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a b s t r a c t   

The chemistry of metal borohydrides and their derivatives has expanded signficantly during the past decade 
involving new compositions, structures, and the diversity of associated properties. Here we provide an 
overview of interesting results mainly from the past few years, discussed relative to previously published 
results. A range of new synthesis strategies has been developed to obtain pure samples, which has allowed 
very detailed structural, physical, and chemical investigations. A short overview of mono- and dimetallic 
borohydrides is provided, including a description of the complete series of rare-earth metal borohydrides 
and the recently discovered ammonium metal borohydrides, where the latter has attracted interest due to 
an extreme hydrogen content. Metal borohydrides appear to be the most promising class of materials to 
achieve high cationic conductivity of divalent metals, and particularly derivatives of metal borohydrides 
with neutral molecules show promise as future electrolytes for new types of solid-state batteries. 
Furthermore, metal borohydrides display a wide range of other properties, including optical, magnetic, semi 
conduction and possibly superconducting properties, and are also used as a new approach for carbon 
capture and conversion. The aim of the present review is to highlight new trends in properties and provide 
an outlook with possible future applications. Here, we focus on the more recently discovered materials. 

© 2021 The Authors. Published by Elsevier B.V. 
CC_BY_4.0   

1. Introduction 

The extensive boron-hydrogen chemistry was developed in the 
20th century. The smallest molecular member, BH3, is also the least 
stable owing to electron deficiency and only exists as a gas molecule 
at extremely low partial pressures. This molecule has a stong 

tendency to dimerise to diborane, B2H6, with two bridging hydro
gens shared by the two borons, and four remaining terminal hy
drogens forming a slightly distorted tetrahedral coordination 
geometry of boron. Another type of addition reaction that can sta
bilize trihydromonoboran, BH3, is the addition of a hydride ion, H−, 
forming an anionic tetrahedral complex, tetrahydridoborate, BH4

–, 
also known as the borohydride anion. 

Since the first oil crisis in the 1970s, it has become increasingly 
clear that our consumption of fossil fuels must be terminated, in 
particular owing to increasing amounts of evidence for irreversible 
climatic changes. Although we already harvest renewable energy 
using windmills and solar cells, the implementation of ‘green en
ergy’ is relatively slow [1]. This is due to the lack of a versatile energy 
storage medium for mobile and stationary applications. Hydrogen, 
suggested already in the 1970s, still appears as the most ideal option 
and can be transported in pipelines similar to natural gas. However, 
the low density, both as a gas and as a liquid, has been considered as 
a drawback, which has afforded significant focus on solid-state 
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hydrogen storage [2–4]. Hydrogen is usually packed more densely in 
the solid state as compared to that of the liquid, ρ(H2 (liq)) = 71 g H2/L. 
This is illustrated by the high volumetric hydrogen densities of se
lected solid-state hydrogen storage compounds in Table 1. 

Pre-millennium research focused on the reversible hydrogen 
storage in MgH2 and complex hydride derivatives, such as Mg2FeH6, 
Mg2CoH5, and Mg2NiH4. These compounds are considered to store 
hydrogen reversibly because hydrogen release and uptake occur at 
moderate conditions, i.e. 300  <  T  <  450 °C at hydrogen pressures 
below 100 bar. However, the gravimetric hydrogen density is in 
some cases too low for practical applications. 

In the early part of the 21st century, there was a significant in
terest in the chemistry of metal borohydrides, which has expanded 
this class of compounds beyond the early focus on alkali metal 
borohydrides and their applications. At present, metal borohydrides 
are known for all the alkali and alkaline earth metals and the entire 
range of the lanthanides (not including radioactive elements). 
Several metal borohydrides are also reported among the d-block 
elements and the actinides, but these are often less stable and 
challenging to isolate. Moreover, di- and trimetallic borohydrides 
readily form, which has resulted in a remarkable amount of new 
materials in the past decade [24–28]. 

Common to these is a high hydrogen content, in particular for the 
light-weight metals, and as such, these materials were particularly 
investigated for solid-state hydrogen storage. A range of synthetic 
strategies has provided pure, well-crystalline materials, which al
lowed very detailed investigations of the crystal structures and 
physical and chemical properties. Previously, in the late 1990’s and 
early 2000s, the dominating synthesis method was mechano-che
mically induced metathesis reactions, which often results in a multi- 
phase sample hampering detailed investigations. But in the past 
decade, new synthesis strategies have allowed for synthesis of more 
pure and new metal borohydrides, which cannot be obtained by the 
mechano-chemical approach. 

The ideal solid-state hydrogen storage material is ammonium 
borohydride, NH4BH4, which is isoelectronic to natural gas, CH4. This 
compound has an extremely high gravimetric (ρm = 24.5 wt% H) and 
volumetric (ρV = 157.0 g H/L) hydrogen density, which is the highest 
values among the known inorganic materials [29]. Unfortunately, 
ammonium borohydride is only metastable at room temperature 
with a half-life of ∼6 h and spontaneously decomposes to the dia
mmoniate of diborane, and also releases hydrogen and toxic gases 
such as borazine and ammonia during further decomposition  
[21,30,31]. Systematic studies of addition reactions between am
monium borohydride, NH4BH4, and metal borohydrides, M(BH4)n, 
revealed a multitude of novel ammonium metal borohydrides and 
ammonium metal borohydride derivatives [22,32,33]. These com
pounds also exhibit extremely high hydrogen densities as shown in  

Fig. 1. However, unwanted gases are often released during decom
position. High hydrogen density compounds are also formed from 
ammine metal borohydrides, but reversibility and NH3 versus H2 

release is a major issue for hydrogen storage applications [34–36]. 
In general, metal borohydrides suffer from poor thermodynamics 

(large numerical value of enthalpy change for hydrogen release and 
uptake) and slow kinetics during rehydrogenation, making them 
unsuitable for hydrogen storage. However, two or more hydrides 
may react during the release of hydrogen, forming a so-called re
active hydride composite (RHC), where a new dehydrogenated state is 
formed [37]. The hydrogen storage densities of RHC systems is the 
average of the components, but they may have significantly im
proved thermodynamic and kinetic properties, which can facilitate 
reversible hydrogen release and uptake. The enthalpy change for 
hydrogen release for the individual components, LiBH4 and MgH2, is 
ΔHdec = 68.9 and 74.1 kJ/mol, respectively [5,38,39]. However, the 
endothermic dehydrogenation of the 2LiBH4–MgH2 composite also 
includes an exothermic formation of MgB2, which lowers the total 
reaction enthalpy to ΔHdec ~ 46 kJ/mol. The hydrogen release tem
perature corresponding to this calculated decomposition enthalpy 
assuming p(H2) = 1 bar is T ~ 169 °C [17,40]. Then, the hydrogen ab
sorption proceeds from the MgB2–LiH composite but at somewhat 
higher temperatures due to kinetic restraints, p(H2) = 50 bar and 
T  <  300 °C, which is a significant improvement as compared to re
hydrogenation of the individual components. 

Today, other options for hydrogen storage are also considered, 
such as extraction of carbon dioxide from air or biomass, which can 
be reacted with hydrogen to form methanol, resulting in a ‘carbon- 
neutral’ fuel [41,42]. Another option is the direct reaction of a metal 
borohydride with CO2 to form formic acid. At low partial pressures of 
CO2, only one molecule is absorbed, but at more ideal conditions, 
three molecules react with one borohydride anion to form a tri
formatoborohydride anion, [HB(OCHO)3]− [43]. 

While metal borohydrides and their derivatives appear challen
ging to use for reversible hydrogen storage, a large number of other 
interesting properties have been discovered in the past decade, re
levant for applications as solid-state electrolytes [44–51], magnetic 
materials [26,52–54], luminescent materials [54–57], gas-adsorption  
[58,59], polymerization initiators [60–64], and explosives [65]. Their 
use as electrolytes for all-solid-state batteries has received particular 
interest, and several physical phenomena which can enhance the 
ionic conductivity have been proposed for this class of materials. The 
paddle-wheel mechanism for cationic conductivity is related to the 
dynamics of the anions, which upon reorientations facilitate the 
migration of the cations [66]. This effect has been observed in some 
metal borohydrides, e.g. it was found that the cation jump rate is on 
the same frequency scale as the BH4

- dynamics in LiLa(BH4)3X (X = Cl, 
Br, I) [67–69]. More recently, it was found that a neutral molecule 

Table 1 
Properties of selected metal hydrides: molecular weight (M), material density (ρ), gravimetric hydrogen content (ρm), volumetric hydrogen density (ρv), and the onset of hydrogen 
release (Tdec). ‘Reversibility’ is also indicated with ‘yes’ in case hydrogen uptake takes place at moderate conditions. Notice that, ρV = ρm·ρ.           

M (g mol-1) ρ (g mL-1) ρm (wt% H) ρV (g H L-1) Hydrogen storage Ref. 

Reversibility Tdec
a (°C)  

MgH2  26.32  1.42  7.7  108.7 Yes 314b [5] 
Mg2FeH6  110.50  2.74  5.5  149.9 Yes ~350 [6–10] 
Mg2CoH5  112.58  2.89  4.5  129.5 Yes ~320 [11–15] 
Mg2NiH4  111.34  2.70  3.6  97.8 Yes ~300 [16] 
2LiBH4-MgH2  69.88  0.84  14.4  120.4 Yes ~350–400 [17–19] 
LiBH4  21.78  0.67  18.5  124.0 No ~400 [18] 
NaBH4  37.83  1.07  10.7  114.4 No ~500 [20] 
NH4BH4  32.88  0.69  24.5  157.0 No ~53 [21] 
(NH4)3Mg(BH4)5  152.63  0.75  21.1  158.2 No ~37 [22] 
Mg(BH4)2⋅2NH3  88.05  0.81  16.0  130.4 No ~120 [23]  

a Decomposition temperatures strongly depend on the physical conditions for the measurement and the published data scatters significantly.  
b at p(H2) = 2.3 bar.  
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can significantly enhance the ionic conductivity, applicable to both 
monovalent and divalent metals [49–51,70–73]. A new cation con
ductivity mechanism has been suggested, which is discussed in 
more detail in Chapter 4. 

