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a b s t r a c t   

Current trends, such as individualization, increasing complexity, and specialization, require digitization in 
engineering and production. However, digitization by itself often leads to so-called data silos, which cannot 
be leveraged effectively when designing and operating smart factories due to the heterogeneity of the 
information available. This paper presents a framework for (semi-)automatically merging the highly reu
sable terminological components of production ontologies in an a posteriori way. The framework combines 
translations, domain-specific vocabularies, and inconsistency checks with syntactic, terminological, and 
structural analyses to integrate knowledge representations formalized in the Web Ontology Language. 
Integrating heterogeneous knowledge representations in the production domain can improve support 
systems for engineers, increase awareness of interdependencies, and enable unambiguous communication 
in smart factories. 

© 2021 The Author(s). Published by Elsevier B.V. 
CC_BY_4.0   

1. Motivation 

Engineering and production have to cope with demands re
garding individualization and short times to market. At the same 
time, the complexity of products and production resources in
creases, requiring a high degree of specialization and cooperation 
among domain specialists. Advances in digitization, computational 
power, and Knowledge Representation (KR) provide a sound basis for 
support systems. For both engineering and production, the appli
cations of ontologies are manifold, ranging from inconsistency 
management (Feldmann et al., 2015) to Multi Agent Systems (MASs) 
initialization (Ocker et al., 2019a). Here, a common understanding of 
key notions, e.g., production processes, is crucial to avoid falsely 
identified inconsistencies and false negatives during the match
making of agents. 

Even though the development of KR technologies is promising, 
these applications are mostly stand-alone endeavors. The semantic 
interoperability of information is still a major challenge involving 
several causes. The increasing complexity of production systems and 
advances in the technologies used require increasing specialization 
of the engineers. Their different backgrounds and ways of thinking in 
combination with time pressure lead to parallel development of 
heterogeneous KRs. In addition, companies may standardize how 

information is represented, but these standards are usually not 
shared across companies. However, all these KRs are still strongly 
interdependent because they describe the same systems. 

There are two different approaches to coping with heterogeneous 
KRs. A priori approaches aim to standardize KRs, but require uni
versal adoption. This may result in tremendous effort in the case of 
legacy systems. In contrast, a posteriori approaches aim to combine 
existing KRs. Hence, a posteriori approaches may also reduce the 
effort needed for legacy KRs to migrate. In the case of ontologies, 
Terminological Components (TBoxes) formalize the classes and 
properties used to describe the engineers’ domains of interest. 
Merging the ontologies’ reusable parts is the foundation for merging 
the Assertional Components (ABoxes), i.e., the instance level, and 
supports a more holistic design process and interoperability within 
smart factories. 

A framework for ontology merging should fulfill the following 
aims, denoted (Ax). The primary function is to merge heterogeneous 
ontologies (A1). This comprises heterogeneity regarding the ontol
ogies’ domains of interest (A1.1) and their degrees of axiomatization 
(A1.2). The matching quality of the automated process must be 
sufficient to provide a benefit to engineers (A2). Additionally, the 
framework should be modularly designed (A3), ensuring the rever
sibility of the merging process. Finally, the framework should be 
adaptable (A4). This allows engineers to fine-tune the merging 
process according to their specific needs. The remainder of this 
paper is structured as follows. Section 2 gives an overview of 
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selected production ontologies and ontology merging approaches. 
Next, we describe two application examples highlighting the chal
lenges of merging ontologies. Section 4 presents Production On
tology Merging Framework (PrOM), while Section 5 describes 
implementation details and discusses results. The paper concludes 
with a summary and an outlook. 

2. Related Work 

2.1. Ontologies for Smart Factories 

Knowledge extensive domains require methods to manage in
creasing complexity and support interdisciplinary cooperation. 
Ontologies provide an “explicit specification of a conceptualization” 
(Gruber, 1993) that is “formal and shared” across perspectives 
(Studer et al., 1998). Being formal, ontologies allow reasoning, and 
support interoperability as they build on the Open World Assump
tion (OWA) (Atkinson et al., 2006). Ontologies can be described using 
the Web Ontology Language (OWL). OWL 2 Description Logic (DL) 
corresponds to ( )SROIQ D (Hitzler et al., 2010) and provides 
“maximum expressiveness without losing computational com
pleteness” (Smith et al., 2004). While an ontology’s ABox includes 
individuals, its TBox comprises the classes and properties. 

Engineering and production are affected by increasing com
plexity and specialization. Accordingly, researchers have developed 
various ontology-based applications. For instance, inconsistency 
management approaches (Feldmann et al., 2015; Herzig et al., 2011) 
address interdependencies between different viewpoints involved in 
technical system designs. Similarly, feasibility feedback approaches 
(Ocker et al., 2019b) identify potential conflicts to reduce late, costly 
changes. Specifications can also be compared with capabilities to 
identify suitable suppliers (Ameri and McArthur, 2014). Further ap
plications of production ontologies include skill descriptions (Köcher 
et al., 2020), service matchmaking (Zhao et al., 2017), management 
of production processes (Puttonen et al., 2013), and the initialization 
of MASs (Ocker et al., 2019a). 

This variety of applications shows the usefulness of ontologies for 
smart factories. However, these ontologies are mostly stand-alone 
solutions despite their overlap. For instance, ontologies created for 
providing feasibility feedback could also be leveraged to create MASs 
and enable their automated decision making. Hence, ontology 
merging has the potential to facilitate ontology creation, support 
cooperation, and increase semantic interoperability. 

2.2. Ontology Merging Approaches 

Stakeholders with different viewpoints cooperating leads to 
heterogeneity in KRs (Euzenat and Shvaiko, 2013). The KRs may 
differ in syntax, terminology, concepts, and semiotics. A priori ap
proaches, especially standardization and Top Level Ontologies (TLOs) 
such as Basic Formal Ontology (BFO) (Arp et al., 2015), aim to sup
port KR combination from their creation on. Their impact is limited 
either by their complexity and overhead or their focus, though, re
ducing their applicability. This is indicated by the variety of TLOs 
available, which require alignments themselves (Schmidt et al., 
2019), and the fact that aligning domain ontologies to TLOs is still 
challenging (Stevens et al., 2019). Hence, there is a need for a pos
teriori approaches, which merge ontologies after their creation. 

