
Safety Science 147 (2022) 105586

A
0

Contents lists available at ScienceDirect

Safety Science

journal homepage: www.elsevier.com/locate/safety

Bayesian inference methods to calibrate crowd dynamics models for safety
applications
Marion Gödel a,b,∗, Nikolai Bode c,∗∗, Gerta Köster b, Hans-Joachim Bungartz a

a Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany
b Department of Computer Science and Mathematics, Munich University of Applied Sciences, Lothstraße 64, 80335 München, Germany
c Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, University Walk, Bristol, BS8 1TW, United Kingdom

A R T I C L E I N F O

Keywords:
Crowd dynamics
Pedestrian safety
Model calibration
Bayesian inference
Bottleneck
Safety engineering

A B S T R A C T

Crowd simulation is a crucial tool to assess risks and engineer crowd safety at events and in built infrastructure.
Simulations can be used for what-if studies, for real-time predictions, as well as to develop regulations for
crowd safety. A reliable prediction requires a carefully calibrated model. Model parameters are often calibrated
as point estimates, single parameter values for which the model evaluation fits given data best. In contrast,
Bayesian inference provides a full posterior distribution for the fitted parameters that includes the residual
uncertainty after calibration. In this work, we calibrate a microscopic model and an emulator derived from a
microscopic model for crowd dynamics using point estimates and Approximate Bayesian Computation. We
calibrate on data measuring the flow through a key scenario of crowd safety: a bottleneck. We vary the
bottleneck width and demonstrate via three case studies the advantages and shortcomings of the two calibration
techniques. In a case with a unimodal posterior, both methods yield similar results. However, one safety-
relevant case study, that mimics the dynamics of evacuating people squeezing through an opening, exhibits
a faster-is-slower dynamic where multiple free-flow speeds lead to the same flow. In this case, only Bayesian
inference reveals the true bimodal shape of the posterior distribution. For multidimensional calibration, we
illustrate that Bayesian inference allows accurate calibration by describing parameter relations. We conclude
that, in practice, point estimation often seems sufficient, but Bayesian inference methods are necessary to
capture important structural information about the uncertain parameters, and thus the physics of safety.
1. Introduction

Microscopic crowd simulations are a common tool to evaluate evac-
uation concepts for new buildings, check safety concepts for events
or increase comfort and capacities in infrastructure. For a reliable
prediction, careful calibration of the model parameters is essential. We
understand calibration as the process of adjusting model parameters so
that a predefined simulation outcome matches observed data. Since the
readers of this manuscript may have diverse backgrounds, we include
a short glossary of key terms used in this manuscript in Table 1.

1.1. Motivation

Often, parameters that cannot be measured directly are calibrated.
Calibration can be performed in different ways, from manual adjust-
ment by visual comparison of simulation outcomes and observations
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to automated alignment using quantitative simulation results. For au-
tomated calibration, point estimates such as maximum likelihood es-
timates are a common approach in pedestrian dynamics (Daamen and
Hoogendoorn, 2012; Hoogendoorn and Daamen, 2006, 2007; Ko et al.,
2013; Lovreglio et al., 2015). While point estimates are easy to im-
plement and relatively cheap to evaluate, one drawback is that they
provide, by definition, a single parameter estimate. When a parameter
is influential, even relatively small changes of the parameter value
likely have a significant impact on the quantity of interest. If we
use a point estimate for such a parameter for our subsequent studies,
neglecting the uncertainty in the result of the calibration, the results of
our studies may appear more certain than they are.

We propose to apply Bayesian inference methods that provide a
full posterior distribution of the uncertain parameters instead. While
Bayesian inference methods are computationally more costly than most
point estimates, the posterior comprises uncertainty about the data
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Table 1
Key terms for calibration as they are understood in this manuscript.
Term Description

Frequentist approach Parameters to be calibrated are fixed but possibly unknown. The
estimator for the parameter is a random variable with mean,
(co-)variance and distribution.

Bayesian inference Parameters to be calibrated are considered random variables
following a probability distribution that includes any knowledge on
the parameter.

Prior distribution Probability distribution of the uncertain parameters that
incorporates any information on the parameter before incorporating
the observations.

Posterior distribution Probability distribution of the uncertain parameters after the
observations have been taken into account.

Calibration The process of adjusting model parameters so that they match
observations for a predefined simulation outcome.

Microscopic calibration Observed data set used for calibration consists of microscopic
quantities, often individual trajectories.

Macroscopic calibration Observed data set used for calibration consists of observations on
macroscopic quantities such as density or flow.

Distance measure A metric used for quantitative calibration which indicates the
difference between observations and the model response at a given
parameter value.
set used for calibration. This enables us to handle the uncertainty in
the parameter after calibration. Bayesian inference methods are not
commonly employed in crowd dynamics yet and have only been used
in a few publications (Bode, 2020; Bode et al., 2019; Corbetta et al.,
2015; Song and Lovreglio, 2021).

In this work, we perform calibration for a bottleneck scenario. Bot-
tlenecks are key elements in many topographies, e.g. when looking at
ingress or egress situations. The constriction can lead to high densities
that can potentially be harmful. Many experiments have been carried
out for bottlenecks (Haghani and Sarvi, 2018) and they are often used
for calibration (Hoogendoorn and Daamen, 2007; Liu et al., 2014;
von Sivers, 2016). Especially the flow through bottlenecks is often of
interest (Daamen and Hoogendoorn, 2010; Liao et al., 2014; Liddle
et al., 2009, 2011; Rupprecht et al., 2011; Seyfried et al., 2009). For
example, when corridor widths in guidelines are suggested to ensure a
certain flow. To obtain reliable simulation results, we need to consider
uncertainties after calibration.