Thus, metal borohydrides and their derivatives have expanded 
extremely fast during the past decade regarding new compositions, 
structures and also in the diversity of associated properties. The aim 
of the present review is to highlight new trends in properties and 
provide an outlook with possible future applications. The multitude 
of recent results justifies the present review, which will give the 
reader an overview of the recent advances, which are discussed in a 
larger perspective relative to the previously published literature. 

2. Synthesis of M(BH4)n compounds and their derivatives 

Already in 1940, the first homoleptic metal borohydrides, i.e. 
LiBH4, Be(BH4)2, and Al(BH4)3, were reported. The synthesis ap
proach utilised the reaction between metal alkyls and gaseous di
borane, B2H6 [74–76]. The synthesis approach was later expanded to 
include the reaction of a metal hydride or alkoxide with B2H6 to 
produce the metal borohydride [77–79]. However, the poisonous 
B2H6 gas as a reactant is preferably avoided also due to possible self- 
ignition in contact with air. 

Commercially, NaBH4 is widely used in organic chemistry as a 
reducing agent [80,81], and the synthesis of the compound follows 
the Brown-Schlesinger method reacting sodium hydride with tri
methylborate: [82].  

4 NaH + B(OCH3)3 → NaBH4 + 3 NaOCH3                                  (1)  

At present, the main methods for synthesis of new metal bor
ohydrides are mechanochemical- or solvent-mediated synthesis 
methods as discussed in the following. 

2.1. Mechanochemical synthesis of M(BH4)n compounds 

Mechano-chemistry has been widely utilised to synthesize metal 
borohydrides, and new compounds have often been discovered 
through a metathesis reaction between, typically, LiBH4 or NaBH4, 
and a metal halide, MXn, which often yields the monometallic 

borohydride and the lithium or sodium halide salt, see example in  
reaction scheme 2 [83–90].  

n LiBH4 + MXn → n LiX + M(BH4)n                                           (2)  

When utilising LiBH4 or NaBH4 as the precursor, monometallic 
borohydrides are obtained, likely due to the high stability of the 
formed LiCl and NaCl salt, whereas the heavier alkali metal bor
ohydrides, MBH4 (M = K, Rb, Cs), often lead to dimetallic borohy
drides [24,25]. However, the mechano-chemical approach may also 
result in a reaction between the metal halide and the metal bor
ohydride forming solid solutions or mixed metal borohydride-halide 
compounds [24,25,45,91–94]. A variety of compounds are prepared 
when rare-earth metal (RE) halides (RECl3) are ball milled with 
LiBH4, which leads to LiRE(BH4)3Cl, LiRE(BH4)4, α-RE(BH4)3, β-RE 
(BH4)3 or RE(BH4)2, dependent on the RE-ion and the synthesis 
conditions [88,91,92,95–97]. To obtain a pure sample, solvent ex
traction may be an option [22,24,89,90,98–101], although by
products, e.g. dimetallic borohydrides or unreacted LiBH4 may be 
soluble in the selected solvent and thus hampers this method  
[99,102–104]. Thus, the choice of solvent is crucial to obtain a pure 
sample. 

When utilising pristine monometallic borohydrides, an addition 
reaction may occur during mechano-chemistry, which is observed, 
e.g. for MBH4 (M = K, Rb, Cs), and strontium or samarium borohy
dride (see reaction scheme 3) [105,106].  

MBH4 (s) + Sr(BH4)2 (s) → MSr(BH4)3 (s)                                     (3)  

Finally, thermal treatment at 200 °C and subsequent quenching 
has been demonstrated to provide dimetallic compounds based on Y 
(BH4)3, i.e. MY(BH4)4 (M = Li, Na) [107]. 

2.2. Solvent-mediated synthesis of M(BH4)n compounds 

Over the years, solvent-mediated synthesis of metal borohy
drides has been developed using borane donor complexes, i.e. tet
rahydrofuran borane (THF∙BH3) [105], trimethylamine borane 
(TEA∙BH3) [108–110], and dimethyl sulfide borane (DMS∙BH3)  
[26,106,111,112]. An example is Mg(BH4)2, which is synthesized from 
di-n-butylmagnesium (Mg(Bu)2) and DMS∙BH3, through the 

Fig. 1. Gravimetric and volumetric H content of selected metal hydrides.  

J.B. Grinderslev, M.B. Amdisen, L.N. Skov et al. Journal of Alloys and Compounds 896 (2022) 163014 

3 



precipitation of Mg(BH4)2∙½S(CH3)2. Hence, unreacted starting ma
terials are removed by simple filtration, while the solvent-free metal 
borohydride can be obtained upon thermal treatment [112]. Thus, 
the major advantage of the synthesis method is that pure metal 
borohydrides are produced with a high selectivity of the polymorphs  
[26,111]. 

The method was later successfully applied to the reaction be
tween metal hydrides and the borane donor complexes [111], e.g. the 
entire series of RE(BH4)x (x = 2 or 3) was produced: [26].  

REH3 (s) + 3 S(CH3)2⋅BH3 (l) → RE(BH4)3⋅xS(CH3)2 (DMS) + 3-x S(CH3)2 (l)                                                                                             

(4)  

However, the method is limited to ionic or covalent metal hy
drides, as metallic hydrides do not react with the borane donor 
complex. This was observed by the difference in reactivity of SmH2/ 
SmH3 and CeH2/CeH3, of which only the REH3 compounds are ionic 
and react with DMS∙BH3 to form RE(BH4)3∙xS(CH3)2 [26,111]. Removal 
of DMS upon heating usually results in the metal borohydride, but in 
the case of RE(BH4)3∙xS(CH3)2 (RE3+ = Sm, Eu, Yb), a reduction from 
RE3+ to RE2+ occurs due to the stable +II oxidation state: 

+ +

+ =

RE x

RE x

RE

(BH ) S(CH )

(BH ) S(CH ) ½ B H

½ H ( Sm, Eu, Yb)

4 3 3 2 (s)

4 2 (s) 3 2 (g) 2 6(g)

2(g) (5)  

The use of solvent-mediated synthesis has the advantages of (i) 
faster reaction kinetics as the product is dissolved in the solvent, i.e. 
the equilibrium is shifted towards the product (ii) pure compounds 
are easily obtained if weakly coordinating solvents are utilized (iii) 
the undesired metal halides have a low solubility in the solvents and 
are thus omitted in the product. The coordination strength of the 
solvents depends on the electron-donating element and typically 
increases in the order of S <  N  <  O, thus DMS is the preferred solvent 
as it is the easiest to remove by thermal treatment, which allows a 
higher polymorphic selectivity of the reaction product [24,111]. 

Simple metathesis reactions have also been observed in solvent- 
mediated reactions between LiBH4 and the series of RECl3 (RE = La, 
Ce, Pr, Sm, Eu, Gd, Dy, Er) in DMS as shown in reaction scheme (6). 

+

+RE x

3LiBH RECl

(BH ) S(CH ) 3 LiCl
DMS

4 (DMS) 3 (s)

4 3 3 2 (DMS) (s) (6)  

The drawback is the solubility of LiBH4 in DMS, which, in case of 
incomplete reaction, results in the presence of LiBH4 in the product  
[104]. However, the presence of LiBH4 can be suppressed by using an 
excess of the RECl3. 

Finally, it is possible to form dimetallic borohydrides directly 
from solvent-mediated synthesis, which was demonstrated for 
LiZn2(BH4)5 and MY(BH4)4 (M = Li, Na, K, Rb, Cs) [113,114]. Thus, the 
procedure opened up new avenues for synthesizing new dimetallic 
borohydrides as MY(BH4)4 (M = Li, Na) was not obtainable by me
chano-chemistry owing to the metastable nature of the compounds 
at room temperature [113]. 

2.3. Synthesis of metal borohydride derivatives 

Ammine metal borohydrides may be synthesised by the me
tathesis reaction between an ammine metal chloride and lithium 
borohydride through the classic mechano-chemistry approach as 
observed for the reaction between lithium borohydride and tita
tinum chloride (see reaction scheme 7) [115–118].  

3 LiBH4 + TiCl3⋅xNH3 → 3 LiCl + Ti(BH4)3⋅xNH3 (x = 3 or 5)         (7)  

The procedure described in Section 2.2 has allowed the synthesis 
of pure metal borohydrides, which subsequently may be utilized to 

synthesize pure ammine metal borohydrides [26,111,119]. Hence, a 
direct reaction may proceed between the pristine metal borohydride 
and liquid or gaseous ammonia [24], or alternatively via ligand ex
change in solution, see reaction scheme 8 [101,119,120].  

M(BH4)n + x NH3 → M(BH4)n⋅xNH3                                           (8)  

The latter method has also been applied to the unstable transi
tion metal borohydrides, e.g. Ti3+ (d1), V3+ (d2), Fe2+ (d6), and Co2+ 

(d7), as the coordination of NH3 provides a stabilizing effect, al
lowing the compounds to be investigated at room temperature  
[115,120,121]. Interestingly, compounds such as the bicationic 
(NH4)nM(BH4)m∙xNH3 compounds are produced through the de
composition of (NH4)n+1M(BH4)m+1 as they release H2 and B2H6 [22]. 

3. Structural diversity of metal borohydrides 

Metal borohydrides exhibit an extreme structural flexibility re
lated to the diverse coordination of the BH4

- anion, which can co
ordinate to a metal as a corner- (B−H, κ1), edge- (B−H2, κ2), or face- 
sharing (B−H3, κ3) ligand, and it can act as a counter ion. The 
structures of most metal borohydrides are described in ref [24,25] 
and the following sections will focus on selected cases and recently 
discovered metal borohydrides. 

The structures of most monometallic borohydrides consist of 
three-dimensional frameworks of [M(BH4)4] tetrahedra or [M(BH4)6] 
octahedra, where BH4

- acts as bridging ligand, often by edge-sharing 
of the BH4-tetrahedron (κ2) [24,25]. This is highlighted by the ex
amples of Mg(BH4)2 and RE(BH4)3 described in subsection 3.1 and 
3.2, respectively. There are also few examples of molecular mono
metallic borohydrides, Al(BH4)3, Ti(BH4)3, Zr(BH4)4, and Hf(BH4)4, 
which are volatile or gases at room temperature, due to the lack of 
an interconnecting network [122–125]. Monometallic borohydrides 
often exhibit polymorphism, and particularly Mg(BH4)2 has attracted 
significant interest from a structural point of view since this com
position exists in the highest number of different polymorphs, in
cluding a permanent nano-porous and amorphous state. 

