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A B S T R A C T   

Building height retrieval from synthetic aperture radar (SAR) imagery is of great importance for urban appli-
cations, yet highly challenging due to the complexity of SAR data. This paper addresses the issue of building 
height retrieval in large-scale urban areas from a single TerraSAR-X spotlight or stripmap image. Based on the 
radar viewing geometry, we propose that this problem be formulated as a bounding box regression problem and 
therefore allows for integrating height data from multiple data sources in generating ground truth on a larger 
scale. We introduce building footprints from geographic information system (GIS) data as complementary in-
formation and propose a bounding box regression network that exploits the location relationship between a 
building’s footprint and its bounding box, enabling fast computation. The method is validated on four urban data 
sets using TerraSAR-X images in both high-resolution spotlight and stripmap modes. Experimental results show 
that the proposed network can reduce the computation cost significantly while keeping the height accuracy of 
individual buildings compared to a Faster R-CNN based method. Moreover, we investigate the impact of inac-
curate GIS data on our proposed network, and this study shows that the bounding box regression network is 
robust against positioning errors in GIS data. The proposed method has great potential to be applied to regional 
or even global scales. Our code will be made publicly available at github.com/ya0-sun/bbox-SAR-building.   

1. Introduction 

Three-dimensional (3-D) building models are widely used in public 
and commercial sectors for environmental researches and location- 
based services. For the past three decades, 3-D building reconstruction 
has been a hot topic in remote sensing (Rottensteiner et al., 2012); 
however, there is limited information on the third dimension, i.e., 
building height, on a regional or global scale. Studies on building height 
retrieval primarily employ high-resolution optical images and airborne 
LiDAR data (Brenner, 2005). Optical data acquisition requires the 
weather to be cloud-free, and airborne or terrestrial data are too 
expensive to collect globally. 

Synthetic Aperture Radar (SAR) imagery, on the other hand, is 
capable of providing data regardless of time or weather conditions. Such 
data are of great interest to applications of disaster responses (Brunner 
et al., 2010; Wang and Jin, 2012) and to studies concerning regions 
frequently covered by clouds (Huang et al., 2015). Since the launch of 
TerraSAR-X in 2007, modern SAR satellites, e.g., TerraSAR-X, TanDEM- 

X, and CosmoSky-Med, have been providing meter or even sub-meter 
resolution images, making it possible to extract and reconstruct man- 
made objects from spaceborne SAR data. In addition, complete global 
coverages of TanDEM-X stripmap mode data have been acquired since 
2012, providing great potential as a data source for global building 
reconstruction (Zhu et al., 2018). 

The study of building analysis from SAR imagery dates back to 1969, 
that Laprade and Leonardo derive the elevation of a few buildings from 
shadows and layovers using simulated radar images (Laprade and Leo-
nardo, 1969). Since then, various studies have been conducted on this 
topic (Franceschetti et al., 2002; Tupin and Roux, 2003; Guida et al., 
2010; Brunner et al., 2010; Sportouche et al., 2011; Wen et al., 2013). 
However, building interpretation from SAR data is highly challenging. 
Due to the side-looking geometry and one-band radar sensors, urban 
structures are clearly visible in SAR images but are difficult to distin-
guish from each other. Several works (Guida et al., 2010; Sportouche 
et al., 2011; Brunner et al., 2010) develop tailored algorithms for 
building analyses in complex urban environments, but these methods 
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are not suitable to being applied for large-scale areas. Recently, deep 
neural networks have been applied for individual building segmentation 
in SAR images (Sun et al., 2021). Building heights are subsequently 
computed based on the radar viewing geometry. However, for anno-
tating building areas, this method requires an accurate digital elevation 
model (DEM), which is unavailable in most areas and thus restricts this 
method from being generalized to other regions. 

In this work, we are interested in the height estimation of individual 
buildings on a large scale, using single SAR images. We develop a 
method that takes SAR images and building footprints as input and re-
trieves building heights by predicting bounding boxes of buildings (cf. 
Fig. 1). Next, we briefly explain the challenges involved in this task and 
review related work. 

1.1. Challenges 

Because of the side-looking imaging geometry and complex back-
scattering mechanism, SAR image interpretation is a challenging task in 
general. For interpreting individual buildings in urban SAR images, the 
challenges are mainly twofold: 

For an isolated building in SAR images, the main challenge is to 
recognize its components, i.e., the roof, walls, and footprint. Fig. 2 il-
lustrates the amplitude profile of two flat-roof buildings in a slant-range 
SAR image. As can be seen, the wall area lw and the roof area lr in SAR 
images are always mixed and difficult to differentiate: lw covers lr when 
the building height h is large (cf. Fig. 2 (a)), and it is covered by lr when h 

is small (cf. Fig. 2 (b)). In addition, for low-rise buildings, the roof area lr 
partially overlaps the footprint area lf (cf. Fig. 2 (b)), and therefore the 
near-range side of lf might be ambiguous. Moreover, the far-range side 
of the footprint area lf is unknown, as it connects the shadow area that 
also appears dark in SAR images. 

For multiple adjacent or nearby buildings, a more crucial issue is to 
identify them correctly. Since the intensity values in SAR images are 
closely related to material types and structural shapes of objects, 
consecutive buildings in the physical world are difficult to separate in a 
SAR image unless obvious material or structure changes exist at building 
boundaries. In addition, even if buildings in the real world are not 
neighboring, they may overlap each other in SAR images, which 
significantly increases the difficulty of image interpretation. For 
example, Fig. 1 (a) shows a typical urban region in a TerraSAR-X spot-
light image containing several buildings whose footprints and bounding 
boxes are plotted in Fig. 1 (b) and (c), respectively. By only looking at 
the SAR image, it is unlikely to tell the numbers of buildings or distin-
guish connected buildings, such as the purple and green buildings. Be-
sides, it is noticeable that the green building overlaps the yellow and the 
blue ones in the SAR image, although their footprints are not connected. 
In such complex cases concerning individual buildings on SAR images, 
building footprints are often highly beneficial. 