These range from taxonomy matching (Maedche and Staab, 2002) to 
the matching of full-fledged axiomatized ontologies (Euzenat and 
Shvaiko, 2013). Ontology merging is “the creation of a new ontology 
from two, possibly overlapping, input ontologies” (Euzenat and 
Shvaiko, 2013), whereby the original ontologies remain unchanged, 
and the resulting ontology contains the knowledge of both inputs 
(Euzenat and Shvaiko, 2013). The matching process is key to on
tology merging and aims to align two input ontologies (Euzenat and 
Shvaiko, 2013), cp. Equation (1). 
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An alignment is a set of correspondences c, each describing 
the relation between two entities (Euzenat and Shvaiko, 2013), 
cp. Equation (2). 
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To create alignments, engineers can apply several techniques. 
These include terminological analyses based on string and term 
comparisons, structural analyses that leverage relations between 
notions, extensional analysis, which compares the instances of 
classes, and semantic analyses based on external ontologies (Ardjani 
et al., 2015). So far, established tools like the ontology editor Pro
tégé do not support automated ontology merging (Pawełoszek and 
Korczak, 2018). 

Most ontology merging approaches rely on terminological ana
lyses, often leveraging the lexical database WordNet (Miller, 1995). 
WordNet can also be combined with string analyses (Chatterjee 
et al., 2018). Various frameworks combine terminological and 
structural analyses, e.g., COMA+ + (Aumueller et al., 2005), PROMPT 
(Noy and Musen, 2000), and AgreementMaker (Cruz et al., 2009). 
FALCON-AO (Hu and Qu, 2008) relies on linguistic analyses via vir
tual documents and a structure matcher (Hu et al., 2005) which 
iteratively increases thresholds. Risk Minimization based Ontology 
Mapping (RiMOM) (Tang et al., 2006) employs Bayesian reasoning, 
while S-Match (Giunchiglia et al., 2012) uses semantic matching and 
rephrases ontology matching as a satisfiability problem. Stumme 
and Maedche (2001) presented an example for extensional 
matching, relying on linguistic processing of domain-specific docu
ments. Further frameworks use fuzzy Formal Concept Analysis (FCA) 
(Chen et al., 2011), heuristic functions (Robin and Uma, 2010), or 
non-deterministic approaches (Lv and Peng, 2020). Furthermore, 
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there is research regarding multilingual ontology matching (Fu et al., 
2012; Ibrahim et al., 2019). Since coverage of automated translations 
is lower for domain-specific notions, manually mapped wordnets are 
helpful (Helou et al., 2016). Detailed comparisons of generic on
tology merging approaches are provided by Ardjani et al. (2015),  
Shvaiko and Euzenat (2013), and by the Ontology Alignment Eva
luation Initiative (OAEI) (Algergawy et al., 2019). Note that the OAEI 
does not include ontologies from the engineering domain. 

2.3. Semantic Interoperability in the Context of Smart Factories 

The multitude of heterogeneous metamodels in production sys
tems engineering shows the need for KR, but interoperability is still 
a challenge (Cha et al., 2020). Domain-specific a priori approaches 
include information models, e.g., the one provided by the OPC Uni
fied Architecture (OPC Foundation, 2017). Furthermore, there are 
metamodels for Digital Twins (Plattform Industrie 4.0, 2020) and 
data exchange, e.g., AutomationML (AutomationML Consortium, 
2014), and ontologies, e.g., for integrating design and manufacturing 
in an a priori way (Chungoora et al., 2013). A set of well-formed 
production ontologies based on BFO is provided by the Industrial 
Ontologies Foundry (IOF) (Industrial Ontologies Foundry, 2020). Also 
pursuing a modular approach, Hildebrandt et al. (2020) formalized 
standards and aligned them manually. Similarly, Witherell et al. 
(2013) derived an “upper-tier ontology” focusing on product 
knowledge. These standardization approaches are valuable as a re
ference, but their success requires adoption by all stakeholders. 
Thus, some authors have suggested a posteriori approaches for en
suring semantic interoperability. Kumar and Harding (2013) pre
sented an approach for ontology mapping that leverages synonyms 
and axioms. Even though the lexical analysis relies on WordNet, they 
do not mention advanced Natural Language Processing (NLP) tech
niques such as Part of Speech (POS) tagging or lemmatization. Anjum 
et al. (2012) used a TLO to combine domain ontologies from design 
and production, but this requires aligning the input ontologies with 
a common TLO. Adamczyk et al. (2020) presented a process for en
suring semantic interoperability using reference ontologies. How
ever, they rely on manually created rules for semantic reconciliation. 
Creating a virtual single underlying metamodel via synchronization 
transformations (Kramer et al., 2013) seems promising, but has not 
yet been realized for ontologies. TRAILS (Wolfenstetter et al., 2018) 
leverages customized model mappers to support traceability, in
tegration, and visualization of knowledge in Product Service 
Systems. 

2.4. Research Gap 

Although valuable for designing and operating smart factories, 
available ontologies are very heterogeneous despite their inter
dependecies. Engineers may leverage partial overlaps to reduce the 
effort required to create ontologies and improve their semantic in
teroperability. A priori approaches for ontology merging are helpful, 
but not easily applicable if there are legacy systems to be combined. 
Most approaches to improving semantic interoperability in the 
context of smart factories fall into this category. In contrast, a pos
teriori approaches merge ontologies after their creation. There exist 
advanced generic frameworks and a few domain-specific ap
proaches, but ontology merging is still an open issue for the pro
duction domain. Here, the heterogeneity in content and 
axiomatization, varying overlaps between ontologies, domain-spe
cific terminology, and different languages in use are especially 
challenging. The production domain can benefit from combining 
syntactic, terminological, and structural analysis with domain-spe
cific information. Table 1 gives an overview of selected frameworks 
regarding matching techniques (Euzenat and Shvaiko, 2013), trans
lations, consistency checks, and the use of domain-specific in
formation. It is based on the original papers as well as a 
comprehensive survey (Ardjani et al., 2015), and indicates the need 
for an integrated ontology merging pipeline tailored to the produc
tion domain. PrOM aims to address this need by combining ad
vanced preprocessing, specifically debugging, translations, and spell- 
checking, with terminological and structural analyses into an itera
tive approach that ensures consistency of the merged ontology. To 
increase matching quality, PrOM leverages domain-specific in
formation, namely translations scraped from the web and pre
defined vocabularies, which enable low-level semantic analysis. 
Compared to existing ontology merging approaches, PrOM also le
verages recent developments in NLP. 

