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NINA GANTERT2,c AND PASCAL OSWALD1,3,e

1Institut für Mathematik, Johannes Gutenberg-Universität Mainz, abirkner@mathematik.uni-mainz.de
2Department of Mathematics, Technical University of Munich, balice.callegaro@tum.de, cnina.gantert@tum.de

3Department of Mathematics and Computer Science, University of Basel, djiri.cerny@unibas.ch,
epascalamadeus.oswald@unibas.ch

We study a discrete-time branching annihilating random walk (BARW)
on the d-dimensional lattice. Each particle produces a Poissonian number of
offspring with mean μ which independently move to a uniformly chosen site
within a fixed distance R from their parent’s position. Whenever a site is oc-
cupied by at least two particles, all the particles at that site are annihilated.
We prove that for any μ > 1 the process survives when R is sufficiently large.
For fixed R we show that the process dies out if μ is too small or too large.
Furthermore, we exhibit an interval of μ-values for which the process sur-
vives and possesses a unique nontrivial ergodic equilibrium for R sufficiently
large. We also prove complete convergence for that case.

1. Introduction. Branching random walks are well-known models for populations
evolving in space. In these systems individuals are represented as particles which reproduce
and move randomly in space, independently for different families. For instance, the children
may take i.i.d. displacements from their mother particle or, in a more general model, the par-
ent particle may generate a configuration of children according to some point process. We
refer to [33] for an introduction to this very active research topic.

Our goal is to model a population which competes for resources as a particle system in
which particles reproduce, move randomly in space, and compete with each other locally. We
choose here a specific and rather radical form of interaction: whenever two or more particles
are on the same site, they annihilate. We discuss in Section 1.2 below more general forms
of competition. The specific annihilation mechanism makes the system nonattractive in the
sense of interacting particle systems, that is, adding more particles initially can stochastically
decrease the law of the configuration at later times.

A first question about branching random walks is if the system has a strictly positive sur-
vival probability. In the classical case, that is, without annihilation, the answer is well-known
since the number of particles at time n forms a Galton–Watson process. However, taking into
account annihilation, the question is much more difficult and there are relatively few mathe-
matical papers addressing it, see the discussion of related literature in Section 1.3 below.

Assuming that the parameters of the model are such that the survival probability is indeed
strictly positive, the next question is about invariant measures and the convergence towards
the invariant measure in the case of survival. As for the classical branching random walk or
the contact process, it is clear that the Dirac measure on the empty configuration is invariant.
We can show for our model that in a certain range of parameters there is complete conver-
gence, that is, there is exactly one nontrivial ergodic invariant measure and the law of the
process, conditioned on survival, approaches this invariant measure.
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Our model allows for a representation as a probabilistic cellular automaton. Questions
about ergodicity and complete convergence are notoriously difficult for such systems. We
refer to [29] for an introduction. If we consider the iteration of the expected number of par-
ticles at the sites of the lattice, we have a deterministic system, a coupled map lattice, see
Section 1.4 below, and especially (1.8). This system is of independent interest and we expect
that it admits, in a certain range of parameters, travelling wave solutions. Hence our model
can be interpreted as a stochastic perturbation of the coupled map lattice, and this interpreta-
tion raises several interesting questions, which we point out in Section 7 below.

Let us now give a more precise definition of the model and describe our results. We study
a process η = (ηn(x) : x ∈ Zd, n ≥ 0) evolving in discrete time on Zd , where ηn(x) denotes
the state of site x at time n. We write ηn(x) = 1 if site x is occupied by exactly one particle at
time n and ηn(x) = 0 otherwise. We denote by ‖·‖ the sup-norm on Zd and define BR(x) =
{y ∈ Zd : ‖y − x‖ ≤ R} to be the d-dimensional ball (box) of radius R ∈N centred at x ∈ Zd .
We set VR = 2R + 1 to be its side length, so that its volume is V d

R .

For fixed R ∈ N, μ > 0, and an initial particle configuration η0 ∈ {0,1}Zd
, the configura-

tions at later times are obtained recursively as follows. Given ηn, n ≥ 0, for every x ∈ Zd with
ηn(x) = 1 the particle at z dies and gives birth to a Poisson number of children with mean
μ. Each child moves independently to a uniformly chosen site in BR(x). Whenever there is
more than one particle at a given site, all the particles at that site are killed. This means that
if two (or more) children of the same parent jump to the same site they will disappear, but
also children coming from different parents who jump to the same site will annihilate. The
particles remaining after the annihilation make up the configuration ηn+1.

The thinning and superposition properties of the Poisson distribution give the following
equivalent description of the model, which is particularly convenient to carry out calculations.
For a configuration η ∈ {0,1}Zd

and x ∈ Zd , define first the (local) density of particles at x

by

(1.1) δR(x;η) := V −d
R

∑
y∈BR(x)

η(y) ∈ [0,1].

Fix ηn and denote by Nn+1(x) the number of newborn particles at x in the next generation
before the annihilation occurs. This is given by the superposition of the offspring of all parti-
cles that can move to x, that is, of all y ∈ BR(x) with ηn(y) = 1. Thus Nn+1(x) is a Poisson
random variable with mean μδR(x;ηn). Taking the annihilation into account, it then holds
that

(1.2) ηn+1(x) =
{

1 if Nn+1(x) = 1,

0 otherwise.

Let

(1.3) ϕμ(w) = μwe−μw, w ∈ [0,∞)

denote the probability that a Poisson random variable with mean μw equals 1. By construc-
tion, the random variables in the family (ηn+1(x) : x ∈ Zd) are conditionally independent
given ηn and by (1.2), (1.3) we can represent our system as

(1.4) ηn+1(x) =
{

1 with probability ϕμ

(
δR(x;ηn)

)
,

0 otherwise.

This gives a representation of η as a particular example of a probabilistic cellular automaton.
We point out that this representation is only possible because we choose a Poisson offspring
distribution. For more detailed discussion of the assumptions of the model, see the discussion
in Section 1.2 below.
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FIG. 1. Graphs of ϕμ for μ = 0.7 (thick), 2 and 8 (dashed), together with the identity function.

1.1. Main results. We can now state the main results of this paper. For the intuition be-
hind them, we find it useful to first point out a few properties of the function ϕμ, introduced
in (1.3), which governs the behaviour of the process (see Figure 1):

(a) For μ ∈ (0,1], ϕμ has a unique fixpoint at 0, which is attractive.
(b) For μ > 1, ϕμ has two fixpoints, 0 and θμ = μ−1 lnμ. In this case 0 is always repul-

sive.
(c) For μ ∈ (1, e2), θμ is an attractive fixpoint.
(d) For μ > e2, there are no attractive fixpoints.

In the case (d), the one point iteration x �→ ϕμ(x) has a rich behaviour. Depending on the
value of μ, there can be attractive periodic orbits or a chaotic behaviour. We refer to [38],
Chapter 9, for discussion about the period doubling and chaotic behaviour of iterated maps.

Extinction. Our first result identifies a range of parameters (μ,R) where the process dies
out almost surely. Here, we say that η goes extinct locally if limn→∞ ηn(x) = 0 for every
x ∈ Zd , and that η goes extinct globally, if ηn ≡ 0 for all n large enough.

THEOREM 1.1. For R ∈ N, let μ1(R), μ2(R) be the two real solutions of

V d
Rϕμ

(
V −d

R

) = 1

with 1 < μ1(R) < μ2(R) < ∞. If μ < μ1(R) or μ > μ2(R), then, for all initial conditions
η goes locally extinct a.s., and for all initial conditions containing only a finite number of
particles η goes extinct globally a.s. Furthermore, μ1(R) → 1 and μ2(R) → +∞ as R →
∞.

The result of the proposition is not optimal: we expect (based on simulations, see Figure 7
in Section 7 below) that the process goes extinct for many values (μ,R) outside of the spec-
ified range. On the other hand, its proof is relatively simple. It is given in Section 5 below,
and is based on the observation that for (μ,R) in the specified range the killing by annihi-
lation among siblings is already strong enough to make the expected number of “surviving”
offspring of a single particle strictly smaller than one, and thus the branching effectively
subcritical, even though μ > 1.

REMARK 1.2. The two values μ1(R) and μ2(R) can be given explicitly as

μ1(R) = −V d
RW0

(−V −d
R

)
, μ2(R) = −V d

RW−1
(−V −d

R

)
,

where W0 and W−1 are the two real branches of the Lambert W function. This also describes
their asymptotic behaviour as R → ∞, see (5.3) and (5.4) in the proof of Theorem 1.1 below.
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Survival. The second result identifies a range of parameters where it is possible that the
process survives, by which we mean that it survives locally, that is, for every x ∈ Zd the set
of times n when ηn(x) = 1 is unbounded. Similarly as in Theorem 1.1, the identified range is
not optimal.

THEOREM 1.3. For every μ > 1 there exists Rμ ∈ N such that η survives with positive
probability from any nontrivial initial condition when R ≥ Rμ.

Inspection of the proof of Theorem 1.3 shows that the following holds.

COROLLARY 1.4. There is R0 ∈ N such that for every R ≥ R0 there exist two values 1 <

μ
R

< μR such that η survives with positive probability from any nontrivial initial condition
when μ ∈ (μ

R
,μR). Furthermore, on the event of survival, it holds that

(1.5) lim inf
N→∞

1

N

N∑
j=1

ηj (x) > 0 a.s. for any x ∈ Zd .

Ergodicity and complete convergence. The final set of results discusses the invariant mea-
sures of the process, in the case when the system survives. For this we equip the state space
{0,1}Zd

with the product topology and the corresponding Borel σ -algebra. In these results we
restrict ourselves to μ ∈ (1, e2), where the nontrivial fixpoint of ϕμ is attractive, as pointed
out above.

THEOREM 1.5. For every μ ∈ (1, e2) there is R′
μ < ∞ such that for every R ≥ R′

μ the
process η has two extremal invariant distributions: the first one is trivial and is concentrated
on the empty configuration η ≡ 0, and the second one, νμ,R , is nontrivial, translation invari-
ant, ergodic, and has exponential decay of correlations.

Furthermore, starting from any nontrivial initial condition the process η, conditioned on
nonextinction, converges in distribution in the weak topology to the nontrivial extremal in-
variant distribution νμ,R .

The driving result behind Theorem 1.5 is the following strong coupling property of the
system η, which is of independent interest.

THEOREM 1.6. Assume that μ ∈ (1, e2) and R ≥ R′
μ satisfy the assumptions of Theo-

rem 1.5. Then there exists a speed a > 0 (depending on R, μ, d) such that for every pair
of (possibly random) initial conditions η

(1)
0 , η

(2)
0 ∈ {0,1}Zd

there exists a coupling of the pro-

cesses (η
(i)
n )n∈N0 , i = 1,2, with the following property: for each x ∈ Zd there is an N0 ∪{∞}-

valued random variable T
coupl
x (whose exact law will in general depend on the initial condi-

tions and on x) such that {η(i)
n �≡ 0 for all n ∈ N, i = 1,2} ⊆ {T coupl

x < ∞} a.s. and

η(1)
n (y) = η(2)

n (y) for all n > T coupl
x and ‖y − x‖ ≤ a

(
n − T coupl

x

)
.

REMARK 1.7. From the proof of Theorem 1.6 it follows that, when starting from a fi-
nite (or a half-space) initial condition, the system η, given that it survives, will expand into
the “empty territory” at least at some (small) linear speed. Furthermore, simple comparison
arguments with supercritical branching random walks show that this expansion cannot occur
faster than linearly. However, identifying an actual linear speed or even an asymptotic profile
of the expanding population near its tip remains a topic for future research.
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REMARK 1.8. Denote by δμ,R = Eνμ,R
[η0(0)] ∈ (0,1) the particle density of the nontriv-

ial invariant measure νμ,R from Theorem 1.5, where μ ∈ (1, e2) and R ≥ R′
μ. By ergodicity,

we have almost surely when η0 ∼ νμ,R

(1.6) lim
N→∞

1

N

N∑
n=1

ηn(x) = lim
N→∞

1

N

N∑
n=1

δR(x;ηn) = δμ,R for every x ∈ Zd .

By the coupling property from Theorem 1.6, equation (1.6) holds in fact a.s. for any initial
condition given that the system survives.

