
TUM School of Computation, Information and Technology
Technische Universität München

AutoPas:
Automated Dynamic Algorithm Selection for

HPC Particle Simulations

Fabio Alexander Gratl-Gaßner

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Hans Michael Gerndt

Prüfende der Dissertation:
1. Prof. Dr. Hans-Joachim Bungartz
2. Prof. Dr. Philipp Neumann

Die Dissertation wurde am 20.12.2024 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
10.02.2025 angenommen.

Acknowledgements

Here is the place to express my gratitude for all the people I have met along the way of
this exciting and beautiful journey that comes to a close with this thesis.
First and foremost, Prof. Hans-Joachim Bungartz, for providing this opportunity and

the continued support. Together with Prof. Philipp Neumann, they provided just the
right mix of strategic guidance and technical discussions, so thanks to both.
Next, I want to thank my former colleague, Nikola Tchipev, who brought me closer

to the chair and set me on track for molecular dynamics with a guided research and
Master thesis project, thus kickstarting this whole journey. Steffen Seckler was a sig-
nificant influence, especially during my first years at the chair. Together, we explored
the intricacies of C++, software development, and the Alli-Hans Arena, and I was able
to learn a great deal from him.

But it is also important to extend my thanks to the new generation of Ph. D. candi-
dates who will pick up this work and endure our code legacy. Sam Newcome, Markus
Mühlhäußer, Manish Mishra, and Jonas Schuhmacher were fun to work with, bringing
new perspectives to the AutoPas project, and a pleasure to share an office with. And
also the rest of SCCS for a delightful atmosphere to be productive in, enjoy cake, and
have fun together even beyond the working hours.
Moreover, I have to thank the long list of students who hopefully enjoyed working

with me as much as I did with them in the scope of one or more seminar papers, Bach-
elor, or Master theses: Akash Mundra, Albert Noswitz, Alexander Haberl, Benjamin
Decker, Christian Menges, Deniz Candas, Fritz Hofmeier, Jacky Körner, Jakob An-
dreas Englhauser, Jan Hampe, Jan Nguyen, Jeremy Harisch, Joachim Marin, Johannes
Kroll, Johannes Spies, Jonas Schuhmacher, Julian Mark Pelloth, Julian Spahl, Leonhard
Laumeyer, Ludwig Gärtner, Marco Papula, Maximilian Geitner, Mustafa Fatih Baysan,
Nanxing Nick Deng, Nicola Fottner, Oliver Bösing, Raffael Düll, Raphael Penz, Sabrina
Krallmann, Sascha Sauermann, Timur Eke, Tina Vladimirova, Tobias Alexander Humig,
Twain Mark Thomas Henkel, Vincent Fischer, and Wolf Thieme.
Of course, I also want to thank my friends and family for their support and distrac-

tions over the years. Especially, I thank Fine for always patiently enduring discussions,
not only listening but also providing insightful feedback, thoughts, and ideas. The com-
bination of technical and emotional assistance was and will continue to be invaluable.

iii

Abstract

Particle simulations come in many forms and types. For instance, Discrete Element
Method simulations modeling powder transport, Smooth Particle Hydrodynamics to
simulate materials behavior during high-velocity impacts, or Molecular Dynamics simu-
lating nanobubbles and droplets. They can comprise up to trillions of particles and, due
to the necessity for small time steps, need millions of iterations to evaluate the evolution
of a scenario. This makes particle simulations an obvious application for High Perfor-
mance Computing and the need to employ supercomputers. These simulation methods
lead to application scenarios with very different computational profiles and structures.
Even within the scope of Molecular Dynamics, the structure of a protein folding sim-
ulation is vastly different from that of the explosion of a liquid film. Especially in the
latter example, this structure can change significantly throughout a simulation.
Fortunately, the literature offers an assortment of algorithms with different charac-

teristics to tackle this heterogeneous field of problems. Unfortunately, identifying the
optimal algorithm for a given problem is not trivial. This is true for application experts
with limited education in computer science, but also for algorithm experts. The per-
formance of an algorithm depends on many factors, such as the simulation method, the
scenario setup, and the hardware on which it is executed. Therefore, a solution that
finds at least a near-optimal algorithm for a specific scenario would go a long way to
improve algorithmic simulation efficiency.
This thesis presents an implementation for this approach with the new library project

AutoPas, offering a novel solution to this problem. It combines efficient algorithms for
short-range particle simulations with automated dynamic algorithm selection to serve as
the core data structure and performance driver for the particle interaction of a simulator.
For this, a unified interface is developed, allowing interaction with the library without
the need to know what algorithm it uses internally. Nevertheless, these abstractions must
not come at the cost of performance. Thus, AutoPas still enables targeted optimizations,
e.g., with SIMD instructions.
Furthermore, the thesis shows how AutoPas smoothly integrates into four different

simulator codes. Using their own benchmarks, we demonstrate how AutoPas can enhance
their flexibility and performance, resulting in speedups of up to 1.6.

v

Contents

Acknowledgements iii

Abstract v

Contents vii

List of Figures xi

List of Tables xiii

Acronyms xv

1 Introduction 1
1.1 Focus and Objectives . 2

1.2 Structure of this Thesis . 3

2 Background 5
2.1 Particle Simulations . 5

2.1.1 Fundamentals . 6

2.1.1.1 Short-range Interactions 6

2.1.1.2 Long-range Interactions 7

2.1.1.3 Newton’s Third Law of Motion 7

2.1.1.4 Particle Propagation . 8

2.1.1.5 Boundary Treatment . 9

2.1.2 Simulation Methods . 10

2.1.2.1 Molecular Dynamics . 11

2.1.2.2 Discrete Element Method 12

2.1.2.3 Smooth Particle Hydrodynamics 13

2.1.3 Efficient Algorithm Archetypes for Interaction Partner Identification 13

2.1.3.1 Direct Sum . 15

2.1.3.2 Linked Cells . 15

2.1.3.3 Verlet Lists . 16

2.1.3.4 Verlet Cluster Lists . 18

2.1.3.5 Fast Multipole Method 19

2.1.4 Discussion of Archetypes . 23

2.1.5 Shared Memory Parallelism . 29

2.1.6 Instruction-Level Parallelism . 34

vii

CONTENTS

2.2 The Algorithm Selection Problem . 37

2.2.1 Problem Definition . 37

2.2.2 Automated Algorithm Selection . 39

2.2.3 Closely Related Problem Variants and Applications 39

2.3 Interim Summary . 41

3 AutoPas 43
3.1 The Library . 43

3.1.1 Design, Structural Overview and Usage 46

3.1.1.1 Software Architecture . 46

3.1.1.2 User-Provided Classes . 49

3.1.1.3 Internal Algorithmic Options 52

3.1.1.4 Distributed Memory Parallelism Context 56

3.1.2 Software Engineering Aspects . 57

3.1.2.1 Black Box Container Interface 57

3.1.2.2 Providing Usability for Frequent User-side Activites: Op-
tions . 58

3.1.2.3 Merging Common Behavior: CellPairTraversals 59

3.1.2.4 Abstracting Specialized Behavior: ContainerIterator . 59

3.1.2.5 Code Generation for User Types: Generated SoA 63

3.1.2.6 Neighbor List Memory Management 65

3.1.3 Hardware-aware optimizations . 68

3.2 Dynamic Auto-Tuning . 69

3.2.1 Translating Theory into the Implementation in AutoPas 71

3.2.2 Tuning Loop . 72

3.2.3 Tuning Strategies . 75

3.2.4 Tuning for Energy Efficiency . 79

3.3 Related Work . 81

3.3.1 Spiritual Predecessor: ls1 mardyn 81

3.3.2 Popular Molecular Dynamics packages: LAMMPS and GROMACS 81

3.3.3 Performance-Portable Algorithms: CoPA Cabana Library 83

3.3.4 Particle Toolkit with Parameter Tuning: HOOMD-blue 83

3.3.5 Algorithm Selection for Sparse Matrices: Morpheus-Oracle 84

3.4 Interim Summary . 84

4 Examples and Applications 87
4.1 md-flexible . 87

4.1.1 Features . 87

4.1.2 Broad Study of Configurations . 91

4.1.3 Spinodal Decomposition . 96

4.2 ls1 mardyn . 103

4.2.1 ls1 mardyn-AutoPas Integration 103

4.2.2 Exploding Liquid . 103

viii

CONTENTS

4.3 LAMMPS . 107
4.3.1 AutoPas Integration . 107
4.3.2 Lennard-Jones Liquid Benchmark 109

4.4 LADDS . 112
4.4.1 Background . 112
4.4.2 Benchmark Simulation . 115

4.5 Interim Summary . 118

5 Conclusion and Outlook 121
5.1 Recap and Discussion . 121
5.2 Future Directions . 123

Bibliography 125

A Appendix 141
A.1 Experiment Setups . 141

A.1.1 List of Machines . 141
A.1.2 List of Setups . 141

A.2 Spinodal Decomposition Configurations 145
A.2.1 Equilibration . 145
A.2.2 Decomposition . 146

A.3 Default Rules File . 147
A.4 Exploding Liquid Configuration . 148
A.5 LAMMPS Lennard-Jones liquid benchmark 151
A.6 LADDS Benchmark Simulation . 152
A.7 All AutoPas Algorithm Configurations . 154

ix

List of Figures

2.2 Neighbor Identification Algorithms for Short-Range Force Calculations . . 14

2.3 Hit Rate Linked Cells vs Verlet Lists . 18

2.4 FMM Expansions Idea . 20

2.5 FMM Algorithmic Flow . 21

2.6 FMM M2L Interaction . 22

2.7 Impact of CSF on Hit Rate and Number of Cells in rc 24

2.8 Relation of Skin to tr and Speed. 27

2.9 Impact of Cell Sorting . 28

2.10 Time per Iteration for LC, LCR sorted, LCR unsorted 30

2.11 Visualization of Equation 2.38 . 36

3.1 AutoPas Logo . 43

3.2 Teamscale Metrics Overview . 45

3.3 AutoPas High Level View . 47

3.4 TOP500 Hardware Developments . 48

3.5 AutoPas Core Component Overview . 50

3.6 AutoPas Options . 59

3.7 CellPairTraversal Inheritance Map . 60

3.8 ContainerIterator Increment . 62

3.9 SoA Generation . 64

3.10 Verlet Lists Cells Memory Optimizatioons 67

3.11 Verlet Cluster Lists Memory Optimizatioons 68

3.12 Linked Cells Speedup Vectorization . 70

3.13 Tuning Loop . 72

3.14 Auto-tuning Logic Flow . 73

3.15 Tuning Strategies Applied to Config Queue 76

3.16 Energy Usage vs Time . 80

4.1 MDFlexConfig and Parser . 88

4.2 md-flexible Study Algorithm Distributions 93

4.3 md-flexible Study Container Distribution 93

4.4 md-flexible Study Density and Domain Size 94

4.5 md-flexible Study t-SNE Scenario and Live Info Plots 95

4.6 Spinodal Decomposition Visualization . 97

4.7 Spinodal Decomposition Containers Total 98

4.8 Spinodal Decomposition Rank Visualization 99

xi

LIST OF FIGURES

4.9 Spinodal Decomposition Containers Ranks 14, 35, 38 101
4.10 Spinodal Decomposition Analysis Ranks 14, 35, 38 102
4.11 Exploding Liquid Density Visualization 104
4.12 Exploding Liquid Force Calculation Time per Tuning Strategy 106
4.13 Exploding Liquid Force Calculation Time Profiles per Tuning Strategy . . 108
4.14 LAMMPS Lennard-Jones Liquid . 109
4.15 LAMMPS Strong Scaling . 110
4.16 LADDS LEO Objects Visualization . 113
4.17 LADDS Breakup Simulation . 114
4.18 LADDS Altitude based Decomposition . 115
4.19 LADDS Component Scaling . 117

xii

List of Tables

4.1 md-flexible Configuration Study Parameters 92
4.2 Simulation speed of the two debris populations on CoolMUC2 [GGS22]. . 118

A.1 Hardware Specifications . 141
A.2 Overview of All Algorithm Configurations of AutoPas. 154

xiii

Acronyms

fr Rebuild Frequency.
rc Cutoff Radius.
ri Interaction Length.
rs Verlet Skin.
s Verlet Skin Factor.
tr Rebuild Interval.

AI Artificial Intelligence.
ALL A Loadbalancing Library.
AoS Array of Structs.
AoSoA Array of Structures of Arrays.
API Application Programming Interface.
AVX Advanced Vector Extensions.
AVX-512 Advanced Vector Extensions 512 Bit Extensions.

CFD Computational Fluid Dynamics.
CPI Cycles Per Instruction.
CPU Central Processing Unit.
CRTP Curiously Recurring Template Pattern.
CSF Cell Size Factor.

DEM Discrete Element Method.
DSL Domain Specific Language.

ESA European Space Agency.

FLOP FLoating Point Operation.
FMM Fast Multipole Method.

GPU Graphics Processing Unit.

HPC High Performance Computing.

L2L Local to Local.
L2P Local to Particle.
LEO Low Earch Orbit.

xv

Acronyms

lowess Locally Weighted Scatterplot Smoothing.
LRZ Leibniz-Rechenzentrum.

M2L Multipole to Local.
M2M Multipole to Multipole.
MD Molecular Dynamics.
MPI Message Passing Interface.
MSR Machine State Register.

NASA National Aeronautics and Space Administration.
Newton3 optimizations exploiting force symmetires using New-

ton’s third law of motion.

ODE Ordinary Differential Equation.

P2M Particle to Multipole.
P2P Particle to Particle.

RAPL Running Average Power Limit.

SAT Boolean Satisfyability Problem.
SCCS Scientific Computing in Computer Science.
SIMD Single Instruction Multiple Data.
SoA Structure of Arrays.
SPH Smooth Particle Hydrodynamics.
SSE Streaming SIMD Extensions.
SVE Scalable Vector Extension.

t-SNE t-Distributed Stochastic Neighbor Embedding.

VTK Visualization Toolkit.

xvi

1 Introduction

Numerical simulations are essential for a wide range of fields of research as well as indus-
try. Fundamentally, such simulations are computational processes that evaluate math-
ematical models, often built on differential equations, to predict the state or behavior
of physical systems or processes. Their purposes range from creating such predictions
under various or uncertain conditions to gaining insights into complex phenomena that
would otherwise be difficult or impossible to study or replicate to helping optimize and
design processes by reducing the dependency on physical models. There exists a wide
range of simulation techniques like finite elements, volumes, or differences [Ame14], and
also mesh-free techniques like particle simulations. The latter, which shall be the sim-
ulation technique discussed in this thesis, again can be subdivided into a multitude of
methods that can be applied to an even greater variety of problems that will be touched
upon in Subsection 2.1.2.
Particle simulations are notoriously computationally expensive but highly relevant and

popular, which justifies using the world’s largest supercomputers to tackle the problems
they are solving. This becomes clear when looking at the Gordon Bell Prize, one,
if not the most important award in the High Performance Computing (HPC) world,
which “is awarded each year to recognize outstanding achievement in high-performance
computing”1. Over the last ten years, three of the winning groups worked on particle
simulations, or more specifically on Molecular Dynamics (MD).
While there exist some popular simulator codes, there is always a need and drive for

customized solutions. On GitHub alone, there are over 1 000 projects that match the
search term “particle simulation” which were actively worked on in 20242. Therefore,
people are forced to re-implement core logic, conduct optimizations, and make fundamen-
tal design decisions repeatedly, which is only desirable in an educational environment.
This is exacerbated because simulators for specialized requirements are often written by
application engineers who are often not trained to judge the most suitable architecture
or algorithms.
With this thesis, we present a novel approach: We implemented the library AutoPas,

consisting of algorithms and data structures that usually sit at the core of a particle
simulation to be the foundation of such simulations. The library follows a black box
approach so the user does not have to worry or even know about the specifics of the
employed algorithm. Then, our library applies automated dynamic algorithm selection
to tune its internal configuration at runtime to the current state of the simulation at
hand to achieve an optimal time to solution.

1https://awards.acm.org/bell Accessed: 20.12.2024
2https://github.com/search?q=pushed%3A2024-01-01..2024-12-31+particle+simulation&type=

repositories Accessed: 20.12.2024

1

https://awards.acm.org/bell
https://github.com/search?q=pushed%3A2024-01-01..2024-12-31+particle+simulation&type=repositories
https://github.com/search?q=pushed%3A2024-01-01..2024-12-31+particle+simulation&type=repositories

1 Introduction

1.1 Focus and Objectives

We are interested in the optimal performance of general short-ranged particle simula-
tions. Or to put it in another way, any application of particle interaction algorithms.
Hence, as so often, the No Free Lunch theorem applies [WM97, Wol02]. It states that
when we apply all solution algorithms to all problem instances, their average perfor-
mance will be the same. Thus, this motivates us to look for and exploit performance
complementarity. That is, applying only the optimal algorithm for a given problem in-
stance exploits each one’s strengths while mitigating others’ weaknesses. The problem
is how to decide which algorithm will perform best. This leads us to the main research
questions of this thesis:

1. Is there a feasible Application Programming Interface (API) interface
for all short-ranged particle interaction algorithms?

As a prerequisite to a qualitative assessment of different algorithms, a software
solution has to be created that implements these algorithms in the same software
environment for maximal comparability, as well as the ability to switch between
them at runtime. To the best of our knowledge, no framework, library, or toolkit
exists that implements a wide range of algorithms for particle interactions, like
those presented in Subsection 2.1.3, and has the ability to freely switch between
them while targeting HPC applications. Looking closer at this problem, this imme-
diately poses many more questions such as: How should underlying data structures
be organized for convertibility? Is it feasible for different algorithms to coexist and
interact in a heterogeneous simulation? Does this lead to any synchronization
requirements, e.g., when considering the rebuilding of lists?

2. Can an automated dynamic selection of the short-ranged particle inter-
action algorithm bring advantages for particle simulations?

The important keyword here is dynamic, since, assuming there is no global opti-
mal algorithm and the simulation is not perfectly oscillating between two or more
optima, static algorithm selection must yield advantages. Evaluating and adapting
the interaction algorithm during the simulation on the fly is not free, so it is inter-
esting to investigate this overhead against the potential gain in time to solution.
This question targets more the theoretical perspective purposefully does not specify
the type of particle simulation since we later want to see if this applies to arbi-
trary short-range particle simulations. Previous work by us and affiliates suggests
potential in the idea which led to this question [TSH+18, GST+19, Tch20, Sec21].

3. Is this approach practical and delivers performance while general enough
to extend beyond its application in MD?

To investigate the questions 1 and 2, we must create a software library that im-
plements the underlying ideas. This must then be integrated into several HPC
applications. Using this, we want to evaluate the usability of our API and in-
vestigate which kind of applications this approach is feasible for and which can

2

1.2 Structure of this Thesis

actually benefit from it. Due to the specific academic environment in which this
thesis came to be we are initially mostly interested in MD simulations for process
engineering [NSS+23]. However, it is important for us to show that this library is
not tailored to MD but a performant abstraction layer that can serve as the base
for arbitrary particle simulations.

The focus and core contribution of this work are discussing the pros and cons of
algorithms for short range particle interactions, introducing the automated algorithm
selection approach to the simulator domain, and finally the conceptualisation and im-
plementation of the library AutoPas.

1.2 Structure of this Thesis

The thesis structure is aligned with the above-described focus and research questions.
After the Introduction, Chapter 2 will lay out the theoretical foundations required to
approach the topic. This chapter is divided into two major parts. First, particle sim-
ulations are discussed, from their general formulation to actual applications and how
to implement them efficiently. Second, the algorithm selection problem is presented,
defined, and characterized.
With the theory now familiar, Chapter 3 presents the library AutoPas. Its software

architecture, interfaces, algorithm design, and hardware optimizations are shown. Then,
it is shown how the theoretical concepts from the automated algorithm selection are
implemented to the dynamic auto-tuning mechanic of AutoPas.
This implementation is then put to the test in Chapter 4, integrated into four simu-

lators, two established ones and two that were developed as a side effect of this thesis.
The performance of AutoPas, its implementations, algorithms, and tuning behavior in
real simulation scenarios is tested, analyzed, and discussed.
Each of these chapters concludes with an interim summary to take a step back to

summarize and reflect on the presented insights.
Finally, Chapter 5 summarizes everything that was brought forth, relates it to the

research questions posed in Chapter 1, and formulates detailed answers.

3

2 Background

This thesis brings together two fields of research, whose theoretical pillars shall be ex-
plored in this chapter.

Section 2.1 gives a description of general particle simulations. We start with their
fundamental principles, major categorization, and intricacies of their boundary treat-
ments. With this, three standard particle simulation methods are explained that build
on these fundamentals, their areas of application, and their similarities and differences.
Next, the theoretical formulations of the algorithms for interaction partner identification
are presented, which is the core of any particle simulation. Their advantages and dis-
advantages are highlighted through mathematical models, and the data structures they
build are discussed. Continuing, we pick out important algorithmic parameters and de-
sign choices and analyze them based on benchmark implementations. The analysis of
theoretical algorithms is concluded by presenting the concepts, pitfalls, and potentials
of shared memory as well as instruction-level parallelism.

The second field is the algorithm selection problem presented in Section 2.2. First,
the problem itself is defined from a mathematical point of view. It is then extended to
its automation and approaches to tackle its computational complexity sketched. Finally,
related problems are discussed, and their differences are pointed out or explained as to
why they can be considered special cases of the initial problem.

2.1 Particle Simulations

Particle simulations, in general, are a vast field with numerous applications, far too many
to exhaustively cover in this thesis. Some examples comprise astrophysics [Spr10], high
energy events in material sciences [SS04, Lee06, YOYS14], process engineering [VKFH06,
SNK+13, WHH17], transport systems of powder [SS22] or fluids [WZFD22], or space de-
bris simulation [GGBI22]. The following section shall serve as an introduction to the
topic, starting out in Subsection 2.1.1 with the governing principles of any particle sim-
ulation. Using these, Subsection 2.1.2 discusses simulation methods in general and their
applications. From there, we come back to one of the core topics of the thesis, namely
the underlying efficient algorithms employed to make these kinds of simulations possi-
ble, which will be presented in Subsection 2.1.3 and discussed in Subsection 2.1.4. Even
though the focus of this thesis lies on simulations for short-range particle interactions,
the concepts and how to efficiently compute long-range interactions is discussed briefly.

5

2 Background

2.1.1 Fundamentals

The fundamental mechanisms of any particle simulation are the evaluation of particle
interactions and their position propagation.

In general, all interactions that do not involve relativistic velocities and which occur
in the so-called middle realm of physics, which covers the ranges from about 10−9 to
1022 cm fall into two categories: Short- and long-range interactions [Mic79]. The former
decay quickly with the distance of the interacting particles and thus can be cut off
beyond some threshold. The latter can never be disregarded because of their slow decay,
no matter the interaction distance. In literature, there are several definitions for the
distinction between short- and long-range interactions of varying complexity, of which
three shall be presented. For example, a potential U(r) is considered long-range if

� it decays slower in r than 1/rd where d is the dimension of the problem [GKZ07],
or

� its range R = ℏc/|U(r)|, is infinite, where ℏ is the Planck constant and c the speed
of light [Mic79], or

� the integral
∫
U(r)dr does not converge [Kab12].

2.1.1.1 Short-range Interactions

Short-range interactions are the most critical part of a particle simulation because they
are present in every type of simulation and typically take up significant parts of the
computational load due to their tricky computational complexity. Naively, all particles
interact with all other particles in the simulation, leading to a computational complexity
of O(N2) with N being the total number of particles. However, as by the definition of
short-range interactions, interactions beyond a certain distance can be neglected. This
distance is called the Cutoff Radius (rc). Therefore, the complexity is reduced to O(N ·
Nrc), where Nrc is the number of particles within rc around one particle. Since Nrc ≪ N
the complexity of short-range algorithms is typically given as O(N) [RBMC96, GKZ07].
However, it must be noted that for a fixed domain size and rc, increasing N would also
increase Nrc . Thus, this factor can not be wholly disregarded as constant.

A widely used example for a short-range interaction is the Lennard-Jones 12-6 poten-
tial given by Equation 2.1 [LJ24, LJ31].

ULJ(r) = 4ϵ

((σ
r

)12
−
(σ
r

)6)
(2.1)

Where r is the distance between the two particles, and σ and ϵ are size and energy
parameters from the molecular model. The potential is a model for the combination of
the major intermolecular forces: The Pauli repulsion or Pauli exclusion principle [Pau25],
represented by the minuend, and the attractive part of van der Waals forces, especially
the London dispersion [Lon30], represented by the subtrahend.
Due to its high negative exponents, the potential converges quickly towards zero, as

seen in Figure 2.1a. Also seen in this figure is a typical value for rc at 2.5.

6

2.1 Particle Simulations

1 1.5 2 2.5 3

−1

1

2

R

U
L
J
(a
rb
it
ra
ry

u
n
it
s
of

en
er
gy

)

(a) Lennard-Jones potential with ϵ = 1, σ = 0.9,
and rc=2.5 (red line)

1 10 20 30

−1

1

2

R

U
G

(a
rb
it
ra
ry

u
n
it
s
of

en
er
gy

)

(b) Gravity potential with G = 1 and m = 1

2.1.1.2 Long-range Interactions

In many particle simulations, especially MD, the question often is whether there is a long-
range interaction, but whether it is important for the behavior that shall be observed. If
it is relevant, long-range interactions are challenging in a different way than short-range
ones because, for every particle, the influence of every other particle has to be considered.
For this not to lead to the naive complexity of O(N2), algorithms that exploit tree-like
structures can be applied to bring the complexity down to O(N logN) or even O(N). It
needs to be noted that these algorithms lead to approximations with arbitrary precision,
usually dictated by the degree of chosen underlying polynomes [Tch20]. Usually, all long-
range algorithms include at least some steps of a short-range algorithm for particles close
to each other. This fall-back comes from the fact that for short distances, potentials are
always more intense, as all known physical potentials U(r) adhere to limr→inf U(r) = 0
and thus should not be approximated over short distances.

The most prominent example of a long-range interaction is the gravity potential given
in Equation 2.2 [New87].

UG(r) = −Gm1m2

r
(2.2)

Here, G is the gravitational constant, mi the point masses of the involved bodies, and
r their separation. Since this potential only decays with 1/r1, it meets any of the
definitions for long-range interactions listed in Subsection 2.1.1. The stark contrast to a
short-range interaction can also be seen from the speed of decay of the potentials in the
comparative plots Figure 2.1b and Figure 2.1a.

2.1.1.3 Newton’s Third Law of Motion

All non-fictitious forces in the aforementioned middle-realm of physics obey Newton’s
third law of motion. It states that for every force, there exists a force of equal magnitude

7

2 Background

in the opposite direction [New87]. For interactions between two particles i and j, which
are based on such forces, this means:

Fij = −Fji (2.3)

Where Fij is the force exerted from i on j and Fji the other way around. This relationship
offers a great source for optimization in particle simulations, as this means that for
every pair of particles, the force magnitude only has to be computed once, thus cutting
the computations necessary in half. This technique is also referred to as optimizations
exploiting force symmetires using Newton’s third law of motion (Newton3).

2.1.1.4 Particle Propagation

The purpose of particle simulations, particularly in contrast to mesh-based methods, is to
simulate the movement of particles. This movement is typically enabled by assigning each
particle a velocity attribute, which can be affected by global force fields or interactions
between particles. The computation of movement is then carried out by solving Newton’s
equations of motion, which are treated as ordinary differential equations:

a⃗ = ˙⃗v = ¨⃗x =
1

m
F⃗ (2.4)

Here, a⃗ is the acceleration, v⃗ the velocity, x⃗ the position, m the mass of a particle,
and F⃗ the force it is experiencing. Since this has to be solved for every particle, we
get a system of D · N Ordinary Differential Equations (ODEs) of second order, with
N being the number of particles, and D being the number of dimensions. This can be
reformulated into a system of 2 ·D ·N ODEs of the first order:

˙⃗r = v⃗ (2.5)

˙⃗v =
1

m
F⃗ (2.6)

Several different numerical schemes are conceivable to solve these, offering various
advantages to consider depending on the application. Typically, the schemes revolve
around the Runge-Kutta approach [Run01, Kut01], which offers excellent precision
but is, as most implicit schemes, rather compute expensive, or (Velocity-)Störmer-
Verlet [Stö07, Ver67], which is cheaper to evaluate and symplectic. This means that
it preserves the Hamiltonian properties of a system, or more intuitively in the context of
particles, it will preserve the orbit of a particle without losing or gaining energy. Using
cheap symplectic integrators leads to a trade-off where there might be errors in the parti-
cle’s position. However, the overall statistical properties of the system are physically cor-
rect, which is fine for most applications. For applications where the (numerically) exact
particle positions are relevant, specialized integrators can be employed [KMT94, BI21].

Leap-Frog A widely used time integration scheme based on the Störmer-Verlet ap-
proach, and mathematically equivalent, is the Leap-Frog method [VKBP02, HLW03,
GKZ07].

8

2.1 Particle Simulations

v⃗t+∆t
2

= v⃗t−∆t
2
+∆t⃗at, (2.7)

r⃗t+∆t = r⃗t +∆tv⃗t+∆t
2

(2.8)

The advantage of this method, as shown in Equation 2.7 over the classic Velocity-
Störmer-Verlet, is that it does not require the storage of values of more than one time
step. If higher precision of the results is needed, the order of the method can be raised
significantly by evaluating more intermediate time steps [Yos90].

Time step Whenever numerical (time) integration is applied, the question of the
(time)step width is crucial for the method’s accuracy. Especially in particle simulations,
this is highly critical, as the integrators are of low order and lead to accumulating er-
rors [Kim14, Kim15]. A theoretical upper bound can be derived using Nyquist-Shannon
sampling theorem [Nyq28], which states that to fully capture a signal, it must be sam-
pled at a frequency at least twice as high as its highest frequency component. In the
case of MD, specifically biochemistry, the fastest motions come from vibrations of hy-
drogen bonds with a period of about ten femtoseconds (fs) [ADPK23]. Thus, the upper
limit is five fs. However, it is general practice to go even lower, with GROMACS1 and
LAMMPS2 using one fs as defaults.

2.1.1.5 Boundary Treatment

Any particle simulation, occurs in a defined region called the simulation domain. Since
particles might wander towards the boundaries of these domains or even cross them,
it is necessary to consider what should happen in these cases. Of course, the desired
behavior is highly dependent on the actual type or scenario of the simulation, and
even combinations can be relevant. These so-called boundary treatments or boundary
behaviors have to consider two things. What happens to the interaction calculation of
particles near the boundary, and what happens if a particle crosses the boundary. Thus,
boundary conditions can be classified into a few categories that can be summarized in
two groups:

Relocating Boundaries This group of boundary conditions adds or removes particles
from the simulation. Particles might also be removed and reinserted in a different lo-
cation. The crucial thing is that these boundary conditions affect any spatially-aware
data structure that stores the particles.

Outflow Also called open or absorbing boundary conditions, particles are deleted as
soon as they cross the threshold [GKZ07]. They are useful to simulate outlets
or are a convenient default for simulations where particles never should leave the
simulation domain [GGS22].

1https://manual.gromacs.org/documentation/current/user-guide/mdp-options.html Accessed:
20.12.2024

2https://www.afs.enea.it/software/lammps/doc19/html/timestep.html Accessed: 20.12.2024

9

https://manual.gromacs.org/documentation/current/user-guide/mdp-options.html
https://www.afs.enea.it/software/lammps/doc19/html/timestep.html

2 Background

Inflow A boundary of a simulation can (conditionally) create new particles into the
domain, effectively creating a stream of inflowing particles. These are often coupled
with outflow boundaries to maintain the amount of particles in the system [HV19].

Periodic If the simulation aims to capture the interior of a vast system, periodic bound-
aries can be employed. They mimic an infinitely large system by replicating part
of the domain that is directly on the opposite side of the domain, creating a
wraparound effect like the surface of a torus. In other words, in 1D, anything
on the left end of the domain interacts with the right end of the domain. This
does not only mean interactions have to happen across the wrapped boundaries,
but also particles that cross them have to be relocated to the other side of the
domain [RBMC96]. Often, especially in large simulations that are computed on
distributed compute resources, this is implemented with a so-called halo layer.
In this, copies of particles from the other side of the system are stored and used
as interaction partners. These particles are here referred to as halo particles, or
sometimes in literature as ghost particles.

Interacting Boundaries These boundary conditions do not simply relocate particles
but interact with them, e.g., via a potential to smoothly enforce a boundary condition.
Typically, when used independently, they do not intend for particles to cross the domain
boundaries and act from a behavioral perspective as reflective boundaries.

Dirichlet Also called fixed boundary conditions, variables like, e.g., velocity, are set to
a constant value at the domain’s boundary. For particle simulations, this could be
a set of particles on the boundary whose velocity is always kept at zero, such that
they act as a wall for other particles to not leave the domain.

Neumann A more sophisticated way to implement reflective boundaries is akin to Neu-
mann boundary conditions, which specify the derivative of the evaluated function,
e.g., the force enacted on a particle. This can be achieved by placing mirror par-
ticles to simulate a repulsive wall [GKZ07].

2.1.2 Simulation Methods

Many different kinds of simulations can be conceived using the toolset established in
Subsection 2.1.1. In this thesis, we do not aim to simulate one specific physical pro-
cess but look at particle simulations in general from a more abstract perspective. We
appreciate the various methods of applying the particle simulation technique, as, for ex-
ample, listed in the introduction of Section 2.1, but from the perspective of the research
questions this thesis addresses, they all boil down to computing short-range pairwise
interactions between particles and propagating them. Nevertheless, to achieve a bet-
ter understanding of context, different short-range particle simulation methods shall be
discussed. To avoid a too extensive detour from the main topic of this thesis, only a
few methods are briefly explained, which serve as examples to give an idea about the
principles, capabilities, limitations, and applications of particle simulations. It should
illustrate variety but also what these simulation methods have in common.

10

2.1 Particle Simulations

2.1.2.1 Molecular Dynamics

MD is the simulation technique to study the physical behavior of large numbers of in-
dividual atoms or multi-site molecules. Over a given timeframe, the potentials between
particles are evaluated, and from those, their movements are computed using Newton’s
equations of motion, as discussed in Subsection 2.1.1.4. The evaluated forces can be
short- or long-range and usually originate either from classical interatomic potentials,
like the Lennard-Jones potential discussed in Subsection 2.1.1.1 or the Coulomb po-
tential [Cou85], or quantum mechanics, e.g. looking at the degrees of freedom of each
electron to mitigate the Born-Oppenheimer approximation [BO00, KMV22]. Observing
the particles’ trajectories over time provides insights into the dynamic behavior and
evolution of the overall system.

The areas of application for MD are broad and spread over different fields of sci-
ence. Examples include, neither in an exhausting list nor any particular order, drug
development in medicine [DM11, KBC20], analysis of protein folding in molecular bio-
chemistry [SKL07, FHLS10], but also studies of material properties in thermo dynam-
ics [NSS+23], or microscopic processes when a laser is fired on metal [WZ14].

However, MD also comes with limitations, the most severe being limitations in scale
and time. For example, we can look at the theoretical, minimal computational costs
to simulate every molecule of a drop of water for one second. To derive the number of
particles involved, we calculate the molar mass, m, of water, which is the sum of two
hydrogen and one oxygen atom:

mWater = 2mH + mO (2.9)

= 2 · 1.008 g/mol + 15.999 g/mol (2.10)

= 18.015 g/mol (2.11)

Next, we compute the number of moles, n per drop. For the mass of the drop, we take
the widely used metric drop [Jac21], mdrop = 0.05 g:

nDrop =
mdrop

mWater
(2.12)

=
0.05 g

18.015 g/mol
(2.13)

= 0.002775465mol (2.14)

Using this result and Avogadro’s constant NA [Mil13], we arrive at the number of H2O
molecules in a drop of water NDrop.

NDrop = NA · nDrop (2.15)

= 6.02214076 · 1023 1/mol · 0.002775465mol (2.16)

= 1.67142409 · 1021 (2.17)

≈ 1.67 · 1021 (2.18)

11

2 Background

Now, if even individual atoms should be simulated, this number has to be multiplied
by three for the three atoms in each molecule, so we arrive at about 5 · 1021 particles.
For comparison, the largest particle simulation known at the time of writing this thesis
consisted of 3 · 1013 particles [CLZ+21]. The primary limitation for size is the available
amount of main memory in a computer system. Assuming that a minimal particle
consists of the three vectors for position, force, and velocity, each with three double
precision floating point values plus one ID, all being 64 bit numbers, this particle has a
memory footprint of 640 bit or 80 byte. To store just the particles in the drop of water,
4 ·1023Byte, which is 4 ·108 Petabyte or 400 Zettabyte, would be required. The currently
largest supercomputer Frontier3 has shy of 10 Petabyte of combined main and Graphics
Processing Unit (GPU) memory4. So, we would need more than 40 million instances of
this machine to accommodate just the memory for the minimal particle model of one
drop of water.

2.1.2.2 Discrete Element Method

At first glance, Discrete Element Method (DEM) is similar to MD, as interacting par-
ticles are modeled and moved via Newton’s equations of motion. The central modeling
aspect that distinguishes DEM from (most) other particle methods is that particles are
not viewed as points but objects with volume, geometry, and thus rotational degrees-
of-freedom, necessitating the use of the Newton-Euler equations for torque and rota-
tion [Eul65]. This focus on contact interactions means that the method is usually used
with short-range only, although applications involving long-range interactions, usually
electrostatic forces, have been published [PWE+15, LMLY10].

Primarily, contact interactions are considered and evaluated based on the Hertzian
Law [Her81], which models the contact force of two colliding deforming, soft particles
from the point when their volumes overlap [WA20]:

FHertz =
4

3

1

1−ν2i
Ei

+
1−ν2j
Ej︸ ︷︷ ︸

Young’s modulus

√√√√√√
1

1
Ri

+ 1
Rj︸ ︷︷ ︸

Effective radius

(δi + δj)
3
2 (2.19)

Here, δi, δj ara the distance from the particles’ centers to the contact surface, Ri, Rj the
particles’ radii, Ei, Ej their elastic moduli, and νi, νj their Poisson ratios. The latter
two are material properties related to their deformability. Depending on the application,
this model has to be extended to include further attractive Fa or dissipative forces Fd

so that the overall contact force is composed as shown in Equation 2.20.

F = FHertz − Fa + Fd (2.20)

3https://www.top500.org/system/180047 Accessed: 20.12.2024
4https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#frontier-compute-nodes Ac-
cessed: 20.12.2024

12

https://www.top500.org/system/180047
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#frontier-compute-nodes

2.1 Particle Simulations

This allows for arbitrarily complex contact models involving drag, shear, lift, or even
heat generation and conduction [Lud08]. Therefore, the DEM lends itself naturally to
engineering applications like the simulation of granular flows [ZS13, GZ14, EEZS+21],
powder [SLBT04, PYJ+17, TSYN21], or rock mechanics [JH02, MCG10, HSD12]. These
applications often involve coupling to other simulation techniques like computational
fluid dynamics, discrete fracture networks, or the finite element method to mitigate the
same difficulties that MD, namely limits in the number of particles and time steps due
to computational effort.

2.1.2.3 Smooth Particle Hydrodynamics

The idea of Smooth Particle Hydrodynamics (SPH) is that the collective movement of a
group of particles is similar to the flow of liquid and can be modeled via the Navier-Stokes
equations. A system is represented by a cloud of particles parametrized to represent
given materials. Gaussian-like smoothing kernels are applied on these particles, leading
to smoothed densities, from which fluid densities can be calculated via equations of state.
From these densities, pressure gradients can be derived, which are used to calculate the
acceleration of the particles. This means that the movement of the particles represents
the movement of the fluid, and higher resolution is automatically directed towards regions
with higher pressure because this is where more particles are present [LL10, Yas17].

The method was developed initially for astrophysics [Luc77, GM77], where it is still
in use for various scenarios [Spr10]. Other fields of application include studies of fluids
in hydrodynamics [HLYK08, HA09], biomedical applications due to its ease of use with
moving and deforming structures in fluid-structure interations [Tom17], or computa-
tional mechanics to study explosions [LLLZ03].

SPH is an alternative to mesh-based methods usually employed in Computational
Fluid Dynamics (CFD) [TYLT23], over which it has some advantages like inherent mass
conservation since the particles themselves model mass. A wide range of method variants
has been proposed to enhance precision for, e.g., conservation of linear and angular
momentum or discontinuities like shock waves[LL10, ZZW+22]. Furthermore, it is a
complex problem to create a suitable mesh for complicated geometry or scenarios with
deformable boundaries or crack analysis [HKB+21].

From the perspective of general particle simulation, one curiosity about SPH is that in
contrast to other methods that simulate physical potentials, the smoothing potentials in
SPH are not necessarily symmetric between particles, which means they do not adhere
to Newton’s third law of motion [BRP05].

2.1.3 Efficient Algorithm Archetypes for Interaction Partner Identification

As discussed in Subsection 2.1.1, to compute the effect of an interaction on one particle,
all its interaction partners within rc must be identified. The specific implementation
of the short-range neighbor identification algorithm might differ in detail depending on
the simulation method and software package. However, they all build upon one of a few
main algorithm archetypes: Direct Sum, Linked Cells and Verlet Lists.

13

2 Background

(a) Direct Sum (b) Linked Cells (c) Verlet Lists (d)Verlet Cluster Lists

Figure 2.2: Neighbor identification algorithms for short-range force calculations. The red circle
symbolizes the Cutoff Radius rc. Particle colors indicate the relation to the particle
of interest:
Red: Particle for which interactions are calculated.
Blue: Particles inside the red-colored particle’s cutoff radius.
Gray: Potentially in range of the red particle, therefore, the distance needs to be
calculated. Arrows indicate when this is needed in every time step.
White: particles that are out of range and which are, thus, omitted.

