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A B S T R A C T   

Urbanization is the second largest mega-trend right after climate change. Accurate measurements of urban 
morphological and demographic figures are at the core of many international endeavors to address issues of 
urbanization, such as the United Nations’ call for “Sustainable Cities and Communities”. In many countries – 
particularly developing countries –, however, this database does not yet exist. Here, we demonstrate a novel deep 
learning and big data analytics approach to fuse freely available global radar and multi-spectral satellite data, 
acquired by the Sentinel-1 and Sentinel-2 satellites. Via this approach, we created the first-ever global and 
quality controlled urban local climate zones classification covering all cities across the globe with a population 
greater than 300,000 and made it available to the community (https://doi.org/10.14459/2021mp1633461). 
Statistical analysis of the data quantifies a global inequality problem: approximately 40% of the area defined as 
compact or light/large low-rise accommodates about 60% of the total population, whereas approximately 30% of 
the area defined as sparsely built accommodates only about 10% of the total population. Beyond, patterns of 
urban morphology were discovered from the global classification map, confirming a morphologic relationship to 
the geographical region and related cultural heritage. We expect the open access of our dataset to encourage 
research on the global change process of urbanization, as a multidisciplinary crowd of researchers will use this 
baseline for spatial perspective in their work. In addition, it can serve as a unique dataset for stakeholders such as 
the United Nations to improve their spatial assessments of urbanization.   

1. Introduction 

1.1. Motivation 

Urbanization is one of the most important trends in global change. 
Although a near-perfect correlation is verified between urbanization and 
economic prosperity of societies (Glaeser et al., 2013), this correlation 
does not automatically lead to a golden future: instead, the unprece
dented dynamics and dimensions of natural growth of and migration 
into cities pose fundamental challenges to our human societies across 
the globe. Many international endeavors addressing issues of urbani
zation, such as the United Nations’ call for “Sustainable Cities and 
Communities,” are based on accurate measurements of urban 

morphological and demographic figures. Such measurements provide 
key scientific foundations for the allocation of valuable resources for a 
wide range of stakeholders and form the basis of global efforts to un
derstand and track progress in improving human livelihoods. 

Although urban geographic information has significantly improved 
in recent decades, the required geo-information is still not available in 
many countries. For example, the United Nations population figures, on 
which our understanding of urbanization at these scales is currently 
primarily based, do not provide information on the distribution, pattern, 
and evolution of the built environment (Zhang and Seto, 2011). 
Remarkably, in 2014, for the first time, the IPCC report included a 
specific chapter on urban areas, making note that cities of sufficient 
density and spatial scale can influence their local micro-climate (Revi 
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et al., 2014). This highlights the importance of cities to climate action, 
yet there are significant gaps in knowledge and strategic directions. 
Global information on inter- and intra- urban variability, urban dy
namics, 2D and 3D urban form, and links between urbanization and 
well-being are overdue (Chai and Seto, 2019; Mahtta et al., 2019). In 
Arellano Ramos and Roca Cladera (2016), the data of nighttime lights 
was utilized for detecting and classifying urban areas. Recently, the 
global land cover map (GLC), which includes urban and non-urban 
classes, is transferred from 30 m to 10 m (Gong et al., 2019). 

In the past decades, satellite remote sensing has been the foundation 
of data collection and the development of knowledge about our Earth. 
During that period, new initiatives in global urban mapping have 
advanced the quality of spatial knowledge. On a global scale, there is a 
handful of global urban land use classification maps. For instance, the 
Global Urban Footprint (GUF) (Esch et al., 2013) provides a binary mask 
of urban vs. non-urban surfaces, while the World Settlement Footprint 
Evolution (WSF-Evo) (Marconcini et al., 2020) documents their evolu
tion over time. In addition, the World Urban Database provides 
intra-urban local climate zone classification maps (Stewart et al., 2014; 
Stewart and Oke, 2012) – however only for about 100 metropolises and 
to a best resolution of a few hundred meters. Despite their significant 
contribution to large scale urban mapping, these approaches have not 
addressed the variations of intra-urban morphology. On the other hand, 
the potential of Earth observation to describe the complex, small-scale 
morphology of cities has been shown in many approaches, e.g. (Tau
benböck et al., 2013; Bechtel et al., 2015a). However, global urban 
mapping approaches still lag behind. Consistent and resilient global 
spatial data in high geometric, thematic and temporal resolutions 
necessary to address the challenges described above is still nonexistent. 
This is mainly due to the lack of high resolution global satellite data and 
computationally and methodologically efficient algorithms. 

In the meantime, Earth observation (EO) has irreversibly arrived at a 
golden era of big data. The game changer is the Sentinel satellites of the 
European Copernicus programme which provide continuous, reliable, 
quality controlled acquisition of big EO data that are free and open. To 
date, tens of petabytes of satellite data from complementary sensors 
have already been acquired and shared. In addition, the programme 
offers a long-term perspective of guaranteed data acquisition and 
sharing until 2030. Recently, the European Space Agency (ESA) awar
ded contracts for the development of six new Copernicus missions. 
Beyond that, plans for 2040 are already under discussion. To effectively 
retrieve global urban geo-information from such a massive data source 
requires not only new technological approaches to manage large 
amounts of data, but also new analysis methods. Here, methods of data 
science and artificial intelligence (AI), such as machine learning, 
become indispensable. Deep learning in particular has led to a revolu
tion in AI in recent years. Since taking off several years ago, deep 
learning in remote sensing has become a blooming research field (Zhu 
et al., 2017; Tuia et al., 2021; Camps-Valls et al., 2021). Its huge po
tential in global urban mapping using EO data is ripe for discovery. 