3.1. Polymorphism of magnesium borohydride 

With five structurally identified and two yet unsolved com
pounds of magnesium borohydride, the structures of α-, β-, γ-, δ-, ζ- 
and β’-, ε- Mg(BH4)2, respectively, display the most diverse poly
morphism among metal borohydrides, see Fig. 2 [126,127]. All the 
known polymorphs consist of tetrahedral [Mg(BH4)4] complexes, 
where each BH4

- is bridging two Mg2+. Interestingly, the topology of 
each polymorph is different as highlighted by the polyhedra in the 
figure, where all [Mg(BH4)4] tetrahedra are connected in three-di
mensional frameworks in α-, β-, γ- and ζ-Mg(BH4)2, while δ-Mg 
(BH4)2 consists of two interpenetrating frameworks. 

In addition to the crystalline polymorphs, Mg(BH4)2 can form an 
amorphous state, which can be obtained by different methods, in
cluding i) reactive ball milling of MgB2 and H2 [128] ii) ball milling of 
γ-Mg(BH4)2 [59] and iii) by a pressure collapse of γ-Mg(BH4)2 [129]. 
Upon heating the amorphous phase to above 90 °C, γ-Mg(BH4)2 can 
be reformed [129]. The high-pressure polymorph δ-Mg(BH4)2 can be 
formed at pressures above 1.1–2.1 GPa, but is stable upon decom
pression [59]. This polymorph has received special attention as it has 
one of the highest volumetric hydrogen capacities of all complex 
metal hydrides with 147 g H L-1, considerably higher than the capa
cities for the other polymorphs, 82–117 g H L-1. 

The structure of γ-Mg(BH4)2 is built as a three-dimensional 
structure with interpenetrating channels, with an inner and outer 
diameter of ~8 and ~12.3 Å, respectively. Thus, the structure may be 
described as a metal organic framework-like structure with a por
osity of ~33%, which can adsorb neutral guest molecules or noble gas 
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atoms [59,130]. As an example, it was reported that up to 3 wt% of 
hydrogen can be adsorbed at − 193 °C and p(H2) = 105 bar. 

For the amorphous Mg(BH4)2, total X-ray scattering was recently 
combined with pair distribution function (PDF) analysis. It was 
suggested that the local ordering still bears a striking resemblance to 
the γ-polymorph, but only up to 5.1 Å, which is the length of the 
Mg–BH4–Mg building blocks [131]. Another visible barrier is the 
outer diameter of the interpenetrating channels, where the data up 
to 12.3 Å suggested that those channels still existed [59,126]. Outside 
of those channels (r  >  12.3 Å) the PDF became featureless, agreeing 
with the completely randomized structure [131]. 

Interestingly, the chemical reactivity of amorphous Mg(BH4)2 is 
different as compared to the crystalline forms, e.g. observed in the 
reaction with NH3BH3, where no reaction is observed for amorphous 
Mg(BH4)2, while the reaction with α-Mg(BH4)2 results in Mg 
(BH4)2⋅2NH3BH3 [132]. A mixture is obtained when using γ-Mg 
(BH4)2, due to the competing reactions to form amorphous Mg(BH4)2 

and Mg(BH4)2⋅2NH3BH3 [132]. A similar difference was observed in 
the reactivity of α- and γ-Mg(BH4)2 with NH4BH4 [22]. Thus, the γ- 
polymorph should be avoided for subsequent synthesis involving 
ball milling, which has been used as a possible approach to tune the 
ligand content, e.g. the amount of NH3 in Mg(BH4)2⋅xNH3 [49,51,133], 
as this may result in the wrong composition of the obtained pro
ducts. 

3.2. Crystal structures of the rare-earth metal borohydrides 

In recent years, rare-earth metal borohydrides (RE(BH4)n) have 
been investigated with different motivation, such as materials for 
solid-state hydrogen storage [4134] or as solid-state ionic conductors 
for battery applications [135,136] and reviewed in Refs [26,96,137]. 
The majority of the rare-earths form trivalent RE(BH4)3, but divalent 
RE(BH4)2 is formed for RE2+ = Sm, Eu, Yb due to a stable +II oxidiation 
state. The structures of the divalent RE(BH4)2 are isostructural to the 
alkaline earth metal borohydrides with similar ionic radii, i.e. M 
(BH4)2 (M2+ = Sr) for RE2+ = Sm and Eu and M2+ = Ca for RE2+ = Yb  
[26,90,92,96,111]. 

The trivalent RE(BH4)3 can crystallize in three different struc
tures, α- (Pa-3), β- (Fm-3m), and r-RE(BH4)3 (R-3c), all of them re
lated to the cubic polymorphs of rhenium trioxide (ReO3). In these 

structures, the RE atoms are octahedrally coordinated to six BH4
–, 

where all the BH4
– groups are bridging the RE3+ centers. The crystal 

structures are shown in Fig. 3. β-RE(BH4)3 is the ideal ReO3 structure, 
while α- and r-RE(BH4)3 may be obtained by tilting of the octahedra. 

At room temperature, the larger rare-earths RE3+ = La and Ce 
crystallize in the r-RE(BH4)3 structure, while RE3+ = Ce can also 
crystallize in the α-RE(BH4)3 structure (Fig. 3). For the smaller RE3+ = 
Pr-Lu, the compounds crystallize in either the α- or β-RE(BH4)3, de
pending on the synthesis conditions [26,95]. The volume correlates 
linearly with the volume of the RE-ion, and it is evident that the 
volume increases in the order r- <  α- <  β-RE(BH4)3, resulting in a 
larger void space in β-RE(BH4)3. 

The intermediate-sized RE(BH4)3 (RE3+ = Ce and Pr) are the only 
compounds showing all three polymorphs, i.e. α-, β- and r-RE(BH4)3  

[26,98,137]. Upon heating, α-Ce(BH4)3 undergoes a polymorphic 
transition at ~129 °C into r-Ce(BH4)3, and a similar transition from β- 
to r-Ce(BH4)3 occurs at T  >  175 °C [26,98]. This transition is not re
versible upon cooling. In the case of Pr(BH4)3, the α-polymorph is 
stable at room temperature, and upon heating the structure changes 
to β-Pr(BH4)3 at ~190 °C, but this polymorph immediately transforms 
to r-Pr(BH4)3. This transformation is assigned to the large voids in 
the β-polymorph, which allow for bending of the Pr−BH4–Pr bonds 
based on the rotation of Pr(BH4)6 octahedra, resulting in a more 
dense packing and transition to r-Pr(BH4)3 [137]. The transition from 
α- to r-Pr(BH4)3 is reversible under the right conditions [137], but a 
recent study did not reproduce the reversible transition nor the 
stepwise negative thermal expansion observed in ref [137,138]. The 
polymorphic transitions were also investigated under elevated hy
drogen pressure (p(H2) = 40 bar), resulting in the porous β-Pr(BH4)3 

as the major phase at 190 °C, demonstrating that the polymorphic 
transitions are pressure dependent [137]. 

3.3. Di-metallic borohydrides 

Dimetallic borohydrides are observed for several mixtures of 
alkali metal and alkaline earth metal or d- or f-block metal bor
ohydrides. The majority of dimetallic borohydrides consist of com
plex anions, charge-balanced by the less electronegative alkali metal 
ion. Due to the difference in Pauling electronegativity, the more 
electronegative metal ion forms the center of the complex anion and 

Fig. 2. Crystal structures of a) α-Mg(BH4)2 (P6122), b) β-Mg(BH4)2 (Fddd), c) γ-Mg(BH4)2 (Ia-3d), d) δ-Mg(BH4)2 (P42nm) and ζ-Mg(BH4)2 (P3112). Color scheme: Mg2+ (blue), B 
(light blue), H (grey). (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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forms a more covalent bond to BH4
-, while the bonding between the 

alkali metal and the BH4
- is more ionic [22,24,25]. 

The anion complexes often exist as isolated anions, e.g. KxMg 
(BH4)2+x (x = 2, 3), where the structure is built from isolated [Mg 
(BH4)4]2- tetrahedra, which are charge balanced by K+. In K3Mg 
(BH4)5, one BH4

- group also acts as a counter-anion [140]. Alkali 
metal calcium, strontium and samarium borohydrides form per
ovskite-type structures with the composition M1M2(BH4)3 (M1 = K, 
Rb, Cs; M2 = Ca, Sr, Sm), where the octahedrally coordinated M2 are 
interconnected in three-dimensional frameworks via bridging κ2- 
BH4. These frameworks are charge-balanced by M1 sitting in a cu
boctahedral geometry consisting of twelve BH4

- groups [55,105,106]. 
The crystal symmetry of the strontium perovskites increases upon 
heating, but are lower than the Ca-analogous at room temperature, 
suggesting that Sr2+ is too large to stabilize the ideal cubic perovskite 
structure [24]. Structurally, the borohydride-based perovskites differ 
from oxide and halide analogues due to dihydrogen repulsions be
tween the BH4

- ligands, which can result in a symmetry lowering 
during heating [55,141]. 

Recently, a large variety of new bi-cationic borohydrides was 
investigated, namely ammonium metal borohydrides, (NH4)xM 
(BH4)y. Mixtures between NH4BH4 and M(BH4)n have been in
vestigated for M = Li, Na, K, Mg, Ca, Sr, Al, Sc, Y, Mn, La, Gd, forming 
new compounds with high hydrogen densities of 9.2–24.5 wt% H. No 
reaction was observed with NaBH4, while a solid-solution was 
formed with KBH4. This class of compounds displays a fascinating 
structural diversity, forming structures built from isolated 

tetrahedral, five-fold or octahedral anionic [M(BH4)n] complexes, to 
structures built from one-dimensional chain-like frameworks, two- 
dimensional layers to three-dimensional framework structures 
(Fig. 4). Many of the ammonium metal borohydrides show resem
blance to the K- and Rb-analogues due to the similar ionic radii, r 
(NH4

+) = 1.48 Å, r(K+) = 1.38 Å, and r(Rb+) = 1.52 Å, and thus the NH4
+ 

is considered as a counter ion, similar to the alkali metals in dime
tallic borohydrides [22]. 