Algorithm 1: Direct Sum

1 for p1 : particles do
2 for p2 : particles do
3 if p1 != p2 and distance(p1, p2) < cutoff then
4 interaction(p1, p2)

Algorithm 2: Linked Cells

1 for cell1 : cells do
2 for cell2 : neighborCells(cell1) do
3 for p1 : cell1.particles do
4 for p2 : cell2.particles do
5 if p1 != p2 and distance(p1, p2) < cutoff then
6 interaction(p1, p2)

Algorithm 3: Verlet Lists

1 for p1 : particles do
2 for p2 : p1.neighborList do
3 if distance(p1, p2) < cutoff then
4 interaction(p1, p2)

14

2.1 Particle Simulations

Algorithm 4: Verlet Cluster Lists

1 for cluster1 : clusters do
2 for cluster2 : cluster1.neighborList do
3 if distance(cluster1, cluster2) < cutoff then
4 for p1 : cluster1 do
5 for p2 : cluster2 do
6 if distance(p1, p2) < cutoff then
7 interaction(p1, p2)

2.1.3.1 Direct Sum

The naive approach of looping over all particles with a double loop as sketched in Algo-
rithm 1 is not necessarily an efficient algorithm for the pairwise neighbor identification
as it scales with O(N2), quickly leading to too many distance checks as can be seen in
Figure 2.2a. However, for low numbers of particles (less than 1 000), it is a reasonable
choice due to its non-existing overhead from data structures or additional algorithm
steps, as well as its great potential for vectorization.

2.1.3.2 Linked Cells

Also referred to as Cell Lists [RBMC96], the idea is to reduce the region that has to
be searched by storing the particles in a data structure that retains (some) structural
information of the particle distribution.

Logical Data Structure The domain is partitioned into a usually uniform, but not
necessarily equilateral, grid of cells, each with a mesh size larger or equal to the cutoff
radius. As illustrated in Figure 2.2b, particles are organized into these cells. The Linked
Cells algorithm identifies the neighbors of the red particle by examining its cell (the red
cell) and the surrounding cells (the blue cells). It then computes the pairwise distances
to all particles within these colored cells, as indicated by the arrows, and only evaluates
the interactions to those within the cutoff (blue particles).

Computational Complexity With this reduction to only a constant number of neighbor
cells, the computational complexity for homogeneous scenarios is reduced to O(N ·Ncell),
where Ncell is the average number of particles per cell. As explained above, this can be
considered O(N). For highly inhomogeneous scenarios, mainly when the bulk of particles
is situated in only a few cells, the processing of individual cell pairs, which is in O(N2

cell)
can become problematic.

Advantages from the position-aware cell structure The spatial cell data structure
brings many distinct advantages. It has a very low memory overhead, as theoretically,

15

2 Background

only the pointers to the start of each cell need to be stored. Thus, the memory con-
sumption is independent of the number of particles. Storing all cells in a container with
random access like std::vector allows accessing all neighbor cells of any cell, as done
in Algorithm 2 line 2, in O(1) since it boils down to a simple index calculation. This also
means that as long as the cells are aligned with the coordinates and size of the bounding
box of the domain, logical separation of halo and owned particles happens implicitly.
Consequently, particles close in the simulation domain are also close in memory. That is
an advantage because, as seen in Algorithm 2, particles are processed cell by cell, mean-
ing accessing all particles within one cell is highly cache efficient. Also, assuming cells
fit comfortably into the cache, all particles of cell1 are kept in the cache until the cell
is fully processed. This cache-friendly memory layout lends itself to Single Instruction
Multiple Data (SIMD) vectorization efficiently [Fom11].

Disadvantages from the cell structure Due to its grid structure, Linked Cells also
creates some overhead. The spatial layout, namely the sorting of particles into their
correct cells, needs to be updated regularly. Though this can be done in O(N) since
calculating the correct cell and accessing it can both be achieved in O(1) for each particle,
care must be taken not to trigger significant memory reallocations. Another disadvantage
immediately becomes visible when looking at Figure 2.2b and comparing the blue area
against the red circle. Our region of interest, the cutoff region, is approximated by a
rectangle in 2D or even a cuboid in 3D. Assuming particles are distributed uniformly,
and cells have an edge length of rc, this means that, as we can see in Equation 2.21,
only less than 16% of particles for which distances are calculated are within the cutoff
region. This ratio is also referred to as the hit rate:

hLC =
Vrc

VsearchedLC

=
4
3πr

3
c

(3rc)
3 ≈ 0.155 (2.21)

The third disadvantage comes from treating cells as the primary key of the data structure,
and thus more important than what is actually of interest, namely the particles. When
iterating over all particles, all cells must be checked, regardless of whether they are
empty or not. In highly inhomogeneous scenarios, this overhead can grow noticeable.

2.1.3.3 Verlet Lists

This algorithm archetype, also sometimes called neighbor lists, initially works without
any spatial structuring of the simulation domain. For each particle, lists are created,
which contain all neighbor particles within rc. Then, during the calculation of the
pairwise interactions, only all neighbor lists need to be processed, as illustrated in Algo-
rithm 3. Since particles only move small distances between two-time steps, as explained
in Subsection 2.1.1, these lists can be reused over several time steps by increasing their
size by a so-called Verlet Skin Factor (s). This way, particles about to enter the cutoff
sphere before the next rebuild of the lists are captured, as visualized in Figure 2.2c.
The interval in time steps for which the lists are kept is here referred to as the Rebuild
Interval (tr) or its inverse, the Rebuild Frequency (fr) [Ver67].

16

2.1 Particle Simulations

Rebuilding Neighbor Lists Since the Verlet Lists algorithm works by wrapping the
crucial question of identifying the neighbors away into simply using lists, the question
arises how to efficiently build these lists. A typical choice is to employ a Linked Cells
algorithm for this, which acts as a bucket-sort for rebuilding the lists.

Computational Complexity To judge the computational complexity of Verlet Lists,
the two major algorithm steps need to be evaluated: The pairwise force calculation and
the rebuilding of the neighbor lists. For the former, a complexity of O(N ·Nlist) where
Nlist is the average size of a neighbor list, is achieved because, for all N particles, Nlist

number of elements need to be evaluated. Here, a similar argument as for Linked Cells
can be applied, so this step can be considered in O(N). Since the rebuilding is done
with the Linked Cells algorithm, which is in O(N), the whole Verlet Lists algorithm is
in O(N).

Advantages from List Structure The immediate advantage of knowing which particles
are close, even if the list contains some particles outside the cutoff sphere, is the very
high hit rate due to the approximation of this sphere via a slightly wider sphere.

h∗V L =
Vrc

VsearchedV L

=
4
3πr

3
c

4
3π(rc · s)3

=
1

s3
(2.22)

However, rebuilding the lists also has to be considered, which we can do by calculating
the weighted average of a rebuilding and a non-rebuilding iteration. The number of
iterations for which the lists are valid is given by Rebuild Interval (tr).

hV L =
(h∗V L · tr + hLC)

tr
=

(
1
s3
tr + 0.155

)
tr

(2.23)

From this, we can visualize the advantage of Verlet Lists over Linked Cells for a fixed
tr = 20, as seen in Figure 2.3. In general, the skin s∗ to have the same hit rate between
the two algorithm archetypes is shown in Equation 2.24:

s∗ ≈ 1.8616

3

√
tr−1
tr

(2.24)

We can modify Linked Cells to also have a skin, which increases the cell size so cells do
not have to be rebuilt every iteration. This changes Equation 2.21, such that the search
volume is expanded by s.

h′LC =
Vrc

VsearchedLC′
=

4
3πr

3
c

(3rcs)
3 ≈ 1.55

s3
(2.25)

Comparing against this version of Linked Cells the advantage of Verlet Lists becomes
dependent only on tr as can be seen from Equation 2.26:

h′LC
h′V L

=
1.55
s3

1
s3
tr +

1.55
s3

tr

=
1.55tr

tr + 1.55
(2.26)

17

2 Background

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Skin Factor

0.2

0.4

0.6

0.8

1.0

Hi
t R

at
e

Algorithm
LinkedCells
VerletLists

Figure 2.3: Hit rate of Linked Cells (no skin) and Verlet Lists for a fixed Rebuild Interval
tr = 20.

Disadvantages from List Structure When processing the neighbor lists, access to the
neighbor particles is mostly random access into the particle storage. It can never be fully
contiguous access, as this would require resorting of the particles for every neighbor list.
This decreases vectorization performance as suboptimal gather and scatter instructions
are needed (if available). Furthermore, shared memory parallelization with Newton3
comes with the challenge that there is no inherent knowledge of which neighbors might
be shared by some particles, thus making them vulnerable to data races. One way to solve
this is through the use of thread buffers5. This is discussed further in Subsection 2.1.5.

The most significant disadvantage of Verlet Lists is their high memory consumption,
which lies in O(N ·Nlist). While this is still in O(N) as discussed above, the factor Nlist

becomes very noticeable here. For example, let us again consider the minimal particle
from Subsection 2.1.2.1 consisting of three vectors: position, velocity, and force, as well
as one id, each being 64 bit values. The particles in the neighbor list are either referred
to by their ID or a pointer, usually both being a 64 bit value. Looking at a scenario with
a density of ρ∗ = 0.8442 and rc = 2.5 (the numbers are from a LAMMPS benchmark6

), the lists hold on average 4
3πr

3
c ∗ ρ∗ ≈ 55.25 particles. This means the storage for the

neighbor lists accounts for over N55.25·64 bit
N(10+55.25)64 bit ≈ 84% of the total memory consumption

of the simulation.

2.1.3.4 Verlet Cluster Lists

A more complex approach that draws on the ideas of Linked Cells and Verlet Lists is
sketched in Figure 2.2d. Here, the idea is to have a binning into 2D towers, which
are sorted along the third dimension to preserve some geometric information. Then,
subsequent particles in the same tower are grouped into so-called clusters. For these
clusters, neighbor lists of clusters are created based on the assumption that particles

5https://docs.lammps.org/Developer_par_openmp.html Accessed: 20.12.2024
6https://www.lammps.org/bench.html#lj Accessed: 20.12.2024

18

https://docs.lammps.org/Developer_par_openmp.html
https://www.lammps.org/bench.html#lj

2.1 Particle Simulations

that are near each other will have similar neighbor lists. Creating a clean Interaction
Length (ri) for each cluster is costly, as it involves the conjunction of multiple spheres.
Instead, as seen in Figure 2.2d, a box-like over-approximation can be constructed. The
actual pairwise interaction evaluation then follows Algorithm 4, which again is a mixture
of Algorithm 2, with the traversal of a spatial structure, and Algorithm 3 with the list
traversal.

Advantages of Clustering The clustering of nearby particles brings several advantages.
Memory consumption compared to Verlet Lists can be cut by a factor inverse to the

cluster size, ncluster resulting in O
(

N
ncluster

Nlist

)
. Furthermore, although memory access

of (neighbor) clusters is still random, accessing all particles within a cluster is contiguous
in memory, thus opening up decent vectorization opportunities if the cluster size is chosen
as a multiple of the vector register size of the hardware.

Disadvantages of Clustering The primary disadvantage is the fact that once two clus-
ters are within ri, all pairwise distances have to be calculated. This means that in the
worst case, one particle of the neighbor cluster might trigger the evaluation of several
unnecessary distance calculations, leading to an overall worse hit rate than Verlet Lists
as particles from outside ri will be considered which cannot be within rc.

2.1.3.5 Fast Multipole Method

Since long-range interaction algorithms are neither the focus of AutoPas nor this the-
sis, a short overview of the Fast Multipole Method (FMM) shall serve as one example
of what can be done on this frontier, to provide a perspective on the differences and
challenges to short-range algorithms. Other notable examples include the Barnes-Hut
algorithm [BH86], Ewald summation [Ewa21], Particle Mesh Ewald (PME) [DYP93],
and the Particle-Particle/Particle-Mesh (P3M) [EHL80] algorithm. A much more exten-
sive discussion of the FMM algorithm, its implementation, variants, and performance
can be found in the literature [Kab12, Gra17b, Yok13, Tch20]. The brief idea is to re-
duce the computational complexity by grouping clusters of well-separated particles into
pseudo particles for sources (multipole expansions) and targets (local expansions), in-
teract those, and then obtain the influence on the actual particles from its contribution
to its local expansion.

Expansions Conceptually, the combination of particles into multipole and local expan-
sions is shown in Figure 2.4, as well as why they have an area of validity and need to
be well separated. Mathematically, the multipole expansions are a sum of coefficients ai
from the particles’ influence divided by the distance to the center of the pseudo particle:

p∑
i=0

ai
ri+1

(2.27)

19

2 Background

-1

0

1

2

3

4

-2 -1 0 1 2 3 4 5 6 7 8 9 10

p1mp2

U

Uexact = p1 / |r-1| + p2 / |r+1|
Umultipole = (p1 + p2) / |r|
Ulocal = (p1 + p2) / |6|

-1

0

-2 -1 0 1 2 3 4 5 6 7 8 9 10

p1mp2

Multipole Cell Local Cellr

Figure 2.4: Simplified sketch of how multipole and local expansions are used to group particles
and approximate their interactions over longer distances. After some distance, the
potential of the multipole expansion (red) approximates the accumulated exact
potential of p1 and p2 (green) well. It can be used to model the influence on the
local expansion (blue). The induced error in the individual particle’s resulting
potential is the difference between the blue and the green line at the r positions of
the particles. Source [Gra17b].

20

2.1 Particle Simulations

Figure 2.5: A graphical visualization of the algorithmic flow of the FMM. The left tree, building
the multipoles with the P2M and M2M operations, represents the upward pass, the
interactions from the left to the right tree via the M2L operations the horizontal
pass, and the right tree with the L2L and L2P operations the downward pass.
Short-range interactions via P2P operations are shown in the bottom layer. Most
P2P and M2L operations are omitted for visibility. Source [Gra17b].

Here, p is referred to as the order of the expansion. Conversely, the local expansion
follows the form:

p∑
i=0

bir
i (2.28)

With p → ∞, the approximation error approaches zero, so in practice, the expansion
order has to be chosen according to the precision needs of the application [Kab12].
However, since the computational complexity of calculating one expansion is typically in
the range of O(p6) [Yok13] to O(p2 log p) [EB96], the user is incentivized to keep p as low
as possible. A number of possibilities have been proposed to formulate the contribution
of particles to the expansions, such as solid harmonics, spherical harmonics, or cartesian
Taylor, providing varying advantages in computational and memory complexity, as well
as ease of implementation [Kab12, Yok13, Tch20].

Algorithm Description An intuitive flow of the FMM for 1D is sketched in Figure 2.5.
The domain is divided into cells similarly as in the Linked Cells algorithm. This is
visualized in Figure 2.5 with the square nodes with nodes 0 and 9 being halo cells. The
cells at the bottom of the left tree represent the state of the particles at the start of
the interaction evaluation and those at the bottom of the right tree at the end. In a
first step towards the computation of the long-range interactions, also called the far
field, multipole expansions are calculated to represent these cells in so-called Particle to

21

2 Background

Figure 2.6: Visualization of one local (red) and all its multipole interaction partners on the
same level (blue), including periodic boundary images (gray cell with gray point)
during the M2L phase. Multipole expansions, which are white points in a gray
cell, have already contributed their influence on a higher level, while the multipole
expansions in white cells are too close to contribute on this level. Source [Gra17b].

Multipole (P2M) operations. These multipoles are then combined to a coarser layer of
multipoles recursively with Multipole to Multipole (M2M) operations until one multipole
represents the whole domain, creating a tree of layers, which is an octree in the 3D case.
This whole procedure is also referred to as the upward pass. Within each of these layers,
long-range interactions are applied in Multipole to Local (M2L), resulting in a tree
of local expansions. Each local expansion contains the contributions of the multipole
expansions from a specific distance band, as shown in Figure 2.6 with the blue areas.
White areas are too close to the red target expansion to converge, while gray areas are
so far away that they can be covered more efficiently with sufficient precision on higher
levels. Finally, the tree of local expansions is reduced in the downward pass with Local
to Local (L2L) operations, and the effect on the actual particles is eventually calculated
with the Local to Particle (L2P) operations. Since the M2L operations can, by design,
not cover interactions between particles close to each other, Particle to Particle (P2P)
operations are evaluated between neighboring cells. This is also referred to as the near-
field evaluation, which is basically the same as evaluating short-range interactions via
the Linked Cells algorithm.

If the simulation features periodic boundaries, the number of M2L operations per level
increases to include periodic images of well-separated neighbor expansions, as shown in
Figure 2.6.

22

2.1 Particle Simulations

Computational Complexity The near field computations are analogous to the Linked
Cells algorithm and are thus in O(N). The far-field computation only depends on the
number of particles during the P2M, and L2P steps, where sums over all particles covered
by the respective expansion are calculated, which places these steps in O(N) [GR87].
All remaining operations are independent of the number of particles and only depend
linearly on the number of tree nodes M . As M is chosen independently of N and
typically M ≪ N , it can safely be assumed that O(M) ∈ O(N). Hence, since all steps
are in O(N), this places the whole algorithm in O(N).

2.1.4 Discussion of Archetypes

As already touched upon in Subsection 2.1.3, each algorithm archetype comes with pros
and cons inherent from its core idea. Furthermore, there are algorithmic parameters and
design choices, that play a significant role in the performance of one or several of these
algorithms, which shall be discussed here.

Cell Size Factor As mentioned above, the choice of the side length of the cells, also
called cell size, significantly impacts the algorithm’s performance. If the cell size equals
rc, finding all neighbors for a particle in 3D can be limited precisely to the particle’s cell
and all 26 surrounding cells. We introduce the Cell Size Factor (CSF), which describes
the side length of a cell as a multiple of rc. If the cells are smaller than rc, so CSF< 1,
more neighboring cells need to be taken into account. On the one hand, this leads to a
better approximation of the spherical cutoff region through smaller cell blocks, yielding a
generally higher hit rate, except around the discontinuities, clearly visible in Figure 2.7a.
Those always appear when the number of cells that must be considered changes. For
example, as seen in Figure 2.7b, for CSF= 1.0, we have to consider 27 cells per cell
and get a hit rate of approximately 15%. For CSF slightly smaller than 1, two cells
per direction need to be considered, so 81 in total, with almost the same total volume.
Hence, the hit rate first plummets down to 0.05% but then rises as the cells get smaller
again and more cells need to be considered. In general, it is not trivial to calculate the
number of cells for a given CSF as this is a 3D variant of Gauss’s Circle Problem [LD17].
On the other hand, a CSF< 1 rapidly increases the number of cells, worsening particle
data fragmentation into smaller cells and thus decreasing memory alignment as well as
prefetching efficiency.

Cells with a CSF of 0.5 are also used by LAMMPS underneath their neighbor lists7.
The effects of CSF< 1 have been discussed in [MR99] where the authors conclude “The
optimum cell size might vary from machine to machine and implementation to imple-
mentation.” Consequently, this suggests that for a given machine and implementation,
there exists an optimal number of particles per cell that should be targeted by adjusting
the CSF.

An immediate implication from this is that especially for very sparse scenarios, increas-
ing the cell size beyond rc, meaning CSF> 1 can be reasonable, leading to a worse cutoff

7https://docs.lammps.org/Developer_par_neigh.html Accessed: 20.12.2024

23

https://docs.lammps.org/Developer_par_neigh.html

2 Background

0.0 0.5 1.0 1.5 2.0 2.5 3.0
CSF

0.0

0.2

0.4

0.6

Hi
t R

at
e

Algorithm
LinkedCells

(a) Ratio of distance to force calculations

0.4 0.6 0.8 1.0
CSF

0

100

200

300

400

500

600

Ce
lls

 in
 C

ut
of

f

Algorithm
LinkedCells

(b) Number of cells within rc

Figure 2.7: Impact of CSF on hit rate and number of cells in rc. Smaller cells increase the hit
rate but quickly lead to an enormous amount of cells.

sphere approximation and thus lower hit rate, but a better vectorization performance
thanks to memory alignment.

Verlet Skin and Rebuild Interval As discussed in Subsection 2.1.3.3, the main advan-
tage of Verlet Lists comes from its spherical lists being a better approximation of the
spherical cutoff and the fact that lists can be reused for several iterations. These ad-
vantages are governed by the parameters Cutoff Radius (rc) and Rebuild Interval (tr).
Hence, the choice of these is crucial. The idea of the skin is to capture all particles that
can potentially enter a particle’s rc range until the next rebuild interval. For this, the
absolute Verlet Skin (rs) has to be as wide as the sum of the distances the two fastest ap-
proaching particles cover during one tr. Since it is disproportionately expensive to track
the distance every particle travels towards its neighbors, a reasonable upper bound for
a static tr is to choose rs as in Equation 2.29.

rs = 2|d⃗max|tr (2.29)

Here, d⃗max is the longest movement vector applied to any particle in the system, making
|d⃗max| the maximum distance a particle in the system covers in one-time step. This
upper bound models the following worst case: At the time of a list rebuild there are
two particles whose distance to each other is just above rc + rs. These two particles
move straight towards each other at the same speed d⃗ and are the fastest particles in
the simulation. This means, that they are within rc after rs/2d⃗ time steps, from which
the bound in Equation 2.29 follows.

An easy way to obtain a dynamic and even better fitting tr is to track the distance
every particle moves from its position at the last list rebuild. As soon as one particle
covers rs/2, we cannot cheaply guarantee that there is no other particle that has moved
the same distance towards this particle. Hence, the lists should be rebuilt.

24

2.1 Particle Simulations

From Equation 2.29, we see that the choice of rs directly impacts tr or the other way
around. While we want to minimize rs and maximize tr, a smaller rs requires a lower tr
and vice versa. As a reminder, the relation of rs and s is:

rc + rs = rc · s (2.30)

With this, we can for a given s, compute the Rebuild Frequency (fr) as the number of
iterations it takes for the fastest particle in the system to cover half of the yet-to-be-
determined skin distance:

fr =
1

tr
(2.31)

=
1⌈
rs

2|d⃗max|

⌉ (2.32)

=
1⌈

rc(s−1)

2|d⃗max|

⌉ (2.33)

To get an idea of the impact skin and rebuild frequency have on the relative perfor-
mance of Verlet Lists to Linked Cells, we consider the total number of neighbor distance
evaluations per iteration nV L and nLC as shown in Equation 2.34. This can be formu-
lated as the sum of calculations that are done less than Linked Cells due to the better
spatial approximation, plus the number of evaluations needed for rebuilding the lists,
averaged over all iterations:

nV L = nLC

(
4
3π (rcs)

3

3rc3
+RebuildFrequency(fr)

)
(2.34)

Now, with Equation 2.31 and Equation 2.34, we can formulate a theoretical speedup
of Verlet Lists over Linked Cells purely based on the number of distance evaluations.

SV L =
nLC

nV L
=

1
4
3
πs3

33
+ fr

(2.35)

Since this function depends on fr, it directly depends on the speed of the fastest particle
in the system. The heatmap in Figure 2.8b visualizes the speedup of Verlet Lists over
Linked Cells for any combination of s and tr. Warmer colors in the bottom right corner
visualize the valid intuition that higher rebuild intervals and lower skin factors increase
the performance of Verlet Lists.
Given a particle speed, an optimal skin factor can be computed by minimizing Equa-

tion 2.34. This relation is plotted with the blue line in Figure 2.8a. In order to make the
reasoning more generally applicable, particle speed is considered relative to rc. Equa-
tion 2.34 features a ceil operator, which makes it nontrivial to identify the minimum
and which also leads to the spikes we see. These spikes perfectly align with the number of
necessary iterations between two rebuilds, shown in green. Individual pattern breaking

25

2 Background

spikes are artifacts of the optimization process to calculate the optimal skin factor. From
this skin factor, Equation 2.35 can be used to calculate how many distance calculations
Verlet Lists has to perform relative to Linked Cells, which is the inverse of the speedup.

Overall, three observations can be drawn from this graph. First, as long as particles
are so fast that they cross the cutoff in fewer than five iterations, Linked Cells have the
advantage in the number of calculations. Second, the optimal skin barely exceeds 1.6,
and considering that this is in a region where Linked Cells should be faster anyways, the
largest s where Verlet Lists are more efficient is about 1.5. Third, with more iterations
necessary to cover the cutoff distance, the skin factor slowly converges to one. This is
slightly deceiving because more iterations in this context can either mean that particles
are slower, or that rc is larger. With a larger rc, a larger s has a higher impact as the
increase in volume of the respective sphere is cubic in rc + s.

The data of the optimal skin from Figure 2.8a is also plotted as the cyan line in
Figure 2.8b. Here, since there are multiple skin values for one value of tr, an area is
shown with the graph representing its middle. This line shows the actually achievable
optimum within the technically possible ranges.

This discussion only considers the relative amount of computations of Verlet Lists and
Linked Cells. The actual speed of the two algorithms also significantly depends on other,
more hardware-related factors, like the ability to vectorize the algorithm, or how well a
processor can prefetch memory and pipeline instructions, which will be touched upon in
Subsection 2.1.6.

Linked Cells optimizations The simplicity of the Linked Cells algorithm lends itself to a
list of tweaks and optimizations that address its primary sources of overhead, namely the
low hit rate and computational cost, as well as memory interactions during the sorting
of particles into cells. Some of these optimizations, which have been implemented in the
context of this thesis, shall be briefly discussed here.

Skin for Cells Similar to the neighbor lists in Verlet Lists, the cell structure does not
have to be updated in every iteration as long as it can be guaranteed that all
neighbors of a given particle can always be found. Thus, if the side lengths of
every cell are increased by the same skin length rs as in the Verlet Lists algorithm,
the search volume is increased, and Linked Cells can follow the same update rhythm
as Verlet Lists. This, however, comes at the cost of a decreased hit rate. Hence,
this optimization is only beneficial for scenarios with very slowly moving particles
where a small skin allows for a high Rebuild Interval. In those scenarios, where
particles barely move, resorting is still not for free because, after each move during
a rebuilding iteration, it has to be checked whether each moved particle is still in
its correct cell.

Sorted Cell Interactions A highly efficient way to increase the hit rate is to introduce
more geometric information into the algorithm. For an interaction between two
cells, the positions of all particles are then projected onto the straight line that
goes through the center of both cells. For each particle, the loop over all other

26

2.1 Particle Simulations

100 101 102 103

Iterations to cross the Cutoff Distance (tc)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Op
tim

al
 S

ki
n

Fa
ct

or
 o

r S
pe

ed
 Fa

ct
or

Optimal Skin Factor
Inverse Speedup VL

0

5

10

15

20

25

30

Re
bu

ild
 In

te
rv

al
s

Rebuild Intervals

(a) For a given particle speed tc, relative to rc, the optimal s (blue)
and resulting tr (green) are shown. The orange line shows how
many distance calculations are necessary for Verlet Lists relative
to Linked Cells.
From tc > 4 this factor is less than 1, which means that Verlet
Lists have an advantage over Linked Cells.

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Rebuild Interval (tr)

1.0

1.2

1.4

1.6

1.8

2.0

Sk
in

 F
ac

to
r (

s)

1.0

1.5

2.0

2.5
3.0

3.5 4.0
4.5

5.0

Optimal Skin Factor

(b) The color gradient shows the theoretical speedup of Verlet Lists
over Linked Cells based on the number of distance calculations,
disregarding the validity of the s. The cyan line shows the opti-
mal skin value for a given tr based on the data from Figure 2.8a.
As there are multiple skin values for one tr (see horizontal green
lines in Figure 2.8a), depending on the particle speed, the cor-
responding area is shown.
The plot shows the limits of the speedup for combinations of s
and tr.

Figure 2.8: Analysis of optimal skin factors and its relation to tr and particle speeds.
27

2 Background

0 5 10 15 20
Avg Particles per Cell

0.6

0.8

1.0

1.2

1.4

1.6

Un
so

rte
d/

So
rte

d

(a) Workstation
Intel® Core� i7-10700 @ 2.90GHz

0 5 10 15 20
Avg Particles per Cell

0.6

0.8

1.0

1.2

1.4

1.6

Un
so

rte
d/

So
rte

d

(b) HSUper
Intel® Xeon® Platinum 8360Y @ 2.40GHz

Figure 2.9: Impact of sorting the particles during the cell-cell interaction on different machines.
Shown is the relative performance, where a value above one indicates an advantage
for sorted and below one for unsorted. Higher particle densities benefit from sorting.
For details about the setup see Section A.1.2.

particles then follows this sorting and can be aborted as soon as the first particle
is encountered that is farther away than rc. The authors of this idea reported
a speedup of about 28% over the unsorted Linked Cells algorithm for the pair-
wise interaction [Gon07]. However, since the sorting has to be done for every
cell 27 times, or 14 times if Newton3 is leveraged, a non-insignificant overhead is
introduced. Since higher numbers of particles are likely to benefit more as the
cell-to-cell interaction is in O(N2), this begs the question of whether there is a
range of number of particles for which sorting is not beneficial and should thus
be avoided. This behavior was tested on different machines and the results are
shown in Figure 2.9. While the expected trend that more particles per cell give
an advantage to sorting can be seen clearly in both plots, the impact of sorting,
as well as the break-even point, differ significantly between the machines. On the
workstation seen in Figure 2.9a, the worst slowdown of sorting too sparse cells is
only about 10%, and the highest speedup at 20 particles per cell is almost 1.7,
with the break-even between 5 and 6 particles per cell. The most significant slow-
down on HSUper is worse with 20%, and also, the highest speedup is lower at just
over 1.26. Most interestingly, the break-even lies between 9 and 10 Particles per
cell, so choosing a fixed sorting threshold at six particles per cell, which would be
optimal for the workstation, would result in a worst-case slowdown in HSUper of
15%, highlighting the importance that this parameter should be tuned machine
dependent.

Cells as Reference Data Structure One of the most central design decisions about the
Linked Cells algorithm is the choice of its underlying data structure to store the
particles. In general, two approaches are possible: Either to store the particles in

28

2.1 Particle Simulations

the cells, then the data structure is similar to a hash map, where the cells are the
buckets, or to store all particles in one large continuous vector and have the cells
only refer to locations within this. The advantage of storing particles within cells
is that spatially near particles are always guaranteed to be also near in memory.
Particularly, particles within one cell need to be accessed directly sequentially dur-
ing the calculation of interactions, making this favorable for vectorization. When
particles are stored in a central memory location, it is neither guaranteed that
particles are sorted according to their cells nor, even if they are, that cell ranges
coincide with cache line boundaries. In [DCGGM11], the impact of sorting par-
ticles according to different orderings was studied. The authors conclude that
reordering particles to optimize memory access patterns can improve runtime by
up to 20% for their case studies. Experiments on our implementation do not show
the same severity as shown in Figure 2.10. Here, the differences in iteration speed
between three versions of Linked Cells are shown. The overall data is very noisy,
but looking at the median, 25th, and 75th percentile, we can see that the sorted
reference-based version is about 5% faster than the others, which are very similar
to each other.

2.1.5 Shared Memory Parallelism

Everything discussed so far only considers sequential execution. In light of the design
of current Central Processing Units (CPUs) featuring up to 128 cores8 leveraging paral-
lelism is essential to make use of the full potential the hardware has to offer. Thus, this
and the following sections will focus on shared memory- and instruction-level parallelism.

When talking about parallelism, it is important to have a clear understanding of a
few important expressions:

Task Some unit of work, or set of instructions that are bundled and can be executed
(optimally) independently. For example individual iterations of a loop could each
be a task.

Race condition An error due to an unintended ordering of operations from multiple
threads is called a race condition.

The classic example of this is one thread initializing a resource (e.g., a file). Next,
a second thread alters the resource (e.g., deletes the file), and then the first thread
wants to use the resource (e.g., write to the file), assuming it is still in the same
state it has seen it in previously. This is also called a time-of-check to time-of-use
(TOCTOU) bug [WP05].

Data race When multiple threads access the same memory location simultaneously and
at least one of them is writing, the resulting error is called a data race.

For this, at least one of the threads must write on said memory. If both are writing,
the final value in memory might end up even different from both written values

8https://www.cpu-world.com/CPUs/Zen/AMD-EPYC%209754.html Accessed: 20.12.2024

29

https://www.cpu-world.com/CPUs/Zen/AMD-EPYC%209754.html

2 Background

LC LC_sorted LC_unsorted
Dataset

10

12

14

16

18

20

22

24

26

ite
ra

te
Pa

irw
ise

[m
s]

Figure 2.10: Boxplot comparison of time per iteration for Linked Cells with particles stored in
cells (blue), Linked Cells with references in cells with sorting of the central data
storage (orange), and without sorting (green).
Shown is the time for 100 calls to iteratePairwise(), on the AoS format, without
sorting of a static simulation of 105 randomly distributed particles in a 1003 box
with rc= 2.5 and rc= 0, applying lcc08 with 16 threads. The red line marks the
fastest iteration for visibility.
Sorting particles seems to be marginally faster on average, but not significantly.
For details about the setup see Section A.1.2.

30

2.1 Particle Simulations

due to the writing procedure being torn apart [SI09]. A typical example of this is
two bank transactions happening simultaneously. For each transaction, a process
reads the current value, updates it, and stores the new value. If two processes read
the initial value, update it, and then store it, the stored value that comes in first
will be overwritten, and the update from it is lost.

Embarrassingly parallel A set of tasks that can be executed in parallel and never cause
any race conditions, or data races is considered embarrassingly parallel.

Degree of Parallelism For an algorithm, this is the fraction of the total work that can
be executed at the same time. This in combination with the problem size effec-
tively determines the maximum number of parallel workers that can effectively
be employed for a given scenario. The highest possible degree of parallelism are
embarrassingly parallel problems.

Load Balancing Naively spreading a problem over multiple worker threads can result
in some threads ending up with more work than others. This leads to all threads
having to wait for the one with the most work which is an undesirable inefficiency.
The act of avoiding this is called load balancing. Two general approaches exist:

Static load balancing estimates the amount of work per task before execution and
with this assign tasks to threads in advance.

Dynamic load balancing assigns tasks to threads at runtime, trying to keep all
equally busy.

The tradeoff between the approaches is the quality of the balancing vs overhead
costs. Cost estimate models tend to be rather complicated and of varying preci-
sion [Sec21], while assigning or shifting work at runtime requires either a central
entity storing and distributing tasks in a synchronized fashion or individual workers
synchronizing, exchanging load information and rebalancing their work.

Granularity The size of parallelizable tasks as the fraction of the total amount of work
is referred to as the granularity of the parallelization. Granularity has a close
relation to the degree of parallelism as finer grained strategies offer higher degree
of parallelism by subdividing the problem into more smaller tasks. This also makes
load balancing easier, because if there is an imbalance between two threads it can
be rebalanced more precisely by shifting smaller tasks. On the other hand, this
increases the overhead from scheduling, as there are more tasks to distribute.

As discussed previously in Subsection 2.1.1.1, computing the particles’ interactions is
the most computation-intensive part of a particle simulation. Hence, parallelizing this
is of utmost importance. Particle simulations provide a potentially very high degree of
parallelization since all particles can be processed simultaneously. While this is always
true for steps like the velocity and position updates during the time integration, care has
to be taken when exploiting Newton3, described in Subsection 2.1.1.3. With this, the
force values of both particles i and j are updated during the interaction computation,
which will lead to a problem if some interaction between particles j and k is evaluated

31

2 Background

simultaneously, also updating both involved particles, resulting in a data race in the
force vector of j. To avoid this, several techniques are possible:

Buffers Instead of writing the computed force to the same memory, each thread writes
to an exclusive buffer location. All buffer entries must be reduced to the end result
at the end of the parallel region, usually summing them up.

The advantage of this technique is that it makes the initial calculation again em-
barrassingly parallel, but at a memory cost of O(N ∗ t) ∈ O(N), where N is the
number of particles and t the number of threads that have to access each parti-
cle. Note that,depending on the algorithm, t is not necessarily equal to the total
number of threads. Another disadvantage is that the reduction step requires an
extra pass over all particles again because, during the force computation, it is not
trivially possible to know when all potential interaction partners are processed.
However, it can be combined with the pass-of-the-time integration, which is also
straightforward to parallelize.

Locks The shared memory locations can be granted exclusive access via locks, making
data races impossible. Placing a lock around every particle’s force vector is exces-
sive and detrimental to performance since using them can induce significant CPU
stalls. Each access to a lock has to be an atomic operation, the state of the lock
has to be kept coherent among all involved threads, and if a thread hits a locked
lock, putting it to sleep induces a potentially expensive system call, depending on
the architecture. Therefore, locks should only be employed in limited numbers,
and the probability of a thread hitting them can be kept reasonably low.

An example would be dividing the domain into sections for each thread and only
placing locks at the interfaces, thus preventing threads from working on shared
data simultaneously while using fewer locks. This can be improved even further if
the threads schedule the processing of their domains so that it is unlikely that two
threads work on the same interface region at the same time. If all of these goals
can be achieved, the overhead from locks laid out previously becomes insignificant
while still guaranteeing computational correctness.

Synchronization The third approach tries to find as much race-condition-free parallelism
as possible and process these code regions one after another. For instance, this can
mean splitting the domain into several parts, each of which can be individually
processed embarrassingly parallel. Then, after each of these parts, a so-called
barrier is placed, where the threads wait until all of them have reached the barrier
and they synchronize.

Technically this might not be very different from locks but conceptually locks focus
more on keeping a concurrent algorithm race-condition-free, while synchronization
keeps a parallel algorithm in lock step.

An example of this is so-called domain coloring, where each of the aforementioned
parts is one color. Each color partitions the domain into many small blocks, with
each block representing a task that is scheduled as a whole. The goal is to never

32

2.1 Particle Simulations

have two blocks of the same color touching each other, to minimize the number of
colors used, and to optimize the volume of the blocks. If they are too small, too
much overhead is generated from dynamically scheduling the tasks. If they are too
large, load imbalances can occur, or the degree of parallelism declines.

The advantage of this method is that, if employed correctly on a fitting problem,
fewer synchronization steps are necessary than locks. Within each color, maxi-
mum efficiency is achieved since there are no constraints on the execution of tasks
and potential for dynamic scheduling. On the negative side, each color barrier
introduces measurable wait time for most threads [Gra17a].

In the following, the potential for parallelism of each of the short-range algorithm
archetypes presented in Subsection 2.1.3 will be discussed. An extensive list of imple-
mentations of these approaches and further considerations can be found in our previously
published work [GSBN22].

Direct Sum When using Newton3, Algorithm 1, can only be parallelized with locks
on every particle, which is highly inefficient as discussed above. Another option is to
not use Newton3, turning the problem into an embarrassingly parallel one, however,
this leaves behind a significant optimization. A third option would be using buffers for
every particle for every thread, which is highly memory intensive. The reason for the
difficulties in parallelizing this algorithm is that for no particle, anything beyond their
position is known. Hence, it would be impossible to determine cheaply if a particle is
currently involved in the interaction evaluation of another thread.

Linked Cells With the Linked Cells method, particles are stored in a (3D) grid, which
provides spatial information about groups of particles. This information allows efficient
use of all of the above techniques if parallelization is applied at the cell level, which
means the outermost loop in Algorithm 2.
If buffers are used, their number can be limited since each cell will only ever interact

with 26/2 other cells and itself due to Newton3. Thus, only 14 buffers would be needed,
which is still a significant memory investment. This can be brought down further by
scheduling techniques that guarantee how many threads will access a cell during a full
iteration [Tch20].
In principle, placing a lock on each cell seems possible and significantly more efficient

than on each particle. Previous work has shown that this approach can be inefficient
due to the overhead of the locks themselves [Gra17a]. An alternative approach is to
define and lock large regions of cells. For example, slicing a domain along its longest
dimension into one slice per thread, thus only needing as many locks as threads. This
method satisfies all the desired properties sketched above and can deliver competitive
performance [TSH+18].

Verlet Lists The list structure, as presented in Algorithm 3, suffers from the same
limitations to parallelism as the Direct Sum method. However, since Verlet Lists typ-
ically use Linked Cells as the underlying storage structure, the grids’ information can

33

2 Background

be used to create parallel algorithms. The problem remains that the neighbor lists usu-
ally provide no information about which cell a neighbor is stored in, thus rendering
some cell-based approaches unfeasible. One possible solution would be to create several
neighbor lists for each particle, one for every neighboring cell. Nevertheless, this creates
additional overhead because several disconnected lists have to be processed and is thus
only beneficial if particle number density is very high or rc is wide so that lists are of
sufficient length [GSBN22].

Verlet Cluster Lists Having an underlying grid structure, very similar possibilities and
limitations exist for Verlet Cluster Lists as for Verlet Lists with underlying Linked Cells.
The primary difference is that this grid is only 2D instead of 3D, thus offering a lower
degree of parallelism.

