimization of process and reactor parameters. To
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Table 3
Model parameters and objective values for selected models for the production rate of
products P and D in the catalytic cycle with side reaction. The corresponding pareto
fronts are given in the SI.

𝛼[A] 𝛼[B] 𝛼𝑇̂ Residual PPCC
𝑑[P]
𝑑𝑡

1.143 1.159 0.066a 0.159 0.995
𝑑[D]
𝑑𝑡

1.131 −0.827b 0.051a 0.148 0.981

aIn 100 kcal/mol.
bNot selected in LASSO solution.

this end, our robust modeling approach can provide valuable insight.
As previously shown for the HBr and model catalytic cycle examples,
the sensitivity parameters (apparent reaction orders) change from one
regime to another. Additionally, however, also the LASSO terms of the
overall model can vary. This gives the algorithm enough flexibility to
only select the limiting terms for the kinetic model of each respective
regime. For CO oxidation on Pt, we know that there is a drastic change
in surface coverage at around 500 K from a partially CO covered to a
purely oxygen covered catalyst [32–34]. To identify potential tempera-
ture regimes we need to determine effective kinetic models over a wide
range of temperatures and analyze how the resulting models change
qualitatively in various regimes. This comes with the advantage that we
do not need any prior knowledge about the microkinetic mechanism
underlying the observed rates. All we need to specify is the variable
input factors and the range of parameter values we are interested in.

It is especially important though to properly design the experiments
for such a scan over a wider temperature range, as the goal is to identify
relevant regimes with as few data points as possible. As an example, we
generate kinetic data for the CO oxidation between 300 K and 700 K
based on experimental designs [35] translated along the temperature
axis. Details on the construction of these designs are given in the SI.
Using this data set we can cut out smaller temperature ranges and
fit local surrogate models. For reference, we create a large data set
based on a FFD at every temperature with a total of 576 data points.
Smaller partially overlapping subsets of 108 data points each, are cut
out to determine local models for every temperature range. These local
models are constructed using the proposed algorithm. An expansion
of the polynomial terms up to 3rd order is used, as we need to take
into account four input features, the concentrations of three species
(CO, O2 and CO2), as well as temperature. Such a procedure results
in a large number of pareto fronts, from which one solution needs to
be selected respectively. This mandates an automated way of selecting
the ideal solution to reduce on the one hand the required manual
work, but on the other hand also to ensure more comparable and bias-
free results. Here, we employ a rudimentary heuristic based on the
same discontinuity arguments as before, which would guide a manual
selection process. Details regarding this heuristic are explained in the
SI. By observing the LASSO coefficients of these selected solutions we
obtain a map, showing which model contributions are dominant at a
given temperature. Fig. 9 shows temperature maps for the CO oxidation
on Pt. The resulting map based on the full factorial reference is given in
Fig. 9(c). It can be clearly seen, that the dominant LASSO terms undergo
a drastic change over the range from 300 K to 700 K. Accordingly, we
can roughly partition this map into four regimes and link these to char-
acteristic changes in the underlying microkinetic model. To rationalize
these findings, in Fig. 9(a) we show the temperature dependence of
the dominating rate constants from the microkinetic model. These rate
constants correspond to elementary processes of the catalytic process,
namely the adsorption of O and CO (ads_O, ads_CO), the desorption
of CO (des_CO) as well as the surface reaction between the adsorbed
species (reac). As further reference Fig. 9(b) shows the concentration
of adsorbed CO, resolved along both the temperature and the reactor
10

axis.
Regime 1 (300 K to 420 K). At low temperatures up to about 420 K the
interaction term {𝑇̂ }{CO} is dominating the models. This corresponds
to the interaction of the temperature effect and the concentration of
CO. Looking at the behavior of the rate constants of the elementary
processes in Fig. 9(a), we see that in this same low temperature range,
the rate constant of the surface reaction between the adsorbed species
(reac) changes dramatically, explaining the significant sensitivity to
temperature. Furthermore, over the entire temperature range, the ad-
sorption of oxygen is at least three times faster compared to the
adsorption of CO, making CO the limiting species for the formation of
carbon dioxide.