Dihydrogen interactions between complex NH4
+ and BH4

– ions 
may contribute to a higher structural diversity and flexibility. This 
may be the reason for the formation of (NH4)3La2(BH4)9, which has a 
new composition and structure type as compared to the alkali metal 
analogues. Furthermore, it was found that the shortest dihydrogen 
bonds, N-Hδ+…-δH-B, in the structures, correlate with the structural 
dimensionality. The three-dimensional framework structures dis
play significantly longer dihydrogen bonds compared to the struc
tures with a lower dimensionality [22]. 

3.4. Metal borohydrides with neutral ligands 

The compositional and structural diversity of metal borohydrides 
can be further expanded by the introduction of neutral ligands, 
which may alter the chemical and physical properties. These ligands 
often contain an atom with a free electron pair, e.g. N, O, or S, which 
can form a covalent bond to the metal-ion in the structure. This has 
resulted in a large range of solvated metal borohydrides, including 
ligands such as dimethyl sulphide, tetrahydrofuran, and a range of 

Fig. 3. a) Crystal structures of α-RE(BH4)3 (Pa-3), β-RE(BH4)3 (Fm-3m), and r-RE(BH4)3 (R-3c). Color scheme: RE3+ (blue), B (light blue), H (grey). b) Volume per formula unit (V/Z) of 
RE(BH4)3 as a function of the volume of the RE-ion (V(RE3+)) at room temperature. V/Z data are obtained from ref [26,88,95,138]. and the ionic radii are from ref [139]. (For 
interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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different N-based ligands, e.g. NH3, NH3BH3, and N2H4  

[24,26,34,57,89,98,111,142,143]. The hydrogen atoms on the neutral 
ligands are often bonded to more electronegative atoms, e.g. C, N, O, 
or S, which results in dihydrogen interactions in the solid state, e.g. 
B–Hδ−···+δH–N. Multiple compounds are known with strong dihy
drogen interactions (< 2.4 Å), which stabilizes the structural frame
work, e.g. Mg(BH4)2⋅2NH3BH3, Sr(BH4)2⋅2NH3BH3, and Al 
(BH4)3⋅NH3BH3 [132,144,145]. 

The most extensively studied class of metal borohydrides with 
neutral ligands is the ammines, which has been reported for almost 
all of the known metal borohydrides. This class of compounds dis
play a large range of compositions, e.g. Y(BH4)3⋅xNH3, x = 1, α-2, β-2, 
α-3, β-3, 5, 6, 7. Ammine yttrium borohydrides is the only series 
showing polymorphism (x = 2 and 3), and x = 3, 5, 6, and 7 are iso
structural with several members of the rare-earths [100,101,119,146]. 
Note that the structures of Y(BH4)3⋅xNH3 (x = 3, 5) have recently been 
revised [101,119,146]. The entire range of ammine rare-earth metal 
borohydrides was recently investigated, revealing interesting trends 
in compositions, crystal structures, and thermal properties [119]. It 
was found that the thermal stability correlated with the volume of 
the RE3+ ion, where the stability of RE(BH4)3⋅xNH3 (x = 3, 5, 7) in
creased with increasing cation charge-density, while x = 4 and α-6 
decreased due to a too large coordination sphere to be accom
modated by the decreasing volume of RE3+ [119]. 

The introduction of ammonia into the structures of metal bor
ohydrides breaks down the three-dimensional frameworks, and the 
structural dimensionality usually decreases with increasing NH3 

content [100,101,119]. There are only few examples of ammine metal 
borohydrides with a three-dimensional framework structure, e.g. M 
(BH4)2⋅NH3 (M2+ = Ca, Ba, Yb) and the bi-cationic M1M2(BH4)3⋅2NH3 

(M1
+ = Li, NH4; M2

2+ = Mg, Mn) [22,35,119,147,148]. Compounds with 
low NH3 content usually show two-dimensional layered or one-di
mensional chain-like structures, while compounds with inter
mediate NH3 content usually form neutral molecular compounds. 
The compounds with high NH3 content usually form ionic com
plexes, where the metal cation is often fully coordinated by NH3, 

while the BH4
- acts as a counter ion. However, there are few ex

amples where BH4
- can act as both a coordinating ligand and a 

counter ion in the same compound, e.g. α-RE(BH4)3⋅6NH3 (RE3+ = La, 
Ce, Pr, Nd) and RE(BH4)3⋅5NH3 (RE3+ = Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, 
Er, Tm, Yb). The trends in crystal chemistry are well illustrated by Mg 
(BH4)2⋅xNH3 (x = 1, 2, 3, 6), see Fig. 5, forming one-dimensional zig- 
zag chains for x = 1, neutral molecular [Mg(BH4)2(NH3)x] complexes 
for x = 2 and 3, and ionic [Mg(NH3)6]2+ and [BH4]- complexes for x = 6  
[23,36,49]. 

Fig. 4. Crystal structures of a) NH4Y(BH4)4, b) (NH4)2Gd(BH4)5, c) (NH4)3Gd(BH4)6, d) NH4Li(BH4)2, e) (NH4)3La2(BH4)9, and f) NH4Ca(BH4)3. The structures are built from isolated 
complex anions (a-c), one-dimensional chains (d), two-dimensional layers (e), and three-dimensional frameworks (f). Color scheme: M (blue), B (light blue), H (grey), BH4

- (light 
blue tetrahedra), NH4

+ (red tetrahedra). (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

Fig. 5. Crystal structures of a) Mg(BH4)2⋅NH3, b) Mg(BH4)2⋅2NH3, c) Mg(BH4)2⋅3NH3, 
and d) Mg(BH4)2⋅6NH3. Color scheme: Mg2+ (blue), B (light blue), N (red), H (grey). 
(For interpretation of the references to colour in this figure, the reader is referred to 
the web version of this article.) 
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Ammonia always coordinates to the metal-ion via the lone pair 
on N, while BH4

- displays a more flexible coordination. The BH4
- 

group may act as a bridging or terminal ligand, often via edge- 
sharing (κ2) or face-sharing (κ3), respectively. However, the co
ordination of the BH4

- usually orients in a way to satisfy the pre
ferred coordination (including H) of the metal, which is typically ~8 
for smaller cations such as Li+ and Mg2+, and ~12 for larger cations, 
e.g. the heavy alkaline earths and the rare-earths. In compounds 
with high NH3 content, the coordination sphere is usually filled with 
NH3, and the BH4

- acts as counter ions. 

4. Metal borohydrides as electrolytes 

It was recently discovered that metal borohydrides could be 
employed as electrolytes in both the liquid and solid-state for bat
tery applications. The reducing nature of metal borohydrides offers 
compatibility with metal anodes, and the low density and softness of 
the materials may result in high gravimetric energy-density battery 
cells with easy manufacturing of the electrode-electrolyte interface  
[24,149,150]. To be useful for solid-state electrolyte (SSE) applica
tions, a conductivity of σ  >  10-4 S cm-1 is often mentioned as a re
quirement, along with a negligible electronic conductivity. 

The discovery of the high-temperature polymorph of LiBH4 as a 
super-ionic conductor initiated the research on this new class of 
solid-state electrolytes. At temperatures above 115 °C, LiBH4 under
goes a polymorphic transition from an orthorhombic structure with 
a low ionic conductivity, σ(Li+) ≈ 10−8 S cm−1 at 30 °C, to a hexagonal 
structure with a Li+ conductivity of σ(Li+) ≈ 10-3 S cm-1 at 120 °C  
[151]. Several approaches have been implemented to retain the high 
conductivity at room temperature, including the formation of dia
nionic compounds, e.g. Li4(BH4)3I, Li2(BH4)(NH2), and LiBH4:Li2P2S5, 
nanoconfinement, e.g. LiBH4 or Li4(BH4)3I in mesoporous SiO2, and 
formation of dimetallic borohydrides, e.g. LiRE(BH4)3Cl (RE3+ = La, Ce, 
Pr, Nd, Sm, Gd). These approaches have been quite successful and 
have increased the conductivity by several orders of magnitude as 
compared to LiBH4, which is well described in other reviews such as 
ref. [46,152,153]. Recently, a new approach involves the addition of 
neutral ligands to improve the ionic conductivity, which will be the 
focus of this chapter. This research has also provided a new cation 
conductivity mechanism, where the ligand assists the cation mi
gration. The ionic conductivity of this new type of ionic conductors is 
compared to other state-of-the-art systems based on the above- 
mentioned approaches in Fig. 6. 

4.1. Lithium-based electrolytes 

The first reported attempt to improve the ionic conductivity by 
adding a neutral ligand was by hydration of LiBH4 to form the 
monohydrate LiBH4⋅H2O [154]. The hydrated compound improved 
the RT conductivity by around two orders of magnitude compared to 
LiBH4 and obtained a maximum value of σ(Li+) = 4.89⋅10−4 S cm−1 at 
45 °C, after which water was released from the structure, and the 
conductivity approached that of LiBH4. 7Li NMR was further used to 
verify the high Li+ conductivity of the hydrated compound. Despite 
the improvement in ionic conductivity, the presence of water was 
reported to form an increase in resistance towards the lithium 
electrodes. 

Later, a study on ammine lithium borohydrides showed that 
careful control of the ammonia content in LiBH4⋅xNH3 (0  <  x  <  2) 
could significantly change the ionic conductivity, reaching a max
imum of σ(Li+) = 2.21⋅10-3 S cm-1 at T = 40 °C for LiBH4⋅NH3 [73]. The 
high Li+ conductivity was attributed to the structural changes caused 
by NH3 ab/desorption, which would introduce Schottky defects and 
changes in the atomic environment [73]. However, a new compound 
with the composition LiBH4⋅½NH3 was later discovered, which ex
hibited a similar high conductivity, suggesting that the increase in 

conductivity may instead be due to this particular composition [50]. 
A migrational pathway was established based on crystal structure 
analysis and DFT calculations, which suggests that interstitial Li+ can 
move in the interlayers in the two-dimensional structure. The high 
conductivity of the interstitial Li+ is a result of a highly flexible 
structure owing to di-hydrogen bonds, N − Hδ+···−δH−B, where BH4

- 

groups can reorient to stabilize the coordination of both framework 
and interstitial Li+, while the NH3 can be relatively freely exchanged 
between the two to promote the migration of interstitial Li+ [50]. 