Furthermore, for 1 < μ < e2, inspection of the proof of Theorem 1.6 shows that for every
ε ∈ (0,1) there exists R′

μ,ε < ∞ such that if R ≥ R′
μ,ε then, conditionally on nonextinction,

(1.7) lim inf
N→∞

1

N

N∑
n=1

1{|δR(x;ηn)−θμ|<ε} ≥ 1 − ε almost surely for every x ∈ Zd,

where we recall that θμ is the fixpoint of ϕμ (on “good” blocks, the particle density is close
to θμ, see Definition 4.4 below, and good blocks are shown to occur with high space-time
density).

Note that (1.6) and (1.7) together imply that |δμ,R − θμ| ≤ 2ε for R ≥ R′
μ,ε . This cor-

roborates the idea that for large R, the particle system’s behaviour is close to that of the
corresponding deterministic coupled map lattice, which we discuss in Section 1.4 below, and
which, as shown in Proposition 1.10, converges to the configuration which is constant and
equal to θμ.

REMARK 1.9. If we take (1.4) as the definition of the model, the particular form of the
function ϕμ used there does not play a strong role. Our techniques will continue to work, if
we replace ϕμ by another function of a “similar shape”. In fact, for survival we only need that
ϕμ : [0,1] → [0,1] is continuously differentiable and strictly positive on (0,1] with 0 as an
unstable fixpoint. For the proof of the convergence result, we also need that there is a unique
attracting fixpoint θμ �= 0.

1.2. Motivations and possible generalisations. The construction of our model might
seem very rigid. Therefore, we discuss here the role of the different assumptions and their
possible generalisations.

In the biological literature a wide range of mechanisms of competition has been consid-
ered to match experiments on real populations. The terms “scramble” and “contest”, first
introduced in [31], have become traditional in the literature to distinguish between two dif-
ferent kinds on intraspecific competition. In contest competition, an individual is successful if
she gets the amount of resources required for survival or reproduction. The logistic branching
random walk studied, for example, in [5] is a possible mathematical model for a population
regulated by contest competition. Scramble competition instead involves the exactly equal
partitioning of the resources among individuals on each site, such that there is an abrupt
change from survival to complete extinction when there is insufficient resource to maintain
any individual. Scramble and contest competition are considered two extreme cases and nor-
mally some element of both is likely to be observed. However, populations regulated only by
scramble competition are still of interest in the biological community, for example, in [9] a
version of our model with deterministic branching is studied through a stochastic approxi-
mation to a coupled map lattice, in a slightly different setting than ours, but showing similar
bifurcation diagrams.

From a mathematical perspective, if we look at the branching annihilating random walk as
a model for a population regulated by scramble competition, we could weaken our hypothesis
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in several directions. The assumption that the particles jump distribution is uniform over a
box of length VR is nonessential and is made only for convenience of the notation. It can in
principle be replaced by an arbitrary (centred) finite range transition kernel, and the proofs
can be adapted by suitably replacing the particle density (1.1) by the convolution of this
kernel with η. The assumption that the number of offspring of a single particle has a Poisson
distribution is more important, as it allows for the essential representation (1.4), and also
yields the conditional independence of (ηn+1(x) : x ∈ Zd) given ηn. Replacing the Poisson
distribution would thus require nontrivial modifications to our proofs.

On the other hand, if we take (1.4) as a definition of the branching annihilating random
walk we obtain an equivalent description of the model as a probabilistic cellular automa-
ton. Cellular automata are extensively considered as models to understand biological self-
organisation; for an excellent overview of their wide applicability see, for example, [14].
This survey shows how deterministic automata (and probabilistic versions of them), where
each state at the next time step is determined solely from earlier states of the cell and its
neighbours, have been employed as models for waves in excitable and oscillatory media,
predator–prey models and spatial pattern formation. In particular, our model is strongly con-
nected with probabilistic cellular automata modelling pattern formation, in which the state of
each site is updated by spatially averaging over a neighbourhood and applying a Heaviside
function. Furthermore, a generalisation of this mechanism to weighted averaging has been
studied in the context of neural networks as a modification of the Hopfield model for cortical
electrical activity, describing the dynamics of parallel (rather than asyncronous) switching
from excitatory and inhibitory cells. Going back to our definition (1.4), as we pointed out in
Remark 1.9 our results still hold if we replace ϕμ with a wider class of functions. For further
inspiration to future work in connection with probabilistic cellular automata we refer to the
rich variety of models surveyed in [14].

Finally, both in the interpretation of the branching annihilating random walk as either a
regulated population or a probabilistic cellular automaton, the “hard” annihilation constraint
of at most one particle per site could be relaxed by replacing the definition (1.2) of η by
ηn+1(x) = Nn+1(x)1{Nn+1(x)≤k} for some k ∈ N. Since this modification retains the condi-
tional Poisson and independence properties of the Nn(x)’s and the sums of truncated Poisson
random variables have good concentration properties, we are optimistic that our proofs could
be adapted to this scenario with some additional work.

1.3. Discussion of related results. One of the first models of branching annihilating ran-
dom walks was introduced and studied in [8]. The authors considered a particle system on Z,
in which sites can be occupied as the result of the following mechanisms: particles can either
jump to one of the two neighbouring sites at a certain rate or branch into two by giving birth
to a new particle on one of the neighbouring sites. On top of this, particles behave indepen-
dently except when they land on a site which is already occupied, in which case both particles
disappear, annihilate. The authors show that, starting from any finite number of particles, the
system survives with positive probability if the jumping rate is small compared to the branch-
ing rate and that the population dies out almost surely if the jumping rate is sufficiently high.
This process is an interacting particle system in the sense of [25, 26] but it is not attractive.
The authors use contour arguments which rely on the one-dimensional model they chose.

Very general interacting particle systems on Z are considered in [35], where pairwise in-
teractions among neighbours can produce annihilation, birth, coalescence, and exclusion and
single individuals can die. Conditions on the rates which ensure positive probability of sur-
vival are given by making use of self-duality (which has been proved by the same author in
[36]) and supermartingale arguments. In [7] instead, processes on Zd with nearest-neighbour
birth at rate 1, annihilation and spontaneous death at rate δ have been considered. An ex-
tinction result for the branching annihilating process started from one particle at the origin is
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obtained by comparison with the contact process. On the other hand, survival when δ is small
is proved through comparison with oriented percolation.

In cases where survival can be established, natural questions concern the existence of
stationary distributions and weak convergence. In [34] a version of the model introduced
in [8] is considered in Zd in the case of no random walk, that is, when particles can only
move as a consequence of the branching and there is no underlying motion. It is shown
that the product measure with rate 1/2 is the only nonempty limiting distribution. In the
case of a double branching and annihilating process on Z (where each particle can place
offspring on both of its neighbouring sites), a richer variety of limiting measures is exhibited.
In [7] the authors prove that when δ = 0 the product measure with density 1/2 is stationary
and is the limiting measure, thus obtaining independently the same result proved in [34].
Furthermore it is shown that for any δ there are at most two extremal translation invariant
stationary distributions, and if δ is small there exists a nontrivial stationary distribution.

Another question of interest is whether branching processes with annihilation satisfy dual-
ity relations. In [2] processes in continuous time are considered, in which particles can annihi-
late, branch, coalesce, or die. The authors show that annihilation does not play a key role in a
duality relation: the process with annihilation is dual to a system of interacting Wright–Fisher
diffusions, and this result holds also if annihilation is suppressed (but in the case of annihila-
tion the duality function is different and more complicated). It would be highly interesting to
find a useful duality relation for our model as well.

Versions of branching annihilating processes in discrete time are generally more difficult
to deal with, since continuous time implies that changes in the configuration can only occur
one site at a time, sequentially as opposed to in parallel. A discrete-time analogous of [8] has
been considered in [1] for a model on Z, where particles at each time move with probability
1 − ε or branch with probability ε, with the rule that two particles occupying the same site
annihilate. The authors show that, if the branching probability is small enough, for any finite
initial configuration of particles the probability p(t) that at least one site is occupied at time
t decays exponentially fast in t .

A branching annihilating random walk on the complete graph is studied in [32]. This
process evolves in discrete time, the number of offspring is Poisson distributed with mean μ

and each one of them independently moves to one of the neighbouring sites of their parent.
This corresponds to our model on the complete graph. Since on a finite graph there is always
a positive probability of total annihilation in one step, the system eventually dies out at some
finite time. The authors prove that if μ > 1 the process on the complete graph with N vertices
has an exponentially long lifetime in N and that its last excursion from the “equilibrium
value” θμN before it reaches the zero state is logarithmic in N .

Besides systems where particles can annihilate, recent research directions have also been
focusing on spatial branching systems in which the interaction among particles is regulated
by a competition kernel which can reduce the average reproductive success of an individual at
a given site. In this case, rather than annihilating particles in areas with high particle density,
the existing particles will produce fewer offspring. Spatial models with local competition are,
for example, investigated in [5, 6, 15, 17, 28, 30]. The two papers most related to our present
work are [5, 28].

In [5] a discrete time branching system with a finite range (and thus local) competition
kernel is considered. The authors show that the system survives with positive probability
if the competition term is small enough and obtain complete convergence of the system to
a nontrivial equilibrium for some choices of the model parameters. The strategy used in
[5] to prove survival is building a comparison with an oriented percolation model. We will
use similar ideas to show survival for our branching annihilating random walk, as well as
complete convergence.
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A more recent work [28] considers a process in continuous time and nonlocal competition
kernels, where the range of interaction can be arbitrary, even infinite. Using a contour argu-
ment, the authors prove that in the low competition regime the system survives globally. In
the same regime, they also provide a shape theorem, showing that the asymptotic spreading
speed of the population is the same as in the branching random walk without competition.

Since we work in discrete time, our model is not an interacting particle system in the
sense of [25, 26] but rather a probabilistic cellular automaton, as discussed above. We refer
to [29] for a survey on probabilistic cellular automata. Ergodicity and complete convergence
for probabilistic cellular automata is a notoriously difficult topic where many proof tech-
niques are model-dependent. For attractive systems there are still some general tools such as
monotonicity and subadditivity, see [18]. We refer to [16] for a collection of recent results.

1.4. Auxiliary coupled map lattice. Our work also raises questions about coupled map
lattices, which are deterministic versions of probabilistic cellular automata, see (1.4), and
which, in our examinations of the BARW, serve as an intuitional guide for the proofs of the
survival and the complete convergence. The coupled map lattice is a deterministic [0, e−1]Zd

-
valued process 	n (note that maxw≥0 ϕμ(w) = e−1) defined, given any initial condition 	0,
by the iteration of

(1.8) 	n+1(x) := ϕμ

(
δR(x;	n)

)
.

At least for R large, locally, the dynamics of this process is a good approximation for the
dynamics of the “density profile” δR(·;ηn) of η, as can be heuristically seen from (1.4) and
the law of large numbers.

We will prove and exploit the fact that in the regime when ϕμ has the unique attractive
fixpoint θμ, that is, for μ ∈ (1, e2), when starting from a nonzero initial condition, the coupled
map lattice converges locally to θμ, and the region where it is close to this value expands.

PROPOSITION 1.10. Let μ ∈ (1, e2) and assume that 	0(0) > 0. Then

lim
n→∞	n(z) = θμ for all z ∈ Zd,

and for every ε > 0 there is a speed a = a(μ, ε,	0(0)) > 0 such that 	n(x) ∈ (θμ−ε, θμ+ε)

for all |x| ≤ an.

We believe that for localised or half-space initial conditions, the process 	 will approach
a “travelling wave”. While there is a rich literature addressing travelling waves, we were not
able to find results which literally apply in our context, in particular since our model has
discrete time and space. We thus prove the above (weaker and nonoptimal) proposition by
rather bare hand arguments, which involve a construction of a “travelling wave sub-solution”,
see Section 2.3 below. Travelling waves in the context of PDEs have been widely studied,
also with a view of biological applications. The existence of travelling waves has also been
considered quite extensively in the context of discrete time, continuous space models, see for
example, [20, 21, 24, 40]. In particular, existence of such travelling waves has been shown
in situations where ϕμ in (1.8) is replaced by an increasing (and hence monotone) function
[18, 40].

The regime μ > e2 is also very interesting. In this case the iteration of ϕμ does not con-
verge to a single point but to a stable orbit, which as μ increases beyond e2 will have an
increasing number of elements. We refer to [38], Chapter 9, for a description of bifurcation
diagrams and chaos for one-dimensional maps. In this regime, we are not aware of results
in the literature covering the coupled map lattice model. But even given such results, the be-
haviour of the stochastic system might be different and more difficult to control than in the
stable-fixpoint case treated here. We leave these questions for future work.
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2. Preliminary results and tools. In this section we collect some preliminary results
that will be used throughout the paper.