3. Application Example 

This paper uses two application examples. The first is a minimal 
example created to illustrate the framework’s potential. The second 
uses excerpts of two ontologies from the production domain to de
monstrate the framework’s practical applicability. Fig. 1 shows ex
cerpts of the minimal example’s TBoxes. 

The ontology depicted on the left includes elements with 
English-language Internationalized Resource Identifiers (IRIs), while 
the one on the right uses random IRIs, but includes French labels. 
The labels can be leveraged for terminological analyses. For instance, 

Table 1 
Comparison of selected ontology merging frameworks (+ supported; o partially supported; - not supported).           

Translations Syntactic and 
terminolo
gical analysis 

Structural 
analysis 

Extensional 
analysis 

Semantic 
analysis 

Consistency 
checks 

Domain- 
specific 
information  

Agreement Maker (Cruz et al., 2009) –  + +  – – o – 
FCA-MERGE (Stumme and Maedche, 2001) –  + – + – – + 
OECM (Ibrahim et al., 2019) +  + –  – – + – 
Ontology mapping method  

(Kumar and Harding, 2013) 
–  + o  – o + – 

PROMPT (Noy and Musen, 2000) –  + +  – o + o 
S-Match (Giunchiglia et al., 2012)  +  + –  – + o – 
PrOM  +  + +  – o + +    
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synonymous labels such as transfer and transport indicate equiva
lence. Structural analyses on the other hand leverage the ontologies’ 
axioms. For example, transfer and transport are both axiomatized 
using properties for distance and duration, also indicating equiva
lence. Interoperability of such process descriptions is essential, e.g., 
to avoid false negatives during matchmaking between intelligent 
agents. If a product agent requests a transfer process but the resource 
agents available only offer transport processes, valuable resource 
capabilities remain unused and the product may even seem im
possible to produce. However, the example also shows that struc
tural heterogeneity, as in the case of the resource classes, impedes 
the merging. We added further notions, including domain-specific 
terms such as engrenage à vis sans fin, with and without ax
iomatization to test features of the merging framework. The typo in 
merhcandise was induced to demonstrate the spellchecker. 

The second application example relies on two sound ontologies, 
namely MAnufacturing’s Semantics ONtology (MASON)1 (Lemaignan 
et al., 2006) and the IOF process planning ontology2 (Sarkar and 
Šormaz, 2019). They include partially overlapping descriptions of 
production processes. Both ontologies include approximately 200 
classes. While MASON comprises 37 object properties and 18 data
type properties, the process planning ontology uses 15 different 
object properties, but no datatype properties. 

4. Framework for Ontology Merging 

This section presents PrOM, a framework for ontology merging 
targeted to the production domain. PrOM combines syntactic and 
terminological analyses with a structural analysis of OWL 2 DL ax
ioms and interactive ontology debugging. 

4.1. Overview of the Framework 

The merging process, cp. Fig. 2, consists of the preprocessing 
phase, the matching phase, and the postprocessing phase. 

During the preprocessing, the input ontologies are checked for 
spelling errors and are translated. The matching phase combines the 
syntactic and terminological analysis with the structural analysis. 
The former extracts the essential parts of the elements’ names and 
compares them. Since the framework’s terminological analysis 
builds on the syntactic one, we refer to their combination as ter
minological analysis. The structural analysis aims to find graph iso
morphisms, which indicate correspondences. The analysis results 
are combined using weightings and then compared to thresholds. 
Both the weightings and thresholds may be adapted by the user. 
Leveraging terminological and structural analyses allows us to 
match ontologies that differ in language, domain of interest, and 
degree of axiomatization (A1). 

4.2. Assumptions and Available Information 

As inputs, the framework takes OWL 2 DL ontologies such as the 
ones presented in Section 3. OWL allows us to make explicit which 

Fig. 1. Excerpt of the minimal example.  

Fig. 2. Process for merging the TBoxes of two ontologies.  

1 https://sourceforge.net/projects/mason-onto/, last accessed: November 19, 2021 
2 https://github.com/kbserm/ProcessPlanningOntology-IOF, last accessed: 

November 19, 2021 
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information is available in the ontologies to be merged. Terminology is 
the meaning of the notions intended by the ontology’s author, which is 
indicated by the elements’ names. We assume that the ontologies 
include meaningful names, e.g., transfer for a process, which are either 
encoded into the IRIs or made explicit via labels. For IRIs, we assume 
that CamelCase, dromedaryCase, or snake_case are used as notations. 
Words in labels should be separated using spaces. As we focus on the 
ontologies’ TBoxes, we standardize all names to lowercase to facilitate 
the comparison. To enable terminological analysis, we translate all 
names to English. We assume that similar elements can also be 
identified via similar structures expressed as axioms. These OWL re
strictions are expected to be defined in the Disjunctive Normal Form 
(DNF) for easier analysis. In DNF, the amount of nesting levels in OWL 
restrictions to be parsed is limited to two. For instance, the definition 
of a product via relations to a machine, a length, and a volume is as
sumed to be expressed in DNF as indicated in Equation (3), not in the 
shorter form presented in Equation (4). This assumption is reasonable, 
as a transformation to DNF could be automated. 

product Inverse produces machine length float

Inverse produces machine volume float

( )
( ) (3)  

product Inverse produces machine

length float volume float

( )
( ) (4) 

Even though reification is useful for expressing complex relations, 
matching reified and non-reified properties is a challenge that is out of 
the scope of this contribution. We also assume that roles and classes 
are used appropriately by the engineers who initially created the 
ontologies. 

4.3. Cases of Correspondence 

We consider four alignment relations that may hold between the 
two ontologies’ elements. These are equivalence, subsumption, dis
jointness, and, specifically for object properties, inversion. The relations 
can be represented using standardized object properties, cp. Table 2. 

In order to represent a correspondence c, the triple described in 
Equation (2) can be extended by a confidence rating cr ∈ [0,1] (Lv and 
Peng, 2020), cp. Equation (5). The ontologies’ elements ei are un
ambiguously identifiable via their IRIs. 