2.1.6 Instruction-Level Parallelism

Modern processors possess dedicated instructions to simultaneously apply the same op-
eration to several values. These are called SIMD instructions. Several instruction sets
with different register lengths exist, like Streaming SIMD Extensions (SSE) (128 bit),
Advanced Vector Extensions (AVX) (256 bit), Advanced Vector Extensions 512 Bit Ex-
tensions (AVX-512) (512 bit). These registers can store 32 or 64-bit values, dividing them
into lanes. For example, using AVX with 64-bit values, such as IEEE double precision
floating point numbers [C/M19] results in four lanes. This form of parallel processing of
data is also called instruction-level parallelism or vectorization, even though the latter
can also refer to the use of vector processors [HF84], which shall not be discussed here.
In contrast to parallelization, vectorization is applied to the innermost loops since SIMD
performs best on cache line aligned and consecutive data due to how data is loaded
from memory into caches and then registers. So, the potential for vectorization of an
algorithm can be judged primarily by the amount of independent processing of consec-
utive memory. For this analysis, we assume that accessing the same data fields from
consecutive particles is consecutive data access since this is only a detail about how
this data is stored. This will be further discussed in paragraph 3.1.1.3. Additionally,
for all statistical considerations, we assume a homogeneous particle distribution. While
in reality, this often does not hold for the entire simulation, locally over the volume of
a few cells of Linked Cells, the assumption is fulfill. Either way, the modeling based
on homogeneous distributions provides a good baseline for an average case and shows
general trends and differences between algorithms.

Direct Sum At first glance, Direct Sum has enormous potential for vectorization be-
cause, for every particle, all other particles are accessed consecutively, as can be seen
in the inner loop of Algorithm 1. However, since every particle pair is checked for a
potential interaction, the probability of two particles pi and pj actually being within

34

2.1 Particle Simulations

range rc is rather small, specifically:

P [|p⃗i − p⃗j | < rc] := P [rc] =
4
3πrc

3

r3domain

(2.36)

Here, rdomain is the side length of the domain, which is, without loss of generality, as-
sumed to be cubic with periodic boundary conditions. This length can also be expressed
as a multiple ndomain of rc, which simplifies the expression:

P [rc] =
4
3πrc

3

(ndomainrc)
3 =

4
3π

n3
domain

≈ 4.19

n3
domain

(2.37)

Usually, a domain is significantly larger than the cutoff used, but even if ndomain = 3,
the probability for two arbitrary particles to be in range is already less than 16%, or 3%
for ndomain = 5.
In vectorized code, no actual branching for individual lanes is possible. Instead, mask-

ing is employed. This means that lane values are set to zero depending on some condition,
but the linear program execution continues. Thus, only if all four distances are greater
than rc the body of the if in Algorithm 1 can actually be skipped. In all other cases,
the body needs to be evaluated, even if this means that some lanes carry out useless
computations and are thus wasted.
Let us assume particles are distributed uniformly in the domain. Since Direct Sum

does not sort particles in any way, sooner or later, particle positions in memory do not
correlate with their position in the domain, even when it was initialized as a grid, due
to the chaotic behavior of particle dynamics.
The probability that one inner loop actually needs to evaluate the interaction is the

same as the probability that there is at least one hit h, i.e. a particle within the cutoff
range. This can be expressed as the complementary probability that all particles are too
far away from the particle of the outer loop:

P [interaction calculation] = P [h ≥ 1] = 1− (1− P [rc])
lvec (2.38)

Here, lvec is the number of parallel lanes supported by the SIMD instructions.
The shape of the probability function is shown in Figure 2.11 for low values of ndomain

and values for lvec up to instruction sets like AVX-512. However, the actual runtime
depends on many more factors, for example, on how much branching is done, the cost
in instructions of the interaction relative to the distance calculation, switching between
serial and vectorized instructions, the interleaving of instructions by the out-of-order
processor that is allowed by the implementation, cache prefetching, compiler optimiza-
tions, and so on. If there is no cutoff condition, it is reasonable to expect a speedup
of near 4 from AVX, which has a lvec = 4. With the cutoff condition however, that
speedup is significantly diminished by the probability P [h ≥ 1] and thus P [rc] which
makes ndomain one of the most crucial parameters as long as there are sufficient particles
to fill the domain so that the statistical assumptions from above can be applied. For
ndomain = 3, we measured speedups for the Lennard-Jones potential of around 2.5, but
already at ndomain = 5, this drops down to less than 1.1.

35

2 Background

2 3 4 5 6 7 8
ndomain

1

2

3

4

5

6

7

8

l ve
c

0.
15

0.
300.

45

0.
60

0.
75

0.
90

Figure 2.11: Visualization of Equation 2.38, the probability for a vectorized inner loop to con-
tain at least one interaction.

Linked Cells The potential for vectorization for Linked Cells is closely related to that
of Direct Sum. Looking at Algorithm 2, when we apply instruction-level parallelism to
the innermost loop, lines 3–6 are precisely the same as in Direct Sum. The difference
is that the particles of the innermost loop are in 26/27 cases from another cell, which
decreases P [rc] significantly. To calculate the probability, the following integral has to
be solved:

∫ B1z

A1z

∫ B1y

A1y

∫ B1x

A1x

∫ B2z

A2z

∫ B2y

A2y

∫ B2z

A2z

1

(B1 −A1)3
1

(B2 −A2)3

·I(0,rc)(
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2)dx2dy2dz2dx1dy1dz1 (2.39)

Here, A1, A2 and B1, B2 are the boundaries of the two cells as 3D coordinates, I(0,rc)(d)
is the indicator function that some distance d is within (0, rc), and x1, x2, y1, y2, z1, z2
are the 3D coordinates of the particles p1, p2. Solving this is very involved but can also
easily be derived from simulations. As an example, for cells with a side length of rc, the
hit rates for the four cases of cells are: Within the cell 90%, two cells with a shared face,
33%, a shared edge 9%, and only a shared corner 2%.
Within each cell pair interaction, similar considerations as for Direct Sum apply. The

major difference, however, is that cells usually only hold a small number of particles,
which leads to shorter sequences of continuous memory accesses.

Verlet Lists Even though the classic Verlet Lists algorithm Algorithm 3 looks very
similar to Algorithm 1 for Direct Sum, the crucial difference in the head of the inner

36

2.2 The Algorithm Selection Problem

loop complicates vectorization severely. Here, the loop does not traverse a data structure
where particles are actually stored but a list of references. As a result, the memory access
pattern is potentially arbitrary. Even sorting particles in storage according to the list
at hand would not solve the problem because each particle has its own list thus, the
particles would have to be resorted constantly. This makes gather and scatter load
and store operations necessary which are not widely efficiently supported by hardware.
Therefore, modeling the vectorized performance of Verlet Lists is primarily a matter of
modeling the memory interactions of a given system.

Verlet Cluster Lists The cluster list algorithm Algorithm 4 aims to overcome the cru-
cial weakness of Verlet Lists. As in Algorithm 3, the loop in line 2 traverses, not the
primary storage data structure but a list of references. However, the trick in this algo-
rithm is to choose the cluster size according to the number of available lanes lvec, and
the innermost loop in line 5 does traverse the actual storage. Due to this, the inner-
most loop can be vectorized in an efficient manner [PH13]. The problem is that this
loop is very short. Thus, the vectorization should not end there, but at least the whole
processing of the second innermost loop in line 4 should still only involve SIMD instruc-
tions. Otherwise, frequently switching between scalar and SIMD instructions will lead
to significant performance degradation because the processor has to switch between two
dedicated pipelines and sets of registers.

2.2 The Algorithm Selection Problem

Looking back at Section 2.1, we can see that there is a wide range of algorithms and even
more variations to evaluate interactions in a particle simulation. For any application, it
is, even for experts, let alone domain scientists, difficult to judge which configuration is
optimal as their performance characteristics can vary widely, as will be shown in Chap-
ter 4. This is because, as is the case in many other optimization problems, there is no
silver bullet that is (near-)optimal in every situation [YWLC04]. The problem becomes
even more complex in real-world applications, as the optimum can shift throughout a
simulation, as demonstrated in [GST+19].

2.2.1 Problem Definition

Whenever one needs to solve any given problem, for example, finding the solution to
1 + x = 43, this problem can be thought of as an instantiation from some problem
space P, in this case, linear equations. Any problem has 0, 1, . . . ,∞ number of solutions,
represented in the problem-specific solution space S, here |S| = 1.

To find any such solution, algorithms are applied. Depending on the problem, there
could be any9 number of algorithms which make up the algorithm space A, also called

9While the theory presented here does not include an upper bound on the number of algorithms, the
problems in Chapter 4 have dozens to low hundrets of algorithms. It is unclear if negative scaling
effects would occur if |A| would be in the thousands.

37

2 Background

algorithm portfolio. These algorithms may yield results of varying quality. Nevertheless,
any algorithm a ∈ A, that is applicable to x ∈ P will find a solution s ∈ S, except for
so-called Las Vegas algorithms, which will not be considered here [Bab79]:

a : P → S; (x) 7→ s (2.40)

Since for many problems |A| > 1, immediately the question arises which algorithm
to pick to get the most satisfying solution in the most desirable way. This is the algo-
rithm selection problem, which was first described by John Rice in 1976 using similar
reasoning [Ric76].

In its most general form, algorithm selection is formally the problem of optimizing
a function f that maps an Algorithm a ∈ A and a problem instance x ∈ P to some
performance p ∈ R:

f : A× P → Rn; (a, x) 7→ p (2.41)

Performance can take many forms, e.g., time to solution, accuracy, memory require-
ments, or even a combination, and is subject to the broader problem context. Conceptu-
ally, performance can thus be in Rn. However, for the sake of comparing performances,
it is helpful to apply some norm to bring this into R.

The general optimization problem is thus formulated to find a aopt such that:

f(aopt, x) ≥ f(a, x) ∀x ∈ P,∀a ∈ A (2.42)

where “≥”denotes a “better-than” or “higher utility” relation that depends on the
performance metrics. E.g., a higher accuracy or a lower time to solution.

No Silver Bullet The inequality in Equation 2.42 would imply that there is an al-
gorithm aopt which is superior to all other algorithms in A in every problem instance.
Unfortunately, this is rarely the case and would limit the need for automating the al-
gorithm selection problem. In practice, we see that the algorithms’ performance highly
depends on the problem, and no global optimum can be assumed.

Thus, one option is to restrict the problem space to P∗ ⊂ P and only look for a local
solution:

f(aopt, x) ≥ f(a, x) ∀x ∈ P∗,∀a ∈ A (2.43)

Another approach is to introduce an averaging function m, which relaxes the require-
ments with respect to the generality of each individual problem instance.

m : R× · · · × R → R; (p0, . . . , p|P|) 7→ p (2.44)

Now we only look for the algorithm that is best on average using m:

m
(
f(aopt, x0), . . . , f(aopt, x|P|)

)
≥ m

(
f(a, x0), . . . , f(a, x|P|)

)
∀a ∈ A (2.45)

38

2.2 The Algorithm Selection Problem

2.2.2 Automated Algorithm Selection

Building on top of the previous definitions, the automated algorithm selection problem
is the algorithmic automation of finding a solution to the algorithm selection problem.
To understand how to tackle this, some characteristics of the optimized function f ,

from Equation 2.40, need to be understood.

Continuity Typically, f is a mapping of categorical values of A which might even lack
an ordering. Thus, no reasonable guarantees about continuity can be given. This
makes it harder to make assumptions about how p will change for different a.

Bijectivity f is neither surjective nor injective, meaning that we neither know which
exact performances are reachable with A, nor that for a given problem, each al-
gorithm produces a unique performance. This implies that the solution to the
optimization problem might not be unique.

Complexity The worst-case runtime complexity of solving the algorithm selection prob-
lem as in Equation 2.42, is O(|A| · |P|), since we would have to evaluate every
algorithm for every problem instance to establish the relations. The same also
holds for the relaxed optimum in Equation 2.45 since still, all performance values
need to be known.

In the context of particle simulations, this is a significant problem because even if
we only consider one problem instance, so |P∗| = 1, testing the whole of algorithm
space is inefficient because evaluating f from Equation 2.42 means evaluating the
particle interactions, which is an expensive operation.

The key takeaway here is that the only ways to reduce the theoretical complexity
for finding a reasonable solution to the algorithm selection problem are:

� Reducing |P| by only looking at a restricted subset P∗.

� Bringing structure to the search spaces A and P, so that by evaluating f(a0, x)
conclusions about the runtime of e.g. f(a1, x) could be drawn.

� Limit the number of evaluations of f through prior (expert) knowledge. This
could either mean avoiding applying algorithms to problems that are generally
known to be a bad combination (expert knowledge) or, in the context of a
simulation, building a knowledge base on the fly and drawing conclusions from
this (prior knowledge).

2.2.3 Closely Related Problem Variants and Applications

Typically, the application area of most algorithm selection problems is Boolean Sat-
isfyability Problem (SAT), where it has to be decided if there exists a true / false
configuration for the variables to make the expression true [BHvM09]. Another is
finding optimal scheduling algorithm for dynamic loop scheduling from a given port-
folio [Cio08, SMS+14]. Further applications are the Travelling Salesman problem, where
the goal is to find the shortest route that covers all nodes in a graph [DFJ54], or Artificial

39

2 Background

Intelligence (AI) planning, which is about finding a valid set of actions, also called plan,
that leads from a start to a goal state, or deciding that no such plan exists [GNT04].

All these applications have two things in common: They are at least NP-hard, and
they all are conceptually very different to the optimization problem discussed in this
thesis, the identification of an algorithm configuration for a simulation.
There exist a number of variants of the above described algorithm selection prob-

lem, all of which are closely related but sufficiently different to require dedicated treat-
ment. This categorization follows loosely tha previously proposed summary of the
field [KHNT19].

Per-instance Algorithm Selection This describes the problem of finding the optimal
algorithm to exactly one problem instance x ∈ P. The classic example for this is
in SAT, to find a valid configuration for one given expression. This is the form of
the problem that was considered originally by Rice [Ric76].

Per-Set Algorithm Selection Here, one algorithm has to be found for a given set of
problems. This is the problem stated in Equation 2.45 and ist often solved by
an exhaustive search of all algorithms in the representative subset [KHNT19]. An
application example is AI planning, where an AI architecture for a specific problem
domain P∗, which comprises of a set of instances, is searched.

Algorithm Configuration In contrast to algorithm selection, algorithm configuration
looks for the optimal values for configuration parameters of an algorithm. Usually,
this means that the space of options is significantly larger and might even include
continuous options. This is very similar to hyper-parameter tuning, which is often
seen in e.g. machine learning. Considering that algorithms can be configured with
further arguments h ∈ Hm, where m is the number of hyper-parameters, like, for
example, block sizes in matrix decompositions, number of layers in machine learn-
ing models, choice of pivot elements in search algorithms, Equation 2.40 can be
extended to:

a : P×Hm → S; (x, h) 7→ s (2.46)

Algorithm configuration aims to find hopt ∈ Hm to achieve the best possible so-
lution sopt ∈ S. The main difference to classic hyper-parameter tuning is, that
hyper-parameter tuning typically focuses on optimizing an algorithm for a specific
and narrow application context, while algorithm configuration might be applied
to a more heterogeneous P which in turn can require trade offs in individual peak
performance to improve the average performance. Thus, algorithm configuration
also exists as per-instance and per-set configuration, similar to algorithm selection.
Further applications, which are not hyper-parameter tuning are set covering opti-
mization, which asks for a minimal set of given subsets to fully cover the overarch-
ing set, or mixed integer programming problems, which are optimization problems
of linear functions that are constrained by linear inequalities and constrains on the
variables [KMST10].

40

2.3 Interim Summary

Algorithm Schedules If multiple plausible algorithms can be chosen, there is the ques-
tion in which order to try them, especially if there is a limited compute budget.
Therefore, this is often combined with other algorithm selection techniques to test
a few of the most promising candidates [KMS+11, VCG+15, LHH15, LHHS15].
This can also be used effectively as per-set selector [Rou12]

Parallel Algorithm Portfolios Similar to algorithm schedules, here all candidates are
applied concurrently, and as soon as any algorithm comes to a solution, all others
are aborted. If compute resources are limited, this approach has to consider the
impact on algorithms when the resources are shared, effectively limiting what each
algorithm has available.

Although the clearly defined, these problems are not necessarily completely distinct.
Some applications like SATzilla [XHHLB08], or AutoFolio [LHHS15] tackle the actual
problem they try to solve by applying a layerd approach solving e.g. a per-set selection,
to feed a parallel algorithm portfolio, which is used to determine the solution for an
given instance selection.
Generally though, in contrast to the work presented in this thesis, most research

seems to be focused on offline or static algorithm selection. Online or dynamic selection
seems to gain traction and is mostly covered by reinforcement learning approaches,
see [ACMR06, GS10, DBK+16]. To add to this, to the best of our knowledge, there
seems to be no research or attempts to apply any form of algorithm selection to particle
simulations, hence, no more closely related work can be discussed.

2.3 Interim Summary

In this chapter, Subsection 2.1.1 introduced the fundamentals of particle simulations,
especially short-range interactions and standard simulation features like particle prop-
agation and boundary treatment. Using these fundamentals, Subsection 2.1.2 laid out
three categories of applications, MD, DEM, and SPH, which physical processes they
typically model and what they have in common.
With this, our scope of application of particle simulations was defined, and the follow-

ing sections discussed efficient core algorithms and techniques for them. Subsection 2.1.3
introduced a zoo of algorithm archetypes, like Linked Cells and Verlet Lists, that can be
used to efficiently implement the particle interaction, which is usually the most compute-
intensive part of such simulations and discussed their pros and cons. Subsequently, in
Subsection 2.1.4, parameters and variations of these algorithms were discussed, and their
effects on performance were demonstrated. It was demonstrated that models for relative
algorithm performance can be constructed, for example, using the skin factor. However,
they do not capture the complete relative performance characteristics, and their actual
performance also heavily depends on implementation details, which made performance
predictions hard.
In the last parts of this section, Subsection 2.1.5 and Subsection 2.1.6 introduced

shared memory and instruction-level parallelism. Here, their respective fundamentals

41

2 Background

were defined, the algorithms’ potentials were evaluated, and theoretical limitations and
practical difficulties were highlighted. Here again, it was shown, among others at the
example of the vectorization potential of the different algorithms, that the actual impact
of vectorization depended both on implementation choices as well as the structure of the
scenario, thus complicating direct performance predictions.

With this chapter, it was established that a wide range of possible algorithms, imple-
mentations, and optimization parameters and choices exist to compute the interaction
step in particle simulations.
This led to the algorithm selection problem, which was formally defined in Subsec-

tion 2.2.1. In the subsequent Subsection 2.2.2, the automation of solving this problem
was discussed along with its properties and ways to approach it. Finally, Subsection 2.2.3
drew connections to similar algorithm selection problems as the one that is tackled by
this thesis. The insight from this part was that solving the algorithm selection problem
is in linear time complexity relative to the number of algorithms available. However,
since individual evaluations are costly, techniques have to be found to identify a mini-
mal number of algorithms potentially suitable for the problem at hand and only focus
on them.
To summarize, this chapter laid out the theoretical foundations as well as practical

considerations and approaches of the two main pillars of this thesis: particle simulations
and the automated algorithm selection.

42

3 AutoPas

After Chapter 2 all necessary fundamental concepts are established and we can now
move on to their implementation. This chapter is a comprehensive presentation of the
AutoPas library. Figure 3.1 shows its logo and icon. First, the software itself is discussed
from a user’s and developer’s perspective including a deep dive into its implementation
and optimizations. Next, we present the internal auto-tuning procedure, how it interacts
with the simulation workflow and implemented tuning strategies. Finally, we widen our
perspective to other significant or related MD software packages with the aim to draw
comparisons to our library and highlight the strong attributes of their work and the
uniqueness of AutoPas, and how it fits into the bigger picture of particle simulations.

Figure 3.1: The large AutoPas logo. If space is limited or only an icon is needed, the circular
symbol, which here takes the place of the o, can be used alone.

3.1 The Library

The library project presented in this thesis has the purpose to significantly contribute
to the answer to the research questions that were formulated in ??. To achieve this, it
was designed with the following goals in mind:

Usability The user-side API should be kept simple with only a minimal number of
necessary interaction points. This means, that most setup, update, or cleanup
logic should be triggered as automatically as possible. Examples for this would be
the maintenance of Verlet Lists, or the application of the correct interaction kernel
depending on the current data layout.

Customizability The library should be highly configurable so that it can be tailored to
very specific experiments or needs. This is achieved on the one hand by a wide
range of internal settings that can be configured by the user, as well as the fact
that they provide their own particle and force model.

High customizability can quickly get in the way of good usability since a more
complex interface is typically more complicated to use. Therefore, to counteract

43

3 AutoPas

this, all configurable options have to have sane defaults so that the library follows
the philosophy that the user only has to touch / configure what they actively want
to change. Anything they do not touch should generally have reasonable defaults
or tune itself.

Performance / Scalability Since the main field of application of AutoPas is HPC opti-
mal code efficiency, good performance as well as high scalability are core require-
ments. As the library is only concerned with node-level parallelism, distributed
memory parallelism with AutoPas will be discussed in Subsection 3.1.1.4, scalabil-
ity refers to shared memory parallelization with OpenMP.

Modularity AutoPas implements various data containers and parallelization strategies
that need to be switched and recombined at runtime. Hence, high modularity
is desirable, so that components act as independently as possible. The library
achieves this by high cohesion and low coupling of classes, making extensive use of
free functions. Most importantly is the use of the strategy software pattern for all
exchangeable components like data structures or parallelization strategies.

As a positive side effect, this greatly facilitates bringing in developers that work
only for a short time on the project, like students with thesis projects, since they
only need to familiarize themselves with a very small and self contained section of
the code.

Maintainability We want to ensure that AutoPas will be used and continued to develop
beyond the scope of this thesis. For this, the code must be straight forward to
understand, maintainable, and easy to extend. One aspect of achieving this is
through maximal reuse of implemented logic while avoiding wide spread coupling
of components. So called code clones, sections of duplicated code with only mi-
nor modifications, can often lead to copy paste errors, an increase in lines of code
and thus should be avoided [Kos07]. An exception for this guideline applies when
avoiding the clone significantly increases the code complexity, thus decreasing its
maintainability. Figure 3.2 shows that less than 7% of the AutoPas library con-
tains code clones. Compared to the usual 7–23% reported in general software
projects [Kos07] we consider this to be an excellent value.

Another side effect of low code duplication is that, any optimization immediately
is available to all relevant algorithms. We achieve this for example a deep class
inheritance hierarchy, which can be especially seen in the implementation of the
traversals as seen in Figure 3.7. This reduces the overall size of the code, making
it easier to grasp for new developers and implicitly points out common behavior
of different algorithms. Another aspect is the centralization of common logic steps
in a logic layer between the main interface and the actual data containers, which
manages and sanitizes all actions and queries.

A second example for avoiding code duplications is the implementation of iterators,
where general iteration management is centralized in the ContainerIterator class
and data structure specific access logic is implemented in the containers. Generally

44

3.1 The Library

Figure 3.2: Overview of high level metrics of the AutoPas repository analyzed with Teamscale1.
Only, the content of src is the actual AutoPas library which has an excellent clone
coverage rate of less than 7%. The same can be said of the examples which include
md-flexible which is presented in Section 4.1. applicationsLibrary is a collection
of functors and particle models which explains the high clone coverage since they
usually share several properties. Also tests usually contain code clones for test
setup reasons.

through the high use of interface polymorphism in the logic layers of the library
the compiler guides new developers towards implementing all relevant functionality.
This in combination with descriptive naming and extensive documentation of the
interfaces ensures that developers of all skill and experience levels can contribute
new algorithm modules to AutoPas.

Testing Finally, a vast infrastructure of more than 16 000 unit and integration tests
supports the library. Especially helpful are automatically generated tests for all
algorithm options checking common behavior and apply cross validation to ensures
code correctness. These tests are immediately available for any newly implemented
containers or traversals.

Many codes often go for a tight coupling between their modules to achieve optimal
performance. However, this contradicts our design goals of modularity and maintainabil-
ity. Therefore, large parts of Subsection 3.1.2 will be spent explaining how and where we
employ abstraction to facilitate modularity and minimize code duplication to increase
maintainability and where we focus on specialized performance optimizations.

Starting with a high-level perspective, we will first discuss the user’s perspective on
AutoPas, which will cover what users need to provide the library with and what they get
out of it. Then, we will switch the focus to the internal developer’s perspective, which
delves into the software engineering aspects, optimizations, and lessons learned along the
way during the development process. Lastly, low-level hardware-aware optimizations of
the interaction kernels that were implemented will be discussed.

45

3 AutoPas

3.1.1 Design, Structural Overview and Usage

AutoPas employs a very abstract model of particle simulations that separates the sim-
ulation loop into three major phases as shown in Figure 3.3a:

Interactions Here, the particle-particle interactions, introduced in Subsection 2.1.1.1,
are performed. The computational complexity of this phase is naively in O(N2)
(for pairwise interactions) but can be brought down to O(N) as discussed above.
Nevertheless, this is usually the most computationally expensive phase. In the
context of AutoPas, this is currently limited to short-range interactions.

Propagation In this phase, the positions of particles are updated. Usually, for example,
in MD, the changes in the particle positions stem from their directed velocity,
which is a result of the forces they experience due to the particle-particle potentials
computed in the previous phase. However, this is not necessarily the case since the
induced forces could also solely come from other sources, such as global force fields,
for example, in the space debris simulation presented in Section 4.4. Nevertheless,
this phase only requires touching every particle a constant number of times. It thus
can be considered to be in O(N), albeit potentially with some significant factors
depending on the intricacy of the computation.

Measurements This is the phase where the application scientist retrieves value from
the simulation. Typically, this involves reading velocities or masses in specific
regions or sampling custom particle properties. For some metrics like the radial
distribution function, it is necessary to know the pairwise distances. However, this
is something that is already computed in the interactions phase and thus does not
have to be redone. Thus, we also consider this phase to be generally in O(N).

As sketched in Figure 3.3a, AutoPas only handles the interaction phase, and it is up
to the user to implement their propagation and measurements. This decision was made
because the interactions phase is usually the most challenging phase, and the latter two
phases can be highly customized, making it difficult to find a common core for the most
expensive operations in these phases. For example, in the propagation phase, any time
integrator algorithm might be used, depending on the model and precision constraints of
the simulation, and the measurement phase is, from the perspective of AutoPas, entirely
arbitrary.

From the user’s perspective, AutoPas first seems like a generic data container, maybe
not too dissimilar to something like std::vector. One instantiates it with a template
parametrization, the particle type, and one can pass objects of this type to the AutoPas
object via functions like AutoPas::addParticle(). There are also functions to query
the number of stored elements, AutoPas::getNumberOfParticles(), or iterate over all
with an iterator object obtainable via AutoPas::begin().

3.1.1.1 Software Architecture

The ISO/IEC/IEEE 42010:2022 standard defines software architecture as:

46

3.1 The Library

(a) AutoPas high-level abstraction of particle sim-
ulations split into three major phases.

(b) Minimal overview of the main interface of
AutoPas, its primary interaction points, and
what it expects a user to provide.

Figure 3.3: High-level user’s perspective of how AutoPas fits in particle simulations and how a
user is expected to interact with and employ it.

“fundamental concepts or properties of an entity in its environment (3.13)
and governing principles for the realization and evolution of this entity and
its related life cycle processes”. [ISO22]

In the spirit of this definition, we shall provide a non-formal short overview of the
architecture of AutoPas that conveys the library’s key ideas, concepts, and core structure.

Environment The environment that AutoPas is intended for is numerical HPC simula-
tions of short-range particle systems as described at the start of Subsection 3.1.1. These
simulations typically run on capable workstations or cluster computers, hence a high
degree of parallelism can be expected to be available. As AutoPas only focuses on node-
level performance, it only implements shared memory parallelism through OpenMP.
However, since simulations for cluster computers also have to leverage distributed mem-
ory parallelization, e.g., via Message Passing Interface (MPI), the library must also work
in this context. This will be discussed in Subsection 3.1.1.4.

In order to determine what kind of hardware AutoPas should target, we take a look
at the TOP500 list of the largest supercomputers on the planet. For a long time now,
100% of the employed operating systems on all supercomputers have been some form of
Linux. Thus, there is no reason to target any other platform.

We can see in Figure 3.4a that at the time when AutoPas was started at the beginning
of 2018, the vast majority of systems, over 95%, were built on x86 processors, and since
then, this has not changed significantly. The most significant changes in the domain of
processors are that since around 2020, AMD is becoming increasingly relevant, and CPUs

47

3 AutoPas

2017-11
2018-06

2018-11
2019-06

2019-11
2020-06

2020-11
2021-06

2021-11
2022-06

2022-11
2023-06

2023-11

List

0

100

200

300

400

500

Nu
m

be
r o

f S
ys

te
m

s

11 22
49 74 94

122 122 141

16 15 13 13 14 12

470 475 476 478 474 471 459 432 408 388
360 360 338

AMD, x86
Cavium, ARMv8
Fujitsu, ARMv8
Fujitsu, SPARC
IBM, POWER
ICC, Custom
Intel, x86
NEC, SX-Aurora

(a) Processor types and vendors. Almost every
system runs on x86 from Intel with a growing
share supplied by AMD.

2017-11
2018-06

2018-11
2019-06

2019-11
2020-06

2020-11
2021-06

2021-11
2022-06

2022-11
2023-06

2023-11

List

0

25

50

75

100

125

150

175

Nu
m

be
r o

f S
ys

te
m

s

8 9 11 11
4

10 7 6 5 5 5

85 96

126 126
135 135 139 139 142

153
162 166 1657

6

AMD, GPU
Intel, GPU
Intel, x86
NUDT, Unknown
NVIDIA, GPU
NVIDIA, GPU+x86
Unknown, Unknown

(b) Accelerator types and vendors. Since 2020
more and more systems use accelerators and
almost all are GPUs from NVIDIA.

Figure 3.4: Developments of hardware distributions in the TOP5002 from 2018 until 2023.

have more and more cores, which emphasizes the importance of supporting different types
of CPUs with different shared memory parallelization behaviors.
As is shown in Figure 3.4b, accelerators have always been used in a notable part of the

TOP500. Around the end of 2018, there was a jump in GPU systems, which stayed at a
level for about three years. However, starting in 2022, we can observe a sharp and steady
increase in systems using GPUs, mainly using NVIDIA CUDA. This is especially true
when looking at the top 10 of the list, where at the end of 2023, nine systems use some
type of GPU3. We acknowledge this trend and thus the shift in the target environment,
which makes it highly important to also support GPU offloading in AutoPas in the
future.

Core structure The main idea of AutoPas is to serve as a black box particle container
that can internally switch its layout. Hence, the library is designed around a common
particle container interface, and the classes implementing it, called particle containers,
are primary components through which almost all particle-related logic flows. The par-
ticle containers are hidden behind two interface layers to facilitate interaction with the
library and achieve the black box behavior. One layer is dedicated to managing internal
logic, and another is designed to provide a stable interface for users, enhancing usability.
All core components and their interaction for the most common tasks like adding par-

ticles, applying a functor, and invoking the interaction pipeline are shown in Figure 3.5.

Particle A user-provided class that implements their particle model. This will be dis-
cussed in more detail in paragraph 3.1.1.2.

Functor A user-provided class that implements the user’s force kernel. This will be
discussed in more detail in paragraph 3.1.1.2.

3https://www.top500.org/lists/top500/list/2023/11/ Accessed: 20.12.2024

48

https://www.top500.org/lists/top500/list/2023/11/

3.1 The Library

AutoPas The main and top-level interface and primary point of interaction for the user.
The user (usually) instantiates one object of this class to store all local particles
and treats it like a container that features smart functions for particle interactions.
This interface fulfills the role of a stable front-end for the user to work with that
hides any changes in the internal structure. Since this class can be considered the
public API of AutoPas, it is intended to experience as little change as possible for
compatibility reasons.

LogicHandler The second interface layer is an internal class that handles high-level
logic, sanity, and coherency checks. This class orchestrates the instantiation and
management of all algorithmic options, called Configuration, and ensures the
interactions with the particle container for particle insertion, deletion, and reloca-
tion are done correctly. It coordinates the containers’ internal Verlet-like interface
while providing the functionality of a black box Linked-Cells-like interface to the
outside [SGH+20].

AutoTuner An independent internal class that handles the automated algorithm selec-
tion. It manages the search space and applies one or several tuning strategies
to it to determine the optimal algorithm combination. This class provides the
LogicHandler with Configuration objects to instantiate and apply.

ParticleContainer An internal category of classes that each implements a neighbor iden-
tification algorithm as a data structure, like, for example, Linked Cells or Verlet
Lists. They store the real particle data and manage the actual particle interaction
and interaction through iterators.

Traversal An internal class category that each implements a specific shared-memory
parallelization for a specific Container class. They are ephemeral and always
wrap a functor.

3.1.1.2 User-Provided Classes

Since AutoPas requires the user to provide their models in a certain way, this section
will explain the structure and format of the expected classes, why they are built that
way and discuss drawbacks, benefits, and potential future improvements.

Particle Class The user provides their particle model as a C++ class that contains the
properties of an individual particle in the classic object-oriented fashion. For interface
compatibility, AutoPas provides a base class called ParticleBase that defines all nec-
essary members, as well as utility methods such as getter, setter, and stream operators.
Listing 3.1 outlines the basic layout of the particle class that AutoPas expects and

ParticleBase implements. From the library’s perspective, all a particle needs is an
ID to uniquely identify it, a position to file it correctly in the internal data structure,
and an ownership state. The latter describes if a particle is owned by this instance
of AutoPas (OwnershipState::owned), some other instance (OwnershipState::halo).

49

3 AutoPas

Figure 3.5: Overview of the main components of AutoPas. Boxes with a red border have to be
supplied by the user. The orange path shows the logic flow of adding a particle,
the green for applying a functor, and the black for the whole interaction pipeline.

There exists a third state (OwnershipState::dummy) which is neither of the previous
and is primarily used by AutoPas to mark particles that only exists for bookkeeping or
data structure reasons.

1 c l a s s Par t i c l eBase {
2 protec ted :
3 s i z e t i d ;
4 std : : array<double , 3> r ;
5 autopas : : OwnershipState ownersh ipState {OwnershipState : : owned } ;
6
7 pub l i c :
8 enum AttributeNames :
9 i n t { ptr , id , posX , posY , posZ , ownershipState } ;

10 us ing SoAArraysType = typename autopas : : u t i l s : : SoAType<
11 Par t i c l eBase * , s i z e t , double , double , double ,
12 OwnershipState > : :Type ;
13
14 template <AttributeNames a t t r i bu t e>
15 constexpr typename std : : tup le e l ement<
16 a t t r i bu t e , SoAArraysType> : : type : : va lue type get () {
17 i f constexpr (a t t r i b u t e == AttributeNames : : ptr) {
18 re turn t h i s ;
19 } e l s e i f constexpr (a t t r i b u t e == AttributeNames : : id) {
20 re turn i d ;
21 } e l s e . . . // a l l other a t t r i b u t e s
22 }
23 // s e t t e r analogous

50

3.1 The Library

24 } ;

Listing 3.1: Sketch of the base class that defines what properties AutoPas expects every particle
to have.

The enumeration AttributeNames, the tuple type SoAArraysType combined with the
template-based getter describe the particle’s member variables and types and provide
a way that AutoPas can use them to generate internal data structures. This will be
further discussed in Subsection 3.1.2.5.

Whenever users implement their own particle class, they are free to inherit from
ParticleBase or reimplement the whole interface because AutoPas expects the particle
class as a template parameter and thus will always use the concrete type.

Functor Class Similar to the particle mode, the user also provides the force model as
a C++ class. This class must implement the force interaction for several data structures
according to an interface in the AutoPas base-class functor. Again, as with the particle
interface, the user does not have to inherit from the base class because it is passed to
AutoPas as a template. However, the base class provides an automatism to convert
between Array of Structs (AoS) and Structure of Arrays (SoA), which would have to be
reimplemented. This automatism is explained in Subsection 3.1.2.5.

As outlined in Listing 3.2, the interaction is implemented both for AoS and SoA sepa-
rately due to different data access patterns and a current lack of an efficient abstraction
for this. To improve the efficiency for the data movement to and from SoA, the func-
tor can and should communicate the minimal set of members of the particle class that
are needed for the computation in getNeededAttr(), and those coming out of it in
getComputedAttr(). Irrespective of the container currently in use only one AoS and
SoA implementation are required. Currently, for SoA Verlet style containers use an in-
terface that expects only one soa and a neighbor list, however this usually can be tied to
the same core interaction implementation, as is demonstrated in the librarie’s examples.

1 template <c l a s s Pa r t i c l e>
2 c l a s s LJFunctor : pub l i c Functor<Par t i c l e , LJFunctor<Par t i c l e> {
3 pub l i c :
4 // AoS part
5 void AoSFunctor (Pa r t i c l e &i , P a r t i c l e &j , bool newton3) {
6 double dr = d i s t anc e (i . getR () , j . getR ()) ;
7 i f (dr > c u t o f f) {
8 re turn ;
9 }

10
11 double f = lennardJonesForce (dr , sigma , e p s i l o n) ;
12 i . addF(f) ;
13 i f (newton3) {
14 j . subF (f) ;
15 }
16 }
17 // SoA part

51

3 AutoPas

18 constexpr s t a t i c auto getNeededAttr () {
19 return std : : array<typename Pa r t i c l e : : AttributeNames , 9>{
20 Pa r t i c l e : : AttributeNames : : id ,
21 Pa r t i c l e : : AttributeNames : : posX , . . . /*posY , posZ*/ } ;
22 }
23 constexpr s t a t i c auto getComputedAttr () {
24 return std : : array<typename Pa r t i c l e : : AttributeNames , 3>{
25 Pa r t i c l e : : AttributeNames : : forceX , . . . /* forceY , fo rceZ */ } ;
26 }
27 void SoAFunctorPair (SoAView<SoAArraysType> soa1 ,
28 SoAView<SoAArraysType> soa2 , bool newton3) {
29 const auto * const r e s t r i c t x1ptr =
30 soa1 . template begin<Pa r t i c l e : : AttributeNames : : posX>() ;
31 // f o r c e c a l c u l a t i o n s im i l a r to AoS Functor
32 }
33 } ;

Listing 3.2: Sketch of a functor class that defines and implements the force interaction for
the Lennard-Jones potential. Shown here are the functions that implement the
interactions specific to the available data layouts, as well as the functions that
indicate which parts of the SoAs have to be loaded and retrieved.

3.1.1.3 Internal Algorithmic Options

Most available algorithmic options were already discussed and published in [GSBN22].
New algorithms are mostly variants of existing ones that have more complex load bal-
ancing mechanism, at the cost of more overhead. Examples for these are sli balanced,
vlc c08, and Pairwise Verlet Lists. Hence, in this thesis, we will only briefly summarize
all algorithms and present any new ones implemented since then.

Data Layouts In the context of AutoPas, data layout refers to how the particle data
is arranged in memory. Two options are implemented

Array of Structs (AoS) Here, particles are stored as regular objects in an array-like
standard container like std::vector<Particle>. This layout excels when indi-
vidual full particles have to be accessed.

Structure of Arrays (SoA) In this layout, there is one array-like container (e.g.
std::vector<double>) per particle property. All properties of a particle i are
on the i-th position in each vector. The advantage of this layout is very efficient
access to individual properties of consecutive particles.

Internally, AutoPas stores all particles in AoS format, mainly because it makes inter-
acting with them more intuitive. When an algorithmic configuration requires the SoA
format, this is converted on the fly in each iteration. The container reuses the memory
for these SoA buffers. Therefore, this repeated conversion does not allocate new memory,
thus keeping the operation within reasonable costs.

52

3.1 The Library

Containers Particle containers represent highly specialized implementations of the al-
gorithms presented in Subsection 2.1.3. They maintain how the actual particle data is
stored and provide efficient ways to identify the neighbors for the particle interactions.
Since [GSBN22] lays out descriptions of the available options, only short intuitions will
be listed here.

Direct Sum Two cells, one for all owned, one for all halo particles. This leads to minimal
memory and data management complexity overhead.

Linked Cells A regular 3D grid of cells is implemented as a 1D vector of cells that
store the particles. Due to this close relation of spatial and memory location, this
container is very SIMD friendly.

Verlet Lists The Neighbor lists are vectors of pointers for each particle that are stored
in one big map that sits on top of a Linked Cells data structure, which is used to
create the lists. This trades SIMD friendliness with a significant increase in hit
rate.

Var Verlet Lists A dynamic interface to easily implement different neighbor list styles.
The exact behavior depends on the chosen neighbor list, which depends on the
traversal choice. Hence, more discussion about this can be found in paragraph 3.1.1.3.

Verlet Lists Cells In this Verlet Lists implementation, neighbor lists are grouped by the
cells of the underlying Linked Cells structure. This restores some spatial informa-
tion, but only about the particle that owns the list and less about those on the
list.

Pairwise Verlet Lists The container uses the exact implementation as Verlet Lists Cells
but with one list per cell pair for each particle. This increases the spatial informa-
tion but results in significantly smaller lists, creating overhead from jumping lists
too often.

Verlet Cluster Lists Here, nearby particles are grouped into clusters, and only one
neighbor list per cluster is created. Furthermore, these lists store references to
clusters instead of particles, decreasing the memory consumption and unlocking
some SIMD potential if the cluster size relates to the vector register size.

Optimization Options AutoPas implements a few optimization options that affect the
details of the algorithms but do not change them fundamentally.

Cell Size Factor (CSF) This factor alters the size of the cells in any Linked Cells based
container as a factor of ri. The effects of this have already been discussed in para-
graph 2.1.4. However, in any real implementation, cells cannot have completely
arbitrary sizes since they still have to fill the domain, and AutoPas does not allow
for cells to be cut. This means that if AutoPas is given a continuous range of CSF

53

3 AutoPas

values, only those for which the following expression results in an integer will be
considered:

rdomainX

ri · CSF
(3.1)

where rdomainX is the length of the domain in the X dimension. This also solves
the problem of having to deal with continuous tuning parameters.