Regime 2 (420 K to 540 K). In the subsequent transition region from
420 K to 540 K the temperature influence is less pronounced. The
dominating terms now contain mostly the concentrations of oxygen
({O2}) and CO ({CO}). Looking at the rate constants (Fig. 9(a)) there
is no significant change to observe in this temperature range. The CO
coverage (Fig. 9(b)), on the other hand, undergoes a drastic change in
this regime, from a partially CO covered surface to an approximately
CO free catalyst above 530 K. For this reason, the relative contributions
of oxygen and CO to the overall effective kinetic behavior do heavily
depend on the temperature. This may explain, why the algorithm is not
able to reduce the effective kinetics to a single dominating term for this
range of temperatures.

Regime 3: (540 K to 600 K). The third regime again shows a stronger
temperature dependence. The three body interaction ({𝑇̂ }{O2}{CO}) is
the dominant term in this region. A similar reasoning as in regime 1 also
applies here. The drastic change in the relative rate of CO adsorption
and desorption leads to the observed temperature dependence.

Regime 4: (600 K to 700 K). The high temperature regime above 600
K is again dominated by effects of reactant concentrations ({O2}{CO}).
Temperature contributions are not significant and the rate is basically
only limited by the small fraction of adsorbed CO on the mostly oxygen
covered surface (c.f. Fig. 9(b)). This coverage of CO highly depends
on both the gas phase concentrations of CO and oxygen, as in the
underlying microkinetic model both species compete for the same
adsorption sites.

In reality it is, of course, not possible to experimentally measure
almost 600 concentration profiles for such an analysis. Therefore, we
require a means of more efficiently sampling the relevant data. In
Fig. 9(d) we show the temperature map obtained based on a combina-
tion of low-resolution screening designs with a total of only 90 profiles.
The corresponding subsets consist of only 15 data points at three
temperatures each. This extremely small amount of data challenges the
estimation of the PPCC values. Still, as we are mostly interested in a
rough estimate of the change in LASSO coefficients, such screening
designs can be applied. In order to fit an accurate surrogate model,
applicable for the prediction of reaction rates, a larger data set will be
required. Looking at Fig. 9(d), we can see that the qualitative features
of the map are very similar to the full factorial reference in Fig. 9(c).
Regimes 1 (300 K–420 K) and 2 (420 K–540 K) are well captured
by the screening designs, and also the high-temperature behavior is
reproduced. The main difference between the two designs occurs in
regime 3 (540 K–600 K). Here, the temperature contribution is missing
and the dominant term is {O2}{CO} instead of {𝑇̂ }{O2}{CO}. Still,
there is a small contribution by {𝑇̂ }{O2}{CO} also present for the
screening design. This shows, that an initial assessment of relevant
temperature regimes can already be obtained with a much smaller
amount of data, while a detailed modeling of the most interesting
regimes could require additional sampling in a second step.

Assuming that we do not have access to the extensive full facto-
rial data, we would identify three temperature regimes based on the
temperature screening map. In addition to that, we obtain a rough
estimate on how the reaction rate behaves with changing temperature
(blue crosses in Fig. 9(e)). It turns out, that the reaction rate reaches
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Fig. 9. Temperature scans for the CO oxidation model. (a) Temperature dependence of the dominant rate constants from the underlying kinetic model (Details provided in the SI).
(b) Concentration of adsorbed CO species on the catalyst sites versus temperature from the microkinetic model. While there is some CO coverage present at lower temperatures,
above 570 K there is basically no adsorbed CO left. (c) Reference Temperature map based on a full factorial experimental design with a total of 576 points. (d) Temperature map
based on a set of screening designs with a total of 90 data points. (e) Rate data versus temperature for the entire range. The blue markers refer to all simulated rates at different
conditions within the 90 point screening design. The gray dashed line gives the ideal rate at constant feed composition ([CO] = [O2] = [CO2] = 1 mol/l) and acts a guide to the
eye. The red line and area shows the fitted model prediction in the regime between 460 K and 520 K with the mean absolute error (MAE) interval.
its maximum in the range around 500 K. Looking at the temperature
map, this maximum region is located within regime 2. As mentioned
before, regime 2 does not show a clear dominant model term, which
can be attributed to the constant change in coverage in this temperature
11
range. The maximum in reaction rate, however, can further explain the
appearance of multiple model terms in the temperature map. To form
such an extremal point in terms of the rate, at least two counteracting
processes need to take place in parallel. These processes are represented
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Fig. 10. Details for the maximum region (460 K to 520 K) effective kinetic model identified by the screening approach of Fig. 9(b): (a) Parity plot of the model prediction versus
the reference from the microkinetic model. (b) Residual distribution. (c) LASSO coefficients for the maximum region model.
by different LASSO terms with their relative importance determined
by the coverages of the reactants. In order to more accurately model
this region of interest, additional data points are acquired in the range
between 460 K and 520 K based on a 3-level full factorial design
yielding 81 additional points. From the screening design data we know
that the maximum rate should be located in this region. Using this
more extensive data set we can fit a surrogate model for this entire
temperature range. In this model, also quadratic terms are included to
better describe the extremum. We have discussed before, that purely
quadratic and higher power terms are usually neglected in our model
ansatz. However, if we know that there is an extremum located within
our region of interest, including quadratic terms can be beneficial. The
red line in Fig. 9(e) indicates the model prediction for the reaction rate
at constant feed composition ([CO] = [O2] = [CO2] = 1 mol/l) with an
area showing the mean absolute error (MAE) of the model based on the
training data. Using the additional data points, our algorithm is able to
accurately reproduce the curvature of the reaction rate as a function of
temperature in this region. The reference data (gray dashed line) for the
rate at the same constant feed composition falls well within the error
interval. The model predictions here are only given for the region of
interest between 460 K and 520 K. An extrapolation to both higher and
lower temperatures is possible up to a certain degree. However, while
polynomial models excel at locally approximating complex functions,
one has to be careful with extrapolations beyond the training region.
Extrapolation based on the presented model is discussed further in the
SI. In Fig. 10 additional details on the fitted kinetic model for the
maximum rate region are given.