=c e e r cr( , , , )1 2 (5)  

For instance, this allows us to describe the correspondence be
tween the notions resource and b from the minimal example, cp.  
Fig. 1, as shown in Equation (6). 

a resource fr b equivalence(“ : , “ : , “ , 0.7) (6) 

where the prefixes are defined as follows: 

a=http:∕∕example.org∕onto-a.owl# 
fr=http:∕∕example.org∕onto-fr.owl# 

4.4. Preprocessing 

In a first step, PrOM ensures that each input ontology is consistent 
and provides interactive debugging support. OWL DL reasoners can 
identify inconsistent classes and provide respective explanations. If the 
reasoner detects inconsistencies in the link ontology, PrOM extracts 
potentially problematic notions and their axioms. PrOM iterates 
through these axioms and prompts the engineer in an interactive way 
which of them should be removed. This process is repeated until the 
reasoner does not detect any more inconsistencies. 

To enable a terminological analysis, all the elements’ names must be 
available in a common language. By default, we choose English because 
of its prevalence and availability of translators. Engineers may override 
this choice though. If no labels are available, we extract the elements’ 
names from the IRIs by tokenizing them. In case the language of a name 
is unknown, a language detector is used. This is relevant if the names are 
encoded in the IRIs or if the label does not specify a language. 
Additionally, the engineers may specify a language for each input on
tology, e.g., French for the ontology “onto-fr” in the minimal example. 
This yields better results because language detectors do not work re
liably for short text snippets. For the translation, we try a domain-spe
cific vocabulary first, e.g., the International Electrotechnical Vocabulary 
provided by the International Electrotechnical Commission (IEC) 
(International Electrotechnical Commission, 2020). If the expression to 
be translated is not listed in this vocabulary, we rely on a generic 
translator. The translation is then added to the original element as a 
label, including a language tag. If the language of an input ontology is 
specified to be English, a spell checker is used to correct typing errors, 
such as merhcandise, cp. Fig. 1. Since we assume that all axioms are 
expressed using the DNF, the ontology does not have to be preprocessed 
for structural analyses. 

4.5. Terminological Matching 

The terminological matching revolves around the linguistic 
analysis of the labels. We speak of an explicit match if two labels use 
the exact same words, called tokens. Otherwise, we compare the 
tokens’ abstractions, possibly resulting in implicit matches. All labels 
consist of mandatory and optional parts, cp. Table 3, which can be 
retrieved via a POS tagger. Comparing only words with the same POS 
tags increases the matching quality and efficiency. To standardize 
the tokens to their base form, we use a lemmatizer that leverages the 
POS tags. If an object property’s label is reified, i.e., a noun is used 
instead of the verb, we extract its derivational related form from a 
lexical database. Note that precedes is equivalent to is predecessor of, 
which indicates the role and can be identified by the adposition, but 

Table 2 
Alignment relations by element type.       

Classes Object properties Datatype 
properties  

Equivalence owl:equivalentClass owl:equivalentProperty 
Subsumption rdfs:subClassOf rdfs:subPropertyOf 
Disjointness owl:disjointWith owl:propertyDisjointWith 
Inversion – owl:inverseOf –    

Table 3 
Parts Of Speech usually available in labels by type (* optional; + mandatory; ! not 
applicable; ∣∣ alternative).         

Adverb Adjective Verb Noun Adposition  

Class * * (*) + ! 
Object property * ! + ∣∣ * 
Datatype property * * ! + !    
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inverse to has predecessor. Also, in the case of classes, there may be 
adjectives or parts of compound nouns that are tagged as verbs as in 
the case of boring tool. 

For explicit terminological matching, we compare the tokens of 
two labels. To be considered equivalent, the set of tokens Ti must be 
the same for both labels, cp. Equation (7). 

=T T1 2 (7)  

Explicit hyponyms can be identified by checking whether the 
first label’s token set, T1, is subsumed by the second, T2, cp. Equation 
(8). For instance, the notion width can be assumed to be a general
ization of large width as (width) ⊂ (large, width). In order to identify 
hypernyms, Equation (8) can be inverted. 

T T1 2 (8)  

Disjoint and inverse elements cannot be identified by simply 
comparing the labels’ tokens. Also, independently created ontologies 
may differ in vocabulary. Such implicit relations between tokens are 
analyzed using a lexical database. Synonyms indicate equivalent 
elements, antonyms disjoints, and hyponyms and hypernyms tax
onomical relations. In line with the WordNet vocabulary, a set of 
cognitive synonyms is denoted synset. Leveraging the synonyms for 
all tokens in the labels, we assess their implicit equivalence, cp. 
Equation (9). That way, PrOM can infer that, e.g., the notions product 
and merchandise are equivalent. 

=

t synset t t T

T T

( )
t T

1 2 1 1

1 2

2 2

(9)  

We check subsumption of classes based on their labels analo
gously, cp. Equation (10). That way, the framework can identify 
specializations. 

<

t synset t t T

T T

( )
t T

1 2 1 1

1 2

2 2

(10)  

Leveraging a corpus, we also extract antonyms for each token. If 
two elements’ labels include antonyms, e.g., lower and souleve 
(French for raise), we assume that they are disjoint, cp. Equation (11) 
for object properties. 

v antonyms v v VERB

a synset a a A

s t a adv adp A ADV ADP

( )

( )

. . { , }, { , }

v VERB

a A

1 2 1 1

1 2 1 1

2 2

2 2

(11)  

In order to detect inverse object properties, the algorithm iden
tifies passive constructs, such as is created by, instead of creates. For 
this, it searches for two patterns using a rule-based matcher.3 Such 
patterns may include dependency labels (DEP), quantifiers (OP), and 
simple (POS) or extended (TAG) POS tags. The first pattern accepts all 
constructs that include an arbitrary number of auxiliary tokens 
(aux), an auxiliary token indicating a passive structure (auxpass), and 
a past participle verb (VBN): 

DEP aux OP DEP auxpass TAG VBN[ : , : * , : , : ]
The second pattern catches exceptions that only consist of a verb 

(VERB) and an adposition (ADP), e.g., created by: 
POS VERB POS ADP[ : , : ]

To improve reliability, the framework leverages domain-specific 
vocabularies. If various notions have been matched for a specific 
domain, engineers can use them as domain-specific synsets. For 
instance, analyses for the production domain identified synonyms 

such as process, operation, and activity (Ocker et al., 2019b). Non- 
overlapping synsets, e.g., for process and resource imply disjoints. 

Note that all equations in this section can be adapted for object 
properties and datatype properties according to Table 3. 