2.1. A general coupling construction. We will frequently make use of the following con-
struction allowing to define the process η for all initial conditions simultaneously and also
allowing to compare η with other particle systems, in particular with monotone ones.

Let U(x,n), x ∈ Zd , n ∈ N0, be a collection of i.i.d. uniform random variables on [0,1].
Recall the definition of the function ϕμ from (1.3), and let ψ : [0,1] → R+ be any nonde-
creasing function satisfying

(2.1) ψ(w) ≤ ϕμ(w) for all w ∈ [0,1] ∩ V −d
R Z,

that is, for all possible values of the density δR(·;ηn). Then, for any initial conditions η0, η̃0,
define, recursively for n ≥ 0,

ηn+1(x) = 1{U(x,n+1)≤ϕμ(δR(x;ηn))},(2.2)

η̃n+1(x) = 1{U(x,n+1)≤ψ(δR(x;η̃n))}.(2.3)

The construction (2.2) of η is morally the analogue of the common graphical construction of
an interacting particle system in our context, and can be viewed as a stochastic flow on the
configuration space {0,1}Zd

. The next lemma gives its main properties.

LEMMA 2.1 (General coupling construction).

(a) The process η defined by (2.2) has the law of the branching-annihilating random walk
with parameters μ and R and initial condition η0.

(b) If η̃0(x) ≤ η0(x) for all x ∈ Zd , then η̃n(x) ≤ ηn(x) for all n ∈ N and x ∈ Zd .

PROOF. Part (a) follows immediately from (1.4). To see part (b) assume η̃1(x) = 1 for
some x ∈ Zd . Then, by construction U(x,1) ≤ ψ(δR(x; η̃0)). Since η̃0 ≤ η0 and ψ is non-
decreasing, and ϕμ dominates ψ , this yields U(x,1) ≤ ϕμ(δR(x;η0)), and so η1(x) = 1. It
follows that η̃1 ≤ η1, and by iteration, η̃n ≤ ηn. �

In what follows we always assume that η is constructed as in (2.2) and define the filtration

(2.4) Fn := σ
(
η0(x) : x ∈ Zd) ∨ σ

(
U(x, i) : x ∈ Zd, i ≤ n

) ⊇ σ
(
ηi(x) : x ∈ Zd, i ≤ n

)
.

2.2. Concentration and comparison with deterministic profiles. As remarked under
(1.3), the random variables (ηn+1(x) : x ∈ Zd) are conditionally independent given ηn. There-
fore, the density δR(x;ηn+1) should concentrate, at least for R large. We need estimates pro-
viding quantitative control of this concentration. These estimates involve certain sequences of
functions ξ±

k on Zd , which we call comparison density profiles, that have the property that if
at some time t the local density of ηt is controlled by ξ±

k , then, at least locally, the density of
ηt+1 is controlled by ξ±

k+1. In fact, the sequences ξ−
k and ξ+

k that we use later can be regarded
as a travelling wave sub- and super-solution, respectively, of the coupled map lattice iteration
(1.8).

DEFINITION 2.2. For a given ε, δ > 0, comparison density profiles are deterministic
functions ξ−

k , ξ+
k : Zd → [0,∞), k = 0,1, . . . , k0, satisfying:

(i) For every k = 0, . . . , k0, ξ−
k (·) ≤ ξ+

k (·).
(ii) For every k = 0, . . . , k0, Supp(ξ−

k ) := {x ∈ Zd : ξ−
k (x) > 0} is finite, and ξ−

k (x) ≥ ε

for every x ∈ Supp(ξ−
k ).
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(iii) For every k = 0, . . . , k0 −1, and x ∈ Supp(ξ−
k ) it holds that if ζ : BR(x) → R satisfies

ζ(y) ∈ [ξ−
k (y), ξ+

k (y)] for all y ∈ BR(x), then

(2.5) (1 + δ)ξ−
k+1(x) ≤ V −d

R

∑
y∈BR(x)

ϕμ

(
ζ(y)

) ≤ (1 − δ)ξ+
k+1(x).

Note that ξ−
k , ξ+

k will in general depend on R, μ, ε, and δ, but we do not make this explicit
in the notation (in fact, δ, ε could also depend on R and μ).

LEMMA 2.3.

(a) For comparison density profiles ξ±
k , if for some x ∈ Zd and k ∈ {0, . . . , k0 − 1}

(2.6) δR(y;ηk) ∈ [
ξ−
k (y), ξ+

k (y)
]

for all y ∈ BR(x),

then

(2.7) P
(
ξ−
k+1(x) ≤ δR(x;ηk+1) ≤ ξ+

k+1(x)|Fk

) ≥ 1 − 2 exp
(−cV d

R

)
,

where c = (δε)/(1/(2δε) + 2/3).
(b) If, in (2.5), ϕμ is replaced by any ψ satisfying (2.1), then statement (a) holds for the

monotone dynamics η̃ defined in (2.3) in place of η.

REMARK 2.4. If only a lower bound is required, as, for example, in the proof of survival,
one can use the “trivial” upper bound for ξ+

n , namely ξ+
n (·) ≡ max(ϕμ)/(1 − δ) = e−1/(1 −

δ), and then apply (2.7) only for the lower bound.

PROOF OF LEMMA 2.3. We only show (a), the proof of (b) is completely analogous. We
consider first the lower bound, that is, we want to show that the conditional probability of the
event {δR(x;ηk+1) < ξ−

k+1(x)} is small, given Fk . Note that, by (2.6) and (2.5),∑
y∈BR(x)

E
[
ηk+1(y) | Fk

] = ∑
y∈BR(x)

ϕμ

(
δR(y;ηk)

) ≥ (1 + δ)V d
Rξ−

k+1(x).

Therefore,

(2.8)

P
(
δR(x;ηk+1) < ξ−

k+1(x)|Fk

)
≤ P

( ∑
y∈BR(x)

(
ηk+1(y) −E

[
ηk+1(y)|Fk

])
< −δV d

Rξ−
k+1(x)|Fk

)
and

Var
(
δR(x;ηk+1)|Fk

) = V −2d
R

∑
y∈BR(x)

ϕμ

(
δR(y;ηk)

)(
1 − ϕμ

(
δR(y;ηk)

)) ≤ 1

4
V −d

R .

We now apply the Bernstein inequality (which we recall in Lemma A.1 in the Appendix)
to the right-hand side of (2.8) with n = V d

R , σn ≤ V
−d/2
R /2, mn ≤ 1 and w = δV d

Rξ−
k+1(x) ≥

δεV d
R (since, by assumption (ii) ξ−

k+1(x) ≥ ε if ξ−
k+1(x) > 0, and there is nothing to prove if

ξ−
k+1(x) = 0). The expression in the exponent of the right-hand side of (A.1) then satisfies

w2

2σ 2
n + (2/3)mnw

= w

2σ 2
n /w + (2/3)mn

≥ w

V d
R/(2w) + 2/3

≥ δε

1/(2δε) + 2/3
V d

R ,

which completes the proof of the lower bound in (2.7).
The proof of the upper bound, that is, showing that the probability (conditional on ηk) of

the event {δR(x;ηk+1) > ξ+
k+1(x)} is small, is completely analogous. �



SURVIVAL AND COMPLETE CONVERGENCE FOR A BARW 5747

2.3. Lower bounds on travelling waves. The goal of this section is to construct explicit
comparison density profiles ξ−

k which can later be used as the lower bounds on δR(·;η) in
the proofs of survival and complete convergence. As pointed out before, these can be viewed
as travelling wave sub-solutions to the iteration (1.8).

We start by providing the basic building block for this construction. To this end we con-
centrate first on the one-dimensional setting. For parameters a > 1, ε0 ∈ (0,1), w > 0, s > 0,
and R ∈ N we say that a nondecreasing function f : Z → [0,∞) is a linear travelling wave
shape with width �wR�, shift �sR�, growth factor a, and minimal step size ε0 if it fulfils

(2.9) f (x) = 0 for x < 0, f (0) = ε0, f (x) = 1 for x ≥ �wR�
and

(2.10) aδR(x;f ) ≥ f
(
x + �sR�) for all x ∈ Z.

In this parametrisation, we think of a “wave profile” which, when subjected to one iteration
of the operation f (·) �→ aδR(·;f ), moves to the left by at least �sR� in each time step. Note
that by construction, one necessarily has that s ≤ 1.

We now show that such a function f exists for any a > 1 and R large.

LEMMA 2.5. For every a > 1, there is w ≥ 2, ε0 ∈ (0,1), s ∈ (0,1), and R0 ∈ N such
that the function

f (x) = min
{(

ε0 + x/�wR�)1x≥0,1
}

satisfies (2.9), (2.10) for all R ≥ R0.

The proof of Lemma 2.5 is a straightforward, albeit somewhat lengthy computation, and
is given in Section 6.1. In fact, with even lengthier computations it could be shown that the
lemma holds for any R ≥ 1.

Using this travelling wave shape we can now define the desired comparison density profile
ξ−
n . For this, fix Rinit ∈ N with Rinit > 2R and set, for x ∈ Z,

(2.11) ξ̃n(x) := f
(
Rinit + n�sR� + �wR� − |x|)

with f from Lemma 2.5, see Figure 2 for an illustration. Note that by construction,
ξ̃n(·) ≡ 1 on BRinit+n�sR�(0) and Supp(̃ξn) = BRinit+n�sR�+�wR�(0). Furthermore, using (2.10),
aδR(x; ξ̃n) ≥ ξ̃n+1(x) for all x ∈ Z, and ξ̃n(x) > 0 implies ξ̃n(x) ≥ ε0.

Finally, for any d ≥ 1, write x = (x1, . . . , xd) and set

(2.12) ξ−
n (x) := b

d∏
i=1

ξ̃n(xi), x ∈ Zd, n ∈ N0

with some 0 < b ≤ 1 that will be suitably tuned later. Note that ξ−
n implicitly depends on

d , R, Rinit, a and b but our notation does not make this explicit. We summarise the relevant
properties of ξ−

n in the following lemma.

FIG. 2. The one-dimensional deterministic comparison density profile ξ−
n built from the linear travelling wave

shape f , with fronts of width �wR� that get shifted outwards by �sR� in every time step.
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LEMMA 2.6. The functions ξ−
n have the following properties:

(i) 0 ≤ ξ−
n (x) ≤ b for every n ∈N0 and x ∈ Zd ,

(ii) for every n ∈ N0, ξ−
n (·) ≡ b on BRinit+n�sR�(0) and Supp(ξ−

n ) = BRinit+n�sR�+�wR�(0),
(iii) adδR(x; ξ−

n ) ≥ ξ−
n+1(x) for all n ∈ N0, x ∈ Zd ,

(iv) ξ−
n (x) > 0 implies ξ−

n (x) ≥ bεd
0 .

PROOF. The properties (i), (ii), and (iv) follow directly from (2.9), (2.11), and (2.12).
Using (2.10), (2.11), (2.12), it follows moreover that

adδR

(
x; ξ−

n

) = adV −d
R

∑
y∈BR(0)

ξ−
n (y + x)

= badV −d
R

R∑
y1=−R

· · ·
R∑

yd=−R

d∏
i=1

ξ̃n(xi + yi)

= b

d∏
i=1

(
aV −1

R

R∑
y=−R

ξ̃n(xi + y)

)
= b

d∏
i=1

(
aδR(xi; ξ̃n)

)

≥ b

d∏
i=1

ξ̃n+1(xi) = ξ−
n+1(x),

which shows (iii) and completes the proof. �

3. Survival for large R: Proof of Theorem 1.3 and Corollary 1.4. In this section we
prove Theorem 1.3, stating that the system survives for any μ > 1, given that R is chosen
sufficiently large; we also prove Corollary 1.4. The proof is based on the comparison with a
monotone system η̃, which in turn is shown to survive using a comparison with finite range
oriented percolation. The latter is a by now classical technique for interacting particle sys-
tems. We refer to [10, 22], or [37] for recent and reader-friendly introductions.

The monotone system η̃ is constructed as in Section 2.1: we first fix parameters ã ∈ (1,μ)

and b ∈ (0,1), so that the function ψ defined by

(3.1) ψ(w) := ã(w ∧ b)

satisfies (2.1). This is possible since μ > 1. With this ψ , we define η̃ as in (2.3) and simulta-
neously η as in (2.2) on the probability space supporting the i.i.d. uniform random variables
(U(x,n))x∈Zd ,n∈N0

.
We then fix a > 1 such that ad < ã, and for this choice of a, we fix R0, w, s, and ε0

according to Lemma 2.5. For R ≥ R0, we set Rinit := �wR/2� and define ξ−
n as in (2.12).