1.2. Review of local climate zones classification algorithms 

Local climate zones (LCZs) were originally developed for metadata 
communication of observational urban heat island studies (Stewart, 
2011). But soon they also showed potential in urban morphology 
mapping. A significant part of the existing development of LCZ classi
fication is community-based large-scale LCZ mapping using freely 
available Landsat data and softwares (Mills et al., 2015; Bechtel et al., 
2015a,b; Hidalgo et al., 2019), known as the World Urban Database and 
Portal (WUDAPT). These community-based efforts mark the first step 
towards a more synergetic cooperation among researchers. Yet, (Bechtel 
et al., 2017, 2019) discovered that the quality of these maps is heavily 
dependent on individual producers. (Ren et al., 2016, 2019) also argue 
that the standard WUDAPT mapping approach cannot fulfill quality 
demands of practical usage. Therefore, researchers also attempt in 

parallel to improve the classification methodologies. In terms of data 
sources, Bechtel et al. (2016) and Hu et al. (2018) demonstrate that 
synthetic aperture radar (SAR) data can be beneficial as an additional 
data source. Unger et al. (2014), Zheng et al. (2018) and Zhang et al. 
(2019) conclude that geographic information system (GIS) data are also 
beneficial to this classification, subject to the availability of GIS data. 
Regarding the classification algorithms, similar to WUDAPT, many 
studies utilized Random Forests to accomplish LCZ classification 
(Danylo et al., 2016; Demuzere et al., 2019; dos Anjos et al., 2017; 
Yokoya et al., 2017) due to its easy implementation and robust perfor
mance. However, Yoo et al. (2019) and Rosentreter et al. (2020) recently 
found that convolutional neural networks (CNNs) outperform Random 
Forests on LCZ classification with fair evidences. Sukhanov et al. (2017) 
fuse the predictions of random forest- and CNN-based classifiers to 
deliver LCZ maps. Qiu et al. (2019) propose a recurrent network to 
utilize multi-temporal Sentinel-2 data for LCZ classification of European 
cities. Qiu et al. (2020) report the performance of many standard CNN 
architectures for LCZ classification in a practical and comprehensive 
manner. The authors also introduced a CNN which utilizes multi-scale 
representations. 

1.3. Contribution of this paper 

Here we demonstrate a novel deep learning and big data analytics 
approach in order to fuse freely available global radar and multi-spectral 
satellite data, acquired by the Sentinel-1 and Sentinel-2 satellites. Via 
this approach, we achieved the first-ever global and quality controlled 
urban LCZs classification covering all cities with a population greater 
than 300,000, i.e., 1692 cities in total, and made it available to the 
community. We validated our approach on 52 urban agglomerations 
across all five inhabited continents. To do so, we used different strate
gies, giving upper and lower bounds to the accuracy of our global 
classification result. This dataset, named “So2Sat Global Urban LCZ 
(So2Sat GUL2),” will boost research on the global change process of 
urbanization, as a multidisciplinary group of researchers may use this 
baseline for the spatial perspective of their work - including planners, 
demographers, sociologists, economists, climatologists, and many 
others. On top of that, So2Sat GUL can serve as a unique dataset for 
stakeholders such as the United Nations to improve their spatial as
sessments of urbanization. 

To stimulate the dataset’s usage, we carried out a study to showcase 
urban geographic analysis to better quantify and understand the global 
urban morphology. We found that more than 30% of the human set
tlement area is sparsely built. Similarly, about 25% of human settle
ments are lightweight or large low-rise buildings, which are often slum 
areas in cities of the Global South. By combining the urban morpho
logical map with a global population map, we discovered that the 30% 
sparsely built area contains less than 10% of the total population of the 
1692 cities, whereas the 25% low-rise area contains 26% of the total 
population. In addition, we were able to show that the influence of 
geographical and cultural regions on the physical design of the urban 
landscape also empirically stands up to observations and theories. This 
quantifies the very uneven distribution of population and settlement 
types across the world. 

The remainder of this paper is organized as follows. The next section 
briefly introduces the study area and data. Section 3 explains our 
method for the mapping of global local climate zones. Section 4 presents 
the experimental results. Section 5 showcases a pilot application of the 
resulting LCZ map by analysing the relation between LCZ patterns and 
urban morphology. Finally, in Section 6 we share our perspectives on 
possible usage of our results for the analysis of global urbanization and 
on further improvements on our results. 

2 data: https://doi.org/10.14459/2021mp1633461, demo: https://github. 
com/zhu-xlab/So2Sat-LCZ-Classification-Demo 
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2. Study area and data 

2.1. Study area 

According to the United Nations (United Nations, 2018), one-third of 
the world population will live in cities of at least 500,000 inhabitants in 
2030. Those cities are facing a challenge of meeting the needs of 
numerous inhabitants for improving their livelihood while only limited 
resources are available for a sustainable development. To support those 
cities with geographic information, our study focuses on producing 
maps of urban morphology for 1692 cities whose population is greater 
than 300,000 according to the census of the United Nations (United 
Nations, 2014). The location of the 1692 cities is shown in Fig. 1. 

We used the existing GUF binary urban mask and the center co
ordinates of the 1692 cities to adaptively determine the extent of each 
city. We grow a rectangle centered at the coordinate of each 1692 cities, 
until half of the area is not built up anymore according to GUF. This 
serves as a basis to define the region of interest (ROI) of each city. In 
addition, since GUF and the population figure may be out of date for 
certain cities, to take into account the rapid urbanization, we expand 
each side of the rectangles by a factor of two (i.e. factor of four in area). 
In this way, we believe most built areas of cities of interest shall are 
included. A zoom in of the ROIs in Europe can be seen in Fig. 2. As one 
can see, the size of ROIs are adaptive according to the city size. Because 
of our extension, the ROI is much larger than the actual city boundary. 
As a result, some ROIs also partially overlap. 