4.6. Structural Matching 

Structural ontology matching distinguishes the types of ele
ments, namely classes, object properties, and datatype properties. 
Depending on the type, the information available differs greatly, as 
does the matching algorithm. Since classes are axiomatized using 
properties, equivalent properties should be identified before classes 
are matched. Properties, though, are formalized via their domains 
and ranges. Hence, the framework relies on terminological matches 
for structurally comparing properties. 

The axiomatization of datatype properties includes a class as a 
domain and a literal as a range. Numeric datatypes may be restricted 
using lower and upper bounds. Additionally, datatype properties can be 
specified as functional. For example, the range of the notion width may 
be restricted to exactly one value larger than zero. For two datatype 
properties, our confidence in an equivalence or subsumption corre
spondence increases, if any of these three pieces of information 
overlap. The similarity rating can thus be calculated as shown in 
Equation (12). The boolean variables DM and FM indicate whether the 
two properties have the same domain and are functional. If the range is 
not restricted, RM is also boolean. If one of the ranges is half-bounded, a 
dedicated rating can be assigned. Otherwise RM is calculated as the 
relative overlap of the two properties’ ranges, cp. Equation (13). Here, 
ub denotes the upper bound and lb the lower bound. 

=
+ +

+ +
rating

w DM w RM w FM

w w w

* * *
dp

d r f

d r f (12)  

=RM
max min ub ub max lb lb

max ub lb ub lb
(0, ( , ) ( , ))

( , )
1 2 1 2

1 1 2 2 (13)  

If their domains or ranges are disjoint, two datatype properties 
are also disjoint. 

For structurally comparing object properties, the framework relies on 
their domains, ranges, and attributes. The domains and ranges of object 
properties can be compared analogously to the domains of datatype 
properties. Other than datatype properties, object properties are char
acterized by various axioms, i.e., they can be functional, inverse func
tional, symmetric, asymmetric, transitive, reflexive, or irreflexive. If one 
of two object properties is symmetric or reflexive, while the other is 
asymmetric or irreflexive, respectively, these two properties are disjoint. 
Also, if a property is functional or inverse functional, it is disjoint with all 
transitive properties. This is reflected by the disjoint indicator di. 
Otherwise, we can assess their similarity based on their attributes using 
cosine similarity, cp. Equation (14). 

= =

=

vec vec
vec vec

vec

cosine similarity cos

with attribute attribute attribute

- ( )

[ , ..., ], {0, 1}n i

1 2

1 2

i 1
T (14)  

Equation (15) shows the accumulated similarity rating for 
equivalent object properties. 

=
+ +

+ +
rating di

w DM w RM w cosine similarity
w w w

with di

* * * -

{0, 1}

op
d r a axioms

d r a

(15)  

Equation (15) can be applied analogously to assess the similarity 
of hyponyms, while domain and range must be inverted for inverse 
relations. Relations are said to be disjoint for disjoint domains or 
ranges, or for contradictions in the properties’ axioms, as indicated 
by the parameter di. 3 https://spacy.io/usage/rule-based-matching, last accessed: November 19, 2021 
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Classes are axiomatized using object and datatype properties. 
Hence, a class can be represented using a property vector pv, with each 
entry representing a property, cp. Equation (16). The property vector 
includes only the properties identified as equivalent or hyponyms in 
the terminological matching phase. For the example in Fig. 1, pv would 
include the properties length and width. This allows PrOM to infer that 
the notions merchandise and produit are likely to be equivalent as they 
are both axiomatized using these properties. 

=pv op op op op

dp dp dp dp

[ 1 2 , ..., 1 2 ,

1 2 , ..., 1 2 ]

T
a b m n

a b m n (16)  

We use binary values for a property vector’s entries, i.e., when
ever a property is used to formalize a class, the respective entry is 1; 
otherwise 0. Analogously, we encode into the property vector that 
classes are used as objects in other classes’ axiomatizations. 

For comparing vectors, cosine similarity and context similarity are 
established measures. However, with many properties being shared 
between ontologies, the similarity ratings usually converge to 1 for 
cosine similarity. This is because most classes are likely to be ax
iomatized with only a small subset of all properties, yielding property 
vectors consisting primarily of zeros. Due to the OWA, this does not 
mean that the properties are not used, but simply that there is no in
formation regarding their relevance for a class, resulting in a high false 
positive rate. In contrast, context similarity considers the nodes to 
which a class is connected. This results in a more accurate assessment 
of the node’s neighborhood, but requires information about the sur
rounding classes. To cope, we use a simplified similarity measure based 
on cosine similarity. This measure assesses how many properties two 
classes have in common, compared to the number of all properties 
used in the classes’ axioms, cp. Equation (17). 

=sim
a b

a b
i i i

i i i (17)  

4.7. Weightings and Thresholds 

Engineers may configure the framework via various parameters. 
Providing the files and the IRIs of the ontologies to be matched is 
mandatory. Optionally, engineers may specify the languages used, 
the default language, a domain-specific dictionary, spellchecker ac
tivation, and two similarity thresholds. Additionally, the evaluation 
mode can be activated to assess the matching quality, requiring a 
reference alignment. Matches that have ratings above the accep
tance threshold are automatically accepted, while those below the 
rejection threshold are rejected. All other matches require con
firmation. If both thresholds are set to the same value no user in
teraction is required. 

The framework also relies on various relative weighting factors. By 
default, we consider terminological and structural matching equally 
important and set both weights to 1. Engineers may change these 
weights. For instance, if an ontology does not include any axioms, the 
relevance of structural similarity is 0. The rating for a terminological 
correspondence can take one of four values. For an explicit match, the 
rating is set to .9, matches identified via the domain-specific vocabulary 
are rated .8, implicit synonyms .7, and implicit antonyms .6. These rat
ings represent the reliability of the terminological match, which de
creases, as the match becomes less explicit. For structural matching, we 
distinguish the weights for classes, object properties, and datatype 

properties. The structural similarity rating for datatype properties is 
influenced by the domain, the range datatype, the exact range specifi
cation (i.e., the interval for numerical values), and the functional attri
bute. The first three are equally rated .3, while the functional attribute is 
rated .1. Since the OWA holds, the absence of the functional attribute 
does not mean the attribute is not functional. Hence, a discrepancy does 
not indicate disjoint properties, but our belief in the equivalence of two 
datatype properties increases if both are specified as functional. The 
rating of object property matches is influenced by the domain, the range, 
and several attributes, such as the property being functional. Due to a 
lack of statistical insights, we assign equal relative ratings of 1 to these 
three factors. The structural analysis of classes leverages property vec
tors, which depend on the property matches. To avoid faulty property 
vectors, we only include correspondences with a rating higher than .6. 