We claim that ξ−
n (x) (and the trivial ξ+

n , as explained in Remark 2.4) is a comparison density
profile in the sense of Definition 2.2 with δ = (ã/ad) − 1 and ε = bεd

0 . Moreover the lower
bound of (2.5) even holds with ψ in place of ϕμ. Indeed, (i) is trivially true, (ii) follows from
Lemma 2.6(iv). To show (iii), that is, (2.5) (with ψ in place of ϕμ), let ζ = (ζ(y))y∈Zd ∈
[0,1]Zd

be such that ζ(·) ≥ ξ−
n (·) for some n ∈ N0. Then, using Lemma 2.6(iii) for the last

inequality,

V −d
R

∑
y∈BR(x)

ψ
(
ζ(y)

) = V −d
R

∑
y∈BR(x)

ã
(
ζ(y) ∧ b

)
≥ ã

ad
· adV −d

R

∑
y∈BR(x)

ξ−
n (y)

= ã

ad
· adδR

(
x; ξ−

n

) ≥ ã

ad
· ξ−

n+1(x),
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as required. As a consequence, we will later be able to apply the concentration result of
Lemma 2.3(b) to the process η̃.

Define R′
block = �wR/2�. To set up the comparison with oriented percolation, we coarse-

grain the system by using blocks spaced by L′
block := 2R′

block, of side length Lblock := 5L′
block

and temporal size Tblock := ��wR�/�sR��. Since we often refer to radii rather than block
lengths, it is convenient to define Rblock = Lblock/2.

For (z, t) in the sub-lattice L := L′
blockZ

d × TblockN0, we define

Block(z, t) := {
(x, n) ∈ Zd ×N0 : ‖x − z‖ ≤ Rblock, t ≤ n ≤ t + Tblock

}
.

Note that blocks in the same time-layer have nontrivial overlap with their neighbours but the
number of overlapping neighbours in L per block does not grow with R. In the time direction,
only the top time slice of a given block coincides with the bottom layer of the next block(s).

DEFINITION 3.1. We call Block(z, t) well-started if the density of the monotone sys-
tem η̃ dominates the (suitably shifted) density profile ξ−

0 at the bottom of the block, that
is,

δR(x; η̃t ) ≥ ξ−
0 (x − z) for ‖x − z‖ ≤ Rblock.(3.2)

Note that for any (z, t) ∈ L the event {Block(z, t) is well-started} is measurable with
respect to the filtration Ft , which was defined in (2.4).

DEFINITION 3.2. Block(z, t) is called good if it is well-started and the random vari-
ables U(x,n) are such that the domination property of (3.2) propagates over the block. That
is, Block(z, t) is good if it holds that

δR(x; η̃t+n) ≥ ξ−
n (x − z) for ‖x − z‖ ≤ Rblock, n = 0, . . . , Tblock.

The properties of the comparison density profiles ξ−
n , see Lemma 2.6, enforce{

Block(z, t) is good
} ⊆ ⋂

z′∈L′
blockZ

d :
‖z−z′‖≤L′

block

{
Block

(
z′, t + Tblock

)
is well-started

}
.(3.3)

In particular, the process η̃ survives up to time t +Tblock in a good Block(z, t) and the region
of the desired density control by the profiles ξ−

n expands, see Figure 3.
By the construction (2.3) of η̃, given Ft , if Block(z, t) is well-started, it can be decided

whether or not the event {Block(z, t) is good} occurs for (z, t) ∈ L by inspecting (only) the
values of

(3.4)
(
U(x,n) ∈ Zd ×N0 : ‖x − z‖ ≤ Rblock + TblockR, t < n ≤ t + Tblock

)
(in fact, strictly speaking it suffices to observe the values of U ’s at the space-time points
{(x, n) : ‖x − z‖ ≤ Rblock + (t + Tblock − n)R, t < n ≤ t + Tblock}). Note that for (z, t) ∈ L
and (z′, t) ∈ L with

(3.5)
∥∥z′ − z

∥∥ > Lblock + 2TblockR ≈ (5 + 2/s)L′
block (when R is large)

the space-time regions corresponding to (3.4) will be disjoint.
Furthermore, by invoking Lemma 2.3(b) we can uniformly bound the probability of

the density of η̃ dominating the comparison density profile ξ− for all space-time sites in
Block(z, t), which in turn yields

(3.6) P
(
Block(z, t) is good|Ft

) ≥ 1{Block(z,t) is well-started}
(
1 − q(Tblock,R)

)
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FIG. 3. Sketch of a Block(z0, t0) (dark grey), centred at the coarse-grained space-time lattice point (z0, t0).
The thick dashed lines depict the deterministic comparison density profiles ξ−

t0
(·) and ξ−

t0+Tblock
(·) which have to

be dominated by the density δR(·; η̃n), t0 ≤ n ≤ t0 + Tblock in order for the block to be good. Note the picture is
not drawn to scale: Lblock and L′

block are both growing linearly in R while Tblock does not grow with R.

with

(3.7) q(Tblock,R) = 2
∣∣Block(z, t)

∣∣e−cV d
R ,

which tends to 0 as R → ∞, since |Block(z, t)| grows only polynomially in R.
In order to make the comparison with oriented percolation, we define random variables

(3.8) Y(z, t) := 1{Block(z,t) is good}, (z, t) ∈ L,

and say that (z, t) ∈ L is connected to infinity in Y if there is a path ((zi, t + iTblock) : i ∈ N0)

in L with z0 = z and ‖zi − zi−1‖ ≤ L′
block for all i ∈ N, such that Y(zi, t + iTblock) = 1 for

all i ∈ N0 (such a path is called open in Y ). By the argument above, it follows that if (z, t) is
well-started and connected to infinity in Y , then the process η̃ survives.

In order to show that the latter event occurs with positive probability, we iteratively
construct a coupling between the Y(z, t)’s from (3.8) and a family (Ỹ (z, t))(z,t)∈L of i.i.d.
Bernoulli random variables with parameter p(R) which satisfies p(R) → 1 as R → ∞ such
that we have

(3.9) Y(z, t) ≥ 1{Block(z,t) is well-started}Ỹ (z, t) for all (z, t) ∈ L.

We construct Ỹ (·, t) inductively over t and begin with a slightly informal description of
this construction: Assume that for some t ′ ∈ TblockN, a coupling satisfying (3.9) has been
achieved for all (z, t) ∈ L with TblockN � t < t ′. We then work conditionally on Ft ′ . The
(random) set of nodes

W(t ′) := {
z′ ∈ L′

blockZ
d : Block(

z′, t ′
)

is well-started
}
,

viewed as a graph where z′ and z′′ are connected by an edge if the space-time regions from
(3.4) centred at (z′, t ′) and at (z′′, t ′), respectively, overlap, is a locally finite graph with uni-
formly bounded degrees. In fact, we see from (3.4) that we have irrespective of the realisation
of η̃t ′ the deterministic bound (11 + 4/s)d on the degree of any node (up to rounding, see
(3.5)). Thus, by (3.4)–(3.7), using well known stochastic domination arguments for percola-
tion models with finite-range dependencies [27], it follows that the family (Y (z, t ′))z∈W(t ′)
stochastically dominates a family (Ỹ (z, t ′))z∈W(t ′) of i.i.d. Bernoulli random variables with
parameter p(R), where p(R) → 1 as R → ∞ and the (Ỹ (z, t ′))z∈W(t ′) are independent of
Ft ′ given W(t ′), that is, (3.9) holds for all z ∈ W(t ′). In fact, p(R) is a function of the
maximal degree (11 + 4/s)d of the dependence graph and the minimal guaranteed density
1 − q(Tblock,R) of good blocks, see Theorem 1.3 in [27]. For z /∈ W(t ′), (3.9) imposes no
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condition at all on Ỹ (z, t ′). Thus, we can simply define Ỹ (z, t ′) = Ŷ (z, t ′) for z /∈ W(t ′) where
(Ŷ (z, t))(z,t)∈L is an independent family of i.i.d. Bernoulli(p(R)) random variables.

In order to formalise this construction and, in particular, to show that the random variables
Ỹ (z, t) are independent over different time layers, note that by the construction (2.2) from
Lemma 2.1, we can write

Y
(·, t ′) = g

(
ηt ′,

(
U(·, n) : t ′ < n ≤ t ′ + Tblock

))
for some deterministic function g : {0,1}Zd × [0,1]Zd×{1,...,Tblock} → {0,1}L′

blockZ
d
. Fur-

thermore W(t ′) = W(ηt ′) = {z ∈ L′
blockZ

d : Block(z, t ′) is well started}. For every ζ =
(ζ(z))z∈Zd ∈ {0,1}Zd

, Theorem 1.3 in [27] and the discussion above provide a coupling νζ of

L(Y (·, t ′)|ηt ′ = ζ ) and Ber(p(R))⊗Zd
with the desired properties. We can then disintegrate

this joint law with respect to its first marginal and describe the joint law νζ in a two-step
procedure. It is convenient to describe this via an auxiliary function h(ζ ; ·, ·) using additional
independent randomness and obtain that given ηt ′ = ζ ,

Y
(·, t ′) = g

(
ζ,

(
U(·, n) : t ′ < n ≤ t ′ + Tblock

))
, Ỹ

(·, t ′) = h
(
ζ ;Y (·, t ′), Ũt ′

)
,

where Ũt ′ is independent of everything else and uniformly distributed on [0,1] (see, e.g.,
Theorem 5.10 in [19]). By construction, since U(·, n), n > t ′, and Ũt ′ are independent of Ft ′ ,
we have for A ∈ Ft ′ and measurable B ⊆ {0,1}L′

blockZ
d

P
(
A ∩ {

Ỹ
(·, t ′) ∈ B

}) = E
[
1AP

(
h
(
ηt ′ ;Y (·, t ′), Ũt ′

) ∈ B|Ft ′
)]

= P(A)Ber
(
p(R)

)⊗L′
blockZ

d

(B).

This shows the required independence of Ỹ and completes the induction step.
We see from (3.8), (3.9) and (3.3) that every open path in Ỹ (·, ·) is automatically also an

open path in Y(·, ·). Furthermore, by well known properties of oriented site percolation, we
have

P
(
(z, t) is connected to infinity in Ỹ

) = P
(
(0,0) is connected to infinity in Ỹ

)
> 0

if p(R) is sufficiently close to 1, that is, for all R large enough.
To conclude, let η0 be any initial configuration containing at least one particle, and let

η̃0 = η0. It is then easy to see (as this involves requiring only finitely many random variables
U(x,n) to be sufficiently small), that one can find (z, t) ∈ L, so that the probability that
Block(z, t) is well-started is positive.

Therefore, due to the above properties,

P(η survives) ≥ P(η̃ survives)

≥ E[1{Block(z,t) is well-started}1{(z,t) is connected to infinity in Y }]
≥ P

(
Block(z, t) is well-started

)
P

(
(z, t) is connected to infinity in Ỹ

)
> 0 for all R large enough,

which completes the proof of Theorem 1.3.
The proof of Corollary 1.4 follows directly from the properties of the percolation cluster

and our definition of good blocks: using the coupling with supercritical oriented percolation
(on the level of space-time blocks) constructed above, (1.5) follows from the fact that given
that it survives, the cluster of the origin in supercritical oriented percolation has positive den-
sity. This can be seen, for example, via a coupling with a supercritical discrete time contact
process started from its upper invariant measure (see, e.g., [13], Prop. 6, and the discussion
around Lemma 2.9 in [4]).
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4. Complete convergence. In this section we show our main results in the regime where
the particle system survives with a positive probability and is well approximated by the
deterministic coupled map lattice introduced in Section 1.4. In particular, we assume that
μ ∈ (1, e2) and R is large enough. In Section 4.1, we start with Theorem 1.6 providing the
coupling of processes started with different initial conditions. Theorem 1.5 is then shown in
Section 4.3.

4.1. Coupling construction: Proof of Theorem 1.6. As in Section 3, the central ingredient
will be a block construction and then a suitable comparison with oriented percolation. The
definition of “good blocks” will be more involved than in Section 3 and is inspired by the
construction in [5], Section 5.