1.2. Related work 

In literature, researchers have investigated building height retrieval 

Fig. 1. Illustration of the input and output of our method. (a) and (b) are the input data: a SAR image and building footprints in the SAR image. (c) shows the 
predicted bounding boxes of these buildings. Building heights are then computed from the bounding boxes and building footprints, and levels-of-detail (LoD) 1 
models are reconstructed, as shown in (d). rg and az denote the slant range direction and azimuth direction, respectively. 

Fig. 2. Illustration of the amplitude profile 
(ampl) of two flat-roof buildings in a slant- 
range SAR image. θ is the incidence angle. 
h is the building height. lw, lr, and lf denote 
the areas of wall, roof, and footprint in the 
slant-range SAR image, respectively. The 
gray shades and heights of regions a-f indi-
cate the expected magnitude values of in-
tensity on the SAR image. The blue arrow 
marks the bottom of the sensor-facing wall 
and the red arrow points at the double 
bounce line on the SAR image. (For inter-
pretation of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   
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from a single SAR image (Laprade and Leonardo, 1969; Quartulli and 
Datcu, 2004; Brunner et al., 2010; Zhao et al., 2013), InSAR data (Thiele 
et al., 2013; Dubois et al., 2016), and multi-aspect SAR or InSAR data 
(Leberl, 1989; Soergel et al., 2009; Xu and Jin, 2007) or even circular 
SAR (Oriot and Cantalloube, 2008; Palm et al., 2012) to overcome the 
drawback of occlusions originated from the side-looking geometry. In 
addition to SAR data, auxiliary data, e.g., building outlines extracted 
from optical images (Wegner et al., 2009; Sportouche et al., 2011) and 
building footprints obtained from GIS data (Thiele et al., 2010; Wen 
et al., 2013; Sun et al., 2017), are introduced for providing exact loca-
tions and geometric shapes of buildings in the real world. 

To retrieve building heights from SAR data, most researchers employ 
data-driven approaches that first extract salient features such as double 
bounce lines, layovers, shadows, and InSAR phases and then deduce 
building parameters. Some researchers first detect bright-line segments 
and regularly spaced point-like features and subsequently group them 
into building regions (Tupin and Roux, 2003; Xu and Jin, 2007; 
Michaelsen et al., 2006; Soergel et al., 2009; Ferro et al., 2013). Alter-
natively, several studies directly extract building regions of layovers and 
shadows using segmentation algorithms, such as the mean shift algo-
rithm and conditional random field (CRF) (He et al., 2008), marker 
controlled watershed algorithm (Zhao et al., 2013), thresholding and 
morphological operations (Cao et al., 2014). Besides data-driven ap-
proaches, model-based methods are conducted. Detailed modeling of the 
geometrical and radiometric properties of isolated buildings is per-
formed in (Quartulli and Datcu, 2004; Guida et al., 2008; Guida et al., 
2010), from which building shapes in SAR data are estimated. Such 
techniques require extensive prior knowledge about objects, such as 
materials, roughness, humidity, and orientation with respect to the SAR 
sensor, which is generally unknown. Another model-based approach is 
developed in a simulating and matching fashion (Jahangir et al., 2007; 
Sportouche et al., 2009; Brunner et al., 2010; Thiele et al., 2012; Wang 
et al., 2015). This approach comprises a simulation step in which a SAR 
image or InSAR phase is simulated using a building hypothesis and a 
matching step in which the simulated data are matched with real data. 
The process is conducted iteratively until the optimal building param-
eters are achieved. 

Although a considerable amount of research has been carried out on 
building height retrieval using SAR data, few studies have investigated 
this problem on a large scale. Most methods target buildings with spe-
cific shapes, e.g., rectangular- (Simonetto et al., 2005; Wang et al., 2008; 
Liu et al., 2017) or L-shaped footprints (Zhang et al., 2011; Zhao et al., 
2013), flat (Wegner et al., 2014) or gable roofs (Thiele et al., 2010; Chen 
et al., 2017), and different heights (Chen et al., 2017; Guo and Zhu, 

2014; Liu et al., 2015; Tang et al., 2016). The majority of studies 
investigate simple scenarios where a minimal distance between build-
ings is required to ensure the scattering effects of different buildings do 
not interfere with each other (Guida et al., 2010; Brunner et al., 2010; 
Sportouche et al., 2011; Chen et al., 2015). Moreover, the performance 
of the presented methods is typically presented for a small set of test 
data, usually comprising only one or a few buildings. The general-
isability of much published research on this issue is therefore 
problematic. 

In recent years, deep neural networks have been becoming increas-
ingly popular and triggered breakthroughs in many fields, including a 
wide range of remote sensing applications (Zhu et al., 2021; Zhang et al., 
2016; Mou et al., 2019; Kussul et al., 2017; Li et al., 2019; Cheng et al., 
2018; Mou and Zhu, 2018; Audebert et al., 2018; Chen et al., 2021). In 
contrast to classical approaches that require expert domain knowledge 
and hand-crafted features, deep networks rely on a large amount of raw 
data to learn effective feature representations in an end-to-end fashion. 
But the major problem preventing applying deep networks to urban SAR 
analysis tasks is the lack of annotation data. To address this issue, 
Shahzad et al. (2019) introduce a SAR tomography (TomoSAR) point 
cloud to acquire building areas in a SAR image and take them as ground 
truth annotations to train a segmentation network to extract building 
areas. In Sun et al. (2019), Sun et al. generate building areas in a SAR 
image using a DEM instead of a TomoSAR point cloud, as the latter is 
rare. However, both two works do not annotate individual buildings. 
Shermeyer et al. (2020) present a multi-sensor all weather mapping 
(MSAW) dataset containing airborne SAR images, high-resolution opti-
cal images, and building footprint annotations. However, building 
footprints, instead of building heights, are the learning target in this 
work. In Sun et al. (2021), Sun et al. annotate individual buildings in a 
TerraSAR-X spotlight image employing a highly accurate DEM and 
propose a segmentation network for predicting building areas in the SAR 
image. The segmentation results are then applied to reconstruct building 
heights. This work has segmented individual buildings from a single SAR 
image on a large scale for the first time. However, pixel-wise labels are 
expensive. The data set generation approach requires accurate DEMs, 
unavailable for most areas, thus restricting this method from being 
generalized to a larger scale. 