We demonstrate on a bottleneck scenario how Approximate
Bayesian Computation (ABC), a flexible technique to perform Bayesian
model calibration, can be employed for calibrating crowd dynamics
models. ABC is a likelihood-free approach which is beneficial since the
likelihood of computer models is typically not known. We compare the
Bayesian method to a classical point estimate in three case studies to
highlight the advantages of a full posterior distribution over a single
point estimate: In the first example, we show that point estimates and
ABC are both suitable for calibrating a stochastic simulator when the
posterior is a unimodal symmetric distribution. In the second example,
ABC reveals a multi-modal posterior distribution that arises because
several parameter values lead to the same value for the quantity of
interest, in this case, the flow in a force-based simulator with a faster-
is-slower dynamic. The point estimate, on the other hand, finds by
design only a single mode. For subsequent studies, this can lead to
too low egress times indicating a more efficient egress and therefore
potentially harming pedestrians. In the third example, we infer multiple
parameters. ABC provides a joint posterior distribution that contains
additional information such as parameter correlations and how well
parameters are informed by the data.

1.2. State-of-the art calibration in crowd simulation

In crowd simulation, calibration of model parameters is an essential
step, yet there is no standardized approach (Lovreglio et al., 2015). As
stated before, we understand calibration as a process that aims to adjust
2

simulation response and observation based on a predefined quantity
of interest by adjusting model parameters. Comparing simulation out-
comes with observations is a step also taken for validation. However,
the purpose of calibration and validation are different: Validation
ensures that the model captures the relevant behaviours of pedestrians
while calibration aims to find the best set of parameter values given
data. Therefore, calibration and validation should be clearly separated,
and ideally performed based on different data sets. From a machine
learning perspective, calibration could be understood as the learning
phase in which the model is trained to resemble labelled data well,
whereas validation tests the generalization of the trained algorithm on
a separate test set.

Approaches for calibration can be roughly categorized by the data
used for calibration, the uncertain parameters to be calibrated, and
the method. The classification into microscopic and macroscopic cal-
ibration by Schadschneider (2001) is based upon the data set: For
microscopic calibration, the data set consists of individual trajecto-
ries while for macroscopic calibration, aggregate measures such as
density or flow measurements form the data set. The grouping into
microscopic and macroscopic stems from validation: Microscopic vali-
dation is necessary to ensure that the microscopic modelling introduces
valid information about the local effects while macroscopic valida-
tion assures that the emerging patterns from observation also develop
in the simulation. In crowd dynamics, microscopic and macroscopic
often refer to the scale of modelling. In microscopic modelling, in-
dividual agents are simulated while macroscopic models propagate
aggregate measures such as flow or density. While calibration is also
relevant for macroscopic models, we focus on microscopic models in
this manuscript. Therefore, the terms microscopic and macroscopic
solely refer to the scale of the quantity of interest here.

Trajectories for microscopic calibration are typically obtained from
video footage. Antonini et al. (2006), Berrou et al. (2007), Ko et al.
(2013), Robin et al. (2009), Tang and Jia (2011) use trajectories
obtained by manual annotation for calibration while Dias and Lovreglio
(2018), Ruggiero et al. (2018), Hoogendoorn and Daamen (2007), Zeng
et al. (2017) employ trajectory data (semi-)automatically extracted
using software. For the comparison of individual trajectories, either
only one agent is simulated while the others are moved according to
the observed trajectories (Zeng et al., 2017), or the agents are all placed
at the observed positions of the agents and then only one simulation
step is simulated for all agents (Wolinski et al., 2014). The challenges
of microscopic calibration lie within the definition of the distance
measure (explanation in Table 1) (Guy et al., 2012; Wolinski et al.,
2014) and the potentially large impact of errors in the trajectories on
the calibration result (Rudloff et al., 2014). Macroscopic calibration,

on the other hand, means that aggregate simulation outcomes such
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as density, speed, or flow are compared (Berrou et al., 2007; Chu,
2009; Steiner et al., 2007; Wolinski et al., 2014). In this work, cali-
bration is performed against a macroscopic quantity, the flow through
a bottleneck.

When we take a look at the parameters that are calibrated, we can
separate them into physical and non-physical parameters. The former
are measurable parameters such as the average torso size of pedestrians
in a certain population while the latter are parameters that cannot be
measured directly. We argue that the free-flow speed or desired speed,
which we calibrate in this study, lies in between the two extremes of
physical and non-physical parameters. On the one hand, the speed of
an individual can be measured and, in some experiments, participants
are asked to move through a topography in order to estimate their free-
flow speed. On the other hand, in experiments participants are observed
and may therefore change their behaviour (observer effect) suggesting
that an intrinsic free-flow speed cannot be measured without bias.
When physical parameters are measured directly from available data
without evaluating the model, we refer to it as direct calibration, as
in Hussein and Sayed (2018), Tang and Jia (2011), Zeng et al. (2014).
Indirect calibration, in contrast, requires the evaluation of the model
by comparing simulation and observation, and therefore also typically
requires a distance metric for quantifying the disagreement. A well-
studied example for indirect calibration is the parameters associated
with the interaction forces in Social Force based models (Daamen
et al., 2013; Dias et al., 2018; Hoogendoorn and Daamen, 2006, 2007;
Johansson et al., 2007; Seer et al., 2014a; Steiner et al., 2007; Taherifar
et al., 2019; Tang and Jia, 2011; Voloshin et al., 2015; Zeng et al.,
2017). These are similar to the personal space strength and obstacle
repulsion which we calibrate later in this study.