Newton3 With this option, the optimization using Newton’s third law of motion, de-
scribed in Subsection 2.1.1.3, can be toggled on or off. This might be interesting
because it allows for more parallelism. Also, from a model correctness perspective,
using Newton3 is not always valid, as was mentioned in Subsection 2.1.2.3.

Cell Sorting This tuning option is not part of the algorithmic configuration the Auto-
Tuner selects, but part of the mechanic that handles the particle pair interactions
between cells called the CellFunctor. The idea is to create a cheap ordering so
that when we interact two cells A and B, we can, at some point, say that any
further particles of B are farther away from the particle of A that we are currently
looking at. Such an ordering is achieved by projecting all 3D particle positions
on the 1D straight line connecting the two cells’ centers. For interactions within
one cell, the line is one of the cell diagonals. Particles are then processed in the
order they appear on this line. The loop can be aborted as soon as the projected
distances exceed rc, skipping any further unnecessary distance calculations. This
works because the difference in the projected 1D positions will always be smaller
than the difference in the 3D positions. The implementation of this optimization
in AutoPas was inspired by a publication by Pedro Gonnet [Gon07].

Adding the projection and sorting of particles to the interaction creates overhead
that the optimization needs to overcome. Thus, there needs to be a certain number
of particles involved in the interaction for this to pay off. Therefore, AutoPas only
activates this feature if the sum of the number of particles in all involved cells is
above a given threshold.

Traversals Parallelization strategies for the neighbor identification in each of the above-
described containers are implemented in so-called traversals. Basically, they describe an
ordering in which the container is processed and whose parts can safely be processed
in parallel when making use of Newton3. There are a few design considerations when
conceiving such a traversal:

Buffers vs Locks vs Synchronization The tradeoffs between these data race avoidance
techniques have already been described in Subsection 2.1.5. At this point, traver-
sals in AutoPas do not implement any buffer-based algorithms, mainly because
of a concern for scaling memory consumption with the number of threads. All
other traversals fall in either of the remaining two categories. In the context of
AutoPas, synchronization strategies are implemented as so-called color (short c-
based) traversals, while lock-based strategies are called slice-based.

54

3.1 The Library

Cache reuse When the whole simulation is too large to fit into the cache, loading parts
of the data as rarely as possible from slower parts of the memory hierarchy is
desirable. Therefore, traversals should process as many interactions as possible
with the currently loaded data while at the same time not creating data races due
to neighboring threads’ overlapping regions of responsibility.

Predictability of access patterns A processor’s ability to efficiently fill its caches is
paramount to the performance of any program where the bottleneck is not the
mere execution of operations. Thus, processors employ prefetching to try to guess
ahead of time what data will be needed [CKP91]. Prefetching techniques are com-
plex and work on many levels. However, they work best on code that follows
predictable access patterns [LKV12]. For this reason, traversals employing dy-
namic load balance are at an inherent disadvantage because their patterns are less
predictable due to the nature of the decision of which thread processes which part
of the domain at runtime. To some degree, this can be mitigated by decreasing
the granularity of tasks, e.g., by bundling up several smaller tasks, but this comes
at the cost of load balancing precision.

Similar to containers [GSBN22], it provides extensive descriptions of the available
options. Similar to containers, extensive descriptions of the available options are pro-
vided in the initial AutoPas release paper[GSBN22]. Thus, this thesis will only give
short intuitions. For the current complete list and detailed description, see the official
documentation4.

Direct Sum Traversals For this container, only the ds sequential exists due to a lack
of importance of this container. It processes all particles on the domain sequentially
because when Newton3 is active, data races can not be avoided.

Linked Cells Traversals A wide range of colored traversals exist for linked cells that
mainly differ in their stencil, here called base-step, and task granularity. Named
by the number of colors and ordered by their granularity, they are: lc c01,
lc c01 combined SoA, lc c18, lc c08, lc c04 HCP, lc c04, lc c04 combined SoA,
lc sliced c02. Additionally, two slice-based traversals have been implemented.
lc sliced balanced offers several heuristics, like squared number of particles per
cell, to employ static load balancing, while lc sliced trades this for eliminating
any overhead. Both of them employ the c08 base step and use a 1D slicing of the
domain.

Verlet Lists Traversals Similar to Direct Sum, only the vl list iteration traversal
for the simple Verlet Lists container exists. This, however, is due to the need for
more structural information. It also does not support Newton3 but processes all
lists in parallel.

4https://autopas.github.io/doxygen_documentation/git-master/classautopas_1_1options_1_

1TraversalOption.html Accessed: 20.12.2024

55

https://autopas.github.io/doxygen_documentation/git-master/classautopas_1_1options_1_1TraversalOption.html
https://autopas.github.io/doxygen_documentation/git-master/classautopas_1_1options_1_1TraversalOption.html

3 AutoPas

Var Verlet Lists Traversals Also, only the vvl as built traversal is available for this
container. It provides a cheap form of static load balancing by tracking which
threads built which lists using the underlying Linked Cells data structure and then
using the same thread mapping for the processing of these lists. This achieves a
decent load balancing but is highly sensitive to hardware fluctuations.

Verlet Lists Cells Traversals Since the Verlet Lists Cells container associates neighbor
lists with cells, all traversals that are available for Linked Cells are possible, as long
as they only use the base cells lists, which eliminates those that depend on the c08
base step. The implemented traversals are named after their Linked Cells coun-
terparts: vlc c01, vlc c18, vlc sliced, vlc sliced balanced, vlc sliced c02.

In order to create a c08 like traversal, the neighbor lists have to be restructured.
For each particle, they only must contain interactions with particles of one base
step, and the lists have to be stored with the base cell of the corresponding base
step. This implies that some lists are not stored with the cell in which any of its
particles are and that there are several lists for each particle involved in several base
steps. Such an implementation is provided in AutoPas under the name vlc c08.

Pairwise Verlet Lists Traversals As the Pairwise Verlet Lists container is just the Verlet
Lists Cells container with a different form of neighbor lists, the same traversals are
available with the vlp prefix, plus vlp c08, a Verlet equivalent of lc c08 as the
pairwise lists offer enough structural information to make this base step possible.

Verlet Cluster Lists Traversals Traversals for this container work slightly differently
since the internal tower structure is, from a scheduling perspective, equivalent
to a 2D grid vs the 3D grid of Linked Cells based containers. This means that
there is the vcl c06 traversal, which is the 2D equivalent of a c18 based traver-
sal, as well as vcl cluster iteration, which is the cluster-based equivalent of
vl list iteration. Similar as for Verlet Lists Cells a (2D)c08 based traversal
is more complex to implement, since the neighbor lists do not contain information
about the tower a cluster is in. Somewhat similar to the latter, but unique to
this container, is vcl c01 balanced, which is incompatible with the before men-
tioned traversal but, instead of a dynamic load balancing, employs a static load
balancing by assigning towers to threads according to one of several heuristics, like
length of their neighbor lists. Furthermore, there are 2D versions of all three sliced
traversals.

3.1.1.4 Distributed Memory Parallelism Context

The scope of AutoPas is primarily limited to the node level. Nevertheless, since it is
intended to work in the environment of large-scale HPC simulations that work with some
form of distributed memory parallelization. Since AutoPas is designed with a black box
interface, it does not particularly care which specific technology is used. However, due
to its prevalence, it was evaluated in the context of several MPI applications.

56

3.1 The Library

Here, the idea is to instantiate AutoPas once per rank and let it manage all local
particles. The local AutoPas object will then tune itself independently, which can lead
to the interesting state that throughout a vast MPI based simulation, different regions
or subdomains use different algorithms, leading to a heterogeneous algorithm landscape.
Since AutoPas does not require any assumptions about its internal algorithmic configu-
ration, the library is compatible with itself, meaning all AutoPas objects throughout the
simulation can easily be used to exchange particles that move from one rank to another
without having to consider things like algorithm changes, list or other data structure
update cycles. Yet, as the exchange of particles or any boundary treatment is highly
simulation and scenario-specific, this is not part of the library’s functionality and must
be implemented by the users themselves or, more precisely, the codes that AutoPas is
embedded in. During it’s update of the internal datastructure, AutoPas tells the user
which particles have left the local domain by removing them and returning them. Incom-
ing particles are accepted at any point of the simulation. However, if they are inserted
while AutoPas conducts a (pairwise-)traversal it is undefined whether the inserted par-
ticle will be encountered in the further traversal or not. The same holds for inserting
particles while using an iterator.
For further details about the implementation, interface considerations, and examples,

see previous publications by Steffen Seckler [SGH+20, Sec21].

3.1.2 Software Engineering Aspects

Moving on from the user’s perspective, this section discusses the developers’ view from
inside the project. The idea and purpose are to give insight into underlying design
processes, decisions, and essential internal mechanics.

3.1.2.1 Black Box Container Interface

To achieve the goal of providing a black box interface, AutoPas needs to unify the
interfaces to all internal data containers. Generally speaking, there are two kinds of
interface styles. The crucial points revolve around particle insertion and the update
policy of the internal container, meaning the rebuilding of lists and resorting particles
that have moved into their correct cells:

Verlet Lists Style This interface follows the idea of Verlet Lists, allowing the addition
and removal of particles only when rebuilding the neighbor lists. Inserting particles
at any other point invalidates the lists, triggering a rebuild. Containers are only
updated every few iterations, leading to particles that are outside the cell they are
stored in by up to rs

2 .

Linked Cells Style In every iteration, the container updates to allow the addition of
particles at any time. Particles will always be stored in the cell they belong to
when looking at their position.

Strictly implementing a Linked Cells style interface for AutoPas is impossible as the
continuous updating is incompatible with the internal Verlet Lists containers. A strict

57

3 AutoPas

Verlet Lists style interface is possible in two ways. Either an update method that be-
haves differently depending on the underlying container or changing the Linked Cells
container, extending all cells by rs as suggested in Subsection 2.1.3.3, and only updating
it in intervals. Nevertheless, this would leave the user responsible for cautiously inter-
acting with the AutoPas object and only inserting particles when appropriate, rendering
especially MPI based simulations more error-prone.

For AutoPas, the decision was made to implement a hybrid style to maximize the
library’s usability, which is one of the primary design goals. From the user’s perspective,
the main interface feels like a Linked Cells style interface where particles can be added
at any time, and updateContainer has to be called in every iteration. On the inside,
however, a Verlet Lists style interface is implemented by the LogicHandler. This means
that if particles are added to AutoPas at a point when they would invalidate the neighbor
lists, instead of adding them directly to the container, they are added to buffers in the
logic layer. Whenever particles are iterated or pairwise interactions are evaluated, the
LogicHandler has to ensure that any particles from the buffers are correctly interacting
with each other and the container. Upon a container update, anything from the buffers
is inserted into the actual particle container.

The update function only updates the internal data structure and neighbor lists when
necessary but will always return any particles that have left the domain. This means non-
Verlet containers are also only rebuilt every few iterations, and their internal structure
is extended by rs.

Since data structures must not be changed between updates, no particle deletions are
possible. We, however, still need to delete particles e.g. when they leave the container or
are eliminated due to the simulation scenario. This is achieved by marking these particles
as deleted by setting their OwnershipState to dummy, which excludes them from any
interaction calculations. They are removed upon the next full container update.

3.1.2.2 Providing Usability for Frequent User-side Activites: Options

Each code that uses AutoPas and wants to provide their users some mechanism to
configure the library has to use the option enum-like types provided by AutoPas, e.g.
ContainerOption or TraversalOption. Usually they then need functionalities like con-
verting these to strings, parsing from strings, or getting the set of all possible values. To
improve the library’s usability and enhance the user experience, AutoPas implements a
mechanism that provides all of the above for all its option classes.

The pattern, shown in Figure 3.6, consists of a base class Option, and several derived
classes for the actual options. The base class provides implementations of common
functionalities like, string conversion, parsing, and returning sets of values. For it to
be able to work seamlessly with the data types of the actual option, it implements the
Curiously Recurring Template Pattern (CRTP) [Cop96], generally known as F-bounded
polymorphism [CCH+89], where each derived class passes itself as a template parameter
to the base class upon declaration. All derived classes define an enum for the possible
values and a mapping of these values to strings, which is used by the base class for
parsing and string conversion. Furthermore, the derived options implement a function

58

3.1 The Library

Figure 3.6: AutoPas option mechanism implementing CRTP.

getDiscouragedOptions(), which can be used to point out values that are possible,
but unlikely do be desired by the general user. An example for this would be the
ContainerOption DirectSum due to its O(N2) runtime complexity.

Another advantage of this setup is that implementations in the base class can be
made abstract from the actual options and optimizations and enhancements can be used
immediately by all derived classes. For example, the parsing was extended with the
Needleman-Wunsch algorithm [NW70] to enable fuzzy parsing, which matches the input
against the closest matches.

3.1.2.3 Merging Common Behavior: CellPairTraversals

To adhere to the design goal of high code maintainability, AutoPas has to identify
overlaps and abstractions to implement common algorithm behavior only once without
sacrificing performance. On the one hand, this can be done at the algorithmic level,
where, for example, we see that Verlet Lists have to build on top of Linked Cells to
efficiently rebuild the neighbor lists. Therefore, it makes sense to implement any Verlet
Lists container on top of a Linked Cells container, using all optimizations implemented
in the latter. On the other hand, this can also be done on the logical level, which means
forming abstractions where behavior overlaps. An example of this is the abstraction by
inheritance in the cell pair-based traversals of AutoPas, which is visualized in Figure 3.7.
Here, going from left to right, the leftmost class CellPairTraversal defines the inter-
face, the next layer the OpenMP parallelization style. The third layer handles how the
colors or slices are distributed, and finally, on the far right, the remaining details are
implemented, resulting in the actual traversals.

3.1.2.4 Abstracting Specialized Behavior: ContainerIterator

As performance is one of the most important design goals of AutoPas, it is necessary to
identify where specialized behavior is necessary, e.g., on the specific data structure level,
and make it accessible via an easy-to-use abstract interface. A prime example of this
is the implementation of iterators, here called ContainerIterator. Iterators provide
a way to access particles in the AutoPas object sequentially. There is no index-based
random access. However, iterators can be restricted to given OwnershipStates and
regions.

Iterators provide a quick and straightforward way for users to interact with particle
data in AutoPas. For this, they need to be cheap to instantiate, must not have signifi-

59

3 AutoPas

Figure 3.7: Inheritance relations of cell pair-based traversals. Arrows indicate an inheritance
relationship, and colors indicate alignment with a container-related interface. All
boxes on the far right represent traversals. Everything else is interfaces that grad-
ually specify the behavior. Figure based on [GSBN22].

60

3.1 The Library

cantly more overhead than those of, e.g., std::vector, and especially the variants that
are restricted to a specific region, should be highly optimized for the current particle
container for maximal speed.
Following this principle, the user requests an iterator via the main interface’s begin

function, which invokes its counterpart in the logic handler. Multiple versions exist
that all append the particle buffers and then forward the request to the container but
set the appropriate template parameters, whether it is a region iterator, a const itera-
tor, or both. This principle of abstract and unified simple interfaces hiding specialized
behavior becomes even more apparent when looking at the increment operator of the
ContainerIterator. An iterator has to solve the problem if given a certain particle to
quickly find the next one and eventually coming across every particle in the container
exactly once. In AutoPas this is particularly challenging since the internal data struc-
tures differ significantly and polymorphism by providing one iterator per container is
too expensive.
Thus, from a conceptual standpoint, the ContainerIterator concept revolves around

an iterator that maintains two indices for uniquely identifying a particle within any given
container data structure. An index named vectorIndex pinpoints the storage unit
within the container, such as a cell, tower, buffer, or something similar. Complementing
this, particleIndex, identifies the particle within that unit. The trick is that these
indices hold meaning solely in the context of the current container. What is guaranteed
across all containers is that the index pair 0/0 will invariably point to the container’s
first particle. Subsequently, it is up to the container to inform the iterator about the
next set of valid indices, a process exemplified in Figure 3.8.

From the user’s perspective, they simply invoke the operator++ on a ContainerIterator
object. In the iterator, this then increments the particleIndex intending to get the
next particle from the storage unit, or if the end of it has been reached, getting the first
from the next. Depending on whether the iterator is still processing the container or has
already progressed to any additionally appended vector, it processes those or queries the
container with the index pair. Here, a crucial maintainability and consistency optimiza-
tion is that both the container and the iterator use the same free function to judge if a
particle fits the requirements of the iterator. The specialized performance optimization
in this process is that the container can use the vectorIndex to directly access the
correct storage unit, implementing a mechanism similar to random access as close as
possible in these kinds of data structures. This solves the key problem of providing ac-
cess to this and the next particle in O(1). In the further process, the container identifies
the next suitable particle, if there is any, and returns a pointer to it together with its
corresponding index pair, which is stored in the iterator to identify its position in the
container and where to go next. Additionally, the iterator also stores the pointer to the
particle to facilitate subsequent access to it.
In order to avoid any code duplication between regular and region iterators, the latter

is realized by placing additional location checks and vector index jumps in both the
ContainerIterator and the container classes, which are enabled via a template flag.
Since the region variant of the iterator has to store the region’s bounds but the regular
iterator does not, an optimization can be applied to avoid the unnecessary instantiation

61

3 AutoPas

Figure 3.8: Logic flow and involved classes of the incrementation operation of the
ContainerIterator. Black filled arrows indicate algorithmic forward flow. Dashed
arrows represent calls to helper functions.

62

3.1 The Library

of the respective arrays. As seen in Listing 3.3, the type of the member variables depends
on the region iterator template flag. According to this, no memory for the coordinates
is required if the type is set to the empty struct. The annotation guarantees that no
unnecessary dummy allocations take place.

1 template <c l a s s Pa r t i c l e , bool modi f iab le , bool r e g i on I t e r>
2 c l a s s Conta in e r I t e r a t o r {
3 // r e s t o f c l a s s d e f i n i t i o n . . .
4 s t r u c t Empty {} ;
5 us ing RegionCornerT =
6 std : : c ond i t i o na l t<r e g i on I t e r , s td : : array<double , 3>, Empty>;
7 [[no un ique addres s]] RegionCornerT regionMin {} ;
8 [[no un ique addres s]] RegionCornerT regionMax {} ;
9 } ;

Listing 3.3: Implementation of the mechanism for optionally allocated memory for the region
iterator boundaries. The member variables regionMin and regionMax are only
needed if the iterator is a region iterator, which is defined via the template
parameter regionIter. Thus, depending on the template flag, their type is either
a 3D array or an empty struct. Additionally, they are tagged to inform the compiler
that it does not have to provide unique addresses for these variables. This means
that in the non-region iterator case, these members still exist but solely as symbols
with no memory or overhead of their own.

Region and regular iterators also need dedicated constructors that mainly differ in
passing region bounds. To prevent erroneous usage, static checks are in place that
compare the constructor to the template flag.

Like the region variant, the const variants are basically the same code. There-
fore, const iterators are implemented by casting the const onto the iterator in the
ParticleContainerInterface layer.

To summarize, the combination of the above mechanisms implements four iterator
variants with only one code instance while providing container-specific optimizations
and safeguards against misuse.

3.1.2.5 Code Generation for User Types: Generated SoA

As discussed in paragraph 3.1.1.2, AutoPas leaves the definition of the particle class to
the user. This class is then used for the AoS data layout. Nevertheless, the library also
aims to provide an SoA layout and wants to avoid offloading the burden of implementing
this to the potentially inexperienced user. For this, AutoPas provides a mechanism where
the user adds some type information to his class from which then the whole SoA data
structure, as well as the interaction with it, is generated via template metaprogramming.
This is visualized in Figure 3.9.

As already shown in Listing 3.1, the user has to define an enum AttributeNames that
has an entry for a pointer to itself and at least all class members that are used in the
functor. SoAType employs variadic templates to store all corresponding data types. The
information from these two constructs, in combination with the template-based getter

63

3 AutoPas

Figure 3.9: Sketch of the data and information flow of how AutoPas generates tailored SoA for
arbitrary user particles and accesses them in the user-provided functor.
As explained in more detail in Subsection 3.1.2.5 the user describes their particle
class members in their Particle’s AttributeNames enum and their types in the
SoAArraysType tuple. With these, the Particle also has to implement getters and
setters that take an AttributeName as template argument and obtain the respective
type information from the SoAArraysType. In their functor, the user declares which
members of the particle class are needed and computed by the functor by putting
the respective AttributeNames into the functor’s functions. Using all the above,
the SoALoader and SoAExtractor from the library’s Functor base class can then
instantiate the cells’ SoABuffer and load the needed particle data into it, as well
as extract it.
Figure based on [GSBN22].

64

3.1 The Library

and setter function, provide a rudimentary form of reflections for this class. Storage
classes, like FullParticleCell, then access the type information, as shown in the lower
half of Figure 3.9, and generate one array per type. For getting the AoS data in and
out of this SoA structure, the base functor class provides so-called loader and extractor
functions, which make use of the template-based getter and setter functions from the
particle class. To limit the load and store operations to only the particle data that
is needed, the loader and extractor functions are only called with the attribute enums

defined in the getNeededAttr() and getComputedAttr() functions of the functor.
For placing the minor effort of implementing the extra type information on the user,

This mechanism enables AutoPas to work with all types of particles in SoA form to
sustain maximal efficiency.

3.1.2.6 Neighbor List Memory Management

As already discussed in paragraph 2.1.3.3, any form of Verlet Lists is very memory
intensive, even so that the memory for neighbor lists can dwarf the memory needed for
the particles. Therefore, looking at how this memory is managed is essential, especially
concerning allocations, deallocations, and reallocations. Since the lengths and number
of lists can not be known at compile time, neighbor lists are usually allocated on heap
memory. These allocations can be very time-consuming since they involve complex
algorithms to identify free memory blocks and might even trigger calls into the operating
system [GM09]. Thus, the number of such allocations should be kept to a minimum,
especially if the employed force potential is not very memory intensive like the Lennard-
Jones 12–6 potential [Tch20], meaning that instead of doing several smaller allocations,
only doing one big.

Verlet Lists Cells For Verlet Lists Cells, three different layers of allocations have to be
considered:

List of lists per cell The vector holding a bundle of lists for each cell. This has to have
a size equal to the number of cells.

Lists per cell The vectors holding all lists related to one cell. Depending on the traver-
sal, this is either the number of particles in the cell or, in the case of a c08-based
traversal for all particles in a base step. The latter has to be estimated. Each
entry in these vectors is a pair consisting of a pointer to a particle and a neighbor
list.

Neighbor lists The vectors holding the actual neighbor pointers. These vectors’ lengths
have to be estimated.

Looking at Figure 3.10, we can see the impact of optimizations for these three levels for
a small benchmark simulation using vlc c08 over ten Verlet rebuild cycles.

The blue bar shows the behavior for no optimizations at all. This means the vector
of lists per cell is cleared in every rebuild, leading to all other vectors being deallocated.
They are then rebuilt with push back operations without previous calls to reserve.

65

3 AutoPas

In the orange column, the optimization of not clearing the first layer is implemented,
meaning the pairs in the lists per cell are reset to a nullptr and the neighbor list cleared.
Note that none of this deallocates any memory. Hence, we see a drop of 83% in the
accumulated size and 44% in the number of allocations. Interestingly, this optimization,
on its own, only leads to a minor speedup of 1.6%, initially suggesting that the number
and size of allocations do not matter too much.
Optimizations depicted by the green bar target the second layer and implement a pre-

allocation for the number of lists stored per cell. As this benchmark employs vlc c08,
the allocation size can only be done with an estimate. The heuristic examines all in-
teracting cell pairs in a base step, their relative positions, and the number of particles.
These particle numbers are then added up with factors depending on the relative cell
positions, to estimate the number of lists that need to be created in the base cell of the
step. Since it is cheaper to overestimate than to dynamically reallocate, the factors in
the implementation were chosen very generously, ranging from 1.2 to 8 times the mem-
ory needed per list with larger overestimates for smaller ones. The figure shows that
this barely changes the number and size of allocations relative to the blue baseline. This
is to be expected because, as in the green case, the primary structure is rebuilt every
time, only very few allocations can be saved as the number of lists per cell is rarely very
high. Nevertheless, the reduction of repeated reallocations triggered by push backs in
the loops that add lists yield a speedup of 12%.
The red bar stands for the impact of estimating and then preallocating the length of

the neighbor lists, optimizing the third layer. Similar to the second layer optimization,
this is a number that is very hard to estimate and highly fluctuates from list to list,
even in homogeneous scenarios. In the implementation at hand, the estimate simply
calculates how many particles would be in a sphere of length ri if they were uniformly
distributed throughout the domain and uses this value for all lists. Thus, the estimates
here are even more generous, which leads to a significant increase in the total allocation
size because even the shortest lists now have the same reservation size as the largest ones.
On the flip side, this reduces the number of allocations significantly, in a similar order
of magnitude to the primary layer optimizations. The speedup this gains is a little over
13%, slightly higher than the speedup achieved by the second layer optimization despite
the egregious overallocation. This confirms the expectation that allocating large chunks
of memory in one go is cheaper than triggering smaller allocations on the tested Intel x86
architectures. Should the allocation sizes grow too large, this gain will diminish. With
the current implementation, this could especially be the case in a large and extremely
inhomogeneous scenario because our estimate of the list length depends on a average
particle distribution. Hence, for most of the domain lists would be significantly too
large, leading to a lot of unnecessarily allocated memory that can potentially cause slow
allocations. Also on architectures where memory allocations have a different runtime
profile or that do not have as much memory available behavior can change.
Looking at the individual runtime improvements or speedups, it seems like the pre-

allocations for the number (green) and lengths (red) of lists have a significantly higher
impact on the time to solution than the re-usage of the primary structure (orange).
However, when employing only the second and third-layer optimizations but not the

66

3.1 The Library

0.00

0.02

0.04

0.06

Va
lu

e
Metric = rebuildNeighborLists[s]

0.00

0.02

0.04

0.06

0.08

0.10

Metric = iteratePairwise[s]

0.00

0.05

0.10

0.15

Metric = iteratePairwiseTotal[s]

No O
ptim

iza
tion

s

Reuse
Prim

ary
 La

yer

Estim
ate

 Num Lis
ts

Estim
ate

 Lis
t Le

ngths

No R
euse

but R
ese

rve

All O
ptim

iza
tion

s

Version

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

e

Metric = iteratePairwiseTotal Speedup

No O
ptim

iza
tion

s

Reuse
Prim

ary
 La

yer

Estim
ate

 Num Lis
ts

Estim
ate

 Lis
t Le

ngths

No R
euse

but R
ese

rve

All O
ptim

iza
tion

s

Version

0

10

20

30

Metric = Total Allocation Size[GB]

No O
ptim

iza
tion

s

Reuse
Prim

ary
 La

yer

Estim
ate

 Num Lis
ts

Estim
ate

 Lis
t Le

ngths

No R
euse

but R
ese

rve

All O
ptim

iza
tion

s

Version

0.0

0.2

0.4

0.6

0.8

1.0
1e7

Metric = Num Allocations

Figure 3.10: Impact of different memory optimizations on Verlet Cluster Lists. Average timings
and accumulated memory allocations over ten rebuild cycles. Only the combina-
tion of all optimizations yields a significant speedup. At the time of the bench-
mark, about 6 million allocations came from outside of the list rebuilding.
For details about the setup see Section A.1.2.

first, we actually get a slowdown, as shown by the purple bars. This is because the
overall number is still very high due to the generous estimates, but they have to be done
repeatedly because the lists are not reused.

Only when all three optimizations are applied together, a significant speedup of about
30% in this case can be observed, shown by the brown bar. The reason why the total size
of allocations for all optimizations (brown) is higher than only optimizing the first layer
(orange) is because the second and third-layer optimizations overestimate the memory
needed, leading to fewer but bigger allocations.

Verlet Cluster Lists For some container implementations, retaining the list structure
is not as straightforward, for example, because the lists are integrated into another data
structure that is rebuilt regularly. To improve memory management efficiency for such
containers, AutoPas implements a neighbor list buffer that acts as a memory pool that
provides neighbor list objects that are never deallocated. This class allocates space for
a given number of lists of a given length and never lets go of the memory. It associates

67

3 AutoPas

Baseline +Reuse
NL

+Reuse
Towers

Version

0

50

100

150

200

Va
lu

e

Metric = Cumulative size [MB]

Baseline +Reuse
NL

+Reuse
Towers

Version

0

50

100

150

200

Metric = Number of Allocations

Baseline +Reuse
NL

+Reuse
Towers

Version

0.0

0.2

0.4

0.6

0.8

Metric = Total IterPairwise [s]

Figure 3.11: Impact of multiple memory optimizations on Verlet Cluster Lists. “+” means
that the optimizations to the left are also included. Combining both optimizations
yields a speedup of about 50%.
For details about the setup see Section A.1.2.

its lists via indices with a key, which is defined as a template argument, e.g., a pointer
to the list’s particle. A Verlet Lists style container can then use these lists by requesting
new lists, which returns the index of one of the previously allocated lists. If more lists
are required, they are added dynamically, and individual lists can be grown with a
customizable growth factor. When the container no longer needs the lists, e.g., because
it is about to rebuild them, the lists are not deleted or their content destroyed, but just
the index mapping is flushed. Only when the same list is given out as a seemingly new
list again its content is destroyed, not its memory reallocated. This keeps the overall
memory movement to a minimum since even if initial estimates about the list sizes are
off, enough space will be allocated and reused for the remainder of the simulation.

This neighbor lists buffer is used to optimize the memory management of the Verlet
Cluster Lists container, and its impact is shown in Figure 3.11. Similar to the optimiza-
tions for Verlet Lists Cells, a major improvement in time to solution by about 50% is
observed when optimizations across all layers are combined.

3.1.3 Hardware-aware optimizations

Even though AutoPas optimizes node-level performance, the user has to provide the force
computation kernel in the form of a functor, themself, and thus its optimization. For
MD AutoPas comes with several examples of hand-optimized implementations for the
Lennard-Jones potential for different platforms. There are AVX and AVX-512 intrinsics-
based functors for x86 processors and an Scalable Vector Extension (SVE) based for
ARM architectures of level ARMv8.2-A or newer.

In Figure 3.12, the performance of the different functors relative to explicitly disabled
vectorization and AoS layout. It can be seen that only switching to the SoA layout even
slows down the simulation, most likely due to the overhead from switching data layout
and no possibility to benefit from loading multiple particle data. Also, the vectorization

68

3.2 Dynamic Auto-Tuning

level does not significantly impact computations done in the AoS layout. This is ex-
pected since they use the same code, which offers no real vectorization potential. Thus
for the rest of this analysis we focus on the performance of versions using SoA. We see
that the hand-crafted version using AVX2 intrinsics achieves a speedup of just over three
compared to the not vectorized AoS baseline. Even though four particles can be pro-
cessed in parallel, a speedup of four is not achievable for two reasons: A speedup of four
would necessitate the code to be 100% vectorized, and at least the logic to find the next
cell is not. Secondly, as discussed in Subsection 2.1.6, the amount of unnecessary force
calculations also significantly impacts the maximal achievable speedup by vectorization.
Hence, we consider three a good speedup from AVX. The middle columns show the
performance of code that was written without intrinsics but automatically vectorized by
the compiler, in this case, Clang 17. Compared to the not vectorized version, it achieves
a speedup of almost two but lags behind the hand-crafted version by almost a factor of
two. This suggests that the compiler was only able to make use of half of the vector
width or less vector instructions, even though the binary file clearly shows widespread
usage of AVX instructions.

Since manually optimizing the interaction kernel, e.g., using intrinsics functions, can be
tedious and potentially require some expert knowledge, attempts were made to facilitate
this.

One approach is to create a Domain Specific Language (DSL), which allows us to
express the functor in simple terms. The structured way of a DSL can then be used
to generate C++ code for all versions of the functor functions, which are subject to the
optimizations employed by the compiler. This approach was implemented in the scope of
a student project, showing promising results, especially in the AoS case, but performance
for the SoA case is still suboptimal [Gä19]. Due to a lack of applications at the time
of the student project, no further investigation was undertaken. However, there are no
known definitive obstacles that would prohibit equivalent performance.

A second approach is to still implement the functor manually, however not in platform
specific intrinsics but using platform independent SIMD wrappers e.g., Google Highway5.

3.2 Dynamic Auto-Tuning

Now that the zoo of algorithmic choices and their optimizations have been discussed, this
section will focus on the second pillar of the library. One of the main features of AutoPas
is its ability to autonomously adapt its internal algorithm for the particle interaction to
the current characteristics of the simulation to provide optimal time to solution. This
process is called dynamic auto-tuning or tuning at runtime.

5https://github.com/google/highway Accessed: 20.12.2024

69

https://github.com/google/highway

3 AutoPas

AVX2_AoS
AVX2_SoA

AutoVec_AoS
AutoVec_SoA

NoVec_AoS
NoVec_SoA

Version

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

vs
 N

oV
ec

_A
oS

1.04 1.06 1.00

3.05

1.62

0.86

Data Layout
AoS
SoA

Figure 3.12: Speedup of iteratePairwise() from vectorization for the Linked Cells container.
A handwritten intrininsics functor achieves significantly better performance than
the auto vecorization by the Clang 17 compiler.
For details about the setup see Section A.1.2.

70

3.2 Dynamic Auto-Tuning

3.2.1 Translating Theory into the Implementation in AutoPas

Formally, dynamic auto-tuning here means automatically solving an algorithm selec-
tion problem, so we need to define the sets we described in Subsection 2.2.1 for the
implementation in AutoPas.

Problem space P Particle simulations typically have a very narrow time step width,
as mentioned in Subsection 2.1.1. Therefore, we assume that the positions of
particles, and thus the state of the simulation relevant for the tuning, is the same in
subsequent time steps. We can use this assumption to evaluate multiple algorithms
on subsequent time steps and compare their performance directly.

Further, based on the knowledge that these systems evolve very slowly, we assume
that the algorithm aopt, which is chosen to be optimal, will be the optimum for
several time steps. Currently, this number has to be supplied by the user. However,
in theory, it should be possible to observe the phase state and decide when it has
changed far enough that it warrants a reevaluation of aopt.

With these assumptions, the size of the problem space, the number of different
problems for which we need to find the optimal algorithm is reduced to:

|P| = 1 (3.2)

Algorithm space A For AutoPas, the content of a Configuration object defines the
entire algorithm employed for executing the particle interactions. This means that
the search space consists of the Cartesian product of all available options minus
incompatible combinations. For example, the container parameter can be disre-
garded for the cross-product since each traversal is only compatible with precisely
one container. Also, a few traversals are not compatible with Newton3. The num-
ber of available algorithm configurations equals the entire search space, thanks
to Equation 3.2 and disregarding continuous options. At the time of writing this
dissertation, this size is:

|A| = 160 (3.3)

See Section A.7 for a complete listing.

This size is already too large to be tested exhaustively, so adding more choices
for existing options or even new options should be done carefully, as this quickly
increases the size of the total search space. As discussed in Subsection 2.2.2 solution
strategies have to focus on only evaluating a small subset of A.

To further complicate matters, very little is known about the structure of A. Usu-
ally, the choice of the container tends to have the most significant impact on
runtime, but deciding a priori which container is the most optimal or even which
containers will perform similarly is generally hard since this is impacted by many
factors, as already discussed in Subsection 2.1.4.

71

3 AutoPas

Figure 3.13: The high-level logic flow of the AutoPas tuning Loop.

3.2.2 Tuning Loop

While the previous section explained how the theoretical concepts are mapped to AutoPas,
this section explains how these concepts are actually implemented.

As mentioned in Subsection 3.2.1, we assume that the simulation evolves slowly over
the course of thousands of iterations. Thus, the general approach is to identify a currently
optimal configuration, apply it to the simulation for a few thousand iterations, and then
reevaluate. This back and forth is referred to as a tuning cycle consisting of the tuning
and the non tuning phase.

The whole tuning logic can be viewed as a loop as sketched in Figure 3.13. If AutoPas
is not in a tuning phase, it simply reuses the current configuration. In the other case,
it samples all potentially interesting configurations, and measures their performance by
computing the subsequent iterations with them. As soon as all candidate configurations
have been evaluated, the optimum can be selected and the circle can be cut short again
until the next tuning phase.

Looking more closely into the implementation, the heart of the implementation of the
tuning logic is the AutoTuner class, which was already mentioned in Subsection 3.1.1.1.
It is responsible for managing the available algorithm space, here called search space
A, any measurements taken, applying tuning strategies, and identifying the optimal
configuration. Before diving into the optimization algorithms, the overarching algorithm
of the tuning pipeline needs to be discussed. This is depicted in Figure 3.14.

72

3.2 Dynamic Auto-Tuning

Figure 3.14: The flow of the auto-tuning logic through the internal modules of AutoPas. Gray
depicts classes, color-filled boxes functions, and blue nodes summarize several
minor steps. The different filler colors indicate the class that implements the step.
When the interaction computation is triggered from the main interface via
AutoPas::iteratePairwise(), it is passed to the LogicHandler’s pipeline. First,
the LogicHandler is responsible for selecting a configuration. For this, it passes
through several checks and, in the case of a tuning phase, uses the AutoTuner to
come up with potential candidates or the optimal configuration. After ensuring
that the configuration is also applicable to the scenario at hand, the LogicHandler
applies the configured traversal on the selected container and takes measurements.
These are then passed on to the AutoTuner for further processing and as evidence
for further tuning.
Green: LogicHandler.
Red: AutoTuner.
Yellow: ParticleContainer.

73

3 AutoPas

Following the design goal of optimizing usability by keeping the user side API as small
as possible, the whole tuning logic is hidden behind the particle interaction functionality.
Whenever AutoPas::iteratePairwise() is invoked from the main interface, the top of
Figure 3.14, the tuning pipeline is triggered.

After sanity checks about the functor’s type and cutoff, the initial function call is
passed on to the LogicHandler::iteratePairwisePipeline(). The first and most
complex step is selecting a suitable configuration. The available discrete configurations
are stored as a sorted queue in the AutoTuner, and the end of the queue is used as the
currently active configuration. Should the functor be marked as irrelevant for the tuning
process, for example, an auxiliary functor for FLoating Point Operation (FLOP) calcu-
lations, the whole selection process is skipped, and the currently selected configuration
is used. In the other, more usual case that the functor is relevant, so-called live info is
gathered by the LogicHandler, should the tuner need it. This includes data about the
current state of the simulation, like the number of particles, density and distribution
statistics, and number of threads available. Subsequently, the next configuration to be
applied has to be identified. Several cases can arise here: either we are currently not in
a tuning phase, then the current configuration is the optimum and can continue to be
employed, or we are in a tuning phase. Since time measurements are sometimes very
short and thus noisy or because Verlet style containers sometimes have slower iterations
for list rebuilds, more than one sample per configuration should be collected. The user
can set the number of samples. So when in a tuning phase, if we need more samples
from the current configuration, we carry on with it, or if enough samples were collected,
the next configuration has to be identified.

This triggers AutoTuner::tuneConfiguration(), the heart of the tuner. In short,
this function pops the just-used configuration from the queue of configurations and
updates it. In practice, this update depends on where in the tuning phase we are, which
is identified via internal iteration counters. At the start of a tuning phase the queue would
now be empty, has to be repopulated with the whole search space, and then reorganized
by the tuning strategies, which will be explained in the following Subsection 3.2.3. During
a tuning phase, only the strategies are applied to update the list with newly available
information and evidence so that the following configuration that will be tested at the
end of the queue. Lastly, at the end of a tuning phase, the queue is empty again, and
the optimum must be identified from the collected evidence. It is then reinserted into
the queue and used until the next tuning phase.

Note that all operations that manipulate the queue are very cheap since the queue
only contains objects which describe the configurations.

Before a configuration can be used, the LogicHandler has to confirm that it is actually
applicable to the situation at hand. Reasons for inapplicability could include scenarios
where the domain is not large enough to support the traversal’s shared memory paral-
lelization pattern or the functor does not support the Newton3 mode.

Should the configuration be rejected in this step, it is removed from the queue, and if
it was removed for reasons that will not change during the simulation, like the Newton3
support, also from the whole search space. Then, the tuning strategies are applied again,

74

3.2 Dynamic Auto-Tuning

and a new candidate is tested for applicability until either one is found or an exception
is thrown because no configuration can be applied to the scenario.
When an applicable configuration is identified, the LogicHandler applies it to the

actual particle container after triggering it to rebuild its neighbor lists if necessary.
Afterward, the remaining interactions between the container and the logic layer buffers
needed for the Linked Cells style black box interface explained in Subsection 3.1.2.1, as
well as interactions within them, colloquially referred to as the remainder traversal are
computed.
The time it took to execute each of these steps is measured. If the functor is marked

as relevant for tuning, these measurements are stored in the so-called evidence collection
of the AutoTuner. One piece of evidence is a tuple of configurations, measurements,
iteration, and tuning phase numbers. When all samples required for the configuration
are collected, the tuner calculates a weighted average of the iterations according to
Equation 3.4.

s̄ =
∑
Sr

sr/|Sr|+
∑
Sn

sn/|Sn| · tr (3.4)

Here, Sn|r are the sets of measurements from (non-)rebuilding iterations, tr the Rebuild
Interval, and s̄ the averaged sample. This way, if there is at least one sample from a
rebuilding and one from a non-rebuilding iteration, an estimate of the average time per
iteration can be calculated. The resulting value is then smoothed, as will be explained
in the following paragraph, added to the evidence collection, and all tuning strategies
will be notified about it, which concludes the iteratePairwisePipeline().