1.3. Contributions 

This work aims to retrieve building heights using a single SAR image 
on a large scale. We propose to generate annotations using building 
heights that can be acquired from multiple sources. The task of building 

Fig. 3. Illustration of bounding boxes of two buildings in a slant-range SAR image. On the left, two buildings (b1 and b2) in the UTM coordinate system are imaged in 
a SAR image plane. On the right, bounding boxes of b1 and b2 are shown in the SAR image coordinate system. 
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height estimation is formulated as a bounding box regression problem, i. 
e., a task to regress the center coordinate and the size of the bounding 
box for each building. 

The main contributions of this paper are threefold:  

a. We propose a workflow for building height retrieval in single SAR 
images with GIS data. To our best knowledge, this is the first time 
that deep networks are employed in the problem of building height 
retrieval in large areas from TerraSAR-X images in both high- 
resolution spotlight and stripmap modes.  

b. We formulate the problem of building height retrieval as a bounding 
box regression problem and propose a bounding box regression 
network that is very efficient due to the tailored use of building 
footprints. The fast computation speed is significant for large-scale 
applications.  

c. We propose a ground truth generation approach to produce building 
bounding boxes. This approach can integrate multiple sources of 
building heights, thus providing large potential in analyzing complex 
urban regions. 

The remainder of this paper proceeds as follows. Section 2 formulates 
the problem and delineates the proposed method. Section 3 is concerned 
with the dataset generation approach to tackle the problem of dataset 
scarcity. The experiments and results are presented and analyzed in 
Section 4. In Section 5, we discuss several practical problems related to 
applying our method to large-scale building height retrieval. Finally, 
Section 6 concludes this paper. 

2. Methodology 

2.1. Problem formulation 

We consider LoD1 building models, i.e., prismatic models with flat 
roof structures (Kolbe et al., 2005). Due to the radar viewing geometry, 
scatterers on a vertical line in the geographic coordinate system always 
have the same azimuth coordinate in a SAR image, i.e., this vertical line 
in the SAR image parallels the range direction. Therefore each vertical 
building wall in a SAR image has one pair of opposite sides paralleling 
the range direction. This can be observed in Fig. 1. Hence, the extent of a 
building in a SAR image is bounded by two vertical lines from building 
walls in the azimuth direction and the region of the layover and foot-
print in the range direction. In this work, we exploit this geometric 
relationship to retrieve building heights. 

Fig. 3 illustrates this geometric relationship by two buildings in the 
Universal Transverse Mercator (UTM) and the SAR image coordinate 
systems. On the left of the figure, b1 and b2 are two buildings in the UTM 
coordinate system and are imaged on a SAR image plane. As can be seen, 

sensor-visible walls (yellow and blue) are projected into the SAR image 
as parallelogram shapes, and vertical sides of the walls parallel the slant- 
range direction. The building height h is directly related to the layover 
length L: 

h = L/cosθ, (1)  

where θ is the incidence angle. 
On the right of Fig. 3, b1 and b2 and their bounding boxes (green) are 

shown in the SAR image coordinate system. As can be seen, for both b1 
and b2, the layover length L is the width difference between the building 
bounding box and the footprint bounding box: 

L = Lbuilding − Lfootprint. (2)  

Therefore, for a building in a SAR image, its height can be obtained once 
its footprint is known andits bounding box is detected. Based on the 
geometry relationships, we formulate the problem of building height 
retrieval from SAR images as a bounding box regression problem. I.e., 
given a SAR image and a building’s footprint, find the bounding box of 
the building, and then derive the building height from it. 

2.2. Footprint-guided bounding box regression 

We propose a footprint-guided bounding box regression network for 
building height retrieval that exploits the location relationship between 
a building’s footprint and its bounding box. Fig. 4 provides an overview 
of the proposed workflow. Specifically, in the network structure, we 
concatenate a SAR image and a building footprint mask as the input of 
the network. ResNet-101 (He et al., 2016) is employed as the backbone. 
ResNet-101 has in total 101 weighted layers, including 5 blocks of 
convolutional layers, i.e., conv1, conv2, conv3, conv4, conv5, and each 
contains a multi-layer deep subnetwork. First, conv1 to conv4 in ResNet 
are utilized to extract feature maps. We extract the footprint bounding 
box from the building footprint mask and map it to the feature maps as 
the region of interest (RoI) of the building, i.e., the initial bounding box 
to be corrected. For each RoI, local features are pooled by RoI-Align (Ren 
et al., 2015). Then, conv5 of ResNet takes the pooled features, and a 
global average pooling layer and a fully connected layer proceed to 
predict corrections for the RoI with respect to the ground truth bounding 
box. The corrections are then added to the RoI of each building to 
produce its bounding box. Finally, building heights are derived from the 
predicted bounding boxes and are used to extrude LoD1 building models 
from the building footprint polygons. 

For the parameterizations of bounding boxes, we adopt the (x, y,w, h)
coordinates used by R-CNN (Girshick et al., 2014). Let B = [xB, yB,wB,

hB] ∈ R 4 be the bounding box representation as a 4-dimensional vector, 
where x,y,w, and h denote the box’s center coordinates and its width and 

Fig. 4. General workflow of the proposed method. After data set generation, our network concatenates a SAR image and a building footprint mask from the training 
set as input and predicts a correction for the footprint bounding box with respect to the building bounding box. Then the trained model is evaluated using the testing 
set. Building heights are computed from the predicted bounding boxes and building footprints, and subsequently, LoD1 building models are reconstructed.. 
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height in an image patch. The task of bounding box regression is to 
regress a candidate bounding box B into a target bounding box G = [xG,

yG, wG, hG]. In our case, B is the footprint bounding box, and G is the 
building bounding box. The network predicts the distance vector Δ =

[δx,δy,δw,δh]: 

⎧
⎪⎪⎨

⎪⎪⎩

δx = (xG − xB)/wB,

δy = (yG − yB)/hB,

δw = log(wG/wB),

δh = log(hG/hB).