In brief, the construction of a good block around z is as follows. We consider a (large)
ball B around z and assume that η(1) and η(2) agree on B and the respective R-densities
of the two processes are close to θμ. On an even larger ball B ′ we add milder and milder
requirements (as the distance from the centre increases) on the densities of the processes. The
contraction property of ϕμ, see Lemma 4.1 below, together with the concentration property of
the densities of η(i) guaranteed by Lemma 2.3 then ensure that the area in which the η(1) and
η(2) are coupled expands in time with high probability. In order to guarantee survival of the
processes we also require that the respective densities of η(1), η(2) dominate the deterministic
comparison density profile as defined in (2.12) (the latter was also used in Section 3).

We now proceed with the formal definitions. Throughout this section, we again use the
coupling construction from Section 2.1: given two initial conditions η

(1)
0 and η

(2)
0 , we con-

struct both (η
(1)
n )n and (η

(2)
n )n using (2.2) with the same U(x,n)’s, that is, we set

(4.1) η
(i)
n+1(x) = 1{U(x,n+1)≤ϕμ(δR(x;η(i)

n ))}, i ∈ {1,2}, (x, n) ∈ Zd ×N0.

Since we are from now on interested in two copies of the branching annihilating process, we
redefine the filtration (Fn) from (2.4) by including both initial conditions, that is,

Fn := σ
(
η

(i)
0 (x) : x ∈ Zd, i = 1,2

) ∨ σ
(
U(x, j) : x ∈ Zd, j ≤ n

)
.

It is clear that this updated filtration is finer than the natural filtration of the two processes, in
the sense that for all n ≥ 0, it holds that Fn ⊇ σ(η

(i)
j (x) : x ∈ Zd, j ≤ n, i = 1,2).

In order to define the comparison density profiles that are used to determine whether a
block is good, we need a simple lemma which gives some useful properties of the function
ϕμ in the vicinity of its nontrivial fixpoint θμ. The result is fairly standard, we provide a proof
for completeness’ sake in Section 6.2 (cf. also [5], Proof of Lemma 12).

LEMMA 4.1. For every μ ∈ (1, e2) there is ε > 0 and κ(μ, ε) < 1 such that ϕμ is a
contraction on [θμ − ε, θμ + ε], that is,∣∣ϕμ(w1) − ϕμ(w2)

∣∣ ≤ κ(μ, ε)|w1 − w2| for w1,w2 ∈ [θμ − ε, θμ + ε].
Moreover, there exist a strictly increasing sequence αm ↑ θμ and a strictly decreasing se-
quence βm ↓ θμ such that ϕμ([αm,βm]) ⊆ (αm+1, βm+1) for all m ∈ N. Furthermore, it is
possible to choose α1 > 0 arbitrarily small and β1 > 1/e.

We now take b as in (3.1) and fix ε, κ(μ, ε) < 1, as well as sequences αm ↑ θμ, βm ↓ θμ

as in Lemma 4.1, with α1 = b and β1 > 1/e. Then we choose m0 such that βm − αm < ε for
every m ≥ m0. These choices will remain fixed throughout the remainder of this section.

Next define the size of the blocks

(4.2) L′
block := 2�R logR�, Lblock := cspaceL

′
block and Tblock := ctime�logR�,
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where ctime > −(d + 1)/ logκ(μ, ε) and cspace = 4(1 + ctime) are integer constants. Re-
mark 4.5 below explains these choices. As in Section 3, we introduce R′

block = L′
block/2

and Rblock = Lblock/2 for the radii of the blocks, and, for (z, t) in the sub-lattice L :=
L′

blockZ
d × TblockN0, we define

Block(z, t) := {
(x, n) ∈ Zd ×N0 : ‖x − z‖ ≤ Rblock, t ≤ n ≤ t + Tblock

}
.

Further, let us specify the radius for which the strongest form of density control, alluded to
in the above informal description, holds. More precisely set cdens = 1 + 2ctime and Rdens :=
2cdensR

′
block. Again, the discussion on the choice of cdens is postponed to Remark 4.5.

Recall the functions ξ−
n (x) defined in (2.12). We use them here with Rinit = Rdens + m0R

in (2.11). For k ∈ {0, . . . , Tblock} set Rdens(k) = Rdens + k�sR�, then let

ζ−
k (x) :=

⎧⎪⎪⎨⎪⎪⎩
αm0 if ‖x‖ ≤ Rdens(k),

αm0−j+1 if Rdens(k) + (j − 1)R < ‖x‖ ≤ Rdens(k) + jR,1 ≤ j ≤ m0,

ξ−
k (x) if ‖x‖ > Rdens(k) + m0R,

and

ζ+
k (x) :=

⎧⎪⎪⎨⎪⎪⎩
βm0 if ‖x‖ ≤ Rdens(k),

βm0−j+1 if Rdens(k) + (j − 1)R < ‖x‖ ≤ Rdens(k) + jR,1 ≤ j ≤ m0,

1 ∨ β1 if ‖x‖ > Rdens(k) + m0R.

See also Figure 4.
The functions ζ−

k (·) < ζ+
k (·) are comparison density profiles in the sense of Definition 2.2,

in particular, they satisfy the following analogue of (2.5).

LEMMA 4.2. There exists δ > 0 with the following property: for k ∈ N0 and any
(ζ(x))x∈Zd ∈ [0,1]Zd

satisfying ζ−
k ≤ ζ ≤ ζ+

k on Supp(ζ−
k ), it follows that

(1 + δ)ζ−
k+1(x) ≤ V −d

R

∑
y∈BR(x)

ϕμ

(
ζ(y)

) ≤ (1 − δ)ζ+
k+1(x) for all x ∈ Supp

(
ζ−
k+1

)
.

FIG. 4. The part of the deterministic comparison density profiles ζ+
k and ζ−

k (in orange and green) left from

Rdens(k). In a good block the densities of both η(1) and η(2) stay between the union of the orange lines and the
green profile, which is glued to the bottom orange profile. The green line is the (suitably recentred and shifted)
profile of ξ−, which we introduced to prove survival.
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PROOF. For x such that ζ−
k (x) agrees with the previously defined profile ξ−

k (x) the lower
bound in the statement follows easily from Lemma 2.6.

Let x ∈ Supp(ζ−
k+1) with ζ−

k+1(x) = αj , for some 2 ≤ j ≤ m0. Then

ζ−
k (y) = αj if y ∈ BR(x) ∩ ϒR and ζ−

k (y) ≥ αj−1 if y ∈ BR(x) ∩ ϒc
R,

where ϒR := {z : Rdens(k) + (j − 1)R ≤ ‖z‖ ≤ Rdens(k) + jR}. Note that |ϒR ∩ BR(x)| ≥
cV d

R for some c > 0, uniformly in the x we consider here. The properties of the sequences αm,
βm from Lemma 4.1 then imply that there exists δ > 0 (depending on (αm)m≤m0 , (βm)m≤m0

and d) such that

V −d
R

∑
y∈BR(x)

ϕμ

(
ζ(y)

) ≥ αj+1
∣∣BR(x) ∩ ϒR

∣∣V −d
R + αj

∣∣BR(x) ∩ ϒc
R

∣∣V −d
R ≥ αj (1 + δ)

and similarly for the upper bound. This completes the claim for the remaining parts of the
profile (those in orange in Figure 4). �

We proceed in a similar fashion as in Section 3 and introduce a new notion of well-started
and of good blocks. These updated definitions involve two copies η(1), η(2) of the system.
A well-started block is now determined by the local density of the true system being con-
trolled by the ζ+

k , ζ−
k profiles, in addition to which we require agreement of the true processes

in the central part of the block.

DEFINITION 4.3. A Block(z, t) based at (z, t) ∈ L is well-started if

δR

(
x;η(i)

t

) ∈ [
ζ−

0 (x − z), ζ+
0 (x − z)

]
for all x ∈ z + Supp

(
ζ−

0
)
, i = 1,2(4.3)

and

η
(1)
t (x) = η

(2)
t (x) for all x ∈ BR′

block
(z).(4.4)

Again as in Section 3 we use this as the starting point off of which we base our notion of
goodness as the spreading of the control given by well-startedness to neighbouring regions.

DEFINITION 4.4. We call a Block(z, t) based at (z, t) ∈ L good if:

(i) Block(z, t) is well-started,
(ii) η

(1)
t+Tblock

(x) = η
(2)
t+Tblock

(x) for ‖x − z‖ ≤ 3R′
block,

(iii) (η
(1)
t+Tblock

, η
(2)
t+Tblock

) satisfy (4.3) centred at z + L′
blocke for all e ∈ B1(0), that is,

δR

(
x;η(i)

t+tblock

) ∈ [
ζ−

0
(
x − z − L′

blocke
)
, ζ+

0
(
x − z − L′

blocke
)]

for all x ∈ z + L′
blocke + Supp(ζ−

0 ), for all e ∈ B1(0), for i = 1,2.

Property (iii) implies that if Block(z, t) is good, then Block(z+L′
blocke, t +Tblock) will

be well-started for all ‖e‖ ≤ 1.

REMARK 4.5. Let us now comment on our choice of the constants cspace, cdens, ctime. It
is instructive to first give cspace as a function of cdens, then cdens as a function of ctime, and
ultimately fix ctime large enough.

(i) Note first that ζ±
0 are constant on a box of size Rdens (which is of order R logR)

and then increase (resp. decrease) on boxes with length of order R. It follows readily that
Supp(ζ−

0 ) ⊆ B2Rdens(0) for large enough R. Therefore 2cdens blocks of size L′
block fully cover

the spatial region determining whether a block is well-started. Furthermore, we need to pro-
vide additional space to which the well-started configurations can spread in time Tblock. This
warrants the choice cspace = 2cdens + 2. Note in this context that a much smaller Lblock would
suffice, but defining it to be a multiple of L′

block gives a more convenient notation.
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(ii) In order to have a well-started block at (z, t) for which property (4.4) spreads to
a region of radius 3R′

block around z in time Tblock, the region of space around z for which
the densities of η(1), η(2) are near θμ must be large enough. As will be seen later on (see
Section 4.2) this is due to the crucial role that the contraction property of Lemma 4.1 plays
in the expansion of the coupling and translates loosely to Rdens being large enough, namely

Rdens > R′
block + Tblock�sR� + TblockR.

This can also be seen as an incentive for taking Tblock to be of order logR and Rdens to be of
order R logR. Further it shows that cdens needs to be chosen suitably large; it suffices to take
cdens = 1 + 2ctime.

(iii) Assume that on the event that a block at (z, t) is well started, property (ii) of Defini-
tion 4.4 does not hold, that is, there is a site at the top of the block at which η(1) and η(2) dis-
agree. As will be seen in Section 4.2, the probability of the two processes disagreeing at a site
(in a well-started block) decays by a factor of κ(μ, ε) at each time step, when tracing the un-
successful coupling backwards in time though the block. By a union bound, it follows that the
probability that a well-started block at (z, t) does not satisfy (ii), is bounded by κ(μ, ε)Tblock

multiplied by the number of sites that are within distance R′
block + Tblock�sR� of z. For this

probability to decay in R, the constant ctime must satisfy ctime > −(d + 1)/ logκ(μ, ε).

In order to set up comparison with oriented percolation, in the same fashion as in Sec-
tion 3, we need to show that the good blocks have high density and that the block depen-
dencies have finite range that does not depend on R. To this end, note first that the event
{Block(z, t) is good} depends (only) on {η(i)

t (x), x ∈ BRblock(z), i = 1,2} and {U(y, t + k) :
y ∈ B3Rblock(z), k = 1,2, . . . , Tblock}.

LEMMA 4.6. For (z, t) ∈ L,

P
(
Block(z, t) is good|Ft

) ≥ 1{Block(z, t) is well-started}
(
1 − q(R,μ)

)
with q(R,μ) → 0 as R → ∞.