Smoothing Before the averaged value is passed to the evidence collection, it is further
smoothed to mitigate the impact of measurement noise. Smoothing can be done since the
systems evolve slowly, as explained in Subsection 3.2.1. Hence, any erratic change in the
measurements has to be due to external influences, e.g., a third-party program running
on the same compute node, and should be mitigated. The smoothing is implemented by
applying the locally estimated scatterplot smoothing (LOESS) [SG64] to the sample at
hand with smoothed measurements of the same configuration from up to five previous
tuning phases. Using this method, trends are preserved because only weighted local
information is used, while outliers are mitigated.

3.2.3 Tuning Strategies

The AutoTuner itself does not implement any optimization algorithms. The decision
which configurations should be evaluated is shifted to a number of so called tuning
strategies that can be applied individually or in combination by the tuner. They are
selected by the user upon the start of the simulation. Tuning strategies are implemented
as independent modules against a plugin style interface so that AutoPas can easily be
extended with new ones.

Figure 3.15 shows how tuning strategies are applied to the configuration queue de-
scribed in Subsection 3.2.2 and how they interact with the evidence collection.

75

3 AutoPas

Figure 3.15: Example of the interplay of tuning strategies, configuration queue, and evidence
collection. The progression from top to bottom represents advancement in time.

Initially, the queue of configurations contains the complete search space. Then, a
number of chosen tuning strategies are applied in a user-given order which can eliminate
unpromising strategies. They could also reorder them for example to minimize conver-
sion overhead or to rank and only test the N most promising ones. Next, as already
sketched out in Subsection 3.2.2 applicable configurations from the queue are applied,
their evidence stored and in the end the best one is reinserted to be used until the next
tuning phase. There might be the edge case where a tuning strategy completely wipes
the queue empty, for example due to a misconfiguration that deems every configuration
unsuitable. In that case, this tuning strategy is ignored for this tuning step and the
queue is restored to the state before it was applied.

One can also choose not to apply any tuning strategy. This then leads to the evaluation
of the complete search space which is potentially very time consuming because it will
also sample every inefficient configuration On the flip side this is guaranteed to find the
optimal configuration. A use case for this is to evaluate the quality of the decisions a
tuning strategy makes.

In the following a description of tuning strategies implemented in AutoPas is given.
For the full list of currently available strategies, we refer to the official documentation6.

Random Search This strategy randomly selects a configuration to evaluate and termi-
nates the tuning after a given number of configurations has been assessed.

6https://autopas.github.io/doxygen_documentation/git-master/classautopas_1_1options_1_

1TuningStrategyOption.html Accessed: 20.12.2024

76

https://autopas.github.io/doxygen_documentation/git-master/classautopas_1_1options_1_1TuningStrategyOption.html
https://autopas.github.io/doxygen_documentation/git-master/classautopas_1_1options_1_1TuningStrategyOption.html

3.2 Dynamic Auto-Tuning

Slow Config Filter Usually, for a given scenario, some configurations perform worse by
factors > 5 than the optimum. Should any of those be encountered, this strategy
removes them from the search space for the rest of the simulation.

Predictive Tuning A straight forward way to estimate the performance of a configu-
ration is to look at its performance in the last tuning phases and apply simple
extrapolation methods. Here, methods like linear regression or Newton interpo-
lation can be used to estimate the performance in the current phase. A simpler
variant, that only takes into account the performance of the last tuning phase is
also available. Configurations are sorted by their predicted performance and only
those which are within a given percentage of the optimal predicted performance
remain in the queue. Optionally, configurations that have not been evaluated for a
long time, measured in a number of tuning phases given by the user, are also put
in the queue for reevaluation, to avoid ignoring them due to bad extrapolation. In
order to avoid testing extremely slow configurations, this feature should be used
together with the slow config filter.

While this strategy provides reasonably good estimates during the simulation, it
can not provide any estimates at the start or during the first tuning phases because
it needs datapoints to extrapolate from. Thus during the first tuning phases this
strategy does nothing.

Rule-Based Tuning Even though AutoPas liberates the user from having to rely on
external knowledge, it still offers an interface to provide some. Rule-based tuning
works with user-provided rules, passed via a .rule file, and formulated in a custom
DSL. Parsing the DSL is done via the Antlr4 framework and then evaluated using
a virtual machine.

The rules work on a pattern matching basis and take into account information
about the current state of the simulation. Some examples are shown in Listing 3.4.

The first rule states that if the number of particles in the AutoPas instance is
higher than 1 000, any configuration with the container option being Linked Cells
is superior to any configuration using Direct Sum. Thus, if this condition holds
during a simulation, if Linked Cells is in the allowed containers, any configuration
using Direct Sum will be removed from the queue of configurations.

The second rule is more complex and makes use of live information about the
number of particles and empty cells, as well as multiple definitions of variables and
lists offered by the DSL. In short, this rule states that in sparse domains, Verlet
Cluster Lists are superior to most other containers.

1 # Example Rule 1
2 i f numPart ic les > 1000 :
3 [conta ine r=”LinkedCe l l s ”] >= [conta ine r=”DirectSum”] ;
4 end i f
5
6 # Example Rule 2

77

3 AutoPas

7 de f i n e maxEmptyCel lsPerPartic les = 100 . 0 ;
8 d e f i n e isDomainExtremelyEmpty =

numEmptyCells / numPart ic les > maxEmptyCel lsPerPartic les ;
9 i f isDomainExtremelyEmpty :

10 d e f i n e l i s t AllExceptVCL =
”LinkedCe l l s ” , ” Ve r l e tL i s t s ” , ” V e r l e t L i s t sC e l l s ” , ”Octree ” ;

11 [con ta ine r=” Ve r l e tC l u s t e rL i s t s ”] >= [conta ine r=AllExceptVCL] ;
12 end i f

Listing 3.4: Two examples of rules for the rule-based tuning. Rules take into account dynamic
scenario information and apply in a pattern matching fashion. Symbols like
numParticles and numEmptyCells are provided by the tuning strategy. The full
rule language grammar is available in the official AutoPas documentation7

In practice it is possible to write contradicting rules, for example by supplying any
preference relation and their inverse. This would then eliminate all configurations
from the queue. Currently, it is up tho the user to only provide non-contradicting
rules.

Bayesian Search Approaches that leverage Bayesian statistics are geared to find the
maximum of an unknown black-box function [MM89]. The idea is to not directly
create an approximation of the function, but to model the uncertainty we have
about it via a prior based on a Gaussian process. This prior is then updated
step by step, using Bayesian rules, decreasing the uncertainty about the black-box
function. For this, the black-box function is evaluated at specifically chosen points,
to gain more and more insight about the structure. The trick is, that taking into
account the model of the uncertainty, we can choose the evaluation points so that
we maximize the information gain about the optimum per evaluation, using so
called acquisition functions. This approach can be applied to any function as long
as it can be evaluated at any point but works better for smooth functions [GKD19,
DOW+22, Gar23].

Following this approach, we interpret our algorithm selection problem as finding
the optimum of a function as shown in Equation 2.42. Thus, this tuning strategy
uses the technique described above to decide for which configuration to gather
evidence next. Since convergence is not necessarily fast for our type of black-box
functions because they might not be smooth, the tuning strategy can be restricted
to an upper limit of evidence to try.

Bayesian Cluster Search This strategy is an extension to the first Bayesian Search strat-
egy. It accounts for the fact, that while most tunable parameters are discrete
choices, some might be continuous, like for example CSF. Here, the idea is to sep-
arate discrete values into so called clusters. Within each cluster, the continuous
values are then optimized and then the global optimum selected so that an both
the continuous and discrete choices are optimized. To avoid having to tune every
cluster, we use bayesian statistics to recognize similarities between clusters to avoid
explicitly tuning two clusters that behave very similar [TTW19].

78

3.2 Dynamic Auto-Tuning

MPI Parallelized Strategy In contrast to the other strategies described, this one does
not directly trim down the search space or learn anything about the configurations’
performance. Instead, it takes advantage from the fact that AutoPas is often used
in MPI parallelized software, where there is one instance of AutoPas per rank,
as described above in Subsection 3.1.1.4. The strategy distributes the available
configurations over available ranks, and lets each evaluate the performance of dif-
ferent ones. Then, evidence is shared between all involved ranks so that the best
configuration can be chosen. This has the advantage, that the number of itera-
tions it takes to evaluate all configurations of the search space is reduced, since it
is processed in parallel. In practice, it is not so straight forward to compare the
performance two algorithms running on different MPI ranks, simulating distinct
parts of the domain, that could be very different. Thus, the strategy identifies
groups of MPI ranks with similar domain properties, like homogeneity or density,
and only lets ranks within a group cooperate.

Currently, in a heterogeneous compute cluster, this could lead to nodes which
have different hardware configurations exchanging tuning information which might
not be transferable. It is conceivable to extend this grouping mechanism to also
consider the underlying hardware to avoid this problem.

3.2.4 Tuning for Energy Efficiency

Up to this point, the sole goal of the tuning process is to reduce the total time to solution.
However, over the last few years, power consumption and energy efficiency concerns have
moved increasingly toward the center of research interests. In this context, AutoPas also
supports tuning for minimal energy consumption.

Looking at Figure 3.16, while there is a clear correlation between energy usage and the
time for the particle interaction, it is not so clear cut to tune for minimal time to solution.
So, to tune for minimal energy usage, instead of measuring time per iteration, it can
measure the energy consumption per iteration using hardware interfaces like Running
Average Power Limit (RAPL) Machine State Registers (MSRs). Depending on the
processor, the values obtained from the RAPL interface must be scaled to get the actual
consumption in Joule. However, AutoPas only needs to find the minimal value hence,
no scaling is needed.

Since this change in metric technically only means that the number that needs to be
minimized comes from a different source, the whole tuning logic described above can
be applied in the same way. Only tuning strategies based on external knowledge, like
rule-based tuning, potentially have to adapt the encoded knowledge. Most strategies,
however, work without initial assumptions and can thus be used out of the box.

Energy tuning in AutoPas currently is only in its infancy. One future feature could
be dynamically adjusting the number of OpenMP threads used. Often, the hardware
provides significantly more threads than what can efficiently be mapped on the scenario.
So, reducing the number of threads could reduce energy usage while only having a
marginal impact on the time to solution.

79

3 AutoPas

0

25

50

75

100

125

150

175

en
er

gy
Pk

g

Newton 3 = disabled | Data Layout = AoS Newton 3 = disabled | Data Layout = SoA

0.03 0.14 0.23 0.32 0.48 0.60 0.81 1.11
iteratePairwiseTotal[s]

0

25

50

75

100

125

150

175

en
er

gy
Pk

g

Newton 3 = enabled | Data Layout = AoS

0.03 0.14 0.23 0.32 0.48 0.60 0.81 1.11
iteratePairwiseTotal[s]

Newton 3 = enabled | Data Layout = SoA
Container

LinkedCells
PairwiseVerletLists
VarVerletListsAsBuild
VerletClusterLists
VerletLists
VerletListsCells

Figure 3.16: Comparison of energy usage vs iteration time for most of AutoPas’ configurations.
Columns are AoS (left) vs. SoA (right), the rows Newton3 disabled (up) vs.
enabled (down). Colors depict the container choice, and multiple dots of the same
color are different traversals.
The two quantities energy usage and time to solution seem to correlate but are
not completely aligned, because the don’t align on a straight line but form a cone.
For details about the setup see Section A.1.2.

80

3.3 Related Work

3.3 Related Work

AutoPas is of course not the first software to implement MD or automated algorithm
selection, however, it is, to our knowledge, the first to combine the two. Therefore, no
direct comparison to other projects is possible but it is still worthwhile to discuss some
that have some overlap in one or the other fields and explore similarities and differences.

3.3.1 Spiritual Predecessor: ls1 mardyn

Particle simulations have a long history at the chair for Scientific Computing in Com-
puter Science (SCCS) at TUM, where AutoPas was conceived and is developed. Here,
the simulation code ls1 mardyn has been continuously developed since 2005 [Buc10,
Eck14, NBB+14, HEHB15, Sec21] together with partners at the High Performance
Computing Center Stuttgart (HLRS), the Rheinland-Pfälzische Technische Universität
Kaiserslautern-Landau (RPTU), the Technical University of Berlin, and the Helmut
Schmidt University of the Federal Armed Forces Hamburg (HSU). It is written in C++

and published open-source under a BSD 2-clause licence8. The code is optimized for
large systems of small rigid (multi-site) molecules using the memory efficient Linked
Cells algorithm and very light particle models. This enabled it to achieve several note-
worthy simulations featuring massive numbers of particles up to 2 · 1013, which held the
world record for many years [EHB+13, TSH+18]. Further features of the code include
efficient SIMD implementations of the Lennard-Jones force, hybrid MPI + OpenMP
parallelizations, long-range interactions using FMM, as well as a plug-in interface to
dynamically easily extend its simulation capabilities.

ls1 mardyn first implemented the 3D OpenMP domain traversal algorithms like c18,
c08, c04, or sli(ced) [TSH+18] which were part of the starting point for the Linked Cells
implementation of AutoPas. Similarly, the concepts of particle containers, AoS default
layout, and (region-)iterators were picked up from ls1 mardyn. Therefore, even though
AutoPas was not explicitly designed for ls1 mardyn, the two codes interface relatively
easily. From an early point in the development of AutoPas on, it was integrated into
ls1 mardyn, replacing its internal particle container.

3.3.2 Popular Molecular Dynamics packages: LAMMPS and GROMACS

Two examples of very well established and widely used codes for MD simulations that
are developed actively with extensive funding and many developers are LAMMPS and
GROMACS. Despite their superficial similarities, they have slightly different focuses,
feature sets, and algorithms. In contrast to AutoPas, neither of them features any
dynamic or automated algorithm selection but highly optimized implementations of their
respective algorithms for their intended use cases.

8https://github.com/ls1mardyn/ls1-mardyn Accessed: 20.12.2024

81

https://github.com/ls1mardyn/ls1-mardyn

3 AutoPas

LAMMPS The Large-Scale Atomic/Molecular Massively Parallel Simulator or short
LAMMPS9, is a MD simulation code that was the result of a research and development
cooperation between the National Labs of Sandia and Lawrence Livermore and the three
companies Cray, Bristol Myers Squibb, and Dupont. Its first version was developed
in 1995 using Fortran77 [Pli95]. Over the next decade, Sandia took over the main
development and code was eventually ported to C++. The code is released under the
GPL-2.0 license and publicly available on GitHub10.

As of today, LAMMPS contains a rich set of potentials, particle models, ensembles,
integrators, pre- and post-processing, as well as further specialized features in a plugin-
like package structure where a user can pick and choose their components statically. For
an up to date reference we refer to their overview paper [TAB+].

Even though LAMMPS can be applied to general MD problems its main focus is on
material science simulations as is evident from the high number of publications from this
field11.

Internally, the code is based on the Verlet Lists algorithm and primarily makes use of
MPI for parallelization with multiple load balancing strategies, but also implements a few
OpenMP shared memory parallelization strategies. It also contains optional packages for
GPU support via CUDA, OpenCL, or HIP. General accelerator support is also provided
via a package based on Kokkos.

With regard to this thesis, it serves as a comparative implementation of Verlet Lists.
To demonstrate the universally applicability of the interfaces of AutoPas, our library
was integrated into LAMMPS which will be discussed in Section 4.3.

GROMACS The GROningen MAchine for Chemical Simulations or short GROMACS12

is a MD simulation code that was originally developed in 1991 at the University of
Groningen. Its core was the C reimplementation of an significantly older Fortran code
called GROMOS [vGBE+96]. Since the early 2000, development moved to the Royal
Institute of Technology (KTH) and Uppsala University Sweden and the code was ported
to C++. The official version of the code is published on GitLab13 and released under the
GNU LGPLv2.1 licence.

GROMACS primarily focuses on HPC biomolecular simulations with prominent ex-
amples being the Folding@Home14 [VPB23] project, research into COVID 19 [GSK+21,
GCBC21, MM22], or in the context of SPPEXA [BRU+20].

As the core driver for the pairwise short-range interactions, GROMACS developed
the Verlet Cluster Lists algorithm [PH13] which is also implemented in AutoPas. Even
though GROMACS does not feature any dynamic algorithm selection as AutoPas, it
features several hand crafted and optimized kernels for this algorithm written in assem-
bly [AMS+15] which are chosen statically before the simulation.

9https://www.lammps.org/ Accessed: 20.12.2024
10https://github.com/lammps/lammps Accessed: 20.12.2024
11https://www.lammps.org/papers.html Accessed: 20.12.2024
12https://www.gromacs.org/ Accessed: 20.12.2024
13https://gitlab.com/gromacs/gromacs Accessed: 20.12.2024
14https://foldingathome.org/ Accessed: 20.12.2024

82

https://www.lammps.org/
https://github.com/lammps/lammps
https://www.lammps.org/papers.html
https://www.gromacs.org/
https://gitlab.com/gromacs/gromacs
https://foldingathome.org/

3.3 Related Work

Furthermore, the code implements a hybrid MPI OpenMP parallelization and can also
make use of GPU through CUDA or OpenCL [PZB+20]. Here, it employs auto-tuning
for CPU-GPU load balancing15.

3.3.3 Performance-Portable Algorithms: CoPA Cabana Library

Cabana is a performance portability toolkit library for MD and part of the Co-Design
Center for Particle Applications (CoPA) within the Exascale Computing Project (ECP)
of the U.S. Department of Energy. Development started in 2018 as a joint cooperation
between the US National Labs of Lawrence Livermore, Oak Ridge, Los Alamos, and
Sandia.

The library is similar to AutoPas as in it provides data structures like Array of Struc-
tures of Arrays (AoSoA) and algorithms like Linked Cells and Verlet Lists for various
types of particle based simulations. It is not only constrained to short-range interactions
but also implements long-range interactions and particle in cell methods. However, it
does not feature any auto-tuning and any algorithm selection has to be done by the user
at compile time [SRJ+22]. From the very beginning it was implemented in C++ with
Kokkos as its parallelization backend to enable portability to all architectures relevant
in top of the TOP500, including GPU architectures. Furthermore, it is not only con-
cerned with operating on a single node but uses GPU aware MPI for distributed memory
parallelism.

The toolkit is publicly available on GitHub16 under a BSD 3-Clause License.

3.3.4 Particle Toolkit with Parameter Tuning: HOOMD-blue

Another package for running MD simulations is HOOMD-blue17 with a focus on material
science particularly soft matter particle simulations [AGG20]. It’s developed by the
University of Michigan since 2008 [ALT08].

In contrast to AutoPas HOOMD-blue is primarily developed for GPUs in C++ and
CUDA but can also be executed on CPUs. It uses a Verlet Lists like algorithm that
constructs its lists via a bounding volume tree structure [HAN+16, HSM+19]

Even though it does not feature any automated algorithm selection, it has a small
tuning component to tune its neighbor list buffer size18.

The code is publicly available on GitHub under a BSD-3-Clause license19.

15https://manual.gromacs.org/documentation/5.1/ReleaseNotes/performance.html#

improved-performance-auto-tuning-with-gpus Accessed: 20.12.2024
16https://github.com/ECP-copa/Cabana Accessed: 20.12.2024
17https://glotzerlab.engin.umich.edu/hoomd-blue/ Accessed: 20.12.2024
18https://hoomd-blue.readthedocs.io/en/v4.1.0/module-md-tune.html#md-tune Accessed:

20.12.2024
19https://github.com/glotzerlab/hoomd-blue Accessed: 20.12.2024

83

https://manual.gromacs.org/documentation/5.1/ReleaseNotes/performance.html#improved-performance-auto-tuning-with-gpus
https://manual.gromacs.org/documentation/5.1/ReleaseNotes/performance.html#improved-performance-auto-tuning-with-gpus
https://github.com/ECP-copa/Cabana
https://glotzerlab.engin.umich.edu/hoomd-blue/
https://hoomd-blue.readthedocs.io/en/v4.1.0/module-md-tune.html#md-tune
https://github.com/glotzerlab/hoomd-blue

3 AutoPas

3.3.5 Algorithm Selection for Sparse Matrices: Morpheus-Oracle

Matrix operations are a classical field for highly optimized libraries. Morpheus-Oracle
is a C++ library for sparse matrices developed by the University of Edinburgh since
2021 [SW22]. Even though it is designed for a completely different field of application,
it employs categorical dynamic auto-tuning for the layout of sparse matrices similar to
AutoPas.

Its idea is to learn the performance of available matrix formats in an offline phase by
doing profiling runs and feature extraction on the target hardware. Then in the online
phase, the actual application, this knowledge is applied by extracting the same features
from the target matrix, comparing it to the previously built database and from that
predict which format is the most efficient one. The library is then able to convert the
given matrix and apply the requested mathematical operation.

With this combination of machine learning and hardware agnostic design Morpheus-
Oracle can support a wide range of architectures. In their own benchmarks, the au-
thors report Average speedups from this technique about 1.1 on CPUs and 1.5 on
GPUs [SW23].

The library is publicly available on GitHub20 under a Apach2-2.0 license.

3.4 Interim Summary

This Chapter presented the entire library of AutoPas, from the initial idea, through the
implementation and optimizations, to its relation to other codes. It was divided into two
main parts, which are the two main pillars of AutoPas. The first is the high-performance
library with a user-friendly interface, and the second is the automated dynamic algorithm
selection.

The presentation began from the outside, the user’s perspective, where Section 3.1 dis-
cussed the first pillar. Core design goals were defined, such as usability, customizability,
performance, modularity, and maintainability. With these in mind, Subsection 3.1.1.1
analyzed the context for which AutoPas was designed using data from the TOP500 list.
Based on this data, in 2018, the decision was made to implement the library for CPUs
and to add GPU support later. Furthermore, the high-level structure and terminology
of AutoPas were defined.

In Subsection 3.1.1.2, the two main classes a user must implement to use the library
were shown with examples. These were a particle class and an interaction functor class.

With this, the user-facing part of the library was complete, and Subsection 3.1.1.3
gave an overview of the internal view and structure. All the implemented algorithmic
options and switches were listed and summarized, and their connection to the theoretical
concepts explained in Chapter 2 was drawn.

Since AutoPas was designed for shared memory parallelization but intended to be used
in software that also makes use of distributed memory parallelization, Subsection 3.1.1.4

20https://github.com/morpheus-org/morpheus-oracle Accessed: 20.12.2024

84

https://github.com/morpheus-org/morpheus-oracle

3.4 Interim Summary

sketched the idea of running one instance of AutoPas per MPI rank and how they
interacted.
Eventually reaching the deep developer’s perspective, Subsection 3.1.2 discussed soft-

ware engineering challenges and techniques that were applied to overcome them. Here,
code design choices like the Verlet Lists style of the main interface were discussed. Dif-
ferent abstraction techniques via inheritance, interface design, and template metapro-
gramming were shown in selected examples. The last part of the developer’s perspective,
Subsection 3.1.2.6, highlighted the importance of optimizing especially Verlet Lists-like
containers for their memory usage and allocation patterns and showed the performance
impact of multiple optimizations.
The subsequent Subsection 3.1.3 took to both the AutoPas user’s perspective and the

optimization-aware developer. Since the user provides the functor class, which is also the
innermost computation kernel, it has to be highly optimized. This section showed and
explained the importance and difficulties of hardware-aware SIMD vectorization and its
performance impact.
Section 3.2 discussed the implementation of the automated algorithm selection, the

second pillar of AutoPas. After Subsection 3.2.1 discussed how the problem fit together
with the theory and definitions from Subsection 2.2.1, Subsection 3.2.2 explained the
internal logic of the tuning implementation, which was called the tuning loop. The actual
selection of strategies to evaluate happens in one or more tuning strategies. These were
implemented in a modular way in the gist of the overall design goals of customizability
and modularity, enabling the simple development of more strategies in the future.
In the last part about tuning, Subsection 3.2.4 showed that AutoPas can also use

energy efficiency as the performance metric that the tuning shall minimize and that this
is not necessarily the same as tuning for time to solution.
The last part of the Chapter, Section 3.3, discussed which aspects of AutoPas al-

ready existed in other scientific software packages and how they related. The conclusion
was that there was currently no other software that brought together simulation and
automated algorithm selection, underscoring the value and uniqueness of AutoPas.

85

4 Examples and Applications

AutoPas is simply a library and cannot function independently. It is designed to be
integrated into a simulator, acting as the core data container and driver for particle
interactions. This chapter presents four examples of how AutoPas has been integrated
into different codes and demonstrates its performance across various scenarios. These
simulators include established MD codes as well as new programs developed within the
context of this thesis. This serves to verify and validate the library and showcase its
versatility.

4.1 md-flexible

The small simulator md-flexible is the primary demonstrator application of AutoPas. It
was conceived and is developed together with AutoPas in the same repository1, by the
same authors as part of this thesis, and comes with the library as an example on how
to use it. Its primary purpose is not to provide a fully featured particle simulation but
to quickly and easily set up various scenario configurations and provide direct configu-
ration access to all features of AutoPas. For this reason, md-flexible should require as
little maintenance as possible, even prioritizing maintainability over feature richness and
complexity. This greatly helps in the development, testing, and understanding of new
features of the library.

4.1.1 Features

Although md-flexible began as a simple implementation consisting of two for loops – one
for generating particles and another for repeating pairwise interactions, along with some
time and memory measurement logic – it was initially not meant to be a fully developed
simulator. Over time, however, it has evolved into a comprehensive MD simulator with
numerous features:

Forces Since md-flexible is a classic MD simulator, it uses the Lennard-Jones potential.
For this, it allows the user to choose from the implementations from the AutoPas
application library, which also includes a version written with AVX2 and one with
SVE intrinsics. Optionally, a global force in one direction can be added to simulate,
e.g., gravity.

Input via CLI and Files In order to configure the simulation and behavior of AutoPas,
md-flexible offers two input interfaces: command line parameters and YAML2

1https://github.com/AutoPas/AutoPas/blob/master/examples/md-flexible/ Accessed: 20.12.2024
2https://yaml.org/ Accessed: 20.12.2024

87

https://github.com/AutoPas/AutoPas/blob/master/examples/md-flexible/
https://yaml.org/

4 Examples and Applications

Figure 4.1: The whole simulator is steered by one MDFlexConfig file consisting of many
MDFlexOption, which is filled by (potentially) both parsers.

files. As sketched in Figure 4.1, both parsers can be used to fill one common
MDFlexConfig object that defines the behavior of the simulation. This allows the
user to either only use command line parameters, only a YAML file, or even a
mixture of both where the command line parameters take higher precedence than
those from the file. The idea for the mixed mode is to provide a simulation template
via YAML and easily alter it interactively on the fly by overriding parameters using
the command line interface.

All parameter options in the configuration class are realized using the MDFlexOption
class, which is a collection of all information needed regarding one option. It en-
capsulates its type T and name, which are needed for parsing, as well as a descrip-
tion containing all possible values. Here, all parameters using the Option class of
AutoPas, which was presented in Figure 3.6, can make use of the provided fuzzy
parsing functionality. Furthermore, getAllOptions() can be used to provide this
list of possible values and getMostOptions() to set defaults. The description is
used to automatically generate a help message containing all possible parameters,
their descriptions, and possible values.

To process the command line arguments, the getopt3 library is used, which is part
of the POSIX standard, and thus widely available on UNIX like systems. This li-
brary needs one unique integer identifier for every parameter. In order to avoid po-
tential clashes from copy-pasting, MDFlexConfig parametrizes each MDFlexOption

with the line number I where the option is declared and MDFlexOption uses this
as the identifier.

3https://pubs.opengroup.org/onlinepubs/9799919799/ Accessed: 20.12.2024

88

https://pubs.opengroup.org/onlinepubs/9799919799/

4.1 md-flexible

Finally, all information in MDFlexOption can also be used to generate shell auto-
completion files. For zsh, such a generator is implemented for parameters, their
arguments, and descriptions, contributing immensely to an easy and quick workflow
with md-flexible.

Distributed Memory Parallelization md-flexible implements a full-shell domain decom-
position approach [Sec21] for the distributed memory parallelization using MPI.
Dynamic diffusive load balancing is also supported either via A Loadbalancing
Library (ALL)4 or a simple approach based on the idea of moving subdomain
boundaries proportionally to the inverse of the subdomain’s workload. Both ap-
proaches use time measurements as their input and equilibration metric.

To communicate particles via MPI, they must be converted to a series of bits. This
process is also referred to as serialization. For this, md-flexible uses the reflections
mechanic explained in Subsection 3.1.2.5 in a similar way to the generation of the
SoAs. The significant advantage here is that when the particle model changes,
e.g., due to an extension to the simulator, only the list of attributes that shall be
communicated needs to be updated to adapt the full (de-)serialization process.

Visualization Output The state of all particles can be periodically printed to Visualiza-
tion Toolkit (VTK)5 files to be visualized with tools like ParaView6. When the
simulation is executed using multiple MPI ranks the parallel I/O mechanism of
VTK7 is used. Each rank writes its own partial phase space file per output step,
linked together by one metadata file.

The domain decomposition can be visualized for the MPI parallel simulations.
This is done by writing VTK files that draw the bounding boxes of all ranks.

Checkpointing Since the VTK output files contain all information about the state of a
simulation, md-flexible implements a loading mechanism to (re)start a simulation
from such files. Nevertheless, a YAML input file must still be provided to set all
further simulation parameters, e.g., time step width or the size of the simulation
domain.

Statistics One of the primary use cases of md-flexible is testing the performance of
AutoPas. Thus, the wall time of all significant simulation steps is measured, and a
summary, including percentages of nested steps, is reported. When the simulation
is executed over several MPI nodes, the sum of all timers of the same name and
the total wall-clock time are shown.

4https://slms.pages.jsc.fz-juelich.de/websites/all-website/ Accessed: 20.12.2024
5https://vtk.org/ Accessed: 20.12.2024
6https://www.paraview.org/ Accessed: 20.12.2024
7https://www.paraview.org/ParaView/index.php/Parallel_I/O Accessed: 20.12.2024

89

https://slms.pages.jsc.fz-juelich.de/websites/all-website/
https://vtk.org/
https://www.paraview.org/
https://www.paraview.org/ParaView/index.php/Parallel_I/O

4 Examples and Applications

Using an interface in the Functor class, md-flexible can also count the number of
distance calculations and force computations. This is then used to calculate the
simulation speed in FLOPs/second per iteration.

Time Discretization md-flexible implements the Velocity Störmer-Verlet algorithm, pre-
sented in Subsection 2.1.1.4, to propagate particles through time. The user can
set the time step width ∆t. If set to zero, time discretization and all function-
alities that depend on particle movement are disabled, which means that almost
exclusively, the force computation and, thereby, the auto-tuning of AutoPas are
executed.

Scenario Generators To provide a simple mechanism to set up various scenarios, md-flexible
offers several configurable generators to instantiate objects out of particles:

Regular Grid A 3D grid of equidistant particles.

Sphere This is a spherical cutout of a sphere from a regular grid starting with a
particle at the center of the sphere.

Closest Packing A cube of particles arranged in the hexagonal closest packing
pattern.

Uniform Box A box filled with uniformly randomly distributed particles.

Gaussian Box A box filled with particles distributed according to a 3D Gaussian
distribution with a given mean and standard deviation.

All generators can be used multiple times in one scenario and be combined freely.
Since the random-based ones can lead to particles being generated arbitrarily close
to each other, it is advisable to set ∆t to (near) zero to avoid unphysical behavior.

Boundary Conditions The user can choose the behavior of particles at the boundary
of the simulation box. Note that, for simplicity reasons, opposing boundaries will
have the same behavior, so there is only one choice per spatial axis.

None Also called outflow condition, particles that cross the domain boundary are
deleted.

Reflective Particles bounce back from the domain boundary. In md-flexible, this
is implemented by interacting the offending particle with a clone of itself
mirrored behind the boundary at the same distance.

Periodic When a particle crosses over the boundary, it is moved to the opposing
side of the domain. This behavior is as if it exited on one side and reappeared
on the other.

Thermostat In MD, thermostats are often used to alter the energy state of a scenario or
keep it constant under the influence of external forces. md-flexible implements a
classical velocity scaling thermostat [GKZ07]. The idea is to calculate the system

90

4.1 md-flexible

temperature from its kinetic energy, which comes from the particle movement.

Ekin =

N∑
i=1

mi ⟨vi, vi⟩
2

(4.1)

T =
2Ekin

NDkB
(4.2)

Equation 4.1 shows how the kinetic energy is the sum of the products of masses
m and scalar products of velocities v of all N particles. Using Equation 4.2,
this energy, in combination with the number of particles N , number of simulated
dimensions D, and the Boltzmann constant [NT+19] can be used to calculate the
temperature T of the system.

With this, we can calculate a factor β that is used to scale the velocity of all
particles such that the system temperature is at the desired level Ttarget:

β =

√
Ttarget

T
(4.3)

To simulate gradual heating or cooling, the maximum change in temperature per
timestep can be limited.

The same mechanism can also be used to initialize a system with random velocity.
For this, Brownian motion is simulated given a temperature, using the Maxwell-
Boltzmann distribution, which, in 3D, is the product of three normal distributions.

Multi Site Particles The default operation mode for md-flexible is to simulate particles
with a single site using the Lennard-Jones potential. At compile time, it is also
possible to activate capabilities for the simulation of multi-site particles. This pri-
marily involves two classes: First, an extended particle class that features multiple
sites, as well as torque, angular velocity, and a quaternion, to represent its rotation.
Second, a more complex Lennard-Jones functor that interacts each particles’ sites
and computes torque.

4.1.2 Broad Study of Configurations

With the help of the easy and flexible scenario generation capabilities of md-flexible, and
the goal of AutoPas to be a library not only tailored for specific use cases, we created
a wide range of configurations to test the simulation and tuning behavior of AutoPas in
md-flexible. The parameters and their range of values can be found in Table 4.1 and the
template for the remaining configuration file in Section A.1.2.

Figure 4.2a shows the optimal fraction of scenarios for each container involved in
the study. We can see that the range of scenarios is sufficiently wide so that each
container has at least several dozens of scenarios where it shines. Traversals, shown in
Figure 4.2b, are covered less exhaustively. For Linked Cells, lc c18 and none of the
sliced-based traversals are ever optimal. Similarly, for Verlet Lists Cells, vlc c18 and

91

4 Examples and Applications

tr rs/tr rc box-length CSF Num Particles Distribution

10 0.025 2.5 5/5/5 0.5 534 uniform, 1, 1, 1
20 0.035 3.5 10/20/60 1 12193 uniform, 0.4, 0.6, 1
40 25/25/25 2 71034 gauss, 0.75, 0.25

80/80/80 230909 closest packed, 0.3, 0.25
1092804
4923403

Table 4.1: Each column shows one parameter and the employed values. The resulting range of
configuration is then generated from the cross-product of all columns. This cross-
product is then filtered to remove scenarios that are too dense to compute in a
reasonable time. This results in 435 configurations. For the exact process see the
generator script8.
The arguments for the distribution parameters are:
Uniform: Particle object size X/Y/Z as a fraction of the domain size.
Gauss: Mean and standard deviation as a fraction of the domain size.
Closest packed: Particle object size and offset from 0/0/0 both as a fraction of the
domain size.

the load-balanced sliced variants are never picked. Thus, we will focus more on analyzing
the selected containers, since this is also the more impactful decision.

Regarding the dominance of vlc c08 within Verlet Lists Cells, it has to be mentioned
that in the here presented version of AutoPas9, this traversal’s list rebuild process is
significantly better optimized than the others. This mainly revolved around the opti-
mizations discussed in Section A.1.2.

Observations from this plot do not mean that these traversals are useless or that the
distribution of containers indicates their general usefulness. The only conclusion we can
draw from this is how exhaustive the coverage of the variance of scenarios is but not
how balanced it is. We can not say that something is useful or useless in general, but
still, we can make statements about the usefulness of configurations in the represented
parameter ranges and trends.

Figure 4.3 shows the fraction of how often a container was optimal, grouped by the
available domain sizes. The results suggest that an increasing domain size is more
disadvantageous for Verlet Lists, and especially large scenarios can benefit from Verlet
Cluster Lists.

Looking at Figure 4.4a, we see how average particle number density affects the con-
tainer choice in the scenarios tested. High densities clearly favor Linked Cells, but the
picture is unclear for a density of five and lower. A distorting factor in this plot is that
it only looks at average particle densities. However, some scenarios don’t fill the entire
domain, e.g., those using the distribution closest packed, 0.3, 0.25 only fill about
1/33 = 1/27 of the domain. This results in a scenario with a small but very dense region
and vast parts that are empty. Such conditions can occur, e.g., in the first thousand
time steps of a MD simulation or when simulating space debris.

9Git commit hash bd22330

92

https://github.com/AutoPas/AutoPas/tree/bd2233013d698801e9d84efa62dac25a7a3408e2

4.1 md-flexible

LinkedCells

VerletClusterLists
VerletLists

VerletListsC
ells

Container

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
ta

ge

0.40
0.29 0.24

0.07

functor = LJ_AVX

(a) Containers

lc_c08
lc_c01

lc_c04_HCP

lc_c04_combined_SoA

lc_c01_combined_SoA
lc_c04

0.0
0.5
1.0

Pe
rc

en
ta

ge 0.71
0.160.110.010.010.01

LinkedCells

vcl_c01_balanced

vcl_cluster_ite
ration

vcl_c06
vcl_slic

ed

vcl_slic
ed_balanced

vcl_slic
ed_c02

0.570.39
0.020.010.010.01

VerletClusterLists

vl_list
_iteration

Traversal

0.0
0.5
1.0

Pe
rc

en
ta

ge
1.00

VerletLists

vlc_c08
vlc_slic

ed
vlc_c01

Traversal

0.90
0.07 0.03

VerletListsCells

(b) Traversals

Figure 4.2: The relative distribution of optimal algorithm components over the full range of
configurations. While the input parameters of the study lead to scenarios where
each container is optimal at least once, this is not the case for all traversals.

LinkedCells

VerletClusterLists
VerletLists

VerletListsC
ells

Container

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge

0.54
0.46

domainSize = [5_5_5]

LinkedCells

VerletClusterLists
VerletLists

VerletListsC
ells

Container

0.45

0.17

0.37

domainSize = [10_20_60]

LinkedCells

VerletClusterLists
VerletLists

VerletListsC
ells

Container

0.36 0.40

0.24

domainSize = [25_25_25]

LinkedCells

VerletClusterLists
VerletLists

VerletListsC
ells

Container

0.44

0.27

0.12 0.16

domainSize = [80_80_80]

Figure 4.3: Percentages of optimal containers for each category of domain sizes. This figure
suggests that Verlet Lists suffer from increasing domain size and Verlet Lists Cells
can only be efficient in large domains.

93

4 Examples and Applications

0 5 10 15 20
density

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
Container
LinkedCells
VerletClusterLists
VerletLists
VerletListsCells

(a) Percentages for each container and how often
it is optimal for scenarios of given average den-
sities. High densities favor Linked Cells. Low
densities, however, are more challenging to pre-
dict.

[5_5_5] [10_20_60][25_25_25][80_80_80]
Domain Size

0

5

10

15

20

De
ns

ity

(b) Average densities of the domain sizes. The
smallest domain only features one density since
it is too small to be simulated with a wide range
of particle numbers. For similar densities, the
distribution of container choices changes with
different domain sizes.

Figure 4.4: Observations of container choices concerning average densities. Here, density is
the particle number density as in the number of particles divided by the domain
volume.

When we combine the information about density and domain size and look at the
container choices, as shown in Figure 4.4b, we see that the two scenario parameters are
not entirely independent. This is due to the way the configurations are generated, and
scenarios with numbers of interactions that are not feasible for time or memory reasons
are eliminated.

So, the data contains trends, but there are no simple correlations. This is captured
by the rule-based tuning, described in Subsection 3.2.3.

In order to get a visual grasp of the effectiveness by which these scenario parame-
ters capture the correlation with the container choice, we can look at a t-Distributed
Stochastic Neighbor Embedding (t-SNE) plot.

t-SNE [VdMH08] is a dimensionality reduction technique used to visualize high-
dimensional data in a low-dimensional space, typically 2D or 3D. As the mapping is
particularly effective at preserving local structure and patterns in the data, it can re-
veal any such in our dataset. The technique works as follows: First, for each point, we
calculate the probability that it is the neighbor of another point. This probability is
based on the similarity of the pair xi, xj , expressed as the conditional probability that
xi would pick xj as its neighbor under the condition that neighbors are picked propor-
tionally to their probability density using a Gaussian centered around xi. This process
emphasizes local structures by assigning more weight to closer points. Originally, an
Euclidean distance is used here, but other distance metrics are possible to counter the
effects of the curse of dimensionality [SG17]. Next, the data points are randomly pro-
jected into the lower-dimensional space, here 2D, and their similarities are computed,

94

4.1 md-flexible

30 20 10 0 10 20
t-SNE Dimension 1

20

0

20

40

t-S
NE

 D
im

en
sio

n
2

(a) Scenario Parameters

200 100 0 100 200
t-SNE Dimension 1

100

0

100

t-S
NE

 D
im

en
sio

n
2

(b) Live Infos

Figure 4.5: t-SNE plots showing a projection of the scenarios by the scenario parameters (left)
and the gathered live information (right). Each point represents a scenario, and
its color is the container that is optimal for it. The color scheme is the same as
in Figure 4.4. It can be observed that with these projections, clusters form, which
are then populated by mostly one or two containers. This suggests that these
parameters can be used to restrict the choice of containers effectively.

but this time using a Student’s t-distribution [Stu08]. To achieve the desired arrange-
ment of the projected points, the Kullback-Leibler divergence [KL51] between the two
probability distributions is minimized via gradient descent.