(3)  

We employ the complete intersection over union (CIoU) loss (Zheng 
et al., 2020), which considers three geometric factors of bounding boxes: 
the overlap area, the central point distance, and the aspect ratio. CIoU is 
defined as: 

Fig. 5. The workflow for dataset generation in three steps. First, building footprints and height data are collected in the UTM coordinate system; then, they are 
projected to the SAR image coordinate system to generate building footprint masks; third, building bounding boxes are generated using footprint masks and 
building heights. 

Fig. 6. Examples of three different building height sources in the same area in the city of Berlin, Germany. (For interpretation of the references to colours in this 
figure legend, the reader is referred to the web version of this paper.) 

Fig. 7. The study area of both Berlin HS and Berlin SM data sets. (a) shows the area (blue) in the UTM coordinate system (UTM zone 32 N). (b) and (c) show a 
comparison of the TerraSAR-X spotlight image and the stripmap image in the yellow rectangle in (a), respectively. 
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L CIoU = 1 − IoU −
ρ2(b, g)

c2 + αv, (4)  

where b and g denote the central points of B and G, ρ is the Euclidean 
distance, c is the diagonal length of the smallest enclosing box covering 
the two boxes, α is a positive trade-off parameter, and v measures the 
consistency of the aspect ratio. IoU,α, and v are defined as follows: 

IoU =
|B ∩ G|

|B ∪ G|
, α =

v
(1 − IoU) + v

, v =
4
π2

(

arctan
wg

hg − arctan
wb

hb

)2

. (5) 

Fig. 8. The Rotterdam study area in the UTM coordinate system (UTM zone 31 N).  

Fig. 9. The New York study area in the UTM coordinate system (UTM zone 18 N).  

Table 1 
Characteristics of the used SAR data, data sources of building footprints, and data sources of heights in each data set.  

Data set TerraSAR-X 
imaging mode; 

pixel spacing: rg 
direction (m) 

pixel spacing: az 
direction (m) 

incidence 
angle (◦) 

data source: building footprints data source: building 
heights 

Berlin HS spotlight 0.455 0.871 36.08 Berlin 3D (Berlin Partner für Wirtschaft und 
Technologie GmbH, 2019) 

DEM (7 cm/pixel) 

Berlin SM stripmap 0.909 1.836 46.68 Berlin 3D (Berlin Partner für Wirtschaft und 
Technologie GmbH, 2019) 

DEM (7 cm/pixel) 

Rotterdam stripmap 1.364 1.852 39.28 3D BAG (TU Delft, 3D) 3D BAG (TU Delft, 3D) 
New York stripmap 1.364 2.203 42.65 NYC open data (City of New York, 2021) NYC open data (City of 

New York, 2021)  

Table 2 
Numerical results on Berlin HS data set for choosing the batch size. All experi-
ments are trained for 10 epochs. The highest values of the metrics are high-
lighted in bold.  

Batch size 4 16 64 256 

hemae (m)  4.3 4.6 4.9 5.3 
hestd (m)  6.3 6.6 5.8 7.2  
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3. Reference Data Generation 

For training our network, building bounding boxes as reference data 
and building footprints as input data in the SAR image coordinate sys-
tem are necessary. For this reason, we develop a workflow that employs 
building footprint and height data to automatically label building 
bounding boxes and building footprints in SAR images. The proposed 
workflow comprises three steps that are illustrated in Fig. 5: 1) building 
heights acquisition, 2) building footprint masks generation, and 3) 
building bounding boxes generation. In the following sections, we 
explain the details. 

3.1. Building height acquisition 

The first step is to collect building data. For each building, we collect 
the building height h and the ground height hground, along with its foot-
print coordinates (x,y). 

The proposed workflow only requires one single height value for one 
building, which can be acquired from various data types, such as city 
models, LiDAR data, and accurate DEMs. Fig. 6 shows an example of 
three data sources of building heights of the same area in Berlin. In some 
cities, public data sets are available that can be utilized to generate our 
annotations, e.g., Berlin city models (Berlin Partner für Wirtschaft und 
Technologie GmbH, 2019), NYC open data (City of New York, 2021), 
and 3D Buildings and Addresses of the Netherlands (3D BAG) (TU Delft, 
3D). This loose requirement of the height data source significantly re-
duces the barrier of training data creation, which in turn supports the 
generation of reference data on a larger scale. 

3.2. Generation of building footprint masks in SAR images 

In the previous step, building data are acquired in the UTM coordi-
nate system. For our task, building footprints need to be projected to the 
SAR image coordinate system. That is to say, for each building footprint, 
its coordinates (x, y, hground) need to be transformed to (rg,az), where rg 
and az denote range and azimuth coordinate, respectively. Generally, 
the coordinate transformation from the UTM coordinate system to the 
SAR imaging coordinate system includes iterative solving Doppler- 
Range-Ellipsoid equations that can be implemented with different ap-
proaches (Curlander, 1982; Schwabisch, 1998; Toutin, 2004; Roth et al., 
2004). In this work, radar coding was performed using DLR’s Integrated 
Wide Area Processor (IWAP) (Gonzalez et al., 2013). Note that further 
registration is needed if the ground height hground is not accurate (Sun 
et al., 2020; Sun et al., 2019). 

Then, building footprint masks are generated according to range- 
azimuth coordinates of the radar-coded vertices of building footprint 
polygons. For each building footprint mask, we set the pixel value to be 1 
inside the footprint polygon and 0 elsewhere. 