Inspecting the LASSO coefficients (e.g. the selected model terms)
in Fig. 10(c), we see that in nice agreement with the temperature
map, multiple terms contribute to the final model. The two largest
contributions come from the 3-body interaction ({𝑇̂ }{O2}{CO}) and
the quadratic term ({𝑇̂ }2). The former indicates a strong interplay
between CO and O2 with a significant temperature dependence. Coming
back to the strong changes in surface coverages in this temperature
12
Table 4
Model parameters and objective values for the selected solution for the maximum region
of the CO oxidation example. The corresponding pareto front is given in the SI.
𝛼𝑇̂ 𝛼[O2 ] 𝛼[CO] 𝛼[CO2 ] Residual PPCC

0.760a −0.610 0.306 0.004 1.346 0.997

aIn 10 kcal/mol.

region, this is to be expected. The large negative coefficient of the
quadratic temperature term on the other hand is in nice accordance
with the maximum in rate observed in Fig. 9(e). The remaining model
terms all depend on the concentration of CO ({CO}), with two of them
({CO} and {CO}2) showing a positive coefficient. This points at the
growing dependence of the overall rate on the concentration of CO at
higher temperatures as also observed for the high temperature regimes
in the temperature map. Finally, we need to analyze the sensitivity
parameters (apparent reaction orders and barrier) determined by the
algorithm (Table 4). The apparent activation barrier of around 7.600
kcal/mol is in reasonable agreement with the barrier for the surface
reaction in the microkinetic model of 10.000 kcal/mol. A negative
reaction order for O2 indicates a detrimental effect of an increase in
oxygen concentration on the reaction rate. We can understand this,
as the underlying microkinetic model does only consider one type of
adsorption site. Therefore, an increase of oxygen concentration may
lead to a reduced adsorption rate of CO. At the same time, an increase
in CO concentration will lead to an increase in reaction rate causing
the positive reaction order in CO. The concentration of CO2 does not
influence the reaction rate, as no readsorption of the product species
is considered. This leads to a reaction order of effectively zero in
the concentration of CO2. This detailed analysis of the maximum rate
region (460 K to 520 K) shows, that our algorithm can not only be
used to identify interesting kinetic regimes of an unknown system with
very limited data. It can also reproduce the effective kinetics of a local

regime in a subsequent step. Further, we can interpret the resulting



Chemical Engineering Journal 433 (2022) 134121F. Felsen et al.
model function in a physically meaningful way. Of course, within this
study, the physical meaning of the obtained models is limited by the
assumptions of the underlying simulated reaction models.

Going beyond the pure interpretation of the model parameters and
terms, we can also use the obtained models in an optimization process
to identify reaction conditions which maximize the rate. For more
complex reaction networks such an optimization could even target
other properties like selectivities towards certain products. A closer
look at the predictions along cuts through all dimensions of the rate
model (the three feed concentrations and temperature) shows that our
model does indeed not only describe the temperature trend but also the
effect of the feed composition and could therefore be used in such an
optimization. The corresponding contour plots are provided in the SI.