Applying this technique to our dataset results in the plots shown in Figure 4.5. Still,
these visualizations have to be treated with a bit of care. While t-SNE will group
the data into clusters, explaining what these clusters express is unfeasible since the
axis in the resulting lower-dimensional space has no direct meaning. Also, their shape,
distances, and densities do not necessarily reflect any information originating from the
input data [CP23].

Nevertheless, when we plot the scenario generator parameters in a t-SNE and then
color each point by the container choice, we can observe whether these input parameters
create a structure that correlates with the containers. In Figure 4.5a, we can see that
most clusters contain only two containers, suggesting that with this knowledge, the
effective search space A could be restricted severely.

Recreating the same plot using live infos instead of the scenario parameters of the
same runs, we obtain Figure 4.5b. This information is gathered by AutoPas at runtime,
utilized in its rule-based tuning, and was introduced in Subsection 3.2.2, Even though
a few instances of Verlet Cluster Lists appear in most clusters and, therefore, always
seem like a potential candidate, the plot hints towards a clear split between scenarios
that favor Linked Cells or Verlet Lists, indicating the usability of rule-based in this
information to restrict the search space.

95

4 Examples and Applications

4.1.3 Spinodal Decomposition

All scenarios from Subsection 4.1.2 were artificial in the sense that their setup does not
directly represent a physical experiment. Nevertheless, even though md-flexible is not
primarily designed for complex, realistic simulation, it is very capable of conducting
them. As an example, the Spinodal Decomposition experiment, which was repeatedly
studied with ls1 mardyn [GST+19, SGH+20] is recreated here to show the capabilities of
md-flexible, as well as the behavior of AutoPas in complex simulation scenarios with MPI
load balancing and checkpointing. The configuration files used are shown in Section A.2.

Equilibration The experiment first requires an equilibration step to generate a homo-
geneous gas-like particle distribution. 2.6 million time steps were simulated for this.
Temperature, and with this pressure, have to be kept at a stable level using a ther-
mostat. Here, a simple velocity scaling thermostat is used, that calculates the current
temperature via the kinetic energy of the system from the movement vectors of all parti-
cles. The desired system temperature is then set by scaling all these vectors accordingly.
Any subsequently shown data does not include the equilibration step.

Decomposition Figure 4.6 shows four steps of the progress of the decomposition simu-
lation over four million time steps. This simulation was conducted on HSUper using five
nodes, each running 8 MPI ranks, with nine OpenMP threads each. Due to job runtime
restrictions, the simulation was split into two runs with two million iterations each. The
total time to solution was 50.35 + 55.2 = 105.55 hours or 4.4 days. With the ∆t corre-
sponding to two femtoseconds, the total simulation covers a period of eight nanoseconds.
In the beginning, as seen in Figure 4.6a, the particles are distributed evenly as a homo-
geneous gas. As the simulation is maintained at a sub-critical temperature, clusters and
large structures begin to form rapidly, resulting in local load imbalances, as illustrated in
Figure 4.6b. Over time, these structures merge into fewer, dominating structures, such
as the large amorphous object depicted in Figure 4.6c. The simulation employs periodic
boundary conditions hence, this is only one object split on the XY plane. Consistent
with findings in the literature [Cah61, FM08], the scenario progresses toward two stable
regions with distinct densities. The denser region forms a wall parallel to the YZ plane,
as visualized in Figure 4.6d.

High Level Tuning Analysis In Figure 4.7, the overall distribution of the container
choices throughout the whole decomposition part of the simulation over all ranks is
shown. It can be seen that Linked Cells based configurations are chosen mostly, 26436
times, followed by a significant share of Verlet Lists Cells with 5285. Next comes Verlet
Lists with only 275, and lastly Pairwise Verlet Lists with only four instances of being
the optimal container choice on a rank.

Closer Analysis of selected Ranks Taking a closer look at the individual ranks, the
dominance of Linked Cells is quickly called into question. Figure 4.8 shows four steps
in the simulation, together with the MPI rank subdomains and their currently optimal

96

4.1 md-flexible

(a) T = 0 ·∆t (b) T = 5e5 ·∆t

(c) T = 1e6 ·∆t (d) T = 4e6 ·∆t

Figure 4.6: Visualization of the phases of the spinodal decomposition experiment. The exper-
iment starts with a homogeneous gas and a temperature below the critical point.
This leads to the formation of clusters that merge into large structures until finally,
only a block remains, which due to the periodic boundaries, actually represents an
infinite film of liquid.

97

4 Examples and Applications

LinkedCellsPairwiseVerletListsVerletLists VerletListsCells
Container

0

10

20

30

40

50

60

70

80

Co
nt

ai
ne

r S
ha

re
 [%

]

82.6%

0.0% 0.9%

16.5%

Figure 4.7: Distribution of container choices over the course of the Spinodal Decomposition
experiment accumulated from all ranks. Linked Cells is the most common container
choice.

container. It can be seen that denser regions are mostly computed using Linked Cells
and more sparser regions using Verlet Lists Cells.

In the following, closer attention is directed towards the three color filled ranks 14, 35,
and 38. Looking at their distribution of the container in Figure 4.9 paints a very different
picture than the overall average from Figure 4.7. Rank 14 is even more dominated by
Linked Cells than the average. In contrast, on the other two ranks, Verlet Lists Cells is
used most often, with Verlet Lists even being selected 41 times on rank 35. Returning
to Figure 4.9 that shows their spatial location within the simulation, it can be seen that
rank 14 is always in denser regions, while the other two are in the inhomogeneous areas
of fluctuating density and in the end in a very sparse part of the simulation. Figure 4.10
aims to quantify these observations. For this, two metrics are introduced, which are part
of the live information AutoPas collects:

Max Density The domain is subdivided into a dedicated virtual grid of equally sized
blocks, which act as bins for particles. Each bin’s particle number density is
calculated, and the highest value is the maximum density. The number of bins, and
thus their size depends on the number of particles. A higher number of particles
leads to a finer grid mesh size. This is an indicator of the peak effort that is needed
to process the subdomain.

Homogeneity Given the bins from above, the homogeneity is the standard deviation of
their densities. Values closer to zero signify a more homogeneous particle distri-
bution. This is an indicator of how well spread the particles are in the subdomain
and, thus, how much of its density is close to the maximum density.

The figure consists of three rows, where these metrics are contrasted with the time per
iteration from selected traversals. This time is the smoothed result from the samples of

98

4.1 md-flexible

(a) T = 5e5 ·∆t (b) T = 1e6 ·∆t

(c) T = 3.86e6 ·∆t (d) T = 4e6 ·∆t

Figure 4.8: Subfigures 4.8a to 4.8d show four points in time the spinodal decomposition exper-
iment. The grid shows the MPI ranks. Colors indicate their selected containers.
The rank boxes filled with color are the ranks 14 (lower, front row secon from left),
35 (top, back right corner), and 38 (top, right, second row). Regions containing
significant parts of the prominent structure are calculated using Linked Cells-based
configurations. The rest employs mostly Verlet Lists Cells.

99

4 Examples and Applications

the tuning process. The described domain metrics were not part of the employed rule
file. Thus, conclusions can be drawn on how they correlate to the rules. To improve
readability, the shown traversals were restricted such that they represent at least 90%
of the optimal configurations on each of the three ranks.

In the first column, the time per iteration for rank 14 only rises moderately as it
becomes denser and more homogenous. This aligns well with the previous visual obser-
vations and that its volume decreases. Also, the fact that Linked Cells based traversals,
especially sliced-based ones, are chosen here aligns well with our expectations as those
are primarily designed for dense and homogeneous situations where a lot of benefit can
be drawn from vectorization, and no OpenMP load balancing is needed.
The second column shows a very different behavior, which is reflected in very different

configuration choices. Rank 35 is situated in a corner of the domain where a hole appears
soon after the simulation starts, which can be seen as a sharp drop in maximum density
and homogeneity. Even the MPI load balancer can only partially counteract this, and
the time per iteration falls below five milliseconds for all traversals. However, soon, the T
superstructure, seen in Figure 4.8b, enters the subdomain through the periodic boundary,
introducing a very dense object. This leads to an equally sharp rise in the homogeneity
value, meaning the subdomain becomes less equally distributed, a rise in the maximum
density, and the runtime. During this dense period, Linked Cells-based traversals with
load balancing capabilities are selected, which is consistent with expectations. After
about 5e5 iterations, the superstructure contracts more towards a wall, and particles
recede from the subdomain, reflected in a decline in runtime and the domain metrics.
At iteration 2e6, the simulation is interrupted and restarted from a checkpoint due to
cluster job runtime restrictions. However, this checkpointing mechanic does neither
store the state of the MPI load balancing nor of the AutoTuner. As the MPI domain
decomposition is restarted as a regular grid, rank 35 receives a smaller than before chunk
of the domain, which is also very sparse, leading to an abrupt fall in runtime. This is
less well reflected in the other metrics because this only affected a minor amount of
tuning phases and led to optimal configurations, which are not shown as they would
pollute the rest of the plot. Thus, a small gap can be observed in the metric plots after
iteration 2e6. Unfortunately, the Slow Config Filter seems to eliminate linked cells-based
configurations during this ramp-up phase, and they are not tested again, even though
the time per iteration subplot suggests that it might have still been a viable strategy, at
least for the iterations immediately after the MPI load balancing recalibrated itself again.
Nevertheless, looking at the domain metrics, for the remainder of the simulation, Verlet
Lists Cells-based configurations seem like a reasonable choice, given the low maximum
density smaller one and medium homogeneity.
In the third column, a partially different picture is drawn. There is no initial drop,

but a similar rise in density and homogeneity can be seen, resulting in higher runtime.
This comes from the initial structure, shown in Figure 4.8a, forming a cluster in this
rank’s subdomain. However, this soon recedes into the T superstructure, and the MPI
load balancer expands the rank to process the emerging sparsely filled space between the
periodic split of the T superstructure. As long as parts of the dense cluster are within the
domain, Linked Cells-based configurations are superior due to their high efficiency when

100

4.1 md-flexible

LinkedCells

PairwiseVerletLists
VerletLists

VerletListsCells

Container

0

20

40

60

80

100

Co
nt

ai
ne

r S
ha

re
 [%

]

98.5%

1.5%

Rank = 14

LinkedCells

PairwiseVerletLists
VerletLists

VerletListsCells

Container

42.2%

5.1%

52.6%

Rank = 35

LinkedCells

PairwiseVerletLists
VerletLists

VerletListsCells

Container

31.2%

2.6%

66.1%

Rank = 38

Figure 4.9: Distribution of container choices throughout the Spinodal Decomposition experi-
ment accumulated on ranks 14, 35, and 38. Individual ranks can experience very
different distributions than the overall average shown in Figure 4.7. For 35 and 38,
Verlet Lists Cells is chosen more often than Linked Cells.

processing dense regions thanks to superior vectorization capabilities. In contrast to the
similar Linked Cells phase in rank 35 between iteration 1e6 and 2e6, rank 38 chooses
between iterations 0 and 1e6 less but still load balanced traversals, for which no apparent
reason can be found in the observed metrics. After the dense clusters are entirely gone
from rank 38, the maximum density stabilizes, and the subdomain is significantly more
homogeneous. This leads to the switch to Verlet Lists Cells, which again aligns with
expectations. Again, a drop in runtime and a gap in domain metrics can be observed
directly after restarting from the checkpoint. However, since this time the subdomain
was already very sparse before the restart, the subsequent choices by the tuner appear
reasonable and support the choices observed on rank 35.

Conclusion This experiment shows that the demonstrator md-flexible is capable of
executing complex simulation scenarios with moderate effort, providing an easy way to
get performance data to evaluate AutoPas. Together with the study in Subsection 4.1.2,
it shows the variety of performance characteristics domains can have. It is shown that
there are correlations between the domain metrics defined and collected here but also
that they are not trivial to formulate. These observations encourage more knowledge
based tuning strategies but also stress the need for a deeper study and understanding of
the correlation between domain metrics and algorithm choices.

101

4 Examples and Applications

0

20

40

60

80

Ti
m

e
pe

r I
te

ra
tio

n
[m

s]

Rank = 14 Rank = 35 Rank = 38

0.0

0.1

0.2

0.3

0.4

Ho
m

og
en

ei
ty

Rank = 14 Rank = 35 Rank = 38

0 1 2 3 4
Iteration 1e6

0.25

0.50

0.75

1.00

1.25

M
ax

 D
en

sit
y

Rank = 14

0 1 2 3 4
Iteration 1e6

Rank = 35

0 1 2 3 4
Iteration 1e6

Rank = 38

lc_c04_HCP
lc_c08
lc_sliced_balanced
lc_sliced_c02
vl_list_iteration
vlc_c08

Figure 4.10: Evolution of the properties time per iteration in milliseconds, homogeneity, and
maximum density on the ranks 14, 35, and 38 throughout the whole simulation.
In the first row, the smoothed time per iteration for all configurations after a
tuning phase is shown. In the remaining rows, one domain property is shown
colored by the optimal traversal. The cut at two million iterations comes from the
restart from the checkpoint, which also resets the MPI load balancing. Observed
properties like homogeneity and max density show some imperfect correlation with
the container choice. However, the traversal choice within one container remains
more complex.

102

4.2 ls1 mardyn

4.2 ls1 mardyn

The MD simulator ls1 mardyn is a established code with a long history of being used
successfully for publications. It was already introduced in Subsection 3.3.1 so we refer
there for further background.

4.2.1 ls1 mardyn-AutoPas Integration

As mentioned, AutoPas is optionally integrated into ls1 mardyn. This means that during
the compilation of the simulator, it is possible to choose AutoPas as the core data
container. The library then replaces the existing Linked Cells implementation and the
short-range force evaluation. Almost all other features, available via the plugin interface,
are still available since the particle class used for AutoPas is an extension of the regular
particle class of ls1 mardyn. Features that are not supported are heavily intrusive ones
like the reduced memory mode (RMM), which slims down ls1 mardyn to maximize
memory efficiency to enable the largest possible simulations [Tch20].

The version without AutoPas will here be referred to as ls1 mardyn vanilla. By default,
and everywhere in this thesis, this version uses an implementation of the lc c08 traversal.

Our primary objectives in the experiments with ls1 mardyn are:

1. Show that our Linked Cells implementation is at least as fast as the one from the
vanilla version, which was optimized over several years.

2. Demonstrate that automated dynamic algorithm selection by AutoPas works to-
gether with distributed memory balancing by ls1 mardyn.

3. Confirm that using automated dynamic algorithm selection can give an advantage
over static simulation methods.

4.2.2 Exploding Liquid

The spinodal decomposition scenario from Subsection 4.1.3 is evolving slowly and to-
wards a stable state. A more challenging scenario is the exploding liquid scenario, which
was used for load balancing tests in previous studies [SGH+20, Sec21].

Setup This scenario’s domain is a cuboid elongated in the y dimension, with periodic
boundary conditions in all directions. In the middle of the y-axis, a dense particle grid
is initialized, forming a thin wall in the XZ plane. Considering the periodic boundary
conditions, the whole scenario can be understood as a dense wall of liquid stretching
infinitely in a vacuum. The initial setup is shown in Figure 4.11a using three MPI ranks
distributed along the y-axis and initialized with equally large subdomains. An input file
to reproduce the simulation is given in Section A.4.

103

4 Examples and Applications

(a) Initialization (b) Explosion

(c) Shock Fronts (d) Periodic image collision

Figure 4.11: Subfigures 4.11a to 4.11d show four-time steps of the exploding liquid experiment.
Each of the figures’ upper halves is a visualization of the scenario where the colors
represent the three MPI ranks. The lower halves are a particle number density
histogram along the Y axis, with the green lines indicating the rank boundaries.
Together, they show the evolution of the scenario, especially the propagation of
the shock fronts after the explosion, the formation of droplets behind it, and
the overall highly volatile scenario condition. Due to a bug in ls1 mardyn, the
dynamic load balancing is not working as intended and the rank boundaries are
not following the shock boundaries.

104

4.2 ls1 mardyn

Explosion As soon as the simulation starts, the high-density gradient between the
dense liquid and the empty space around it induces a violent rupture, and the liquid
explodes symmetrically along the y-axis. A very early stage of this explosion is shown in
Figure 4.11b. In each direction, a dense shock front propagates towards the boundaries,
preceded by a thick mist of particles that were propelled out of the liquid in the very
early steps of the simulation. The initial symmetry of the fronts breaks, and behind
them, a sparse mist remains, in which droplets form or break off from the fronts and are
elongated by their momentum. This state can be seen in Figure 4.11c.

What is should be visible in this and the previous figure is how the diffusive load
balancer ALL automatically follows the shock fronts. Unfortunately the integration of
ALL in ls1 mardyn is currently broken and we see an non-optimal domain boundary
placement. For the perspective from this thesis, this does not really matter, because
this does not affect the tuning, just its outcome. As seen in the respective particle
number density histograms, the shock fronts are the most dense regions in the domain,
are thus the most compute-intensive. The vast space of droplets between them is entirely
left for the third rank, with sometimes even giving the ends of the fronts to it.

Eventually, the two shock fronts reach the periodic y boundaries simultaneously, col-
lide, and bounce off each other. In Figure 4.11d, we can see that the upper part of the
right front pushed into the upper part of the left front because it had more momentum
due to the break in symmetry. This also leads to the right rank losing a lot of particles
to the left one, as can be seen in the histogram. Therefore, the load balancer should give
more of the blue region to the gray middle rank and a significant part of the right of the
middle from gray to red. Instead the opposite happens and the outer ranks’ subdomains
are expanded into the middle.

It has to be mentioned that the aforementioned break in symmetry is always a little
different with each run of the simulation due to the non-commutativity of the summation
of IEEE floating point numbers. Particle force contributions are calculated in parallel.
Hence, their order is non-deterministic, leading to different orders of summation. Thanks
to the chaotic nature of MD simulations, these tiny changes result in different patterns
on the macroscopic scale. This means the overall behavior of forming a mist, shock
fronts, and droplets will always occur. Still, their exact positions and shapes will differ.

Tuning Strategy Comparison Since this scenario is evolving very quickly, it is an inter-
esting example to analyze how the tuning strategies presented in Subsection 3.2.3 handle
this. Figure 4.12 shows an overview of the performance of different tuning strategies as
well as tuning intervals and compares them to the baseline of ls1 mardyn vanilla, which
is without AutoPas and thus without any tuning. Performance in this figure is the time
spent in the force calculation, which is the step primarily affected by the tuning and
free of any communication overheads. In this scenario setup, 5 000 is an upper bound
for the tuning interval because this is the rebalancing interval of the MPI load balancer.
While this is not necessarily a strict restriction, we consider it necessary here because
the subdomains often change substantially. Bayesian and Predictive tuning can both
be considered strategies that learn during the simulation from past tuning phases and

105

4 Examples and Applications

Vanilla0.0

2.5

5.0

7.5

10.0

12.5

Fo
rc

e
Ca

lcu
la

tio
n

[h
]

Tuning Interval = 0

Bayesian
Cluster
Search

Full
Search

Predictive
Rules

Predictive
Tuning

Tuning Interval = 1000

Bayesian
Cluster
Search

Full
Search

Predictive
Rules

Predictive
Tuning

Tuning Interval = 2500

Bayesian
Cluster
Search

Full
Search

Predictive
Rules

Predictive
Tuning

Tuning Interval = 5000

Figure 4.12: The wall time spent in the force calculation for the exploding liquid experiment
with ALL using different tuning strategies and intervals. A tuning interval of zero
means no tuning because vanilla is ls1 mardyn without AutoPas, which acts as
a baseline. Exhaustive full search adds significant overhead and strategies based
on data learned on the fly can not sufficiently remedy this. Only the combination
of training (predictive tuning) with some expert knowledge (rule-based tuning)
yields a significant speedup and beats the baseline.

start without any previous knowledge. It can be seen that in this volatile scenario,
this can be better for long tuning intervals than the exhaustive search performed by
full-search, however, it is still worse than the baseline, which doesn’t tune at all. Even
though Bayesian based tuning here spends less time tuning, it but doesn’t find a suffi-
ciently good configurations, thus mostly resulting in longer runtimes. When combining
the learning strategy predictive tuning with the expert knowledge-based rule-based tun-
ing, a significant improvement is observed. We call the combination of these strategies
predictive-rules, Interestingly, in contrast to all other tuning strategies, it is cheaper to
tune more often. This suggests that while tuning is very costly for the other strategies
due to testing of inefficient configurations, tuning is almost free for predictive rules and
benefits from tightly adapted configurations.

To analyze this behavior more thoroughly, Figure 4.13 shows the time per pairwise
iteration for the first 50 000 time steps from each rank colored by the active container
and for each tuning strategy. The figure shows the data from the runs with a tuning
interval of 5 000. Thus, this contains ten tuning cycles, which are visible as vertical clus-
ters of points. Colors between the tuning phases indicate the chosen optimum. Here,
the load balancer bug is very visible in the plots of rank zero and one. The fact that
the slowest runtimes in the full-search subplots only start to rise shortly before iteration
40 000, which is when the shock fronts hit the subdomain boundaries as can be seen in
Figure 4.11b. Especially in the full-search run on rank 1, some very expensive iterations
by Verlet Lists Cells can be seen that are up to two orders of magnitude slower than
the optimum. It has to be noted, however, that data from Verlet Lists-based containers
cluster on two bands. The lower cluster is the actual iteration, and the upper is the iter-
ation plus rebuilding of the lists, so with the here used tr = 10, this is only every tenth
iteration. While bayesian-cluster-search barely learns to avoid these configurations, pre-
dictive tuning correctly removes the most expensive configurations after it has obtained
its minimum of three data points. However, some of them are deemed relevant again,
starting from the sixth tuning phase. This initial slowdown by inappropriate configura-

106

4.3 LAMMPS

tions and erroneous return to them is wholly eradicated when combining this approach
with the restrictions from the rule-based tuning and the Slow Config Filter in the last
row. Here, the first tuning phase still tries out a few configurations, but the following
only test configurations that are near the optimum. This results in Linked Cells being
chosen most of the time with two instances of Var Verlet Lists on rank 0 and one on
rank 1.

Conclusion While strategies which are based purely on learning struggle in this sce-
nario, the combination of learned and expert knowledge here achieves a speedup over the
vanilla version of almost 1.6. The result is similar and even slightly better than what was
already reported for the slower evolving droplet coalescence scenario [SGH+20]. This
shows that the algorithm implementations in AutoPas are competitive to the optimized
ls1 mardyn code and that algorithm tuning in combination with dynamic load balancing
can yield benefits.

4.3 LAMMPS

As ls1 mardyn, the widely popular simulation framework LAMMPS has already been
introduced in Section 3.3 paragraph 3.3.2. AutoPas was integrated into LAMMPS in a
fork of the main LAMMPS project. This version is publicly available on GitHub10.

The goals of the experiments below are to demonstrate the following points:

1. LAMMPS-AutoPas is on a comparable level of performance as the vanilla version.
LAMMPS has the inherent advantage of being a significantly more mature code
with a much larger developer team, which makes it challenging to beat.

2. Although the architecture of LAMMPS is not easily compatible, the effort of inte-
grating AutoPas and achieving reasonable performance is very manageable.

3. Integrating AutoPas and retaining most features of LAMMPS is achievable.

4.3.1 AutoPas Integration

In order to demonstrate the compatibility of AutoPas and to better compare the perfor-
mance of the implemented algorithms, AutoPas was integrated into LAMMPS. Here, it
was slightly more challenging to replace the core with AutoPas because LAMMPS does
not have a similar concept of a data container due to its heavy C legacy. Instead, particles
are stored in SoA style global arrays and accessed directly. To make all LAMMPS styles
compatible with AutoPas, variants of them have been created that mostly use iterators
to access particles. We acknowledge that this is can often be a source of slowdown, but
a more optimal integration would have required a more extensive rewrite, which was
not the scope of this work. The primary source of friction like this is when LAMMPS
relies on direct random access by array index. Due to the nature of AutoPas not having

10https://github.com/AutoPas/lammps-autopas/ Accessed: 20.12.2024

107

https://github.com/AutoPas/lammps-autopas/

4 Examples and Applications

0.0

0.5

1.0

1.5

ite
ra

te
Pa

irw
ise

To
ta

l[s
]

full-Search | Rank 0 full-Search | Rank 1 full-Search | Rank 2

0.0

0.5

1.0

1.5

ite
ra

te
Pa

irw
ise

To
ta

l[s
]

bayesian-cluster-search | Rank 0 bayesian-cluster-search | Rank 1 bayesian-cluster-search | Rank 2

0.0

0.5

1.0

1.5

ite
ra

te
Pa

irw
ise

To
ta

l[s
]

predictive-tuning | Rank 0 predictive-tuning | Rank 1 predictive-tuning | Rank 2

0 1 2 3 4 5
Iteration 1e4

0.0

0.5

1.0

1.5

ite
ra

te
Pa

irw
ise

To
ta

l[s
]

predictive_rules | Rank 0

0 1 2 3 4 5
Iteration 1e4

predictive_rules | Rank 1

0 1 2 3 4 5
Iteration 1e4

predictive_rules | Rank 2

Container
LinkedCells
VarVerletListsAsBuild
VerletLists
VerletListsCells

Figure 4.13: The time spent per iteration in the force calculation for different strategies for
the first 5 000 iterations of the exploding liquid experiment per rank. Each dot
represents one iteration, and its color is the employed container. Every row is one
run of the experiment. The vertical clusters are tuning phases. Combining tuning
strategies avoids the most expensive outliers.

108

4.3 LAMMPS

(a) Initial crystal (b) Molten liquid

Figure 4.14: Visualization of the LAMMPS Lennard-Jones liquid benchmark scenario. The
left subfigure shows the initialization as a cube of a dense face-centered cubic
grid of four million atoms. Subsequently, the grid melts, and a homogeneous but
somewhat dynamic liquid ensues.

a permanent container and thus data layout, this is not possible. These instances are
resolved by creating an index to particle pointer map, which offers the random access
functionality but has to be rebuilt after every full container update.

To underline the usability aspect of AutoPas, the lines of code required for the inte-
gration can be compared to those of other accelerator packages like PKG USER-OMP and
PKG KOKKOS. The original complete integration of AutoPas into LAMMPS made about
4 800 lines of changes throughout the code [Sau20]. Only about 100 of those are up-
dates of the inner code of LAMMPS. The rest is the creation of the PKG USER-AUTOPAS

package. This is significantly less than the absolute size of the OpenMP and Kokkos
packages with about 54 000 and 72 000 lines of code each. While both of them might
implement more features, the relative difference in lines of code is substantially larger
than the relative number of supported features. We thus conclude that the API offered
by AutoPas offers a concise way to express functionality and allows for an integration
with comparatively little effort.

4.3.2 Lennard-Jones Liquid Benchmark

Setup The performance of the LAMMPS-AutoPas integration is evaluated through
the Lennard-Jones liquid benchmark defined on the official LAMMPS website11. To
make the comparison fairer, the input has been slightly adjusted without changing the

11https://www.lammps.org/bench.html#lj Accessed: 20.12.2024

109

https://www.lammps.org/bench.html#lj

4 Examples and Applications

1 2 4 8 14418 36 72

10 1

100

101

102

Ti
m

e
[m

in
]

Timer = Wall Time

1 2 4 8 14418 36 72
Threads

Timer = Pair+Neigh

1 2 4 8 14418 36 72
Threads

Timer = Comm

1 2 4 8 14418 36 72
Threads

10 1

100

101

102

Ti
m

e
[m

in
]

Timer = Modify

Tuning
Full Search
lc_c04
lc_sliced_balanced
Predictive Rules
kokkos
omp

Figure 4.15: Strong scaling of the Lennar-Jones liquid benchmark with LAMMPS. The subplots
show timers measuring different parts of the simulation program on a log-log scale.
Colors depict different parallelization packages and tuning strategies. omp refers
to PKG USER-OMP, kokkos to PKG KOKKOS, and all others to PKG USER AUTOPAS.
The two prefixed with lc do not employ tuning and solely use the respective
configuration, while the other two employ the respective tuning strategies. In
the Pair+Neigh subplot, the gray line without markers illustrates optimal linear
scaling. AutoPas without tuning achieves a faster calculation of the pairwise forces
due to better scaling. Overall, it is, however, limited by overhead from the Comm
phase.

scenario itself. Global indices and thermodynamic information were activated, domain
size parameters are scaled more fine grained, and the number of time steps now is also
an input value. The exact input file and the commands to launch the benchmark, which
also set some parameters, are listed in Section A.5. In this experiment, a cube-shaped
domain is initialized with a very dense face-centered cubic grid, as shown in Figure 4.14a,
modeling a crystal of Lennard-Jones particles. Through the injection of kinetic energy
upon initialization, the crystal melts into a homogeneous liquid, which can be seen in
Figure 4.14b.

Strong Scaling Study This experiment was used for a strong scaling study on HSUper
with the accelerator packages PKG USER-OMP, PKG KOKKOS, and PKG USER AUTOPAS. Re-
sults from this study are plotted in Figure 4.15, which shows six algorithmic setups and

110

4.3 LAMMPS

measurements from four timers. The upper left subplot shows the high-level perspective
of the wall time. Looking first at the AutoPas setups, we again see the expected effect
that predictive rules tuning beats full search convincingly. However, because this bench-
mark has very slow dynamics and only lasts for 1 000 iterations and is thus too short
to reap the benefits of tuning, it is reasonable to look at the performance of the two
AutoPas configurations that perform best in this scenario. These are the two Linked
Cells based configurations lc c04 and lc sliced balanced. Both of these configura-
tions only have limited load balancing and schedule big domain chunks as tasks for the
threads. Only utilizing these best configurations on such a short simulation gives a
speedup of about two over the predictive rules tuning, which is expected as long as the
rules are not sharply tailored to the setup. Nevertheless, here, the two packages provided
with LAMMPS seem to beat even the optimal AutoPas configurations convincingly by
a factor of two to three.

Diving under the hood of the overall time and looking at the timers that show how
long the major individual steps take, the picture changes significantly. The upper middle
subplot of Figure 4.15 shows the measurements of the timers Pair and Neigh, which had
to be added because, from LAMMPS perspective, these two things can not be distin-
guished in AutoPas. Combined, they represent the time the pairwise force calculation
takes and are the main lever for optimizing the parallel efficiency of the overall sim-
ulation. Here, we see that the AutoPas algorithms only lack about 30% behind the
LAMMPS algorithms for low thread counts. Beyond nine threads, the parallel efficiency
of both the OpenMP and Kokkos-based packages fall off, and the AutoPas algorithms
break even and lc c04 even surpasses them, achieving the overall fastest result when
using the full node with hyper-threading. The reason lc sliced balanced stops scaling
beyond 36 threads is that the domain is too tiny, featuring less than 60 cells across.
Thus, this coarse-grained algorithm can not distribute the work to all threads, which
leads to diminished gains in performance and even a decline when, with 144 threads,
significantly more are started than can be used. In their documentation12, the developer
of the LAMMPS Kokkos package acknowledge that their buffer approach, which works
by the principles discussed in Subsection 2.1.5, does not scale well beyond eight threads
which are confirmed by the here presented findings.

Looking at the plot on the top right, it becomes clear why AutoPas did not beat
Kokkos and OpenMP overall. Depicted is the Comm timer, which in this non-MPI
based simulation primarily measures the treatment of the periodic boundaries. Because
this should not be the critical part of the simulation, no parallelization is employed, which
is evident by the performance graph being horizontal and thus not being impacted by
the increase in the thread count. Nevertheless, it can be seen that for AutoPas, the time
spent is around seven to eight minutes, which thus is a hard scaling limit that is hit and
explains the performance gap observed in the wall time plot. This means that due to the
integration’s overreliance on iterators to replace the aforementioned random access oper-
ations, overhead is generated, which limits the performance of the AutoPas integration.
These limitations could be overcome either by developing a more complex integration

12https://docs.lammps.org/Speed_kokkos.html Accessed: 20.12.2024

111

https://docs.lammps.org/Speed_kokkos.html

4 Examples and Applications

that avoids these random access operations or with more performance engineering in the
AutoPas iterators geared explicitly towards the LAMMPS use case.

Finally, the last plot shows the Modify timer, which measures the time taken for
the parallelized update of the particles after the force calculation. OpenMP and Kokkos
again start out faster than AutoPas, probably due to simpler to traverse data structures.
The OpenMP package relies mainly on data duplication per thread, thus the lack of
scaling here.

Conclusion Looking back at the goals set out at the beginning of Section 4.3, some
conclusions can be drawn. The overall performance of the LAMMPS-AutoPas inte-
gration is not yet at the same level, albeit in the same order of magnitude as native
LAMMPS. Reasons for this are the fundamentally different way to access particles and
the required overuse of iterators, which in AutoPas still have room for optimization.
However, AutoPas shows better scaling behavior in the pairwise force calculation where
it can beat LAMMPS. All of this could be achieved with a comparatively lightweight
coding effort that still allowed this and more complex simulations [Sau20]. Thus, while
there is still room for improvement in this example application, overall, we consider this a
successful demonstration of AutoPas being a performant library for pairwise interactions
that is easy to integrate into established codes.

4.4 LADDS

Particle simulations can come in different forms on any scale, as was already explored in
Section 2.1. All application examples above primarily focus on MD. However, AutoPas is
not designed with any built-in assumptions which limit it to this. Hence, this application
demonstrates the use of AutoPas in a completely different setting, namely space debris
simulation, which is closer to a DEM simulation.

4.4.1 Background

Although alternative approaches exist, the usual approach to simulate and study the
evolution of space debris in Low Earch Orbit (LEO) are statistical Monte Carlo sim-
ulations [KSH+17, LLA17]. Two highly relevant software models in this context are
LEGEND [LHKO04] by National Aeronautics and Space Administration (NASA) and
Delta by European Space Agency (ESA) [Vir16]. In the context of an ARIADNA study
and this thesis, the Advanced Concept Team of ESA and SCCS studied the feasibility
and potential of deterministic evolution and conjunction tracking of large space debris
populations. The idea was to challenge the long-standing assumption that these simula-
tions are computationally not feasible with modern algorithms and techniques from MD,
brought in by SCCS, where large particle counts in the billions and long simulation times
over millions of time steps are familiar and well handled as discussed in Section 2.1. For
this, we developed over a short time frame of a few months the Large-scale Determin-

112

4.4 LADDS

Figure 4.16: Visualization of the reduced dataset used by LADDS of about 16 000 objects in
LEO. The rendered perspective looks at the Earth’s north pole, which is visible
as a small circle of lesser density near the center of the image, and the south pole
as a slightly smaller circle behind it. This is because comparatively few satellites
are launched in a polar orbit since their launches can not take advantage of the
rotation of the Earth and are thus more expensive. From [GG22].

istic Debris Simulation, or short LADDS. This code is written in C++ 17 and publicly
available on GitHub under a GPL-3.0 license13.

Numerical Model From a modeling perspective, one of the biggest challenges is to find
good models for the perturbations influencing the trajectories of particles in orbit. These
include but are not limited to, the nonhomogeneous gravity field of Earth, gravitational
pull by other celestial bodies like the sun or the moon, solar radiation pressure, and
atmospheric drag. Furthermore, in contrast to MD simulations where the exact position
is not of relevance, here numerical time integration schemes of higher precision are
necessary because we are interested in deterministic conjunctions of objects as small
as centimeters in a domain with a diameter of tens of thousands kilometers. Currently,
LADDS uses a fourth-order Yoshida integrator, which is an extension of the leapfrog
algorithm by some extra steps to achieve higher orders [Yos90]. With this order of
precision, it is also possible to propagate the particles for several time steps before
searching for conjunctions. The trajectories of particle pairs that have a close encounter
between the time steps are then interpolated, and their closest approach is calculated. In
LADDS, all these parts are collectively referred to as the propagator, which is described
in more detail in the release publications [GGBI22, GGS22]. To enhance the utility of
LADDS, the propagator models are plugged into the simulation in a compartmentalized
modular way. This enables us to quickly replace, for example, the atmospheric model or
the time integration algorithm so their exact impact on precisely repeatable simulation
scenarios can be studied. Further code features include modeling and gradual insertion

13https://github.com/esa/LADDS/ Accessed: 20.12.2024

113

https://github.com/esa/LADDS/

4 Examples and Applications

Figure 4.17: Visualization of an isolated collision event at 380 km altitude above ground and
the evolution of the debris field over two and a half orbit. Debris particles are
colored by their parent object. From [GG22].

of satellite constellations, as well as implementing the NASA breakup model. The latter
allows us to either simulate the result of an individual breakup event or, embedded in
a population evolution simulation, the collision of two objects, the propagation of the
debris fields, and its interaction with the rest of the population. A visualization of an
isolated collision simulation is shown in Figure 4.17. From a simulation perspective,
such a breakup event presents unique challenges because it suddenly injects potentially
thousands of particles into a very tight space, locally heavily increasing the workload.

Computer Science Challenges LADDS is written with AutoPas as its core data struc-
ture, allowing for a rapid development process and the first working prototype already
featuring OpenMP parallelism. To tackle the goal of simulating a realistic population
of all debris of one cm and larger in LEO up to 2 000 km above the ground, a MPI par-
allelization was added. This proved to be very different from classic MD because of the
distribution of particles. In MD, particles are usually spread more or less over the whole
domain and move in all directions. Here in the space debris scenario, particles move on
an elliptic but close to circular orbit around the Earth as can be seen in Figure 4.16. This
makes the classic approach using a grid-based domain decomposition highly inefficient
because, for example, in the Earth, which makes up a significant part of the simulation
domain, no debris needs to be simulated. Additionally, small subdomains would very
quickly be passed through by particles with orbital velocities, inducing high communica-
tion overhead. Unfortunately, AutoPas at this time only supports cuboid domain shapes,
so the spherical domain of interest has to be simulated with a cube shape, adding the
considerable overhead of simulating corners where no orbit can reach. Our alternative
approach nests the ranks and thereby the AutoPas instances inside each other like in a
Matroshka. Now, each rank can simulate an altitude band of particles, and only very

114

4.4 LADDS

(a) Full Domain (b) Zoom in

Figure 4.18: Visualization of the altitude-based MPI domain decomposition in LADDS. The
left figure shows a 2D slab of the entire domain with a reduced dataset. Colors of
particles represent the ranks they belong to. Colored regions visualize the extent
of the ranks’ respective AutoPas containers. From [GG22].

eccentric particles, which are not very frequent, need to be moved between ranks. This
approach is visualized as a 2D slab and with a reduced population in Figure 4.18. To
achieve a good load balance, the altitudes are selected automatically so that each rank
receives approximately the same number of objects.

4.4.2 Benchmark Simulation

Instead of focussing on the value for astrophysics, this thesis reexamines the HPC char-
acteristics, and especially the role AutoPas plays in the program. Therefore, we look at
the short benchmark simulation, which is based on the big experiment setup included
in the simulator and discussed in the release publication [GGS22].

Setup This simulation comprises around 600 000 objects in LEO, which is based on
actual, tracked objects such as satellites or larger pieces of space debris, combined with
a population of smaller objects, for which public tracking data is not available, generated
according to known distributions [GGS22]. The setup is propagated for 1 000 time steps
of ten seconds, and a check for conjunctions happens every tenth iteration. This is, from
the particle simulation perspective, the pairwise interaction evaluation. After every
iteration, the altitude of each particle is checked. If any are found to be closer than
150 km to the surface of the earth, we consider them to be burning up in the atmosphere
and remove them from the simulation. Since the pieces of debris are distributed relatively
evenly around the planet and less than one percent deorbits within the short simulation,

115

4 Examples and Applications

tuning is not advisable, similar to in Subsection 4.3.2. Therefore, we fix the configuration
to use Linked Cells with lc c04 HCP as this has been evaluated as the best algorithm for
this setup [GG22]. Even though large parts of the domain are empty, which typically
suggests that Linked Cells is not the best approach, it is still effective because the cells in
the domain are huge and thus comprise many particles, leading to effective vectorization.
Also, any Verlet Lists-based approaches are at a disadvantage because the high speed
of objects in orbit forces large skins or very short rebuild intervals. The complete input
configuration is given in Section A.6. Each rank was given 32 OpenMP threads, and
each node hosts two ranks, except when there is only one rank. Then, only one node
with one rank and 32 threads is used.

MPI Strong Scaling of Components In Figure 4.19, the strong scaling behavior of the
most time-intensive components of LADDS are shown. Each plotted datapoint is the
sum of the timers of all ranks averaged. Comparing these averages to the measured wall
times is exceptionally close to the measured wall time and can be considered equal here.
AutoPas primarily drives two components. First, the collision detection through the
pairwise interaction evaluation in AutoPas Second, the integrator, which can be consid-
ered a compute-intensive for loop over all particles and thus depends on the performance
of the ContainerIterator. Looking at the slope of these two components’ graphs, we
see good scaling behavior. The collision detection loses parallel efficiency from 32 ranks
because the altitude bands of each rank become very thin, with less than 20 km for the
lowest altitudes. Initialization takes a constant time until 32 ranks and then increases
rapidly. This is because the initialization was not considered to be important relative
to the extremely long run times of the scientifically significant simulations, and thus, no
effort was undertaken to optimize it. Currently, the whole input file is loaded and parsed
by every rank to find their relevant particles, which does not scale well. The primary
bottleneck highlighted by Figure 4.19 is the time spent on communication. Even though
the altitude-based decomposition achieved better times to solution than the naive grid-
based one, it still suffers from an enormous surface area between the ranks on which
particles need to be exchanged. This communication volume is roughly the same for
each rank due to the load balancing leading to added overall costs per added rank.