Finally, we group the methods used for calibration. The biggest
difference is whether the calibration is quantitative or qualitative. Qual-
itative calibration here means visual comparison implying manual work
since it is complex to formalize visual comparison for software. While
we believe manual calibration is a common approach, the literature
on it is sparse. We are not aware of any publications that formalize
the process of visual comparison. Within quantitative calibration, either
a manual comparison or (semi-)automatized methods can be applied.
Central to all of them is a metric that compares model evaluations to
observations, here called distance measure. For manual quantitative
calibration, typically a one-at-a-time approach is utilized where one
parameter is varied while all others are fixed. This approach can easily
miss global minima in the distance measure when several parameters
are calibrated.

Popular automated methods are regression with least squares (Guo
et al., 2012; Johansson et al., 2007; Tang and Jia, 2011; Seer et al.,
2014b) and maximum likelihood estimation (Antonini et al., 2006;
Campanella et al., 2011; Daamen and Hoogendoorn, 2012; Hoogen-
doorn and Daamen, 2006, 2007; Ko et al., 2013; Lovreglio et al., 2015;
Robin et al., 2009; Zeng et al., 2014). In addition, recently a few
studies have been published in which Bayesian inference methods are
employed for calibration (Bode, 2020; Bode et al., 2019; Corbetta et al.,
2015; Song and Lovreglio, 2021). In this paper, we compare the results
of Bayesian inference to point estimation and point out the benefits and
limitations of both approaches.

1.3. Bayesian inference methods for calibration

Maximum likelihood estimation as, well as regression with least
squares, are examples of frequentist approaches to parameter estima-
tion. Central to both methods is the optimization of a distance measure.
For Bayesian inference, sampling methods are common. They find
samples of the posterior distribution of the uncertain parameters based
on a user-defined prior distribution. The prior distribution reflects the
initial guess on the parameter distribution. In the absence of prior
knowledge, so-called noninformative priors, close or equal to a uniform
3

distribution, can be used. This prior distribution is then updated with
the evidence inherent in available data during the inversion. The result
is an informed distribution, the so-called posterior distribution. In short,
sampling methods provide a full posterior distribution instead of a
single point estimate. Sampling methods can be divided into likelihood-
based and likelihood-free approaches. The former require a explicit
likelihood function which indicates the probability of a parameter
set given the data. A popular likelihood-based sampling approach
are Markov chain Monte Carlo methods like Metropolis–Hasting algo-
rithms (Metropolis et al., 1953) or Gibbs sampling (Geman and Geman,
1984). For computational models, such as individual-based crowd sim-
ulation tools, the likelihood is often unknown or intractable. Therefore,
we choose a likelihood-free method, Approximate Bayesian Compu-
tation (ABC) (Tavaré et al., 1997; Beaumont et al., 2002). Bayesian
approaches can also be used to obtain point estimates such as the
maximum a posteriori estimator (MAP) or conditional mean (Smith,
2014).

An additional challenge for calibration is the stochasticity in most
microscopic crowd simulations due to random initialization of the
agent’s position and speed. There are a few ways to cope with the
stochasticity: either several simulations are averaged in order to reduce
or remove the stochasticity in the output (Chu, 2009; Taherifar et al.,
2019), or the noise is set to zero (Daamen et al., 2013), or the seed
for the pseudo-random number generator is fixed which is equivalent
to a single realization of the random variables. In the latter case, there
are two main shortcomings. First, the single realization may deviate
strongly from the average response, and second, depending on how
the random numbers are drawn in the simulation, varying parameters
might have an impact on more attributes than expected unless multiple
seeds are used for speed, position, and so on. Approximate Bayesian
Computation can cope with stochastic models so that we can avoid all
workarounds.

2. Methods

2.1. Simulating flow through a bottleneck

In the following, we describe two models for the flow through a
bottleneck: A model based on optimization of a utility function, the
Optimal Steps Model, and an emulator for a force-based model, the
Social Force Model, specifically for the bottleneck. The Python routines
used for this study are publicly available.1

2.1.1. Bottleneck scenario
We use different data for calibration of the two models. For the

calibration, we reconstruct the bottleneck experiments performed by
Seyfried et al. (2009) in the Vadere framework (Kleinmeier et al.,
2019). In these experiments, the flow of pedestrians was studied in 18
runs in which the width of the bottleneck was varied between 0.8 m
and 1.2 m (in 0.1 m increments) and the number of participants was
20, 40, and 60 participants. Fig. 1 shows the scenario setup used for the
simulation. The width of the bottleneck increases from 0.8 m on the left
to 1.2 m on the right according to the experiment.