Two different approaches have been used to produce 
LiBH4⋅½NH3, either by careful removal of ammonia from LiBH4⋅NH3 

under vacuum, or via the mechanochemically induced reaction of 
LiBH4, LiNH2, and LiOH, where the latter also provided Li2O nano
particles, which appeared to thermally stabilize the compound [50]. 
The latter approach was further developed by the addition of Al2O3 

nanoparticles, and LiBH4⋅½NH3@Li2O mixed with 60 wt% Al2O3 na
noparticles achieved a conductivity of σ(Li+) = 1.1⋅10-3 S cm-1 at 
T = 30 °C [155]. The specific NH3 content was adjusted in 
LiBH4⋅xNH3@Li2O (0.67  <  x  <  0.8), where a conductivity of σ(Li+) 
= 5.4⋅10-4 S cm-1 was achieved at T = 20 °C for x = 0.67 with 78 wt% 
Li2O [156]. 

The larger ligand ammonia borane (NH3BH3) has also resulted in 
a high ionic conductivity at 25 °C in LiBH4⋅xNH3BH3, reaching values 
of σ(Li+) = 4.04⋅10-4 S cm-1 for x = 1 and σ(Li+) = 1.47⋅10-5 S cm-1 for 
x = ½ [71]. The former marks the highest reported conductivity of a 
LiBH4 based compound with σ(Li+) = 0.1 S cm-1 at T = 55 °C. 

The Li+ transference number (t+), i.e. the fraction of the total 
current arising from Li+ migration, should ideally be unity for solid- 
state electrolytes to minimize or avoid polarization in the battery 
cell. For LiBH4-based systems, the Li+ transference number was es
timated to be around t+ ~0.90–0.96 for nanoconfined LiBH4, while for 
LiBH4⋅NH3BH3 measured at 40 °C and LiBH4⋅½NH3BH3 measured at 
50 °C, it was t+ ~1 [71,157]. In other systems, e.g. LiBH4⋅0.67NH3@Li2O  
[156] and LiBH4·½NH3@Li2O-Al2O3 [155], the Li+ transference 
number was not reported, instead, a five and four orders of magni
tude lower electronic conductivity than the total conductivity were 
reported, respectively. 

Although LiBH4-based compounds with neutral ligands have 
shown promising results for their use as solid-state electrolytes, no 
full battery cells have yet been assembled. However, galvanostatic 
cycling in symmetric Li|SSE|Li cells has been demonstrated, 

Fig. 6. Temperature-dependent Li-ion conductivity of selected complex hydrides.  
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indicating a good compatibility with Li metal [71,155,156]. For 
comparison, several all-solid-state batteries have been demon
strated on other LiBH4-based systems. This includes nanoconfined 
LiBH4 with a sulfur-carbon composite cathode that had a discharge 
capacity of 3100 mAh g-1 on the 1st discharge and 1220 mAh g-1 

after 40 cycles at 0.03 C and T = 55 °C [157]. The dianionic com
pounds Li4(BH4)3I [158] and Li4(BH4)3Cl [159] have also been used as 
solid-state electrolytes in full cells. Li4(BH4)3I was assembled with 
lithium-titanate oxide (LTO) as the cathode and cycled at 0.2 C and 
T = 150 °C with 170 mAh g-1 and 158 mAh g-1 on the 1st and 2nd 
cycle, respectively [158]. A sulfur-carbon composite was employed 
as a cathode with Li4(BH4)3Cl as the electrolyte and cycled at 0.03 C 
at T = 100 °C with a discharge capacity of 1377 mAh g-1 on the 1st 
discharge, which drops to 636 mAh g-1 on the 5th cycle [159]. Ad
ditionally, the dimetallic borohydride LiCe(BH4)3Cl was assembled 
with a sulfur-carbon composite cathode at 45 °C with an initial 
discharge capacity of 1196 mAh g-1 on the 1st discharge and 510 
mAh g-1 on the 9th discharge with a C-rate of 0.01 [160]. More ex
amples on borohydride based batteries are summarised in ref. [152]. 

4.2. Magnesium-based electrolytes 

The interest in Mg(BH4)2 based electrolytes was initiated with 
the demonstration of reversible plating/stripping of Mg2+ in Mg 
(BH4)2 solutions in ethereal solvents, which was the first halide-free 
ionic Mg2+ electrolyte [48]. However, for solid-state electrolyte ap
plications, Mg(BH4)2 has a very low ionic conductivity of 
σ(Mg2+) <  10-12 S cm-1 at T = 30 °C (Fig. 7). Approaches used for im
provements of LiBH4-based systems have also been attempted for 
magnesium, and the dual-anion compounds Mg(BH4)(NH2) and 
Mg3(BH4)4(NH2)2 demonstrated ionic conductivities of σ(Mg2+) 
= 10–6 S cm−1 at T = 150 °C [161], and σ(Mg2+) = 4.1⋅10–5 S cm−1 at 
T = 100 °C [162], respectively. A glass-ceramic phase of Mg(BH4) 
(NH2) was reported to have a conductivity of σ(Mg2+) = 3⋅10–6 S cm−1 

at T = 100 °C [163]. 
Introducing a neutral ligand has also proven efficient for mag

nesium systems, and a conductivity of σ(Mg2+) = 6⋅10-5 S cm-1 was 
reported at T = 70 °C in the ethylediammine (en) derivative, Mg 
(BH4)2⋅NH2(CH2)2NH2 [72]. To better understand the role of the li
gand, the related halide complexes, Mg(en)1X2 (X = Cl, I), were also 
investigated, showing a much lower ionic conductivity. This suggests 
that the BH4

- anion also plays a crucial role in the conductivity 

mechanism, but a more detailed analysis will require structural so
lution of the compound [72]. 

Diglyme (dg) has also been investigated as a neutral ligand. Mg 
(BH4)2⋅½dg demonstrated an ionic conductivity of σ(Mg2+) = 2⋅10-5 

S cm-1 at T ~ 80 °C, while Mg(BH4)2⋅dg displayed a lower maximum 
conductivity, and a significantly lower activation energy, but was 
found to release diglyme over time [164]. While the authors ascribe 
the high Mg2+ conductivity to the chelating ability of the flexible 
diglyme ligand, they discover the need for a Mg(BH4)2 unit, which is 
not solvated by the organic ligand, to enhance the thermal stability 
of the compound [164]. 

Magnesium borohydride ammonia borane, Mg(BH4)2⋅2NH3BH3, 
was later investigated, which revealed a significantly higher con
ductivity of σ(Mg2+) = 5.0⋅10-6 S cm-1 at T = 25 °C, but with a low 
melting point of T ~ 47 °C [70,132]. The enhanced Mg-ion con
ductivity was ascribed to a larger volume and distortion of the tet
rahedral coordination of Mg2+, which leads to an increased number 
of Mg2+ conduction pathways and interstitial positions. While the 
role of NH3BH3 is not clear, it is suggested that it can be flexibly 
displaced or rotated to promote Mg2+ migration [70]. 

The ammine magnesium borohydrides, Mg(BH4)2⋅xNH3, resulted 
in one of the most promising solid inorganic Mg2+ electrolyte sys
tems reported so far. Initially, the compounds with integer-values of 
x = 1, 2, 3, and 6 were investigated, and an increase in the Mg2+ 

conductivity by several orders of magnitude was achieved [49]. Mg 
(BH4)2⋅NH3 exhibited the highest ionic conductivity of the series, 
σ(Mg2+) ~ 3.3·10–4 S cm−1 at T = 80 °C. The cationic conductivity 
mechanism was established based on the crystal structure and DFT 
calculations, which showed similarities to that of LiBH4⋅½NH3  

[49,50]. The interstitial Mg2+ migrates along the one-dimensional 
Mg-BH4-Mg zig-zag chains in the crystal structure, where the BH4

- 

complexes can reorientate and be temporarily displaced from their 
atomic positions. The structure is flexible partly due to a network of 
di-hydrogen bonds, N − Hδ+···−δH−B, which facilitates the exchange of 
NH3 between framework and interstitial magnesium, and allows for 
fast Mg2+ migration. The weak dihydrogen interactions between the 
chains result in a highly flexible structure, which allows for dis
placement of the framework magnesium atom during migration of 
the interstitial Mg2+ ion, and this mechanism is denoted pas-de-deux  
[49]. A similar flexible structure arising from a dense dihydrogen 
bond network is also observed for Mg(BH4)2⋅2NH3BH3, Mg 
(BH4)2⋅xdg and Mg(BH4)2⋅en [70,72,164]. 

A following investigation of composites formed by physical 
mixtures of two Mg(BH4)2⋅xNH3 compounds with different x-values 
surprisingly resulted in an additional increase in the Mg-ion con
ductivity by about three orders of magnitude [51]. The exact reason 
for this increase in Mg2+ conductivity remains unknown. Further
more, an eutectic molten composition x = 1.5, at T = 55 °C, was also 
discovered, and the highest conductivity was observed for Mg 
(BH4)2⋅1.6NH3, σ(Mg2+) = 2.2⋅10–3 S cm−1 at T = 55 °C, which is the 
highest reported value for an inorganic solid-state Mg2+ conductor. 
However, the Mg-ion conductivity rapidly decreased to σ(Mg2+) 
= 2.0⋅10–7 S cm−1 at 25 °C, but the eutectic molten state could be 
stabilized by confinement with MgO nanoparticles, which resulted 
in σ(Mg2+) = 1.2⋅10–5 S cm−1 at 25 °C. In addition to the higher con
ductivity at room temperature, the nanoparticles prevented re
crystallization of the highly dynamical amorphous state, which is 
stabilized over a long period of time, i.e. several months. In contrast, 
the eutectic melt without nanoparticles slowly recrystallizes at room 
temperature, resulting in a lower conductivity [51]. 