2.2. Data source and preprocessing 

We chose the freely available Sentinel-1 and Sentinel-2 satellite data 
as the data sources for global urban morphology classification. These 
two satellite missions provide highly complementary data. Sentinel-1 
provides SAR imagery in the microwave range, whereas Sentinel-2 
provides multi-spectral images. Nonetheless, it is not a trivial task to 
extract global urban morphology from these free and open global data. 
The first challenge is the complex relation between the measured sat
ellite data and the urban morphology, but also the global diversities 

caused by differences in cultures, environments, locations, topography, 
and climates. The second is the variability of the tremendous volume of 
satellite data for global mapping. To this end, we have developed a 
complete workflow of creating analysis-ready images, model training, 
and large-scale inferencing. Since the scope of this paper is more on the 
methdology and the final datasets, we briefly listed the pre-processing 
procedures for creating the analysis-ready data. 

2.2.1. Sentinel-1 
Sentinel-1 level-1 single look complex (SLC) dual-pol (VV-VH) 

Interferometric Wide swath (IW) data of 2017 summer were collected 
for the 1692 cities in this study. A series of processing steps using the 
ESA SNAP toolbox were applied to prepare an analysis-ready dataset. 
These processing steps are listed as follows:  

• Apply orbit profile: This module downloads the latest orbit profile so 
that a precisely geocoded product can be achieved.  

• Radiometric calibration: This step is to provide imagery in which the 
pixel values can be directly related to the radar backscatter of the 
scene. To do this, the output scaling applied by the processor is un
done and the desired scaling is reintroduced according to a look up 
table.  

• TOPSAR deburst: For each polarization channel, the Sentinel-1 IW 
product has three swaths. Each swath image consists of a series of 
bursts. The TOPSAR deburst merges all these bursts and swaths into a 
single SLC image.  

• Polarimetric speckle reduction: Speckle reduction was conducted by 
using the SNAP-integrated refined Lee filter. Unfiltered data can be 
preserved by skipping this module.  

• Terrain correction: This step geocodes the range-azimuth SAR image 
to a geographic coordinate. SRTM DEM was used to provide the 
height information. The data was re-sampled to a 10m GSD by the 
nearest-neighbor interpolation. The data was geocoded into the 
WGS84/UTM coordinate system. 

After processing, seven real-valued bands are contained in the 
Sentinel-1 analysis-ready data. They are listed in Table 1. 

Fig. 1. Location of the cities included in this study. The blue dots on the upper figure indicate the location of each city. The background image shows the topographic 
height of the Earth surface (source: OpenTopoMap (CC-BY-SA)). The height increases from green to brown to white. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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2.2.2. Sentinel-2 
Similarly, Sentinel-2 L1C data (top of atmosphere reflectance) were 

collected for our study area. The preprocessing Sentinel-2 images is less 
demanding than that of Sentinel-1. The main challenge is creating cloud- 
free mosaics. We achieved this by exploring an engineering approach 
relying on pixel-wise cloud detection and the combination of multi- 
temporal images within short time periods (Schmitt et al., 2019). The 
Sentinel-2 L1C top of atmosphere reflectance data were also scaled by a 
factor of 1/10,000 (Gatti and Bertolini, 2013). In the Sentinel-2 ana
lysis-ready data, 10 out of the 13 bands were used. Specifically, the 
channels with ground sampling distance (GSD) of 10 m and 20 m were 
used. The 10 real-valued bands are listed in Table 2. In addition, 
considering the much larger seasonal variation in optical images in 
comparison to SAR images, we collected a four-seasonal set of Sentinel-2 
images of our study areas. The seasons collected were the winter of 
2016, and the spring, summer, and autumn of 2017. It is however worth 
to mention that some of the cities in our study areas do not have four 
seasonal data due to an excessive amount of cloud or data corruption. 
For those cities, we only include seasons that have data available. 

2.3. The training dataset: So2Sat LCZ42 

In order to train a deep learning model with good generalization 

abilities for inferencing with global data, a large-scale and representa
tive annotated dataset is crucial. For this purpose, we created a rigor
ously labeled reference dataset: the So2Sat LCZ42 benchmark dataset 
(Zhu et al., 2020). Over one month, 15 domain experts carefully 
designed the labeling workflow, the error mitigation strategy, and the 
validation methods, and then conducted the data labeling. The dataset 
consists of manually assigned LCZ labels of 400,673 Sentinel-1 and 
Sentinel-2 image patch pairs globally distributed in 42 urban agglom
erations plus 10 additional smaller areas covering all the inhabited 
continents and 10 different cultural zones. We conducted a rigorous 
quantitative evaluation of 10 cities in the dataset by having a group of 
remote sensing experts cast 10 independent votes on each labeled 
polygon, in order to identify possible errors and assess the human la
beling accuracy. The “human confusion matrices” per polygon and per 
pixel were created, where the confident of individual classes can be seen. 

Fig. 2. A close up of the ROIs of our cities of interest in Europe. We grow rectangles centered at the coordinates of the 1692 cities, until half of the area is not built up 
anymore according to GUF. Since GUF and the population figure may be out of date for certain cities, we expand the each side of the rectangles by a factor of two (i.e. 
factor of four in area), to take into account the rapid urbanization. Because of this extension, the ROI is much larger than the actual city boundary. As a result, some 
ROIs also partially overlap. 