In Seyfried et al. (2009) the flow of the pedestrians through the
bottleneck is measured by

𝐽 = 𝛥𝑁
𝛥𝑡

(1)

1 Scripts for parameter estimation with Approximate Bayesian Computation
nd point estimation:
uq/inversion/run_inversion_ABC_bottleneck_1d.py (case study 1),
uq/inversion/run_inv_ABC_bottleneck_SFMemulator.py (case study 2),
uq/inversion/run_inversion_ABC_bottleneck_3d.py (case study 3),
Scripts for propagation:
uq/propagation/run_propagation_abc_vs_pe_OSM.py (case study 1),
uq/propagation/run_propagation_abc_vs_pe_SFMEmulator.py (case study 2)
available at https://gitlab.lrz.de/vadere/uncertainty-quantification/.

https://gitlab.lrz.de/vadere/uncertainty-quantification/
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Fig. 1. Snapshot of simulation of bottleneck scenario at 12 s. Bottleneck width increases
from 0.8 m (left) to 1.2 m (right). The flow through the bottleneck is measured at the
end of the bottleneck (red line). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

where 𝛥𝑁 is the number of participants in the experiments and 𝛥𝑡 is
the time difference between the last and the first participant crossing
the measurement line. The measurement line is placed about one metre
before the end of the constriction. We measure the flow in the simula-
tion in the same manner. In the experimental setup, for 60 participants
he flow measurements were 𝑑1 = [1.288, 1.674, 1.900, 2.123, 2.364]1/s.

We use this data set to calibrate the Optimal Steps Model.
For the calibration of the second model, the Social Force Model

emulator, we use a different data set, as described in more detail in
Section 2.1.3 after this model is introduced.

2.1.2. Optimal Steps Model
The Optimal Steps Model (OSM) (Kleinmeier et al., 2019; Seitz and

Köster, 2012; von Sivers and Köster, 2015) is a microscopic crowd dy-
namics model. The basis of the OSM is a balance of goals: Reaching the
next geographical target while keeping a certain distance to obstacles
and other agents. Each agent has information about the topography in
the form of a navigational field that encodes the geodesic distance of
each point in the topography to the agent’s next target. The distance to
the next target is obtained by solving the eikonal equation on a regular
mesh. The navigational field represents the utility of each position.
Obstacles and other agents are represented by dips in the utility. The
total utility includes information for all three goals.

The OSM is an agent-based model (ABM) since each agent has indi-
vidual attributes. One common attribute in ABMs for crowd simulation
is the free-flow speed at which an agent moves when no obstacles or
other agents are present. In addition, each agent is assigned an indi-
vidual stepping frequency. This frequency is used for the event-driven
update of the model: For each agent, stepping events are registered in
an event queue according to its stepping frequency. At each stepping
event, the agent finds its next position by maximizing the utility. We
use the OSM implementation from the Vadere framework, a more
detailed description can be found in Kleinmeier et al. (2019).

2.1.3. Social Force Model emulator for the bottleneck
In addition to the simulations of the bottleneck scenario with the

Optimal Steps Model, we demonstrate calibration with Bayesian infer-
ence using an approximation based on a Social Force Model. Helbing
et al. (2000) present a Social Force Model based simulation of a bottle-
neck that shows a faster-is-slower dynamic which means that multiple
free-flow speeds lead to the same flow. Instead of implementing the
model, we use the output presented in Helbing et al. (2000). We
perform a cubic interpolation on the data shown for the relationship
between the desired speed and specific flow. This interpolation is used
4

t

to construct our emulator. We derive the flow for the five different
bottleneck widths from the specific flow. The desired speed in the Social
Force Model is equivalent to the free-flow speed in the Optimal Steps
Model. In addition, we add a Gaussian noise  (0, 0.01) to the model.
The resulting relationship between free-flow speed and flow can be
seen in Fig. 2. Fig. 2(b) also shows the data set used for calibrating
the model. For calibrating the Social Force Model emulator, we use the
artificial data set 𝑑2 = [0.974, 1.105, 1.235, 1.323, 1.486]1/s.

Analogously, we create an emulator for the relationship between
esired speed and egress time, named leaving times in Helbing et al.
2000), which we use for one exemplary propagation (we refer to
imulations based on calibrated parameter values as propagation).
ased on the data presented in Helbing et al. (2000), we perform cubic

nterpolation and add a zero-mean Gaussian noise with variance 𝜎2 =
5. The resulting emulator is presented in Fig. 3, the cubic interpolation
n Fig. 3(a) and the emulator including the noise term in Fig. 3(b).

.2. Methods and measures for calibration

We define the inverse problem as the task to identify the parameter
of a model 𝑓 given data 𝑑 for a defined norm ‖ ⋅ ‖ such that

= 𝑓 (𝑥) + 𝜂 (2)

n the presence of noise 𝜂 which can be measurement noise or model
rror, or both.

We use two techniques for the estimation of the parameter: Ap-
roximate Bayesian Computation (ABC) (Tavaré et al., 1997) and point
stimation. In the Bayesian sense, the result of parameter estimation is
n informed and therefore updated posterior distribution 𝑝(𝑥|𝑑) from
given prior distribution 𝑝(𝑥), an initial guess about the uncertain

arameters, based on the observations. That means the result of the
nversion is not only the best value for parameter 𝑥, but a distribution
or 𝑥. Bayes’ theorem

(𝑥|𝑑) =
𝑝(𝑥)𝑝(𝑑|𝑥)

𝑝(𝑑)
∝ 𝑝(𝑥) ⋅ 𝑝(𝑑|𝑥)

tates that the posterior distribution 𝑝(𝑥|𝑑) is proportional to the prod-
ct of prior distribution 𝑝(𝑥) and the likelihood 𝑝(𝑑|𝑥) without the
vidence 𝑝(𝑑). The likelihood at 𝑥0, 𝑝(𝑑|𝑥 = 𝑥0), describes the probabil-
ty of observing the given data 𝑑 at parameter value 𝑥0. The likelihood
s often unknown in applications since it reflects the distributions of
rror which can usually only be assumed.