4.8. Link Ontology Creation and Consistency Checks 

To merge two ontologies, a link ontology is created, including only 
the correspondences. For this, an algorithm iterates over all the corre
spondences identified and checks whether their similarity rating is 
sufficiently high to accept them automatically or low enough to reject 
them. Every element in between must be reviewed manually. To ensure 
consistency of the alignment, PrOM only allows one correspondence of 
the types equivalence, hyponym, and hypernym per notion. In addition 
to one equivalent, subordinate, or superordinate notion, object proper
ties may also have one inverse property, while the number of disjoints is 
unlimited for all notions. If an input ontology includes equivalent no
tions, the respective correspondences can be inferred using an OWL DL 
reasoner. PrOM provides two algorithms for selecting correspondences. 
The greedy one selects the correspondences with the highest confidence 
ratings first, while limiting the number of correspondences a notion 
appears in. Additionally, PrOM provides an optimal selection algorithm, 
which maximizes the sum of the confidence ratings of the corre
spondences included in the alignment. By default, PrOM uses the greedy 
selection for two reasons. It provides better performance, as the worst 
case computational complexity of the optimal selection is n( !)O as op
posed to a worst case of n( )2O for the greedy selection. Additionally, 

Fig. 3. Overview of the framework’s implementation.  
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optimizing for the highest overall similarity score is not necessarily 
beneficial in case of partially overlapping ontologies. Instead, the cor
respondences with the highest scores may be rejected in favor of several 
correspondences with lower ratings, possibly resulting in a flawed 
alignment. 

For all correspondences accepted, two elements are created in the 
link ontology. These two elements are linked via the correspondence’s 
relation, and also to the respective elements in the original ontologies. 
The input ontologies are referenced as imports from the link ontology. 

Lastly, the framework checks the link ontology and the two input 
ontologies for inconsistencies. PrOM uses an OWL DL reasoner and 
provides interactive debugging support analogously to the pre
processing phase, cp. Section 4.4. Note that the input ontologies are 
assumed to be consistent after the preprocessing and handled as 
ontology imports. Hence, only axioms from the link ontology can be 
removed in this phase. The explanations provided by the reasoner 
may help finding inconsistencies in the input ontologies that can be 
identified only when combining them, though. 

5. Implementation and Discussion 

5.1. Implementation Details 

Fig. 3 shows an overview of the framework’s architecture. The 
prototype is implemented in Python and available online.4 

The framework’s modules were built to be exchangeable and 
adaptable (A4). This enables engineers to adapt the weightings and 
thresholds and provide additional resources. As inputs, the framework 
takes two OWL ontologies, a domain-specific vocabulary, and a con
figuration file. The paths to the ontology files and additional resources 
are specified in the configuration file, which also sets all parameters, 
cp. Section 4.7. For managing the ontologies, we rely on Owlready2 
(Lamy, 2017). Algorithm 1 shows the recursive function developed for 
debugging ontologies. In case of simple inconsistencies, Owlready2 
returns a list of inconsistent classes. However, more complex incon
sistencies may lead to an exception. Then, the analyzeExplanation() 
function uses regular expressions to extract the explanation generated 
by the reasoner Pellet from the traceback and identifies potentially 
inconsistent notions. PrOM iterates through all axioms associated to 
potentially inconsistent notions and prompts the user whether the 
axiom should be deleted via the getUserDecision() function. 
Algorithm 1. Interactive ontology debugging.   

1: procedure DEBUGONTO(onto) 
2: inconsistentElements ← runReasoner() 
3: if exception then 
4: inconsistentElements ← analyzeExplanation(traceback) 
5: if =inconsistentElements then 
6: onto. save() 
7: break 
8: for ie ∈ inconsistentElements do 
9: axioms ← extractAxioms(ie) 

10: for ax ∈ axioms do 
11: if getUserDecision() = ⊤ then 
12: deleteAxiom(ax) 
13: DEBUGONTO(onto)  

The information extractor uses Owlready2 to extract the classes, 
object properties, and datatype properties, including their labels and 
the labels’ languages, from the source ontologies. To extract axioms, we 
use SPARQL Protocol And RDF Query Language (SPARQL) queries. For 
domain-specific translations, we scrape the IEC’s International 
Electrotechnical Vocabulary (International Electrotechnical 
Commission, 2020). If this fails, we use huggingface transformers (Wolf 

et al., 2020), but also support Google Translate. Note that using the 
domain-specific dictionary increases translation quality but decreases 
performance due to the scraping process. If a label is English and 
English is the default language, we use a spellchecker. The terminolo
gical analysis, cp. Algorithm 2, including lemmatization, uses spaCy  
(Honnibal et al., 2020) and NLTK (Bird et al., 2009). Here, ti refer to 
individual tokens of a label, while ∣Ti∣ refer to a label’s token set. The 
semantic matching is based on WordNet and domain-specific voca
bularies stored in a CSV file. spaCy is also used to identify passive object 
properties via patterns. 
Algorithm 2. Terminological matching functions.   

1: function EXPLICITLABELMATCHING(label1, label2) 
2: if t1. lemma ∈ [t2. lemma ∀ t2 ∈ label2] ∀ t1 ∈ label1 then 
3:  if ∣T1∣ = ∣T2∣ then 
4: return equivalence(label1, label2) 
5: else if ∣T1∣  <  ∣T2∣ then 
6: return hypernym(label1, label2) 
7: else if t2. lemma ∈ [t1. lemma ∀ t1 ∈ label1] ∀ t2 ∈ label2 ∧ ∣T2∣  <  ∣T1∣ 

then 
8: return hyponym(label1, label2) 
9: function IMPLICITLABELMATCHING(label1, label2, typeelem) 

10: for i ∈ (1, 2) do 
11: synsi ← getSynonyms(labeli) 
12: antsi ← getAntonyms(labeli) 
13: if t2. lemma ∈ syns1 ∀ t2 ∈ label2 and ∣T1∣ = ∣T2∣ then 
14: return equivalence(label1, label2) 
15: else if t2. lemma ∈ syns1 ∀ t2 ∈ label2 then 
16: return hyponym(label1, label2) 
17: else if t1 ∈ syns2 ∀ t1 ∈ label1 then 
18: return hypernym(label1, label2) 
19: else if ∃ t2 ∈ label2 ∋ t2 ∈ ants1 then 
20: return disjoint(label1, label2)  

Regarding structural matching, cp. Algorithm 3, engineers may 
choose to limit the search space to matches identified via termino
logical matching, or to analyze all possible combinations of classes 
for structural similarity. Note that we use the abbreviations op, dp, di, 
and pv for object properties, datatype properties, the disjoint in
dicator, and the property vector analogously to Section 4. The for
mulas for the individual similarity ratings are implemented 
according to Section 4, and each matching function is run for all 
combinations of respective elements. 
Algorithm 3. Structural matching functions.   