Table 1 
Description of Sentinel-1 analysis-ready data  

Band Description 

1 the intensity of unfiltered VH channel, in decibels 
2 the intensity of unfiltered VV channel, in decibels 
3 the coherence between unfiltered VV and VH 
4 the intensity of the refined LEE filtered VH channel, in decibels 
5 the intensity of the refined LEE filtered VV channel, in decibels 
6 the coherence between the refined LEE filtered VV and VH 
7 the phase difference of the refined LEE filtered VV and VH  

Table 2 
Description of Sentinel-2 bands used in this study.  

Band Central wavelength 
[nm] 

GSD [m] Description 

B2 490 10 Blue 
B3 560 10 Green 
B4 665 10 Red 
B5 705 20, upsampled to 

10m 
Visible and Near Infrared 
(VNIR) 

B6 740 20, upsampled to 
10m 

VNIR 

B7 783 20, upsampled to 
10m 

VNIR 

B8 842 10 VNIR 
B8a 865 20, upsampled to 

10m 
VNIR 

B11 1610 20, upsampled to 
10m 

Short Wave Infrared 
(SWIR) 

B12 2190 20, upsampled to 
10m 

SWIR  
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In general, our human labels achieve 85% confidence. This confidence 
number can serve as a reference accuracy for the machine learning 
models trained on this dataset. 

3. Method 

3.1. Deep learning model 

We employed a modified residual neural network as our base model, 
because multiple literatures have shown CNN greatly outperforms 
random forest in LCZs classification accuracy (Yoo et al., 2019; Rose
ntreter et al., 2020). In addition, a residual network has the advantage 
over many other networks in facilitating model training and encour
aging feature reuse, enabled by the short-cut connections within the 
network. Our network consists of one convolutional layer in the begin
ning, six following residual blocks, and one dense layer at the end, as 
shown in Fig. 3. Each convolutional layer is followed by one batch 
normalization layer and one activation layer. Unlike the well-known 
ResNet 101 or 152, our modified ResNet has a reduced number of re
sidual blocks, in order to fit the input patch size of a typical LCZ clas
sification problem. LCZ classification maps usually have a GSD of 100 
meters. We choose an input patch size of 32 × 32, which corresponds to 
320 × 320 meters. This choice is a balance between the depth of the 
network and the definition of LCZ. 

Similar to many CNNs for image classification, our model progres
sively reduces the resolution of the feature maps by 2. This progressive 
reduction of spatial resolution and increase of the number of the feature 
maps compress the spatial information into learned features of large 
dimensionalities. While optimizing with LCZ labels that emphasize the 
composition of land surfaces, the learned features would find a balance 
between the spatial correlation and the land surface composition for the 
classification purpose. One skip connection is applied within each re
sidual block, which is the core characteristic of residual networks. A 
global average pooling layer is applied to the final 8 × 8 ×256 feature 
map, resulting in a 1 × 256 feature vector. This feature vector is further 
input to the following dense layer with a softmax activation function, 
outputting a 1 × 17 vector of softmax probability in the end. The soft
max probability indicates the LCZ label of the input image patch. The 
output softmax probability is used for loss calculation together with the 

corresponding input reference label during the training phase. 

3.2. Fusion of Sentinel-1 and Sentinel-2 

There are two main advantages of fusing the classification results 
from Sentinel-1 and Sentinel-2 data. First, Sentinel-1 SAR images and 
Sentinel-2 multispectral images have complementary information. For 
example, the multi-spectral information of Sentinel-2 images provides 
spectral reflectance of covering materials, and the side-looking Sentinel- 
1 SAR data provides information of building structure and orientations. 
Second, Sentinel-1 data is not affected by weather and clouds. It pro
vides more consistent classification results than Sentinel-2 data for large 
areas. We carried out the fusion at the decision level rather than the 
geometric or feature level, because of the different modality and ge
ometry of Sentinel-1 and Sentinel-2 data. Decision level fusion averages 
the softmax probability of corresponding Sentinel-1 and Sentinel-2 data 
patches. The final prediction is the class with the highest mean 
probability. 

3.3. Training strategy 

In order to demonstrate a full spectrum of global performance of our 
deep learning model, we consider three training-testing splits: “random- 
split”, “block-split” and “cultural-10”. Among them, random-split in
dicates a spatially random sampling of evaluation points, which is 
commonly used in remote sensing. Since the distributions of training 
and test data are similar, random-split defines the upper bound of 
achievable classification accuracy. In contrast, block-split is a deter
ministic data split, i.e., the data from each city is separated into non- 
overlapping east-west blocks and the accuracy is evaluated on unseen 
blocks. The block-split gives a representative measure of accuracy for 
unseen cities whose data distribution is similar to the training cities. Last 
but not least, cultural-10 defines the lower bound of the achievable 
accuracy by evaluating completely held-out data in a cross-validation 
scheme. We have selected 10 held-out cities, which come from 10 
different culturally-defined geographical regions of the Earth. For each 
city, we trained the model with all other 41 cities and then evaluated on 
this held-out city. Finally results of the 10 cities were averaged. In this 
way, “cultural-10” provides a completely unbiased view of the accuracy 

Fig. 3. The deep learning model architecture employed in this study. This is a two streams of identical residual network with 20 layers for Sentinel-1 and Sentinel-2 
image patches respectively. The Sentinel-2 stream takes input from a maximum of 4 seasonal Sentinel-2 images of a city, whereas only one season was considered for 
Sentinel-1. The softmax layer of all the predictions are fused via averaging, yielding the final prediction. 
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achievable on absolutely unseen data. Together, these three evaluation 
scenarios give a solid impression of the quality of the global LCZ maps 
produced through this approach. 