.2.1. Point estimate
As a reference, we use a point estimate. Point estimation such as

aximum likelihood estimation has already been used in pedestrian
ynamics for parameter calibration (Daamen and Hoogendoorn, 2012;
oogendoorn and Daamen, 2006, 2007; Ko et al., 2013; Lovreglio
t al., 2015). While Bayesian inference methods such as ABC obtain
posterior distribution of the uncertain parameter, point estimation

rovides only the single best parameter value. We derive the point
stimate from the model evaluations obtained during ABC rejection:
e choose the parameter value 𝑥𝑐 closest to the data in terms of the

istance measure , 𝑓𝑑 , the posterior mode 𝑥𝑝𝑒 = arg min𝑥𝑐𝑓𝑑 (𝑥𝑐 ). This
s known as the maximum a posteriori (MAP) estimate.

.2.2. Inversion method: Approximate Bayesian computation (ABC)
Approximate Bayesian Computation is a so-called likelihood-free

ethod i.e. the likelihood is calculated implicitly instead of being
xplicitly fed to the method. This method is often applied to ecological
r biological models (Beaumont, 2010). ABC is suited well for computer
odels for which likelihood functions are not available and in which

tochastic terms might be present. ABC requires prior distributions
or the uncertain input parameters, a distance measure 𝑓𝑑 (𝑥) and a
olerance 𝜖.
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Fig. 2. Social Force emulator for five different bottleneck widths, constructed with flow data from Helbing et al. (2000) including an additive zero-mean Gaussian noise with
variance 𝜎2 = 10−4. In (b), additionally, the data used for the calibration is shown.
Fig. 3. Social Force emulator for leaving times or egress times for a room with 200 people, constructed with egress times from Helbing et al. (2000) including an additive
zero-mean Gaussian noise with variance 𝜎2 = 25.
a
m
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There are several sampling strategies for ABC (Toni et al., 2009). We
choose ABC rejection because it has a lower number of parameters, and
is easy to implement and parallelize since it is not an iterative method.
In the rejection sampler, candidates 𝑥𝑐 are drawn based on the prior
distribution 𝑝(𝑥). At each candidate, the distance measure is computed
by evaluating the underlying model at the candidate 𝑓 (𝑥𝑐 ). The distance
measure describes the distance between the candidate and the data 𝑑.
We use an Euclidean distance measure 𝑓𝑑 (𝑥𝑐 ) = ‖𝑑−𝑓 (𝑥𝑐 )‖22. Candidates
for which 𝑓𝑑 (𝑥𝑐 ) = 0 are samples of the posterior. We approximate the
posterior by keeping all candidates for which the distance measure is
lower than the tolerance, 𝑓𝑑 (𝑥𝑐 ) < 𝜖, as posterior samples 𝑥𝑠 ∼ �̂�(𝑥|𝑑).

his weaker requirement allows us to reduce the number of candidates
and therefore the number of model evaluations. The approximation

s asymptotically exact given a suitable distance measure i.e. for 𝜖 → 0
nd 𝑁 → ∞ we obtain the true posterior 𝑝(𝑥|𝑑).

.2.3. Measuring the residual uncertainty after calibration
The result of Bayesian inference is a posterior distribution of the

ncertain parameters. This distribution is a basis for subsequent studies
o quantify the uncertainty in the simulation outcome. The impact of
he variation in the posterior is evaluated by looking at the distribution
f the quantity of interest.

We analyse the remaining uncertainty in the parameter after cali-
ration by propagating the posterior from Bayesian inference and the
oint estimate, respectively. Propagation of a posterior distribution
eans evaluating the model 𝑓 at the posterior samples obtained with
BC rejection. In the case of the point estimate, we obtain the best
arameter value 𝑥𝑝𝑒 at which we run the simulation to obtain 𝑓 (𝑥𝑝𝑒).
e use the 𝑀 posterior samples obtained with ABC and propagate

hese through the model. In addition, we evaluate our model 𝑀 times
5

t the point estimate. Since there is some stochasticity in the model,
ore specifically in its initialization, multiple evaluations at the same
arameter value yield different outcomes. As a result, we obtain 5 ⋅𝑀

flow values for the five bottleneck widths for each method.
For the first case study, we fit a generalized linear model to the

flow results, separately for the posterior samples and the point estimate.
The confidence interval of the fitted slope parameter is then used as a
measure of the variation. A large confidence interval indicates a large
variation after calibration and vice versa.