Conclusion LADDS is a small project that employs AutoPas to successfully demon-
strate the feasibility of simulating realistic space debris populations deterministically.
AutoPas enables good scaling behavior and performance for the components that pri-
marily interact with the library. For larger simulations, better tailored MPI decom-
position solutions have to be identified, but that is a task that is not in the realm of
responsibility of AutoPas. Nevertheless, it could help to offer the possibility to use polar
coordinates instead of only Euclidean ones and non-cuboid domain shapes.

However, with the implementation presented here, significant results are achievable.
Our release publication [GGS22] describes the setup for two data sets and our achieved
speeds on CoolMUC2 as shown in Table 4.2. With this, we were able to conduct a
simulation of the evolution of the small base dataset over 20 years in 218.25 hours or

116

4.4 LADDS

1 2 4 8 16 32 64 128
MPI Ranks

101

102

Ti
m

e
[s

]

Collision detection
Communication
Initialization
Integrator
Total

Figure 4.19: Wall times of the main components of LADDS in a strong scaling study of the big
debris scenario. Collision detection and the integrator mainly reflect the perfor-
mance of AutoPas and scale very well. Initialization is generating overhead that
rises beyond 32 ranks. With the high number of objects, communication time is
a problem that is linear in the number of ranks. Total depicts the total of all
individual timers and thus shows the scaling of the whole application.

117

4 Examples and Applications

Population Name # Objects s/iter

Base 16 024 0.012
Small Debris 614 515 0.21

Table 4.2: Simulation speed of the two debris populations on CoolMUC2 [GGS22].

just over 9 days. Now, with the current14 version of AutoPas, the new altitude-based
domain decomposition, and on the more modern system HSUper, the simulation speed
of the larger population is at 0.026 seconds per iteration with 64 MPI ranks. This brings
a long evolution simulation of the big population within reach.

Not captured by the study is the enormous ease of development AutoPas brought to
the project. LADDS itself only consists of just over 4 000 lines of code, including all
CMake code for the build system. The here used standalone propagator adds another
2 000, but this is not specific to AutoPas and can be switched out. Furthermore, with
different stages of development and scenarios, different neighbor identification algorithms
proved to be advantageous, which was very simple to adapt to [GG22].

4.5 Interim Summary

This chapter’s purpose was to showcase how well the theories behind AutoPas work in
reality, but also the usability of its abstractions in terms of the ability to integrate into
different simulation environments, and last but not least, its performance. For this, four
simulation codes that use AutoPas and examples were demonstrated and discussed.

Performance and Scalability To put the simulation speed into perspective, AutoPas
was integrated into the codes ls1 mardyn and LAMMPS. Then, benchmark simulations
were conducted with the vanilla versions of the code and the AutoPas versions. In the
exploding liquid scenario, discussed in Subsection 4.2.2, AutoPas with the proper tuning
approach is faster than vanilla ls1 mardyn as shown in Figure 4.12. The LAMMPS-
AutoPas integration proved more challenging. In contrast to ls1 mardyn, the background
of the developers is significantly different from ours, which leads to more significant dif-
ferences in code architecture. This results in some friction overhead, as discussed, that
still leaves room for optimization. Nevertheless, the results achieved in the Lennard-
Jones Liquid benchmark in Subsection 4.3.2, and Figure 4.15 speed is comparable to
native LAMMPS but offers better scalability than both the KOKKOS and USER-OMP pack-
ages. This leads to higher peak performance when using the USER-AUTOPAS package and
a complete compute node.

Viability of Tuning Methods The different simulation scenarios and benchmarks also
offered insights into the potential of automated algorithm selection and the viability of
different approaches to it. Subsection 4.2.2 with the exploding liquid demonstrated that,

14See Section A.6 for the exact version.

118

4.5 Interim Summary

especially in scenarios with quickly changing conditions, the combination of situation-
specific learning with prior formulated general expert knowledge is the key to unlocking
the full potential of the tuning approach. In order to gather and express this knowledge,
metrics are necessary to describe the state of the domain. Subsection 4.1.2 showed a cor-
relation between specific domain properties and the likelihood of certain configurations
being picked. Subsequently, Subsection 4.1.3 introduced metrics AutoPas can gather on
the fly and in Figure 4.10 shows how it uses them for its rule-based tuning.

API Usability Integrating AutoPas into four different code bases at different stages of
their development offers a nuanced perspective on the effectiveness and utility of our API.
The test bench md-flexible, which turned into a full simulator capable of conducting MPI
parallel simulations involving features like thermostats, checkpointing, dynamic load
balancing, output for visualization and analysis of AutoPas, evolved along with AutoPas.
Hence, judging the API only based on this can be misleading. Similarly, ls1 mardyn was
a significant source of inspiration during the development of AutoPas. Nevertheless,
integrating AutoPas into it demonstrates a degree of versatility and compatibility with
code initially not in scope when developing AutoPas. The integration into LAMMPS
is a much sterner test because of the significantly different architectures touched upon
in Section 4.3. Indeed, the integration proved reasonably straightforward compared to
other parallelization and data structure enhancement packages. Finally, with LADDS,
a new simulator that, in contrast to the others, is not concerned with MD was built
when AutoPas was already in a very advanced stage with a stable API. Here, AutoPas
significantly accelerated the development process and led to excellent performance from
the very start and after every collision model change because of its ability to change
algorithms, even if they do not have to change at runtime.

119

5 Conclusion and Outlook

This chapter brings together all the results and insights of everything written in this
thesis until here, summarizes it, and ties it back to the initial research questions and ob-
jectives. In light of the presented insights, they are discussed, and answers are proposed.
Finally, we glimpse the future of AutoPas on what is conceivable or already planned.

5.1 Recap and Discussion

In Section 1.1, the thesis opened up with a trio of research questions it set out to answer.
Now, at the end of the work, they shall be evaluated and answered.

1. Is there a feasible API interface for all short-ranged particle interaction algo-
rithms?

Before the question is tackled directly, in Subsection 2.1.1, the thesis revisited the
theoretical foundations of particle interaction algorithms, and in Subsection 2.1.2,
the broader particle simulations context they are applied to. The abstract al-
gorithms were discussed, formulated, and compared in Subsection 2.1.3. Here,
similarities and overlaps were identified that can be taken advantage of in the
implementation or that have to be carefully balanced.

Throughout Chapter 3, the library AutoPas was presented with comprises of all
the presented algorithms and offers a unified API as a high-level response to the
research question. To develop a more profound answer, first, in Subsection 3.1.1,
the abstract model that AutoPas uses to interact with particle simulations was
sketched, and its inner as well as user-facing structure was described. Here, the
highest potential for improving usability is the functor’s API. While it offers a
unified API to interact with all algorithms, the user has to implement their kernel
in at least two ways: One for AoS and one for SoA, which offers fine-grained
manual optimization access but also requires the technical knowledge to exploit
this otherwise uncomfortable design. The more technical aspects, which answer the
nuances of this research question, were tackled in Subsection 3.1.2. Our approach to
a black box interface that implements a hybrid Verlet Lists-Linked Cells style was
defined, and its implementation in AutoPas was explained. This implementation
offers a convenient way to interact with any of the presented algorithms without
having to know which one is behind the facade of the library. However, due
to the scope of AutoPas as the simulation’s particle container, the API can not
be limited only to the pairwise iteration. Solutions for further abstractions like
accessing and traversing particles in serial and parallel are shown, as well as C++

121

5 Conclusion and Outlook

template-based code generation for SoA data structures that all algorithms can
use. Subsection 3.1.3 discussed how specialized optimizations are still possible
behind the API for best performance on different hardware architectures.

Finally, the four integrations presented in Chapter 4 confirm that the high level API
is not only feasible from a design perspective but is also usable with comparatively
little effort in different code bases. Subsection 4.1.1 showed this for a simulator
that was developed alongside and for AutoPas. In contrast, Subsection 4.2.1 and
Subsection 4.3.1 demonstrated the ability to integrate into an existing code base,
with both having a very different architectural concept. With LADDS in Subsec-
tion 4.4.1, a powerful simulator from a different domain was shown that was built
on top of AutoPas and highly benefitted from its API by having a small code base
that only focuses on the actual application.

2. Can an automated dynamic selection of the short-ranged particle interaction algo-
rithm bring advantages for particle simulations?

In order to formulate an answer to this question, Subsection 2.2.1 defined the
theoretical concept of the algorithm selection problem. Subsection 2.2.2 extended
this to the automation of it, important properties and key considerations on how to
bring down the complexity to a feasible degree were highlighted. The algorithmic
level, individual advantages, and algorithmic properties that can lead to advantages
under specific circumstances were discussed in Subsection 2.1.4. Subsection 2.1.5
and 2.1.6 discussed the different potentials of parallelization.

So, from a theoretical point of view, especially these three parts have shown that
the algorithms expose differences that can be taken advantage of. Additionally,
Section 4.1 demonstrated in synthetic as well as realistic simulations that different
scenarios do indeed lead to different algorithm optima.

3. Is this approach practical and delivers performance while general enough to extend
beyond its application in MD?

Providing practical access for the user and its ease of integration into simulation
engines have already been solved by the answer to the first question. For this
question, the internal practicality of the tuning process is also relevant since this
is tightly coupled to the overall performance. Section 3.2 explained in detail the
implementation starting with Subsection 3.2.1 of the theoretical concepts from
Section 2.2. Next, Subsection 3.2.2 described the heart of the automated algorithm
selection process, the tuning loop, how it advances the simulation while gathering
information, and how it can employ several tuning strategies with a plugin-like
interface. These strategies were then explained in Subsection 3.2.3, concluding
the first part of the question and demonstrating a practical implementation of the
approach.

Chapter 4 responded to the second and third parts by putting AutoPas to ac-
tion to demonstrate its performance in different settings. Section 4.2 and Subsec-
tion 4.3.2 showed that even established simulators with a long optimization history

122

5.2 Future Directions

can benefit from AutoPas under certain circumstances. The conclusion from this
chapter was that depending on the situation, automated dynamic algorithm selec-
tion can be beneficial, as in Subsection 4.1.3 and Section 4.2, but in others, like
Subsection 4.3.2 static choices are more advantageous because the scenario does
not change its state. Thus the potential impact of the AutoPas approach signifi-
cantly depends on the software and simulations it is integrated into. Nevertheless,
since some choice for an algorithm always has to be made, having the ability to
choose from a zoo of already implemented algorithms clearly grants flexibility and
speedup in the development process. AutoPas offers this ability by simply adapt-
ing the arguments passed to it without having to adapt the simulator’s interaction
with it or even recompilation.

The applicability and performance beyond MD were demonstrated with Section 4.4,
where a space debris simulation was developed and successfully employed.

So, in conclusion, we can say that the automated algorithm selection offered by
AutoPas, while not providing superior time to solution in every scenario, is a benefi-
cial tool, especially for evaluating new algorithms or facilitating the development of new
simulators.

5.2 Future Directions

Even if the presented state and set of features of AutoPas is considerable, there is always
more to be done.

The experiments showed that learning without knowledge requires too many trial
evaluations of potentially expensive functions to be of great use. However, the here
presented solution relies on expert knowledge provided by a user. The next step is to
have a data-driven approach that learns and builds a model from a range of synthetic
simulations or a series of real simulations and reuses this in subsequent, new simulations.
Simple classification algorithms could be considered like random forests. They also have
the advantage of high interpretability, so it might be possible to derive rules from a
trained forest to feed back into the rule-based tuning.

Subsection 3.2.4 touched upon the possibility of tuning for energy efficiency. When
more than one tuning objective is available, the next step is to have a multi-objective
tuning goal with constraints instead of choosing between them. For example, it could be
conceivable to tune a simulation for an optimal runtime given a limited energy budget
or the other way around to finish within a specific time with the least possible energy
used.

In Subsection 3.1.1.1, the growing relevance of GPUs was mentioned. Sooner or later,
AutoPas should support offloading the interaction calculations to accelerators to be able
to fully utilize the newest generation of heterogeneous supercomputers. An implemen-
tation for this could be written with a performance portability framework like Kokkos
or SYCL to maximize hardware support and minimize the amount of code that has to
be maintained. This is interesting for additional reasons. On the one hand, existing

123

5 Conclusion and Outlook

algorithms either have to be adapted to be efficient on GPU architectures or new ones
added, necessitating relearning all gathered expert knowledge on new hardware. On the
other hand, this capability enables any simulator that integrates AutoPas immediately
to utilize supported accelerators, considerably boosting the library’s attractiveness.

124

Bibliography

[ACMR06] Warren Armstrong, Peter Christen, Eric McCreath, and Alistair P Ren-
dell. Dynamic algorithm selection using reinforcement learning. In 2006
international workshop on integrating ai and data mining, pages 18–25.
IEEE, 2006.

[ADPK23] Peter Atkins, Julio De Paula, and James Keeler. Atkins’ physical chem-
istry. Oxford university press, 2023.

[AGG20] Joshua A Anderson, Jens Glaser, and Sharon C Glotzer. HOOMD-
blue: A Python package for high-performance molecular dynamics and
hard particle Monte Carlo simulations. Computational Materials Science,
173:109363, 2020.

[ALT08] Joshua A Anderson, Chris D Lorenz, and Alex Travesset. General purpose
molecular dynamics simulations fully implemented on graphics processing
units. Journal of computational physics, 227(10):5342–5359, 2008.

[Ame14] William F Ames. Numerical methods for partial differential equations.
Academic press, 2014.

[AMS+15] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll,
Jeremy C Smith, Berk Hess, and Erik Lindahl. GROMACS: High perfor-
mance molecular simulations through multi-level parallelism from laptops
to supercomputers. SoftwareX, 1:19–25, 2015.

[Bab79] László Babai. Monte-Carlo algorithms in graph isomorphism testing. Tech-
nical Report 79-10, Université tde Montréal, 1979.

[BH86] Josh Barnes and Piet Hut. A hierarchical O (N log N) force-calculation
algorithm. nature, 324(6096):446–449, 1986.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfia-
bility, volume 185. IOS press, 2009.

[BI21] Francesco Biscani and Dario Izzo. Revisiting high-order Taylor methods
for astrodynamics and celestial mechanics. Monthly Notices of the Royal
Astronomical Society, 504(2):2614–2628, 2021.

[BO00] Max Born and Robert Oppenheimer. On the quantum theory of molecules.
In Quantum Chemistry: Classic Scientific Papers, pages 1–24. World Sci-
entific, 2000.

125

BIBLIOGRAPHY

[BRP05] Javier Bonet and Miguel X Rodŕıguez-Paz. Hamiltonian formulation of the
variable-h SPH equations. Journal of Computational Physics, 209(2):541–
558, 2005.

[BRU+20] Hans-Joachim Bungartz, Severin Reiz, Benjamin Uekermann, Philipp Neu-
mann, and Wolfgang E Nagel. Software for exascale computing-SPPEXA
2016-2019. Springer Nature, 2020.

[Buc10] Martin Buchholz. Framework zur Parallelisierung von Molekulardynamik-
simulationen in verfahrenstechnischen Anwendungen. PhD thesis, Tech-
nische Universität München, 2010.

[Cah61] John W Cahn. On spinodal decomposition. Acta metallurgica, 9(9):795–
801, 1961.

[CCH+89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C
Mitchell. F-bounded polymorphism for object-oriented programming. In
Proceedings of the fourth international conference on functional program-
ming languages and computer architecture, pages 273–280, 1989.

[Cio08] Florina-Monica Ciorba. Algorithms Design for the Parallelization of Nested
Loops. PhD thesis, Eθνικó Mετσóβιo Πoλυτεχνείo (EMΠ). Σχoλή
Hλεκτρoλóγων Mηχανικών και . . . , 2008.

[CKP91] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetch-
ing. ACM SIGARCH Computer Architecture News, 19(2):40–52, 1991.

[CLZ+21] Genshen Chu, Yang Li, Runchu Zhao, Shuai Ren, Wen Yang, Xinfu He,
Changjun Hu, and Jue Wang. MD simulation of hundred-billion-metal-
atom cascade collision on Sunway Taihu light. Computer Physics Commu-
nications, 269:108128, 2021.

[C/M19] C/MSC - Microprocessor Standards Committee. IEEE Standard for
Floating-Point Arithmetic. Standard, IEEE Computer Society, 2019.

[Cop96] James O Coplien. Curiously recurring template patterns. In C++ gems,
pages 135–144. 1996.

[Cou85] Charles-Augustin Coulomb. First Memoir on Electricity and Magnetism.
A Source Book in Physics, pages 408–413, 1785.

[CP23] Tara Chari and Lior Pachter. The specious art of single-cell genomics.
PLOS Computational Biology, 19(8):e1011288, 2023.

[DBK+16] Hans Degroote, Bernd Bischl, Lars Kotthoff, Patrick De Causmaecker, and
Brona Brejová. Reinforcement learning for automatic online algorithm
selection-an empirical study. ITAT 2016 Proceedings, 1649:93–101, 2016.

126

BIBLIOGRAPHY

[DCGGM11] Jose M Domı́nguez, Alejandro JC Crespo, Moncho Gómez-Gesteira, and
Jean C Marongiu. Neighbour lists in smoothed particle hydrodynamics.
International Journal for Numerical Methods in Fluids, 67(12):2026–2042,
2011.

[DFJ54] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-
scale traveling-salesman problem. Journal of the operations research soci-
ety of America, 2(4):393–410, 1954.

[DM11] Jacob D Durrant and J Andrew McCammon. Molecular dynamics simu-
lations and drug discovery. BMC Biology, 9(1):1–9, 2011.

[DOW+22] Mike Diessner, Joseph O’Connor, AndrewWynn, Sylvain Laizet, Yu Guan,
Kevin Wilson, and Richard D Whalley. Investigating Bayesian optimiza-
tion for expensive-to-evaluate black box functions: Application in fluid
dynamics. Frontiers in Applied Mathematics and Statistics, 8:1076296,
2022.

[DYP93] Tom Darden, Darrin York, and Lee Pedersen. Particle mesh Ewald: An N
log (N) method for Ewald sums in large systems. The Journal of chemical
physics, 98(12):10089–10092, 1993.

[EB96] William D Elliott and John A Board, Jr. Fast Fourier transform accel-
erated fast multipole algorithm. SIAM Journal on Scientific Computing,
17(2):398–415, 1996.

[Eck14] Wolfgang Eckhardt. Efficient HPC Implementations for Large-Scale
Molecular Simulation in Process Engineering. Dissertation, Institut für
Informatik, Technische Universität München, München, June 2014. Dis-
sertation erhältlich im Verlag Dr. Hut unter ISBN 978-3-8439-1746-9.

[EEZS+21] Mahmoud A El-Emam, Ling Zhou, Weidong Shi, Chen Han, Ling Bai,
and Ramesh Agarwal. Theories and applications of CFD–DEM coupling
approach for granular flow: A review. Archives of Computational Methods
in Engineering, pages 1–42, 2021.

[EHB+13] Wolfgang Eckhardt, Alexander Heinecke, Reinhold Bader, Matthias
Brehm, Nicolay Hammer, Herbert Huber, Hans-Georg Kleinhenz, Jadran
Vrabec, Hans Hasse, Martin Horsch, Martin Bernreuther, Colin W. Glass,
Christoph Niethammer, Arndt Bode, and Hans-Joachim Bungartz. 591
TFLOPS Multi-Trillion Particles Simulation on SuperMUC. In Interna-
tional Supercomputing Conference, pages 1–12. Springer, 2013.

[EHL80] James W Eastwood, Roger Williams Hockney, and DN Lawrence.
P3M3DP-The three-dimensional periodic particle-particle/particle-mesh
program. Computer Physics Communications, 19(2):215–261, 1980.

127

BIBLIOGRAPHY

[Eul65] Leonhard Euler. Theoria motus corporum solidorum seu rigidorum
(etc.)(Cum tabulis aeneis.). AF Röse, 1765.

[Ewa21] Paul Peter Ewald. The calculation of optical and electrostatic grid poten-
tial. Annalen der Physik, 64(3):253–287, 1921.

[FHLS10] Peter L Freddolino, Christopher B Harrison, Yanxin Liu, and Klaus Schul-
ten. Challenges in protein-folding simulations. Nature physics, 6(10):751–
758, 2010.

[FM08] EP Favvas and A Ch Mitropoulos. What is spinodal decomposition. J.
Eng. Sci. Technol. Rev, 1(1):25–27, 2008.

[Fom11] Eduard S Fomin. Consideration of data load time on modern processors
for the Verlet table and linked-cell algorithms. Journal of Computational
Chemistry, 32(7):1386–1399, 2011.

[Gar23] Roman Garnett. Bayesian Optimization. Cambridge University Press,
2023.

[GCBC21] Rajesh Ghosh, Ayon Chakraborty, Ashis Biswas, and Snehasis Chowd-
huri. Evaluation of green tea polyphenols as novel corona virus (SARS
CoV-2) main protease (Mpro) inhibitors–an in silico docking and molec-
ular dynamics simulation study. Journal of Biomolecular Structure and
Dynamics, 39(12):4362–4374, 2021.

[GG22] Fabio Alexander Gratl and Pablo Gómez. Exploring the Use of Molec-
ular Dynamics Simulations for High-Performance Space Debris Collision
Modelling, Nov 2022. Final presentation.

[GGBI22] Pablo Gómez, Fabio Gratl, Oliver Bösing, and Dario Izzo. Deterministic
conjunction tracking in long-term space debris simulations. arXiv preprint
arXiv:2203.06957, 2022.

[GGS22] Pablo Gómez, Fabio Gratl, and Leopold Summerer. Exploring the Use
of Molecular Dynamics Simulations for High-Performance Space Debris
Collision Modelling. Technical report, European Space Agency, 2022.

[GKD19] Jochen Görtler, Rebecca Kehlbeck, and Oliver Deussen. A
Visual Exploration of Gaussian Processes. Distill, 2019.
https://distill.pub/2019/visual-exploration-gaussian-processes.

[GKZ07] Michael Griebel, Stephan Knapek, and Gerhard Zumbusch. Numerical
Simulation in Molecular Dynamics: Numerics, Algorithms, Paralleliza-
tion, Applications, volume 5. Springer Science & Business Media, 2007.

[GM77] Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrody-
namics: theory and application to non-spherical stars. Monthly notices of
the royal astronomical society, 181(3):375–389, 1977.

128

BIBLIOGRAPHY

[GM09] Sanjay Ghemawat and Paul Menage. Tcmalloc: Thread-caching malloc,
2009.

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: the-
ory and practice. Elsevier, 2004.

[Gon07] Pedro Gonnet. A simple algorithm to accelerate the computation of non-
bonded interactions in cell-based molecular dynamics simulations. Journal
of Computational Chemistry, 28(2):570–573, 2007.

[GR87] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle
simulations. Journal of computational physics, 73(2):325–348, 1987.

[Gra17a] Fabio Gratl. Implementation and Evaluation of Task-based Approaches
for Molecular Dynamics Simulations. Studienarbeit/sep/idp, Institut für
Informatik, April 2017.

[Gra17b] Fabio Alexander Gratl. Task Based Parallelization of the Fast Multipole
Method implementation of ls1-mardyn via QuickSched. Master’s thesis,
Technische Universität München, Nov 2017.

[GS10] Matteo Gagliolo and Jürgen Schmidhuber. Algorithm selection as a bandit
problem with unbounded losses. In International conference on learning
and intelligent optimization, pages 82–96. Springer, 2010.

[GSBN22] Fabio Alexander Gratl, Steffen Seckler, Hans-Joachim Bungartz, and
Philipp Neumann. N Ways to Simulate Short-Range Particle Systems:
Automated Algorithm Selection with the Node-Level Library AutoPas.
Computer Physics Communications, 273:108262, 2022.

[GSK+21] Sanjay Gupta, Atul Kumar Singh, Prem Prakash Kushwaha, Ku-
mari Sunita Prajapati, Mohd Shuaib, Sabyasachi Senapati, and Shashank
Kumar. Identification of potential natural inhibitors of SARS-CoV2
main protease by molecular docking and simulation studies. Journal of
Biomolecular Structure and Dynamics, 39(12):4334–4345, 2021.

[GST+19] Fabio Alexander Gratl, Steffen Seckler, Nikola Tchipev, Hans-Joachim
Bungartz, and Philipp Neumann. Autopas: Auto-tuning for particle sim-
ulations. In 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 748–757. IEEE, 2019.

[GZ14] Ning Guo and Jidong Zhao. A coupled FEM/DEM approach for hierar-
chical multiscale modelling of granular media. International Journal for
Numerical Methods in Engineering, 99(11):789–818, 2014.

[Gä19] Ludwig Gärtner. Performance Analysis and Code Generation for the Force
Calculation in Molecular Dynamics Simulations. Master’s thesis, Technical
University of Munich, Oct 2019.

129

BIBLIOGRAPHY

[HA09] XY Hu and Nikolaus A Adams. A constant-density approach for
incompressible multi-phase SPH. Journal of Computational Physics,
228(6):2082–2091, 2009.

[HAN+16] Michael P Howard, Joshua A Anderson, Arash Nikoubashman, Sharon C
Glotzer, and Athanassios Z Panagiotopoulos. Efficient neighbor list cal-
culation for molecular simulation of colloidal systems using graphics pro-
cessing units. Computer Physics Communications, 203:45–52, 2016.

[HEHB15] Alexander Heinecke, Wolfgang Eckhardt, Martin Horsch, and Hans-
Joachim Bungartz. Supercomputing for Molecular Dynamics Simulations:
Handling Multi-Trillion Particles in Nanofluidics. Springer, 2015.

[Her81] Heinrich Hertz. Über die Berührung fester elastischer Körper. J reine und
angewandte Mathematik, 92:156, 1881.

[HF84] Kai Hwang and A Faye. Computer architecture and parallel processing.
McGraw-Hill, New York, NY, USA, 1984.

[HKB+21] Keefe Huang, Moritz Krügener, Alistair Brown, Friedrich Menhorn, Hans-
Joachim Bungartz, and Dirk Hartmann. Machine learning-based opti-
mal mesh generation in computational fluid dynamics. arXiv preprint
arXiv:2102.12923, 2021.

[HLW03] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numeri-
cal integration illustrated by the Störmer–Verlet method. Acta numerica,
12:399–450, 2003.

[HLYK08] Jeong-Mo Hong, Ho-Young Lee, Jong-Chul Yoon, and Chang-Hun Kim.
Bubbles alive. ACM Transactions on Graphics (TOG), 27(3):1–4, 2008.

[HSD12] Barthélémy Harthong, Luc Scholtès, and Frédéric-Victor Donzé. Strength
characterization of rock masses, using a coupled DEM–DFN model. Geo-
physical Journal International, 191(2):467–480, 2012.

[HSM+19] Michael P Howard, Antonia Statt, Felix Madutsa, Thomas M Truskett,
and Athanassios Z Panagiotopoulos. Quantized bounding volume hierar-
chies for neighbor search in molecular simulations on graphics processing
units. Computational Materials Science, 164:139–146, 2019.

[HV19] Matthias Heinen and Jadran Vrabec. Evaporation sampled by stationary
molecular dynamics simulation. The Journal of Chemical Physics, 151(4),
2019.

[ISO22] ISO Central Secretary. Software, systems and enterprise Architecture
description. Standard, International Organization for Standardization,
Geneva, CH, 2022.

130

BIBLIOGRAPHY

[Jac21] Rebecca L. Jackson. “The Uncertain Method of Drops”: How a Non-
Uniform Unit Survived the Century of Standardization. Perspectives on
Science, 29(6):802–841, 11 2021.

[JH02] Lanru Jing and JA Hudson. Numerical methods in rock mechanics. Inter-
national Journal of Rock Mechanics and Mining Sciences, 39(4):409–427,
2002.

[Kab12] Ivo Kabadshow. Periodic Boundary Conditions and the Error-Controlled
Fast Multipole Method, volume 11. Forschungszentrum Jülich, 2012.

[KBC20] Seketoulie Keretsu, Swapnil P Bhujbal, and Seung Joo Cho. Rational
approach toward COVID-19 main protease inhibitors via molecular dock-
ing, molecular dynamics simulation and free energy calculation. Scientific
reports, 10(1):17716, 2020.

[KHNT19] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann.
Automated algorithm selection: Survey and perspectives. Evolutionary
computation, 27(1):3–45, 2019.

[Kim14] Sangrak Kim. Issues on the choice of a proper time step in molecular
dynamics. Physics Procedia, 53:60–62, 2014.

[Kim15] Sangrak Kim. Time step and shadow Hamiltonian in molecular dynamics
simulations. Journal of the Korean Physical Society, 67:418–422, 2015.

[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79–86, 1951.

[KMS+11] Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and
Meinolf Sellmann. Algorithm selection and scheduling. In Principles and
Practice of Constraint Programming–CP 2011: 17th International Con-
ference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings 17,
pages 454–469. Springer, 2011.

[KMST10] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney.
ISAC–instance-specific algorithm configuration. In ECAI 2010, pages 751–
756. IOS Press, 2010.

[KMT94] Eiichiro Kokubo, Junichiro Makino, and Makoto Taiji. HARP-1: a special-
purpose computer for N-body simulation with the Hermite integrator. In
1994 Proceedings of the Twenty-Seventh Hawaii International Conference
on System Sciences, volume 1, pages 292–301. IEEE, 1994.

[KMV22] Gaurav Kumar, Radha Raman Mishra, and Akarsh Verma. Introduction
to molecular dynamics simulations. In Forcefields for Atomistic-Scale Sim-
ulations: Materials and Applications, pages 1–19. Springer, 2022.

131

BIBLIOGRAPHY

[Kos07] Rainer Koschke. Survey of research on software clones. In Dagstuhl Sem-
inar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[KSH+17] Christopher Kebschull, Philipp Scheidemann, Sebastian Hesselbach, Jonas
Radtke, Vitali Braun, H Krag, and Enrico Stoll. Simulation of the space
debris environment in LEO using a simplified approach. Advances in Space
Research, 59(1):166–180, 2017.

[Kut01] Wilhelm Kutta. Beitrag zur näherungsweisen Integration totaler Differen-
tialgleichungen. Teubner, 1901.

[LD17] David Lowry-Duda. On Some Variants of the Gauss Circle Problem. PhD
thesis, Brown University Providence, Rhode Island, 2017.

[Lee06] M Lee. Analysis of high-explosive fragmenting shell impact into spaced
plates. International journal of impact engineering, 33(1-12):364–370,
2006.

[LHH15] Marius Lindauer, Holger Hoos, and Frank Hutter. From sequential algo-
rithm selection to parallel portfolio selection. In Learning and Intelligent
Optimization: 9th International Conference, LION 9, Lille, France, Jan-
uary 12-15, 2015. Revised Selected Papers 9, pages 1–16. Springer, 2015.

[LHHS15] Marius Lindauer, Holger H Hoos, Frank Hutter, and Torsten Schaub. Aut-
ofolio: An automatically configured algorithm selector. Journal of Artifi-
cial Intelligence Research, 53:745–778, 2015.

[LHKO04] J-C Liou, DT Hall, PH Krisko, and JN Opiela. LEGEND–a three-
dimensional LEO-to-GEO debris evolutionary model. Advances in Space
Research, 34(5):981–986, 2004.

[LJ24] John Edward Lennard-Jones. On the determination of molecular fields. II.
From the equation of state of a gas. In Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, volume 106,
pages 463–477. The Royal Society, 1924.

[LJ31] John Edward Lennard-Jones. Cohesion. Proceedings of the Physical Soci-
ety, 43(5):461, 1931.

[LKV12] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When prefetching works,
when it doesn’t, and why. ACM Transactions on Architecture and Code
Optimization (TACO), 9(1):1–29, 2012.

[LL10] MB Liu and GR2593940 Liu. Smoothed particle hydrodynamics (SPH):
an overview and recent developments. Archives of computational methods
in engineering, 17:25–76, 2010.

132

BIBLIOGRAPHY

[LLA17] Aleksander A Lidtke, Hugh G Lewis, and Roberto Armellin. Statistical
analysis of the inherent variability in the results of evolutionary debris
models. Advances in Space Research, 59(7):1698–1714, 2017.

[LLLZ03] MB Liu, GR Liu, KY Lam, and Z Zong. Smoothed particle hydrody-
namics for numerical simulation of underwater explosion. Computational
mechanics, 30:106–118, 2003.

[LMLY10] G Liu, JS Marshall, SQ Li, and Q Yao. Discrete-element method for
particle capture by a body in an electrostatic field. International Journal
for Numerical Methods in Engineering, 84(13):1589–1612, 2010.

[Lon30] Fritz London. Zur theorie und systematik der molekularkräfte. Zeitschrift
für Physik, 63(3-4):245–279, 1930.

[Luc77] Leon B Lucy. A numerical approach to the testing of the fission hypothesis.
Astronomical Journal, vol. 82, Dec. 1977, p. 1013-1024., 82:1013–1024,
1977.

[Lud08] Stefan Luding. Introduction to discrete element methods: basic of contact
force models and how to perform the micro-macro transition to continuum
theory. European journal of environmental and civil engineering, 12(7-
8):785–826, 2008.

[MCG10] OK Mahabadi, BE Cottrell, and G Grasselli. An example of realistic
modelling of rock dynamics problems: FEM/DEM simulation of dynamic
Brazilian test on Barre granite. Rock mechanics and rock engineering,
43:707–716, 2010.

[Mic79] Ronald E Mickens. Long-range Interactions. Foundations of Physics, 9(3-
4):261–269, 1979.

[Mil13] Robert Andrews Millikan. On the elementary electrical charge and the
Avogadro constant. Physical Review, 2(2):109, 1913.

[MM89] Jonas Mockus and Jonas Mockus. The Bayesian approach to local opti-
mization. Springer, 1989.

[MM22] Ranabir Majumder and Mahitosh Mandal. Screening of plant-based nat-
ural compounds as a potential COVID-19 main protease inhibitor: an in
silico docking and molecular dynamics simulation approach. Journal of
Biomolecular Structure and Dynamics, 40(2):696–711, 2022.

[MR99] William Mattson and Betsy M Rice. Near-Neighbor Calculations Using a
Modified Cell-Linked List Method. Computer Physics Communications,
119(2-3):135–148, 1999.

133

BIBLIOGRAPHY

[NBB+14] Christoph Niethammer, Stefan Becker, Martin Bernreuther, Martin Buch-
holz, Wolfgang Eckhardt, Alexander Heinecke, Stephan Werth, Hans-
Joachim Bungartz, Colin WGlass, Hans Hasse, Jadran Vrabec, and Martin
Horsch. ls1 mardyn: The massively parallel molecular dynamics code for
large systems. Journal of Chemical Theory and Computation, 10(10):4455–
4464, 2014.

[New87] Isaac Newton. Philosophiae naturalis principia mathematica, volume 1.
Edmond Halley, 1687.

[NSS+23] Isabel Nitzke, Rolf Stierle, Simon Stephan, Michael Pfitzner, Joachim
Gross, and Jadran Vrabec. Phase equilibria and interface properties of hy-
drocarbon propellant–oxygen mixtures in the transcritical regime. Physics
of Fluids, 35(3), 2023.

[NT+19] David B Newell, Eite Tiesinga, et al. The international system of units
(SI). NIST Special Publication, 330:1–138, 2019.

[NW70] Saul B Needleman and Christian D Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443–453, 1970.

[Nyq28] Harry Nyquist. Certain topics in telegraph transmission theory. Trans-
actions of the American Institute of Electrical Engineers, 47(2):617–644,
1928.

[Pau25] Wolfgang Pauli. Über den Zusammenhang des Abschlusses der Elektro-
nengruppen im Atom mit der Komplexstruktur der Spektren. Zeitschrift
für Physik, 31(1):765–783, 1925.

[PH13] Szilárd Páll and Berk Hess. A flexible algorithm for calculating pair in-
teractions on SIMD architectures. Computer Physics Communications,
184(12):2641–2650, 2013.

[Pli95] Steve Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dy-
namics. Journal of Computational Physics, 117(1):1–19, 1995.

[PWE+15] Chunlei Pei, Chuan-YuWu, David England, Stephen Byard, Harald Berch-
told, and Michael Adams. DEM-CFD modeling of particle systems with
long-range electrostatic interactions. AIChE Journal, 61(6):1792–1803,
2015.

[PYJ+17] Stefan Pantaleev, Slavina Yordanova, Alvaro Janda, Michele Marigo, and
Jin Y Ooi. An experimentally validated DEM study of powder mixing in
a paddle blade mixer. Powder Technology, 311:287–302, 2017.

134

BIBLIOGRAPHY

[PZB+20] Szilárd Páll, Artem Zhmurov, Paul Bauer, Mark Abraham, Magnus Lund-
borg, Alan Gray, Berk Hess, and Erik Lindahl. Heterogeneous paralleliza-
tion and acceleration of molecular dynamics simulations in GROMACS.
The Journal of Chemical Physics, 153(13), 2020.

[RBMC96] Dennis C. Rapaport, Robin L. Blumberg, Susan R. McKay, and Wolfgang
Christian. The Art of Molecular Dynamics Simulation. Computers in
Physics, 10(5):456–456, 1996.

[Ric76] John R Rice. The Algorithm Selection Problem. In Advances in Comput-
ers, volume 15, pages 65–118. Elsevier, 1976.

[Rou12] Olivier Roussel. Description of ppfolio (2011). Proc. SAT Challenge,
page 46, 2012.

[Run01] Carl Runge. Über empirische Funktionen und die Interpolation zwischen
äquidistanten Ordinaten. Zeitschrift für Mathematik und Physik, 46(224-
243):20, 1901.

[Sau20] Sauermann, Sascha. Integration of the C++ Node-Level AutoTuning Li-
brary AutoPas in the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS). Master’s thesis, Technical University of Munich,
Aug 2020.

[Sec21] Steffen Seckler. Algorithm and Performance Engineering for HPC Particle
Simulations. PhD thesis, Technische Universität München, 2021.

[SG64] Abraham Savitzky and Marcel JE Golay. Smoothing and differentia-
tion of data by simplified least squares procedures. Analytical chemistry,
36(8):1627–1639, 1964.

[SG17] Erich Schubert and Michael Gertz. Intrinsic t-Stochastic Neighbor Em-
bedding for Visualization and Outlier Detection: A Remedy Against the
Curse of Dimensionality? In Similarity Search and Applications: 10th
International Conference, SISAP 2017, Munich, Germany, October 4-6,
2017, Proceedings 10, pages 188–203. Springer, 2017.

[SGH+20] Steffen Seckler, Fabio Alexander Gratl, Matthias Heinen, Jadran Vrabec,
Hans-Joachim Bungartz, and Philipp Neumann. AutoPas in ls1 mardyn:
Massively Parallel Particle Simulations with Node-Level Auto-Tuning. In
Journal of Computational Science. Elsevier, 2020. submitted.

[SI09] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: data
race detection in practice. In Proceedings of the workshop on binary in-
strumentation and applications, pages 62–71, 2009.

[SKL07] Harold A Scheraga, Mey Khalili, and Adam Liwo. Protein-folding dynam-
ics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem.,
58:57–83, 2007.

135

BIBLIOGRAPHY

[SLBT04] Y Sheng, CJ Lawrence, BJ Briscoe, and Colin Thornton. Numerical studies
of uniaxial powder compaction process by 3D DEM. Engineering Compu-
tations, 21(2/3/4):304–317, 2004.

[SMS+14] Nitin Sukhija, Brandon Malone, Srishti Srivastava, Ioana Banicescu, and
Florina M Ciorba. A learning-based selection for portfolio scheduling of
scientific applications on heterogeneous computing systems. Parallel and
Cloud Computing, 3(4):66–81, 2014.

[SNK+13] Adarsh Shekhar, Ken-ichi Nomura, Rajiv K Kalia, Aiichiro Nakano, and
Priya Vashishta. Nanobubble collapse on a silica surface in water: Billion-
atom reactive molecular dynamics simulations. Physical review letters,
111(18):184503, 2013.

[Spr10] Volker Springel. Smoothed Particle Hydrodynamics in Astrophysics. An-
nual Review of Astronomy and Astrophysics, 48:391–430, 2010.

[SRJ+22] Stuart Slattery, Samuel Temple Reeve, Christoph Junghans, Damien
Lebrun-Grandié, Robert Bird, Guangye Chen, Shane Fogerty, Yuxing Qiu,
Stephan Schulz, Aaron Scheinberg, Austin Isner, Kwitae Chong, Stan
Moore, Timothy Germann, James Belak, and Susan Mniszewski. Cabana:
A Performance Portable Library for Particle-Based Simulations. Journal
of Open Source Software, 7(72):4115, 2022.

[SS04] K Shintate and H Sekine. Numerical simulation of hypervelocity impacts
of a projectile on laminated composite plate targets by means of improved
SPH method. Composites Part A: Applied Science and Manufacturing,
35(6):683–692, 2004.

[SS22] Qi Shi and Mikio Sakai. Recent progress on the discrete element method
simulations for powder transport systems: A review. Advanced Powder
Technology, 33(8):103664, 2022.

[Stö07] Carl Störmer. Sur les trajectoires des corpuscules électrisés dans l’espace.
Applications à l’aurore boréale et aux perturbations magnétiques. Radium
(Paris), 4(1):2–5, 1907.

[Stu08] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.

[SW22] Christodoulos Stylianou and Michèle Weiland. Exploiting dynamic sparse
matrices for performance portable linear algebra operations. In 2022
IEEE/ACM International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC), pages 47–57. IEEE, 2022.

[SW23] Christodoulos Stylianou and Michele Weiland. Optimizing Sparse Linear
Algebra Through Automatic Format Selection and Machine Learning. In
2023 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 734–743. IEEE, 2023.

136

BIBLIOGRAPHY

[TAB+] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D.
Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimp-
ton. LAMMPS - a flexible simulation tool for particle-based materials
modeling at the atomic, meso, and continuum scales.