3.4. Implementation details 

The implementation of the network is under the framework of Keras 
with Tensorflow backend. For the training, the batch size was set to 32. 
We apply Adam (Kingma and Ba, 2014) as the optimizer with a learning 
rate of 1e-4. The number of training epochs was set to 300. Early stop 
was enabled with a patience of 30 epochs. The training was performed 
on NVIDIA Tesla P100 GPU. 

4. Experimental results 

4.1. Performance assessment 

4.1.1. General assessment 
We evaluated the performance of our deep learning model based on 

the three data splits mentioned in the previous section. Our deep 
learning model shows consistent and promising accuracies in the three 
scenarios, which are listed in Table 3. It shows the average accuracies of 
using Sentinel-1 image only, average of 4 seasonal Sentinel-2 images, 
and the fusion of Sentinel-1 and Sentinel-2 images. Firstly we see that 
the three different evaluation strategies illustrate that our LCZ maps 
have an average accuracy between about 50% for cities that show 
characteristics disjunct from the training set, and more than 80% for 
cities that are fairly similar to the training distribution. This range of 
accuracies give us a realistic upper and lower bound of the performance 
of our model. Therefore, we are confident that the model will perform 
reasonably well on completely unseen cities. It should also be noted that 
average accuracy is a pessimistic metric compared to the more 
commonly used overall accuracy, as it is not weighted by the number of 
samples of a class. Secondly, it is obvious that 4 seasonal Sentinel-2 
image (even the 1-season Sentinel-2 image, which are not listed) 
consistently outperform the Sentinel-1 image. The reason is not only the 
averaging of the results from 4 seasons, but also the successful cloud 
removal performed on the Sentinel-2 images. Cloud-free optical images 
are more suitable for vision tasks such as LCZ classification. However, 
the importance of Sentinel-1 image shall not be downplayed, as cloud- 
free Sentinel-2 images are not always available. It is estimated that 
60–70% of the global Sentinel-2 images are cloudy. Therefore, our al
gorithm includes the fusion of Sentinel-1 and Sentinel-2 results. Table 3 
shows that the fusion of SAR and optical data consistently leads to the 
best results. Although, the improvement is not significant, the inclusion 
of Sentinel-1 image will play an important role in large scale or even 
global scale inference, in particular for cloudy areas such as western 
Africa and Amazon forest. 

4.1.2. Per-class analysis 
In order to get insight for future improvements, we studied the 

performance of our fused deep learning model in each LCZ class. The 
classification confusion matrix is shown in Fig. 4. We observed that 
certain LCZ classes are more easily confused in both Sentinel-1 and 
Sentinel-2 data than other classes. This can be seen both in the confusion 
matrices of our deep learning models as well as in the produced LCZ 

classification maps. Overall, we discovered three types of major confu
sions between the LCZ classes.  

• Among the low-rise classes, including compact low-rise (class 3), 
large low-rise (class 6), and light-weight low-rise (class 7): About 
45% lightweight low-rise (class 7) samples in our reference data were 
classified as compact low-rise (class 3). We also visually observe 
some confusion of light-weight low-rise with large low-rise in the 
predicted LCZ classification map of cities not in our reference data. 
These three classes have similar patterns of compactness. Their 
fundamental difference is the weight of their construction materials – 
information that is hard to retrieve from Sentinel-1 and Sentinel-2 
images. Another reason for confusion is the limited amount of 
reference data in the lightweight low-rise class.  

• Between heavy industry (class 10) and large low-rise (class 8): This is 
a reasonable confusion as large low buildings, such as factories and 
warehouses, are normally part of heavy industrial areas.  

• Among bush, scrub (class 13), low plants (class 14), and bare soil or 
sand (class 16): The differences among these three classes mainly lie 
in the percentage of vegetation coverage, as well as on the vegetation 
species. Seasonal variation and the limited resolution of Sentinel-1 
and Sentinel-2 data restrict their performance in discriminating 
above-mentioned differences. 

4.2. Global maps of urban morphology 

4.2.1. Visual analysis 
In total, we mapped 1.65 million square kilometers of urban areas of 

the 1692 cities. LCZ classification maps of those cities show that our 
deep learning model has a strong capability of classifying urban 
morphology. Fig. 5 shows a few typical examples of cities with different 
morphological types in our study area. It can be seen that LCZ classifi
cation maps are capable of capturing different types of urban morpho
logic compositions, e.g., many South American cities feature large 
compact high-rise areas, whereas European cities feature a mixture of 
open mid-rise and compact mid-rise areas. 

Comparing to the state of the art, i.e., binary urban-nonurban maps, 
our classification provides fine grained intra-urban morphological var
iations. Fig. 6 compares GUF (left) and our morphological map (right) of 
Delhi. Our morphological map makes it possible to localize the location 
of morphological variations within the settlement landscape, and 
further determine their exact morphological types. For example, the 
Delhi LCZ map shows there is no large compact high rise district in Delhi 
as we see in Sao Paulo. The dense areas is Delhi are scattered across the 
city. We also observe large areas of large low-rise buildings, which could 
be related to informal settlements. Water resources such as rivers and 
lakes as well as vegetation are also clearly mapped. This is important 
information that can aid decision making on urban development. 

Some LCZ classes also have strong correlation with certain settle
ment types, such as class 8 large low-rise vs. factory and warehouse, and 
class 7 lightweight low-risevs. informal settlements. Therefore, LCZ 
maps could be employed to identify those areas. In Fig. 7, we listed a few 
examples of industrial areas identified in the LCZ maps. It shows the 
north of Munich, Germany, where the BMW factory and many historical 
factories are located, the port area of Rotterdam, and the industrial area 
of Shenyang – a typical industrial city in China. These information 
provide a significant step in how we can perceive cities, with more ac
curacy, to make better planning decisions in urban areas. We make those 
data available to the community. 