3. Results and discussion

We perform calibration with Approximate Bayesian Computation
and the point estimate in three cases: First, we calibrate the free-flow
speed in the Optimal Steps Model for five bottlenecks against flow
measurements from an experiment. Second, we infer the desired speed
in the Social Force Model emulator from artificial flow measurements.
Finally, we use Bayesian inference and point estimation to estimate
free-flow speed, personal space strength, and obstacle repulsion in
the Optimal Steps Model from the flow measured in an experiment.
Bayesian inference provides a set of posterior samples. For each use
case, we compare the histogram of the posterior samples to the point
estimate. The prior distributions used for Bayesian inference are listed
in Table 2. The parameters of the uniform prior distributions were
determined as follows. The range for the free-flow speed mean is based
on Weidmann (1993, p. 83). Both obstacle repulsion and personal space
strength are non-physical parameters, which complicates the choice of
the prior. The intervals were found by manual pre-calibration. For both,
we choose large intervals in order to assure that there is no posterior
density outside the chosen interval. Bayesian inference can only find
posterior density in areas where the prior is non-zero.
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Fig. 4. Relationship between free-flow speed mean and flow for the five bottlenecks with different widths (105 model evaluations). Bottleneck width increases from 0.8 m (left) to
1.2 m (right).
Table 2
Prior distributions for the uncertain parameters for the three case studies.

Section Model Parameter Prior

3.1 Optimal Steps Model Free-flow speed mean  (0.5, 2.5)
3.2 Social Force Model emulator Desired speed  (0.5, 2.5)

3.3 Optimal Steps Model
Free-flow speed mean  (0.5, 2.5)
Obstacle repulsion  (1.0, 12.0)
Personal space strength  (1.0, 12.0)

3.1. Unimodal posterior (Optimal Steps Model): point estimate is sufficient

For the first case study, we simulate the five bottlenecks of widths
from 0.8 m to 1.2 m in Fig. 1 with the Optimal Steps Model. Fig. 4
shows the monotonically increasing input–output relationship between
the uncertain parameter, the free-flow speed, and the quantity of
interest, the flow. We observe that, as expected, the flow increases with
increasing speed and also with increasing width of the bottleneck. In
addition, the model evaluations show the stochasticity in the system.
Repeated evaluations for a given parameter value yield different results.
The size of the variation in the quantity of interest, the flow, increases
with the free-flow speed mean.

ABC is based on the distance measure which evaluates the distance
between a model evaluation at a candidate for the uncertain parameter
and the observations. In Fig. 5(a), the distance measure is shown
for the five bottlenecks simulated with the OSM. Since the trend of
the input–output relationship is strictly monotonically increasing for
each bottleneck width, the distance measure for calibrating a single
bottleneck must have a single minimum. We choose a tolerance of
𝜖 = 0.0685 so that we keep 1% of the candidates as samples of the
posterior (Beaumont et al., 2002). Fig. 5(b) is a histogram of the
posterior samples. Their mean and mode are about 1.14 m/s and their
standard deviation is 0.027 m/s.

We now use the posterior obtained from ABC and propagate it
through the system to quantify the uncertainty in the simulation out-
come. In addition, we propagate the point estimate through the system.
Since our model has some stochasticity in the initialization process, we
perform the same number of propagations for both the ABC posterior
and the point estimate. Fig. 6 depicts the histogram of the flow for each
bottleneck. Even though we use a single parameter value for the point
estimate, there is a significant variation in the flow values obtained
from the simulations. The width of the histogram of the flow samples
after propagating the point estimate 1000 times is similar to the width
of the histogram of flow samples obtained from propagating the full
ABC posterior.

The histograms in Fig. 6 also reveal that the propagation of both,
the point estimate and the ABC posterior, deviate from the observed
6

Table 3
Confidence intervals for the slope of linear regressions for observations, and propagated
point estimate and full ABC posterior.

Data Point estimate ABC posterior

Confidence interval (CI) [2.251, 2.951] [1.651, 2.990] [1.595, 3.080]
Size of CI 0.699 1.338 1.485

data set when adapting to all five bottlenecks at once. This could
have several reasons: First, the relationship between bottleneck width
and flow may differ between experiments and simulation. Second, the
measurement error in the observational data is so large that it affects
the relationship between bottleneck width and flow significantly. Third,
there may be underlying effects in the experiments such as a learning
effect or a shared identity among the participants that are not reflected
in the simulation, leading to slightly different dynamics.

In order to evaluate the variation in the distribution of the quantity
of interest for all five bottlenecks, we calculate the confidence intervals
of the slope of the linear fit as a metric for the variation. For com-
parability of the confidence intervals for the observed data set, ABC
posterior and point estimate, we perform a linear fit through the five
flow values. For point estimate and ABC posterior, we perform a fixed
number of 𝑁𝑎𝑣 = 200 linear fits to a set of five randomly selected
flows, one for each width. For the experimental data set, we perform
a single fit, as there is only one data set. For each fit, we calculate the
confidence interval of the estimated slope parameter. Then, we average
the confidence intervals over all iterations and present the average
confidence interval. In Fig. 7, the regression is shown exemplarily for
the propagated ABC posterior.

When we evaluate the size of the confidence interval of the slope
from the regression for different tolerances 𝜖, as in Fig. 8, the results
depend strongly on the tolerance. The width of the ABC posterior
and therefore the width of the histogram of the flow samples after
propagating the posterior depend highly on the tolerance 𝜖. According
to theory, with infinitely small tolerance and infinite sample size 𝑁 , we
obtain the true posterior. In reality, however, the infinite sample size
is not feasible and the tolerance is at least limited by the numerical
precision. When using real data for the calibration, there may also be
an error between the best model evaluation and the data. In this case,
the choice of the tolerance is even more restricted and the optimal
tolerance is not clear (Alahmadi et al., 2020).