3.3. Generation of the ground truth building bounding boxes in SAR 
images 

To generate the ground truth bounding box of a building, we first 
compute its footprint bounding box Bf . Bf is defined by four values in 
pixels [rgf , azf , Lf , wf ], in which (rgf , azf ) are coordinates of the center 
point of the bounding box, and Lf and wf are the width and height of the 
bounding box, respectively, as illustrated in Fig. 5. Then, the building 
bounding box Bb is generated from Bf . As illustrated in Fig. 3, the dif-
ference between Bb and Bf results from the added width L, which is the 
layover length corresponding to the building height h: L = h⋅cosθ. 
Therefore, the bounding box Bb = [rgb, azb, Lb,wb] can be generated as: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

rgb = rgf −
1
2

L

azb = azf

Lb = L + Lf

wb = wf

(6)  

Finally, we remove possible wrong bounding boxes. Since the used SAR 

Table 3 
Numerical results on Berlin HS data set for choosing the training epochs. All experiments use the batch size of 4. The highest values of the metrics are highlighted in 
bold.  

Training epochs 5 6 7 8 9 10 11 12 15 20 

hemae (m)  4.7 4.4 4.5 4.4 4.4 4.3 4.3 4.3 4.3 4.3 
hestd (m)  6.8 6.6 6.5 6.4 6.4 6.3 6.4 6.3 6.3 6.4  

Table 4 
Patch size and sample numbers in each data set.  

Data set patch size 
(pixel) 

cropping 
stride 

total 
samples 

training 
samples 

testing 
samples 

Berlin HS 256×

256  
150 29842 19251 10591 

Berlin SM 128×

128  
70 17184 15863 1321 

Rotterdam 128×

128  
70 15054 13368 1686 

New York 128×

128  
70 7922 7318 604  

Table 5 
Numerical results on four data sets. The highest values of different metrics are 
highlighted in bold.  

Data set Model name hemae (m)  hestd (m)  Training time 

Berlin HS SSDh 6.6 9.4 3h26mins 
YOLOv3h 6.0 8.1 4h16mins 
RetinaNeth 4.7 6.5 5h22mins 
Faster R-CNN w.FPNh 5.0 7.3 5h10mins 
Faster R-CNNh 4.3 6.2 5h26mins 
Ours 4.3 6.3 1h01mins 

Berlin SM SSDh 7.9 10.3 1h59mins 
YOLOv3h 6.5 9.8 2h22mins 
RetinaNeth 5.9 9.0 3h32mins 
Faster R-CNN w.FPNh 6.1 8.7 3h25mins 
Faster R-CNNh 5.6 7.1 3h28mins 
Ours 5.7 7.2 52mins 

Rotterdam SSDh 6.4 9.5 1h47mins 
YOLOv3h 5.9 8.3 2h13mins 
RetinaNeth 5.4 7.6 3h23mins 
Faster R-CNN w.FPNh 5.8 7.8 3h14mins 
Faster R-CNNh 5.4 7.6 3h40mins 
Ours 5.5 7.6 44mins 

New York SSDh 6.2 12.2 57mins 
YOLOv3h 6.2 13.2 1h15mins 
RetinaNeth 4.8 7.3 1h55mins 
Faster R-CNN w.FPNh 5.0 7.8 1h30mins 
Faster R-CNNh 4.7 7.3 1h59mins 
Ours 4.9 7.6 26mins  
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image and height data are often collected at different times, there might 
be inconsistencies resulting from urban changes, such as building con-
struction and deconstruction. We deal with this situation using the in-
tensity values of the given SAR image. In the SAR image, the intensity 
values are generally larger in building areas than in ground areas. 
Therefore, a threshold is set to be the mode of the intensity values of the 
SAR image to exclude bounding boxes in which the mean intensity 
values are smaller than the threshold. 

4. Experiments 

4.1. Data description 

The performance of the proposed method is evaluated on four data 
sets, including one TerraSAR-X high-resolution spotlight (HS) image 
acquired over Berlin and three TerraSAR-X stripmap (SM) images ac-
quired over Berlin, Rotterdam, and south Brooklyn in New York. Our 
four data sets are termed Berlin HS, Berlin SM, Rotterdam, and New 
York. Fig. 7 (a) shows the study region in Berlin, and the SAR images in 
Berlin HS and Berlin SM data sets are both cropped to cover the same 
region. Fig. 7 (b) and (c) show the spotlight image and the stripmap 
image in the yellow rectangle in (a), respectively. The study regions in 
Rotterdam and New York are shown in Fig. 8 and Fig. 9, respectively. 

Table 1 lists the main characteristics of the used SAR data, data 
sources of building footprints, and data sources of building heights in 
each data set. In this work, we make use of height data from LoD1 
building models and accurate DEMs. LoD1 models represent buildings as 
blocks with flat roof structures and contain one height for each building 
(Kolbe et al., 2005). As for DEMs, we regard the average roof height as 

the building height1. By using the workflow described in Section 3, 
building bounding boxes and footprint masks are generated.For each 
building, our data set contains a SAR image patch, a footprint mask, and 
a bounding box of the building. 

4.2. Training details 

To train an effective and robust network, we first cropped the SAR 
image into patches. Patches containing incomplete footprints or 
bounding boxes are discarded. In the four data sets, the high-resolution 
spotlight SAR images are cropped into patches of 256 × 256 pixels with 
a stride of 150 pixels, and the stripmap SAR images are cropped into 
patches of 128 × 128 pixels with a stride of 70 pixels. Consequently, 
building data in the study areas are prepared, and each building has a 
ground truth bounding box and two patches: a SAR image patch and a 
footprint mask patch. All building samples are then divided to build the 
training set and the testing set. We made sure that the training and test 
regions do not overlap. The network takes one SAR patch and the cor-
responding GIS patch for one building as inputs. Table 4 lists the patch 
size and sample numbers of training/testing sets of each data set. Before 
feeding data into models, data sets were normalized into the range of [0, 
1]. For data sets generated using stripmap SAR images, image patches 
are re-scaled to 256 × 256 pixels. 

The network is implemented on PyTorch and trained on one NVIDIA 
Tesla P100 16 GB GPU. During the training procedure, the layers of 

Fig. 10. Histogram of building height errors predicted with our network in the study areas.  