4.2.2. Quantitative analysis 
The LCZ classification maps of the largest 1692 cities provide the 

possibility to analyse the composition of global urban areas for the first 
time. In the 1.65 million km2 we mapped, about 550 thousand km2 are 
built-up areas, i.e. the LCZ class 1 to 10. Among these 10 classes, the 
sparsely built, large low-rise, open low-rise, and compact low-rise 

Table 3 
Averaged accuracy of Sentinel-1 and Sentinel-2 data, and fused results, from 
three types of assessment: random-split, block-split, and held-out cultural-10 
split.   

Random Block Culture-10 

Sentinel-1 64.2% 51.6% 34.0% 
Sentinel-2 (4 seasons) 82.2% 75.7% 51.0% 
Sentinel-1 + Sentinel-2 (4 seasons) 83.4% 76.8% 51.3%  
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occupy the four largest proportions by area, as shown in Fig. 8 right. The 
largest built-up area is sparsely built, accounting for about 30% of the 
1692 cities. More than 26% of the built-up area are large/lightweight 
low-rise buildings, often warehouses and informal human settlements. 
The open and compact classes occupy about another 25% and 14%, 
respectively, often taking the form of residential and commercial 
buildings. 

Alarmingly, using the population of Global Human Settlement Layer 
in year 2015 (Schiavina et al., 2021), we found that the 30% sparsely 
built areas only accommodates 10% of the total population of the 1692 
cities. In contrast, more than 30% of the population lives in the 14% 
compact areas. The difference in population density in these two types of 
settlement is about seven-fold at a global scale. The population pro
portion of each built up class can be seen in the left of Fig. 8. To see the 

Fig. 4. Confusion matrix of the Sentinel-1 and Sentinel-2 fusion model in the culture-10 split. Left: The value in each cell is the number of test samples. Right: the 
values are accuracies. A summary of the class-wise accuracy is also listed: on the right side is recall, on the bottom is precision. The classes are 1: compact high-rise, 2: 
compact mid-rise, 3: compact low-rise, 4: open high-rise, 5: open mid-rise, 6: open low-rise, 7: lightweight low-rise, 8: large low-rise, 9: sparsely built, 10: heavy 
industry, 11: dense trees, 12: scattered trees, 13: bush scrub, 14: low plants, 15: bare rock or paved, 16: bare soil sand, 17: water. 

Fig. 5. Examples of the global urban morphological maps. We employed a deep learning model on Sentinel-1 and four-seasonal Sentinel-2 data to cover the largest 
1692 urban agglomerations with population greater than 300,000 according to UN’s World Urbanization Prospects 2014 (United Nations, 2014). A few examples of 
the produced LCZ maps are sorted here according to the morphological type of the urban area. From left to right, it shows a decrease of compactness and an increase 
of the mixture of different LCZ classes. Note the strong correlation between the morphological type and the geographic location. A more detailed analysis of the urban 
morphological pattern and culture can be found in the next section. At the bottom of the figure is the legend and schematic drawings of each LCZ class. Please note 
that the maps of a few cities in this figure are enlarged for better visualization. They are not true in proportion. 
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full picture, we summarize the area and population of the four aggre
gated classes, i.e., compact, lightweight/large low-rise, open, and 
sparsely built, in Table 4. To summarize, 60% of the population live in 
compact and lightweight/large low-rise areas, occupying 40% of the 
built up area. Another 35% of the population lives in open or sparsely 
built areas, occupying 55% of the areas. The remaining 5% of the pop
ulation is distributed in the non-built-up LCZ classes. This huge differ
ence in population density reflects a possible inequality in living 
conditions. 

5. Pilot application: empirical study of LCZ patterns vs. culture 

The new availability of intra-urban LCZ classifications describing the 
morphologic configuration of urban landscapes enables new empirical 
science on cities. It enables applications in a wide variety of thematic 
domains, such as urban heat islands, population estimation, or analyses 
directly related to building and open space structures and patterns. We 
illustrate this capability here, with one example, by presenting a 
morphologic categorization of city types. 

Traditionally, urban structural models have been developed in urban 

Fig. 6. Comparison of the state-of-the-art global urban map and LCZ classification. The left image is the urban and nonurban binary classification of Delhi from the 
global urban footprint. The right image is the corresponding LCZ classification. 

Fig. 7. Examples of industrial areas identified in LCZ maps. From left to right, it shows the north of Munich, Germany, where the BMW factory and many historical 
factories are located, the port area of Rotterdam, and the industrial area of Shenyang, a typical industrial city in China. The upper image is cited from Bing Map. 
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geography for different geographical-cultural areas, such as for the 
Western or the Islamic world. These models have been based on theories 
and observations. Our LCZ classifications now allow us to test whether 
groups morphologically form according to geographical-cultural 
regions. 

To test whether spatial patterns of LCZs in cities within the same 
geographic-cultural spaces are more similar in their quantitative 
appearance as well as in their spatial composition than compared to 
others, we conducted the following approach: a clustering based on 
unsupervised methods (k-means (Hartigan and Wong, 1979) as well as 
expectation-maximization (Dempster et al., 1977) algorithms) is applied 

on the quantity and spatial location of LCZs across all cities. The optimal 
number of clusters is determined by the gap statistics algorithm (Tib
shirani et al., 2001). Various feature spaces are tested, combining the 
occurrence of the 17 LCZs in general and with respect to their locations 
in the city; the city size is integrated as a feature as well (Taubenböck 
et al., 2020). We rely on comparable spatial baselines of city extents 
based on a consistently applied morphologic delineation method (Tau
benböck et al., 2019). As it is a priori unclear which feature space and 
which clustering approach fits best, we evaluate our resulting clusters in 
relation to geographical-cultural regions based on predefined regions, 
using those defined by Huntington (Huntington, 1997). Using the 
Simpson Evenness Index (SIEI) (Simpson, 1949), we define the clusters 
closest as the best result. 