We compare the results for a tolerance of 𝜖 = 0.0685 for ABC to the
results using the point estimate and the data in Table 3. The size of
the confidence interval using the point estimate and the full posterior
are of the same magnitude, with the ABC confidence interval being a
bit larger. Both are significantly larger than the confidence interval
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Fig. 5. Results of Bayesian inference with ABC threshold 𝜖 = 0.068 (acceptance rate = 1%).
Fig. 6. Histogram of flow values obtained from the propagation of point estimate (PE, 1000 repetitions) and ABC posterior (ABC, 𝜖 = 0.0685). Bottleneck width increases from
0.8 m (left) to 1.2 m (right).
Fig. 7. Regression for propagated ABC posterior (𝜖 = 0.0685). A box plot of the flow
samples resulting from propagation is shown together with the linear regression.

obtained from the data. This should always be the case. Otherwise,
the simulation with the calibrated parameter would present a lower
variance than the observations used for the calibration.

In summary, for this monotonically increasing relationship between
the uncertain input parameter and quantity of interest through a
stochastic simulator, the results of ABC and the point estimate are sim-
ilar after propagation. Therefore, in these cases, a point estimate is suf-
ficient. For practical purposes, this is advantageous, because Bayesian
inference methods are computationally expensive. However, the next
two subsections demonstrate, in which cases it can be problematic to
rely on point estimates only.
7

Fig. 8. Size of the confidence interval of slope (linear fit) for different ABC tolerances
(𝜖). For tolerances below 0.0685, less than 1000 posterior samples are propagated (grey
markers).

3.2. Bimodal posterior (Social Force Model emulator): ABC reveals bimodal
posterior

For the second case study, we focus on a setup of five bottlenecks
simulated with a Social Force Model emulator. The emulator is built
for an egress scenario in which 200 pedestrians exit a room. The SFM
simulations exhibit a faster-is-slower phenomenon: the flow increases
with the desired speed up to a certain point (here about 1.5 m/s)
and then decreases. This effect is also captured by the emulator. That
means the emulator function that describes the relationship between
desired speed and flow is not bijective, but only surjective - a value
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Fig. 9. Results of Bayesian inference with ABC tolerance 𝜖 = 0.00128.
Fig. 10. Egress times when propagating the point estimate and the full ABC posterior
in the Social Force Model emulator for egress times.

of the function can be reached by multiple parameter values. Hence,
the parameter is not identifiable and can therefore not be uniquely
estimated.

In order to calibrate the desired speed to a set of five flow measure-
ments from the emulator, we calculate the distance measure for the
SFM emulator as shown in Fig. 9. The distance measure displays two
local minima corresponding to the two intersections between the data
points and the model evaluations in Fig. 2(b). We choose the tolerance
𝜖 = 0.00128 so that we keep 1% of the candidates as posterior samples.

Bayesian inference reveals a bimodal posterior distribution while
the point estimate, by design, finds only one of the two parameter
locations (compare Fig. 9(b)). The impact of this limitation becomes
clear when we perform simulations based on the calibration. In this
case, when we propagate the single point estimate or the bimodal
posterior distribution through the model, we observe a similar distribu-
tion of our original quantity of interest, the flow. Then, the difference
between point estimate and full ABC posterior depends mainly on the
choice of the tolerance 𝜖, as in the previous example with the unimodal
distribution. The variation in the distribution of the flow values after
propagation is mainly driven by the stochasticity in the model.

However, if we evaluate another quantity of interest, the situation
changes profoundly: The distribution of the quantity of interest for
the point estimate may differ drastically from the one produced by
propagating a full ABC posterior. As an example, we use the second
emulator for the egress time presented in Section 2.1.3. The egress time
is the time that it takes for 200 pedestrians to leave the room. If we
evaluate the egress times for the full ABC posterior, they vary between
about 110 s and 330 s, whereas for the point estimate we obtain only
about 330 s (compare Fig. 10). In this case, we obtain a conservative
estimate for the egress times. If the point estimate finds the other
extremum at about 1.2 m/s, leaving times would vary around 110 s
indicating too efficient egress compared to the full posterior.
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This example highlights that Bayesian inference methods are suit-
able to capture even unusual posterior distributions of the uncertain
parameters, such as bimodal distributions, where point estimates must
fail by design. In our experience, calibration is typically performed
against one quantity of interest, often a flow–density relationship, and
then the calibrated parameters are used for various studies. In this case,
the results after calibration through point estimation may give a false
sense of certainty.

3.3. Multivariate posterior (Optimal Steps Model): ABC reveals parameter
relations

Finally, we discuss an example for a multidimensional calibration.
As in the first case study, we use the Optimal Steps Model to simulate
five bottlenecks of different widths ranging from 0.8 m to 1.2 m. In
addition to the free-flow speed, we also calibrate the personal space
strength that reflects the natural distance that two pedestrians who are
not in a group naturally keep from each other. As the third parameter,
we calibrate the obstacle repulsion that assures that the agents keep a
certain distance to walls. Again, we use the flow measurements from
the bottleneck experiment described in Seyfried et al. (2009).