[Tch20] Nikola Plamenov Tchipev. Algorithmic and Implementational Optimiza-
tions of Molecular Dynamics Simulations for Process Engineering. PhD
thesis, Technical University of Munich, 2020.

[Tom17] Milan Toma. The Emerging Use of SPH In Biomedical Applications. Sig-
nificances of Bioengineering & Biosciences, 1(1):1–4, 2017.

[TSH+18] Nikola Tchipev, Steffen Seckler, Matthias Heinen, Jadran Vrabec, Fabio
Gratl, Martin Horsch, Martin Bernreuther, Colin W. Glass, Christoph Ni-
ethammer, Nicolay Hammer, Bernd Krischok, Michael Resch, Dieter Kran-
zlmüller, Hans Hasse, Hans-Joachim Bungartz, and Philipp Neumann.
Twetris: Twenty trillion-atom simulation. The International Journal of
High Performance Computing Applications, page 1094342018819741, 2018.

[TSYN21] Yoshiharu Tsugeno, Mikio Sakai, Sumi Yamazaki, and Takeshi Nishi-
nomiya. DEM simulation for optimal design of powder mixing in a ribbon
mixer. Advanced Powder Technology, 32(5):1735–1749, 2021.

[TTW19] Anh Tran, Minh Tran, and Yan Wang. Constrained mixed-integer Gaus-
sian mixture Bayesian optimization and its applications in designing fractal
and auxetic metamaterials. Structural and Multidisciplinary Optimization,
59:2131–2154, 2019.

[TYLT23] Jiyuan Tu, Guan Heng Yeoh, Chaoqun Liu, and Yao Tao. Computational
fluid dynamics: a practical approach. Elsevier, 2023.

[VCG+15] Mauro Vallati, Lukas Chrpa, Marek Grześ, Thomas Leo McCluskey, Mark
Roberts, Scott Sanner, et al. The 2014 international planning competition:
Progress and trends. Ai Magazine, 36(3):90–98, 2015.

[VdMH08] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of machine learning research, 9(11), 2008.

[Ver67] Loup Verlet. Computer ”Experiments” on Classical Fluids. I. Ther-
modynamical Properties of Lennard-Jones Molecules. Physical Review,
159(1):98, 1967.

[vGBE+96] Wilfred F van Gunsteren, SR Billeter, AA Eising, PH Hünenberger, PKHC
Krüger, AE Mark, WRP Scott, and IG Tironi. Biomolecular simulation:
the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der
ETH Zürich, Zürich, 86:1–1044, 1996.

137

BIBLIOGRAPHY

[Vir16] B Bastida Virgili. DELTA debris environment long-term analysis. In
Proceedings of the 6th International Conference on Astrodynamics Tools
and Techniques (ICATT), 2016.

[VKBP02] Ilpo Vattulainen, Mikko Karttunen, Gerhard Besold, and James M Polson.
Integration schemes for dissipative particle dynamics simulations: From
softly interacting systems towards hybrid models. The Journal of chemical
physics, 116(10):3967–3979, 2002.

[VKFH06] Jadran Vrabec, Gaurav Kumar Kedia, Guido Fuchs, and Hans Hasse.
Comprehensive study of the vapour–liquid coexistence of the truncated
and shifted Lennard–Jones fluid including planar and spherical interface
properties. Molecular physics, 104(09):1509–1527, 2006.

[VPB23] Vincent A Voelz, Vijay S Pande, and Gregory R Bowman. Folding@home:
Achievements from over 20 years of citizen science herald the exascale era.
Biophysical journal, 122(14):2852–2863, 2023.

[WA20] Peter Wriggers and B Avci. Discrete element methods: basics and applica-
tions in engineering. Modeling in engineering using innovative numerical
methods for solids and fluids, pages 1–30, 2020.

[WHH17] Stephan Werth, Martin Horsch, and Hans Hasse. Molecular simulation
of the surface tension of 33 multi-site models for real fluids. Journal of
Molecular Liquids, 235:126–134, 2017.

[WM97] David H Wolpert and William G Macready. No free lunch theorems for
optimization. IEEE transactions on evolutionary computation, 1(1):67–82,
1997.

[Wol02] David H Wolpert. The supervised learning no-free-lunch theorems. Soft
computing and industry: Recent applications, pages 25–42, 2002.

[WP05] Jinpeng Wei and Calton Pu. TOCTTOU Vulnerabilities in UNIX-Style
File Systems: An Anatomical Study. In FAST, volume 5, pages 12–12,
2005.

[WZ14] Chengping Wu and Leonid V Zhigilei. Microscopic mechanisms of laser
spallation and ablation of metal targets from large-scale molecular dynam-
ics simulations. Applied Physics A, 114(1):11–32, 2014.

[WZFD22] Tuo Wang, Fengshou Zhang, Jason Furtney, and Branko Damjanac. A re-
view of methods, applications and limitations for incorporating fluid flow
in the discrete element method. Journal of Rock Mechanics and Geotech-
nical Engineering, 14(3):1005–1024, 2022.

[XHHLB08] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. SATzilla:
portfolio-based algorithm selection for SAT. Journal of artificial intelli-
gence research, 32:565–606, 2008.

138

BIBLIOGRAPHY

[Yas17] Shigeki Yashiro. Application of particle simulation methods to composite
materials: a review. Advanced Composite Materials, 26(1):1–22, 2017.

[Yok13] Rio Yokota. An FMM based on dual tree traversal for many-core architec-
tures. Journal of Algorithms & Computational Technology, 7(3):301–324,
2013.

[Yos90] Haruo Yoshida. Construction of higher order symplectic integrators.
Physics letters A, 150(5-7):262–268, 1990.

[YOYS14] Shigeki Yashiro, Keiji Ogi, Akinori Yoshimura, and Yoshihisa Sakaida.
Characterization of high-velocity impact damage in CFRP laminates: Part
II–prediction by smoothed particle hydrodynamics. Composites Part A:
Applied Science and Manufacturing, 56:308–318, 2014.

[YWLC04] Zhenhua Yao, Jian-Sheng Wang, Gui-Rong Liu, and Min Cheng. Im-
proved neighbor list algorithm in molecular simulations using cell decom-
position and data sorting method. Computer Physics Communications,
161(1-2):27–35, 2004.

[ZS13] Gordon GD Zhou and QC Sun. Three-dimensional numerical study on flow
regimes of dry granular flows by DEM. Powder Technology, 239:115–127,
2013.

[ZZW+22] Chi Zhang, Yu-jie Zhu, Dong Wu, Nikolaus A Adams, and Xiangyu Hu.
Smoothed particle hydrodynamics: Methodology development and recent
achievement. Journal of Hydrodynamics, 34(5):767–805, 2022.

139

A Appendix

A.1 Experiment Setups

A.1.1 List of Machines

All experiments were conducted on of the machines listed in Table A.1.

atsccs93 CoolMUC2 HSUper

Vendor Intel Intel Intel

Micro Architecture Comet Lake Haswell Ice Lake

CPU i7-10700 Xeon E5-2697 v3 Xeon Platinum 8360Y

Base Frequency [GHz] 2.90 2.60 2.40

Threads per CPU 8 x 2 14 x 2 36 x 2

CPUs per Node 1 2 2

Memory [GB/Node] 32 64 256

Nodes 1 384 571

Table A.1: Specifications of the hardware platforms used in this thesis.
In the row for threads, x 2 refers to hyper-threading.

A.1.2 List of Setups

This section lists the setups for all experiments and studies shown in this thesis. Pa-
rameters that were varied throughout the study are substituted with a variable prefixed
with $. For the range of the variables see the corresponding figures.

Figure 2.9: Impact of Cell Sorting

Versions: AutoPas 2a21817, atsccs93: gcc 11.3.0 HSUper: gcc 12.1.0.

$Machine OMP_NUM_THREADS=1 md-flexible \

--box-length 40 \

--cutoff 2.5 \

--data-layout AoS \

--deltaT 0 \

--iterations 20 \

--newton3 enabled \

--no-flops \

141

A Appendix

--particle-generator uniform \

--particles-total $n \

--traversal lc_c08 \

Figure 2.10: Time per Iteration for LC, LCR sorted, LCR unsorted

Versions: AutoPas 2a21817, atsccs93: Clang 17.0.0

atsccs93 OMP_NUM_THREADS=16 md-flexible \

--box-length 100 \

--container $LinkedCells \

--cutoff 2.5 \

--data-layout AoS \

--deltaT 0 \

--iterations 100 \

--newton3 enabled \

--no-flops \

--particle-generator uniform \

--particles-total 1e5 \

--traversal lc_c08 \

--verlet-rebuild-frequency 1 \

--verlet-skin-radius-per-timestep 0 \

Figure 3.10: Verlet Lists Cells Memory Optimizatioons

Versions: AutoPas db2bcfb, atsccs93: Clang 17.0.0

atsccs93 OMP_NUM_THREADS=8 md-flexible \

--box-length 20 \

--container all \

--cutoff 2.5 \

--data-layout AoS \

--deltaT 1e-23 \

--iterations 100 \

--newton3 enabled \

--no-end-config \

--no-flops \

--particle-generator uniform \

--particles-total 40000 \

--traversal vlc_c08 \

--tuning-samples 10 \

--verlet-rebuild-frequency 10 \

Figure 3.11: Verlet Cluster Lists Memory Optimizatioons

Versions: AutoPas db2bcfb, atsccs93: Clang 17.0.0

142

A.1 Experiment Setups

atsccs93 OMP_NUM_THREADS=1 md-flexible \

--box-length 30 \

--container VerletClusterLists \

--cutoff 2.5 \

--data-layout SoA \

--deltaT 1e-23 \

--iterations 12 \

--newton3 enabled \

--no-end-config \

--particle-generator closestPacking \

--particle-spacing 1.2 \

--traversal vcl_c06 \

--verlet-rebuild-frequency 3 \

Figure 3.12: Linked Cells Speedup Vectorization

Versions: AutoPas 7fb70c8, atsccs93: Clang 17.0.0

atsccs93 OMP_NUM_THREADS=1 md-flexible \

--box-length 25 \

--container LinkedCells \

--cutoff 2.5 \

--data-layout $LAYOUT \

--deltaT 0 \

--functor $FUNCTOR \

--iterations 10 \

--newton3 enabled \

--no-end-config \

--particle-generator uniform \

--particles-total 200000 \

--traversal lc_sliced \

--verlet-rebuild-frequency 1 \

--verlet-skin-radius-per-timestep 0 \

Figure 3.16: Energy usage vs time

Versions: AutoPas 3189f72, CoolMUC2: Clang 10.0.1

CoolMUC2 OMP_NUM_THREADS=1 md-flexible \

--box-length 25 \

--container LinkedCells \

--cutoff 2.5 \

--data-layout $LAYOUT \

--deltaT 0 \

--functor $FUNCTOR \

143

A Appendix

--iterations 10 \

--newton3 enabled \

--no-end-config \

--particle-generator uniform \

--particles-total 200000 \

--traversal lc_sliced \

--verlet-rebuild-frequency 1 \

--verlet-skin-radius-per-timestep 0 \

Subsection 4.1.2: Configuration Template

Versions: AutoPas bd22330, HSUper: gcc 13.2.0
Template for the YAML input files:

functor : Lennard-Jones (12-6) AVX

container : [LinkedCells, VerletLists,

VerletListsCells, VerletClusterLists]

fastParticlesThrow : false

verlet-rebuild-frequency : $REBUILD_FREQUENCY

verlet-skin-radius-per-timestep : $SKIN

verlet-cluster-size : 4

selector-strategy : Fastest-Absolute-Value

data-layout : [all]

traversal : [all]

tuning-strategies : []

tuning-metric : time

tuning-interval : 5000

tuning-samples : 3

tuning-phases : 1

newton3 : [all]

cutoff : $CUTOFF

box-min : [0, 0, 0]

box-max : $BOX_MAX

cell-size : $CSF

deltaT : 0.0

Sites:

0:

epsilon : 1.

sigma : 1.

mass : 1.

Objects:

$OBJECT

log-level : info

no-end-config : true

no-progress-bar : true

144

A.2 Spinodal Decomposition Configurations

For the values that were used in the placeholder variables see Table 4.1.

A.2 Spinodal Decomposition Configurations

Versions: AutoPas bd22330, HSUper: gcc 13.2.0, intel-oneapi-mpi 2021.12.1

A.2.1 Equilibration

functor : Lennard-Jones (12-6) AVX

cutoff : 2.5

verlet-skin-radius-per-timestep : 0.05

verlet-rebuild-frequency : 20

tuning-strategies : slow-config-filter, predictive, rule-based

rule-filename : (path to the rule file from Section A.3)

tuning-metric : time

tuning-interval : 5000

tuning-samples : 3

deltaT : 0.00182367 # = 2fs

iterations : 2600000

boundary-type : periodic, periodic, periodic

Sites:

0:

epsilon : 1.

sigma : 1.

mass : 1.

Objects:

CubeGrid:

0:

particle-type-id : 0

particles-per-dimension : 160, 160, 160

particle-spacing : 1.5

bottomLeftCorner : 0, 0, 0

velocity : 0, 0, 0

thermostat:

initialTemperature : 1.4

targetTemperature : 1.4

deltaTemperature : 2

thermostatInterval : 10

addBrownianMotion : true

vtk-write-frequency : 100000

vtk-filename : SpinDecEqui

no-end-config : true

no-progress-bar : true

145

A Appendix

load-balancer : ALL

load-balancing-interval : 10000

A.2.2 Decomposition

The full decomposition was executed in two runs, with 2e6 iterations each. Basically
the checkpoint from the end of this configuration was relaunched again with the same
configuration.

functor : Lennard-Jones (12-6) AVX

cutoff : 2.5

verlet-skin-radius-per-timestep : 0.05

verlet-rebuild-frequency : 20

tuning-strategies : slow-config-filter, predictive, rule-based

rule-filename : (path to the rule file from Section A.3)

tuning-metric : time

tuning-interval : 5000

tuning-samples : 3

deltaT : 0.00182367 # = 2fs

box-min : -0.75, -0.75, -0.75

box-max : 239.25, 239.25, 239.25

iterations : 2000000

boundary-type : periodic, periodic, periodic

Sites:

0:

epsilon : 1.

sigma : 1.

mass : 1.

thermostat:

initialTemperature : 0.7

targetTemperature : 0.7

deltaTemperature : 2

thermostatInterval : 10

addBrownianMotion : false

vtk-filename : SpinDecDecomp

vtk-write-frequency : 20000

no-end-config : true

no-progress-bar : true

load-balancer : ALL

load-balancing-interval : 10000

Change the checkpoint for the second run

checkpoint : SpinDecEqui_2600000.pvtu

146

A.3 Default Rules File

A.3 Default Rules File

If not stated otherwise, the following rule file was used for all runs that employ rule-based
tuning.

Define some aliases

define_list AllContainers = "DirectSum", "LinkedCells", "

LinkedCellsReferences", "VarVerletListsAsBuild", "

VerletClusterLists", "VerletLists", "VerletListsCells", "

PairwiseVerletLists", "Octree ";

define_list LinkedCellsContainer = "LinkedCells", "

LinkedCellsReferences ";

define_list VerletListsContainer = "VerletLists", "

VerletClusterLists", "VerletListsCells", "

PairwiseVerletLists", "VarVerletListsAsBuild ";

Make sure overhead of empty cells in the LinkedCells

container does not destroy performance

Idea: For each empty cell ,the LinkedCells implementation

has overhead. All containers except VerletClusterLists (

and DirectSum) use

this container in their implementation. Thus , if the domain

has a lot more empty cells than particles , do not use

them , use VerletClusterLists.

The overhead consists of at least accessing the std:: vector

define maxFactorOfEmptyCellsOverNumParticles = 100.0;

define isDomainExtremelyEmpty = numEmptyCells / numParticles

> maxFactorOfEmptyCellsOverNumParticles;

Calculate whether skin size makes VerletLists useless in

normal scenarios

Idea: From a theoretical perspective , Verlet Lists only

have the advantage to save some of the neighbor distance

calculations compared to LinkedCells.

If the skin is too large , we know for sure that no

neighbor distance calculations are saved.

define PI = 3.1415926;

define LC_NeighborVolume = cutoff * cutoff * cutoff * 27;

define interactionLength = cutoff + skin;

define VL_NeighborVolume = 4.0/3 * PI * interactionLength *

interactionLength * interactionLength;

define neighborVolumeRel = VL_NeighborVolume /

LC_NeighborVolume;

Define magic number when it is surely not worth it to use

VL over LC in terms of the number of neighbor distance

calculations

147

A Appendix

define maxReasonableNeighborVolumeRel = 0.9;

This holds only if the domain is not extremely empty. Does

it also hold with not being extremely empty , but

numParticlesPerCell << 1?

if neighborVolumeRel > maxReasonableNeighborVolumeRel and not

isDomainExtremelyEmpty:

[container =" LinkedCells", traversal =" lc_c08 "] >= [

container=VerletListsContainer] with same dataLayout ,

newton3;

endif

if numParticles > 1000: [container =" LinkedCells "] >= [

container =" DirectSum "]; endif

if numParticles < 100: [container =" DirectSum "] >= [container

=" LinkedCells "]; endif

if avgParticlesPerCell < 6:

[container =" VerletListsCells", dataLayout ="AoS"] >= [

container =" VerletListsCells", dataLayout ="SoA"] with

same newton3 , traversal , loadEstimator;

endif

[container =" VarVerletListsAsBuild", dataLayout ="AoS"] >= [

container =" VarVerletListsAsBuild", dataLayout ="SoA"] with

same newton3 , traversal;

if avgParticlesPerCell < 100:

[container =" VerletListsCells "] >= [container ="

PairwiseVerletLists "];

endif

A.4 Exploding Liquid Configuration

The initial state was generated from input data that can be found in the official ls1 mardyn
GitHub repository1.

Versions: ls1 mardyn c5c81d86a, AutoPas 5ffea5b, HSUper: gcc 13.2.0, intel-oneapi-
mpi 2021.12.1.

<?xml version=’1.0’ encoding=’UTF -8’?>

<mardyn version="20100525" >

<refunits type="SI" >

<length unit="nm">0.1</length >

<mass unit="u">1</mass>

1https://github.com/ls1mardyn/ls1-mardyn Accessed: 20.12.2024

148

https://github.com/ls1mardyn/ls1-mardyn

A.4 Exploding Liquid Configuration

<energy unit="K">1</energy >

</refunits >

<simulation type="MD" >

<integrator type="Leapfrog" >

<timestep unit="reduced" >0.00182367 </timestep >

</integrator >

<run>

<currenttime >0.0</currenttime >

<production >

<steps >280000 </steps>

</production >

</run>

<ensemble type="NVT">

<temperature unit="reduced" >1.80</temperature >

<domain type="box">

<lx>132.6 </lx>

<ly>591.891 </ly>

<lz>132.6 </lz>

</domain >

<components >

<include query="/components/moleculetype">

ls1 -mardyn/examples/ExplodingLiquid/components.xml

</include >

</components >

<phasespacepoint >

<generator name="MultiObjectGenerator">

<objectgenerator >

<filler type="ReplicaFiller">

<input type="BinaryReader">

<header >ls1 -mardyn/examples/ExplodingLiquid/

input.header.xml</header >

<data>ls1 -mardyn/examples/ExplodingLiquid/

input.dat</data>

</input >

</filler >

<object type="Cuboid">

<lower > <x>0</x> <y>280.946 </y> <z>0</z> </

lower >

<upper > <x>131.531 </x> <y>310.946 </y> <z>

131.531 </z> </upper>

</object >

</objectgenerator >

</generator >

149

A Appendix

</phasespacepoint >

</ensemble >

<algorithm >

<parallelisation type="GeneralDomainDecomposition">

<updateFrequency >5000</updateFrequency >

<timerForLoad >SIMULATION_FORCE_CALCULATION </

timerForLoad >

<loadBalancer type="ALL"></loadBalancer >

</parallelisation >

<!-- For vanilla replace the whole block with:

<datastructure type="LinkedCells"/>

-->

<datastructure type="AutoPas">

<tuningStrategy >$TUNING_STRATEGY </tuningStrategy >

<extrapolationMethod >linear -regression </

extrapolationMethod >

<blacklistRange >3</blacklistRange >

<selectorStrategy >fastest -absolute -value</

selectorStrategy >

<tuningInterval >$TUNING_INTERVAL </tuningInterval >

<tuningSamples >10</tuningSamples >

<rebuildFrequency >10</rebuildFrequency >

<skin>0.5</skin>

</datastructure >

<cutoffs type="CenterOfMass" >

<defaultCutoff unit="reduced" >2.5</defaultCutoff >

<radiusLJ unit="reduced" >2.5</radiusLJ >

</cutoffs >

<electrostatic type="ReactionField" >

<epsilon >1.0e+10</epsilon >

</electrostatic >

<thermostats >

<thermostat type="TemperatureControl">

<control >

<start>0</start>

<frequency >1</frequency >

<stop>0</stop>

</control >

<regions >

<region >

<coords >

<lcx>0.0</lcx> <lcy>0.0</lcy> <lcz>0.0</lcz>

<ucx>16.4414 </ucx> <ucy>16.4414 </ucy> <ucz>

16.4414 </ucz>

</coords >

150

A.5 LAMMPS Lennard-Jones liquid benchmark

<target >

<temperature >1.80</temperature >

<component >0</component >

</target >

<settings >

<numslabs >1</numslabs >

<exponent >0.4</exponent >

<directions >xyz</directions >

</settings >

<fileprefix >beta_log </fileprefix >

<writefreq >100000000 </writefreq >

</region >

</regions >

</thermostat >

</thermostats >

</algorithm >

<output/>

</simulation >

</mardyn >

A.5 LAMMPS Lennard-Jones liquid benchmark

Slightly adapted LAMMPS input script taken from the offical website2. Changes the
size of the simulation and activation of global indices to make the native behavior more
similar to that of AutoPas.

variable x index 1

variable y index 1

variable z index 1

variable t index 100

variable xx equal 5*$x

variable yy equal 5*$y

variable zz equal 5*$z

units lj

atom_style atomic

atom_modify map yes sort 0 0

lattice fcc 0.8442

region box block 0 ${xx} 0 ${yy} 0 ${zz}

create_box 1 box

create_atoms 1 box

2https://www.lammps.org/inputs/in.lj.txt Accessed: 20.12.2024

151

https://www.lammps.org/inputs/in.lj.txt

A Appendix

mass 1 1.0

velocity all create 1.44 87287 loop geom

pair_style lj/cut 2.5

pair_coeff 1 1 1.0 1.0 2.5

neighbor 0.3 bin

neigh_modify delay 0 every 20 check no

fix 1 all nve

thermo 100

run $t

Versions: LAMMPS-AutoPas 301250a, AutoPas c76ff3f, HSUper: gcc 13.2.0.
The script was used with the following commands to launch the different simulation

setups:

1 # AutoPas with Full Search tuning

2 lmp -i in.lj -autopas on log debug -sf autopas -v t 1000 -v x

20 -v y 20 -v z 20

3 # AutoPas with predictive rules tuning

4 lmp -i in.lj -autopas on strategies ’slowConfigFilter ,

predictive -tuning ,rulebased ’ rule_file tuningRules.rule -

sf autopas -v t 1000 -v x 20 -v y 20 -v z 20

5 # AutoPas with only lc_c04

6 lmp -i in.lj -autopas on notune t lc_c04 c LinkedCells d SoA

n enabled estimator none -sf autopas -v t 1000 -v x 20 -v

y 20 -v z 20

7 # AutoPas with only lc_sliced_balanced

8 lmp -i in.lj -autopas on notune t lc_sliced_balanced c

LinkedCells d SoA n enabled estimator none -sf autopas -v

t 1000 -v x 20 -v y 20 -v z 20

9 # Kokkos package

10 lmp -i in.lj -kokkos on t ${OMP_NUM_THREADS} -sf kk -v t 1000

-v x 20 -v y 20 -v z 20

11 # OpenMP package

12 lmp -i in.lj -sf omp -v t 1000 -v x 20 -v y 20 -v z 20

A.6 LADDS Benchmark Simulation

Versions: LADDS 1c6c633, AutoPas b39c1c0, HSUper: gcc 13.2.0.

152

A.6 LADDS Benchmark Simulation

1 sim:

2 logLevel: info # Available levels are off , critical , err ,

warn , info , debug , trace

3 iterations: 1000 # Number of simulation iterations

4 referenceTime: 2022 -01 -01 # calendar day associated with

simulation start at iteration 0 (yyyy/mm/dd)

5 maxAltitude: 10000 # Maximum satellite altitude above earth

core. This number times two is the simulation box

length. [km]

6 minAltitude: 150 # Everything below this altitude above

ground will be considered burning up [km]

7 deltaT: 10.0 # [s]

8 collisionDistanceFactor: 1.0 # Factor multiplied with the

sum of radii to over approximate collision distances.

9 evasionTrackingCutoffInKM: 0.1 # Distance at which even

evaded conjunctions are tracked (in a separate out file)

10 timestepsPerCollisionDetection: 10

11 decompositionType: Altitude # MPI decomposition type.

Options: "Altitude" for spherical shells , "RegularGrid"

standard cartesian grid.

12
13 prop: # Which propagation model components should be

applied

14 useKEPComponent: true # Keplerian propagation

15 useJ2Component: true # J2 spherical harmonic

approximation

16 useC22Component: true # C22 spherical harmonic

approximation

17 useS22Component: true # S22 spherical harmonic

approximation

18 useSOLComponent: false # Solar gravitational pull

19 useLUNComponent: false # Lunar gravitational pull

20 useSRPComponent: true # Solar radiation pressure

21 useDRAGComponent: true # Atmospheric drag

22 coefficientOfDrag: 2.2 # c_D for the drag component used

in all objects where no BSTAR is available

23
24 breakup:

25 enabled: false # (de -) activate the breakup mechanic

26 minLc: 0.01 # minimal characteristic length for generated

debris [m]

27 enforceMassConservation: true # by default the NASA

breakup model does not conserve mass

28
29 io:

30 csv:

31 fileName: initial_population_and_1cm_debris.csv # input

population

32

153

A Appendix

33 autopas:

34 logLevel: info

35 cutoff: 80.0 # Cutoff for autopas force interaction

36 rebuildFrequency: 1 # Number of iterations before internal

data structure is rebuilt. Increases collision search

radius!

37 desiredCellsPerDimension: 30 # Desired number of cells per

dimension

38 tuningMode: false # can be used to obtain good values for

the following parameters

39 Newton3: "enabled"

40 DataLayout: "AoS"

41 Container: "LinkedCells"

42 Traversal: "lc_c04_HCP"

A.7 All AutoPas Algorithm Configurations

This table contains all algorithmic configurations of AutoPas, even those like the Octree
container and LinkedCellsReferences, which are, at the time of writing, highly exper-
imental and under active development and, therefore, not discussed in this thesis. For
more information on them, refer to the official documentation of AutoPas.

Table A.2: Overview of All Algorithm Configurations of AutoPas.

0 DirectSum ds sequential none AoS disabled

1 DirectSum ds sequential none AoS enabled

2 DirectSum ds sequential none SoA disabled

3 DirectSum ds sequential none SoA enabled

4 LinkedCells lc c01 none AoS disabled

5 LinkedCells lc c01 none SoA disabled

6 LinkedCells lc c01 combined SoA none SoA disabled

7 LinkedCells lc c04 none AoS disabled

8 LinkedCells lc c04 none AoS enabled

9 LinkedCells lc c04 none SoA disabled

10 LinkedCells lc c04 none SoA enabled

11 LinkedCells lc c04 HCP none AoS disabled

12 LinkedCells lc c04 HCP none AoS enabled

Container Traversal Load Estimator Data Layout Newton 3

Continued on next page

154

A.7 All AutoPas Algorithm Configurations

Table A.2: Overview of All Algorithm Configurations of AutoPas. (Continued)

13 LinkedCells lc c04 HCP none SoA disabled

14 LinkedCells lc c04 HCP none SoA enabled

15 LinkedCells lc c04 combined SoA none SoA disabled

16 LinkedCells lc c04 combined SoA none SoA enabled

17 LinkedCells lc c08 none AoS disabled

18 LinkedCells lc c08 none AoS enabled

19 LinkedCells lc c08 none SoA disabled

20 LinkedCells lc c08 none SoA enabled

21 LinkedCells lc c18 none AoS disabled

22 LinkedCells lc c18 none AoS enabled

23 LinkedCells lc c18 none SoA disabled

24 LinkedCells lc c18 none SoA enabled

25 LinkedCells lc sliced none AoS disabled

26 LinkedCells lc sliced none AoS enabled

27 LinkedCells lc sliced none SoA disabled

28 LinkedCells lc sliced none SoA enabled

29 LinkedCells lc sliced balanced none AoS disabled

30 LinkedCells lc sliced balanced none AoS enabled

31 LinkedCells lc sliced balanced none SoA disabled

32 LinkedCells lc sliced balanced none SoA enabled

33 LinkedCells lc sliced balanced squared-particles-per-cell AoS disabled

34 LinkedCells lc sliced balanced squared-particles-per-cell AoS enabled

35 LinkedCells lc sliced balanced squared-particles-per-cell SoA disabled

36 LinkedCells lc sliced balanced squared-particles-per-cell SoA enabled

37 LinkedCells lc sliced c02 none AoS disabled

38 LinkedCells lc sliced c02 none AoS enabled

39 LinkedCells lc sliced c02 none SoA disabled

40 LinkedCells lc sliced c02 none SoA enabled

41 LinkedCellsReferences lc c01 none AoS disabled

42 LinkedCellsReferences lc c01 none SoA disabled

Container Traversal Load Estimator Data Layout Newton 3

Continued on next page

155

A Appendix

Table A.2: Overview of All Algorithm Configurations of AutoPas. (Continued)

43 LinkedCellsReferences lc c01 combined SoA none SoA disabled

44 LinkedCellsReferences lc c04 none AoS disabled

45 LinkedCellsReferences lc c04 none AoS enabled

46 LinkedCellsReferences lc c04 none SoA disabled

47 LinkedCellsReferences lc c04 none SoA enabled

48 LinkedCellsReferences lc c04 HCP none AoS disabled

49 LinkedCellsReferences lc c04 HCP none AoS enabled

50 LinkedCellsReferences lc c04 HCP none SoA disabled

51 LinkedCellsReferences lc c04 HCP none SoA enabled

52 LinkedCellsReferences lc c04 combined SoA none SoA disabled

53 LinkedCellsReferences lc c04 combined SoA none SoA enabled

54 LinkedCellsReferences lc c08 none AoS disabled

55 LinkedCellsReferences lc c08 none AoS enabled

56 LinkedCellsReferences lc c08 none SoA disabled

57 LinkedCellsReferences lc c08 none SoA enabled

58 LinkedCellsReferences lc c18 none AoS disabled

59 LinkedCellsReferences lc c18 none AoS enabled

60 LinkedCellsReferences lc c18 none SoA disabled

61 LinkedCellsReferences lc c18 none SoA enabled

62 LinkedCellsReferences lc sliced none AoS disabled

63 LinkedCellsReferences lc sliced none AoS enabled

64 LinkedCellsReferences lc sliced none SoA disabled

65 LinkedCellsReferences lc sliced none SoA enabled

66 LinkedCellsReferences lc sliced balanced none AoS disabled

67 LinkedCellsReferences lc sliced balanced none AoS enabled

68 LinkedCellsReferences lc sliced balanced none SoA disabled

69 LinkedCellsReferences lc sliced balanced none SoA enabled

70 LinkedCellsReferences lc sliced c02 none AoS disabled

71 LinkedCellsReferences lc sliced c02 none AoS enabled

72 LinkedCellsReferences lc sliced c02 none SoA disabled

Container Traversal Load Estimator Data Layout Newton 3

Continued on next page

156

A.7 All AutoPas Algorithm Configurations

Table A.2: Overview of All Algorithm Configurations of AutoPas. (Continued)

73 LinkedCellsReferences lc sliced c02 none SoA enabled

74 VarVerletListsAsBuild vvl as built none AoS disabled

75 VarVerletListsAsBuild vvl as built none AoS enabled

76 VarVerletListsAsBuild vvl as built none SoA disabled

77 VarVerletListsAsBuild vvl as built none SoA enabled

78 VerletClusterLists vcl c01 balanced none AoS disabled

79 VerletClusterLists vcl c01 balanced none SoA disabled

80 VerletClusterLists vcl c06 none AoS disabled

81 VerletClusterLists vcl c06 none AoS enabled

82 VerletClusterLists vcl c06 none SoA disabled

83 VerletClusterLists vcl c06 none SoA enabled

84 VerletClusterLists vcl cluster iteration none AoS disabled

85 VerletClusterLists vcl cluster iteration none SoA disabled

86 VerletClusterLists vcl sliced none AoS disabled

87 VerletClusterLists vcl sliced none AoS enabled

88 VerletClusterLists vcl sliced none SoA disabled

89 VerletClusterLists vcl sliced none SoA enabled

90 VerletClusterLists vcl sliced balanced none AoS disabled

91 VerletClusterLists vcl sliced balanced none AoS enabled

92 VerletClusterLists vcl sliced balanced none SoA disabled

93 VerletClusterLists vcl sliced balanced none SoA enabled

94 VerletClusterLists vcl sliced balanced neighbor-list-length AoS disabled

95 VerletClusterLists vcl sliced balanced neighbor-list-length AoS enabled

96 VerletClusterLists vcl sliced balanced neighbor-list-length SoA disabled

97 VerletClusterLists vcl sliced balanced neighbor-list-length SoA enabled

98 VerletClusterLists vcl sliced c02 none AoS disabled

99 VerletClusterLists vcl sliced c02 none AoS enabled

100 VerletClusterLists vcl sliced c02 none SoA disabled

101 VerletClusterLists vcl sliced c02 none SoA enabled

Container Traversal Load Estimator Data Layout Newton 3

Continued on next page

157

A Appendix

Table A.2: Overview of All Algorithm Configurations of AutoPas. (Continued)

102 VerletLists vl list iteration none AoS disabled

103 VerletLists vl list iteration none SoA disabled

104 VerletListsCells vlc c01 none AoS disabled

105 VerletListsCells vlc c01 none SoA disabled

106 VerletListsCells vlc c18 none AoS disabled

107 VerletListsCells vlc c18 none AoS enabled

108 VerletListsCells vlc c18 none SoA disabled

109 VerletListsCells vlc c18 none SoA enabled

110 VerletListsCells vlc c08 none AoS disabled

111 VerletListsCells vlc c08 none AoS enabled

112 VerletListsCells vlc c08 none SoA disabled

113 VerletListsCells vlc c08 none SoA enabled

114 VerletListsCells vlc sliced none AoS disabled

115 VerletListsCells vlc sliced none AoS enabled

116 VerletListsCells vlc sliced none SoA disabled

117 VerletListsCells vlc sliced none SoA enabled

118 VerletListsCells vlc sliced balanced none AoS disabled

119 VerletListsCells vlc sliced balanced none AoS enabled

120 VerletListsCells vlc sliced balanced none SoA disabled

121 VerletListsCells vlc sliced balanced none SoA enabled

122 VerletListsCells vlc sliced balanced squared-particles-per-cell AoS disabled

123 VerletListsCells vlc sliced balanced squared-particles-per-cell AoS enabled

124 VerletListsCells vlc sliced balanced squared-particles-per-cell SoA disabled

125 VerletListsCells vlc sliced balanced squared-particles-per-cell SoA enabled

126 VerletListsCells vlc sliced balanced neighbor-list-length AoS disabled

127 VerletListsCells vlc sliced balanced neighbor-list-length AoS enabled

128 VerletListsCells vlc sliced balanced neighbor-list-length SoA disabled

129 VerletListsCells vlc sliced balanced neighbor-list-length SoA enabled

130 VerletListsCells vlc sliced c02 none AoS disabled

Container Traversal Load Estimator Data Layout Newton 3

Continued on next page

158

A.7 All AutoPas Algorithm Configurations

Table A.2: Overview of All Algorithm Configurations of AutoPas. (Continued)

131 VerletListsCells vlc sliced c02 none AoS enabled

132 VerletListsCells vlc sliced c02 none SoA disabled

133 VerletListsCells vlc sliced c02 none SoA enabled

134 PairwiseVerletLists vlp c01 none AoS disabled

135 PairwiseVerletLists vlp c01 none SoA disabled

136 PairwiseVerletLists vlp c18 none AoS disabled

137 PairwiseVerletLists vlp c18 none AoS enabled

138 PairwiseVerletLists vlp c18 none SoA disabled

139 PairwiseVerletLists vlp c18 none SoA enabled

140 PairwiseVerletLists vlp sliced none AoS disabled

141 PairwiseVerletLists vlp sliced none AoS enabled

142 PairwiseVerletLists vlp sliced none SoA disabled

143 PairwiseVerletLists vlp sliced none SoA enabled

144 PairwiseVerletLists vlp sliced balanced none AoS disabled

145 PairwiseVerletLists vlp sliced balanced none AoS enabled

146 PairwiseVerletLists vlp sliced balanced none SoA disabled

147 PairwiseVerletLists vlp sliced balanced none SoA enabled

148 PairwiseVerletLists vlp sliced c02 none AoS disabled

149 PairwiseVerletLists vlp sliced c02 none AoS enabled

150 PairwiseVerletLists vlp sliced c02 none SoA disabled

151 PairwiseVerletLists vlp sliced c02 none SoA enabled

152 PairwiseVerletLists vlp c08 none AoS disabled

153 PairwiseVerletLists vlp c08 none AoS enabled

154 PairwiseVerletLists vlp c08 none SoA disabled

155 PairwiseVerletLists vlp c08 none SoA enabled

156 Octree ot c01 none AoS disabled

157 Octree ot c01 none SoA disabled

158 Octree ot c18 none AoS enabled

159 Octree ot c18 none SoA enabled

Container Traversal Load Estimator Data Layout Newton 3

159

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Focus and Objectives
	1.2 Structure of this Thesis

	2 Background
	2.1 Particle Simulations
	2.1.1 Fundamentals
	2.1.1.1 Short-range Interactions
	2.1.1.2 Long-range Interactions
	2.1.1.3 Newton's Third Law of Motion
	2.1.1.4 Particle Propagation
	2.1.1.5 Boundary Treatment

	2.1.2 Simulation Methods
	2.1.2.1 Molecular Dynamics
	2.1.2.2 Discrete Element Method
	2.1.2.3 Smooth Particle Hydrodynamics

	2.1.3 Efficient Algorithm Archetypes for Interaction Partner Identification
	2.1.3.1 Direct Sum
	2.1.3.2 Linked Cells
	2.1.3.3 Verlet Lists
	2.1.3.4 Verlet Cluster Lists
	2.1.3.5 Fast Multipole Method

	2.1.4 Discussion of Archetypes
	2.1.5 Shared Memory Parallelism
	2.1.6 Instruction-Level Parallelism

	2.2 The Algorithm Selection Problem
	2.2.1 Problem Definition
	2.2.2 Automated Algorithm Selection
	2.2.3 Closely Related Problem Variants and Applications

	2.3 Interim Summary

	3 AutoPas
	3.1 The Library
	3.1.1 Design, Structural Overview and Usage
	3.1.1.1 Software Architecture
	3.1.1.2 User-Provided Classes
	3.1.1.3 Internal Algorithmic Options
	3.1.1.4 Distributed Memory Parallelism Context

	3.1.2 Software Engineering Aspects
	3.1.2.1 Black Box Container Interface
	3.1.2.2 Providing Usability for Frequent User-side Activites: Options
	3.1.2.3 Merging Common Behavior: CellPairTraversals
	3.1.2.4 Abstracting Specialized Behavior: ContainerIterator
	3.1.2.5 Code Generation for User Types: Generated SoA
	3.1.2.6 Neighbor List Memory Management

	3.1.3 Hardware-aware optimizations

	3.2 Dynamic Auto-Tuning
	3.2.1 Translating Theory into the Implementation in AutoPas
	3.2.2 Tuning Loop
	3.2.3 Tuning Strategies
	3.2.4 Tuning for Energy Efficiency

	3.3 Related Work
	3.3.1 Spiritual Predecessor: ls1 mardyn
	3.3.2 Popular Molecular Dynamics packages: LAMMPS and GROMACS
	3.3.3 Performance-Portable Algorithms: CoPA Cabana Library
	3.3.4 Particle Toolkit with Parameter Tuning: HOOMD-blue
	3.3.5 Algorithm Selection for Sparse Matrices: Morpheus-Oracle

	3.4 Interim Summary

	4 Examples and Applications
	4.1 md-flexible
	4.1.1 Features
	4.1.2 Broad Study of Configurations
	4.1.3 Spinodal Decomposition

	4.2 ls1 mardyn
	4.2.1 ls1 mardyn-AutoPas Integration
	4.2.2 Exploding Liquid

	4.3 LAMMPS
	4.3.1 AutoPas Integration
	4.3.2 Lennard-Jones Liquid Benchmark

	4.4 LADDS
	4.4.1 Background
	4.4.2 Benchmark Simulation

	4.5 Interim Summary

	5 Conclusion and Outlook
	5.1 Recap and Discussion
	5.2 Future Directions

	Bibliography
	A Appendix
	A.1 Experiment Setups
	A.1.1 List of Machines
	A.1.2 List of Setups

	A.2 Spinodal Decomposition Configurations
	A.2.1 Equilibration
	A.2.2 Decomposition

	A.3 Default Rules File
	A.4 Exploding Liquid Configuration
	A.5 LAMMPS Lennard-Jones liquid benchmark
	A.6 LADDS Benchmark Simulation
	A.7 All AutoPas Algorithm Configurations