1: function OPSTRUCTUREMATCHING(op1, op2, alignmentclasses, relation) 
2: ratingdomain ← compareDomain(op1, op2, alignmentclasses, relation) 
3: ratingrange ← compareRange(op1, op2, alignmentclasses, relation) 
4: di ← checkIfDisjoint(op1. attributes, op2. attributes) 
5: ratingattributes ← cosSim(op1. attributes, op2. attributes, relation) 
6: rating calculateRating rating rating di rating( , , , )op op domain range attributes1, 2
7: return ratingop op1, 2
8: function DPSTRUCTUREMATCHING(dp1, dp2, alignmentclasses, relation) 
9: ratingdomain ← compareDomain(dp1, dp2, alignmentclasses, relation) 

10: ratingrange ← compareRange(dp1, dp2, relation) 
11: ratingattribute ← cosSim(dp1. functional, dp2. functional, relation) 
12: rating calculateRating rating rating rating( , , )dp dp domain range attribute1, 2
13: return ratingdp dp1, 2
14: function CLASSSTRUCTUREMATCHING(axiomsclass1, axiomsclass2, alignmentproperties) 

15: pv ← checkThresholdAndCorrespondenceType(alignmentproperties) 
16: for i ∈ (1, 2) do 
17: pvi ← 0 
18: for counter, p ∈ enumerate(pv) do 
19: for a axiomsclassi do 

20: if p ∈ a.properties then 
21: pvi[counter] ← 1 
22: pv pvrating relSim ( , )1 2class class1, 2
23: return ratingclass class1, 2

PrOM combines terminological and structural analysis results in 
a preliminary alignment, which is then assessed using the ratings. 4 https://github.com/felixocker/prom, last accessed: November 19, 2021 
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For creating the final alignment from the correspondences 
identified, cp. Section 4.8, the engineer may choose from a greedy, 
cp. Algorithm 4, and an optimal selection algorithm via the config
uration file. The optimal selection algorithm, including a multi
processing implementation for improved performance, is available 
as a part of the implementation. However, PrOM uses the greedy 
selection by default, cp. Section 4.8. 
Algorithm 4. Greedy correspondence selection.   

1: function GREEDYSELECTION(correspondences) 
2: selection
3: correspondences.sortByRating(reverse = ⊤) 
4: for c ∈ correspondences do 
5: overlap ← set(e ∀ e ∈ selection if ∃ e.notion = c.notion) 
6: if =overlap then 
7: alignment. append(c) 
8: return alignment  

Depending on the thresholds specified, the engineer is prompted 
to confirm matches via a Command Line Interface (CLI). Owlready2 
is used to create the link ontology. The framework generates a 
random IRI and adds a description that refers to the original ontol
ogies, respective imports, and all correspondences from the 
alignment. 

5.2. Evaluation 

For evaluating PrOM’s automatic and interactive mode, we im
plemented a string matcher based on Levenshtein distance as a 

naive but sound baseline. Additionally, we used AgreementMaker5 

as a representative ontology merging framework, cp. Section 2.4. The 
matching algorithms used with AgreementMaker are the “Base Si
milarity Matcher” (AM1), the “Vector Based Multi-Words Matcher” 
(AM2), and the “Basic Structural Selector Matcher” (AM3), which is a 
second layer matcher we operated on the results of AM1. All 
matchers worked out of the box and we did not tune them in any 
way. We used several data sets for the benchmark. The minimal 
example introduced in Section 3 was designed to test PrOM’s fea
tures, including translations. Since AgreementMaker does not pro
vide translations, we used this data set without (MEXO) and with 
translations (MEXT). The alignment of excerpts of MASON and the 
IOF process planning ontology (MVSP) is a larger example also re
presenting the production domain. We created reference alignments 
for these data sets manually and provide them as a part of the im
plementation. For better comparability, we also used three data sets 
including reference alignments from the OAEI 2012 campaign6 re
ferenced in the AgreementMaker GitHub repository. The data sets 
OAEI 1, 2, and 3 correspond to the matching tasks “101 vs. 103″, “101 
vs. 207″, and “101 vs. 301″, respectively. The benchmark results re
garding precision, recall, and F-measure (Ochieng and Kyanda, 2018) 
are presented in Fig. 4. Table 4 shows the number of user 

Fig. 4. Benchmark using several frameworks (String matcher implemented as a baseline; PrOM (automatic) without any user interaction, acceptanceThreshold = .6; PrOM (inter
active) with user interaction, interactiveCorridor = [.3, .6]; AM1 - AgreementMaker with the “Base Similarity Matcher”; AM2 - AgreementMaker with the “Vector Based Multi-Words 
Matcher”, and AM3 - AgreementMaker with the “Basic Structural Selector Matcher” that also leverages AM1) and several data sets (minimal example without (MEXO) and with 
(MEXT) English translations; MASON vs. IOF process planning ontology (MVSP); and three examples from the 2012 OAEI benchmark set, namely the combinations 101 vs. 103 (OAEI 
103), 101 vs. 207 (OAEI 207), and 101 vs. 301 (OAEI 301). 

Table 4 
Number of user interactions PrOM requires in interactive mode by data set compared to the number of notions per input ontology. Notions include classes, object properties, and 
datatype properties.         