1 http://en.wiki.quality.sig3d.org/index.php/Modeling_Guide_for_3D_Ob-
jects _-_Part_2:_Modeling_of_Buildings_(LoD1,_LoD2,_LoD3) 
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ResNet are initialized with weights pre-trained on ImageNet (Deng et al., 
2009), and other layers are randomly initialized by drawing weights 
from a zero-mean Gaussian distribution with a standard deviation of 
0.01. All weights are updated through back-propagation, and we use 
stochastic gradient descent (SGD) (Zhang et al., 2014) as the optimizer. 
The learning rate is initialized as 0.001 and reduced by a factor of 0.1 
once the loss stops to decrease for three epochs. We use a momentum of 
0.9 and a weight decay of 0.0005. For hyperparameter settings of batch 

size and training epochs, we tested using the Berlin HS data set and the 
numerical results are shown in Tables 2 and 3. The network is trained for 
10 epochs, and we utilize a small batch size of 4. 

4.3. Comparative experiments 

For our problem, the major focus is to predict the bounding box of 
each building correctly. As bounding box regression is also an important 

h
h

h
h

h

Fig. 11. Examples of predicted bounding boxes using different networks in Berlin HS and Berlin SM data sets. The predicted and ground truth bounding boxes are 
marked in red and green, respectively. The ground truth bounding boxes are obtained using the procedure described in Section .3.3. 
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task for object detection, object detection networks can be employed for 
our problem by deriving building heights from the predicted bounding 
boxes. 

In the experiments, we utilize five object detection models to esti-
mate building heights and compare their results with ours. The object 
detection networks include three one-stage networks, SSD (Liu et al., 
2016), YOLOv3 (Redmon et al., 2018), RetinaNet (Lin et al., 2017), and 
a two-stage network, Faster R-CNN (Ren et al., 2015). Additionally, 

feature pyramid network (FPN) (Lin et al., 2017) is combined with 
Faster R-CNN in its backbone, termed as Faster R-CNN w. FPN, for better 
detecting objects at different scales. We denote the combined procedures 
of object detection and height estimation as SSDh, YOLOv3h, RetinaNeth, 
Faster R-CNNh, Faster R-CNN w. FPNh. 

For implementation, MMdetection (Chen et al., xxxx) is employed for 
SSDh, YOLOv3h, RetinaNeth, and Faster R-CNN w. FPNh, and the 
implementation in (Yang et al., 2017) is utilized for Faster R-CNNh. 

h
h

h
h

h

Fig. 12. Examples of predicted bounding boxes using different networks in Rotterdam and New York data sets. The predicted and ground truth bounding boxes are 
marked in red and green, respectively. The ground truth bounding boxes are obtained using the procedure described in Section .3.3. 
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ResNet-101 is used as the backbone for RetinaNeth, Faster R-CNNh, and 
Faster R-CNN w. FPNh. For all the networks, the input is the concate-
nated SAR image and the building footprint mask. All input image 
patches are re-scaled to 256 × 256 pixels. Other default parameters in 
each implementation are kept. 

4.4. Quantitative evaluation 

The performance of networks is evaluated based on two criteria: 
height accuracy and training time. We record the training time that each 
model takes for training on each data set and calculate building heights 
from the predicted bounding boxes, as stated in Section 2. The accuracy 
of retrieved building heights is measured by the mean absolute (hemae) 
and standard deviation (hestd) of height errors of all buildings He: 

{
hemae = mean(|He|),

hestd = std(He).
(7)  

He = {hi
true − hi

predict

⃒
⃒
⃒i = 1,…, n}, where hi

true and hi
predict are the ground 

truth height and predicted height for the i-th building, respectively, and 
n is the number of test samples. 

Table 5 reports numerical results of different models on four data 
sets, and Fig. 10 shows histograms of height errors predicted by our 
network. We observe that Faster R-CNNh performs the best in all four 
data sets among all the networks. However, the results are only 0.1–0.2 
m better than those achieved by our network, which are trivial 
compared to the absolute height errors (in the range of 4.3 m to 5.6 m). 
The results show that our networks, RetinaNeth, and Faster R-CNNh, 
outperform SSDh and YOLOv3h in height accuracy. Interestingly, FPN 
did not bring improvement to Faster R-CNNh. One reason could be that 
the difference in the scale of building footprints is not particularly large. 

On Berlin HS data set, all networks achieve the best performance in 
terms of height accuracy compared to other data sets, owing to the 
higher spatial resolution of the spotlight image than the stripmap im-
ages. However, we notice that the differences are not significant. For 
instance, using stripmap images, the mean absolute height error ach-
ieved by Faster R-CNNh ranges from 4.7 m to 5.6 m, and the standard 
deviation from 7.1 m to 7.6 m, depending on the data set. While using 
spotlight data (Berlin HS), the mean absolute height error achieved is 
4.3 m, and the standard deviation is 6.4 m, which is only 1–1.3 m better 
than those achieved using stripmap images. 

In terms of the speed, our method significantly outperforms not only 
two-stage networks such as Faster R-CNNh but also fast networks like 
SSDh and YOLOv3h. Compared to Faster R-CNNh, the training time of our 
network reduces about 80%. The computation of the networks is 

Fig. 13. Illustration of generating building footprints with positioning errors. 
Positioning error e→ is added to building footprint Ftp, resulting in Ftp-E. rg and 
az denote the range direction and azimuth direction, respectively. α is the angle 
between e→ and rg. 

Fig. 14. Examples of predicted bounding boxes using networks trained with Berlin HS and Berlin HS-E (building footprints with positioning errors). The predicted 
and ground truth bounding boxes and are marked in red and green, respectively. 
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reduced owing to the utilization of footprint bounding boxes. The fast 
training speed is particularly important when working with large data 
sets. Our network outperforms the detection-based networks mainly due 
to the tailored use of building footprints, i.e., the module is designed to 
extract the footprint bounding box as the initial bounding box specif-
ically for our task. The detection networks, on the other hand, lack the 
module specified for extracting building footprint information. They 
rely on a large number of region proposals to obtain possible initial 
bounding boxes. In addition, our network provides one initial proposal, 
i.e., footprint bounding box, for each bounding box. However, the 
detection networks must provide multiple proposals in the earlier stage 
and rely on the classification scores to select the final bounding box in 
the later stage. Therefore, the computational cost of our network is much 
smaller. 