See Section 4.2 for the proof.
Equipped with Lemma 4.6 we can repeat the comparison construction from Section 3

and obtain the analogues of (3.8) and (3.9) in our context. That is, we define Y(z, t) =
1{Block(z,t) is good}, and then couple (η(1), η(2)) with a (high density) i.i.d. Bernoulli field
(Ỹ (z, t))(z,t)∈L such that

Y(z, t) ≥ 1{Block(z,t) is well-started}Ỹ (z, t) for all (z, t) ∈ L

and p(R) = P(Ỹ (z, t) = 1) → 1 as R → ∞.
This shows that the density of good blocks (and thus also the density of space-time sites

where η(1) and η(2) agree) will be high. In order to conclude that in fact η(1) and η(2) will
agree a.s. from some time on in a growing space-time region, we invoke the fact that “dry”
(=̂ “uncoupled”) clusters of blocks do not percolate when p(R) is close to 1. More precisely
we set

C0 :=
⎧⎨⎩(z, t) ∈ L :

There exists a path (z0,0), (z1, Tblock), . . . , (zt , t) in L
with z0 = 0, zt = z such that ‖zi − zi−1‖ ≤ L′

block and
Ỹ (zi, iTblock) = 1 for i ∈ {1, . . . , t/Tblock}

⎫⎬⎭
to be the cluster of sites which are connected to the origin by an open path in the Bernoulli
field (Ỹ (z, t))(z,t)∈L. Further we say that a space-time point (z, t) ∈ L is C0-exposed if there
is an arbitrary path from it to the zero-time slice, which entirely avoids C0, that is, if there is a
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path (z0,0), . . . , (zt , t) in L with zt = z such that ‖zk −zk−1‖ ≤ L′
block and (zk, kTblock) /∈ C0,

k = 1, . . . , t/Tblock.
It follows from [12], Section 3, that there is a truncated cone originating from the origin

in which there exist no C0-exposed sites. The exact statement we are interested in is a direct
reformulation of [5], Lemma 14.

LEMMA 4.7 ([5], Lemma 14). If p(R) is sufficiently close to 1, then there is a posi-
tive constant c > 0 and an almost surely finite random time τ , such that conditioned on
{|C0| = ∞} there are no C0-exposed sites in {(z, t) ∈ L : ‖z‖ ≤ ct, t ≥ τ }.

For large enough R the Bernoulli field (Ỹ (z, t))(z,t)∈L contains an infinite cluster of open
sites with probability one. Similar to Section 3, because a good block will be created with
positive probability from any nontrivial initial condition, we can assume without loss of gen-
erality that this cluster contains the origin and that the block at the origin is good.

Lemma 4.7 together with Lemma 4.6 imply that for sufficiently large R, on {|C0| = ∞}
there is a (random) time τ > 0 and a constant c > 0 such that no sites in {(z, t) ∈ L : ‖z‖ ≤
ct, t ≥ τ } are C0-exposed. We show that this implies that η(1) agrees with η(2) on the space-
time cone A := {(z, t) ∈ Zd ×N : ‖z‖ ≤ c(t − τ), t ≥ τ } centered at (0, τ ). Indeed, assume to
the contrary that there exists (z, s) ∈ A such that η

(1)
s (z) �= η

(2)
s (z). Then we can find a path

(z, s), (xs−1, s − 1), . . . , (x0,0) in Zd ×N0 such that xu ∈ BR(xu+1) and η
(1)
u (xu) �= η

(2)
u (xu)

for all 0 ≤ u ≤ s − 1. By disregarding all u’s which are not a multiple of T = Tblock, there
exists some integer k and a sub-path (z, s), (xkT , kT ), . . . , (x0,0) in Zd × N0 “backwards
in time”. Assume without loss of generality that s is a multiple of T and associate to the
sub-path the nearest neighbour path ((Z, k + 1), (Xk, k), . . . , (X0,0)) ⊆ L where Z,Xk ∈
L′

BlockZ
d are the respective closest grid-points to z and xkT in the coarse-grained lattice.

In particular ‖Xk − xkT ‖ ≤ R′
Block for k = 0, . . . , s. By definition Ỹ (Xk, kT ) = 0 for k =

0, . . . , s, whence (Z, s) is a C0-exposed site, contradicting Lemma 4.7 and yielding that in
fact η

(1)
s (z) = η

(2)
s (z). As (z, s) ∈ A was chosen arbitrarily, the claim of Theorem 1.6 follows

with T coupl = τ and a = a(R,μ,d) = c.

4.2. Proof of Lemma 4.6. We now show the key step in proving Theorem 1.6, which is
showing that the coupled region in the well-started configuration of a good block expands to
the neighbouring sites with high probability.

PROOF OF LEMMA 4.6. In order to keep the notation lighter we only prove the lemma
for a block centred at the origin at time 0. That is, we show that for some q = q(R,μ) → 0
as R → ∞,

(4.5) P
(
Block(0,0) is good|F0

) ≥ 1{Block(0,0) is well-started}
(
1 − q(R,μ)

)
.

Shifting the block yields the desired property for blocks centred at arbitrary space-time sites.
Note that we still condition on F0, as we allow for possibly random initial configurations
η

(i)
0 , i = 1,2. As was already anticipated in Remark 4.5, in order to see the spreading of

the coupling after Tblock steps, we need a large number of sites within distance Rdens of the
origin for which the densities of both η(1), η(2) are close to θμ. This is made precise by the
following auxiliary events, where the densities have the prescribed behaviour on balls whose
radii decrease by R at each time step.
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FIG. 5. The event �n occurs if the local density of η(i), i = 1,2 is within distance ε of the fixed point θμ for all
space-time points in the above pyramid. For convenience of presentation the spatial axis in the sketch is scaled by
R, while the temporal axis is not scaled.

Recall that Tblock = ctime�logR� and write R′(k) := R′
block + k�sR�. For n ∈ N let

�n := {∣∣δR

(
x;η(i)

j

) − θμ

∣∣ < ε : ‖x‖ ≤ R′(Tblock) + (n − j)R, j ∈ {1, . . . , n}, i ∈ {1,2}}.
(Recall also that ε was chosen at the beginning of Section 4.1, above (4.2).)

Note that in a well-started configuration around the origin we have |δR(x;η(i)
0 ) − θμ| < ε

for every x such that ‖x‖ ≤ R′(Tblock) + TblockR (in fact, this holds for all x within distance
Rdens from the origin and Rdens ≥ R′(Tblock) + TblockR). The sites, where the densities of
η(1), η(2) are close to θμ due to the well-startedness, encompass the entire n = 0 (bottom)
level of the space-time pyramid �Tblock , see also Figure 5. Due to this the event �Tblock holds
with high probability. Indeed, by defining the events A0 := ∅ and

Aj := {∃z ∈ BR′(Tblock)+(Tblock−j)R(0) : ∣∣δR

(
z;η(1)

j

) − θμ

∣∣ > ε
}
,

we see that on the event {Block(0,0) is well-started}

P
(
�c

Tblock
|F0

) ≤ 2P

(
Tblock⋃
j=1

Aj

∣∣∣F0

)
≤ 2

Tblock∑
j=1

P
(
Aj ∩ Ac

j−1|F0
) ≤ 2

Tblock∑
j=1

P
(
Aj | Ac

j−1,F0
)
.

Together with Lemma 2.3 it follows with some constants c1, c2 > 0 that

(4.6) 1{Block(0,0) is well-started}P
(
�c

Tblock
|F0

) ≤ c1Tblock(Lblock)
d exp

(−c2V
d
R

)
.

In order to utilise the control guaranteed by the pyramids �n we introduce events that
describe properties (ii) and (iii) in Definition 4.4:

C := {
η

(1)
Tblock

(x) = η
(2)
Tblock

(x) for ‖x‖ ≤ 3R′
block

}
D := {(

η
(1)
Tblock

, η
(2)
Tblock

)
satisfy (4.3) around L′

blocke for all ‖e‖ ≤ 1
}
.

We are interested in the conditional probability P(C ∩ D|F0) on the event that Block(0,0)

is well-started. Clearly it holds that

P
(
Cc ∪Dc|F0

) ≤ P
(
Cc ∩ �Tblock |F0

) + P
(
�c

Tblock
|F0

) + P
(
Dc|F0

)
.(4.7)

By (4.6) the second term in (4.7) decays in R for well-started configurations. To deal with
the third term, note that it follows from Lemma 4.2 and Lemma 2.3 that for some constants
c3, c4 > 0

(4.8) 1{Block(0,0) is well-started}P
(
Dc|F0

) ≤ c3Tblock(Lblock)
d exp

(−c4V
d
R

)
.
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It remains to find a bound for P(Cc ∩ �Tblock |F0). To this end fix k ∈ {1, . . . , Tblock}. By a
union bound and Markov’s inequality

(4.9)

P
({∃|x| ≤ R′(k) such that η

(1)
k (x) �= η

(2)
k (x)

} ∩ �k|F0
)

≤ ∑
x∈BR′(k)(0)

E
[
1�k

∣∣η(1)
k (x) − η

(2)
k (x)

∣∣|F0
]

≤ E
[ ∑
x∈BR′(k)(0)

1�k−1E
[∣∣η(1)

k (x) − η
(2)
k (x)

∣∣|Fk−1
]∣∣∣F0

]
,

where in the last step we have used that �k ⊆ �k−1. In light of the coupling (4.1), we have

E
[∣∣η(1)

k (x) − η
(2)
k (x)

∣∣|Fk−1
] = P

(
U(x, k) ≤ ∣∣ϕμ

(
δR

(
x;η(1)

k−1
)) − ϕμ

(
δR

(
x;η(2)

k−1
))∣∣|Fk−1

)
= ∣∣ϕμ

(
δR

(
x;η(1)

k−1
)) − ϕμ

(
δR

(
x;η(2)

k−1
))∣∣.

Now δR(x;η(i)
k−1) ∈ [θμ − ε, θμ + ε] for i = 1,2 on the event �k−1 and by Lemma 4.1, ϕμ

is a contraction with Lipschitz constant κ(μ, ε) < 1 on this interval. Therefore

1�k−1E
[∣∣η(1)

k (x) − η
(2)
k (x)

∣∣|Fk−1
] ≤1�k−1κ(μ, ε)

∣∣δR

(
x;η(1)

k−1
) − δR

(
x;η(2)

k−1
)∣∣

≤1�k−1κ(μ, ε)V −d
R

∑
y∈BR(x)

∣∣η(1)
k−1(y) − η

(2)
k−1(y)

∣∣.
Plugging this back into (4.9) yields

P
({∃|x| ≤ R′(k) such that η

(1)
k (x) �= η

(2)
k (x)

} ∩ �k|F0
)

≤ κ(μ, ε)V −d
R

∑
x∈BR′(k)(0)

∑
y∈BR(x)

E
[
1�k−1

∣∣η(1)
k−1(y) − η

(2)
k−1(y)

∣∣|F0
]
.

By inductively repeating this step another k − 1 times, we can upper bound the right-hand
side of the last display by

κ(μ, ε)kV −dk
R E

[ ∑
x∈BR′(k)(0)

∑
y1∈BR(x)

∑
y2∈BR(y1)

· · · ∑
yk∈BR(yk−1)

∣∣η(1)
0 (yk) − η

(2)
0 (yk)

∣∣|F0

]
.

Since |η(1)
0 (yk) − η

(2)
0 (yk)| ≤ 1, with k = Tblock we obtain

1{Block(0,0) is well-started}P
(
Cc ∩ �Tblock |F0

) ≤ κ(μ, ε)TblockV d
R′(Tblock)

.(4.10)

The choice ctime > −(d + 1)/ logκ guarantees that this probability tends to zero as R goes
to infinity. Combining (4.10) together with (4.8) and (4.6) gives that, on the event that
Block(0,0) is well-started, all the terms on the right-hand side of (4.7) tend to zero as
R goes to infinity, thus proving (4.5). �

4.3. Proof of Theorem 1.5. We now have all the required tools to prove complete con-
vergence of the BARW. Given these tools, the proof is relatively standard and thus it is kept
brief.

PROOF OF THEOREM 1.5. As the Dirac measure concentrated around η ≡ 0 is an invari-
ant distribution for η we only need to show existence of a unique nontrivial limiting invariant
measure which does not charge the empty configuration. To this end, let ν0 be the product
measure on Zd such that, for all x ∈ Zd , η0(x) = 1 with probability p > 0 and η0(x) = 0
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otherwise. For any n ≥ 1, denote by νn the distribution of ηn given that η0 is distributed as
ν0.

Since the set of all probability measures on {0,1}Zd
is compact, there exists a subsequence

along which 1
N

∑N
n=0 νn converges to some probability measure ν on {0,1}Zd

. From a stan-
dard result for interacting particle systems, see, for example, [25], Proposition 1.8, any such
subsequential limit ν must be invariant for the process η.

To show that ν is nontrivial (and actually gives zero mass to the empty configuration
η ≡ 0), it suffices to show that η survives almost surely. As we chose ν0 to be a product
measure and since for any fixed R the blocks defined in Section 3 depend only on finitely
many sites, it follows that at time 0 there are almost surely infinitely many well-started blocks
and hence by (3.6) infinitely many good blocks. By the correspondence of the blocks with
supercritical oriented site percolation and the fact that supercritical oriented site percolation
starting from infinitely many occupied sites does not die out (see, e.g., [26], Theorem B24),
we have Pν0(∃n ≥ 1 : ηn ≡ 0) = 0.