We find that the resulting clusters of cities of similar morphological 
patterns of the built environment do reflect geographic-cultural regions 
to a certain degree (Fig. 9). It can be seen that Central European cities 
form one cluster, and Islamic cities form another one. We also identify 
clusters that predominantly feature Chinese and African cities. However, 
we also find clusters that are more spatially complex, such as clusters 
containing predominantly cities in American and in African as well or 
European as well as African and Asian cities. One last cluster consists of 
very large cities, which obviously represent a specific pattern. In general 
this confirms that certain aspects of geographic-cultural heritage have 

Fig. 8. The proportions of population (left) and area (right) of the ten LCZ built up classes (classes 1–10) in the 1692 cities.  

Table 4 
Area and population of human settlements of different compactness in the 1692 
cities. From left to right, the compactness of the settlement decreases, and the 
population density increases.   

Compact Lightweight / large 
low-rise 

Open Sparsely 
built 

% in built up 
area 

13.95% 26.17% 24.68% 30.72% 

% of population 30.11% 29.30% 25.95% 10.07% 
population per 

km2 
9122 4733 4445 1385  

Fig. 9. Seven resulting clusters of morphological city pattern types. Findings are based on the k-means algorithm using an 18-dimensional feature space (consisting of 
17 LCZs as well as city size as features) at the spatial unit of the morphological urban areas. 
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an influence on the spatial design of urban space. However, strict 
geographic-cultural models are not sufficient to describe urban settle
ment patterns: such models would negate the complexity of global in
terconnections in urban development. 

6. Perspectives and discussions 

The way we physically build our cities defines our life patterns, our 
mobility, the quality of life, the resilience of our cities, and much more. 
Across the globe, there are no two identical urban configurations and yet 
there are many groups of cities that are similar in their morphological 
characteristics. The measured differences in land consumption per per
son testify to the variability of cities worldwide and are an expression of 
inequality. A uniform and consistent classification is the basis for such 
new and better understandings of the status quo and thus also for 
improving urban planning in the future. 

In times of global urbanization, it must therefore be of central in
terest to create such a data set for cross-disciplinary use. The global high 
resolution and consistent local climate zone classification map gener
ated in this manner can be the basis for various applications: just a few 
examples include understanding the urban thermal environment to 
mitigate urban heat islands in human settlements, assessing population 
distributions, and simply analyzing urban morphological configura
tions. Our geostatistical result exemplifies the latter, demonstrating that 
patterns of urban morphology have a strong correlation to the 
geographical region and the related cultural heritage. However, we 
believe that extensive urban-related researches based on information 
extracted from this dataset can help stakeholders to develop appropriate 
policies and distribute resources more effectively. Of course, we are fully 
aware that the LCZ scheme is only one possible conceptual approach 
among many others to a systematic intra-urban description of urban 
morphology. To what extent these 17 LCZ classes can cover the urban 
landscape comprehensively and also in its manifestations worldwide 
must be investigated in future studies. However, we believe the LCZ 
scheme as a generic, culturally-neutral description of land-use and land- 
cover (Stewart and Oke, 2012) relying on universal, standardized and 
measurable parameters of urban form allows for a consistent and sys
tematic description of the built urban landscape. 

Although the overall accuracy of the classification results we ach
ieved in this work is high, the discrepancy of accuracy between different 
classes, particularly, height-related classes, is obvious. The comple
mentary Sentinel-1 data can improve the result. However, the moderate 
resolution of Sentinel-1 limited significant improvement. We have 
investigated the potential of using TanDEM-X data, whose spatial reso
lution is much higher than Sentinel-1 data, for the same task. Our pre
liminary experiments show promising results, suggesting that higher 
resolution SAR data would significantly complement the lacking height 
information. Since the TanDEM-X bistatic data provides global coverage 
and is free from clouds, a higher resolution and better quality classifi
cation dataset could potentially be achieved in the future to enable more 
precise analysis in supporting different applications. 

In general, the volume of open-access remote sensing data is 
increasing significantly. The proposed deep learning based multi-sensor 
fusion framework exemplifies the potential of developing advanced 
machine learning pipelines for extracting desired information from such 
a “gold mine.” Together with high performance computing (HPC), high- 
quality geo-information layers that currently do not exist can be effi
ciently generated at a global scale from peta bytes of EO data. This offers 
a great perspective toward filling the geo-information gap between 
knowledge and strategic directions, e.g., while addressing United Na
tions Sustainable Development Goals, or monitoring mega trends such as 
climate change and global urbanization. 
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Taubenböck, H., Müller, A., Dech, S., 2013. Urban footprint processor-fully 
automated processing chain generating settlement masks from global data of the 
tandem-x mission. IEEE Geosci. Rem. Sens. Lett. 10, 1617–1621. https://doi.org/ 
10.1109/LGRS.2013.2272953. 

Gatti, A., Bertolini, A., 2013. Sentinel-2 Products Specification Document. Available 
online (accessed February 23, 2015) https://earth.esa.int/documents/247904 
/685211/Sentinel-2+Products+Specification+Document.  

Glaeser, E.L., et al., 2013. Triumph of the city: how our greatest invention makes us 
richer, smarter, greener, healthier, and happier (an excerpt). J. Eco. Sociol. 14, 
75–94. 

Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., 
Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H., Guo, J., Xu, N., Li, W., Zhao, Y., 
Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, X., 
Xiao, F., Liu, Q., Song, L., 2019. Stable classification with limited sample: 
transferring a 30-m resolution sample set collected in 2015 to mapping 10-m 
resolution global land cover in 2017. Sci. Bulletin 64, 370–373. https://doi.org/ 
10.1016/j.scib.2019.03.002. 

Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: a K-Means Clustering algorithm. 
J. Royal Stat. Soc. Series C (Appl. Stat.) 28, 100–108. https://doi.org/10.2307/ 
2346830 publisher: [Wiley, royal statistical society].  

Hidalgo, J., Dumas, G., Masson, V., Petit, G., Bechtel, B., Bocher, E., Foley, M., 
Schoetter, R., Mills, G., 2019. Comparison between local climate zones maps derived 
from administrative datasets and satellite observations. Urban Clim. 27, 64–89. 

Hu, J., Ghamisi, P., Zhu, X.X., 2018. Feature extraction and selection of sentinel-1 dual- 
pol data for global-scale local climate zone classification. ISPRS Int. J. Geo-Info. 7, 
379. 

Huntington, S.P., 1997. The Clash of Civilizations and the Remaking of World Order. a 
Edition. Penguin Books India, New York.  

Kingma, D.P., Ba, J., 2014. Adam: A method for Stochastic Optimization. arXiv preprint 
arXiv:1412.6980. 

Mahtta, R., Mahendra, A., Seto, K.C., 2019. Building up or spreading out? Typologies of 
urban growth across 478 cities of 1 million+. Environ. Res. Lett. 14, 124077. 

Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., Hanke, W., 
Bachofer, F., Zeidler, J., Esch, T., Gorelick, N., Kakarla, A., et al., 2020. Outlining 
Where Humans Live-The World Settlement Footprint 2015. Sci Data 7. https://doi. 
org/10.1038/s41597-020-00580-5. Springer Nature.  

Mills, G., Ching, J., See, L., Bechtel, B., Foley, M., 2015. An introduction to the WUDAPT 
project. In: Proceedings of the 9th International Conference on Urban Climate, 
Toulouse, France, pp. 20–24. 

Qiu, C., Mou, L., Schmitt, M., Zhu, X.X., 2019. Local climate zone-based urban land cover 
classification from multi-seasonal sentinel-2 images with a recurrent residual 
network. ISPRS J. Photogram. Rem. Sens. 154, 151–162. 

Qiu, C., Tong, X., Schmitt, M., Bechtel, B., Zhu, X.X., 2020. Multilevel feature fusion- 
based cnn for local climate zone classification from sentinel-2 images: benchmark 
results on the So2Sat LCZ42 dataset. IEEE J. Select. Topics Appl. Earth Observ. Rem. 
Sens. 13, 2793–2806. 

Ren, C., Cai, M., Li, X., Zhang, L., Wang, R., Xu, Y., Ng, E., 2019. Assessment of local 
climate zone classification maps of cities in China and feasible refinements. Scientific 
Rep. 9, 1–11. 

Ren, C., Wang, R., Cai, M., Xu, Y., Zheng, Y., Ng, E., 2016. The accuracy of lcz maps 
generated by the world urban database and access portal tools (wudapt) method: a 
case study of Hong Kong. In: 4th Int. Conf. Countermeasure Urban Heat Islands, 
Singapore. 

Revi, A., Satterthwaite, D.E., Aragón-Durand, F., Corfee-Morlot, J., Kiunsi, R.B., 
Pelling, M., Roberts, D.C., Solecki, W., Field, C., Barros, V., et al., 2014. Urban areas. 
Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and 
Sectoral Aspects. Cambridge University Press, New York, USA.  

Rosentreter, J., Hagensieker, R., Waske, B., 2020. Towards large-scale mapping of local 
climate zones using multitemporal sentinel 2 data and convolutional neural 
networks. Remote Sens. Environ. 237, 111472. 

Schiavina, M., Freire, S., MacManus, K., 2021. GHS Population Grid Multitemporal 
(1975, 1990, 2000, 2015) r2019a. https://data.jrc.ec.europa.eu/dataset/0c6b975 
1-a71f-4062-830b-43c9f432370f. 

Schmitt, M., Hughes, L.H., Qiu, C., Zhu, X.X., 2019. Aggregating cloud-free Sentinel-2 
images with Google Earth Engine. In: ISPRS Annals of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, pp. 145–152. 

Simpson, E.H., 1949. Measurement of diversity. Nature 163, 688. https://doi.org/ 
10.1038/163688a0 number: 4148 Publisher: nature Publishing Group.  

Stewart, I.D., 2011. Local climate zones: origins, development, and application to urban 
heat island studies. In: Paper Presented at the Annual Meeting of the American 
Association of Geographers. 

Stewart, I.D., Oke, T.R., 2012. Local climate zones for urban temperature studies. 
Bulletin Am. Meteorol. Soc. 93, 1879–1900. 

Stewart, I.D., Oke, T.R., Krayenhoff, E.S., 2014. Evaluation of the ‘local climate 
zone’scheme using temperature observations and model simulations. Int. J. Climatol. 
34, 1062–1080. 

Sukhanov, S., Tankoyeu, I., Louradour, J., Heremans, R., Trofimova, D., Debes, C., 2017. 
Multilevel ensembling for local climate zones classification. In: 2017 IEEE 
International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 
pp. 1201–1204. 
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Taubenböck, H., Debray, H., Qiu, C., Schmitt, M., Wang, Y., Zhu, X.X., 2020. Seven city 
types representing morphologic configurations of cities across the globe. Cities 105, 
102814. https://doi.org/10.1016/j.cities.2020.102814. 
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