Data set MEXO MEXT MVSP OAEI 103 OAEI 207 OAEI 301  

# interactions 13 13 8 33 19 14 
# notions ontology 1 17 17 135 122 122 122 
# notions ontology 2 20 20 100 122 121 55    

5 https://github.com/agreementmaker/agreementmaker, last accessed: November 
19, 2021, run using Java 11.0.11 

6 http://oaei.ontologymatching.org/2012/benchmarks/index.html#datasets, last 
accessed: November 19, 2021 
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interactions required by PrOM’s interactive mode compared to the 
number of notions included in the respective input ontologies. 

MEXO showed that PrOM is capable of handling the spelling er
rors induced and correctly translating domain-specific terms. In in
teractive mode, critical matches with ratings between the default 
thresholds .3 and .6 were presented to the user for assessment. 
When fully automating the process using a threshold of .6, PrOM 
rejects correspondences that were found solely based on a termi
nological analysis, thus significantly reducing recall. Note that PrOM 
identified a disjoint between the notions first name and last name in 
the “101 vs. 103″ scenario. Even though correct, this correspondence 
was not included in the official reference alignment. In the case of 
MSVP, PrOM erronously identified the correspondence (mason:u
ses_tool, ppo:uses_equation_type, equivalence), which can be ex
plained by the tokenization process during terminological matching, 
which focused on the verb “use”. 

The benchmark shows that PrOM works especially well with ax
iomatized ontologies from the production domain, such as MEXO, and 
performs decent on other data sets such as the ones included in OAEI, 
even when defaulting to the terminological analysis. The low recall in 
PrOM’s automatic mode compared to the interactive one is due to the 
high acceptance threshold of .6 in combination with a lack of ax
iomatization. This also highlights the benefit of the interactive mode 
regarding alignment quality, while keeping the effort for engineers at a 
reasonable level. Performance for these application examples was ac
ceptable as ontology merging is not a time critical task and the merging 
processes were completed within seconds using a regular computer.7 

5.3. Discussion 

Even though production ontologies are intrinsically hetero
geneous (A1), the framework copes via a combination of pre
processing, including spellchecks and translations, and 
terminological and structural analyses as well as consistency checks. 
Domain-specific knowledge in the form of dictionaries and voca
bularies is integrated, and engineers may confirm or reject arguable 
matches. Due to the combination of terminological and structural 
analyses with domain-specific knowledge, the framework is fit to 
merge ontologies with partially overlapping domains of interest 
(A1.1). Additionally, ontologies that differ in their degrees of ax
iomatization can also be analyzed (A1.2), e.g., if one ontology in
cludes no axioms. This is a case for purely terminological matching. 
However, the matching quality greatly increases if an axiomatization 
can be leveraged. This was confirmed by the benchmark, cp. Section 
5.2, which also showed that the matching quality (A2) is promising. 
The framework was implemented modularly (A3) regarding the 
implementation and the reversibility of the merging process, which 
is ensured by creating a link ontology. Lastly, we designed the fra
mework to be adaptable (A4). While engineers may adapt relevant 
weightings and thresholds, software engineers can adapt the fra
mework due to its modular architecture. Overall, PrOM’s perfor
mance seemed reasonable, even when run on a regular personal 
computer. 

To further automate the merging of two ontologies, reification as 
a design choice should be considered. As another source of in
formation, the comments may be analyzed and alignments with 
common TLOs could be leveraged (Anjum et al., 2012). Additionally, 
more advanced algorithms for structural matching and combina
torial optimization (Euzenat and Shvaiko, 2013) should be included, 
and the framework’s computational performance improved, which is 
beneficial for merging large ontologies. Also, an n-ary matching 
approach (Babalou and König-Ries, 2020) may be beneficial if large 
numbers of ontologies need to be merged. 

Even though we included debugging support using an OWL DL 
reasoner, the automated resolution of inconsistencies remains 
challenging. Explanations provided by reasoners may be hard to 
interpret, complicating both a manual and an automated resolution. 

The quality of the resulting alignments strongly depends on the 
choice of weightings and thresholds. Since choosing these is a major 
challenge for engineers due to the high number of dimensions to be 
considered, an automated parameterization is desirable. If a large 
amount of labeled data were available, a model with the weighting 
factors could be trained. Also, there is related work regarding au
tomated parameterization (Ritze and Paulheim, 2011) that may be 
adopted in future work. In addition, a rigorous statistical analysis of 
the use of OWL axioms, cp. Section 4.7, could help with identifying 
appropriate weighting factors. 

6. Summary and Outlook 

We presented PrOM for merging the TBoxes of production 
ontologies. The framework leverages spellchecks, translations, and 
analyses regarding syntax, terminology, and structure. The match
ing’s reliability is increased by using domain-specific dictionaries 
and vocabularies and the results are validated using consistency 
checks. The resulting alignment is stored in a link ontology that 
imports the source ontologies, thus realizing a modular architecture. 
We provide an adaptable implementation regarding the software 
and input data such as thresholds and domain-specific information. 
As discussed in Section 5.3, the framework merges heterogeneous 
ontologies, while addressing matching quality, modularity, and 
adaptability. Its applicability was shown in a benchmark. A dedi
cated minimal example demonstrates the capabilities of the fra
mework, while excerpts from two established production ontologies 
were merged to show real-life applicability. 

Even though PrOM has been shown to be applicable as is, there is 
room for further improvements. First, ontology merging requires for
malized knowledge representations. These have been investigated for a 
long time (Sowa, 1999), but formal knowledge representation should be 
pursued further and engineers should be enabled to apply these tech
nologies. Second, we propose to investigate two approaches for choosing 
weightings and thresholds. Engineers can be expected to benefit from an 
easy-to-use graphical user interface, rather than the currently im
plemented CLI, which would allow them to navigate and possibly adapt 
the weightings and thresholds. Additionally, the parameters could be 
continuously improved as the framework is used. For creating labeled 
data sets, engineers would need to assess whether a specific alignment 
was correct. To further improve the overall quality, the inconsistency 
check would benefit from an automated analysis. Hereby, the explana
tions provided by the reasoner are promising and approaches for OWL 
restriction conciliation (Grygorova et al., 2020) may be helpful. Third, the 
framework should be extended to be able to merge ABoxes. This aspect 
was intentionally neglected in this paper, as the boundary conditions 
differ from the merging process of TBoxes. 

The framework presented is a step towards automatically mer
ging production ontologies. Together with advances in digitization 
and ontology creation, this has the potential to integrate the 
knowledge of various viewpoints, which can be expected to shorten 
development times and facilitate integration of production resources 
across vendors and countries. 
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