To sum up, our network achieves accuracy comparable with Faster R- 
CNNh and much superior performance on speed by effectively using the 
multi-modal information contained in GIS data. The comparison of these 
results corroborates that the proposed network can significantly reduce 

the computational cost while keeping the height accuracy. 

4.5. Qualitative evaluation 

In addition to the quantitative evaluation, we visualize several pre-
dicted bounding boxes in Fig. 11 and Fig. 12. In both the two figures, the 
first two rows show building footprint masks and SAR image patches, 
and Row 3 to 7 present predicted bounding boxes from each model, in 
which the corresponding building footprint masks and SAR images are 
both plotted. The ground truth boxes and predicted boxes are plotted in 
green and red, respectively. 

Fig. 11 presents results of models in Berlin HS and Berlin SM data 
sets. We can observe a general improvement in quality from one-stage 
models to two-stage models and our network, especially for buildings 
in columns b2 and b6. All models can offer satisfactory results for 
buildings with larger footprints and clear signatures in the SAR image (e. 
g., the building in column b4). In contrast, for buildings with small 
footprints (see column b1) or ambiguous signatures (see column b6), 

Fig. 15. Height prediction map in Berlin HS data set. (up) Reconstructed LoD1 building models overlaid on the SAR image. (down) Height prediction map in the SAR 
image coordinate system. Height is color-coded. 
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one-stage models are not able to recognize full buildings. Besides, 
despite the resolution difference between the spotlight image and the 
stripmap image, the performance of all networks seems consistent. 

Fig. 12 visualizes results of models in Rotterdam and New York data 
sets. Similar results can be seen in columns b7 and b12 that all networks 
perform well when building signatures clearly distinguish with sur-
roundings. On the contrary, the predictions for the building in column 
b8 are not satisfactory. The same can be observed on column b11 in a 
building with a complex shape. Moreover, examples in columns b9 and 
b10 show two buildings are both well detected by all the networks 
despite the distinct differences in their footprints’ sizes, which also in-
dicates that FPN may not enhance the precision of predicted bounding 
boxes. In summary, the proposed network has a similar performance 
with Faster R-CNNh. 

Reconstructed LoD1 building models and height prediction maps of 
our network in the whole areas of four data sets are plotted in 
Fig. 15–18. 

5. Discussion 

5.1. Can our network work with inaccurate GIS data? 

So far, we have employed highly accurate building footprints in our 
experiments as they are acquired from official data sets. However, many 
openly available building footprints often contain positioning errors. To 
test the performance of the proposed network in such cases, we conduct 
supplementary experiments on training our proposed network with 

inaccurate building footprints and discuss the impact of positioning er-
rors in GIS data. 

According to a quality assessment study of OpenStreetMap (OSM) in 
Fan et al. (2014), the average offset of building footprints is 4.13 m with 
a standard deviation of 1.71 m. We generate inaccurate footprints by 
injecting positioning errors to building footprints Ftp, resulting in 
inaccurate footprint data termed as Ftp-E. We choose Berlin HS data set 
for this experiment and term the data set containing positioning error in 
building footprints as Berlin HS-E. 

The procedure is illustrated in Fig. 13. e→ is the added positioning 
error, and α is the angle between e→ and the range direction. We consider 
the positioning error as a variable whose magnitude is Gaussian 
distributed, i.e., 

⃒
⃒ e→

⃒
⃒ ∼ N (μ = 4.13, σ2 = 1.712). Since the offset may 

point to different directions, we assume the direction of e→ is uniformly 
distributed, i.e., α is uniformaly distributed in the range of [0◦,360◦). For 
simplicity, let α be discrete: α ∼ DiscreteUniform(0◦, 359◦). Note that 
this is the most difficult case that all footprints contain positioning er-
rors. Then, we train our network on Berlin HS-E data set and test the 
trained network with a clean test set. The parameter settings of the 
network remain the same as previous experiments, as described in 
Section 4.2. 

The results are listed in Table 6. As can be seen, compared to results 
obtained from Berlin HS, the mean absolute height error is increased by 
0.3 m, and the standard deviation of the height error is increased by 0.4 
m. However, it still gives competent height estimation results. For visual 
comparison, Fig. 14 shows the results of our network trained with Berlin 

Fig. 16. Height prediction map in Berlin SM data set. (up) Reconstructed LoD1 building models overlaid on the SAR image. (down) Height prediction map in the SAR 
image coordinate system. Height is color-coded. 
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HS and Berlin HS-E. As can be seen, for buildings b and c, the network 
trained with Berlin HS performs better. The predictions for buildings a 
and e are visually very similar. We observed that predictions from the 
network trained on Berlin HS-E are visually satisfactory for most 
buildings. 

The experiments show that the proposed network is robust against 
the positioning errors in building footprint data. This finding suggests 
that a large number of existing open-sourced GIS data, such as OSM, can 
be exploited for height estimation of individual buildings in SAR images. 

5.2. Influences of the nonlocal filtering procedure on SAR data 

In this work, we have employed original SAR amplitude images in 
our experiments. However, previous studies in Shahzad et al. (2019), 

Sun et al. (2021) perform nonlocal filtering (Baier et al., 2016) on SAR 
images prior to training to reduce the speckle effect. To test the influence 
of the nonlocal filtering procedure for our networks, we conduct sup-
plementary experiments to train the proposed network with nonlocal 
filtered SAR images. 

We perform denoising on SAR images using a nonlocal InSAR algo-
rithm (Baier et al., 2016). Berlin HS data set is chosen for this experi-
ment, and the nonlocal filtered data set is termed Berlin HS-NL. Then, we 
train and test our network and all the comparative networks on Berlin 
HS-NL data set. The parameter settings of the networks remain the same 
as previous experiments, as described in Section 4.2 and Section 4.3. 