First, we evaluate the distance measure which is a scalar function
that depends on the three uncertain parameters. In Fig. 11(a), we show
the evaluations of the distance measure against each parameter. These
evaluations were obtained during the calibration, which means that all
parameters are varied simultaneously which causes a large variation.
Based on the distance measure, we set the tolerance to 𝜖 = 0.07342246
so that we keep 1% of the candidates as posterior samples. We obtain
a three-dimensional posterior distribution. In Fig. 11, the univariate
marginal distribution that is the distribution of a single variable is
shown for each parameter together with the point estimate for the
parameter. As for the distance measure, the multivariate posterior has
too many dimensions for a single plot.

Additionally, we evaluate the bivariate marginal posterior distri-
butions (Fig. 12). These are the joint distributions of two out of the
three parameters. The shape of the univariate posterior distributions for
the free-flow speed (Fig. 11(b)) and the obstacle repulsion (Fig. 11(d))
vary significantly from their uniform prior distributions. We conclude
that these two parameters are well informed by the data. For the
third parameter, the personal space strength, however, the posterior
distribution (Fig. 11(c)) is closer to its prior distribution and hence
the parameter is less informed which also means that it has less
impact regarding this data set. There is a strong correlation between
the first and third parameter, the free-flow speed and the obstacle
repulsion, concerning the data (Fig. 12(b)). Both parameters have a
clear impact on the flow: The flow increases with the free-flow speed
and it decreases with increasing obstacle repulsion. With a higher
obstacle repulsion, pedestrians keep a higher distance to the walls.
Consequently, the effective bottleneck width decreases with increasing
obstacle repulsion. The correlation between the parameters shows that
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Fig. 11. Results of Bayesian inference with ABC threshold of 0.07342246 (acceptance rate 1%).
Fig. 12. Bivariate posterior histograms obtained with ABC (𝜖 = 0.07342246).
9
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the data is best represented when the parameter value for the obstacle
repulsion is not chosen independently from the free-flow speed but
ideally when both are small at the same time.

Note that the basis for ABC is the distance measure which compares
all five data points of the experiments, corresponding to five bottleneck
widths, with simulations. Consequently, all evaluations are relative to
the distance measure. This makes it more difficult to draw conclusions
on the parameters. It is also important to underline that the parameter
relations do not hold in general, but only with respect to the particular
data set we used for calibration.

This example is intended as a demonstration of principle. In our
example, we use five measures of the flow to calibrate three parame-
ters. We suggest using more data in practical applications for reliable
calibration.

Often experimental data is used to calibrate parameters that are
subsequently transferred to a different setting. Our results highlight
that this approach is limited by the amount of information contained in
the data. In the last case study, the personal space strength is not well
informed. A safety engineer would be ill-advised to apply the personal
space strength parameter obtained from the five bottlenecks to a safety
scenario where one expects a strong influence of people’s need for
personal space.

4. Conclusion and outlook

In this work, we showed the benefits and limitations of using
Bayesian inference methods for calibrating pedestrian simulation mod-
els to empirical data at the example of Approximate Bayesian Com-
putation. We chose a bottleneck scenario because of its importance
to safety engineering and the availability of experimental data for the
calibration.

First, we calibrated the free-flow speed parameter of the Optimal
Steps Model. We compared the results to a common approach for cali-
bration, the point estimate. When propagating both, the point estimate
and the full posterior through the model, the variation in the quantity
of interest depended mainly on a central parameter of ABC, the user-
defined tolerance 𝜖. Qualitatively, there was no significant difference
between point estimate and Bayesian inference and therefore a point
estimate appeared sufficient.

Second, we adapted the desired speed in a Social Force emulator in
an egress scenario with a faster-is-slower dynamic. Bayesian inference
revealed a bimodal posterior distribution that the point estimate could
not recover. Consequently, a part of the posterior distribution was lost
when we relied on point estimation. We evaluated the egress times for
the ABC posterior and the point estimate to emphasize the importance
of considering the full posterior distribution for subsequent studies.
For the point estimate, the egress times only varied around a single
value instead of displaying the correct bimodal shape. This means that
the physics of safety is misjudged, that egress times are miscalculated,
and, even worse, that a harmful side effect of rushing evacuees may be
completely overlooked by the safety engineer in charge.

Finally, we performed a multidimensional calibration with three
parameters, the free-flow speed, the personal space strength, and the
obstacle repulsion in the Optimal Steps Model. The uni- and bivariate
posterior distribution obtained with ABC showed that two parameters,
free-flow speed and obstacle repulsion, were well informed by the
data, while the third parameter, the personal space strength, was not
informed to the same degree. This exposes a need for caution when
transferring calibrated parameters from one safety scenario to the next.
In addition, the multivariate posterior revealed a strong correlation
between free-flow speed and obstacle repulsion.

In summary, our results show that using Bayesian inference methods
for calibration make the application of crowd models more reliable
even though Bayesian inference is computationally more demanding
than point estimation and the choice of prior distributions for param-
eters as well as the choice of tolerances can be complex. In practice,
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noninformative priors are often assumed due to a lack of knowledge.
Contrary to point estimation, Bayesian inference can unveil the shape of
the posterior, even from a noninformative prior distribution. When the
posterior distribution is symmetric and unimodal, a point estimate may
be sufficient, provided that models include a stochastic component.
Nevertheless, if there is reason to doubt that the posterior is sym-
metric and unimodal, we recommend performing Bayesian inference
for calibration. In general, the posterior distributions obtained through
Bayesian inference contain additional information about the parameter
and the calibration process that are pertinent to correctly assessing
safety risks and thus need to be considered for subsequent studies.
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