5. Conclusions

We presented a novel approach to the analysis of reaction kinetic
data with the goal of not finding the most accurate model, but the most
robust one. By analyzing both the residual norm and the distribution
of errors for potential candidate solutions, we propose an algorithm
to identify the optimal trade-off. With the main goal of reducing
the amount of systematic error through model assumptions, we let
the algorithm choose polynomial terms making use of the sparsifying
LASSO regression method. Additionally, the algorithm determines sen-
sitivity parameters which can be interpreted as physical quantities like
activation barriers or apparent reaction orders. Besides yielding rate
law like models, the algorithm can further provide valuable insight into
the underlying processes. This way, a meaningful analysis of reaction
kinetics can be performed without knowledge of the exact reaction
mechanism. Emphasizing the aspect of robustness in such an analysis
may become especially relevant with respect to transferability of the
obtained models.

We showed that such a procedure reproduces well understood re-
action systems like the hydrogen bromine reaction or the catalytic
model cycle without prior knowledge. In the HBr case, the empirically
observed fractional reaction order of 3/2 was automatically detected
by our method. At the same time we obtained an interpretable rate
law capturing the effect of not only the reactant concentration but
also the influence of temperature. The catalytic cycle presented in
Section 4.4 was equally well described and we were able to capture the
change in effective kinetics with an increasing excess of one reactant
by monitoring the sensitivity parameters resulting from the automatic
analysis. Going one step further towards industrially relevant processes,
an analysis of the CO oxidation kinetics on Pt over a wide temperature
range provided both, information about process regimes, as well as
an accurate surrogate model for the region of interest. While these
surrogate models cannot provide detailed knowledge about the reac-
tion mechanism, valuable indications can be gathered by a thorough
analysis of both the transformation parameters (𝛼) and the polynomial
terms selected by LASSO. This way we can learn how reaction orders
and limiting species may change with reaction conditions like the feed
composition.

It is important to mention, that this entire procedure relies on
rationally designed experimental data sets, something not frequently
encountered even in recent studies. A factorial sampling of experi-
mental data, varying multiple factors at the same time is vital for a
meaningful inference on interaction terms. As known from chemical
reaction kinetics and also shown by our results, these interactions
terms are most often the key contributions to the rate laws of various
reactions. The artificial data sets used in this work rely on classical
experimental designs. For the CO oxidation example, making use of
a simple construction based on established screening designs we were
able to achieve accurate results in a data efficient way. In the fu-
ture, the data requirements for such an analysis could even further
decrease by employing especially designed optimal designs [36,37]
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for such specific use cases. Applying this algorithm to more complex
reaction systems and especially working on real experimental data
will be necessary to benchmark against established methodologies.
Experimentally obtaining suitable training data for such an analysis
will be a challenge in its own right. The algorithm requires kinetic data
reflecting the chemical reaction kinetics. Therefore, such experiments
need to be performed in specialized reaction sensitive reactor setups
[38–40] which are not dominated by transport phenomena. While a
polynomial approximation of the data in a transport limited reactor
could in principle yield accurate results, any kind of interpretability
in terms of kinetic parameters is lost in such cases. Provided suitable
training data, however, our approach promises to provide efficient
kinetic models which, coupled to varying transport models, should
even be transferable between different reactor geometries. This would
allow for a straightforward upscaling going from idealized lab scale
experiments to real industrial reactors. Obviously, our method is not
designed to describe the global kinetics of a system over a wide range
of conditions. The resulting models are also not intended to describe
transport phenomena in chemical reactors. This approach rather resem-
bles a semi local sensitivity analysis, which provides simple and well
behaved kinetic models.

The formulation of this method allows for a straightforward exten-
sion in terms of both input and response variables to deal with more
extensive reaction networks. In addition to that, also the optimization
cost function may easily be modified to employ other error models
for specific use cases. In this context, it may also be useful to apply
our algorithm to data from complex microkinetic models. Comparing
the result of such an analysis on experimental data versus model
predictions, both in terms of sensitivity parameters and dominant
LASSO terms, could be an extremely sensitive measure of the quality
of a microkinetic model. Further, the capability of our approach to
obtain robust effective kinetic models without any prior knowledge
of the system opens up a wide field of possibilities towards computer
guided experimentation. By optimizing desired properties like turn over
frequencies or selectivities on the level of the cheap effective kinetic
models, an algorithm can propose potentially interesting parameter
ranges to sample next in an iterative procedure. This way, a fully
automated exploration of relevant regimes as well as optimization of
the process conditions could be realized.
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