Furthermore, the measure ν is extremal, because any limiting invariant distribution ν′
which gives zero mass to η ≡ 0 must be unique. Indeed, if two stationary distributions ex-
isted with this property, then by Theorem 1.6 they would coincide on finite subsets of Zd , and
would therefore be equal. Furthermore, under ν, η has exponentially decaying correlations in
space and in time, see [11], Corollary 3.18, which in particular implies ergodicity with respect
to spatial shifts. Indeed, using the construction of good blocks from the proof of Theorem 1.6
below, this can be deduced from the corresponding property of supercritical oriented perco-
lation in a fairly straightforward way (see, for example, the analogous construction in [11],
Section 3.4, for the related model of a locally regulated population from [5]).

Finally, in order to verify the complete convergence, consider any (fixed) initial condition
η̃0 ∈ {0,1}Zd

, a finite box B ⊂ Zd centred at the origin and a configuration ζ ∈ {0,1}B . With
S := {ηm �≡ 0 for all m ∈ N} we have to check that

(4.11) lim
n→∞Pη̃0

({ηn|B = ζ } ∩ S
) = Pη̃0(S)ν

({η0|B = ζ }).
Pick ε > 0. The coupling construction from the proof of Theorem 1.6 and standard properties
of supercritical oriented percolation show that one can pick L′ ∈ N and T ′ ∈ N large so that
|Pη′

0
({ηm|B = ζ }) − ν({η0|B = ζ })| ≤ ε for all m ≥ T ′ and all starting configurations

η′
0 ∈ G′ :=

⎧⎨⎩η̃ ∈ {0,1}Zd :
The density of well-started sub-boxes, where the local
density of η̃ satisfies (4.3) from Definition 4.3, in a box
of radius L′Rblock is at least 1/2.

⎫⎬⎭ .

Furthermore, since starting from any nontrivial initial condition there is a positive chance of
producing a well-started box in a finite number of steps, a “restart” argument together with
the construction from Theorem 1.6 shows that Pη̃0(S�{ηn ∈ G′}) ≤ ε for all large enough n.
Thus ∣∣Pη̃0

({ηn|B = ζ } ∩ S
) − Pη̃0(S)ν

({η0|B = ζ })∣∣
≤ ∣∣Pη̃0

({ηn|B = ζ } ∩ {
ηn/2 ∈ G′}) − Pη̃0

({
ηn/2 ∈ G′})ν({η0|B = ζ })∣∣ + 2ε

≤ Eη̃0

[
1{ηn/2∈G′}

∣∣Pη̃0(ηn|B = ζ |Fn/2) − ν
({η0|B = ζ })∣∣] + 2ε ≤ 3ε.

Taking n → ∞ and then ε ↓ 0 proves (4.11). �

5. Extinction results. We provide here a simple proof of Theorem 1.1 describing the
extinction regime.
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PROOF OF THEOREM 1.1. Let R ∈ N and μ > 0 be such that

(5.1) μ̃ := V d
Rϕμ

(
V −d

R

) = μe−μV −d
R < 1.

Then ψ(w) := μ̃w fulfils ϕμ(w) ≤ ψ(w) on [0,1] ∩ V −1
R Z (note that if w ≥ V −1

R , we have
ϕμ(w) = μw exp(−μw) ≤ μw exp(−μV −d

R ) = μ̃w and ϕμ(0) = ψ(0)).
Thus, we can define a process (η̃n)n∈N0 with η̃0 = η0 using this ψ as in (2.3). By the

coupling construction from Section 2.1 and specifically Lemma 2.1(b) we conclude that
ηn(x) ≤ η̃n(x) holds for all n ∈ N, x ∈ Zd . Since ψ is a linear function, we have

E
[
η̃n(x)

] = μ̃V −d
R

∑
y∈BR(x)

E
[
η̃n−1(y)

]
.

Iterating this n times shows

E
[
η̃n(x)

] = μ̃n
∑
z∈Zd

p(n)(x, z)E
[
η0(z)

] ≤ μ̃n,(5.2)

where p(n) is the n-fold convolution of the uniform transition kernel on BR(0) with itself.
Since μ̃ < 1 this combined with the coupling shows that

∑∞
n=1 P(ηn(x) > 0) < ∞ so that

indeed for every x ∈ Zd

P
(
ηn(x) = 0 for all n large enough

) = 1.

Note that from (5.2) we deduce also extinction almost surely for the total population when
started from any finite initial configuration.

Next note that the equation μ exp(−μV −d
R ) = 1, that is, the equality in (5.1), has two

positive real solutions μ1, μ2 such that 1 < μ1 < μ2 < ∞ when R ≥ 1 (when R = 0 there is
always extinction). The function μ �→ μ exp(−μV −d

R ) is unimodal and vanishes at 0 as well
as at +∞, so if μ < μ1 or μ > μ2 there is extinction.

We can rewrite μ exp(−μV −d
R ) = 1 as yey = x where y = −μV −d

R and x = −V −d
R . When

x ∈ [−1/e,0), this equation has two real solutions y1 = W0(x) and y2 = W−1(x), where W0
and W−1 are two branches of the Lambert W function. Since μ = −V d

Ry, the two solutions
of μ exp(−μV −d

R ) = 1 are

μ1 = −V d
RW0

(−V −d
R

)
, μ2 = −V d

RW−1
(−V −d

R

)
.

Since x ∈ [−1/e,0), we can express W0(x) with its Taylor series centred at 0, which has
radius of convergence 1/e, that is,

W0(x) =
∞∑

n=1

(−n)n−1

n! xn = x − x2 + 3

2
x3 − 8

3
x4 + · · · .

This gives

(5.3) μ1 = −V d
RW0

(−V −d
R

) = 1 + V −d
R + 3

2
V −2d

R + · · · .

For the second solution, we use that

−1 − √
2u − u < W−1

(−e−u−1)
< −1 − √

2u − 2u

3
for every u > 0. Take u = d logVR − 1. Then the formula above gives

(5.4)
−

√
2d logVR − 2 − d logVR < W−1

(−V −d
R

)
< −1

3
−

√
2d logVR − 2 − 2d

3
logVR,

which gives the result. �
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6. Auxiliary results. We prove here the auxiliary technical results that were omitted in
the previous sections. Section 6.1 deals with Lemma 2.5 which was used in the construction
of the comparison density profiles ξ−

n in Section 3. In Section 6.2, we then show Lemma 4.1
used in the proof of the complete convergence in Section 4. Finally, in Section 6.3 we provide
a proof of Proposition 1.10.

6.1. Proof of Lemma 2.5. Recall that f : Z → [0,1] is defined by

f (x) = min
{(

ε0 + x/�wR�)1x≥0,1
}
.

It is immediate that this function satisfies the properties in (2.9). Therefore, it only remains
to show that (2.10) holds for a suitable choice of parameters.

It is clear that the larger the growth factor a is, the easier it is for (2.10) to be satisfied.
Setting ε0 = min{(a − 1)2,1/100}, it follows that

aδR(x;f ) ≥ (1 + √
ε0)δR(x;f ) for all x ∈ Z,

which lets us reduce to the case where 1 < a < 11/10 and a = 1 + √
ε0.

We now set

(6.1) w = 1/
√

ε0,

and define

C0 := {y ∈ Z : y < 0}, C1 := {
y ∈ Z : y ≥ �wR�},

so that f (y) = 0 for every y ∈ C0 and f (y) = 1 for every y ∈ C1. Since w > 1, exactly one
of the two sets BR(x) ∩ C0 and BR(x) ∩ C1 can be nonempty. Clearly (2.10) holds when
BR(x) ⊆ C0, or BR(x) ⊆ C1.

When BR(x) ∩ (C0 ∪ C1) = ∅, then f (y) = ε0 + y/�wR� for every y ∈ BR(x) and thus
δR(x;f ) = f (x), so (2.10) holds as well.

The remaining two cases are more delicate. When BR(x) ∩ C0 �= ∅ and BR(x) ⊈ C0, that
is, when −R ≤ x < R, then the density of f around x can be written as

δR(x;f ) = V −1
R

x+R∑
y=0

f (y) = V −1
R

x+R∑
y=0

(
ε0 + y

�wR�
)

= V −1
R

(
(x + R + 1)ε0 + 1

2�wR�(x + R)(x + R + 1)

)
.

Using this, (2.10) is equivalent to

a(x + R + 1)ε0 + a

2�wR�(x + R)(x + R + 1) ≥ VRf
(
x + �sR�)

= VR

(
ε0 + x

�wR� + �sR�
�wR�

)
.

Rearranging terms, we arrive at a quadratic inequality

(6.2) αx2 + βx + γ ≥ 0,

where

α = a

2�wR� ,

β = aε0 + R

�wR�
(

a

2
− 1

)(
2 + 1

R

)
,

γ = aε0R

(
1 + 1

R

)
+ aR2

2�wR�
(

1 + 1

R

)
− R

(
2 + 1

R

)(
ε0 + �sR�

�wR�
)
.



5762 M. BIRKNER ET AL.

As α > 0 for our choices of parameters, (6.2) and hence (2.10) follow immediately if the
polynomial αx2 + βx + γ has no real roots. The discriminant of (6.2) is given by

(6.3)
β2 − 4αγ =

(
aε0 + 2

w

(
a

2
− 1

))2
− 2a

w

(
aε0 + a

2w
− 2

(
ε0 + s

w

))
+ O

(
R−1)

= (aε0)
2 + 4

w2 (1 − a + as) + O
(
R−1)

.

We now choose

s =
√

ε0

1 + √
ε0

− ε0,

which is clearly positive for ε0 ∈ (0,1/100). Recalling also (6.1) and that a = 1 + √
ε0, the

right-hand side of (6.3) (without the error term) equals

ε2
0(

√
ε0 − 3)(1 + √

ε0)

which is clearly negative. As consequence, the quadratic inequality (6.2) holds for all R big
enough, depending only on a, and thus (2.10) holds also in this case.

For the final case, when BR(x)∩C1 �= ∅ that is, �wR�−R ≤ x ≤ �wR�−R, we observe
that the right-hand side of (2.10) is bounded by one and the left-hand side is increasing in x. It
is thus sufficient to show that aδR(�wR�−R −1) ≥ 1. Using again the fact that f is linear in
the R-neighbourhood of �wR�−R−1, this is equivalent to showing af (�wR�−R−1) ≥ 1.
Recalling the definitions of a, w, and s in terms of ε0, we have

af
(�wR� − R − 1

) = a

(
ε0 + �wR� − R − 1

�wR�
)

= a
(
ε0 + 1 − w−1 + O

(
R−1))

= (1 + √
ε0)

(
ε0 + 1 − √

ε0 + O
(
R−1))

= 1 + ε
3/2
0 + O

(
R−1)

,

and thus the required inequality is satisfied for R large enough.

6.2. Proof of Lemma 4.1. We now prove Lemma 4.1, exploiting properties of ϕμ in the
vicinity of its fixpoint θμ.

PROOF OF LEMMA 4.1. To prove that ϕμ is a contraction in the vicinity of its critical
point θμ = μ−1 logμ, it suffices to observe that |ϕ′

μ(w)| < 1 in some neighbourhood of θμ.
Since ϕ′

μ(w) = μe−μw(1 − μw), it holds that |ϕ′
μ(θμ)| = |1 − logμ| < 1 if μ ∈ (1, e2). The

statement then follows by the continuity of the derivative.
To find the sequences αm and βm, note first that ϕμ is increasing on [0,1/μ] and decreasing

on [1/μ,∞]. It is convenient to consider three cases (cf. also Figure 6):
(1) If μ ∈ (1, e), then θμ < 1/e < 1/μ, and thus ϕμ is a strictly increasing on [0,1/e] � θμ,

and ϕμ(w) > w if w < θμ, and ϕμ(w) < w when w ∈ (θμ,1/e]. Pick α1 < θμ and β1 > 1/μ

satisfying ϕμ(β1) ≥ ϕμ(α1). Put α2 = (α1 + ϕμ(α1))/2, β2 = (e−1 + μ−1)/2, then we have
indeed ϕμ([α1, β1]) ⊆ (α2, β2). From here on, we can simply iterate by setting

(6.4) αm+1 = αm + ϕμ(αm)

2
, βm+1 = βm + ϕμ(βm)

2
, m ≥ 2.