Table 7 lists the results. As can be seen, results from Berlin HS and 
Berlin HS-NL data sets are very similar on all networks. The experiments 
show that the filtering procedure does not improve the results. We think 

Fig. 17. Height prediction map in Rotterdam data set. (up) Reconstructed LoD1 building models overlaid on the SAR image. (down) Height prediction map in the 
SAR image coordinate system. Height is color-coded. 
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the reason might be that the large amount of filters in CNNs, in fact, have 
filtering effects on speckle noises. 

This finding suggests that the filtering step is not needed for our task. 
Therefore, the computational cost for pre-processing can be largely 
reduced, which benefits especially for larger-scale processing. 

5.3. Pros and cons of retrieving building height using bounding box 
regression networks 

We have applied the proposed network to four data sets and retrieved 
building heights. On Berlin HS data set, the mean absolute height error is 
4.3 m. In CG-Net (Sun et al., 2021), the building height achieved using a 
segmentation network from the same SAR data is 2.39 m. The advantage 
of CG-Net in terms of height accuracy is obvious. However, as afore-
mentioned in Section 1, pixel-wise labels are expensive, and it is not 
possible to generate training data for areas without accurate DEMs. Thus 
the applicability of CG-Net is restricted. 

The proposed regression network has two advantages. First, since the 
building height retrieval problem is formulated as a bounding box 
regression problem, the proposed method is capable of employing 
building height data from multiple sources. This enables the generation 
of annotation data on a larger scale and improves the transferability of 
the proposed networks. Second, the data set generation approach for 
bounding boxes is much simpler than the method for generating build-
ing areas in Sun et al. (2021). This is crucial when processing large data 
sets, e.g., on a regional or even larger scale. 

Compared to the results of CG-Net, building heights predicted using 
the proposed network have lower accuracy. The results are, however, 
still good. In Brunner et al. (2010), the authors retrieved heights of 40 
isolated buildings from high-resolution spotlight TerraSAR-X images. 
For three building categories based on roof shapes, this work reported 
the mean absolute height errors between − 1–3.4 m and the standard 
deviation of height errors between 1.3–5.8 m. Our experiments 
employed both spotlight and stripmap SAR images and conducted per-
formance testing on large amounts of data, for instance, 10 K in Berlin 
HS data set (cf. Table 4). Considering the image resolution of SAR data 
and the size of our data sets, the proposed method is very competitive. 

In summary, these comparisons suggest that the proposed bounding 
box regression network has great potential for applications aiming at 

Fig. 18. Height prediction map in New York data set. (up) Reconstructed LoD1 building models overlaid on the SAR image. (down) Height prediction map in the SAR 
image coordinate system. Height is color-coded. 

Table 6 
Numerical results obtained from Berlin HS and Berlin HS-E data sets.  

Data set hemae (m)  hestd (m)  Training time 

Berlin HS 4.3 6.3 1h01mins 
Berlin HS-E 4.6 6.8 1h04mins  

Table 7 
Numerical results on four data sets. The highest values of different metrics are 
highlighted in bold.  

Data set Model name hemae (m)  hestd (m)  Training time 

Berlin HS SSDh 6.6 9.4 3h26mins 
YOLOv3h 6.0 8.1 4h16mins 
RetinaNeth 4.7 6.5 5h22mins 
Faster R-CNN w.FPNh 5.0 7.3 5h10mins 
Faster R-CNNh 4.3 6.2 5h26mins 
Ours 4.3 6.3 1h01mins 

Berlin HS-NL SSDh 6.7 9.4 3h28mins 
YOLOv3h 5.9 8.1 4h15mins 
RetinaNeth 4.7 6.6 5h29mins 
Faster R-CNN w.FPNh 5.1 7.3 5h15mins 
Faster R-CNNh 4.3 6.4 5h28mins 
Ours 4.3 6.5 1h04mins  
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large scales, e.g., to reconstruct baseline models on a regional or even 
global scale. When accurate DEMs are available, segmentation networks 
such as CG-Net (Sun et al., 2021) are preferred for higher accuracy on 
the reconstructed building heights. 

6. Conclusion 

This work proposes a method that retrieves building heights in large- 
scale urban areas from a single TerraSAR-X spotlight or stripmap image. 
We formulate the problem of building height retrieval as a bounding box 
regression problem and develop a network that takes SAR images and 
building footprints as input and retrieves building heights by predicting 
building bounding boxes. To generate training data sets, we propose a 
ground truth generation approach that only requires the footprint and 
one height value for each building. In addition, this approach can 
integrate multiple sources of building heights, such as open building 
models, LiDAR, and DEMs, thus can generate annotation data on larger 
scales and provide large potential in analyzing complex urban regions. 

Four study sites are used to test the proposed networks, including one 
high-resolution spotlight TerraSAR-X image in Berlin and three stripmap 
TerraSAR-X images in Berlin, Rotterdam, and south Brooklyn in New 
York City. The mean absolute height error achieved in the four sites 
ranges from 4.3 m to 5.7 m. The results are significant, given that they 
are achieved from a single stripmap/spotlight TerraSAR-X image. 
Compared to methods utilizing object detection networks for building 
height retrieval, such as Faster R-CNNh, the proposed network can 
significantly reduce the computational cost while keeping the height 
accuracy of individual buildings. Further experiments on training the 
networks using inaccurate building footprint data suggest that the pro-
posed network is robust against positioning errors in building footprints, 
which means a large amount of existing GIS data, open-sourced yet with 
heterogeneous quality across space, such as OSM, can be exploited for 
this task. 

In the future, we are interested in improving the height accuracy of 
bounding box regression networks and producing LoD1 building models 
using SAR images in the stripmap mode on regional or even global 
scales. We are also interested in domain adaptation techniques to 
improve the transferability of our models across different geographic 
regions. 
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