The Mg(BH4)2 based electrolytes display an oxidative stability of 
around 1.2 V as determined by cyclic voltammetry in a two-electrode 
setup with Mg as the counter/reference electrode and Pt, Mo and Au 
as working electrodes for Mg(BH4)2⋅NH2(CH2)2NH2 [72], Mg 
(BH4)2⋅2NH3BH3 [70], and Mg(BH4)2⋅1.6NH3@MgO [51], respectively. 
Upon cycling, Mg(BH4)2⋅1.6NH3 was reported to form a stable Fig. 7. Temperature-dependent Mg-ion conductivity of selected complex hydrides.  
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interface, which increased the stability up to 2.5 V, while still facil
itating Mg plating and stripping [51]. Only one Mg(BH4)2-based 
battery cell with a neutral ligand has been published, using Mg 
(BH4)2⋅NH2(CH2)2NH2 as the electrolyte and LTO as the cathode, 
where one discharge was achieved [72]. Thus, a rechargeable full 
battery cell based on these systems still remains to be demonstrated. 

4.3. Calcium-based electrolytes 

There are only a few examples of calcium-based electrolytes, and 
reversible Ca electrodeposition has proven challenging, e.g. passi
vating layers are easily formed from common Ca-salts such as Ca 
(ClO4)2 and Ca(BF4)2 [165]. The first report of reversible Ca plating/ 
stripping was measured at 100 °C using Ca(BF4)2 in ethylene/pro
pylene carbonate as a liquid electrolyte, and the temperature was 
sufficient to overcome the poor Ca2+ diffusion in the formed CaF2 

interface layer on the Ca-anode [166]. Later, it was reported that Ca 
(BH4)2 in THF demonstrated reversible Ca plating/stripping even at 
RT, with a relatively high coulombic efficiency of 94.8%, where a 
CaH2 interface was formed [167]. The reversible Ca-electrodeposi
tion was later reconfirmed, and an electrochemical deposition me
chanism was proposed [168]. Addition of LiBH4 can improve the 
desolvation of Ca(BH4)2 in THF, resulting in an improved plating/ 
stripping cyclability and an increased coulombic efficiency of 99.1%  
[169]. The Ca(BH4)2-LiBH4-THF mixture was further used as an 
electrolyte in a full battery cell using LTO as the cathode mate
rial [169]. 

Although promising results have been demonstrated for bor
ohydride-based Ca-electrolytes in the liquid state, there are no re
ports of solid-state Ca2+ conductivity in Ca(BH4)2-based materials. 
Possibly the Ca2+ ion is too large for migration in these materials, 
while the +2 charge also results in a relatively strong electrostatic 
interaction with the anion lattice. Moreover, Ca2+ is often co
ordinated by six ligands in an octahedral geometry in the metal 
borohydride derivatives, in contrast to Mg2+ which can coordinate to 
4, 5 and 6 ligands [24]. Thus, more interstitial positions are available 
in Mg-systems. However, a recent report suggests that weaker co
ordinating anions may facilitate Ca2+ mobility in the solid state, e.g. 
CaB12H12 and Ca(CB11H12)2 [170]. 

5. Dynamical investigations of metal borohydrides 

Dynamical investigations on metal borohydrides are used to 
analyze rotational dynamics, diffusion constants or jump processes 
of the hydrogen species, typically by NMR or neutron techniques, e.g. 
quasielastic neutron scattering (QENS). For neutron investigations, 
hydrogen (1H) has such a large incoherent scattering cross section 
that it overshadows all other probes and is usually substituted by 
deuterium (2H = D) if other species are part of the investigation. 
While many of the derivatives of the metal borohydrides exhibit 
enhanced ionic conductivities, structural differences between the 
pure metal borohydrides also influence the conductivity. This is 
evident from the dynamical investigation of the amorphous phase of 
Mg(BH4)2, which shows a slightly higher Mg2+ conductivity com
pared to γ-Mg(BH4)2 [131]. The pattern of the scattering function S 
(Q, ∆E) showed that the inelastic and quasielastic contributions are 
dependent on the local structure of the two phases probed, γ-Mg 
(BH4)2 and amorphous Mg(BH4)2. The former shows almost no sto
chastic motions and no broadening around the elastic line, while the 
latter shows a significant broadening, which was explained with a 
higher rotational movement of the BH4 tetrahedra [131]. Thus, with 
a higher number of rotating BH4 tetrahedra, it seems likely that this 
motion, known as the paddlewheel effect [66], is responsible for the 
higher conductivity. The dynamically active BH4 groups result in 
around two orders of magnitude higher conductivity at 80 °C, while 
a recrystallization from amorphous to γ-Mg(BH4)2 at 100 °C results 

in the BH4 tetrahedra becoming inactive, and the conductivity de
creases to the same level as γ-Mg(BH4)2 [131]. Although the dy
namics of Mg(BH4)2 has been investigated previously, the focus here 
was to define the similiarities of linear H2BH2 – Mg – H2BH2 chains 
in amorphous and γ-Mg(BH4)2 [171,172]. All polymorphs of Mg(BH4)2 

have also been investigated by inelastic neutron scattering (INS), 
revealing distinct vibrational spectra [173]. A summary of structures 
and dynamics can be found in ref [174]. 

Adding an insulating nanosized or nanoporous material to a 
metal borohydride can also improve the dynamical properties. An 
example is the composite 30/70 wt% LiBH4/SiO2 aerogel. QENS and 
NMR reveal two fractions of LiBH4 with different mobilities of both 
Li and H [175]. One of the fractions accounts for the high ionic 
conductivity of 0.1 mS cm-1 at room temperature in the composite, 
due to increased mobility compared to the second fraction (o-LiBH4). 
The increased mobility is caused by the interaction between LiBH4 

and the SiO2 surface. Optimizing the surface contact without com
promising the bulk percolation may improve the ionic conductivity 
further, e.g. for the 30/70 wt% composite where the fraction of ions 
with high mobility is only ~10% [175]. Other noteworthy composites 
that exhibit similar properties are nanoconfined LiBH4-LiI/Al2O3, 
LiBH4-C60 and NaBH4-C60 nanocomposites, and LiBH4 with nano
sized oxides [176–178]. 

A series of dimetallic borohydride-halides LiLa(BH4)3X (X = Cl, Br, 
I) also show interesting dynamic properties. Fast Li+ ionic con
ductivity was initially assigned to the fact that only 2/3 of the 
available lithium positions are occupied [45]. Later, static solid-state  
7Li and 11B NMR measured on LiLa(BH4)3Cl revealed that the dy
namics of BH4

- and the migrating Li+ is on the same frequency scale, 
suggesting that the high mobility is due to the ‘paddle wheel’ ca
tionic conductivity mechanism [67]. The dimetallic borohydride- 
halides LiLa(BH4)3X (X = Cl, Br, I) all exhibit very fast BH4

- reor
ientation [67–70]. Increasing the radius of the halide ion results in 
faster reorientations of the BH4

- anion as observed by NMR. Ad
ditionally, the activation energies for Li+ diffusion derived from spin- 
lattice relaxation data are in good agreement with the activation 
energies obtained from the ionic conductivity measurements  
[69,103]. However, while the reorientations of the BH4

- anions be
come faster with increasing halide ionic radius, the Br-based com
pound has the highest ionic conductivity due to a more uniform 
cation diffusion path [67,69]. 

As discussed in Chapter 4, the addition of neutral ligands can 
significantly enhance the ionic conductivity, which may also corre
late with the observed dynamics. QENS and solid-state NMR based 
investigations of Mg(BH4)2·½dg revealed the presence of two dy
namically distinct BH4

- groups. One of the BH4
- complexes rotates 

relatively slowly, while the other undergoes fast isotropic jump re
orientations around the C2 and C3 symmetry axes of BH4

-, see Fig. 8  
[164]. The slowly rotating BH4

- group may be the reason for the 
greater thermal stability of Mg(BH4)2·½dg compared to Mg(BH4)2·dg, 
as the inhibited dynamics of one of the BH4

- groups is beneficial for 
balancing the magnesium-diglyme complexes [164,179]. The 

Fig. 8. Dynamics of the BH4
- ion. a) Rotation around the C3 symmetry axis, b) rotation 

around the C2 symmetry axis, c) cubic tumbling. Color scheme: H (gray and orange), B 
(cyan). (For interpretation of the references to colour in this figure, the reader is re
ferred to the web version of this article.) 

J.B. Grinderslev, M.B. Amdisen, L.N. Skov et al. Journal of Alloys and Compounds 896 (2022) 163014 

10 



compound undergoes a phase transition at 330 K, resulting in faster 
dynamics of the slowly rotating BH4

- group and an increase in the 
flexibility of diglyme [164]. Recent investigations on Y(BH4)3·xNH3 

also reveal that the ammonia content significantly affects the dy
namics of the BH4

- group. INS spectra of the three compounds α-Y 
(11BH4)3, α-Y(11BH4)3·3NH3, and Y(11BH4)3·7NH3 show that varying 
ammonia content only has a minor effect on the vibrational modes 
of ammonia. However, the vibrational modes of BH4

- are shifted 
towards lower energies with increasing ammonia content due to 
significant changes in the local coordination of the BH4

- group, re
flecting a decreasing interaction between BH4

- and its surroundings  
[146]. The librational energy decreases as BH4

- goes from acting as a 
bridging bidentate ligand in α-Y(BH4)3, to coordinating to one Y3+ ion 
in α-Y(BH4)3·3NH3, to being only surrounded by ammonia in Y 
(BH4)3·7NH3 [146]. By partial deuteration, i.e. Y(BH4)3·xND3 (x = 3, 7), 
the librational motions of BH4

- and NH3 could be roughly divided 
into three energy regions; (i) 11BH4

- librations below 55 meV, (ii) 
NH3 librations between 55 and 130 meV, and (iii) 11B-H and N-H 
bending and stretching motions above 130 meV. Both Mg(BH4)2·½dg 
and Y(BH4)3·xNH3 show that introducing neutral ligands influences 
the dynamics of the BH4

- groups and thus supports this strategy for 
rational design of metal borohydride based compounds with high 
dynamics [146,164]. 

Obtaining information on the reorientational dynamics in sys
tems with multiple complex components can be difficult. A prime 
example is NH4BH4, which has a dynamically ordered trigonal 
polymorph (P-3) below 45 K, where the dynamics in the system are 
frozen [180,181]. A polymorphic transition occurs between 45 and 
50 K, together with an onset of reorientational motions of NH4

+, 
which can be described as preferential tetrahedral tumbling. At 
125 K, the BH4

- becomes dynamically active and the motion can be 
described as cubic tumbling, see Fig. 8c [181]. Above this tempera
ture, it is challenging to unequivocally determine the NH4

+ motions, 
as these can be described as either cubic tumbling or isotropic ro
tational diffusion motions. The NH4

+ and the BH4
- ions experience 

different reorientationl energy barriers, and they have significantly 
different relaxation times. This gives rise to a cubic distribution of H 
positions for BH4

- and a multitude of H positions for NH4
+ in the 

cubic high temperature polymorph (Fm-3m) [181]. Understanding 
the complex dynamics in these types of systems may significantly 
improve the rational design and development of new materials with 
fast dynamics, useful as e.g. superionic conductors. 