This defines two sequences converging to θμ. Furthermore αm < αm+1 < ϕμ(αm) and
ϕμ(βm) < βm+1 < βm, so (αm)m≥1 is strictly increasing and (βm)m≥1 is strictly decreas-
ing. Since ϕμ is strictly increasing on [0,1/e] we also have ϕμ([αm,βm]) ⊆ (αm+1, βm+1)

for every m ≥ 0, as required.



SURVIVAL AND COMPLETE CONVERGENCE FOR A BARW 5763

FIG. 6. The function ϕμ, its fixpoint θμ and its maximum in the case μ < e (left), μ = e (middle) and e < μ < e2

(right).

(2) Consider now the case μ = e, that is, when θμ = 1/e and ϕ′
μ(θμ) = 0. Pick any α1 <

1/e and β1 = 1/e such that ϕμ(β1) ≥ ϕμ(α1); then build the sequence (αm)m≥1 in the same
way as in the case μ ∈ (1, e), that is, as in (6.4), using m ≥ 1 there. By construction, this
sequence is strictly increasing and converges to θμ. For every m ≥ 2, let βm be the largest
solution of ϕμ(x) = ϕμ(αm). Since w �→ ϕμ(w) is (strictly) increasing if and only if w ∈
[0,1/e], this defines a strictly decreasing sequence (βm)m≥1 converging to θμ and such that

ϕμ

([αm,βm]) ⊆ [
ϕμ(αm),1/e

] ⊆ (αm+1, βm+1),

as required.
(3) Finally, let μ ∈ (e, e2), which implies 1/μ < θμ and ϕ′

μ(θμ) ∈ (−1,0). For the initial
piece, pick α1 < 1/μ and λ > 0 so small that μ−1 + λe−1 < θμ. Define, similar to (6.4),

αm+1 = λϕμ(αm) + (1 − λ)αm, m ≤ m0 − 1,

where m0 is the smallest integer satisfying αm0 > 1/μ. Note that by construction and the
choice of λ, since ϕμ is strictly increasing on [0,1/μ] and bounded by 1/e, we have α1 <

α2 < · · · < αm0−1 ≤ 1/μ < αm0 < θμ. Choose β1 > β2 > · · · > βm0 > 1/e (> θμ) so that
ϕμ(βm) > ϕμ(αm) for m = 1, . . . ,m0, then we have ϕμ([αm,βm]) ⊆ (αm+1, βm+1) for m =
1, . . . ,m0 − 1.

Since αm0 > 1/μ, the iteration has reached the decreasing part of ϕμ after m0 steps and
we thus must swap the roles of the upper and the lower boundary in each step: set for m ≥ m0

αm+1 = ϕμ(βm) + αm

2
, βm+1 = ϕμ(αm) + βm

2
.

We note that if ϕμ(αm) < βm and ϕμ(βm) > αm then the same holds for αm+1 and βm+1.
Indeed ϕμ(βm) > αm implies that αm+1 > αm and since ϕμ is decreasing then ϕμ(αm+1) <

ϕμ(αm). Similarly ϕμ(αm) < βm implies that βm+1 < βm and so ϕμ(αm) = 2βm+1 − βm <

βm+1. Combining the two gives ϕμ(αm+1) < ϕμ(αm) < βm+1. In the same way we can prove
that ϕμ(βm+1) > αm+1. Hence for m ≥ m0

ϕμ

(
(αm,βm)

) ⊆ [
ϕμ(βm),ϕμ(αm)

] ⊆ (αm+1, βm+1).

It is clear from the construction that in each one of the three cases α1 can be chosen
arbitrarily small and β1 > 1/e (if a large β1 is required, this can be achieved by decreasing
α1 appropriately). �

6.3. Proof of Proposition 1.10. Note again that since maxw≥0 ϕμ(w) = 1/e, for ev-

ery initial condition 	0 ∈ RZd

+ of the coupled map lattice defined in (1.8) we have 	1 ∈
[0,1/e]Zd

. Thus we can assume without loss of generality that 0 ≤ 	0(z) ≤ 1/e for every
z ∈ Zd . Assume moreover that 	0(z0) > 0 for some z0 ∈ Zd , as it otherwise obviously holds
that 	n ≡ 0 for all n. The proof follows ideas from Section 4 in [5].
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PROOF OF PROPOSITION 1.10. Fix ε > 0 and let a > 1 and b > 0 be such that ψ(w) =
aw ∧ b satisfies ϕμ(w) ≥ ψ(w) for every w ∈ [0,1]. Since θμ is a stable fixpoint when
μ ∈ (1, e2), we can choose sequences (αm)m≥0, (βm)m≥0 as in Lemma 4.1 with α1 < b/2
and a suitable β1 > 1/e, such that ϕμ([αm,βm]) ⊆ (αm+1, βm+1) and βm∗ − αm∗ < ε for
some m∗ ∈ N.

For a fixed z ∈ Zd we show that there exists n0 > m∗ such that 	n(z) ∈ [αm∗, βm∗] for all
n ≥ n0. We start by showing that

	n(z) ≥ ∑
y∈Zd

p(n)(z, y)
[(

an	0(y)
) ∧ b

]
,(6.5)

where p(n)(·, ·) are the n-step transition probabilities of a random walk whose steps are uni-
formly distributed in BR(0)∩Zd . We can check (6.5) by induction. Using Jensen’s inequality,
it holds that

	n+1(z) = ϕμ

(
δR(z;	n)

) ≥ ψ

(
V −d

R

∑
x∈BR(0)

	n(z + x)

)

≥ V −d
R

∑
x∈BR(0)

ψ
(
	n(z + x)

)
.

Using the inductive assumption,

ψ
(
	n(z + x)

) ≥
[
a

∑
y∈Zd

p(n)(z + x, y)
((

an	0(y)
) ∧ b

)] ∧ b

= ∑
y∈Zd

p(n)(z + x, y)
((

an+1	0(y)
) ∧ ab

) ∧ b

≥ ∑
y∈Zd

p(n)(z + x, y)
((

an+1	0(y)
) ∧ b

) ∧ b

= ∑
y∈Zd

p(n)(z + x, y)
((

an+1	0(y)
) ∧ b

)
,

so

	n+1(z) ≥ V −d
R

∑
x∈BR(0)

∑
y∈Zd

p(n)(z + x, y)
((

an+1	0(y)
) ∧ b

)
and the conclusion follows from the fact that

V −d
R

∑
x∈BR(0)

p(n)(z + x, y) = ∑
x∈BR(0)

p(z, z + x)p(n)(z + x, y) = p(n+1)(z, y).

For our fixed choice of z, we show that

(6.6) 	n(x) ∈ [α1, β1] for all n ≥ n0 and ‖x − z‖ ≤ 2Rm∗.

Take n1 > (4Rm∗ + 2‖z − z0‖)2 ∨ ((ln(b) − ln(	0(z0)))/ ln(a)) large enough. By a local
central limit theorem for symmetric finite range random walks, cf. [23], Theorem 2.1.1, there
exists c > 0 such that p(n1)(y, z0) ≥ cn

−d/2
1 if ‖y − z0‖ ≤ √

n1. By letting n1 > (ln(b) −
ln(	0(z0)))/ ln(a) it holds that an1	0(z0) ∧ b = b and hence it follows with (6.5) that

	n1(y) ≥ ∑
w∈Zd

p(n1)(y,w)
[(

an1	0(w)
) ∧ b

] ≥ p(n1)(y, z0)
[(

an1	0(z0)
) ∧ b

] ≥ cn
−d/2
1 b.
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Using (6.5) again, we deduce that for any n2 <
√

n1/2

	n1+n2(x) ≥ ∑
y∈Zd

p(n2)(x, y)
[(

an2	n1(y)
) ∧ b

]
≥ ∑

y∈B√
n1 (z0)

p(n2)(x, y)
((

an2cn
−d/2
1

) ∧ 1
)
b.

Choosing n2 = d logn1 − 2 log c gives that (an2cn
−d/2
1 ) ∧ 1 = 1 and, since Bn2(x) ⊆

B√
n1(z0) when n1 > (4Rm∗ + 2‖z − z0‖)2, the above is larger than b.
Since b > 2α1 and trivially ϕμ(w) ≤ 1/e < β1 for every w ≥ 0, this shows (6.6). It follows

that

	n+1(x) = ϕμ

(
δR(x;	n)

) ∈ [α2, β2] for all n ≥ n0 and ‖x − z‖ ≤ (
2m∗ − 1

)
R

and iterating m∗ steps shows that

	n+m∗−1(x) ∈ [αm,βm] for all n ≥ n0 and ‖x − z‖ ≤ m∗R.

Take x = z to conclude that 	n(z) ∈ [αm,βm] for n ≥ n0 + m∗. �

7. Open questions. We collect here some natural follow-up questions to our results,
several of them were already mentioned in the text.

• Is there a sharp transition? That is, for given R, is the survival region a (possibly empty)
interval of values of μ? See also Figure 7.

• Is there always extinction for small values of R? Simulations suggest that in d = 1 for
R ≤ 2 the process dies out for all values of μ, see Figure 7 again.

• Can one give results for “soft” annihilation, allowing multiple occupancy of the sites?
Of course, instead of the strong competition we consider, one could look at truncation,
keeping for instance at most N particles per site at the same time and removing the others.
Theorem 1.1 in [30] implies for this truncation in our model that there is, for each μ > 1
and all R, a critical value Nc ∈ {2,3,4, . . .} such that the survival probability is 0 for
N ≤ Nc and strictly positive for N > Nc.

FIG. 7. Simulations of the “phase diagram” for a one-dimensional BARW on Z/1000Z with initial condition
η0 = δ0, showing a Monte Carlo estimate of the survival probability as a function of R and μ. On the left, 200
iterations of this process were run and the proportion of realisations that survived the first 250 generations is
shown. Dark blue colour corresponds to no surviving realisations and yellow to only surviving realisations. The
right image zooms in the region of small μ’s. In both cases the red line is our theoretical bound for extinction
from Theorem 1.1.
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• What is the speed for the stochastic “travelling waves” in our model? Is there a shape
theorem?

• Are there “discrete travelling waves” for the coupled map lattice defined in (1.8)? If so,
how is their deterministic speed related to the speed of the stochastic “travelling waves”
for the BARW?

• The representation (1.4) suggests an interesting connection to spread-out oriented site per-
colation: let each site be open with probability p and closed with probability 1 − p, where
p = min{ϕμ((2R + 1)−d), ϕμ(1)}. Connect the open sites at time n + 1 to their “parent”
(with distance ≤ R) at time n, provided it is open. Then the “wet” sites at time n are a
lower bound for ηn.

Let pc(d,R) be the percolation threshold for the event that there is an infinite connected
cluster. How does the percolation threshold in directed space-time percolation behave for
R → ∞?

We have the following conjecture, based on the analogy with “spread-out oriented bond
percolation”, see [39]:

lim
R→∞(2R + 1)dpc(d,R) = 1 for every d > 4.

It is plausible since the lattice should be more and more tree-like in high dimensions but
we could not find a proof in the literature. Since ϕ′

μ(0) > 1, this conjecture would lead to
an alternative proof of survival for large R in d > 4.

APPENDIX

For completeness and ease of reference, we state the following concentration estimate for
sums of independent Bernoulli random variables, which is a straightforward consequence of
Bernstein’s inequality.

LEMMA A.1. Let (Xi)i=1,...,n be independent Bernoulli random variables with pi =
P(Xi = 1), and let Sn := X1 + · · · + Xn. Then, setting μn := E[Sn] = ∑n

i=1 pi , σ 2
n :=

VarSn = ∑n
i=1 pi(1 − pi), and mn := max1≤i≤n max{pi,1 − pi} = max1≤i≤n ess sup|Xi −

E[Xi]| (≤ 1), we have

P(Sn − μn ≥ w) ≤ exp
(
− w2

2σ 2
n + (2/3)mnw

)
, w ≥ 0,(A.1)

and the same bound applies to P(Sn − μn ≤ w) for w ≤ 0.

PROOF. By Bernstein’s inequality (see, e.g., [3], Ineq. (8)), for every t ≥ 0,

P(Sn ≥ μn + tσn) ≤ exp
(
− t2

2 + 2mnt/(3σn)

)
= exp

(
− (σnt)

2

2σ 2
n + (2/3)mntσn

)
.

Reparametrising tσn = w (and implicitly assuming σn > 0, otherwise the problem becomes
trivial) we can rewrite this as (A.1).

Applying the argument to the 1 − Xi’s gives the same bound for P(Sn − μn ≤ w), for
w ≤ 0. �
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