6. Other physical properties 

Although metal borohydrides were initially investigated due to 
their high hydrogen content and potential properties as hydrogen 
storage materials, the focus has over the past decade been extended 
to a wide variety of other properties, some of which will be covered 
in this section. 

6.1. Optical properties 

A few metal borohydrides have been reported as luminescent  
[55–57], the first one being Eu(BH4)2⋅2THF, which shows bright blue 
luminescence and a significant quantum yield around 75% [56]. The 
high quantum yield is unusual as compounds with more than 10% 
Eu2+ usually experience significant concentration quenching and 
thus low quantum yields due to energy transfer between the lumi
nescent centres [56,182]. However, the borohydride anion efficiently 
separates the Eu2+ in Eu(BH4)2⋅2THF and prevents this energy 
transfer while the ionic character of the bonding between the BH4

- 

and the Eu2+ ensures the blue luminescence through a small Stokes 
shift and d→f emission in the blue spectral region [56]. The per
ovskite-type metal borohydrides, KYb(BH4)3, CsEu(BH4)3, Cs3Gd 
(BH4)6, and Cs2LiGd(BH4)6 were also investigated as luminescent 

materials [55]. Comparison between Eu(BH4)2 and the blue-lumi
nescent CsEu(BH4)3 reveals a red shift of 20 nm in the latter [55]. 
Furthermore, studies of doping in CsCa(BH4)3 with ~5% Eu2+ support 
the minimal effect of concentration quenching in metal borohy
drides as the material shows similar luminescence as CsEu(BH4)3  

[55]. However, the concentration of Eu2+ doping in CsM(BH4)3 (M = 
Ca, Eu) did influence the temperature dependency of the red shift. 

6.2. Magnetic properties 

Magnetism requires elements with unpaired electrons in open- 
shell configuration to enable interactions between magnetic centers. 
Whereas separation of the centers is favourable for luminescent 
materials, the opposite is the case for permanent magnetic mate
rials. Thus, the separation of magnetic centers created by the BH4

- 

anion suggests that weak exchange interactions and thus para
magnetism is expected down to low temperatures [26]. The mag
netic properties have been investigated for the entire range of the 
monometallic rare-earth borohydrides (except Pm) and several of 
the dimetallic rare-earth borohydrides [26,52,53]. However, the 
presence of magnetic impurities in the dimetallic compounds 
complicated the analysis significantly [52,53]. The monometallic 
rare-earth borohydrides demonstrate Curie-Weiss paramagnetic 
behavior with weak antiferromagnetic exchange interactions down 
to 3 K and magnetic moments in accord with isolated 4 f ions. In
terestingly, a weak antiferromagnetic ordering was observed in Gd 
(BH4)3 with a N é el temperature at 4.5 K, which indicates super
exchange through the borohydride group [26]. Additionally, tem
perature-dependent magnetic moments were discovered as a result 
of low-lying excited states induced by crystal field effects [26,53]. 

The magnetic entropy change was researched in dimetallic ga
dolinium-based borohydrides due to the possible application in 
magnetic refrigerants [52]. Interestingly, one of the greatest entropy 
changes among inorganic materials was observed for K2Gd(BH4)5 

with 52.8 J kg-1∙K-1 at 7 T [52]. Attempts to increase the magnetic 
entropy change may involve substituting the K+ ion with a lighter 
one, e.g. the NH4

+ ion. 

6.3. Semiconducting metal borohydrides 

Members of the perovskite-type metal borohydride group have 
been investigated by band gap calculations, which reveal that they 
are predominantly wide-gap insulators (> 5 eV) [55]. However, 
modifying the occupation of edge states is possible through the in
troduction of elements with higher-lying occupied orbitals. CsPb 
(BH4)3 is at present the only reported semiconducting metal bor
ohydride, with an experimental band gap of ~1.5 eV at room tem
perature [55]. Compared to the other metal borohydrides, the CsPb 
(BH4)3 compound contains a significant amount of s(Pb) states at the 
valence band-edge and p(Pb) states at the conduction band edge, 
which creates partial covalent interactions in the Pb(BH4)3 frame
work through hybridization with the ligand orbitals [55]. This sug
gests that metal borohydride-based materials may be tuned for 
application in e.g. photovoltaics. 

6.4. Superconductivity – theoretical predictions for LaBH8 

Superconductivity has been found in a range of metal hydrides 
exhibiting high critical temperatures (Tc) below which the com
pound shows superconductivity, although only at very high pres
sures (> 100 GPa) [183–186]. The research has culminated in the 
finding of superconductivity in carbonaceous sulfur hydride near 
room temperature (~15 °C) but at p ~ 267 GPa [183], which has 
triggered the hope to find a room temperature superconducting 
compound stable at much lower pressure. This has led attention 
towards the Lanthanum-Boron-Hydrogen compound, LaBH8, which 
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is predicted by computational studies to be stable down to 40 GPa, 
which is considered low compared to the established compounds 
showing superconductivity [187]. However, the compound is yet to 
be proven experimentally. 

6.5. Carbon capture properties 

Metal borohydrides have been observed to react with gaseous 
CO2, allowing the materials to be used for CO2 sequestration or to 
produce valuable chemical compounds, e.g. formic acid [188,189]. 
The reactivity of lithium and sodium borohydride towards CO2 was 
reported already in the 1950’s [190–192], with the formation of 
formatoborohydrides, e.g.:  

NaBH4 (s) + 2CO2 (g) → NaBO(O2CH)(OCH3) (s) T = 125 °C             (9)  

NaBH4 (DME) + 3CO2 (g) → NaBH(O2CH)3 (DME) T = room temperature                                                                                            
(10)  

Thus highlighting that the uptake of CO2 is dependent on the 
reaction conditions, which recently have received new attention  
[193–196]. 

Potassium borohydride, KBH4, may react with CO2 through a 
hydrolysis-promoted reaction, which releases H2 and produces a 
carbonate containing intermediate, K9[B4O5(OH)4]3(CO3)(BH4)∙7 H2O  
[188]. The products obtained upon complete CO2-promoted hydro
lysis are unidentified. However, the hydrolysis reaction was sug
gested to be utilized for CO2 sequestration and subsequent hydrogen 
production [188]. Another study of KBH4 in aqueous solution sug
gests the formation of primarily formic acid and a minor amount of 
methanol [197]. Performing the reaction during non-catalysed re
active ball-milling of KBH4 and solid CO2 or at elevated temperature 
(< 90 °C) and p(CO2) ~ 25 – 30 bar is also reported to form K[HxB 
(OCHO)4-x] (x = 1–3) [198]. The mechanochemical treatment was 
followed up by a study on LiBH4 and NaBH4 under p(CO2) = 2.5 bar, 
which revealed the formation of a mixture of borate, formate, and 
methoxy species [199]. 

A recent study suggests the reaction of tetraalkylammonium 
borohydrides with CO2 at room temperature and low CO2 pressure 
(1–3 bar) to produce liquid formatoborohydrides, i.e. tetraalkyl tri
formatoborohydride TA[HB(OCHO)3]- [189]. Tetraethylammonium 
and tetrabutylammonium borohydride displayed the fastest reaction 
kinetics reaching 95% conversion within 20 h. The produced tetra
alkyl formatoborohydrides are suggested to be used in the formation 
of formic acid or in solvent-free N-formylation reactions to produce 
ammines owing to its liquid nature [189]. 

Finally, the porous γ-Mg(BH4)2 proved very efficient at sorping 
CO2 at mild conditions, e.g. T = 30 °C and p(CO2) = 1 bar and subse
quently reacts with CO2 to form formate and methoxy species [200]. 

7. Outlook 

Complex metal hydrides are a fascinating and continuously ex
panding class of materials, and an extensive amount of new mate
rials has been reported in the past decade, mainly in the pursuit for 
high hydrogen density materials. Despite the discovery of many new 
hydrogen-rich boron- and nitrogen-based complex metal hydrides, 
reversible hydrogen release and uptake remain a major obstacle 
towards practical use of these compounds for solid-state hydrogen 
storage. However, a large number of other interesting properties 
have been discovered in the process, which is the focus of this re
view, including high ionic conductivity, luminescence, magnetism, 
semi- and superconductivity, gas-sorption and their use as reducing 
agents for CO2 reduction, see Fig. 9. 

Metal borohydrides, and derivatives thereof, have extremely rich 
chemistry, including a wide range of compositions and structural 
flexibility. Here we have discussed recent trends in synthesis of 

novel metal borohydrides, where e.g. solvent-mediated synthesis 
may allow for more pure products, valuable for further synthesis and 
characterization of the chemical and physical properties. The crystal 
structures of metal borohydrides are extremely diverse due to the 
complex nature of the BH4

- anion, and polymorphism is often ob
served, e.g. as in Mg(BH4)2. New compositions and crystal structures 
are continuously discovered, and recent focus has been on metal 
borohydrides with neutral ligands, which further increases the range 
of possible combinations and new structural prototypes. 

Hydrogen release by thermolysis from hydrogen-rich compounds 
and composites usually occurs readily, but hydrogen uptake is 
hampered by the formation of a rather thermodynamically stable 
dehydrogenated state. However, many different reactive hydride 
composite (RHC) systems have been investigated in the past, and 
others may be discovered in the future. They usually have high hy
drogen content and low hydrogen release temperature, e.g. ~300 °C 
for 2NaBH4−MgH2 (9.9 wt% H) [202], Ca(BH4)2−MgH2 (10.5 wt% H)  
[203,204], 4LiBH4–MgH2–Al (12.9 wt% H) [205], or ~340 °C for 
2LiBH4−Al (11.4 wt% H) [206,207]. These composites store hydrogen 
reversibly, but only exhibit moderate kinetics and stability over 
several cycles of release and uptake of hydrogen. Hydrogen may also 
be released by a hydrolysis reaction, and NaBH4 kept as a slurry in 
basic solution still attracts significant interest for hydrogen storage, 
but it appears that a catalyst is needed to accelerate and control the 
hydrolysis reaction [208]. The challenge for hydrogen storage in 
these materials is that the 'spent fuel' is another composite material, 
'boron-oxide-hydroxide-hydrate', which is challenging to re
generate. This reaction product is similar to that obtained when 
metal borohydrides are used for CO2 conversion and they may be 
converted back to a metal borohydride using hydrogen and molten 
magnesium. 

The many newly discovered compounds are extensively studied 
for new interesting properties, where in particular, the fast ionic 
conductivity has received much focus lately. In the past decade, 
LiBH4 and derivatives thereof, have received significant attention, 
and the potential use in all-solid-state batteries has been demon
strated by several examples. Importantly, the metal borohydrides 
appear to be stable towards metallic anodes, which is important for 
the realization of highly energy-dense batteries. Recently, some li
thium and magnesium borohydride complexes with neutral ligands 
have shown to be fast ionic conductors. While many compounds 
have demonstrated high Li+ conductivity, also in the solid state, there 
are only few reports of fast solid-state Mg2+ conductors, due to the 
stronger interactions of divalent cations with the anion lattice. 
Indeed, magnesium borohydride derivatives is the only class of 
materials that has demonstrated a sufficiently high solid-state Mg2+ 

conductivity at ambient conditions. The reported number of mag
nesium borohydride derivatives with high ionic conductivity is still 
scarce, but significant research efforts are expected within this class 
of materials in the coming years, which is expected to result in 
breakthroughs for multivalent solid-state ionic conductors. 

Classical cationic conduction mechanisms relate to more rigid 
anion lattices, e.g. oxides and halides, and typically thermally in
duced defect formation. The conductivity mechanism for the metal 
borohydrides with neutral ligands appears to deviate significantly. 
Two different conductivity mechanism have been proposed, where 
one explains the higher conductivity as a distortion of the local co
ordination environment of the framework cation, resulting in a 
lower energy for defect formation in the solid state [70]. The other 
mechanism explains the higher conductivity as a ligand-assisted 
migration of interstitial cations with an associated displacement of 
framework atoms, and rotation and displacement of BH4

– com
plexes. In the case of Mg(BH4)2⋅NH3, the neutral ligand, NH3, can be 
exchanged relatively freely between a migrating and framework 
cation. Moreover, when the neutral ligand is coordinated to the in
terstitial Mg2+ cation, the ‘Mg-NH3’ couple moves a step forward, 
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and therefore this mechanism is denoted as pas-de-deux [49,50]. In 
this ligand-assisted cation migration mechanism, the framework ca
tions are not considered as the conductivity species, but are merely 
temporarily displaced from their atomic positions, while an inter
stitial cation is migrating through the unit cell. The flexible co
ordination of the BH4

- complexes is crucial to stabilize both the 
interstitial and framework cations, and the flexible structural fra
mework is a prerequisite for a high conductivity. An extensive net
work of dihydrogen bonds, e.g. N − Hδ+···−δH−B, is suggested to 
contribute to a highly flexible structure [49]. 

The specific effect of the neutral ligands in different structures 
likely depends on their chemical and physical properties, such as the 
geometrical shape, the interactions with its surroundings and the 
ability to coordinate cations, which will affect the crystal structures 
and the ionic conduction channels. Thus, the specific details of the 
cation conductivity mechanism may depend on both the crystal 
structure and the properties of the ligand. Structural analysis of 
metal borohydrides with neutral ligands reveals that the structural 
dimensionality of the ‘M−BH4’ moiety is decreasing with increasing 
ligand content, and two-dimensional layered or one-dimensional 
chain-like structures are often formed by introducing a low number 
of ligands, which can form conduction channels in the unit cell. On 
the other hand, a higher number of ligands often result in even lower 
dimensionality and isolated molecular units or cationic complex 
ions, which may disrupt the conduction channels. This hypothesis 
appears to agree with the trend in conductivity for the Mg 
(BH4)2⋅xNH3 (x = 1, 2, 3, 6) systems [49], but further investigations of 
new systems are necessary to evaluate general trends. 

The addition of inert nanoparticles and mesoporous compounds 
has also proven to be a valuable tool to enhance the ionic con
ductivity of metal borohydrides. It has been widely applied for 

LiBH4-systems, where a highly conducting state is stabilized at the 
interfaces [47,209–212]. Recently, it was also employed in the Mg 
(BH4)2⋅1.6NH3 system, where it not only stabilized a highly con
ducting eutectic molten state to ambient conditions and prevented 
recrystallization, but also provided mechanical stabilization to form 
a solid functional electrolyte material [51]. 

Several borohydride-based solid-state Li batteries have been 
demonstated [152], but for many of the newly reported borohydride- 
based systems with neutral ligands, rechargeable full cells are still 
absent. One of the challenges for borohydride-based batteries is the 
limited anodic stability and initial results on the electrochemical 
stability of LiBH4 suggested an oxidative stability of up to 5 V [46], 
which was much higher than the oxidative stability of 2 V obtained 
from DFT calculations [213, 214]. Through careful experiments with 
carbon additives at the working electrode, the electrochemical sta
bility could be assessed experimentally to 2.0 V vs Li+/Li [215], which 
stresses the importance of proper electrical contact in the assess
ment of new electrolyte candidates. In addition, the utilization of 
three-electrode cells for electrochemical testing should be employed 
to carefully study electrochemical processes, such as plating and 
stripping at the metal anode, as seen for other systems [216]. The 
initial high oxidative stability has been ascribed to the formation of a 
Li2B12H12 interface with a higher thermal and electrochemical sta
bility and a reasonable ionic conductivity above the LiBH4 orthor
hombic to hexagonal transition [217]. An electrochemically formed 
interface with higher electrochemical stability has similarly been 
observed for e.g. Mg(BH4)2⋅1.6NH3 [51], which did not display any 
significant currents up to 2.5 V vs. Mg2+/Mg after being electro
chemically matured. The practical usage of borohydrides as elec
trolytes for solid-state batteries, especially solid-state Mg batteries, 
thus rely on the formation of a protective interface or the 

Fig. 9. Showcases of metal borohydrides: (Middle left) Carbon capture using LiBH4, KBH4, Mg(BH4)2, and tetraalkylammonium borohydride, (Bottom left) Hydrogen production 
using LiBH4 and NaBH4 [201], (Middle right) Semiconducting CsPb(BH4)3 with a bandgap of 1.5 eV [55], (Bottom right) Luminescent properties of Eu(BH4)2⋅2THF and perovskite- 
type metal borohydrides [55–57], (Bottom) Hydrogen content of various borohydrides shown as gravimetric vs. volumetric H density, (Top) Solid-state electrolytes based on LiBH4 

and Mg(BH4)2 with neutral ligands [70,155,156,163]. Ionic conduction pathway in Mg(BH4)2⋅NH3 with interstitial magnesium sites marked with green. (For interpretation of the 
references to colour in this figure, the reader is referred to the web version of this article.) 
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development of compatible catholytes (i.e. electrolyte towards the 
cathode-side) or cathode coatings to enable a higher voltage across 
the cell. Similar approaches are used for the thiophosphates and 
argyrodites Li electrolytes, which also suffer from relativily low 
oxidative stabilities [218–222]. As Mg electrolytes are improving, a 
large array of new cathode candidates for Mg batteries are reported 
in the literature [223, 224]. The success of a commercial Mg battery 
is thus dependent on the continuous development and improvement 
of electrolytes, cathodes, and interfaces. 

The dynamics in metal borohydrides and their relation to ionic 
conductivity has also been addressed in this review. The high ionic 
conductivity of complex metal hydrides is often related to the dy
namical features within the structures, e.g. BH4

- reorientations in 
LiRE(BH4)3Cl, anion rotations in metal closo-borates and simulta
neous NH3 and BH4

- dynamics in M(BH4)n⋅xNH3 (M = Li, Mg; x = 0.5 
or 1). An improved understanding of the dynamics in these materials 
is necessary, and dynamical studies using NMR spectroscopy and 
neutron scattering techniques may provide new insight into the 
phenomena responsible for the interesting properties. Additionally, 
it is of great interest to be able to model the dynamics in materials 
with multiple different dynamical components such as M(CB9H10) 
(CB11H12) or metal borohydride systems with complex ligands, as 
this will add significantly to future rational design of solid-state fast 
ionic conductors. 

Metal borohydrides containing unpaired electrons, e.g. the rare- 
earths, may also show interesting applications for solid-state lumi
nescence and magnetic applications. A high spatial separation of the 
luminescent and magnetic centers (RE-ions) results in low con
centration quenching and dominatingly paramagnetic exchange 
coupling [26,56]. However, there is a weak tendency for anti
ferromagnetic coupling in rare-earth metal borohydrides, and an 
unusual temperature dependency of the magnetic moment. Inter
estingly, a weak antiferromagnetic ordering has also been observed 
in Gd(BH4)3, being the first example of magnetic superexchange 
through a borohydride group [26]. The research of luminescent and 
magnetic properties of metal borohydrides is scarce, and further 
research may result in some new and interesting applications. Other 
niche applications that have been reported include semiconductivity 
in CsPb(BH4)3 [55], theoretical investigations of superconductivity, 
the use of metal borohydrides as reducing agents for CO2, and gas- 
sorption properties in the porous γ-Mg(BH4)2. 

The research presented in this review clearly demonstrates that 
there are still plenty of room for development of new synthesis 
routes and discovery of new complex hydrides, which may show 
unprecedented and interesting properties. Other related materials, 
e.g. metal hydrides and higher borates, have recently been addressed 
in other reviews, which also present a large variety of possible ap
plications [225–229]. In particular, the borates show promising ap
plications as solid-state ionic conductors, and with a higher thermal- 
and electrochemical stability as compared to the borohydrides. The 
discovery of new applications, going beyond hydrogen storage and 
the well-known lithium battery, breathes new life into the research 
on complex metal hydrides, in particular for all-solid-state batteries. 
An increased knowledge of trends in synthesis, structures and 
properties, and an improved understanding of the fundamental 
features responsible for a given physical property, is crucial for ra
tional design of new materials with specific properties. 
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